BUILDING EFFICIENT SYSTEMS FROM
DATA IN A COMPUTATIONAL
INTELLIGENCE FRAMEWORK

Debrup Chakraborty

Electronics and Communication Sciences Unit

Indian Statistical Institute

Kolkata - 700108
India.

A thesis submitted to the Indian Statistical Institute
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
August 2004

ACKNOWLEDGEMENTS

This work was done under the supervision of Prof. Nikhil R. Pal. I would like to record my
gratitude to him for his constant encouragement, guidance and inspiration. He has been a
friend and guide to me for the last few years, and I profited immensely in his company. I am
grateful to him for the time he spent on discussing our research and scrutinizing it critically

and with painstaking care; and also for allowing our joint works to be included in this thesis.

I would like to thank Prof. B.N. Chatterjee of I[I'T Kharagpur along with the other members
of the Research Fellow Advisory Committee. Their critical comments during my annual

reviews have been very helpful.

I shared an office with Mr. D.P. Muni for the last four years. I am thankful to him for his
companionship and encouragement. He along with with Arindam, Achintya, Bishwadeep,

Sanjaya have been great friends and they have helped me a lot during my stay in ECSU.

I would like to thank Mr. P.P. Mohanta, who has been very friendly and who performed the

difficult duty of maintaining software and machines in our laboratories.

This thesis is written in WTEX. Most of the codes for simulation were compiled using gce,
the illustrations were done by zfig. These along with many others are free software. 1 wish
to use this opportunity to acknowledge my indebtedness to everyone who has been a part of

the free software movement.

The Institute’s library staff, inmates of R.S. hostel and everyone in the Electronics and
Communication Sciences Unit (ECSU) have always been co-operative and friendly, which
helped a lot. ECSU provided a great environment for research, which made everyday worth

looking forward to.

I would like to thank Indian Statistical Institute for providing me financial support to carry

out this research.

ISI, Kolkata
August 2004. (Debrup Chakraborty)

Contents

1 Introduction and Scope of the Thesis

1.1
1.2
1.3

1.4

1.5

Introduction L

Systems Built from Data : A Formal Look

The Computational Intelligence Framework

1.3.1
1.3.2

Neural Networks

Fuzzy Systems

Some Desirable Characteristics of Systems Built from Data

1.4.1
1.4.2
1.4.3
1.4.4
1.4.5
1.4.6

Readability o
Generalization Ability o000
Low Complexity
Managing the Curse of Dimensionality
Ability to Say “Don’t Know”

Incremental Learnability

Scope of the Thesis Lo

1.5.1
1.5.2

1.5.3

Literature Survey

Online Feature Selection and Function Approximation Type Sys-

tem Design in a Neuro-Fuzzy Paradigm [24, 164]

Online Feature Selection and Classifier Design in a Neuro-Fuzzy

Paradigm [25,27]

i

1.5.4 Online Sensor Selection Using Feed-Forward Networks [28, 31] . 19

1.5.5 Strict Generalization and Incremental Learning in Multilayer
Perceptron Networks: Classification [26,29] 20

1.5.6 Strict Generalization and Incremental Learning in Multilayer

Perceptron Networks: Function Approximation [32] 21

1.5.7 Enhancing the Generalization Ability of Multilayer Perceptron

Networks [30] 22

1.5.8 Conclusions and Future Work 22

2 Literature Survey 23
2.1 Feature Analysis 23
2.1.1 Feature Extractiono 0. 26
2.1.2 Feature Selection L oo 29
2.1.3 Feature selection by Computational Intelligence Tools 35
2.1.4 Online Feature Selection 40

2.2 Enhancing Generalization Ability 43
2.2.1 Early Stopping 44
2.2.2 Complexity Control 44
2.2.3 Expanding the Training Set 47
2.2.4 Ensemble Methods 48
2.2.5 Constraining the Learning 49

3 Online Feature Selection and Function Approximation Type System

Design in a Neuro-Fuzzy Paradigm 50
3.1 Introduction 50
3.2 Neuro-fuzzy Systems: Motivation and Earlier Works 51
3.3 The Network Structureo 55

il

3.4 Learning of Feature Modulators and Rules 59

3.4.1 Implicit Tuning of Membership Functions 62
3.5 Optimizing the Network oL 63
3.5.1 Pruning Redundant Nodes 63
3.5.2 Pruning Incompatible Rules 67
3.6 Training Phases 69
3.7 Results 69
3.71 Resultson Hang L. 71
3.7.2 Resultson Chem 73
3.8 Conclusion and Discussions 77

Online Feature Selection and Classifier Design in a Neuro-Fuzzy

Paradigm 79
4.1 Introduction Lo 79
4.2 The Classification Network o o oL 81
4.3 Learning Phase I: Feature Selection and Rule Extraction 84
4.4 Leaning Phase II: Pruning Redundant Nodes and Further Training . . 87
4.4.1 Pruning Redundant Nodes 87
4.5 Learning Phase III: Pruning Incompatible Rules, Less used Rules and
Zero Rules and Further Training 88
4.5.1 Pruning Incompatible Rules 88
4.5.2 Pruning Zero Rules and Less Used Rules 88
4.5.3 Tuning Parameters of the Reduced Rule Base 90
4.6 Results.o 90
4.6.1 The Data Sets L 90
4.6.2 The Implementation Details 92

v

4.6.3 Experimental Results 0000, 94

4.7 Conclusions and Discussion L. 105
5 Online Sensor Selection Using Feed-Forward Networks 108
5.1 Introductiono 108

5.2 The Group Feature Selecting Radial Basis Function (GFSRBF) Network 110

5.2.1 The Network Structure 112
5.2.2 The Learning Rules 113
5.2.3 Selection of Centers and Spreads 115
5.2.4 A Threshold for the Feature Attenuators. 115
5.2.5 Universal Approximation Property of GFSRBF 116
5.3 A Group Feature Selecting Multilayer Perceptron 118
5.3.1 Universal Approximation Property of GFSMLP 120
54 Results o 121
541 Chemo 122
542 ris o oo o e 126
543 RS-Data 129
544 Wine . . oL L 132
5.4.5 Breast-Cancer L 134
5.4.6 Evaluation of Features 135
5.5 Conclusions and Discussion L. 136

6 Strict Generalization and Incremental Learning in Multilayer

Perceptron Networks: Classification 140
6.1 Introduction 140
6.2 Boundary of a Pattern Class 143

6.3 Improper Behavior of MLLP Outside the Boundary of the Training Sample144

6.4 A New Training Scheme 146

6.4.1 Incremental Learning Lo 151
6.4.2 Generating Points Outside the Boundary of a Pattern Class . . 153
6.5 Results. 159
6.5.1 Demonstration of Good Generalization 159
6.5.2 Demonstration of Incremental Learning 169
6.6 Conclusions and Discussion 0. 170

Strict Generalization and Incremental Learning in Multilayer

Perceptron Networks: Function Approximation 173
7.1 Introduction 173
7.2 The 3-Peaks Function: The Motivation. 174
7.3 Training Scheme Lo Lo 176

7.3.1 Training the BVN: Training Vigilance Nets with Additional Ex-
amples Generated Outside the Boundary of the Training Set . . 177

7.3.2 Training the RVN: Training Vigilance Nets with Receptive Fields

Around Data Points o000 179

7.3.3 The Composite Network 180

7.4 Incremental Learning Lo o Lo 182
7.4.1 Max aggregation oL o Lo 184
7.4.2 Average Aggregationo oL 185

7.5 Results L 186
7.5.1 Demonstration of Strict Generalization 188
7.5.2 Results on Classification 198
7.5.3 Demonstration of Incremental Learning 199

7.6 Conclusions and Discussion L. 203

vi

8 Enhancing the Generalization Ability of Multilayer Perceptron
Networks

8.1 Introduction L
8.2 Expanding the Training Set: The Function Approximation Case
8.3 Expanding the Training Set: The Classification Case
84 Results
8.4.1 Results on Function Approximation
8.4.2 Results on Classification

8.5 Conclusions and Discussion

9 Conclusions and Future Work
9.1 Conclusions e

9.2 Scope of Further Improvement and Research

Bibliography

Publications of the Author Related to the Thesis

Vil

204
204
205
207
208
209
210
218

219
219
223

226

246

List of Figures

1.1

3.1
3.2
3.3
3.4
3.5

3.6
3.7

3.8

4.1
4.2
4.3
4.4

4.5

4.6

The organization L

The network structure.
Subnet to illustrate redundant nodes.
Incompatiblerules

Plot of Hang.

Membership functions used for Hang: (a) Input membership functions,

(b) Output membership functions.
Difference surface for Hang.

Membership function used for different features of Chem data: (a) Mem-
bership function for u; (b) Membership function for uy (¢) Membership
function for us (d) Membership function for uy and us () Membership

function for y

Performance comparison of the proposed system for Chem data

The structure of the classification network.
Plot of Elongated: (a) features 1-2 (b) features 2-3 (c¢) features 1-3
Fuzzy sets used for Elongated: (a) feature 1 (b) feature 2 (¢) feature 3
The rules for classifying Elongated.

Fuzzy sets used for Iris: (a) feature 1 (b) feature 2 (c) feature 3 (d)

feature 4o

The rules for classifying Iris. L.

4.7

5.1
5.2
5.3
5.4

3.5

5.6

5.7

5.8

6.1
6.2
6.3
6.4
6.5
6.6
6.7

6.8

6.9

The fuzzy sets used for all the 5 features of Phoneme 101

The GFSRBF network structure 111
MLP with group feature selection (GFSMLP) 118
Plotof yand wso o 123
Bar diagram showing number of times each feature group gets selected

for Chem data using GFSRBF 0oL, 126

Variation of misclassifications and attenuator values with number of
iterations for Iris data: (a) misclassification (b) attenuator values for

group 1 features (c)attenuator values for group 2 features 128

Bar diagram showing the number of times each feature group gets se-

lected for RS14 data: (a) GFSRBF (b) GFSMLP 132

Bar diagram showing the number of times each feature gets selected for

Wine data: (a) GFSRBF (b) GFSMLP 133

Bar diagram showing the number of times each feature gets selected for

Breast-Cancer data: (a) GFSRBF (b) GFSMLP 134

(a) Scatterplot of Scatteredl (b) Generalization by an MLP on Scattered1144
(a) The scatterplot of Two-Shell (b) Generalization by a trained MLP . 145
(a) The scatterplot of Dish-Shell (b) Generalization by a trained MLP . 145

Simple Merging of k£ trained MLPs 148
Compound Merge of two trained MLPs 152
Scatterplot of Squareo oL 157
Points generated outside the boundary of Square for different values of

a: (a)a=1.0(Mb)a=15(c)a=20(d)a=25 158
Points generated outside the boundary of Dish-Shell for various values

ofa: (a) a=1.0(b)a=15(c)a=20(d)a=25 158
(a) Scatterplot of Dish-Shell (b) Generalization on Dish-Shell 160

X

6.10

6.11
6.12
6.13
6.14
6.15

7.1
7.2
7.3

74

7.5

7.6

7.7
7.8
7.9

7.10

7.11

Scatterplot of 3D-Elongated (a) projected on 1-2 (b) projected on 2-3

(c) projectedon 1-3 161
Generalization on 3D-Elongated (a) 1-2 (b) 2-3 (¢) 1-3 162
Scatterplot of Cone-Torus (a) Training Data (b) Test Data 162
Scatterplot of Sat-Image along the two most significant components . . 165
(a) Scatterplot of Scattered_P1 (b) Scatterplot of Scattered 169
(a) Generalization on ScatteredP1 by M (b) Generalization by M; on

Scattered 170
Plot of 3-Peaks 175
The points in 3-Peaks used for training 175

Generalization produced by an ordinary MLP trained with PT; for 4

different initializations 176
The composite network N = (N, V) 181
Generalizations produced by NP, = (NP1, NP,;) (using BVN), when

trained with PT} for various initializations (the large dots denotes the

training points). Lo 189
Generalizations produced by NP, = (NP1, NP,1) (using RVN), when

trained with PT} for various initializations (the large dots denotes the

training points). Lo 189
Plot of Gabor function 190
Scatterplot of the input vectorsin G'I7 190

Generalization produced by an ordinary MLP when trained with G}

with different initializations 192

Generalization produced by 10 different initializations of NG (using a

BVN) when trained with GT7 oo 193

Generalization produced by 10 different initializations of NG (using a

RVN) when trained with GTy 0. 194

7.12 (a) Fig. 7.10(a) as seen from top (b) Fig. 7.11(a) as seen from top . . . 195

7.13 Generalizations on Dish-Shell using RVN (the four results are results
obtained by 4 networks with different initializations) 198

7.14 Results on 3-Peaks by using BVN: (a) Generalization of NP (b) Gen-
eralization of NP, (¢) Generalization of the aggregated networks N Py
and NP, when aggregated by Max aggregation (d) Generalization of
the aggregated networks NP, and NP, when aggregated by Average
aggregation Lo L 201

7.15 Results on 3-Peaks by using RVN : (a) Generalization of NP; (b) Gen-
eralization of NP, (¢) Generalization of the aggregated networks N Py
and NP, when aggregated by Max aggregation (d) Generalization of
the aggregated networks NP, and NP, when aggregated by Average
aggregation Lo L 201

7.16 Results on Gabor by using BVN: (a) Generalization of NGy (b) Gen-
eralization of NGy (c) Generalization of the aggregated networks NG
and NGy when aggregated by Max aggregation (d) Generalization of
the aggregated networks NGy and NGy when aggregated by Average
aggregation Lo L 202

7.17 Results on Gabor by using RVN: (a) Generalization of NGy (b) Gen-
eralization of NGy (c) Generalization of the aggregated networks NG
and NGy when aggregated by Max aggregation (d) Generalization of
the aggregated networks NGy and NGy when aggregated by Average
aggregation Lo L 202

8.1 Generalizations on Sine data by MLP trained by conventional method . 211

8.2 Generalizations on Sine data by MLP trained by points generated by
the method in [100] 212

8.3 Generalizations on Sine data by MLP trained by points generated by
the method in [82] 213

8.4 Generalizations on Sine data by MLP trained by points generated by
our proposed method L L L 214

xi

List of Tables

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13

Pruning of redundant nodes 0oL 66
Architecture of the neural fuzzy system used for Hang. 72
Value of 3, for different input features for Hang. 73
No of Fuzzy sets for different features used with Chem 74
Initial architecture of the Neural Fuzzy System used for Chem 74
Values of 3, for different input features. 76
Pruning incompatiblerules o000 89
Summary of the datasets oo 92
Free parameters of the network 0000, 93
User defined parameters 93
Number of fuzzy sets for each feature for Elongated 94
Initial architecture of the network used to classify Elongated 95
Value of 1 — e for different input features for Elongated 96
The linguistic rules for Elongated. 97
Initial architecture of the network used for Iris 98
Value of 1 — =% for different input features for Iris. 99
Linguistic rules for Iris data. 100

Best resubstitution accuracy for Iris data for different rule based classifiers101

Initial architecture of the network used to classify Phoneme 101

xii

4.14
4.15
4.16
4.17

5.1
5.2
5.3

5.4

3.5
5.6

5.7

5.8

5.9

5.10

5.11

5.12

5.13

Value of 1 — e~ for different input features for Phoneme. 102
Value of 1 — e~ for different input features for RS-Data. 103
Number of fuzzy sets for each feature for Reduced R5-Data 104
Performance and rule reduction of the proposed system 105
Values of 4; in GFSRBF for Chem data (considering 3 groups of features)122

Range of feature values for Chem data 123

Performance of GFSRBF on Normalized-Chem (considering 3 groups of
features) 125

Performance of GFSMLP on Normalized-Chem (considering 3 groups of
features) 125

Values of ; for Iris data (considering 4 groups of features) using GFSRBF 127

Misclassifications and number of groups selected for Iris data with GF-

SRBF (considering 2 groups of features) 127
Values of v; in GFSRBF for RS-Data (considering 7 groups, 1 feature
PET GTOUP) v v v v v v e e e e e e e 129
Misclassifications and number of groups of features selected for RS14
data with GFSRBF 130
Misclassifications and number of groups of features selected for RS14
data with GFSMLP 130
Misclassifications and number of features selected for Wine data with
GFSRBY . . . 133
Misclassifications and number of features selected for Wine data with
GEFSMLP . . 133
Misclassifications and number of features selected for Breast-Cancer
data with GFSRBF 134
Misclassifications and number of features selected for Breast-Cancer

data with GFSMLP 135

x1il

5.14

5.15

5.16

5.17

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13

7.1
7.2
7.3
74
7.5

Misclassifications produced by an ordinary MLP with various sets of

features on Breast-Cancer data

Misclassifications produced by an ordinary RBF network with various

sets of features on Breast-Cancer data

Misclassifications produced by an ordinary MLP with various sets of

features on Wine data o

Misclassifications produced by an ordinary RBF network with various

sets of features on Wine data

Algorithm Train
Algorithm Test o
Algorithm Augment. oL
Algorithm Generate oL oo
Results on Cone-Torus by our method
Results on Cone-Torus using conventional MLP (reported in [122]) . . .
Results on Cone-Torus using conventional MLP interpreted by TEST .
Results on Sat-Image using conventional MLP (reported in [122])

Results on Sat-Image using conventional MLP obtained by us
Results on Sat-Image using conventional MLP interpreted by TEST . .
|Cil for Run Tand Run IT
Results on Sat-Image by our method (Run-1)

Results on Sat-Image by our method (Run -11)

Algorithm Train BVN o000 oo oo
Algorithm Test-FA o
Algorithm Max Aggregation
Algorithm Average Aggregation

Run statistics for Boston-Housing on 50% training-test partition

X1V

178
182
184
185
196

7.6
7.7
7.8
7.9

8.1

8.2

8.3
8.4

8.5

8.6

Run statistics for Boston-Housing on artificially generated test data . .
Run statistics for Normalized-Chem on artificially generated test data .
Run statistics for Wine o oo oo

Run statistics for Breast-Cancer

Results on Sine Data: The sum of square error on test set for networks

trained with different methods for 10 different initializations

Bandwidths used for the classification data sets for implementing the

method in [82]
Mean misclassification on different data sets using different methods . .

Standard deviation of misclassifications on different training-test parti-

tions of Iris data

Standard deviation of misclassifications on different training-test parti-

tions of Breast-Cancer data

Standard deviation of misclassifications on different training-test parti-

tions of Bupa data

XV

196
197

List of Important Abbreviations

ARD Automatic Relevance Detection
BIC Boundary Indicator Component
BNN Biological Neural Network
BVN Boundary Vigilance Network
CBF Component Basis Function

CI Computational Intelligence
EBP Error Backpropagation

FA Function Approximation

FCM Fuzzy ¢ Means

FQI Feature Quality Index

GA Genetic Algorithm

GFS Group Feature Selection

GFSMLP Group Feature Selecting Multilayer Perceptron
GFSRBF Group Feature Selecting Radial Basis Function

k-nn k- Nearest Neighbor

LDA Linear Discriminant Analysis
MLP Multilayer Perceptron

MST Minimal Spanning Tree

OFS Online Feature Selection

PAC Probably Approximately Correct
PCA Principal Component Analysis

PI Performance Index

PR Pattern Recognition

RBF Radial Basis Function

RVN Receptive Field Vigilance Network
SBS Sequential Backward Selection
SFES Sequential Floating Forward Selection
SES Sequential Forward Selection

SSE Sum of Square Error

SVD Singular Value Decomposition

xvi

Chapter 1

Introduction and Scope of the Thesis

1.1 Introduction

There are problems of interest for which precise mathematical or physical understand-
ing is yet to come. Let us illustrate this with an example. Suppose, for a mining
operation one needs to blast a certain portion of the soil/rock using some specific ex-
plosives. Before the blast is made, the miners want to know the intensity of vibration
that would be produced at a certain distance from the site of blasting. The intensity
of vibration may depend on several factors. For example, it will depend on the charac-
teristics and quantity of the explosive used, the rock characteristics of the region, the
distance between the blasting site and the point where vibration is measured. But, we
do not know precisely how these factors control the intensity of vibration. There are
physics based models which model the gross scenario, but they are based on assump-
tions which are sometimes too simple to be useful. There are numerous such problems
for which we do not yet have precise “physics based” models. For such problems, it
is known that the outputs bear certain relationship with the possible inputs. But the
underlying process governing the relation between the inputs and outputs is believed
to be so complex that it is difficult to formulate physical models to explain it to our
satisfaction. For such problems it is possible to obtain past data in the form of input-
output observations. We can assume that there is some unknown function which maps
the relevant input space to the output space. Based on the available input-output data
our task is to construct a computational system which can act as the function to per-
form this transformation. Such systems built from data attempt to mimic the original

system, and can be used for future predictions. This thesis deals with identification of

such systems from input-output data.

Systems which have been developed using input-output examples are sometimes called
learning systems. Such systems implicitly or explicitly learn some function from data.
These can be classified into two categories based on the type of output they produce.
Systems in the first category produce numerical values as outputs (these are termed as
function approximation type systems). For example, one may train a system to predict
the price of a stock based on available data. Such a system will produce a numerical
output, which in this case is the predicted price of a stock. Systems of the second kind
do not produce numerical values but class labels or some decision (such a system can
be called a classifier type system). For example, a classifier can be designed to decide
whether a pixel denotes land or water from the gray level characteristic of a remotely
sensed image. Note that, the numerical output of a system may also be interpreted as

a decision.

Building systems which learn from input-output examples has been a problem of in-
terest for a long time. This problem primarily falls under the broad field of pattern
recognition. Pattern recognition (PR) deals with algorithms and methods to find reg-
ularities in data and consequently using them for the task of recognition. There are
three main tasks involved in pattern recognition: classification, clustering and fea-
ture analysis. Pattern recognition often become an integral part of designing non PR

systems. For example, clustering is extensively used for designing control systems

36, 37, 38, 159, 167].

Pattern recognition has been an active field of research for the last few decades [44, 48,
61]. In its formative years pattern recognition was done through statistical methods
[90, 96]. The traditional statistical methods are always not well suited for analyzing
complex data which arise in today’s applications. With increased need for more spe-
cialized methods for complex problems various other sophisticated methods have come
into being. There have been a tremendous advancement both in terms of statistical

theory and techniques to deal with complex data of high dimensionality and large size

[76, 232].

Another set of methods which has evolved to solve the problem of learning is called the
computational intelligence (CI) methods. These methods are quite useful and popular

to build “intelligent” systems. There is a long history of attempts to make machines

intelligent. It has been recognized, that an important facet of human intelligence
comes from its ability to recognize patterns based on past experience. Thus, there
are families of methods which are biologically motivated, and try to imitate some of
the characteristics of the computation that goes in the human brain. Artificial neural
networks form an important category of such methods. There are a number of artificial
neural architectures which can learn from input-output examples. It has been proved
that some of these architectures have the universal learning ability, i.e., they can learn
any “reasonable” non-linear function [77, 84]. In addition, these systems are robust to
noise, fault tolerant and have capability to generalize [77, 253]. Moreover, unlike the
traditional statistical techniques neural networks work without any assumption on the
distribution of the data. Consequently, neural networks have been quite successful in

providing reasonable solutions to many learning problems [77].

A desirable property of decision making systems would be to have reasoning ability
as human beings do. Also, it would be better if linguistic rules from domain experts
can be incorporated into such systems. The theory of fuzzy sets and fuzzy logic help
to a great extent to achieve these. The paradigm of fuzzy logic is very apt to handle
certain types of uncertainties which are inherent in real systems. Fuzzy logic deals with
reasoning with linguistic variables in an approximate sense. Thus, fuzzy systems have
more flexibility, can handle uncertainty and the outputs produced by such systems are
often more interpretable and useful. Fuzzy logic has long been successfully used to

design control systems, classifiers and other other application systems designed from

data [12, 46, 117, 157, 180].

Neural networks have excellent learning and generalization abilities but they usually
lack interpretability and work as a black box. On the other hand, fuzzy systems
are well known for their interpretability. Thus an integration of these two important
components of CI produces systems with advantages of both [137]. So, there have
been many attempts to integrate neural networks and fuzzy systems. Such systems

are called neuro-fuzzy systems [104, 137, 183].

This thesis deals with building efficient systems from data using neural networks and
neuro-fuzzy systems. Efficiency of a system designed from data is not only dependent
on the accuracy with which it can predict but also on certain other attributes. Some
such attributes are: readability, low complexity, generalization ability, ability to do

feature analysis, ability to say “don’t know”, incremental learnability etc. Not all sys-

tems possess all these properties, and there are increased efforts in all directions to
make systems which possess these properties. The emphasis of the proposed method-
ologies in this thesis is to incorporate some of these desirable properties in the systems.
Particularly we have concentrated on two attributes of efficiency, namely, capability to
do feature analysis and generalization ability. Ability to say “don’t know” is related to
generalization ability, as it deals with the problem of identifying the areas in the input
space where a system should generalize. We have developed systems which are capa-
ble of saying “don’t know” when appropriate. These systems also have incremental

learning ability.

It is known that for a given problem all features that characterize a data point may
not be equally important. Some features may be redundant while others may even be
bad features. Feature analysis techniques aim to reduce the number of features to a
small but adequate (adequate for the task at hand) subset of the available features,
i.e., they aim to discard the bad/ irrelevant features from the available set of features.
This reduction may improve the performance of classification, function approximation
and other pattern recognition systems in terms of speed, accuracy and simplicity. Most
methods of feature analysis act as a preprocessing step on the data, and they precede
the main learning task. It has been long noticed that the suitability of the features
depends on the learning algorithm [43, 44, 118]. Hence, it would be best if the learning
machine can be equipped with an inherent feature selection capability. We have pro-
posed systems which have a feature selection component inherent in them. We call such
feature selection techniques as online techniques. In this thesis we develop neuro-fuzzy
systems for function approximation and classification which can select the relevant
features from data when they get trained. Consequently, such schemes give rise to less
complex systems with enhanced generalization abilities. We also propose an online
scheme for doing sensor selection. This problem of sensor selection has been addressed

using modified versions of two traditional neural network architectures, namely, the

Multilayer Perceptron (MLP) and the Radial Basis Function (RBF) networks.

Another important problem that we address here is on generalization. We provide
methodologies to train neural networks by a specialized technique so that they can
learn the relevant areas of the input space from which the training data might have
come, and they do not respond to test points which lie outside the “boundary” of

the training data. In other words, our method of training enables neural networks

to identify areas in the input space for which it should produce a response. We call
this as strict generalization. This method can be easily used for incremental learning
of the neural networks, i.e., one can incorporate new knowledge in a trained neural
network without hampering its previous memories. We also deal with the problem of
overfitting in MLP networks. A serious problem with neural network training is that it
is trained with a finite training sample, and a finite training sample can easily result in
an overfitted neural network which generally produces bad generalization. We propose
a method to overcome this problem too. Our method relies upon a scheme to expand

the given training set to any desired size, and it produces consistent generalizations.

In this chapter, in the sections to follow, we first formally describe the problem of
learning from data. Then, in Section 1.3 we discuss the computational intelligence
paradigm, and in some detail we describe neural networks and fuzzy systems. These
tools would be primarily used throughout the thesis. In fact, all schemes described in
this thesis are connectionist systems, and some are neuro-fuzzy hybrids. In Section 1.4
we discuss some of the desirable characteristics of systems built from data, and finally
in Section 1.5 we discuss the scope of the thesis, and provide summary of the chapters

that follow.

1.2 Systems Built from Data : A Formal Look

Let X = {x,29,...,zn} C R and Y = {y;,¥5,....,yn} C R and let there be an
unknown function S : ®* = R’ such that y, = S(zx) Yk = 1,..., N. In other words,
there is an unknown function S which transforms z to y. S can represent many types
of systems. S can be an algebraic system, where S does not evolve with time, and
thus can be represented by a set of algebraic equations. On the other hand, S can
be a dynamical system, which evolves with time, and hence differential equations are
required to characterize them. Again, S can be characterized by the type of output it
produces. The output may be continuous numerical valued or they can be decisions

as in a classifier.

Finding S from the input-output data (X,Y") is often called system identification.
S can be of two types: regression or function approximation (FA) type when the

elements in Y are continuous, and classifier type when Y contains class labels (or

categorical decisions). In both cases it is assumed that the input-output data (X,Y)
are generated from a time invariant but unknown probability distribution. The data
set T'=(X,Y) = {(2;,y;) : 1 = 1,..., N} that is used to find S is called a training
set. During training, &;,(z = 1,2,..., V) is used as the input and the outputs y,;, (1 =
1,2,..., N) acts as a teacher. The design methodology uses this training set 7" to learn
(build) a system with a hope that the obtained system will work well not only on
the training inputs but also on data points which are not present in the training set.
The performance of such a system is measured by its performance on future data,
commonly called test data. The test data set is independent of the training set, and
it is also assumed that the test data follow the same probability distribution as that
of the training data.

There are numerous ways to find S. S can be determined explicitly through regression
or other statistical methods [76]. Similarly, a classifier function may be an analytic
function as in case of a Bayes’ classifier [48]. These traditional tools make certain
assumptions about the data. In case of parametric regression one needs to have some
knowledge about the functional form of S, which is often difficult to get for many real
life applications. Similarly, the optimal Bayes’ classifier needs knowledge of the apriori
probabilities and class-conditional density functions of the data [48]. Obtaining them
for real data sets is quite difficult. Also there are nonparametric regression methods
which can work without a parametric assumption on the data [76]. On the other hand,
one may obtain implicit solutions of such problems through computational transforms
like neural networks, fuzzy systems and other hybrid systems. These type of systems
do not require prior knowledge regarding the distribution of the data. These tools
(neural networks, fuzzy logic, evolutionary computation etc.) are collectively known
as computational intelligence (soft computing) tools. In this thesis our main aim is to
develop “efficient” systems using some computational intelligence tools. In our view
efficiency of a system is just not a function of better generalization. For example, if a
system uses less number of features (sensors) then also it is efficient in terms of design
cost and complexity. We next provide a brief overview of computational intelligence
along with a detailed discussion of specific computational intelligence tools that would

be used through out the thesis.

1.3 The Computational Intelligence Framework

There have been several attempts to define Computational Intelligence (CI). Bezdek
[11], in 1994, was the first to introduce this term (in the present context): “... A system
is computationally intelligent when it: deals with only numerical (low-level) data, has
a pattern recognition component, does not use knowledge in the artificial intelligence
sense; and additionally when it (begins to) exhibit (i) computational adaptivity; (ii)
computational fault tolerance; (iii) speed approaching human-like turnaround, and (iv)

error rates that approximate human performance.”

In 1995, Fogel [58] summarized CI as “... These technologies of neural, fuzzy and
evolutionary systems were brought together under the rubric of Computational Intelli-
gence, a relatively new term offered to generally describe methods of computation that
can be used to adapt solutions to new problems and do not rely on explicit human

knowledge.”

Irrespective of the way CI is defined, CI tools should have sufficient ability to solve
practical problems. It should be able to learn from experience and capable of self-
organizing. Consequently, it is reasonable to assume that the major constituents of a
computational intelligence system are artificial neural networks, fuzzy sets, rough sets,

evolutionary computation, and immuno-computing.

The major tools of CI are also encompassed by another widely used term, soft comput-
ing, which refers to a collection containing neural networks, fuzzy logic, evolutionary
computation etc. Soft-computing is defined as a consortium of different computing
tools that can exploit our tolerance for imprecision and uncertainty to achieve tractabil-

¢

ity, robustness and low cost [249]. We prefer the term “ computational intelligence”.

Two very popular and widely used tools of computational intelligence are neural net-
work and fuzzy logic. These tools have been successfully used in various domains to

make human-like systems. We shall next present a brief overview of these tools.

1.3.1 Neural Networks

It is well established that the site for intelligence in human beings or other living

beings is the brain. The characteristics of the nerve cells which constitute the brain

are different from that of the other somatic cells in our body. It is believed that the
computation done in the nerve cells is the precursor of intelligence. There have been
many attempts to built feasible models for the nerve cells and the connectionist systems
of today are a product of these research. These systems are also called artificial neural
systems or artificial neural networks. These terms are used interchangeably and often

for brevity the term artificial is dropped.

Biological neural networks (BNN) are a massive interconnection of nerve cells. Each
nerve cell performs some simple operations and all of them perform similar operations.
The group dynamics of the ensemble of the nerve cells, i.e., of the network is quite
different from individual dynamics of the nerve cells. BNNs are highly robust and
fault tolerant. They are capable of learning and generalization. These properties of
BNNs are shared by most artificial neural models. And these properties make them

attractive for use in many diverse problem areas.

Research in neural networks started from the search of a feasible computational model
of the nervous system. In 1943, McCulloch and Pitts proposed a computational model
of a neuron [150]. In order to describe how neurons in the brain might work, they
modeled a simple neural network using electrical circuits. In 1949, Hebb [78] pointed
out the fact that neural pathways are strengthened each time they are used, a concept
fundamentally essential to the ways in which a human learns. These two works prob-
ably were the pioneers in neural network research. In the 1950’s, Rosenblatt’s work
[200] resulted in a two-layer network, the perceptron, which was capable of learning
certain classification tasks by adjusting connection weights. Although the perceptron
was successful in classifying certain patterns, it had some limitations. The perceptron
was not able to learn the classic XOR (exclusive or) problem. Consequently, interest
in neural networks was at a low profile for quite sometime. However, the perceptron
had laid foundations for later work in neural computing. Interest in neural networks
again revived in the eighties with some path breaking works like self organizing feature
map [119], the hopfield network [83], multilayer perceptron [204], adaptive resonance
theory [23] etc.

The historical perspective of neural networks was in making biologically plausible sys-
tems. The objective was more towards building a model for the nervous system. But
in last decade, it was observed that neural networks, both the traditional architectures,

and their variants, have great potential to solve real life problems even though they

may not mimic computation in the brain. The thrust of research for the last ten years
were more to develop systems which can be used to solve practical problems than to
look for biological plausibility. Of course, there have been many advances towards
modeling the biological nervous systems and thereby gaining new insights into the
process of brain functioning. These issues are now-a-days dealt within the subject of

computational neuroscience [52, 228]. We shall not be venturing into those issues.

Neural networks are lucrative for their interesting properties of learning and gener-
alization. They can be applied without any assumptions regarding the distributions
and other statistical characterizations of data. Theoretical issues about learning have
been extensively studied. Valiant [231] proposed a mathematical theory of learning
that addressed the issues of learnability and computational complexity of learning in
a restricted framework called the “Probably approximately correct” (PAC) learning
[231]. The PAC framework provides a reasonable setup to study the theoretical basis
of learning. There have been a variety of theoretical studies encompassing learning in
general and in particular learning in neural networks [2, 107, 232, 234]. All these stud-
ies helped to gain a better understanding of the learning and generalization process.

Consequently these have helped to develop better learning systems.

Artificial neural networks have been successfully used in pattern recognition and many
other fields. There are specific neural architectures which can perform the various
pattern recognition tasks [15, 144]. The popular feed-forward networks like the multi-
layer perceptrons, radial basis function networks can learn any non-linear input-output
mapping under a fairly general set of conditions [77, 84, 189]. They have been success-
fully used as classifiers and function approximation tools for variety of applications.
The self-organizing feature map, linear vector quantization and adaptive resonance
theory can be used for clustering [79]. The Hopfield network can be used as an as-
sociative memory, which can store and recall patterns [79, 253]. In addition Hopfield
nets have been successfully used for various computationally hard combinatorial op-
timization problems [79]. There are numerous work in the literature which discusses
variants of these networks and use of them for various practical problems. A glimpse

of these voluminous research can be found in many books related to neural networks

[15, 77, 79, 144, 234, 253].

A new paradigm for learning from data called Support Vector Machines (SVM) [232,

259, 260, 261, 262] is of great interest in recent times. Support vector machines are

more closely related to statistical learning than to CI, but a mention of this paradigm

may be done here. SVM is primarily a tool for binary classification problems.

In SVM a linear separating hyperplane is constructed to distinguish between two
classes. Since, most real life data are not linearly separable, in SVM often the in-
put data points are implicitly mapped to a new high dimensional space F', and then,
a linear separating hyperplane is constructed in [’ which classifies the mapped input
points. The hyperplane is constructed by maximizing the margin of separation between
the two classes. Such a hyperplane is called the optimal hyperplane. There are several
theoretical arguments supporting the good generalization properties of the optimal hy-
perplane [260]. The learning procedure involved in identifying the optimal hyperplane
is a constrained quadratic optimization problem which minimizes the weighted sum of
two terms. The first term is related to the reciprocal of the margin and the other term
involves the sum of classification errors. Though the optimization problem involved is
a quadratic programming problem, when the associated data set is large it may get
computationally expensive. Many attempts have been made to solve the optimization

problem efficiently [263, 265, 266].

SVMs when used as classifiers work for two-class problems only. There are a few
proposals which discuss the use of SVMs for multi-class problems. Fach of these solves
more than one binary classification problem and then aggregates the results obtained
by those binary classifiers. One against one, one against all [267], directed acyclic graph
SVM [268] are some of the methods for solving multi-class problems. This framework

can also be used for regression type problems [270, 269].

Support vector machines have been successfully used in diverse applications including
handwritten numeral recognition [232], object recognition [277, 279], face recognition

[278, 280], bioinformatics [271, 272, 273, 274, 276], text categorization [264, 275].

1.3.2 Fuzzy Systems

Fuzzy sets were introduced in 1965 by Zadeh [250] with a view to reconcile mathemati-
cal modeling and human knowledge in engineering sciences. Since then, a considerable
body of literature has blossomed around the concept of fuzzy sets in an incredibly wide

range of areas, from mathematics and logics to traditional and advanced engineering

10

methodologies. Applications are also found in many areas including medicine, finance,

control, and consumer products.

A fuzzy subset A of a (crisp) set X is characterized by assigning to each element x of
X the degree of membership of z in A. For example, if X is a group of people, then the
set of Tall people defines a fuzzy set on X. The set Tall has no precise class boundary
and a person can belong to the Tall set to some extent. Mathematically the set Tall

can be defined through a membership function p7,;, defined as
HTall - X — [0, 1]

The function g,y assigns to each element in X a value in [0,1]. This value quantifies
the degree to which an element belongs to the set Tall. This is a very suitable way
to model concepts which are inherently ambiguous and can only be understood by
linguistic descriptions like tall, short, handsome, rich etc. Fuzzy logic attempts to
model the way human beings reason with imprecision. It can accommodate or model
imprecision which is inherent in any physical system. Thus, it has been a very successful
tool for reasoning under uncertainty. This has led to development of applications which
use the concept of fuzzy logic for approximate reasoning [117, 180]. These are called
fuzzy systems. Among all fuzzy systems, fuzzy controllers [46, 129, 130] are probably
the most widely used ones as they do not require the strict mathematical model of
the system to decide on the control actions but depend on linguistic rules, which can
be easily provided by domain experts. Fuzzy rules can also be extracted from input-
output data [36, 37, 38, 105, 159, 167]. Specific hardware implementation of fuzzy
controllers and other kinds of fuzzy systems have also been done [242, 243] which has

helped a lot for use of fuzzy systems in fielded applications and consumer products.

For practical pattern recognition problems, imprecision/fuzziness is often unavoidable.
For example, a designer always desire to have a classifier which can produce crisp de-
cisions. But the numerical representation of the training data may provide overlapped
class boundaries. Thus, in such cases a crisp decision is not always possible. Rather
a fuzzy decision, which tells about the degree of belonging of a point to a class, is
more interpretable and useful. Fuzzy logic can handle such scenarios. Consequently
there is tremendous scope of fuzzy logic in developing pattern recognition systems.
Fuzzy techniques for numerical pattern recognition is quite mature. There are numer-

ous methods of fuzzy classification and clustering designed for numerous applications

11

[9, 10, 12, 13, 109, 111, 173, 174, 181].

1.4 Some Desirable Characteristics of Systems Built from Data

An efficient system built from data is expected to have certain attributes. Here we list
some of the desirable characteristics for systems designed from data. Of course this
may not be an exhaustive list, and there could be many other characteristics which

are desirable given any specific application.

1.4.1 Readability

This property refers to the interpretability of the system. A good system should be
easily interpretable, and one should be able to attach meanings to each parameter of
the system. Consequently, for a readable/interpretable system one can find the reasons

for a specific decision made by the system.

Most neural architectures lack readability. The internal parameters of a trained neural
network, say an MLP, are not interpretable by any easy means. There have been
numerous attempts to make neural networks more readable [137]. Attempts have also
been made to extract symbolic or other rules from a trained network [47, 214, 216,
224, 225, 227]. An useful and popular way to make neural networks interpretable is
through its integration with fuzzy systems, which are well known for their readability.
We have considered a class of neuro-fuzzy systems called the neural fuzzy systems
which are fuzzy systems built on neural networks [102, 103, 104, 105, 136, 137, 255].
These types of networks are readable, each internal parameter associated with these
networks has some meaning associated with it. Thus, by reading these parameters
from such networks we can arrive at simple linguistic rules which govern the decision

making process.

1.4.2 Generalization Ability

Generalization ability is probably the most important attribute of any system learned

from data. A system learned from a finite training set T' = {(z;,y,;) : ¢ = 1,..., N}

12

should not only perform well with points in T but also for points which are not included
in the training set. This property of a learning machine to produce “good results” for
future data (data not included in the training set) is called generalization ability. There
are many methods in the literature to enhance generalization ability of learning systems
and particularly of neural networks. In neural networks generalization ability can be
enhanced in different ways including: early stopping [3], complexity control [81, 213],
expanding the training set [82, 100] and ensemble methods [19, 252]. In Chapter 2 we
provide a brief survey on some of these methods to enhance the generalization ability

in neural networks.

1.4.3 Low Complexity

There are many model selection criteria which aim to find a model with better general-
ization properties [1, 5, 120, 199, 223, 233]. It has been observed that less complex sys-
tems perform better generalizations. The minimum description length criteria [5, 199]
aims to find that model which can be described by the least number of bits. Out of all
models which have equal performance on training data, the model with the minimum
description length is expected to have the best generalization capabilities. This is an
interesting manifestation of the old rule “the simplest model is the best one”, which is

popularly known as the Occam’s Razor.

As mentioned above, a less complex system is related to better generalization. But,
from a practical view point, a less complex system also has other advantages to offer.
It has less running time. It may reduce the complexity of the hardware through which
it gets implemented. Thus they have less setup and running costs. And it is obvious

that a less complex model has a better readability.

1.4.4 Managing the Curse of Dimensionality

One of the important attributes for any learning system should be to identify and
use only the necessary features. More features sometimes help to bring out more
characteristics of an object and thus may help the task of building the system. But,
always more features are not necessarily good. In the available set of features some may

be redundant and some may be bad too. These features add on to the dimensionality

13

of the problem without doing any real good. Thus an increased number of features
means a complex model, which is more likely to give bad generalization. Also the
learning complexity and computational overhead of a system increase with the increase
in the number of features. So, feature selection or dimensionality reduction is a very
important step for any pattern recognition/system identification task. There have
been many attempts to address this problem. Some good surveys discussing feature
selection methods are [8, 18, 42, 161]. We also provide a brief survey of the feature

selection methods in Chapter 2.

Feature selection is generally looked upon as a preprocessing task, which is applied on
the data prior to the learning process. But, a good system designed from data should
have a feature selection component embedded in it. If a system is able to detect the
good features and discard the bad ones then it consequently gives rise to less complex
systems, which are expected to have other good attributes like low complexity, better

readability and better generalization abilities.

1.4.5 Ability to Say “Don’t Know”

For most systems which are built from data, a difficult problem is to determine the
operative region of that system. In other words, finding out the region in the input
space where it should perform meaningful generalization. It is known, that for any
system designed from data, it is not wise to extrapolate too much beyond the training
data. For example, a trained classifier is not expected to perform good if a test point
is far from the “boundary” of the training set. Thus a good property of a system
would be its ability to say “don’t know” for cases which are not typical to its training
sample. This characteristic is very important for very precision applications like in

medical diagnosis.

This property is related to the generalization ability. In formal terms this problem
aims to find the sampling window from which the training data are generated, and an
ideal system should not respond to points beyond the sampling window. As the true
input distribution is never known, a reasonable approximation of the sampling window
can be the “boundary” of the training set. Thus, a good system should generalize only

in or around the boundary of the training set. We call this “strict generalization”.

14

Multilayer Perceptrons or other feedforward neural systems do not possess this property
of strict generalization. Our experiments in Chapter 6 show that an MLP may produce
strong response even for points which are really very far away from the sampling
window of the input distribution. In most cases this is not desirable. In the literature,
adequate emphasis has not been given to address this problem. MacKay in [147]
discusses a scheme for neural networks which gives low response for test points which
come from areas of input space that are sparsely represented in the training data. But
MacKay does not consider the areas of the input space which are not represented by

training data.

1.4.6 Incremental Learnability

A system built from data should be able to learn new knowledge without losing its
previous memory. This is a very important attribute of any learning system, as in-
formation about a system may come in an incremental fashion. If one collects a few
data points characterizing a system, the characteristics of the system may change with
time, also new facets of the systems may get discovered which should be incorporated

in the model.

There are several attempts to address this problem of incremental learning [57, 60, 210].
In the neural network framework there are two distinct paradigms to achieve this.
One, through bounded updates of the weights of a trained network when it faces a new
training set [60], and the other by using both the new and old data points to retrain
a network [177, 245]. Both these are not optimal. The first alternative may lead to
incomplete learning, if the new training data are not very similar to the past data.
The second alternative is computationally expensive, and the past data which it rely

on may not always be available.

A system equipped with one or more of the above six characteristics will be called as

an “efficient” system.

15

%) Readability
L
|_
I — Chap 3: NF scheme for OFS and FA
Generalization
L ability
o
o Chap 4: NF scheme for OFS and
classification

e
o Low .

Complexity .

Chap. 5: Group feature selection
L
-
m . - — -
< Managing curse of Chap. 6: Strict generalization and incren]—
W dimensionality ental learning for classification
o
(7) Chap. 7: Strict generalization and increm
n Ability to say ental learning for FA
o don’t know
Chap. 8: Enhancing generalization in
MLP networks
Incremental
Learnability

Figure 1.1: The organization

1.5 Scope of the Thesis

In this thesis we describe some new methods to build efficient systems from data.
We use neural networks and neuro-fuzzy systems as tools. We described a few de-
sirable properties for systems designed through data in the previous section. In this
thesis we deal with two important properties in the list, namely managing the curse
of dimensionality (Chapters 3-5)and enhancing generalization ability (Chapters 6-8).
Incremental learnability is also achieved for MLP networks (Chapters 6-7).

Figure 1.1 gives a pictorial description of the theme of each of the main chapters of
the thesis. On the left we have the various desirable properties of systems built from
data and on the right we have the six chapters which form the main body of the thesis.
There are two kinds of arrows linking chapters with the properties. A bold arrow
signifies the main attribute of the system that is achieved in a chapter and a weak

arrow links with an attribute/property that is also achieved as a by-product.

The feature selection/dimensionality reduction schemes that we deal with in this thesis

are unique in the sense that they are integrated with the main learning algorithm. We

16

call these as online feature selection techniques. We have used these online methods
to develop two types of neuro-fuzzy systems: one for function approximation and the
other for classification. We have also demonstrated that online feature selection can be
suitably used for selecting useful sensors using modified Radial Basis Function networks

and Multilayer perceptron networks.

A system built from data should be equipped with the ability to say “don’t know” when
it faces unfamiliar examples. In other words, it should not respond to test points which
are far away from the boundary of its training set. We term this property as strict
generalization. We have extensively studied the generalization properties of Multilayer
perceptrons both in the context of classification and function approximation and found
that ordinary MLP does not possess the property of strict generalization. We have
devised methods for training MLPs so that they can perform strict generalization.
Also, the MLPs trained by our method can be made to learn incrementally, i.e., a
trained MLP may be easily augmented with new knowledge contained in a new data

set without effecting its previous memory.

Another problem that we deal in the thesis is of avoiding overfitting in MLP. Gen-
erally, neural networks are trained with a finite training sample, and hence in each
epoch the network faces the same set of points and thus tends to “memorize” those
points which may lead to overfitting and consequently such networks may produce

poor generalization. We have devised a scheme to avoid overfitting in MLP.

In the following subsections we describe in brief the contents and main contributions

in the chapters to follow.

1.5.1 Literature Survey

The thesis deals with theories and methodologies for building systems which have
the capability for selecting important features and have better generalization abilities.
In Chapter 2, we give a brief survey of feature selection techniques and methods to

enhance generalization abilities in neural networks.

We begin with a brief survey of literature on feature analysis. We discuss the impor-
tant paradigms of feature selection both using the classical and CI frameworks. We

introduce the concept of online feature selection and discuss its relationship with and

17

advantages over other existing feature selection algorithms. We provide motivations
behind using the online feature selection methodology. Next, we discuss some previous
work on enhancing generalization abilities of neural networks. Also, we introduce strict

generalization and discuss its utility.

1.5.2 Online Feature Selection and Function Approximation
Type System Design in a Neuro-Fuzzy Paradigm [24,
164]

In Chapter 3 we begin with a short survey of previous works in neuro-fuzzy systems
and then we discuss our proposed neuro-fuzzy system for integrated feature analysis
and function approximation. We present a systematic approach to build a neuro-fuzzy
system from multiple-input-multiple-output data. The novelty of the system lies in
the fact that it can simultaneously do feature selection and system identification in an
integrated manner. We call it online feature selection. The network can be trained to
learn the input-output mapping and additionally the importance of the input features
can be determined from the network parameters. The neuro-fuzzy system is realized
by a five layer network, each layer performing a different task. The second layer of
the net is the most important one, which along with fuzzification of the input also
learns a modulator function for each input feature. This enables online selection of
important features by the network. The system is so designed that learning maintains
the non-negative characteristic of certainty factors of rules. To get an “optimal” net-
work architecture and to eliminate conflicting rules, methodologies for pruning nodes
and links are also proposed. The pruned network represents a small set of rules but
it retains almost the same level of performance as that of the original one. The rules
governing the input-output mapping can be easily extracted from the final trained
network. Thus, the network is fully readable in terms of linguistic rules. The proposed
network is tested on both synthetic and real data sets and the performance is found

to be quite satisfactory.

18

1.5.3 Online Feature Selection and Classifier Design in a Neuro-
Fuzzy Paradigm [25, 27]

In Chapter 4 we modify the network described in Chapter 3 for the classification task.
As both methods in Chapters 3 and 4 are neuro-fuzzy techniques, to be more precise,
they are neural-fuzzy systems, the crux of the method lies in the structure of the
fuzzy rules that are used to explain the data. The structure of the fuzzy rules for a
classification system is quite different from that of a function approximation system,
and hence the network structure used in Chapter 4 is different from that of the network
described in Chapter 3. Unlike a five layered network, the classifier network is a four
layered network. The network for function approximation in Chapter 3 uses center of
area type defuzzification, but such type of defuzzification cannot be applied for the
classification network. The classifier network uses max as the defuzzification operator.
Also, due to the change of the defuzzification strategy, the operator for intersection
has also been changed. In the function approximation network, we use product as the
operator for intersection while in the classifier we use an approximate but differentiable
version of the min function, which we call softmin. To suite the classification task at
hand the strategies to optimize the network are also changed. Additionally, we discuss
about the tuning of the input membership functions of the network. We also deal
with the issue of initialization of the neuro-fuzzy system. This problem has not been
adequately discussed in literature. A blind initialization may lead to a huge network
for data sets of high dimensionality. We provide guidelines for selecting the initial
network for a specific data set in high dimension. Numerous simulation results on
benchmark data sets are reported in this chapter which demonstrates the effectiveness

of the network for online feature selection and classification.

1.5.4 Online Sensor Selection Using Feed-Forward Networks
(28, 31]

Chapter 5 deals with the feature selection problem in a different setting. We try to
minimize the required number of sensors, where each sensor can be responsible for
several features. The motivation for this problem comes from the fact that many

applications rely on data from multiple sensors. For example, in an intelligent welding

19

inspection system the sensors could be radiograph, acoustic emission, thermograph,
eddy-current detector etc. The raw data obtained from these sensors are seldom used,
but numerous features are extracted from each sensory data. Thus, the total number of
features so obtained can be grouped into several subsets based on their sensory origin.
We try to find the importance of a group of features not of an individual feature.
Thus, if we can detect a less important (or redundant) group of features then we
can discard the associated sensor from that application. This reduces the complexity
of the hardware, system design complexity and time, computation time and running
cost. Note that, sensor selection is more general than feature selection. Treating each
feature as a sensor, a sensor selecting network can be used for feature selection. But, the
converse is not true. This problem has not been addressed in literature. We propose
two models for feature group (sensor) selection. These models are variants of the
conventional RBF and MLP networks. We call them Group Feature Selecting Radial
Basis Function (GFSRBF) network and Group Feature Selecting Multilayer Perceptron
(GFSMLP) network. We have shown experimentally that these networks can do the
task of sensor selection and classification /function approximation quite efficiently. We

have also shown that GFSRBF and GFSMLP have universal approximation properties.

1.5.5 Strict Generalization and Incremental Learning in Mul-

tilayer Perceptron Networks: Classification [26, 29]

In Chapter 6 we discuss strict generalization in MLP networks for classification tasks.
Our experiments show that the response of a multilayer perceptron (MLP) network
on points which are far away from the boundary of its training data is generally not
reliable. Ideally a network should not respond to a data point which lies far away from
the boundary of its training data. To realize this, we propose a new training scheme
for MLPs when used as classifiers. Our scheme involves training subnets for each class
present in the training data. Each subnet can decide whether a data point belongs
to a certain class or not. Training each subnet requires data from the class which
the subnet represents along with some points outside the boundary of that class. For
this purpose we first introduce the concept of an approximate boundary of a class and
propose an easy method to generate points outside the “boundary” of a pattern class.

The trained subnets are then merged to solve the multi-class classification problem.

20

We show through simulations that an MLP trained by our method does not respond
to points which lie outside the boundary of its training sample. Also, our network can
deal with overlapped classes in a better manner than conventional MLP. In addition,
this scheme enables incremental training of an MLP, i.e., the MLP can learn new
knowledge without forgetting the old knowledge. The philosophy used is quite general

in nature and can be used with other learning machines also.

1.5.6 Strict Generalization and Incremental Learning in Mul-

tilayer Perceptron Networks: Function Approximation
[32]

In Chapter 7 we extend the methodology developed in Chapter 6 for function approx-
imation problems. Since the method in Chapter 6 involves training a separate subnet
for each class, a direct application of the method cannot be made for function approx-
imation problems. In Chapter 7 we propose a novel training scheme for MLPs which
realizes strict generalization for function approximation type problems. The methodol-
ogy consists of training two networks to perform two different tasks. The first network,
called the mapping network, learns the usual input-output mapping present in the data
and the other network, which is called the vigilance network, learns a decision bound-
ary and decides the points the mapping network should respond to. The design of the
vigilance network has been addressed in two ways. The first approach depends on a
methodology to generate points outside the boundary of the training set. The points
in the training set are assumed to belong to one class and the generated points in
the other class. Thus, the vigilance net learns a two class problem, and it can detect
whether a test data point falls within the boundary of the training set or not. For high
dimensional data sets this methodology becomes computationally expensive because
we need to generate too many points to characterize the boundary of the training data.
Hence, we propose another simple method to train the vigilance network, which does
not need any additional training examples. This method breaks up the training data
into hyperspherical clusters using a clustering algorithm. And it builds local receptive
fields centered at each cluster using bell shaped functions as in RBF type networks.
The parameters of the bell shaped functions are decided using the clustering results.

For a test point, if the responses from all receptive fields are low then we conclude that

21

the point lies outside the boundary of the training sample. The strict generalization
capability of the network is demonstrated using both approaches. In this system also

we achieve incremental learning as a byproduct.

1.5.7 Enhancing the Generalization Ability of Multilayer Per-
ceptron Networks [30]

Chapter 8 deals with the problem of overfitting in MLP. Typically an MLP is trained
with a finite training set. Since the right size of the network is not known, often the
network overfits the training data and thus produces poor generalizations. There are
many previous attempts to reduce overfitting in MLP. Some of the main paradigms
through which this is achieved are complexity regularization, weight pruning, early
stopping etc. Here we devise an easy scheme to expand the training set to any desirable
size, such that the problem of overfitting is partially removed. Our scheme uses a k-
nearest neighbor heuristic to generate additional training examples which implicitly act
as constrains on the training and help to reduce overfitting. Our method is tested for
both classification and function approximation problems, and the results demonstrate
that the proposed method performs quite well in comparison to other similar methods

for enhancing the generalization ability in MLP networks.

1.5.8 Conclusions and Future Work

We conclude the thesis in Chapter 9. We summarize our findings, identify some of the
limitations of our methods and provide discussions on further scopes and directions of

research.

22

Chapter 2

Literature Survey

In this chapter we provide a brief survey of some of the important works on two
important attributes of systems designed from data, namely, ability to do feature

analysis and generalization ability.

2.1 Feature Analysis

All features that are present in a data set may not be useful for the task at hand.
Some features present may be redundant and some may be bad too. Thus selecting
the most relevant and useful features from a given set of features is useful as it helps
in building systems with low complexity and may save computational time and future
data collection efforts. Also it has been shown that reducing the number of features
may lead to an improvement of the prediction accuracy due to finite sample size effects
[89]. Moreover, a system built with a smaller number of features is more readable, has

less parameters and is expected to have better generalization abilities.

Feature analysis deals with finding a transform @ : &* — R? using a criterion J on a
training set 7' = (X,Y) = {(z;,y,)|z; € R®,y, € R',i = 1,2,..., N}. Typically, J is
related to the problem that we intend to solve using 7. The transform & is said to

perform dimensionality reduction if ¢ < s.

Feature analysis can be divided into three basic types: feature extraction, feature selec-
tion and feature ranking. Feature extraction is a method to generate a ¢ dimensional
vector from a given s dimensional input vector. For feature extraction it is not neces-

sary that ¢ < s. There may be applications where one needs to find a richer description

23

of objects by increasing the number of features. Extracting additional features from a
given feature vector is common in many image processing and other signal processing
applications, but we shall not be dealing with those methods. We are only interested

in transformations which perform a reduction in the dimensionality of the input space.

The feature extraction process projects the original features in a different space of lower
dimensionality following some criteria. The reduced set of features may be computed
as linear /nonlinear combination of the original ones which may not bear the meanings
of the original ones. A special case of feature extraction is feature selection where the
components of ®(x) are some components of z, i.e., in this process some components of
the original vectors are discarded and others are retained as they are. Thus, in feature

selection a subset of the original set of features is selected using some criteria.

Feature ranking methods aim to rank features according to their suitability for the
task at hand. The ranking algorithm assigns some real number to each of the features,
and one can order the features according to these real numbers. Feature selection may
then be performed based on these ranks. But ranking individual features is not the
best way to look at the problem because two correlated features may get high rank,

while only one of them is required for the task.

Feature selection algorithms can be characterized based on two attributes namely the
feature evaluation criterion function J and the search technique. Popular choices of
J include measures of class separability, information, the classification error rate etec.
[42]. Once the criteria J gets fixed, the problem of feature selection reduces to a search
problem. An exhaustive search would require examining (;) possible ¢ subsets of the
original feature set. The number of possibilities grow exponentially making exhaustive
search impractical even for moderate values of s. To cope with this problem there are
numerous heuristics to arrive at a near optimal feature set [44]. Also there are many

methods which do not explicitly use a search technique, but use a transformation on

the available features to obtain a reduced set of features.

Kohavi and John [118] classified feature selection techniques as wrapper methods and
filter methods. Filter methods are independent of the main learning algorithm (com-
monly known as the induction algorithm in machine learning literature). And wrap-
per methods are dependent on the learning algorithm. In other words, the wrapper

methods evaluate the feature subsets based on their error rates on a specific learning

24

machine. Wrapper methods are found to be better than the filter methods as it has
been observed that suitability of a feature subset is dependent on the learning algo-
rithm [43, 118]. But, wrapper approaches are computationally much more expensive,
as one needs to build different learning machines with different feature sets and then
evaluate the feature set with that machine. For example, if the learning machine is a
feed-forward neural network (like a multilayer perceptron (MLP)), one has to train an
MLP with each feature subset that is considered. Obviously, this is very expensive in

terms of computation time.

Feature selection can also be classified according to the tools that are used to arrive
at the optimal feature set. There are many methods that use statistical measures
of class separability etc. as the feature selection criteria and employ different search
heuristics to select suitable feature subsets [44]. Another popular paradigm called the
Computational Intelligence (CI) paradigm has also been used for feature selection.
Neural networks, fuzzy logic and genetic algorithms constitute the primary tools of CI.

There are many methods which use these tools for feature selection [43, 161, 195, 213].

Feature selection is a huge field of study and there is a huge body of work which
addresses this problem. Some good surveys on feature selection algorithms include
[8, 18, 42]. Not all types of feature selection algorithms are useful for all types of data.
Classical feature selection algorithms were designed for data sets with small dimen-
sionality, but the data sets generated by today’s applications are large both in terms
of dimensionality and size. There are specialized methods to deal with the problem
of feature selection with large data sets. A glimpse of some recent feature selection
methods meant for large data sets, typical in applications like text categorization, can

be found in a recent special issue on feature selection in Journal of Machine Learning

Research [67].

In this brief study, we discuss some of the main paradigms of feature selection. Our
study does not cover all methods, but explores some of the prevalent paradigms. Also
we do not attempt to present a strict taxonomy of feature selection algorithms. In
this thesis we have used a special type of feature selection technique to build classifiers
and function approximation systems, which we call Online Feature Selection (OFS)
method. Before discussing existing OFS methods, for completeness, we review a few
other prevalent methods for feature analysis in both classical and CI framework. We

start with feature extraction algorithms which perform dimensionality reduction. The

25

two methods that we consider here are the Principal Component Analysis(PCA) and
Sammon’s non-linear projection method. Next we discuss classical feature selection
methods under two different headings, namely, the evaluation criteria and the search
techniques. This is followed by a discussion on some feature selection methods using the
CI tools. Finally, we introduce OFS, we justify the need for online selection methods

and discuss some existing methods in the family.

2.1.1 Feature Extraction
Feature selection through Orthogonal Transforms

There have been many studies on feature analysis using orthogonal transformation
methods mainly through approaches like the principle component analysis (PCA)
[45, 64, 93]. PCA is a linear orthogonal transform from s-dimensional space to ¢-
dimensional space (¢ < s), such that the features of the data in the new ¢-dimension
are uncorrelated and maximal amount of variance of the original data is preserved only

by a small number of features.

Let us consider a data set X = {x,2,....,xx}, where z; = (21, 7i1,...,7:5)] € R°.
Now, the objective is to find a suitable transform which maps each &; from a s dimen-
sional space to a ¢ dimensional space where ¢ < s. In the transformed space, a pattern

is represented by its projection

=Wz, i=1,2,..,N (2.1)
where W = (wy,ws,...,w,) € R°*? is an orthogonal matrix. To find the transform
matrix W, PCA begins with the total scatter matrix S, which is defined as

N
Se = (z; —my)(z; —my)" (2.2)

=1

where m,. is the sample mean in the original input space, i.e.,

1 N
= —S 2.3
m N;”” (2.3)

The scatter matrix in the transformed space is thus

N

Sy = Z(mé—my)(x;—my)T

=1

26

N
= ZWT(:KZ —my)(z; — ml,)TW
=1
= W's.w (2.4)

where m,, is the sample mean in the transformed space. The orthogonal matrix is
chosen to maximize the determinant of the scatter matrix of the projected samples.
Suppose W™ = [w], w3, ...,w;] maximizes |S,[. Then {w},w3,...,w;} is the set of

eigenvectors corresponding to the ¢ largest eigenvalues of §,.

For a fixed number of input vectors, PCA can be performed in a batch mode. It
involves computation of the matrix S, and then eigenvalue decomposition of S,. Many
approaches are available for eigenvalue decomposition [64, 178]. The conventional
approaches of computing the matrix W are computationally expensive, especially when
s is very large. Also, the batch mode cannot be applied when the input vectors form
an infinite sequence. This problem can be addressed through adaptive methods like

neural networks for PCA [45, 158, 201, 202].

PCA networks are able to realize only linear input-output mappings and they cannot
usually separate independent subsignals from their linear mixture. To overcome these
drawbacks PCA networks containing non-linear units have also been proposed [99].
In another form of PCA, called kernel PCA [211], the computations are done in a
space different from the input space. In kernel PCA., input vectors are projected to a
new space which is nonlinearly related to the input space, and the computations are

performed in this new space.

The main drawback of the PCA and related methods is that the transformed features
do not bear the true meanings of the original feature set. Thus PCA and related
techniques are feature extraction techniques not feature selection techniques. Mao
in [148] showed that the Gram-Schmidt (GS) orthogonal transform can be used for
feature selection. Unlike the PCA, the transformed features in the GS space can be

linked back to the original set of features.

PCA and related techniques are by nature unsupervised, i.e., they operate on the input
vectors and do not consider the class labels (for classification) or the output vectors
(for function approximation). On the other hand, the linear discriminant analysis
(LDA) is a supervised technique which takes into account the outputs. In this case

the transformed features are derived to maximize the separation between class means

27

relative to the covariances of the classes [48].

The PCA, LDA and related techniques do not consider the specific classifier or the
induction algorithm which will use the features. Thus these methods can be classified
as filter techniques, which filter out irrelevant information from the data before they

are used for further processing.

Sammon’s Nonlinear Projection Method

Sammon [209] proposed a simple yet very useful nonlinear projection algorithm that
attempts to preserve the structure of the input space (X C R*) in the transformed space
(X’ C R?) by finding N points in ¢g-dimensional space such that inter-point distances
in the g-dimensional space approximate the corresponding inter-point distances in the

original s-dimensional space.

b
and let X' = {& |2}, = (2},, ¥}, ...,l’zq)T,k = 1,2,..., N} be the unknown vectors to

be found.

Let X = {xi]|zr = (Tr1, Thay oor Ths) L,k = 1,2,..., N} be the set of N input vectors

Let di; = d(z;,x;), ;,2; € X and d;; = d(z},2%), x}, &) € X', where d(z;,z;) is the

[2] [2]
Euclidean distance between z; and x;. Sammon suggested looking for X’ minimizing

the error function F, where

1 (dr, — di;)?
E = i A 2.5
> iy di; 2 d;; (25)

1] 1<g

Minimization of £ is an unconstrained optimization problem in the N¢ variables z;,7 =
1,2,...N; 5 = 1, 2, ..., g. Sammon used the method of steepest descent for
(approximate) minimization of £. Let &/(n) be the estimate of &/ at the n-th iteration.

Then &(n + 1) is given by

9E(n)
axgj(n)
v(n+1) = x;(n) — a Wn” (2.6)

where « is a non-negative scalar constant called the step size for gradient search.

With this method one cannot get an explicit mapping function governing the relation-

ship between patterns in X and corresponding patterns in X’. Therefore, it is not

28

possible to project new points. Hence, with every additional point, it is necessary to
redo the optimization with all data points. Every step within an iteration requires

computation of w

distances and for large N the computation time becomes high.
Finally, there are many local minima on the error surface and it is usually unavoidable
for the algorithm to get stuck in some local minimum. When N is large, getting a

good solution may be difficult and one may need to try several initializations.

A number of neural networks have been proposed for feature extraction and multi-
variate data projection [149, 169] which augment Sammon’s algorithm with prediction
capability. Another related work in [170] describes a fuzzy system which can do Sam-
mon’s projection. The utility of these methods lies in he fact that they can predict
projections of a new data point which is different from the set of points used for train-
ing the system. Again, the projected features found by the Sammon’s algorithm or its
connectionist or other relatives are not the original features. An attempt to do feature

selection following Sammon’s algorithm can be found in [33].

2.1.2 Feature Selection

The methods discussed so far were feature extraction methods, which used two dif-
ferent criteria for projecting data points to a lower dimensional space. Now we shall
concentrate on feature selection algorithms. As stated earlier, a feature selection algo-
rithm is characterized by two attributes: the feature evaluation criteria and the search
technique employed. Here we review some of the important feature evaluation criteria

and search techniques

Feature Evaluation Criteria

An optimal subset is always relative to certain evaluation function (i.e., an optimal
subset chosen using one evaluation function may not be the same as that which uses
another evaluation function). Typically, an evaluation function tries to measure the
ability of a feature or a feature subset to distinguish between different classes. Some
of the evaluation criteria are: distance, information (or uncertainty), dependence and
classifier error rate. We next discuss in brief these categories of evaluation functions.

A more detailed survey regarding evaluation functions can be found in [8, 42].

29

Distance Measures

Distance measures are used to compute measures of separation between pattern classes.
Since a class can be characterized by a probability distribution, a distance measure can
be a measure of (dis)similarity between two probability distributions. Such measures
are also known as separability, divergence, or discrimination measure. For a two-class
problem, a feature z; is preferred to another feature x4, if 1 induces a greater difference
between the two-class conditional probabilities than w4; if the difference is zero, then

xy and x5 are indistinguishable.

There can be many types of distance measures. A popular measure of class separability
is defined as S = trace(S;'S,,) [48], where, S,, and S, are the within class and between

class scatter matrices respectively. They are defined as:

S =3 m E{(e —mj)(z — m;) |} 2.7)

i=1

C

Sy =3 (m; — 2)(m; —)" (2.8)

i=1
where

r = E{x} = Zi:ﬂ']‘m]‘ (29)

Here, c is the number of classes, m; is the prior probability that a pattern belongs to
class w;, & is the feature vector; and m; is the sample mean vector of points in class
wj. x 1s the mean of the entire data set. A lower value of S ensures that the classes

are well separated.

There are also other distance measures like the Mahalanobis distance, Bhattacharya
Distance, Divergence which can be defined for two class classification problems [44].
For using these distances one needs to know the class conditional probability density

functions or one have to compute a reasonable estimate of them.

Information Measures

These measures typically determine the information gain obtained from a feature. The
information gain from a feature z is defined as the difference between the prior uncer-
tainty and expected posterior uncertainty using x. Feature x; is preferred to feature x5

if the information gain from feature z; is greater than that from feature z5. Entropy,

30

mutual information etc. are examples of such measures. If the prior probabilities as-
sociated with ¢ classes wy,ws, ...w. be 71, T, ..., 7., then the initial uncertainty about a

class can be measured by the Shannon’s entropy as
H(C)= —Zmlog(m) (2.10)
=1

The average uncertainty after knowing the data (the input vectors) X is the conditional
entropy H(C|X). The amount by which the uncertainty about the class decreases due
to the knowledge of the data is called the mutual information I(C; X'), where

[(C5X) = H(C) — H(C|X). (2.11)

Suppose the data initially consist of s features, so, X C R*. Let F' = {f1, f2, ..., [5}
denote the set of features. Let S C F', and we denote the input vectors in X which
contains only the features contained in S by Xg. Similarly X, will denote the data set
with only the feature f;. In light of equation (2.11), the problem of feature selection
can be formulated as: given an initial set F' = {fi, fa,..., [s} of s features, find the
subset S C F' with ¢ features that minimizes H(C|Xs). Minimization of H(C'|Xs)
is equivalent to maximization of the mutual information I(C; Xg), as the class uncer-
tainty H(C') is fixed, and determined by the prior probabilities of the classes. A variety
of methods using this evaluation criteria are described in [8]. We discuss two recent

methods next.

Battiti [6] presents a method for feature selection using the mutual information criteria.
Let F' = {fi, f2,..., fs} be the original set of features and the aim is to select ¢ < s
features. Let S denote the set of selected features. The algorithm starts with an
empty S. In each step one feature gets added to S. The first feature f is chosen so
that I(C; X¢) is maximized. X; denotes the data set with only feature f included.
For selection of a feature f in a later step which is not already selected, that f is
considered which maximize [(C; X;) — 3> ,c5 [(X;; X,). This is continued till | S| =
g. Battiti considers the mutual information of a feature with the class and also the
mutual information of that feature with the already selected features. Thus, features
which have a high mutual information with the already selected features are penalized.
The parameter [regulates the relative importance of the mutual information between
the candidate feature and the already selected features with respect to the mutual

information with the output class.

31

Kwak and Choi [127] provides a modification of Batitti’s method [6]. They show that
the feature selection criterion used in [6] does not work well for for non-linear problems.
In their method too, they start with an empty S. They select the first feature f
which maximizes [(C; Xf) and in the later steps, they chose a feature f; maximizing
I(C; Xy, Xs). I(C; Xy, Xg) is the mutual information between the feature f; plus the

already selected features in S and the output classes in C.

Dependence Measures

The dependence of an input feature with the output can be used as a criteria to
rank individual features. The correlation coefficient is a classical dependence measure
[68, 42]. Let Cor(x,y) denote the correlation coefficient of the feature = with the
output y. If Cor(ay,y) > Cor(xa,y), then feature x; is considered more suitable than
x9. This is suitable as a feature ranking criteria if the targets y are continuous valued.
But, can also be used for two class classification problems where each class label is
mapped to a given value of y, say £1. The correlation criteria can only detect linear
dependencies between a feature and a target. The correlation coefficient can also be
used to measure the dependence of a feature with other features. Dependency of a
feature with the other features can help to quantify the degree of redundancy of the
features [42].

Error Rate Measures

Error rate measures consider the performance of a classifier or function approximation
system to evaluate features. The methods using this type of evaluation function are
called wrapper methods As the features are selected using the classifier/function ap-
proximation system that later on uses these selected features in predicting the class
labels/outputs for unseen instances, the quality of features obtained by such criteria is

very high. But the computational costs of such methods are also more.

Search Techniques

In feature selection, once the evaluation criterion for feature subsets is fixed, it reduces
to a search problem. One has to search for the subset that optimizes the feature selec-
tion criterion. There are a variety of search techniques for feature selection. Among
them a family of methods known as the sequential methods is very popular. These

methods dynamically change the number of features in the set of relevant features in

32

each step. These methods can be divided into two categories: the bottom up method,
which starts with an empty set and adds features to it and the top down method, where
it starts with all features and discards features as it proceeds. As these algorithms do

not consider all subsets, the optimal subset may not be obtained by them.

Sequential Forward Selection (SFS) is a bottom up search procedure where one feature
at a time is added to the current feature set until the required number of features are
obtained. At each stage, the feature to be included in the feature set is selected from
among the remaining available features so that the new enlarged set of features yields
an optimum value of the criterion function used. The Sequential Backward Selection
(SBS) is a top down counterpart of the SF'S method. Here, starting from the complete
set of features, features are discarded sequentially until the desired number of features
is obtained. Both these methods are suboptimal and suffer from the so called “nesting
effect”. It means that in case of SF'S a feature once selected cannot be discarded even
if at a later stage this feature becomes redundant due to the inclusion of some other
feature. Similarly, for SBS a discarded feature cannot be reselected. This problem
renders the sequential methods suboptimal. Details of the SFS, SBS and other related
methods can be found in [44]. In [116] Kittler provides a comparative study of these

algorithms.

Pudil et al. in [191] introduce the sequential floating selection methods which are
modifications over the SFS and SBS algorithms. The Sequential Floating Forward
Selection (SFFS) method is a bottom up method which includes new features following
the SFS strategy, but it is also equipped to discard features from the set of selected
features. Similarly, its top down counterpart (Sequential Floating Backward Selection)
can include features which it has discarded in a previous step. This modification helps
to get rid of the nesting effect which occurs with SFS and SBS. The floating search
methods also do not consider all feature subsets hence they also cannot yield optimal

feature sets.

Narendra and Fukunaga in [152] describe the branch and bound algorithm to find
an optimal set of features faster than an exhaustive search. This method is a top
down search but with a backtracking facility which allows all possible combination of
features to be examined. The computational efficiency of the process lies in an effective
organization of the search method. By virtue of this organization detailed evaluation of

many candidate feature sets can be avoided without undermining the optimality of the

33

feature selection procedure. But, this method works on an monotonicity assumption on
the feature selection criteria. In other words, if Sy, .53, ..., 5% be nested feature subsets
such that

S1 D 5 D ... DSk,

then the criterion function J must satisfy
J(S1) = J(52) > ... = J(5k).

By a straightforward application of this property, many combination of features can be
rejected from the set of candidate feature sets. The required monotonicity property of-
ten restricts the use of the branch and bound method for many practical applications.
Some of the widely used criterion functions like the Bhattacharyya distance, Diver-
gence follow the monotonicity property [44]. But the classification error rate which
is considered the best evaluation criteria for feature selection is not monotonic. It is
known that for a finite sample size, with increase in the number of features, the classifi-
cation accuracy of a classifier initially increases, but it starts to decrease after a certain
point [86]. In [71], Hamamoto et al. present some experiments on feature selection for
classification problems using the branch and bound technique [152]. They use classifi-
cation error rate as the criteria for feature evaluation. Experiments in [71] show that
the branch and bound algorithm can perform equivalent to an exhaustive search even
if classification error rate is used as the evaluation criteria. Foroutan and Sklansky in
[55] introduce a concept of approximate monotonicity. They propose a methodology
for classification using piecewise linear functions. They state four conditions under
which the classification error rates produced by a piecewise linear classifier would be
monotonic. They also observe that in most real life cases, a piecewise linear classifier
would not follow all the four conditions. Thus, they term the error rates produced
by piecewise liner classifiers as approximately monotonic or mildly monotonic. They
further demonstrate that classification error rates of a trained piecewise linear classifier
can be used as a feature evaluation criteria in a modified branch and bound technique
to arrive at an optimal set of features. In [91] Jain et al. provide a comparative study

of feature selection algorithms which employ different search techniques.

The search techniques described till now are all deterministic techniques, but there
are also probabilistic search techniques, which result in a optimal feature set with a

certain probability. The Las Vegas filter and Las Vegas wrapper [143] are examples

34

of the probabilistic feature selection techniques. These are iterative techniques. In
each iteration a feature subset S is sampled without replacement at random from the
possible 2° subsets and S is evaluated by certain evaluation criteria. In each round,

the best set obtained is retained.

Genetic algorithms (GA) and Simulated annealing are also powerful stochastic search
techniques. They have also been applied for the problem of feature selection. We

consider GA based feature selection in the next section.

2.1.3 Feature selection by Computational Intelligence Tools

The methodologies that we discussed so far are mainly statistical in nature. They
employ statistical measures for evaluating features and apply classical search techniques
for generating the feature subsets. Now we shall discuss some methods of feature
selection which are performed using three main tools of computational intelligence,

i.e., genetic algorithms, neural networks and fuzzy logic.

Feature Selection by Genetic algorithms

Genetic algorithm (GA) has established itself as a reliable and efficient tool for solving
various types of optimization problems. The problem of dimensionality reduction can
be posed as an optimization problem. Given a set of s-dimensional input patterns,
the task of the GA is to find a transformed set of patterns in a g-dimensional space
(¢ < s) that optimizes a criterion. Typically, the transformed patterns are evaluated
based upon their dimensionality, and either class separation or classification accuracy

in the reduced dimension.

Use of GAs for feature selection was first introduced by Siedlecki and Sklansky [218]. In
their work, they use GA to find an optimal binary vector, where each bit is associated
with a feature. If the :** bit of this vector is 1, then the " feature is allowed to
participate in the classification; if the bit is 0, then the corresponding feature does not
participate. Each resulting subset of features is evaluated according to its classification
accuracy on a set of test data points using a nearest neighbor classifier [12]. This
technique was later expanded to allow linear feature extraction by Punch et al. [192]

and independently by Kelly and Davis [114]. In these methods the single bit used for

35

a feature was expanded to real valued coefficients allowing independent linear scaling
of each feature, while maintaining the ability to remove features by assigning a weight
of zero. Raymer et al. [195] use GAs to optimize a vector of feature weights along
with a binary mask which decides the feature to be included. Additionally they encode
the classifier parameter in the chromosome. For a k-nn classifier they encode £ in the
chromosome and optimize its value along with the feature weights. As these methods
consider the classification error rate for the evaluation of a feature set, they are wrapper

approaches. Other methods of feature selection using GAs can be found in [22, 65].

Neural Network Based Feature Selection

There are of methods which use neural networks for dimensionality reduction. We have
already mentioned about neural networks for feature extraction and data projection
which implement variants of PCA and Sammon’s algorithm. Here we discuss certain

neural networks which do feature selection following some other criteria.

There are a variety of methods for feature selection which is based on pruning of
redundant nodes and links in a neural network. Pruning input nodes of a neural
network is equivalent to removal of a feature. In [196], Reed provides a survey of neural
network pruning algorithms. Some of the methods discussed in [196] can be used for
feature selection. Pruning based methods start with all features, and subsequently the
input nodes gets pruned to obtain a network which learns with a reduced number of
features [215, 221].

Setiono and Liu in [215] used a three-layered feedforward neural network to select
important features. They used a cost function involving the cross entropy and an
additional penalty term on the weights of the neural network. From a trained network,
the values of the weights connecting the input layer and the hidden layer are used
to decide suitability of features and features are removed accordingly. The penalty
function is so designed that the weights between the input and hidden layers, which
bear low magnitudes are forced to take near zero values. Thus, if all links from a input
node bear near zero values, then the feature associated with that node can be removed.
They start with all features and features are removed based on the performance of the
network. After removal of a feature the network is retrained , and the selection process

is repeated until no feature meets the criterion for removal. This method requires

36

training of multiple networks and is thus computationally expensive. In another work,
Steppe et al. [221] use a likelihood ratio test statistics to prune a trained neural network
in a sequential fashion to arrive at the “best” model and also the best set of features.
They sequentially remove input nodes in a neural network and test the null hypothesis
that the reduced model is equivalent to the full model. The hypothesis is accepted on
the basis of a likelihood ratio test statistic.

Ruck et al. [203] were the first to propose use of sensitivity of output of a network to
its input for feature ranking. They used a multilayer perceptron architecture. They
defined a feature saliancy criteria as
Aj=22 X (2.12)
zeT k D

z;€

Ox.:|’
10T

where D; is the set of values for the j'* feature that will be sampled and and oy, is the
output of the k' output node. T is the training set. Therefore, A; > A; is assumed to

indicate that the importance of the j** feature is more than that of the i** feature.

Zurada et al. in [254] compute a sensitivity matrix for a trained MLP using the
partial derivatives of the outputs with respect to the inputs. The mean square average
sensitivity matrix for the network is then computed using all training data. The
values of the average sensitivity matrix are then used to prune redundant features.
Engelbrecht in [54] too uses the partial derivatives of the outputs with respect to
the input to define the sensitivity of each feature, and uses these values for network
pruning. Yeung and Sun in [248] use the variance of the output error with respect to
perturbation in input to define a sensitivity measure. Zeng and Yeung in [251] use the

expected value of the output error with respect to the input change.

In [43] a different feature quality index (F'QI) is proposed. Using a trained MLP,
for each feature r they compute F'(QI.. For each training data point z; , the r-th
component is set to zero. If mgr) denotes the modified data point, then except for

(r) (r)

the r-th component the other components of ;' are the same as z;. Let o; and o;
(r)
Y

denote the output vectors obtained from the neural network with inputs &; and z,

respectively. If the r-th feature is not important, then the difference between o; and

0! should be small. Therefore, the FQI, is defined as

K3

FQI, = g: ||o; —o (2.13)

37

where N is the size of the training sample. The features can be ranked according to
importance as ry > ry > ... > if FQI,, > FQI., > ... > FQI...

In [7], Belue and Bauer propose a method which introduces noise as an extra feature
in a neural network. Then the features are ranked from least significant to most
significant by comparing the saliency of each of the true features with that of the noise
feature. Grandvalet in [66] discusses another method of anisotropic noise injection for

determination of relevance of inputs.

MacKay [145, 146, 147] considers neural network learning in a Bayesian framework.
MacKay and Neal propose a feature selection mechanism in the Bayesian learning
framework called automatic relevance detection (ARD) [154]. In ARD model, each
input variable is associated with a hyperparameter that controls the magnitude of the
weights on connections out of that input unit. The significance of an input variable is

determined according to the posterior distributions of these hyperparameters.

Fuzzy Set Theoretic and Neuro-Fuzzy Methods

Fuzzy set theory has also been used for feature selection. In [171] the indices of
fuzziness, entropy etc. are used to define an index of feature evaluation based on inter
and intra class distances. In [131] fuzzy entropy is employed to evaluate the quality
of features. Rezaee et al. in [197] discuss a feature selection strategy for fuzzy valued
features using the sequential and exhaustive search methods. In [229], Tsang et al.
discuss the complexity issues of feature selection algorithms. They prove that optimal
fuzzy valued feature subset selection (OFSS) is NP-hard, they also provide a heuristic
method for OFSS.

There are also a few feature selection strategies meant for fuzzy systems. In [141] Lin
et al. use fuzzy curves and fuzzy surfaces to determine relevant inputs. Linkens and
Chen [142] use a correlation based input selection for fuzzy models. Gaweda et al. [62]
propose an input selection method by sensitivity analysis of a Takagi Sugeno fuzzy

model.

Neuro-fuzzy paradigm has also been used for feature selection [108, 110, 125, 126, 172].
In [125, 126] Krishnapuram and Lee developed a neural network for classification which

uses fuzzy aggregation functions as activation functions. On completion of training,

38

the redundant links can be identified and removed from the net. If all links emanating
from an input node are removed, then the corresponding feature is redundant and

hence eliminated. Similar type of networks are also discussed in [108, 110, 123, 124].

Feature Selection Based on Support Vector Machines

Several attempts are made to address the problem of feature selection using SVMs. As
discussed in Chapter 1 the support vector machine looks for an optimal hyperplane in
a high dimensional space [259, 232, 262]. Suppose we have the training data {(zx, yx) €
R x {—=1,1},k =1,2,...., N} where ; is a training example and y;, is its class label.

The method consists of computing a decision function of the form:

f(x) =wl.x+0b,

by maximizing the distance between the set of points {z;,k = 1,2,..., N} and the
hyperplane parameterized by (w,b) while being consistent with the training set. Here
w € R° and b € R. The class label of x is obtained by considering the sign of
f(z). As the decision function is a hyperplane, it cannot classify data sets with non
linear class boundaries. In such cases the input points are implicitly projected to a
high dimensional space where the hyperplane is constructed. An explicit projection
of the training examples in the new space is not required but computation of the dot
products of the training vectors in the transformed space is enough to compute the
decision function. The dot products can be computed using a class of special type of
functions called Mercer Kernels [259, 260, 262].

The SVM Recursive feature elimination (SVM-RFE) algorithm proposed by Guyon et
al. [274] aims to find a subset of features of size r among d features which maximizes
the performance of the SVM predictor. The method is based on sequential backward
selection. It starts with all the features and removes chunks of features at each step
until r features are left. For the linear case, in each step those features are removed
whose removal minimizes the change in ||w||?>. This method is similar to those employed
in neural networks [254] in the sense that the removal criteria is the sensitivity of ||w||?
with respect to a feature. The method in [274] can also be modified to do feature
selection in the nonlinear case where the feature removal criteria is based on the change

of the cost function which is being minimized. For the linear case, the cost function

39

and the norm of the weight vector ||w]|? differs only by a constant. Note that, for such
methods, the set of selected features may change with the kernel function that is being

used.

SVMs are provided with many statistics that allow to estimate their generalization
performance from bounds on the leave-one-out error L. One of the most common L
error bounds for SVMs is the radius/margin bound [232]:

L < AR?||Jw]||?

where R is the radius of the smallest sphere which contains all the mapped data in the
new space. In many papers, the L error bound is used for model selection [282]. In
[283] Weston et al. use the margin bound for feature selection using a gradient descent

algorithm. Similar work is reported in [285] also.

Bi et al. [284] use a sparse support vector machine for dimensionality reduction. They
construct a series of sparse linear (without kernels) SVMs to generate linear models
that can generalize well and use a subset of the non-zero weighted variables found
by the models to produce the final nonlinear model. In [281] Grandvalet and Canu
introduce scaling factors in the input variables and the scaling factors are learnt along

with the other parameters of the hyperplane.

We have so far discussed some of the main paradigms of feature selection. Of course,
this is not an exhaustive list of feature selection techniques; there exist many more
methods and many variations of those discussed above. A large part of this thesis deals
with the problem of feature selection. As mentioned earlier, we deal with computational
intelligence techniques, and the feature selection methods proposed here are realized
through neural networks. The family of methods which we consider in this thesis is
unique in the sense that they are integrated with the main learning algorithm. We call
these methods as online methods for feature selection. Next we discuss online feature

selection.

2.1.4 Online Feature Selection

All methods that we have considered so far are offline in nature, i.e., in these methods
feature selection precedes the main learning algorithm. By online feature selection

(OFS) we mean a feature selection method which is inherent in the learning algorithm.

40

It has been recognized that the suitability of a feature subset depends on the problem
being solved and also on the tool that is being used to solve the problem [43, 118]. Hence
it is desirable that a learning system has a feature selection component inherent in it.
The methods that we develop in Chapters 3-5 of this thesis deal with this problem of
developing learning systems which can simultaneously learn an input-output mapping

and the importance of the features present in the data.

There are some methods in the literature where simultaneous feature selection is done
along with the development of the classifier. Decision trees like ID3 [193], C4.5 [194],
CART [20] etc. do feature selection along with the tree building process. Such methods
are termed embedded methods [18]. Adding and removing features form the core of
these methods; in addition, they also involve routines for combining features into richer

descriptions.

The LINKON proposed by Bhattacharyya et al. [16] is also an OFS method. Here the
feature selection problem is formulated as a linear programming problem, which builds
a classifier and discards the irrelevant features simultaneously. LINKON is applicable
only to two class problems. A hyperplane w’z + b = 0 can classify linearly separable
pattern classes. They aim to find a “sparse hyperplane” where most of the components
of w are zero. Thus, they formulate a linear programming problem, where the cost
function is taken as the sum of the absolute values of the components of w. In their
scheme a feature x; gets automatically eliminated, if its corresponding w; is nearly
zero. Also, the cost function forces the vector w to have as many zero components as

possible.

Mackay and Neal’s automatic relevance detection scheme [154] discussed in Section 2.1.3
is also a related method, but it requires the knowledge of the prior distributions of
the hyperparameters associated with each feature. Raymer’s genetic algorithm based
method for feature selection [195] also encodes the parameters of the classifier within
the chromosome along with the feature weights. The classifier considered by Raymer

is a k-nn classifier.

Perkins and Theiler [188] term their method as online. But their usage of the term
“online” is different from our usage. They consider a scenario where all features are
not known at a time but features arrive one at a time. The learner’s task is to select

a subset of features and construct a model at each time step which is as good as

41

possible given the features seen so far. They use a technique called grafting [187] to
accomplish the task. Grafting too considers feature selection as an integral part of
the learning process, it builds a model in an incremental iterative fashion. In each
iteration, a fast gradient based heuristic is used to access which feature is most likely
to improve the existing model, and that feature is then added to the model. The model

is incrementally optimized through gradient descent.

Pal and Chintalapudi in [166] introduced a method based on attenuation functions to
do feature selection in an MLP. They associated a function, called feature attenuator
function, with each input node of an MLP. Every input feature is multiplied by the
corresponding attenuator function prior to its entry into the network. The attenuator
functions are designed to take values between 0 and 1. The parameters of the attenu-
ator functions were learned by the error backpropagation (EBP) learning scheme. At
the onset of training each attenuator function value is set to almost zero. After train-
ing, for a bad or indifferent feature, the attenuator function acquires a value close to 0
and for a good feature a value close to 1. This simple method can learn the importance
of the features along with other parameters of the MLP. Thus it is an online method.
This attenuation based feature selection scheme has been applied to several real life

applications [85, 163].

The methods of feature selection proposed in this thesis (Chapters 3-5) are motivated
by the work in [166]. For each of the neural/neuro-fuzzy architectures that we have
considered, we assume that there is a feature gate associated with each input node of a
network. These feature gates restrict the entry of bad features into the network but al-
low the good features to get in. These gates are implemented through functions, which
we call as feature modulators or attenuators. There is a learnable parameter associated
with each feature modulator. The value of the attenuation parameter decides whether
the associated gate is closed, open or partially open. These parameters are learned
along with other parameters of a network and by interpretation of the values of these
parameters from a trained network we can comment about the importance of different
features. Further, according to the importance of the features, the network developed
can be pruned to obtain a neural/neuro-fuzzy network with lesser free parameters and

such a network is expected to have better generalization capabilities.

Our methods are quite different from other methods in the literature in the sense that

our method do learning and feature selection simultaneously. Though in decision trees

42

selection of features is done along with the creation of the tree, but decision trees
normally use certain other feature evaluation criteria. Our methods are connectionist
in nature and they perform gradient based search over the parameter space to find
parameters which can approximate the unknown input-output relation along with im-
portance of each feature. And the learning of all parameters including the parameters
associated with the feature gates is done through the minimization of the error in pre-
diction on the training data. Thus our methods are wrapper methods but they have
some additional good characteristics. In a wrapper approach one has to build a differ-
ent classifier (or other learning system) with each of the feature subset and evaluate
each feature set according to the prediction accuracy of the classifier constructed with
each feature subset. Where as our methods try to build the “optimal” system along

with the “optimal” subset of the features.

2.2 Enhancing Generalization Ability

Generalization ability is probably the most important attribute of any system learned
from data. A model learned from a finite training set ' = {(x;,y,) : ¢ = 1, ..., N} should
not only perform well on points in 1" but also for points which are not included in the
training set. This property of a learning machine to produce good results for future
data (data not included in the training set) is called generalization ability. It can be
assumed that the training data are generated from a time invariant joint probability
distribution P(&,y). Suppose the inputs and outputs are related by a (unknown)
function f and using 7" we have arrived at a predictor (the learning machine) ¢. Our

goal would be to find such a ¢ that minimizes the risk functional

/,c z),y)dP(z,y), (2.14)

using the data set T'. Here, £(.,.) measures the loss incurred for incorrect prediction.
L can be the number of misclassifications in case the predictor is a classifier; similarly,
L can be the sum of squared deviations for FA type problems. Now, P(z,y) which
generates the training data is unknown, hence an approximation of eq. (2.14) can be

obtained by replacing the integral by a sum on the available data as

Remp(@ o(xi),y,). (2.15)

||M2

This is called the empirical risk. A minimization of the empirical risk does not always
mean a minimization of the true risk. If the function class from which the predictor
¢ 1s selected has too many degrees of freedom, then ¢ will tend to overfit the training

data and will thus produce bad generalization.

The current literature provides a rich understanding of the process of generalization.
There are numerous methods which are applied to avoid overfitting in learning systems.
Particularly, for neural networks the gain in generalization ability is obtained through
four ways: (1) early stopping (2)complexity control (3) expanding the training set,
and (4) by ensemble methods. Next we discuss work related to each of this broad

categories.

2.2.1 Early Stopping

It has been observed that typically the generalization error decreases in an early period
of training, reaches a minimum and then increases as training goes on, but the training
error monotonically decreases. Thus, it is considered better to stop training after an
adequate time of training. This is called early stopping. Early stopping is achieved
through the validation method. The available training set 7' is divided into three
disjoint sets and they are named as the training set 7'r, the validation set V' and the
test set T'e. The network is trained using the points in Tr, and after each epoch
the performance of the network is tested using the validation set V. Note that, the
points in the validation set act as unseen points to the trained network. The stopping
criteria is decided on the performance of the network on the validation set V. When
the performance starts degrading, training is stopped. The test set T'e is then used to
judge the final performance of the network, after training is complete. Among many

others, early stopping has been considered in detail in [3].

2.2.2 Complexity Control

When number of parameters in a network (the weights and biases) increases, the net-
work may employ more freedom to learn the intricacies of the training data and thus
it may end up in “memorizing” the training data. This leads to overfitting and con-

sequently bad generalization. On the other hand, a network with too few parameters

44

will not have enough power to represent the the data accurately. Thus, the best gen-

eralization is obtained by trading off the training error and the network complexity.

One of the techniques to reach this tradeoff is to minimize a cost function composed
of two terms: the ordinary training error, plus some measure of the network complex-
ity. The statistical inference literature has several such schemes. These are based on
different criteria like Akaike’s Information Criteria [1], Minimum Description Length
[5, 199], Bayesian Information Criteria [120, 223], Vapnik’s guaranteed risk minimiza-
tion [233], etc. Various other complexity measures for learning systems have also been
proposed [2, 199, 233]. It appears that an inexact but useful measure for complexity
of a network will be the number of free parameters the network possesses. Thus, there
are many techniques to prune network parameters to arrive at a less complex network

[196]. We discuss some of these methods next.

Let W = (wy,ws, ..., w,,)’ be the vector containing all free parameters of a network
N and o; be the output of N for an input z;. Then the cost function E (the empirical

risk) on the basis of which the network is trained is given by

1 N
E= =3 o —u (216)
=1

Note that o; and hence F is a function of the network parameters W. Training N
means finding W that minimizes £. This is an unconstrained optimization problem
and the components of W can take any value. Hinton [81] proposed a method of
modifying the cost function £ by adding an extra penalty term involving the weights.

The modified cost function is given by
il)
Em:ﬁZHoi_yiH + P, (2.17)
=1
where, P is a penalty term, defined as
3
P = §||W||2 (2.18)

In eq. (2.18) € is a constant known as the decay constant. The added penalty in the cost
function involves the magnitudes of the weights in the network. Thus a minimization
of K, will penalize weights with high values, and the trained network will tend to have

weights with low magnitudes. He called this method as weight decay.

45

There are some drawbacks in using the penalty term P;. P; causes all weights to decay
exponentially to zero [73] at the same rate, hence it does not encourage any particular
weight to take near zero values which can be pruned after training. But low magnitude
of weights is, of course, a desired feature of a trained network. A modified penalty

function P is suggested in [236]:

€& w?
Py== . 2.19
T2 ; 1+ w? (2.19)
Note that 1:-0502 takes near zero values for very small values of w; and values near

one for large weights. Thus, this can be considered a measure of the number of non
zero weights in the network. Training a network with this penalty term will tend to
produce a network with small number of non-zero weights, and the weights with near
zero magnitude can be pruned after training. Setiono in [213] uses a combination of
both penalties P; and P, for pruning a network. A combination of both P and P,
serves two purposes: the network will tend to have the minimum number of non zero
weights and the penalty P; will discourage the network to have any weight with high

magnitude.

In the optimal brain damage method of le Cun et al. [41], once the network is trained,

the importance of each weight w; is determined by computing a saliency s; defined as

_(PEN wi
e ow? | 2

The weights with small values of saliency have very little influence on the error and

are hence removed.

Kanjilal and Banerjee [98] proposed a method of pruning hidden nodes and links of a
trained neural network using the singular value decomposition (SVD) technique [64].
They consider a trained network A with say r hidden nodes. For each of the N training
data points they compute the r outputs of the hidden nodes, thereby generating a N xr
matrix B. SVD is performed on B to obtain B = UBZBVBT. Where, Ug and Vg have
orthogonal columns and g is a diagonal matrix. The number of dominant singular
values in ¥p (say [< r) indicates the number of hidden nodes which are to be retained.
The specific hidden nodes which are to be retained are found by QR decomposition

with column pivoting [64] transformation on V7.

46

The regularization framework originally introduced by Tikhonov [226], also adds an ex-
tra penalty term to the empirical risk term, which generally is a smoothness constraint.
The model is built through minimization of this modified risk function. Regularization,
as applied to neural networks, has been extensively discussed in [63, 189, 190]. The
popular techniques for complexity control in neural networks, like weight decay [81],
weight sharing [155], pruning [196, 213], training with noise [14] have been shown to

be variants of regularization [34].

2.2.3 Expanding the Training Set

The problem of bad generalization and overfitting also arise due to the fact that neural
networks are trained with finite training samples. The available training data are
reused in every epoch and as a result, the neural network “concentrates” more and
more on these points and often results in a bad generalization. A probable solution to
this problem would be to have an infinitely large training set which is seldom realizable
in practice. Hence there are methods which aim to expand the training set with

additional points to cope with the finite sample effect.

Generating additional data points can be best done if the joint input-output probability
distribution of the data points is known. But, this is never known apriori. So the
methods for generating points aim at estimating the probability distribution from

data and then draw additional training sample using the estimated density.

In [82] authors add noise to the training set. They consider adding white noise in-
dependently to the input and output vectors to generate new training samples. The
noisy samples are generated following a kernel density estimate of the training data.
For function approximation problem, they consider an estimate of the joint distribu-
tion of the input and output vectors and for classification problem they consider the

class conditional densities.

Karistinos and Pados [100] suggest another procedure for random expansion of a given
training set. They propose a locally most entropic estimate of the true joint input-
output probability density function and use it to generate new training samples. They

argued that the method in [82] is an extreme special case of their method.

47

2.2.4 Ensemble Methods

Ensemble methods have gained much importance in the current days. An ensemble
method creates multiple predictors for the same task and an ensemble of these pre-
dictors is used for the final prediction. A predictor for which a small change in input
does not necessarily produce a small change in the output is called unstable. Unsta-
ble predictors have large variance and they produce bad generalizations. Aggregating
the prediction of multiple unstable predictors helps to bring down the variance and

consequently the ensemble produces better generalization.

Usually neural networks are unstable [19]. In the context of neural networks, an
ensemble is a collection of a finite number of neural networks trained for the same
task. Typically, a neural network ensemble is constructed in two steps, i.e., training a
number of component neural networks and then their predictions are combined. For
training component neural networks the most prevailing strategies are Bagging [19]
and Boosting [59]. Bagging is based on bootstrap sampling [53]. It generates several
bootstrap samples from the original training set and a component neural network is
trained with each bootstrap sample. In boosting a series of component networks are
trained and the training set of a network is decided by the performance of its preceding
network. The training samples which are wrongly predicted by the preceding networks
will play more important role in training the latter networks. There are also other
approaches of training component neural networks. Hampshire and Waibel [72] utilize
different objective functions to train different component neural networks. Cherkauer
[35] trains component networks with different hidden nodes. Yao and Liu [246] consider

all individuals in an evolved population of neural networks as component networks.

All these methods try to get component networks which perform more or less the
same on the training data but have variabilities in their parameters. Generally, all the
component networks generated by the different methods are aggregated to get the final
prediction. In [252] a genetic algorithm based method is proposed to select suitable

component networks which yield better generalization.

Once the component networks have been trained, the next issue of importance is how
to aggregate their outputs. The most common methods of aggregation are simple
or weighted average for function approximation and majority voting for classification

problems [19]. There can be other methods for combining predictors too. For example,

48

Wolpert [238] uses learning systems to combine component predictions. Ueda [230]

exploits optimal linear weights to combine component predictions.

2.2.5 Constraining the Learning

In Section 1.4.5 it was noted that one of the desirable properties of any system de-
signed from data is its ability to say “don’t know” for points which are not typical to
the training sample. This property is related to generalization. It addresses the im-
portant question: what regions of the input space should a learning machine generalize
in? Typically the training samples, both in case of classification and function approx-
imation, are restricted to a small region in the input space. The learning machine has
no information about the nature of the function beyond the region where the training
points lie. A good system should generalize only on test points which lie in the region
represented by the training points; for other points, the system should not produce
any response. We call this as strict generalization. Multilayer perceptrons do not
possess this property of strict generalization. They produce some output for any test
point irrespective of its position with respect to the training set. Experiments show
(please refer to Chapters 6 and 7) that the response produced by an MLP for points
which lie far away from the boundary of its training samples are generally not reliable.
In Chapters 6 and 7 we study this problem and provide some solutions by implicitly
constraining the learning process. This problem has not been addressed adequately in

the literature.

49

Chapter 3

Online Feature Selection and Function
Approximation Type System Design in a

Neuro-Fuzzy Paradigm'

3.1 Introduction

The success of any system designed from data depends on the quality of features that
are used to build the system. But most methods of function approximation (FA) either
ignore feature analysis or perform it in a separate phase offline from the main learning
task. In Section 2.1.4 we defined online feature selection as a feature selection method
integrated with the main learning task. Most feature selection methods available in
literature are offline in nature (refer Section 2.1.4). The suitability of a feature set
depends on the task at hand as well as the learning method. Hence, it is expected that
a system identification scheme with a built in feature selection component will result
in systems with better prediction accuracy. It is needless to mention that a design
methodology equipped with the capability of discarding redundant or bad features will
ultimately lead to a less complex system. And it will consequently have less run-time
complexity, less hardware cost, more readability and increased generalization ability.

In this chapter we propose a neuro-fuzzy system with online feature selection capability

for fuzzy rule based FA.

Let X = {z,23,....,2x} C R* and YV = {y,,y,,....,yny} C R’ and let there be an
unknown function S : R = R’ such that y, = S(zx) Vk = 1,..., N. In other words,

!The contents of this chapter have been published in [24, 164].

50

there is an unknown function S which transforms @ to y. The problem of FA is to
find S, given X and Y. Function approximation appears in various fields of science
and engineering. And there are also various methods to solve this problem. There
are statistical methods which give explicit solutions to it; also there are computational
transforms which provide implicit solutions. Neural networks, fuzzy rule based systems
etc. are such computational transforms. Fuzzy rule based systems can be built based
on rules supplied by experts. Also, rules extracted from data using exploratory data
analysis or other tools may be used to build fuzzy systems [36, 37, 38, 159, 167]. Thus,
if one needs to model a system for which the explicit equations governing the input-
output relation are not known, but experts’ opinion is available in terms of imprecise
rules, then one can use such rules to build a fuzzy model of that system. But, our
objective here is a bit different. We are interested in building models from input-output
data. Thus, we aim to extract rules governing the input-output relationship of a system
using the input-output data pairs. We develop a neuro-fuzzy system to do this. The
proposed system learns human interpretable fuzzy rules only from input-output data.
Along with the input-output mapping, our system also learns the importance of the
various features present in the data. After completion of training the system gets rid
of the redundant /bad features and also prunes the network accordingly to arrive at an

“optimal” structure of lower complexity.

In this chapter we first provide a brief introduction to neuro-fuzzy systems in Sec-
tion 3.2, where we justify the use of neuro-fuzzy systems for FA, also we refer to some
earlier work on neuro fuzzy systems. Next we discuss our methodology for building
a neuro-fuzzy system with integrated feature analysis capability. In Section 3.3 we
discuss the structure of our neuro-fuzzy system, in Section 3.4 we derive the learning
rules, in Section 3.5 we discuss the pruning strategies, and in Section 3.7 we discuss

some simulation results. This chapter is concluded in Section 3.8.

3.2 Neuro-fuzzy Systems: Motivation and Earlier Works

It is known that neural networks can act as universal approximators for a large class of
non-linear functions, hence the choice of neural networks for FA is quite justified and
has been proved to be successful [77]. Neural Networks are usually robust, possess par-

allelism and good generalizing capabilities but they usually do not have readability and

51

work as a black box. Neural networks are capable of learning input-output mapping
through minimization of a suitable error function. The structure of the various net-
works enables them to learn the mapping in an easy manner. But, as such they are not
capable of learning or representing “knowledge” explicitly, which a fuzzy system can do.
Here we are making a clear distinction between identifying a mapping and extraction of
readable or intelligible knowledge. The underlying relation in a system, which has been
approximated by a neural network, cannot be easily understood from a trained net-
work by any easy means but there are some specialized methods which aims to extract
symbolic or other kinds of rules from a trained network [47, 214, 216, 224, 225, 227].
On the other hand, fuzzy rule-based systems which have also been used for FA are
highly interpretable in terms of linguistic rules. As fuzzy if-then rules can be easily un-
derstood by human beings and often an initial rule-base can be provided by an expert,
there is no problem of readability. However, fuzzy rule based systems, as such are not
capable of learning. So to extract rules from data one has to depend on techniques
like clustering or other tools of exploratory data analysis [36, 37, 38, 167], or an initial
rule base is supplied by an expert, which is then tuned using data. Thus, judicious
integrations of neural networks and fuzzy logic are expected to result in systems with
merits of both paradigms. Several attempts have been made to integrate fuzzy systems
and neural networks with a view to achieving systems which are interpretable, robust

and have learning abilities [39, 103, 136, 137, 138, 151, 174, 175, 182, 184, 186].

The various neuro fuzzy unification schemes developed till date can be classified into

three major groups :

o Neural Fuzzy Systems
o Fuzzy Neural Systems

o (Co-operative Systems

Neural fuzzy systems are fuzzy systems implemented by neural networks [112, 113, 136,
137, 160, 176]. Fuzzy neural systems are neural networks, capable of handling fuzzy
information [75, 138]. The inputs, outputs and weights of fuzzy neural networks could
be fuzzy sets, often fuzzy numbers or membership values. The Co-operative systems

are those, which use different paradigms (neuro and fuzzy) to solve various facets of the

52

same problem [176]. All these three paradigms taken together is known as neuro-fuzzy

computing.

Lee and Lee [133] were the first to study the concept of fuzzy neurons. They intro-
duced the theory of fuzzy sets to the conventional McCulloch and Pitts model and
finally analyzed fuzzy neural networks based on principles of neural networks and the
mechanism of fuzzy automata [97, 133]. Since then there has been a variety of work
which has addressed the problem of hybridizing the two useful paradigms. The last few
years have seen a tremendous advancement of this new paradigm to solve a wide range
of problems [21, 137, 174, 183]. There have also been attempts to realize these systems
through specialized hardware [244], which have enabled use of these systems in a va-
riety of fielded applications including consumer products. A detailed list of references
on neuro-fuzzy systems can be found in [183]. Here we give a glimpse of some of the
recent important contributions in neuro-fuzzy paradigm; we are particularly interested

in neural-fuzzy systems.

Two of the important works in neural fuzzy systems are Jang’s adaptive-network based
fuzzy inference systems (ANFIS) [92] and Lin and Lee’s neural network based fuzzy
logic control and decision system [136]. Lin and Lee’s work [136] describes a multi-
layered feedforward connectionist model designed for fuzzy logic control and decision
making. A hybrid two step learning scheme that combined self-organized (unsuper-
vised) and supervised learning algorithms for selection of fuzzy rules and tuning of
membership functions were developed. They used Kohonen’s self-organizing feature
map [119] for finding the centers of the membership functions. After selection of the
rule set, i.e., when the network architecture is established, the second step of super-
vised learning begins. Some heuristic guidelines for rule reduction and combination
were also provided. There are many variants of this work, like Lee et al. [132] pro-
posed a neural network model for fuzzy inferencing. They developed an algorithm
for adjusting (tuning) the membership functions of antecedent linguistic values of the
rule set by error backpropagation (EBP), where the consequent parts were considered
fixed. Li and Wu [134] proposed a neuro-fuzzy hierarchical system with if-then rules
for pattern classification problem. A five layer network was also presented by Yao et al.
[247], where the parameters of the net are identified using evolutionary programming
and the tuned network is then pruned to extract a small set of rules. Pedrycz and

Reformat [185] used both the gradient descent algorithm and genetic programing for

33

structure and parameter learning of a neuro-fuzzy system. Shann and Fu [217] pre-
sented a layered network for selection of rules. Initially, the network was constructed to
contain all possible fuzzy rules. After training through error backpropagation (EBP),
the redundant rules were deleted by a rule pruning process for obtaining a concise rule
base. The architecture of Shann and Fu is similar to that of Lin and Lee in several
respects. Pal and Pal [168] discussed some limitations of the scheme by Shann and Fu
and provided a better rule tuning and pruning strategy. The network proposed by Kim
and Kasabov [115] also consists of two phases, one of rule generation from data and a
rule tuning phase by error backpropagation. Lin and Cunningham [140] developed a
layered network for system identification. They used fuzzy curves for feature selection,
but this phase was a part of preprocessing on the data before the data get into the
network. Wu and Er [240] proposed a dynamic fuzzy neural network implementing
Takagi-Sugeno-Kang fuzzy systems based on extended radial basis function network.
Lin and Chung [135] developed a neuro-fuzzy combiner based on reinforcement learn-
ing for multiobjective control. Figureiredo and Gomide [56] proposed a neural fuzzy
system which encodes the knowledge learned in the form of fuzzy if-then rules and
processes data using fuzzy reasoning principles. After learning, linguistic rules can be

easily extracted from the network.

In [94] Juang and Lin discussed a self-constructing neural fuzzy inference network
(SONFIN) with online learning ability. The SONFIN is a modified Takagi-Sugeno-
Kang type fuzzy rule-based model possessing neural network’s learning ability. There
are no rules initially in the SONFIN. They are created and adapted as the learning
proceeds via simultaneous structure and parameter identification. In [95] RSONFIN is
proposed which is a recurrent version of SONFIN. SONFIN and RSONFIN have been
used in several applications like word boundary detection [239], speech segmentation
[139], object tracking [49] and radar pulse compression [50]. A variety of other real life

applications have also been developed using neuro-fuzzy systems.

None of the methods cited above considers the problem of feature analysis explicitly.
Though it has been identified that feature analysis is an important phase for designing
any system from data. Next, we propose a novel neuro-fuzzy architecture which has a

feature selection component inherent in it.

54

Layer 5: Defuzzification
nodes

Layer 4: OR nodes

Layer 3: AND node

Layer 2: Fuzzification
and feature
analysis nodes

Layer 1 : Input nodes

Figure 3.1: The network structure.

3.3 The Network Structure

For the FA problem that we consider here, let there be s input features (1,29, ..., x5)
and t outputs (y1,y2,...,y:). The proposed neural-fuzzy system will deal with fuzzy
rules of the form, R; : If @y is Ay; and x5 is Ag; ... and x, is Ay then y; is Bj;. Here
Aj; is the i-th fuzzy set defined on the domain of ; and Bj; is the i-th fuzzy set defined

on the domain of y;.

From our notation one might think that for each rule we are using a different set of
antecedent linguistic values (fuzzy sets) but that is not necessarily true; in fact, for
every feature only a few fuzzy sets are defined and hence some of the A;; = A;;, for some

g and k. Similar is the case for the linguistic values defined on the output variables.

The neural-fuzzy system is realized using a five layered network as shown in Fig. 3.1.
The node functions with its inputs and outputs, are discussed layer by layer. We use
suffixes p,n,m, [, k to denote respectively the suffixes of the nodes in layers 1 through
5 in order. The output of each node is denoted by z. For example, z, will indicate
output from a node in layer 1, similarly, z, will denote output from a node in layer 2

etc.

35

Layer 1: Each node in layer 1 represents an input linguistic variable of the network
and is used as a buffer to transmit the input to the next layer, that is to the membership
function nodes representing its linguistic values. Thus, the number of nodes in this
layer is equal to the number of input features in the data. If z, denotes the input to

any node in layer 1 then the output of the node will be
Zp = Tp. (3.1)

Layer 2: Fach node in layer 2 represents the membership function of a linguistic value
associated with an input linguistic variable. Moreover, this layer also does the feature
analysis task. The output of these nodes lies in the interval [0,1] and represents the
membership grades of the input with respect to different linguistic values. Therefore,
the nodes in this layer act as fuzzifiers. The most commonly used membership functions
are triangular, trapezoidal and bell shaped. Although any one of these choices may be
used, we consider bell shaped membership functions. All connection weights between
the nodes in layer 1 and layer 2 are unity. If there are N; fuzzy sets associated with
the i"* feature and if there are s input features then the number of nodes in this layer
would be N? = 3°7_ N;. The output of a node in layer 2 is denoted by
2

Zp = exp{—%} : (3.2)
In eq. (3.2) the subscript n denotes the n-th term (fuzzy set) of the linguistic variable
Tp. fbn, and o, represent the mean and spread respectively of the bell shaped function
representing a term of the linguistic variable z, associated to node n. We deliberately
put a - (bar) on z, because, this is not the output of this layer. The actual output for

this layer will be a modified value of z,.

For the purpose of feature selection, the output of this layer needs to be modified so
that every indifferent/bad feature x, gets eliminated. If a linguistic variable z, is not
important (or is indifferent) for describing the system behavior, i.e., for defining the
input-output relation, then the values of z, should not have any effect on the firing
strength of the rules involving that input variable. This is our main guiding principle
for feature analysis. Since for any T — norm, T(1l,a) = a, 0 < o < 1, this can be
realized if an indifferent feature always generates a membership of unity or almost
unity. This may appear impossible at the first sight. Note that for an indifferent
feature, all of its terms (i.e., all of its linguistic values) should have no effect on the

firing strength. Next we explain how this can be realized.

56

Let us associate a function f, with each node n in layer 2. We call f, a modulator
function. For an indifferent (or bad) feature we want all linguistic values defined on
that feature to result in a modulated membership value of almost 1. In other words,
for a bad/redundant feature, we want to have f,.z, ~ 1. To achieve this we model f,

as

fn=exp [)\p In (i)]) (3.3)

Here A\, € [0,1] is a parameter associated with a particular linguistic variable x, of
which node n is a term. From eq. (3.3) we see that when), is nearly 1 then f, is
nearly é, and when A, is nearly 0 then f, is nearly 1. So for bad features A, should
get large values (close to 1) and small values (close to 0) for good features. Thus, for a
bad feature, the modulated membership value would be f,.z, &~ Zn% ~ 1 irrespective
of the value of z,. Similarly, for a good feature, the modulated membership value
would be f,.z, = 1.z, = 7, ~ the actual membership value. Since A, must take values
between zero and one, we model A, by ¢~P. Thus, the activation function of any node

n in layer 2 becomes :

Zn = Zp €TIP [e_ﬁgln (i)] , (3.4)

Zn
which can be simplified to
2, = 2=, (3.5)

n

In eq. (3.5) z, is computed using eq. (3.2). The parameter (3, can be learnt by back-
propagation technique. We see that when ﬁ; takes a large value then z, tends to z, and
for small values of ﬁ;, z, tends to 1, thereby making the feature indifferent. Therefore,
our objective would be to make ﬁ; take large values for good features and small values
for bad ones through the process of learning. Layer 2 can be better realized using two
layers of neurons, the first one for computation of the membership value, z, and second

layer for the modulated output using eq. (3.5).

Layer 3: This layer is called the AND layer. Each node in this layer represents an
IF part of a fuzzy rule. There are many operators (T — norms) for fuzzy intersection
[117]. Here we choose product as the operator for intersection. The number of nodes

in this layer is N* = []:_; N;. The output of the m-th node in the layer is

o= II 2 (3.6)

n€Pm

57

where P, is the set of indices of the nodes in layer 2 connected to node m of layer 3.

Layer 4: This is the OR layer and it represents the THEN part (i.e. the consequent)
of the fuzzy rules. The operation performed by the nodes in this layer is to combine the
fuzzy rules with the same consequent. The nodes in layers 3 and 4 are fully connected.
Let wy,, be the connection weight between node m of layer 3 and node [of layer 4.
The weight wy, represents the certainty factor of a fuzzy rule, which comprises the
AND node m in layer 3 as the IF part and the OR node [in layer 4 representing the
THEN part. These weights are adjustable while learning the fuzzy rules. If there are
M; fuzzy sets associated with the i*" output variable and there are t outputs then the
number of nodes in this layer is N* = S°I_, M;. For simplicity let us assume that there
is only one output variable and M linguistic values are defined on it. So the fourth
layer has N* = M nodes. For each output linguistic value there are exactly N® rules
having that value as the consequent. Every node of this layer picks up only one rule
from among the associated N? rules based on the maximum agreement with facts (in
terms of the product of firing strength and certainty factor) for computation of the
defuzzified output. When all certainty factors are equal, the rules are selected based
on the maximum firing strength. This rule selection is viewed as an OR operation and
realized by the max operator. Thus, like Shann and Fu [217] and Pal and Pal [168],
the output of the node [in layer 4 is computed by

z21 = Maxmep,(ZmWinm), (3.7)

where P, represents the set of indices of the nodes in layer 3 connected to the node [of
layer 4. Since the learnable weights wy,,s are interpreted as certainty factors, each wy,,
should be non-negative, preferably should lie in [0,1]. The EBP algorithm or any other
gradient based search algorithm does not guarantee that wy,, will remain non-negative,
even if we start the training with non-negative weights. Since the defuzzification uses
a normalization scheme, we can ignore the constraint that wy,, € [0,1]. We model wy,,
by g?.. The g, is unrestricted in sign but the effective weight wy,, = g7, will always

be non-negative. Therefore, the output (activation function) of the {*

will be

node in layer 4

21 = maz,ep,(2mar,) (3.8)

Layer 5: This layer is the defuzzification layer. Fach node of layer 5 represents an

output linguistic variable and performs defuzzification, taking into consideration the

38

effects of all membership functions of the associated output linguistic variable. The
number of nodes in this layer is equal to the number of outputs. Here we use a centroid

type defuzzification scheme, and a node in this layer computes the output as :

- Zlepk iate]

. 3.9
> lep, A4 (3:9)

In eq. (3.9) Py is the set of indices of the nodes in layer 4 connected to node k in layer
5 and a;, ¢; are the spread and mean of the membership function representing node [

in layer 4. The weights of the links connecting nodes in layer 4 and layer 5 are unity.

3.4 Learning of Feature Modulators and Rules

We now derive the learning rules for the neural-fuzzy system with the activation or
node functions described in the previous section. In the training phase, the concept of

backpropagation is used to minimize the error function

[\Dl»—\

N N t
> Bi= ZZ (yar — 7", (3.10)

=1 =1k

[\Dl»—\

where ¢ is the number of nodes in layer 5 and y;; and z;; are the target and actual
outputs of node k in layer 5 for input vector z; ;¢ = 1,2,..., N. The method for
adjusting the learnable weights in layer 4 and the parameters 3, in layer 2 are based
on gradient descent search. We use online update scheme and hence derive the learning
rules using the instantaneous error function F;. Without loss we drop the subscript ¢

in our subsequent discussions.

The delta value, §, of a node in the network is defined as the influence of the node
output with respect to E. The derivation of the delta values and the adjustment of

the weights and the parameters 3, are presented layer wise next.

Layer 5: The output of the nodes in this layer is given by eq. (3.9) and § values for

this layer, dz, will be
v

op = —.
F aZk

Thus,
(Sk: —(yk—Zk). (311)

59

Layer 4: The delta for this layer would be

L8 _0po
a 821 N 6zk 621'
In other words,
5 = 5kM7 (3.12)
Zl'EPk Zpdp

where £ is a node in layer 5 with which node [in layer 4 is connected.

Layer 3: The delta for this layer would be

aE_aE%

LIl Pl T .

Hence, the value of é,, will be

(3.13)

f - ZleQm 51 g?m if Zm g?m = maxm/{zm/g?m’}
" 0 otherwise.

Here ()., is the set of indices of the nodes in layer 4 connected with node m of layer 3.

Layer 2: Similarly, the 4, for layer 2 would be

ol B ol 0z,
0z, 0z, 0z,

5, =

Hence,

So=Y b (Z—m) (3.14)

z
mER, n
In eq. (3.14) R, is the set of indices of nodes in layer 3 connected with node n in layer

2.

With the ¢ calculated for each layer now we can derive the weight updating equation

and the equation for updating 3,.

or_on o
Gt 021 0q1n

or

(3.15)

oE { > ieg,, 2 8t Zm Gim W 2y gf, = max,{zmgt }
8.glrn -

0 otherwise.

60

Similarly, we calculate

ol B ol 0z,
0B, 02,08,
or aE 9
gu _ -2 “r — F‘n)
a7, n%; 6 (2 €% 2) () (3.16)

Where, R, is the set of indices of nodes in layer 2 connected to node p of layer 1.

Hence, the update equations for weights and 3, are

Gim(n+1) = gim(n) +1n (— ;gi) (3.17)

and

Bp(n+1)=p06,(n)+v (—g—;i) . (3.18)

In eq. (3.17) and eq. (3.18) n and v are learning coefficients.

The network learns the weights of the links connecting layers 3 and 4 and also the
parameters associated with nodes in layer 2, which do the feature selection. The initial
values of (3’s are so selected that no feature gets into the network in the beginning.
This is realized by assigning very low positive values (say 0.0001) to each 3,. Thus
in the beginning of learning every node in layer 2 produces a value which is nearly
equal to one, and consequently, all features are considered unimportant. As learning
proceeds, the values of s gets updated in such a way that the important features,
i.e., the features which can reduce the error rapidly, only pass through the network.
This happens because, gradient descent will modify those 3, more which can reduce

the error faster.

The importance of a feature is determined by two factors: the error reducing capability
of the feature and the learning machine used. The values of 3, which are obtained after
training will depend not only on the data but also on other parameters of the network.
For example, different choice of input and output fuzzy sets and different learning
rates may give different values of 3,. Thus, the features selected by the method, are
dependent on both the problem that is being solved and the learning machine that
is being used. However, if there is a necessary feature its 3 value is likely to get

appropriately updated in different trials.

The importance of a feature is determined by two factors: the error reducing capability

of the feature and the learning machine used. The values of 3, which are obtained after

61

training will depend not only on the data but also on other parameters of the network.
For example, different choice of input and output fuzzy sets and different learning
rates may give different values of 3,. Thus, the features selected by the method, are
dependent on both the problem that is being solved and the learning machine that
is being used. However, if there is a necessary feature its 3 value is likely to get

appropriately updated in different trials.

3.4.1 Implicit Tuning of Membership Functions

The feature modulator not only helps us to select good features but also has an inter-
esting side effect. It tune the membership functions to some extent. The output of a

layer 2 node is:

Zn = (Zn),yp7

N2

where

and v, =1 — e .

Note that, z, is also a Gaussian function with mean 1, and spread o/, because

e

e (3.20)
o, = . .
V7,

The feature modulators, thus, tune the spread of the input membership functions and

where

retain their Gaussian structure.

At this point a natural question may come: why are we not tuning the parameters
of the membership functions? There are two reasons. First, tuning of spreads of
the membership functions although can reduce the total error, it cannot do the task of
feature selection. Tuning of membership function parameters refines each rule to reduce
the error, while for elimination of a feature the spreads of all membership functions
defined on that feature need to be modified. Second, simultaneous tuning of modulator
functions and the parameters like mean and spread of input membership functions is

not desirable. Because, tuning of modulator function looks at all membership functions

62

defined on a feature as a whole, while the tuning of membership function parameters
tries to improve the performance of a rule, i.e., tune parameters of the membership
functions considering each rule separately. As a result, if both modulator functions and
membership function parameters are tuned, the learning process may become unstable.
Therefore, tuning of parameters of input membership functions should be done after
feature elimination (i.e., after tuning of the modulator functions). Consequently, we
do not discuss tuning of membership function parameters here but we discuss it for the
classification network in Chapter 4 (refer Section 4.5.3). But, here too one can apply

the same methodology for tuning the membership functions.

Next we discuss strategies to prune the network to get an “optimal” readable network.

3.5 Optimizing the Network

We started with a network which represented all possible rules given a set of input
and output fuzzy sets. But all possible rules usually are never needed to represent a
system. Moreover, the modulator functions associated with the 2nd layer, may decide
that all of the features are not important. Hence, some of the nodes present in the
network may be redundant, and presence of these redundant nodes will decrease the
readability /interpretability of the network. We know that a system identification task
can be easily handled by a conventional Multilayer Perceptron (MLP) network, but we
have used a neural fuzzy system for the purpose of FA to increase the readability of
the network, so that we can understand the relation between the inputs and outputs
in terms of linguistic rules. Thus, to make the network optimal and more readable, we
need to prune it removing redundant nodes and incompatible rules. We next discuss

what we mean by redundant nodes and incompatible rules, and how to remove them.

3.5.1 Pruning Redundant Nodes

Let us consider a FA problem with s input features. So layer 1 of the network will
have s nodes. Let the indices of these nodes be denoted by p (p =1 to s). Let N, be
the set of indices of the nodes in layer 2 which represents the fuzzy sets on the feature
represented by node p of layer 1 and let |N,| = N,. We also assume that ¢ (¢ < s)
of the s features are indifferent/bad as dictated by the training. Let R be the set of

63

indices of the nodes which represents the ¢ indifferent/bad features. Hence, any node
with index p in layer 1 such that p € R is redundant. Also any node n in layer 2,
where n € N, and p € R is also redundant. In our network construction, a node in
layer 3, can be uniquely identified by its connections with the nodes in layer 2. We
can indicate a node m in layer 3 as S, = [Tm1, Tma, -y Tms) Where x,,, € N,. Now
for any p € R we can group the nodes in layer 3 into N, many groups, we call them
Gpp, where 7 = 1, 2, ..., N,. Every node in the r'" group is connected to the r'* fuzzy
set on the p'* feature. Let S,, be a node in layer 3 which belongs to the r** group,
e, Sy = [Tm1, Tm2y oooey Tms) € Gpr. Then for every group G, £ #1, s =1,2,...., N,
there exists exactly one node S, = [241,%g2,...., ¥ys|, such that x,; = xn;, Vj # p,

J=1,2,....;5, where p € R is a bad feature.

Thus, every group of nodes has identical connection structure with the nodes of layer
2 except for its connection to a node corresponding to the redundant feature p, and as
per our construction that particular node produces an output membership value of 1,
for all feature values. Hence, in layer 3 it is enough to keep only one of the N, groups

and the other N, — 1 groups of nodes are redundant.

To elucidate the concept of redundant nodes, let us consider an FA task with two input
features x; and z,. So, layer 1 of the network for this task will have two nodes, we
name them as X; and X, [Fig. 3.2]. We also assume that input feature x; has three
fuzzy sets associated with it and the feature x5 has two fuzzy sets associated with it.
Hence, layer 2 will have three nodes Xi1, X1, Xi3 connected with X;, and two nodes
Xo1 and Xy, connected to X;3. The nodes in layer 3 are named using their connections
to nodes in layer 2, for example, a layer 3 node connected to X;; and Xy will be
denoted by X1 X3, [Fig. 3.2]. Now, if, training dictates that feature x; is redundant
then irrespective of the values of x1, each of the nodes Xy, X1; and X5 will produce
an output of unity. In this case we can group the nodes in layer 3 into three subsets,
which are shown by white nodes, gray nodes and black nodes in Fig. 3.2. Since X,
produces an output of unity, the gray group has 2 nodes representing two antecedent
clauses “xy 1s X917 and “z is X957, Similarly, each of the white and black groups also
represents the same two antecedent clauses as the outputs of both X5 and X3 are
1. Hence, it is enough to retain any one of the 3 groups. Note that, in this case if
two group of nodes are pruned, then the 3rd layer looses its importance, as it really

does not do any AND-ing operation. But such a situation, will rarely occur where out

64

Figure 3.2: Subnet to illustrate redundant nodes.

of only two input features one is redundant. If it happens, then the 3rd layer simply

transfers its input to the next layer.

The redundant nodes are not required for the FA task, but they add to the compu-
tational overhead of the network. So removal of these nodes is necessary to get an
optimal network. The important part of this method is determination of the set of
redundant nodes in layer 1. For this we use the value of 1 — ¢~ (we call it 7,) as an
indicator. We have seen earlier, that for good features v, takes values close to 1 and
for bad features it is close to 0. So we fix a small positive threshold th such that p € R
if 4, < th. The method for removal of redundant nodes (here the removal of a node

also means removal of its incoming and outgoing links) is summarized in Table 3.1.

Selection of the Threshold th

Now we present a guideline for selecting the threshold th. We have used Gaussian
membership functions for the input fuzzy sets (also for output fuzzy sets). Hence, as

per our formulation the output of the nodes in layer 2 can be represented by

where

Table 3.1: Pruning of redundant nodes

Algorithm: Pruning of redundant nodes

begin
R=¢
for each p in layer 1
if (vp < th)
R=RU{p};
remove node p in layer 1;
remove the nodes in layer 2

connected to p;

end if
end for
do while(R # &)

let i € R;

R=R—{i};

find G5, 7 =1,2,..., Nj;

remove nodes in Gyo, Gi3, ..., Giny;
end do

end

66

and v, =1 — ¢ % . If we consider o, = ﬂan’, then we have,

Z, = exp{—M} (3.21)

12
207
and

(2o — 1a)* "
We know that 99% of the area under the membership function in eq. (3.21) lies over the
interval [p, — 30!, 1, + 307]. Consequently, the value of z,, beyond this interval would
be negligibly small. For a bad/indifferent feature we want the modulated membership
value z, to be almost unity over the entire interval [p, — 30), 1, + 30/]. Therefore,
we can safely choose that value of ~, as the threshold th, which makes z, = ¢ (¢ = 1)
at z, = p, — 30, and at p, + 30,,. Thus, from eq. (3.22) we obtain the threshold
th = —%. Note that, for such a choice if z, € (u, — 30/, pt,, + 30)), then z, > c. If
we consider ¢=0.8, then we obtain th = 0.05, which we use in the simulations reported

in this thesis.

3.5.2 Pruning Incompatible Rules

According to our construction of the network, the links between layer 3 and layer 4
represent the rules, and the weights associated with the links can be interpreted as
the certainty factor of the rules. But as the nodes in layer 3 and layer 4 are fully
connected, initially, all fuzzy rules are considered. If there are 7 linguistic values for
an output linguistic variable then there are 7 rules with the same antecedent but
different consequents, which are inherently inconsistent. Let us consider the subnet in
Fig. 3.3, which shows only the connections used for selecting the most relevant rule
corresponding to the antecedent clause (IF part) represented by the node m in layer

3. Fig. 3.3 corresponds to the following incompatible rules:
If (antecedent),, then yyi is Ti., (Wg,m), 1=1,2,...,7.

Where, (antecedent),, is the antecedent clause represented by node m of layer 3, T} .,
is the ['" fuzzy set on the kY output variable y,. The certainty factors wy, ., of the

rules are shown in parenthesis.

For rule pruning the centroid of the set of incompatible rules is calculated considering

67

Figure 3.3: Incompatible rules

the connections in Fig. 3.3 as

2 z1aicy
o = 2B (3.23)
> lep, A4
Since, 21 = 2,05,
> Zn G A1
Chm = lEP mgh;) (324)
2 ieP, AmYim L
Hence,
2
acy

= 5 .
ZlePk Gim

Ckm 1N eq. (3.25) can be viewed as a centroid of the set of incompatible fuzzy rules
which corresponds to Fig. 3.3 with certainty factor g7 for the rule with antecedent
node m and consequent node [. We calculate the membership values of ¢, in all
consequent fuzzy sets of the incompatible rules. Then the rule which has the highest

membership value for ¢, is selected and the other rules are deleted.

68

3.6 Training Phases

The training of the system takes place in 3 phases. Phase 1 is called the feature
selection phase, where the training is done on the initial network with all the possible
nodes and links. The Phase 1 training is considered to be over once the modulator
functions stabilize, i.e., when

() = T + 1))

S

< €,

where T'(n) € R* is the vector of v, values after the n'* epoch, ||.|| is the Euclidean
norm and ¢ is a small positive constant. After Phase 1 training is over, based on the
values of the parameter v, the pruning of the redundant nodes is done. After pruning,

the output of the second layer nodes would be as

Zp = Zn

as the modification of the membership value for the purpose of feature selection will no
longer be required. After pruning, the network is retrained for a few epochs to adapt
its weights in its new reduced architecture, and this phase is called Phase 2 of training.
Finally, the incompatible rules (links) are pruned and again the network is allowed to
learn in its new architecture, which is termed as Phase 3 of training. Let W(n) denote
the vector of the weights of all the links connecting layer 3 and layer 4 after the n
epoch in Phase 2. The Phase 2 training can now be stopped when
W)~ Win s 1l _
W (n)] ’

where |W(n)| gives the number of components in W(n). Phase 3 tuning can also be

terminated based on the same criteria. Note that for Phase 3, the number of compo-
nents of W(n) will be less than that in Phase 2. However in the present simulations
we have arbitrarily chosen the number of epochs. After the Phase 3 training is over,
we obtain a network which is readable, and the rules that describe the input-output

relation can be easily retrieved from the final architecture of the network.

3.7 Results

The methodology developed is tested on two data sets taken from [222] and the per-

formance is found to be quite satisfactory. We first describe the data sets and then in

69

Figure 3.4: Plot of Hang.

two separate subsections we present the results obtained on them.

Of the two data sets one is synthetically generated and the other is a real life one. The

first one is named Hang which is generated by the equation:

y=(1+z72+2;"")?2 1< 2,20 <5 (3.26)

The graph of eq. (3.26) is shown in Fig. 3.4. Equation (3.26) represents a nonlinear
system with two inputs z; and z, and a single output y. We randomly generate
50 points from 1 < zy,25 < 5 and obtain 50 input-output data points according to
eq. (3.26). To illustrate the feature analysis capability of the proposed net, we add two
random variables x5 and x4, in the range [1,5] as dummy inputs. It is expected that

features x3 and x4 would be indifferent to the output of the system.

The second data set is called Chem. This is a data set on operator’s control of a
chemical plant for producing a polymer by polymerization of some monomers. There
are five input features, which a human operator may refer to for control and one output,
that is his/her control. The input variables are monomer concentration (uy), change
of monomer concentration (uz), monomer flow rate (us), two local temperatures inside
the plant (u4 and wus). The only output (y) is the set point for monomer flow rate.
In [222] there is a set of 70 data points obtained from an actual plant operation. We
name this data set as Chem and use as our training data. In [222] it has been reported

that the two local temperatures inside the plant, i.e., u4y and us do not significantly

70

contribute to the output.

One of the most important issues for rule based system identification is to determine
the input and output fuzzy sets. We do not use any sophisticated technique in this
regard. We found out the domain of each input and output component and picked
up a number of fuzzy sets to span the whole range with considerable overlap between
adjacent fuzzy sets. As stated earlier we used fuzzy sets with Gaussian membership

functions.

We measure the performance of our system by the sum of squared errors (SSE) and
maximum deviation (MD) of the output from the target. Lin and Cunningham [140]

defined a performance index PI as:

_ \/Zivﬂ(zk — yi)?
Zi\le |yk| ’

where z;, denotes the output for the & point and y;, denotes the desired output for

Pl

(3.27)

the same point. But in [206] it was pointed out that this performance index is mono-

/2 je., it is possible to obtain a very small PI just by

tonically decreasing with N~
increasing N. Still we evaluated the performance of our system based on Plin eq. (3.27)

for an easy comparison with results reported in the literature.

3.7.1 Results on Hang

Here we used four input fuzzy sets for each input feature and five output fuzzy sets for
the output linguistic variable. The input and output fuzzy sets are shown in Fig. 3.5.

Hence, the initial architecture for this problem is as described in Table 3.2.

The network was trained using the data set, Hang with learning parameters n = 0.1
and g = 0.1 for 1000 epochs in Phase 1, 500 epochs in Phase 2 and 3500 epochs in
Phase 3. The SSE was reduced from 57.907 to 1.513. The PI was equal to 0.01, which
is comparable to the result obtained by Sugeno and Yasukawa [222], who obtained a
PI of 0.01. Using this data Lin and Cunningham [140] obtained a PI of 0.003, but in
their case they used only the good features, i.e., only features z; and x3. Moreover,
we did not tune the membership functions defined on the input and output variables

which could improve the results further.

The values of 3, for the various features and the corresponding values of 1 — e~

71

Table 3.2: Architecture of the neural fuzzy system used for Hang.

layer no.

no. of nodes

1

2
3
4
3

4
16
256

Figure 3.5: Membership functions used for Hang: (a) Input membership functions, (b)

Output membership functions.

72

Table 3.3: Value of 3, for different input features for Hang.

1 X9 x3 X4
B, 2.53 [2.54 | 0.00 | 0.00
1—e % 10.99 | 0.99 | 0.00 | 0.00

after the Phase 1 training are given in Table 3.3. Table 3.3 clearly shows that the
network is able to indicate features x3 and x4 as not important and eliminate their
effect completely on the output. In this case, as Table 3.2 shows, we started with 256
nodes in layer 3, i.e., 256 antecedent clauses. Also as layer 4 contains 5 nodes, the
initial architecture represented 256 x 5 = 1280 rules. But Phase 1 of training indicates
that two features are redundant /bad. Before Phase 2 training, the network is pruned of
the redundant nodes, which reduces the antecedent clauses to 16, hence, the number
of rules gets reduced to 16 x 5, i.e., 80. Since after Phase 2 incompatible rules are
removed, the total number of rules represented by the final architecture is 16. Thus,

here we obtain a 99.75% reduction in the number of rules in the final architecture.

We also investigated the generalizing capability of the network. A mesh of 256 points
in the range 1 < zq, x5 < 5 was considered. The network then results in a SSE of 17.07
and a PI of 0.008. The mean square error on the test set was 0.06. The maximum
deviation of the desired output from the obtained output was 0.79. This proves that the
network also has good generalizing capabilities. The difference of the correct surface

and the surface produced by our system is shown in Fig. 3.6.

3.7.2 Results on Chem

As described before, this data set has 5 input features namely wuy, wuy, us, wug, and
us and a single output y. The number of input and output fuzzy sets considered are
shown in Table 3.4, and the initial number of nodes in the different layers are depicted
in Table 3.5. The membership functions of the various fuzzy sets used for this data set

are depicted in Fig. 3.7.

For Chem, the learning parameters were = 0.0001 and g = 0.00001 and the training
was continued for 1000 epochs in Phase 1, 500 epochs in Phase 2 and 3500 epochs

73

Figure 3.6: Difference surface for Hang.

Table 3.4: No of Fuzzy sets for different features used with Chem

Features | No of Fuzzy Sets
T 4
9 2
T3 4
T4 2
s 2
Yy 7

Table 3.5: Initial architecture of the Neural Fuzzy System used for Chem

layer no. | no. of nodes
1 5
2 14
3 128
4 7
5 1

74

0 1000 2000 3000 4000 5000

()

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

6000 7000 8000 c1 08 -06

0 L
0 1000

L L
2000 3000 4000 5000 6000 7000

(e)

8000

Figure 3.7: Membership function used for different features of Chem data: (a) Mem-

bership function for w; (b) Membership function for uy (¢) Membership function for

us (d) Membership function for uy and us (€) Membership function for y

75

7000 T T T T L = E——

6000

5000

4000

3000 __Desired Output

20001

— — Obtained Output

1000+

Figure 3.8: Performance comparison of the proposed system for Chem data

Table 3.6: Values of 3, for different input features.

Uy U2 U3 Uq Us
By -2.53 1 1.98 | 1.39 | 0.21 | 0.20
1—e % | 0.99 |0.98]0.85|0.04 | 0.04

in Phase 3. The PI was equal to 0.0021 after Phase 3. Lin and Cunningham [140]
obtained a PI of 0.0022. Sugeno and Yasukawa [222] do not provide any performance
measure of their system on this data. The performance of our system is compared with

that of the real output in Fig. 3.8, which exhibits a good match.

The values of 3, and 1 — ¢~% for the various features after the Phase 1 training are
given in Table 3.6. Table 3.6 again establishes the capability of the proposed system
in identifying the features that are not important. It clearly shows that uy and us do
not contribute significantly to the output of the system - thus they are indifferent or
bad features. This result conforms to the findings of Sugeno and Yasukawa [222], who
also found that features u; to us are the only important ones. In this case, the number
of antecedent clauses at the beginning of Phase 1 training was 128 (Table 3.5) and the
number of nodes in layer 4 was 7. Thus the initial architecture represented 128 x7 = 896
rules. At the end of Phase 1 two features were identified as not important, and thus,
pruning of redundant nodes yielded 32 antecedent clauses resulting in 32 x 7 = 224
rules. After pruning of the incompatible rules, the final architecture represents 32

rules. So in this case we obtain 96.42% reduction in the number of rules.

76

The generalization ability of the network for this data could not be measured as we

could not get any data to do so.

3.8 Conclusion and Discussions

In this chapter we proposed a novel scheme for simultaneous feature selection and
system identification in a neuro-fuzzy framework. It is a five layer network, which
can realize a fuzzy rule based inferencing system and at the same time can find out
the features which are not important. We also proposed methodologies for pruning
the redundant nodes and incompatible rules to obtain a more readable network. The
proposed system has been implemented on several data sets and the results obtained

are quite good.

There are a few issues that have not been considered in the present work. We have
not given any guidelines to decide on the number of input and output fuzzy sets and
their definitions, which are important for designing a good system. We did not tune
the parameters of different membership functions used. Tuning of the membership
functions is expected improve the performance further. We consider tuning of the input

membership functions for the classification network described in the next chapter.

Our pruning strategy removes redundant nodes and eliminates incompatible rules but
the system begins with all possible antecedent clauses, which may not always be re-
quired. There may also be some rules which are never fired or are fired only by a few
data points. In the FA architecture we have not considered pruning of such less used
rules. Pruning of such rules may further bring down the complexity of the architecture.
In the next chapter we have considered pruning of less used rules in the context of clas-
sification problems. The same technique can be applied to the FA network described
in this chapter.

The main thrust of this chapter was to demonstrate the effectiveness of the proposed
network for simultaneous (online) feature analysis and systems identification and it is
found to do a good job as revealed by the simulation results. Now, a natural question
arises: can we use the network proposed here for classification type problems? The
nature of the outputs for a classification system restricts the use of this network, as

is, for such problems. In the next chapter we propose a modification of this network

77

to enable it to solve classification problems. Also we address some limitations of the

function approximation network.

78

Chapter 4

Online Feature Selection and Classifier Design

in a Neuro-Fuzzy Paradigm!

4.1 Introduction

A classifier is a function S : ®* — N,;, where N, is a set of label vectors of dimension

t defined as
Np={y e Ry € [0,1]Vi & i,y >0} =[0,1) —{0}. (4.1)

In eq. (4.1), [0,1]" represents all ¢ dimensional vectors whose each component lies in
the interval [0, 1] and 0 represents the ¢ dimensional vector with all zero components.
Thus, a classifier is a function which takes as input an object data, i.e., a feature vector
in /° and assigns a class label to it. More specific types of label vectors can be used

for specific types of classifiers as

t
thz{yezvpt:zyizl}; (12)

=1
S is called a crisp classifier, if it assigns the object to one of the classes without any
ambiguity, i.e., if S[R*] = N, The classifier is fuzzy or probabilistic if S[R*] =
Ny, while S[R°] = N, gives possibilistic classifiers. All these classifiers together are

sometimes called soft classifiers [12]. Designing classifiers means to find a good S. §

may be an analytical function (like the Bayes classifier) or it can be a computational

!The contents of this chapter have been published in [25, 27].

79

transform which does classification implicitly. Fuzzy systems, neural networks or other

hybrid systems are examples of such computational transforms.

Fuzzy systems built on fuzzy rules have been successfully applied to various classifica-
tion tasks [12, 38, 70, 87, 101, 106, 153, 156, 174, 179, 207]. Fuzzy systems depend on
linguistic rules which are provided by experts or the rules are extracted from a given

training data set using methods like exploratory data analysis, evolutionary algorithms

ete. [167, 205, 207, 208, 235].

In Chapter 3 we discussed a methodology for online feature analysis and function
approximation in a H-layered neuro-fuzzy network. In this chapter we describe a neuro-
fuzzy system for online (simultaneous) feature selection and classification. The feature
selection strategy which we use in this chapter is the same as in Chapter 3. But, unlike
the network in Chapter 3 this is a four layered network. Also the methods used to
optimize the network have been modified to suite the classification process. In this
regard a few new concepts have also been introduced for pruning of the network and

hence the rule-base.

Our network is trained in three phases. In phase-I, starting with some coarse definition
of initial membership functions, the network selects important features and learns the
initial rules. In the phase-II, the redundant nodes as detected by the feature attenuators
are pruned, and the network is re-tuned to gain performance in its reduced architecture.
In phase-III, the architecture is further reduced by pruning incompatible rules, zero
rules and less used rules. After pruning, the network represents the final set of rules.
The membership functions which constitute the final rules are then tuned to achieve

better performance.

In the next section we describe the structure of fuzzy rules for classification and also
the network architecture to realize them. In Section 4.3 we derive the learning rules
for the feature modulators and certainty factors of the fuzzy rules. In Section 4.4 we
discuss a pruning algorithm to get rid of the redundant nodes. Section 4.5 discusses two
more pruning strategies along with a scheme for tuning of the membership function
parameters. Section 4.6 includes the simulation results on a synthetic data set and

three real data sets. Finally, this chapter is concluded in Section 4.7.

80

Layer 4: Output nodes

Layer 3 : Anteceden
Nodes

Layer 2: Fuzzification
and feature
analysis nodes

Layer 1 : Input nodes

Figure 4.1: The structure of the classification network.

4.2 The Classification Network

Let there be s input features (a1, ©2, ...,) and ¢ classes (wq,ws, ..., w;). Givenaz € R*
the proposed neural-fuzzy system deals with fuzzy rules of the form, R; : If =y is Ay,
and x4 is Aq; ..., and x5 is Ay then & belongs to class w; with a certainty d;, (1 <[<1).
Here Aj; is the -th fuzzy set defined on the domain of z;.

Note that, the structure of the rules used here is quite different from the structure of
the rules used in Chapter 3. Here, the classification system is realized using a four
layered network as shown in Fig. 4.1. The first layer is the input layer, the second
layer is the membership function and feature selection layer, the third layer is called
the antecedent layer and the fourth layer is the output layer. As in the previous
chapter we use suffixes p,n,m,[to denote respectively the suffixes of the nodes in

layers 1 through 4. The output of each node is denoted by z.

The first two layers of the network bear the same meanings and perform the same task
as the function approximation network in Chapter 3. The output of the p* node of

layer 1 (the input layer) is

81

The output of any node n in layer 2 (fuzzification and feature analysis layer) is

2, = 20-¢7) (4.5)

n

where

Zn = exp{—w}. (4.6)

0-7’L

Here too we assume bell shaped (Gaussian) membership functions. y, and o, are the
center and spread respectively of the bell shaped function representing a term of the
linguistic variable x, associated to node n (n indicates the n-th term (fuzzy set) of the
linguistic variable x,). The justification behind eq. (4.5) can be found in Section 3.3.
Up to this the functioning of the present network is similar to that in Chapter 3.

In layer 3 (the antecedent layer) each node represents the IF part of a fuzzy rule. The
nodes in this layer performs an intersection operation. In Chapter 3 we used product
as the operator for intersection and got fairly good results. But we know that for
any T-norm T, T (x,y) < min(z,y). So use of product as the intersection operator is
counter-intuitive. To elaborate it, consider two propositions with truth values a and b.
It is not natural to assume that they will produce a firing strength less than min(a, b).
Let us consider a rule :

If 2y 1s Ay and z9 1s Ay and ... z, 1s A, then the class is K.

Suppose for an input £ = (71,23, ...,7,)! each z;, 7 = 1,2,.., s, has a membership of
0.9 in the respective fuzzy set A;, 1 = 1,2, ..., s. Thus, for this input if product is used
as the operator for intersection then the firing strength of the rule will be (0.9)°. So,
the firing strength decreases exponentially with s. Consequently, for a reasonably big
s, the firing strength reduces almost to zero, though each of the input components
have a high membership of 0.9 in the corresponding fuzzy sets. Therefore, the use of
product as an operator for intersection is not intuitively appealing. One might wonder
why did we (others also) use and obtain good results using product in Chapter 3.
The answer lies in the defuzzification process. For example, in the height method of
defuzzification, the defuzzified value is computed as a weighted sum of the peaks of the
output fuzzy sets, where the weights are the normalized values of the firing strengths.
The output is then computed as a convex combination of the peaks of the output fuzzy
sets. But in this case such defuzzification methods cannot be applied. Note that, in
our classification rules the consequents are class labels which are categorical quantities

and a convex combination of classes is not meaningful. Since, crisp class labels are

82

categorical variables, defining fuzzy sets on them is also not meaningful. Hence, in
such a case center of area type defuzzification is not applicable. Consequently, here
we use mun as the operator for intersection. As min is not differentiable, for ease of
computation many softer versions of min that are differentiable have been previously

used [4, 162]. We use the following soft version of min which we call softmin :

S

1
softmin(xy, gy ..., s, q) = (I(i taobt. xg) ' .
As g — —o0, softmin tends to the minimum of all #;’s, 2 = 1,2, .., s. For our purpose
we use ¢ = —12 in all results reported. Note that, softmin is not a T-norm as it does
not satisfy the associativity property. For our feature selection task, the intersection
operator must satisfy the identity property, which softmin does possess for ¢ — —oo.
So, softmin is compatible with our feature selection strategy though it is not a T-norm.

Thus, the output of the m-th node in layer 3 is

7\
- (B)

where P, is the set of indices of the nodes in layer 2 connected to node m of layer 3

and | P,,| denotes cardinality of P,,.

In layer 4 (the output layer), each node represents a class. So, if there are ¢ classes then
there will be ¢ nodes in layer 4. The nodes in this layer perform an OR operation, which
combine the antecedents of layer 3 with the consequents. According to the structure
of the fuzzy rules that we are concerned about, the consequent of a rule is a class with
a degree of certainty. The nodes in layers 3 and 4 are fully connected. Let wy,, be the
connection weight between node m of layer 3 and node [of layer 4. The weight wy,,
represents the certainty factor of a fuzzy rule, which comprises the antecedent node
m in layer 3 as the IF part and the output node [in layer 4 representing the THEN
part. These weights are adjustable while learning the fuzzy rules. The OR operation
is performed by some s-norm [117]. We use here the maz operator. Thus the output

of node [in layer 4 is computed by

z21 = Maxmep,(ZmWinm), (4.8)

where P} represents the set of indices of the nodes in layer 3 connected to the node [

of layer 4. Thus, the output of node [in this layer represents the certainty with which

83

a data point belongs to class [. We classify a point & to a class ¢ if z, = max(z).
Since wy,,s are interpreted as certainty factors, each wy, should be non-negative and it
should lie in [0, 1]. The error backpropagation algorithm or any other gradient based
search algorithm does not guarantee that w;, will remain non-negative, even if we
start the training with non-negative weights. Hence, we model wy,, by e~9im. The Gim
is unrestricted in sign but the effective weight w;,, = e %mn will always be non-negative
and lie in [0,1]. Therefore, the output (activation function) of the [-th node in layer 4
is

2l = MATmep, (Zme_g?m). (4.9)

Since it is enough to pick up the node with the maximum value of z;, the product of
firing strength and certainty factor, for applications it is not necessary to maintain w;,,
in [0,1]. The non-negativity alone would be enough. So we use w;,, = g,. This also

reduces the computational overhead. Consequently, eq. (4.9) can be modified to
21 = MaTmep,(2m3iy,)- (4.10)

Note that, in layer 4 we use the usual max operator instead of a differentiable soft
version of max. As max is not differentiable the update equations that we derive in
the next section have to be split for different conditions of the network. We could
have used a differentiable (soft) version of max here too. If we use both soft version of
man and soft version of max as activation functions in two layers of the network, the
update equations would become complicated. Hence, we choose to use the usual mazx

in this layer and a differentiable version of min in layer 3.

4.3 Learning Phase I: Feature Selection and Rule Extraction

We now derive the learning rules for the neural-fuzzy classifier with the activation or
node functions described in the previous section. In the training phase, the concept of

backpropagation is used to minimize the error function

N

1 1 !

=1 =1 1=1

N

where ¢ is the number of nodes in layer 4 and y; and z; are the target and actual

outputs of node [in layer 4 for input data &; ;2 = 1,2, ..., N. The method for adjusting

84

the learnable weights in layer 4 and the parameters 3, in layer 2 is based on gradient
descent search. We use online update scheme and hence derive the learning rules
using the instantaneous error function F;. Without loss we drop the subscript ¢ in our

subsequent discussions.

The delta value, §, of a node in the network is defined as the influence of the node
output on F. The derivation of the delta values and the adjustment of the weights

and the parameters 3, are presented layer wise next.

Layer 4: The output of the nodes in this layer is given by equation (4.10) and the §

values for this layer, ¢;, will be

v
o= —.
: 621
Thus,
(Sl = _(yl — Zl). (412)
Layer 3: The delta for this layer is
o080y
" 0z, 02102

Hence, the value of é,, will be

(4.13)

A ZleQm 5lgl2m if nglzm = maxm/{zm/gfm,}
" 0 otherwise.

Here ()., is the set of indices of the nodes in layer 4 connected with node m of layer 3.

Layer 2: Similarly, the 4,, for layer 2 is

or oF 0z,

On = 0z, - 0z, 0z,

Hence,

5= 6 (%) (4.14)

q
meR, ZnEPm Zn

In (4.14) R, is the set of indices of nodes in layer 3 connected with node n in layer 2.

With the ¢ calculated for each layer now we can write the weight update equation and

the equation for updating 3,.

85

6E . 6E 621

aglm B a—Zlaglm7
or
aaE _ >ieon 2012mGim 1 nglzm = max,, {2m gt} (4.15)
gtm 0 otherwise.
Similarly, we calculate
ol B ol 0z,
08, 02,08,
or oK ,
gy _ 62 cp” Hn
o = S 6. (28, zn)(.) : (4.16)

neERp
Here, R, is the set of indices of nodes in layer 2 connected to node p of layer 1. Hence,

the update equations for weights, ¢;,, and (3, are

Gim(n+1) = gin(n) —n (aglamE(n)) (4.17)

and

o+ 1) =t (5575 (4.15)

In eq. (4.17) and eq. (4.18) n and v are learning coefficients, which are usually chosen

by trial and error or one can use methods described in [77, 137] for better choices.

In learning phase-I the network learns the weights of the links connecting layers 3
and 4 and also the parameters associated with nodes in layer 2, which do the feature
selection. The initial values of 3’s are so selected that no feature gets into the network
in the beginning and the learning algorithm will pass the features, which are important,

i.e., the features that can reduce the error rapidly.

Explicit tuning of the membership function parameters are not performed in this phase,
the reason behind this is discussed in Section 3.4.1. Here too, the modulator functions

implicitly modify the input membership functions in the same way as discussed in
Section 3.4.1.

Next we discuss the second phase of learning which prunes the network and results in

a reduced architecture representing a small but adequate rule-base.

86

4.4 Leaning Phase II: Pruning Redundant Nodes and Further
Training

For the classification network also a number of pruning strategies can be applied to
get a reduced rule-base. The modulator functions associated with the second layer
nodes, may decide that all features present are not important. Hence, some of the
nodes present in the network may be redundant. Also as per our formulation each
node in layer 3 is connected with all nodes in layer 4, which gives rise to incompatible
rules that need to be removed. Further, here we used fuzzy sets which covered the total
domain of each feature, thus the antecedents cover the entire hyperbox that bounds the
data. The training data may (usually will) not be distributed even over the smallest
hyperbox containing the data. Consequently, there may be some rules which are never
fired by the training data. Such rules which are not supported by the training data
could be harmful. The certainty factors of such rules may not be meaningful and
can lead to bad generalization. We call such rules as less used rules. In the function
approximation network of Chapter 3 we did not consider pruning such rules. But, such
rules can appear in case of function approximation also. So, it is necessary to get rid

of redundant nodes, incompatible rules and less used rules.

4.4.1 Pruning Redundant Nodes

The definition of redundant nodes for the classification network remains exactly the
same as that of redundant nodes for the function approximation system. Redundant
nodes arises as the network may totally discard some of the features present in the
data. Pruning redundant nodes involves pruning nodes and links associated with the
first two layers of the network. As these two layers have exactly the same structure
and function as that of the function approximation network, hence the same pruning
strategy as discussed in Section 3.5 can be used here. After pruning the redundant
nodes, the certainty factor of the rules are further tuned using eq. (4.17). Phase 11

training ends, once the values of wy,, stabilize.

87

4.5 Learning Phase III: Pruning Incompatible Rules, Less

used Rules and Zero Rules and Further Training

In phase III, the network is pruned further and the certainty factors of the rules are
again tuned. In this last phase of training the parameters of the membership functions

are also tuned. The details are presented in the following subsections.

4.5.1 Pruning Incompatible Rules

As per construction of our network, the nodes in layer 3 and layer 4 are fully connected
and each link corresponds to a rule. The weight associated with each link is treated
as the certainty factor of the corresponding rule. If there are ¢ classes then layer 4
will have ¢ nodes and there will be ¢ rules with the same antecedent but different

consequents, which are inherently inconsistent.

Suppose layer 3 has N® nodes (i.e., N* antecedents) and layer 4 has N* nodes (thus,
N* consequents or classes). Each node m in layer 3 is then connected to N* nodes in
layer 4. The link connecting node m of layer 3 and node [of layer 4 has a weight w,,;
associated with it, which is interpreted as the certainty factor of the rule represented
by the link. For each node m in layer 3 we retain only one link with a node in layer 4
that has the highest certainty factor associated with it. The removal of incompatible

rules is described more explicitly in the algorithm presented in Table 4.1.

4.5.2 Pruning Zero Rules and Less Used Rules

After removal of the incompatible rules each node in layer 3 is connected with only
one node in layer 4. Suppose node m in layer 3, which is connected to a node [in
layer 4, has a very low weight wy, < wi (we take wi,, = 0.001). Thus, the rule
associated with the node pair m and [has a very low certainty factor and it does not
contribute significantly in the classification process. We call such rules as Zero rules.
These rules can be removed from the network. In fact such rules should be removed
from the network as we do not like to make any decision with a very low confidence.

Removal of a zero rule means removing a node in layer 3 along with its links.

88

Table 4.1: Pruning incompatible rules

Algorithm: Pruning of incompatible rules

begin
for each node m in layer 3
Find j such that w,,; = maz{w,.} ;
Retain the link between node m
and node 7;
Remove all other links connecting
node m to layer 4;

end for

end

Further, as discussed earlier, our network starts with all possible antecedents which
cover a hyperbox bounding the data. Hence, there may (usually will) be rules which
are never fired or fired by only a few data points. Such rules are not well supported by
the training data and will result in bad generalization. We call such rules as less used

rules and they are also removed.

Consider an antecedent node m in layer 3. We count the number of training data
points n; for which the firing strength of the antecedent clause represented by node m
is greater than a threshold o € (0,1). If ny is less than 7 then we can consider node m
as well as the rule represented by it as inadequately supported by the training data.
Every such node m in layer 3 along with its links can be removed. This will help us
to avoid bad generalization. In our simulations the threshold « is selected as 0.1 and
7 as 3. Note that, the choice of 7 is related to the definition of outliers. If a rule
represents outliers, we should delete it. In this study unless a rule represents at least

three training points, we take it as a less-used rule and delete it.

89

4.5.3 Tuning Parameters of the Reduced Rule Base

The network (rule base) obtained after pruning of the redundant nodes, less used rules
and the zero rules is considerably smaller than the initial network with which we began.
The parameters of the membership functions of this reduced rule base are now tuned
to get a better classifier performance. The update equations for the centers and the

spreads of the membership functions can be written as

ol
DD = () — A 4.19
1) = nlt) = A (4.9
and 9E
on(t+1)=0,(t) —)\aan(t)' (4.20)
Here 9E ()
_ Zp 7 Mn
o 2571%27170?1 (4.21)
and 9E ()2
_ Zp = Hn
pra 25n7p2n702 \ (4.22)

where z, is the feature related to node n of the 2nd layer, A is a predefined learning

constant, and vy, =1 — .

The update eqgs. (4.19) and eq. (4.20) are applied iteratively along with eq. (4.17) till
there is no further decrement in the error defined by eq. (4.11). We emphasize that
in this phase of training the [values are not updated. As discussed earlier, tuning of
the feature modulators along with the membership function parameters may make the

training unstable.

4.6 Results

4.6.1 The Data Sets

The methodology is tested on a few data sets and the results obtained on them are
quite satisfactory. We use four data sets: a synthetic data set named Elongated and

three real data sets named Iris, Phoneme and RS-Data.

Elongated [149] has three features and 2 classes, the scatterplots of features 1-2, 2-3
and 1-3 are shown in Fig. 4.2. These plots show that features 1 and 2 or features 2

90

and 3 are enough for the classification task, thus any one of these two combinations
is enough for the classification task. Iris [17] is a data set with four features and 3
classes. It is well known that for Iris, features 3 and 4 are enough for the classification
task [12]. The Phoneme data set contains vowels coming from 1809 isolated syllables
(for example: pa, ta, pan,...) in French and Spanish language [122, 256]. Five different
attributes are chosen to characterize each vowel. These attributes are the amplitudes
of the five first harmonics AHi, normalized by the total energy Ene (integrated on
all frequencies), AHi/Ene. Fach harmonic is signed positive when it corresponds to a
local maximum of the spectrum and negative otherwise. The Phoneme data set has

two classes, nasal and oral. The RS-Data [121] is a satellite image of size 512 x 512

: -

Mn&.w

o

(a)

|
i
(b)

Figure 4.2: Plot of Elongated: (a) features 1-2 (b) features 2-3 (c¢) features 1-3

pixels captured by seven sensors operating in different spectral bands from Landsat-
TM3. Each of the sensors generates an image with pixel values varying from 0 to 255.
The 512 x 512 ground truth data provide the actual distribution of classes of objects
captured in the image. From these images we produce the labeled data set with each
pixel represented by a 7-dimensional feature vector and a class label. Fach dimension
of a feature vector comes from one channel and the class label comes from the ground

truth data.

We divide each data set X into training (X3,) and test (X) sets, such that X U X, =

91

X and X3, N X = ¢. For Elongated, Iris and Phoneme the training and test divisions
were made randomly. For RS-Data we created a training sample containing exactly

200 points randomly selected from each class. The summary of the data sets used is

given in Table 4.2.

Table 4.2: Summary of the data sets

Name Total Size | Trng. Size | Test Size | No. of classes | No. of features
Elongated 1000 500 500 2 3
Iris 150 100 50 3 4
Phoneme 5404 500 4904 2 5
RS-Data 262144 1600 260544 8 7

4.6.2 The Implementation Details

Before we present the results we discuss a few implementational issues. The network
contains the feature modulators (3,’s), the certainty factor of the rules (g,,’s) and the
membership function parameters (p, and o0,) as free parameters. The initial values
of 3,’s are set to 0.001; so, initially the network considers all features to be equally
unimportant. The initial values of the certainty factor of the rules, i.e., the weights of
the links between layer 3 and layer 4 are all set to 1.0, which signifies that initially
all rules have the same certainty factor. For the initial values of the membership
function parameters, for each feature we choose an arbitrary number of equidistant
fuzzy sets with considerable overlap between adjacent ones. These fuzzy sets span
the entire domain of the feature. The choice of fuzzy sets may have considerable
influence on the performance of the classifier. For one data set with complex class
structures we use exploratory data analysis to get the initial network structure. It is
possible to design more elaborate methods using clustering and cluster validity indices
to decide the initial membership functions. For some such methods, readers can refer
to [159, 170]. Since the thrust of this chapter is to establish the utility of integrated
feature selection and classifier design in a neuro-fuzzy framework, we do not pursue the
issue of network initialization further. Table 4.3 depicts the list of the free parameters

with their meanings and initial values.

92

Table 4.3: Free parameters of the network

Parameter Meaning Initial Value Updating phase
and update equations
Bp Modulator function for feature p 0.001 Phase 1
eq. (4.18)
Jim Certainty factor of a rule represented 1.0 Phases I,IT and II1
by antecedent node m and output eq. (4.17)
node {
o, Center of the membership function | As discussed Phase 111
denoted by node n of layer 2 eq. (4.19)
On Spread of the membership function | As discussed Phase 111
denoted by node n of layer 2 eq. (4.20)
Table 4.4: User defined parameters
Parameter Meaning Suggested Value(s) ‘
n Learning constant for certainty Decided according to
factors of rules data
v Learning constant for feature Decided according to
modulators data
A Learning constant for membership | Decided according to
function parameters data
T Threshold on the number of data 3
points for choosing less used rules
th Threshold for choosing redundant 0.05
nodes
Wiow Threshold for choosing zero 0.001
rules

93

Table 4.5: Number of fuzzy sets for each feature for Elongated

Feature 1

Feature 2 | 4

Feature 3

Other than the free parameters the network also contains some user defined parameters.
For different data sets different values of the learning parameters 1, v and A are chosen.
For all the data sets, as explained earlier, 7 is taken as 3, th as 0.05 and wy,,, as 0.001.
Table 4.4 gives the values of all user defined parameters of the network. Other than the
learning coefficients, users can use the values suggested in Table 4.4. For the learning
coefficient, as done in all gradient based learning schemes, either one can use a trial and
error method or a scheme like the ones discussed in [77, 88, 137]. A simple workable
solution is to keep a snap-shot of all learnable parameters before an epoch starts and
use a high value (say 1) of the learning coefficient. If the average error after an epoch
is found to increase, then the learning constant is decreased by an amount, say 10%, of
the present value and the learning is continued after resetting the learnable parameters

using the snap-shot.

4.6.3 Experimental Results
Results on Elongated

The number of fuzzy sets used for each feature for this problem is shown in Table 4.5
and the actual fuzzy sets used are depicted in Fig. 4.3. The initial architecture is shown

in Table 4.6.

After only 100 iterations the number of misclassifications on the training set were
reduced to 0. The values of 1 — ¢™#" after 100 iterations are depicted in Table 4.7.
Table 4.7 shows that the network selects features 1 and 2 and rejects the 3rd feature.
Consequently the network is pruned for redundant nodes. After pruning the network

retains its performance, i.e., produces a misclassification of 0 on Xj,.

Initially the network had 36 antecedent nodes. Hence it had 36 x 2 = 72 rules. After

94

0.8

0.6

0.4

0.2

15

Figure 4.3: Fuzzy sets used for Elongated: (a) feature 1 (b) feature 2 (¢) feature 3

Table 4.6: Initial architecture of the network used to classify Elongated

Layer 1 | 3
Layer 2 | 10
Layer 3 | 36
Layer 4 | 2

95

Table 4.7: Value of 1 — e™%’ for different input features for Elongated

Features 1 2 3
1—e % | 051|044 |0.01

pruning of the redundant nodes the number of antecedent nodes becomes 12; hence, at
this stage the number of rules is 12 x 2 = 24. Next, the incompatible rules are pruned
to obtain 12 rules. Finally, one rule is found to be less used and hence removed.
Thus, the final architecture represents 11 rules as shown in Fig. 4.4. In Fig. 4.4 the 11
ellipses represent the 11 antecedent clauses. The co-ordinates of the center of an ellipse
correspond to the centers of the two bell shaped fuzzy sets that form the antecedent
clause. The major and minor axes of the ellipses are equal to twice the spreads of the
respective fuzzy sets. For antecedent clauses of rules representing a particular class
we use a particular type of line to draw the corresponding ellipses. For example, in
Fig. 4.4, the continuous line is used to represent class 1 and the dotted line for class

2. The linguistic rules read from the network are shown in Table 4.8.

The final network produces a misclassification of 0 on X, as well as on X,..

Results on Iris

Here we used 3 fuzzy sets for each of the four features. The fuzzy sets are shown in

Fig. 4.5. The initial architecture for the network is shown in Table 4.9.

After 300 epochs the 3, values stabilized and the number of misclassifications produced
on the training set X;. was 3. The values of 1 — e=P" after 300 iterations are shown
in Table 4.10, which suggests that only features 3,4 are important. Hence, we prune

the redundant nodes. After pruning, the network still produces 3 misclassifications on

X

In this case the initial network had 81 antecedent nodes resulting in 81 x 3 = 243
rules. After pruning of the redundant nodes the number of antecedent nodes becomes
9, hence at this stage the number of rules is 9 x 3 = 27. Next, the incompatible rules

are pruned to obtain 9 rules. For Iris we found 4 less used rules and we removed them.

96

Table 4.8: The linguistic rules for Elongated.

Rule no.

Rule

© 0 ~1 O Ot = W N

—_ =
_ O

if 1 1s CLOSE TO -0.2 and 25 1s CLOSE TO -0.4 then class 1
if 1 1s CLOSE TO -0.2 and z5 1s CLOSE TO 0.0 then class 2
if 1 1s CLOSE TO -0.2 and z5 1s CLOSE TO 0.4 then class 2
if 1 1s CLOSE TO -0.2 and z5 1s CLOSE TO 0.8 then class 2
if 1 1s CLOSE TO 0.2 and x5 1s CLOSE TO -0.4 then class 1
if 1 1s CLOSE TO 0.2 and z5 1s CLOSE TO 0.0 then class 2
if 1 1s CLOSE TO 0.2 and x5 1s CLOSE TO 0.4 then class 1
if 1 1s CLOSE TO 0.2 and z5 1s CLOSE TO 0.8 then class 2
if 1 1s CLOSE TO 0.6 and x5 1s CLOSE TO -0.4 then class 1
if 1 1s CLOSE TO 0.2 and x5 1s CLOSE TO 0.0 then class 1
if 1 1s CLOSE TO 0.2 and x5 1s CLOSE TO 0.4 then class 1

121

0.8

0.4 :

-0.4F

-0.8

-0.5

0 0.5 1

Figure 4.4: The rules for classifying Flongated.

97

Table 4.9: Initial architecture of the network used for Iris

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

Layer 1 | 3
Layer 2 | 12
Layer 3 | 81
Layer 4 | 3

1

0.8

0.6

0.4

0.2

[V

-2

1

0.8

0.6

0.4

0.2

8 10 12

0
-2

8 10 12

(b)
(d)

Figure 4.5: Fuzzy sets used for Iris: (a) feature 1 (b) feature 2 (¢) feature 3 (d) feature

4

98

Table 4.10: Value of 1 — ¢=? for different input features for Iris.

Features 1 2 3 4
1—eP% | 0.00]0.00052]0.51

The final architecture represented only 5 rules that are depicted in Fig. 4.6 and the
corresponding linguistic rules are shown in Table 4.11. In Iris data features 3 and 4
represent petal length and petal width of iris flowers respectively. In Table 4.11 pl and
pw represent the petal length and petal width. The final network again produces a
misclassification of 3 on the training set X;, and 1 on the test set X;.. This clearly
suggests that pruning neither degrades the performance on the training data nor the

generalization capability of the system.

We also trained our network with all the 150 points. In this case too we obtained just
the same results in terms of features selected and misclassification, i.e., we obtained a

misclassification of 4 on the entire data set.

There are many results available on Iris data in the literature. Table 4.12 (adopted
from [179])shows the best resubstitution accuracy for some rule based classifiers. From
Table 4.12 it is clear that FuGeNeSys and SuPFulNIS exhibit the best results using 5
rules. We obtain a resubstitution accuracy of 97.3% with 5 rules which is better than
all others in Table 4.12 leaving out FuGeNeSys and SuPFuNIS. Note that, all results in
Table 4.12 are obtained by using all 4 features, but our classifier uses only 2 features.
In [38] Chiu uses only two features, i.e., features 3 and 4 to develop a classifier. The
features considered by Chiu are the same as those selected by our classifier. Chiu
reports a training error of 3 and a test error of 0 on a training-test partition of 120430
using only three rules. This is of course better than the result obtained by us, but we

do not know the training-test partition used in [38].

Results on Phoneme

Like Iris, here also we used three fuzzy sets for each feature. Figure 4.7 shows the
membership functions used. In this case for each feature we used the same membership

functions. The initial architecture of the network is presented in Table 4.13.

99

Table 4.11: Linguistic rules for Iris data.

Rule no. Rule
1 if pl is CLOSE TO 1.5 and pw is CLOSE TO 0.25 then classl
2 if pl is CLOSE TO 4.5 and pw is CLOSE TO 1.25 then class2
3 if pl is CLOSE TO 6.5 and pw is CLOSE TO 1.25 then class3
4 if pl is CLOSE TO 4.5 and pw is CLOSE TO 2.25 then class3
5 if pl is CLOSE TO 6.5 and pw is CLOSE TO 2.25 then class3
37
251
27
15
17
/ g &
051 , 0 \
Q000 \
! X0 O
\ 0000000 © ,
o X
or \ !
-0.5 1 \\ - /\/ 1 1 1 1 1 1]
-1 0 1 2 3 4 5 6 7 8 9

Figure 4.6: The rules for classifying Iris.

100

Table 4.12: Best resubstitution accuracy for Iris data for different rule based classifiers

Method Rules | Resubstitution accuracy (%)
FuGeNeSys [207] 5 100
NEFCLASS [153] 7 96.7

ReFuNN [101] 9 95.3
EFuNN [106] 17 95.3
FeNe-1 [70] 7 96.0
SuPFuNIS [179] 5 100

Table 4.13: Initial architecture of the network used to classify Phoneme

Layer 1 | 5
Layer 2 | 15
Layer 3 | 243
Layer 4 | 2

Figure 4.7: The fuzzy sets used for all the 5 features of Phoneme

101

Table 4.14: Value of 1 — e=%" for different input features for Phoneme.

Features 1 2 3 4 5
1—e P |0.66 | 0.68 | 0.98 | 0.93 | 0.00

On termination of phase 1, the number of misclassifications on Xy, were reduced to
85. The values of 1 — =" after phase I training (Table 4.14) reveal that the network
rejects only the 5th feature. The network is accordingly pruned for redundant nodes.
In this case too, the network can retain its performance after pruning, i.e., produce

the same misclassification of 85 on X,.

Pruning of redundant nodes reduces the number of antecedent clauses to 81. The
removal of incompatible rules consequently yields 81 rules. Among these 81 rules 32
rules were zero rules and there was no less used rules. Therefore, the final network
represented 49 rules. After phase 3 training the number of misclassifications on X,
was 75(15%). This shows that tuning of membership function parameters enhances
the performance of the classifier in this case. The misclassifications produced on X,

by the final network was 898(18.3%).

This data set has been extensively studied in [122] and the average misclassifications
reported there on this data set using MLP are 15.40% on the training data and 19.63 %
on the test data. Using Radial Basis Function networks, the average training and test
error were 19.9% and 22.48% respectively [122]. Thus our results are quite comparable
(in fact a little better) than the previously reported results.

Results on RS-Data

In all the previous results reported, we selected the initial architecture of the network
arbitrarily. Such initial networks may not yield good results in case of complex class
structures. Also blind selection of initial networks may make the network too large and
learning on such networks may become computationally very expensive. This problem
becomes more severe when the number of features and number of classes are large. We
demonstrate this problem in this example. We shall also discuss a methodology for

deciding on the initial network. Most neuro-fuzzy techniques reported in literature do

102

Table 4.15: Value of 1 — e~ for different input features for RS-Data.

Features 1 2 3 4 5 6 7
1—e % 10.99]0.00|0.99|0.41|0.28|0.00|0.98

not pay adequate attention on the setting up of the initial network. The methodology
that we discuss here is not a very general one, but it worked well with the present
data set. More investigations are required in this area to evolve a general guideline for

choosing the initial network.

The data set in question has 7 input features and 8 classes. With 3 fuzzy sets for each
input feature, the number of antecedent nodes becomes 2187. After 100 iterations
the values of the feature modulators almost stabilized and the values (as shown in

Table 4.15) suggest that features 2 and 6 are not important.

So, we discard these two unimportant features. Note that, the network is still quite
big and also use of only three fuzzy sets for each feature may not be adequate. So
we now try to exploit some tools of exploratory data analysis to get a better initial
network. The rest of the analysis is done on the remaining 5 features, we call this
data set as Reduced RS-Data. For each class of the data we run the fuzzy ¢ means
(FCM) algorithm [12] with fuzzifier 2 and number of clusters 3 (the FCM algorithm
is discussed in an appendix, at the end of this chapter). The number of clusters is
determined in an ad hoc manner, one may use some cluster validity index [12] to
determine the “optimal” number of clusters. Thus, we obtain 3 prototypes for each
class (in total 24 prototypes) in R°. Let p; = (pi1, iz, iz, Pias Pis) L, where 1=1 to 24,
be the prototypes. Let X; C X, C R® be the set of data points represented by the
prototype p,. Here X; is obtained from the final partition matrix of the FCM algorithm.
Let :t; = (:1;;1, ...,:1:;5)T; J =1 to | X;| be the points in X; . For each X; and k£ =1 to
5, we calculate
1 [2
Ok = —— Z(J}Zk —)| . (4.23)
|Xi| L:1 !]

For each feature k (k=1 to 5), we take p;r (i=1 to 24), as the center and o;; as the
spread of a bell shaped fuzzy membership function. In this way, for each feature we

obtain 24 fuzzy sets. For each feature k, if |pix — pjx| < 2.0,¢ # j and if oy, > oy,

103

Table 4.16: Number of fuzzy sets for each feature for Reduced RS-Data

Feature 1
Feature 2 | 8
Feature 3 | 11
Feature 4 | 16
Feature 5 | 11

we discard the fuzzy set with center p;; otherwise we discard the fuzzy set with center
pix- This is quite a natural choice as the peaks of two adjacent fuzzy sets should be
at least two gray levels apart. The final number of fuzzy sets for each feature that
we arrived at after this process is shown in Table 4.16. Now we retain only the 132
antecedents which are supported by more than 3 data points. To investigate the effect
of the choice of 7, we also consider the net where each node is supported by at least 5

data points. In this case we get 78 antecedents.

We train both these networks: one with 132 antecedents (i.e., 132 x 8 = 1056 rules) and
the other with 78 antecedents (i.e., 78 x 8 = 624 rules), discarding all other antecedents
at the onset of training. After pruning the incompatible rules, with 132 rules we obtain
a training error of 20% and a test error of 16% and with 78 rules we obtain a training
error of 22% and a test error of 19%. None of the rules in both cases were Zero rules,
also pruning of less used rules was not applicable in this case, as the less used rules were
already discarded during the setting up of the initial network. RS-Data was used by
Kumar et al. [121] in a comparative study of different classification methods. The best
results obtained by them using a fuzzy integral based scheme showed a misclassification
of 21.85% on the test set. Our results with a reduced set of features out perform their

results.

Table 4.17 summarizes the results on the various data sets used. It clearly shows good

performance of the proposed system.

104

Table 4.17: Performance and rule reduction of the proposed system

Data set | Initial no. | Final no. | Misclassification | Misclassification
of rules of rules on Xy on X;
Elongated 72 11 0% 0%

Iris 243 5 3% 2%
Phoneme 486 49 15% 18%
RS-Data 1056 132 20% 16%

624 78 22% 19%

4.7 Conclusions and Discussion

In this chapter we proposed an extension of the scheme described in Chapter 3 for
designing fuzzy rule based classifier in a neuro-fuzzy framework. The novelty of the
system lies in its capacity to to select good features online. The network described
here is also completely readable, i.e., one can easily read the rules required for the
classification task from the network. The network starts with all possible rules and in
the training process it only retains the rules required for classification, thus resulting in
a smaller architecture of the final network. The final network has a lower running time
than the initial network. The proposed method is tried on four data sets and in all
four cases the network could select the good features and extract a small but adequate
set of rules for the classification task. For one data set (Elongated) we obtained zero
misclassification on both training and test sets and for all other data sets the results

obtained are comparable to the results reported in the literature.

The proposed methodology is different in several respects from the network described
in Chapter 3 for FA type problems. The main philosophy of feature selection here is
almost the same as that for the FA network. But the learning rules and the pruning
schemes have been modified to suite the structure of the classification rules. Addition-
ally, a scheme for tuning the input membership functions have been proposed here;

this modification can be applied in case of the FA network also.

Here too no specific guideline is given for selection of the initial input fuzzy sets. For

further development of the methodology, some specialized tools of exploratory data

105

analysis may be used to decide upon the number and definition of the input fuzzy sets.
To some extent we did it in the case of RS-Data. But the method suggested to analyze

RS5-Data needs further refinement and modifications to make it general in nature.

In the next chapter we present a methodology to do group feature selection using group

feature modulators. The method is well suited for sensor selection.

Appendix: The Fuzzy c-Means Algorithm

Given a data set X = {&;,2,,....,&x}, a ¢ — partition of X is a ¢ x N matrix U =
[ury..uy] = [uir]exy where uy, denotes the £ column of U and w;; denotes the
membership of z; to the i cluster. There can be three sets of c-partitions whose
columns correspond to the three types of label vectors discussed in eqs. (4.1)-(4.3).
The three types of ¢ — partitions are:

M,.n = {U e RN 1w, € NpVk; 0 < Z uik‘v’i} (4.24)
k=1

Mch = {U € Mch UL © Nfc\V/k} (425)

M.y = {U € Mch UL € thVk} (4.26)

The fuzzy e-means (FCM) algorithm finds out a fuzzy ¢ — partition of X i.e., it finds
al € My.n. The FCM algorithm minimizes the following objective function:

¢ N
=33 uljzy —vil % (4.27)

=1 k=1

In eq. (4.27) v; € R* is the i’ point prototype. m > 1 is called the fuzzifier that controls
the degree of fuzziness in U, and [|.|| is an inner product induced norm, commonly, the
Fuclidean norm. The FCM algorithm aims to find that V' = [vy..v.] and U = [u]
which minimize J subject to the constraint that U € My .y.

The most popular technique to solve this optimization problem is through grouped
coordinate descent or alternating optimization [12]. The first order necessary conditions
for U and V at a local minima of J are

. [Z ()] Gt .

=\l — vyl

106

and N
m
o Dokl UpTk

v, =
N om0
Doh—1 U

Vi, (4.29)

The FCM algorithm begins with a valid fuzzy c-partition U and using eq. (4.29) a
new set of prototypes is computed. Again using these new prototypes a new partition
matrix is computed using eq. (4.28). This is continued till the entries of the partition
matrix stabilize. The same procedure can be carried out by initializing the prototypes

instead of the partition matrix.

We mentioned earlier that the fuzzifier m controls the degree of fuzziness in the parti-
tion. As m — 171, the algorithm tends to produce a hard partition, i.e., the columns of
U becomes hard labels. And lim,,_ .. u; = 1/¢ [9]. Thus, as the value of m increases

the algorithm produces more fuzzy partitions.

107

Chapter 5

Online Sensor Selection Using Feed-Forward

Networks?

5.1 Introduction

This chapter addresses the problem of feature selection in a different setting. Here we
assume that the features available can be divided into a few groups. The motivation of
the problem comes from the fact that now-a-days for a given problem we often obtain
data from multiple sensors. For example, in an intelligent welding inspection system
the sensors could be radiograph, acoustic emission, thermograph, eddy-current detector
etc. The sensory information obtained from various sensors in the raw form may not
always be useful. Hence, from a single sensory information one may generate/extract
several features. For example, using the two dimensional histogram of the radiograph
we can compute several features. If we use all these sensors, then the design cost
and complexity of the hardware may be high. Moreover, the learning task also will
become more difficult. So, the designer tries to reduce the number of sensors without
hampering the system performance. Thus, the problem is selection of useful sensors
where each sensor generates a set of features. Conventional feature selection methods
select good features from all available features generated from all these sensors. But,
our objective here is to discard the features obtained from redundant sensors, if any.
In other words, we aim to discard sensors which are not necessary for solving a given

problem.

'Parts of this chapter have been published in [28] and the whole of it have been communicated in

[31].

108

This problem is different from feature selection. We call this problem as Group Feature
Selection (GFS). Sensor selection is a special type of GFS, where each feature group
corresponds to a sensor. This kind of grouping results in a natural partition of the total
set of features according to their sensory origin. In this case, selecting good feature
groups is equivalent to the selection of the good (relevant) sensors. Such group feature
selection can thus help us to discard redundant sensors and consequently we can design
systems with low hardware and computational costs. Sometimes, it can reduce the time
required to make decisions, which is very important for many applications including
medical diagnosis. There may exist other natural groupings among features too. For
example, given an image, there could be features based on co-occurance matrix [74]
and wavelet analysis. In this case the set of co-occurance based features can form one
group while the wavelet based features can give another group. Here we consider the
problem of feature group selection, instead of individual feature selection. Of course,
individual feature selection is a special case of this group feature selection methodology.

To our knowledge this problem has not been addressed in the literature.

In this study we use two connectionist schemes to deal with the problem of group
feature selection. The first scheme uses a modified radial basis function network which
we call Group Feature Selecting Radial Basis Function (GFSRBF) network and the
other one involves a modified multilayer perceptron called the Group Feature Selecting
Multilayer Perceptron (GFSMLP). In both methods, the user needs to specify the
groupings that exist between the features. The networks are designed to discard the

effect of the redundant/bad groups.

We emphasize that we are restricting ourselves to applications where data can be
collected under controlled environment, like the intelligent welding system that we used
to motivate sensor selection problem. In application areas where the environmental
conditions can change drastically, the method is still applicable, but one needs to be
careful about the data used for sensor selection. For example, consider the problem
of channel selection for satellite imagery. The channel which is best for a cloudy day
may not necessarily be the best when used in a sunny day. Our method can still
select relevant sensors if the training set contains data captured in both cloudy and
sunny conditions. However, collection of data generated under all conditions may be

a difficult task depending on the application.

The rest of the chapter is organized as follows: In Section 5.2 we describe the GFSRBF

109

network where we discuss its structure, the learning rules and its universal approxima-
tion properties. Then in Section 5.3 we discuss the GFSMLP. Finally, in Section 5.4 we
present results on some well known classification and function approximation problems.

In Section 5.5 the chapter is concluded.

5.2 The Group Feature Selecting Radial Basis Function (GF-
SRBF) Network

Given an input data set X = {z;,...,z,} C R, a radial basis function network com-

putes the function
— szqbz(x)
=1

where the ¢;’s are the basis functions. If we assume Gaussian type basis functions then

di(x) = exp{—w}. (5.1)

a;

In eq. (5.1) p; and o; are the parameters related to the i basis function, commonly
known as the center and spread respectively and ||.|| is the Euclidean norm. Let us

assume & = [z @9 ... 2,7 and p; = [i1 fter - fis]*. Then we have

H exp{ 7’”)} : (5.2)

We assume that our data are generated by [sensors and from each of the sensors ¢ we
generated n; (i = 1,2,...,1) features, so S2'_, n; = s. Let the features from each sensor
i be denoted by a vector a'. Hence, we can say that z = [a' a® ...¢'|T. Similarly, we
can write the vector representing the center as p; = [m! m? ... m!], where m! and a’,

J =1,2,..,1, have the same dimensionality. Equation (5.1) can now be rewritten as

H e:z;p{ ”“]_07]“2} : (5.3)

In eq. (5.3) each basis function ¢; is represented as the product of component Gaussian

functions C{, g =1,2,....[,where

, i —ml?
C! = exp{—w}. (5.4)

a;

110

Layer 4

Layer 3

Figure 5.1: The GFSRBF network structure

Thus, each C{ takes as input the vector representing the features from a specific sensor
J. So, the output of Cij is related to the inputs obtained from the 7" sensor. Our ob-
jective is to eliminate the effect of the features generated from bad/redundant sensors.
For the time being let us pretend that we know the bad or redundant groups. Hence,
we aim to design the component functions in such a manner that a component function
C* corresponding to a bad/redundant group will always take the value of unity (1)
irrespective of the input a*. If we can do so, then C¥ will never contribute anything to
the total process i.e., to ¢;(x). To achieve this we design the the component functions

as:
2

J

4 a,j _m] 2 1—e
C! = [ewp{—%}] . (5.5)

K3

Clearly, in eq. (5.5), if we set |3;| ~ 0, then C? ~ 1, thereby it can eliminate the effect
of the sensor j in each of the basis function ¢; irrespective of values of a’. On the
other hand, if |3;| is very large then C? in eq. (5.5) reduces to C? in eq. (5.4) resulting
in no change of the role of the basis functions. But, how do we know which group is
good and which is bad? In other words, how do we set the values of the 3;s. The
solution lies in the training process. We treat each 3; as an adjustable parameter and
learn its appropriate value along with other parameters through training. With these

preliminaries, we next discuss the network structure of GFSRBF.

111

5.2.1 The Network Structure

GFSRBF network is a four layer feed-forward network as shown in Fig. 5.1. The
network in Fig. 5.1 is designed for data obtained from three sensors, where two features
are computed from each sensor. Also it assumes three basis functions and two output
nodes. The use of three basis functions has nothing to do with the number of sensors.
We denote our training data set as T = {(z,y)|z € R*,y € R'}. Each point z has
s features which can be grouped into [groups. The division could be made based on
sensors or some other criteria. To avoid ambiguity, here we deviate from our earlier
notation of network outputs. In our subsequent discussions we denote the output of

the 1 layer by z(9. We now discuss the general structure of the network layer by layer.

Layer 1: This layer is called the input layer. The number of nodes in this layer is

equal to the dimensionality of the input data, here it is s.

Layer 2: This is called the component function layer, and this layer is responsible for
the feature selection task. If the network contains m basis functions then this layer will

contain [x m nodes. Thus, this layer contains the component function for each basis

function for all feature groups. Let 22(]2) denote the output of the component function
related to the ' basis function and the j group - the superscript (2) denotes the
layer number. Then we have

2

. - 1—5_5J
(2 _ la’ — mi]|”
2 = [exp{—T . (5.6)
In eq. (5.6) 3; is an adjustable parameter related to the j* feature group. We call

v, =1-— ¢=55%, as the feature group modulator for the ;' feature group. When ~; — 0,

22(]2) — 1. Thus, for a bad group of features if v; — 0, then the effect of the j'* group
gets eliminated. The training procedure (to be discussed later) will start with very low
values of 7;, 1.e., with very small values of [3]2 for all j and thereby making all feature
groups unimportant. As the training process continues, the network allows features

from only those groups which can lower the sum of square error significantly.

Layer 3 : This layer is called the basis function layer, the number of nodes in this layer

depends on the number of basis functions used (required) for solving the problem. The

112

output of the i** basis function is
!
22(3) = H 22(]2) (5.7)
7=1

Layer 4 : This is called the output layer. The number of nodes in this layer is equal to
the number of classes present in the data or the dimensionality of the output vector.
The nodes in this layer are fully connected to the nodes of layer 3. The connection
between node 7 in layer 4 and node 7 in layer 3 bears a learnable weight w;;. Like a

conventional RBF network the output of the :** node in this layer is given by
22(4) = Z wijzj(g) (5.8)
7=1

where m is the number of nodes in layer 3. When the network is used for classification
problems then the target output of an output node lies in [0,1]. And, this is true for all
kinds of class labels that the data may have (probabilistic, possibilistic, fuzzy or hard).
But eq. (5.8) shows that 22(4) is unbounded as the learnable weight w;;, Vi, 7 can take
any value. Consequently, for classification tasks we modify the output of this node by
adding a standard sigmoidal nonlinearity to this node function, so that the learning

process becomes more simple. The output of node ¢ in this layer is then computed as

(4) 1
ZZ — m 3) .
1+ exp(— iy wijz;)

(5.9)

So, for regression (function approximation) type of applications, nodes in the 4" layer
use eq. (5.8) while for classifier applications eq. (5.9) is used. Next we discuss the

parameter updating strategies for both cases.

5.2.2 The Learning Rules

We assume that there are ¢ outputs and the training data contain points in £° along
with its associated output in R’. In case of classifiers the output y is a label vector in
[0,1]%. Let the output associated with a data point be y = [y y2 ... yi]T. Thus we

can define the instantaneous error for a data point & as

t
Ep==3 (2" =y (5.10)
=1

[N

113

For our further discussion without loss of generality we omit the subscript and call the
error term as £. The error function depends on the weights, w;;s, connecting nodes
of layer 2 and layer 3, the parameters of the basis functions and the group feature
modulators 3;s. We shall consider fixed parameters for the basis functions, i.e., basis
functions with fixed centers and spreads. We use the gradient descent technique to
update the weights and the feature group modulators 3;s. Thus, the update equations

for w;; and B; are
or
wij(n 4 1) = wi(n) —n (W) (5.11)
ij

and

) =50 = (5510) (5.12)

Here 1 and v are predefined learning rates. For the classification network, i.e., for the

network with sigmoidal activation functions in the output units, we get

oE
= P00 — g1 - =), (5.13)

6wij

and for the regression network we get

ol
= (2 — i)Y, (5.14)
i
For both networks
oL s @) [e —mi]?
— = —20;¢ & s® 6 [0T~ TRIL 5.15
aﬁj J kZ::l k k 0_]3 ()
where,
ol ¢
"= 9.0 S — g (5.16)
k =1

Note that, along with w;; and 3;, the other parameters mi and o}, could also be learnt
using gradient descent technique. Since our objective here is to demonstrate the feature
(sensor) selection ability of the proposed scheme, we do not update mi and oy, but we

use judicious choices for them as discussed next.

114

5.2.3 Selection of Centers and Spreads

Selecting the parameters for the radial basis functions forms an important part in
designing RBF networks. Generally there are two common strategies used in practice:
(1) The parameters for the basis functions are chosen apriori and are kept fixed. Only
the weights between the hidden and output layers get updated during learning. (2) All
parameters are optimized by a gradient descent (or a similar) technique. As discussed
earlier we follow the first strategy here. Initial centers and spreads are determined
by the Fuzzy ¢ Means clustering algorithm (FCM) [12] (discussed in the appendix of
Chapter 4). We use the fuzzifier m = 2 in all reported results. Once we obtain the
cluster centers p; by the FCM algorithm, we calculate the spread o; of the i** basis
function as |[; — p;||, where pu; is the center of the basis function nearest to g,. In

other words

o = minzi||p; — pll. (5.17)

5.2.4 A Threshold for the Feature Attenuators

The final values of the group feature attenuators (v;) of a trained GFSRBF network
represent certain scaling parameters for each sensor. Based on these values, one can
decide the importance of the sensors. A low value of 7;, indicates that sensor j is less
important and a high value indicates a high importance of the sensor. In the limit,
v; = 0, represents that the sensor j is totally redundant while, v; = 1 suggests that
sensor j is very important. But, as ;s are modeled and updated, it can take any value
in [0,1]. Here we try to find a threshold th for v;, such that if v; takes values less than

th we can discard sensor j.

From eq. (5.6), we get 4
la? —m;][?
22(]2) = exp [_WT . (5.18)
We call a group of features redundant/bad, if all component basis functions (CBF)
related to that feature group produce a response almost equal to one for all points.
Specifically, we consider a feature group to be bad, if all CBFs produce a response

greater than 0.95 even for points which are as far as 20 distance away from the center

of the associated CBF. Thus, we select that value of v as the threshold which makes

115

the right hand side of eq. (5.18) equal to 0.95(~ 1) when ||a’ —m!|| is replaced by 20.
So, we obtain

e~ = 0.95. (5.19)

Equation (5.19) gives v; = 0.0128. Hence we can safely discard a feature group with
attenuation (v) less than 0.01.

5.2.5 Universal Approximation Property of GFSRBF

The universal approximation property of RBF is well known. If 7; = 1 then GFSRBF
reduces to RBF. But during the training process, 7; usually takes values in [0,1].
Therefore, it is necessary to check the universal approximation property of GFSRBF.
Unless, GFSRBF has the universal approximation property, it may not be able to learn
the input-output relation for all functions and thus may not be able to do the group

feature selection task. So, we check this property here.

We consider the GFSRBF network for function approximation (i.e., the one without
the sigmoidal non-linearity in the output node) with a single output. The proof can

be easily extended for the multiple output case.

Definition: Let X C R°® and G be a family of functions on X with values in R.
Suppose that for all &;,2; € X, such that #; # x,, there is an f € G such that
f(z1) # f(x2), then we say that (i is a separating family of functions on X [80].

Let = (a',d?,...,a"). We define a function family ® as

o= {fifr)

Next we prove a few lemmas concerning the function family ®.

I
a’,m’ eER™.D n;=s,7 € [0,1],06?]?}.

i=1

Lemma 1: & is a separating family.

Proof : For any z; = (a},a?,...,a}) and z, = (a},d,...,d}) € X, if 2, # x, then there
exists an 7, 0 < ¢ < [such that a| # a. Without loss of generality we assume a} # al.

Pick any ¢ € ® with ~; # 0. If ¢(x1) # ¢(x2) then done. If ¢(z1) = ¢(x2), let

Ser) = [xp{_lla—aimll}]lj [xp{_lla—aimll}]

116

and

o B o e

llaj —m!'[]*]™ llag —m!'[]*]™
eExp _T = |exp _T)

then m! is equidistant from both a! and al. Let ' be such that it is not equidistant

If,

from a! and al. As, al # al, such an m' always exists. In ¢, replace m' by by m' and

call the new function qAb Then, qAb(xl) + qg(xg)

al —mll2) 1™ al —mll2) 1™
[mp{_llla2 I H ¢[exp{—”202 I H |

then, select ' such that it is equidistant from both a! and @} so that, qAb(xl) + qAb(xg)
Thus, ® is a separating family.

If,

Lemma 2: & contains the function 1.
Proof: A function ¢; € ® with v; = 0,V is the function 1.
Lemma 3: If ¢ € ® then ¢" € ® for any n € R.

Proof: Consider

then,

Hence, (¢(x))" € ®.

We shall now prove the universal approximation property of GFSRBF using Stone-

Wierstrass theorem.

Stone-Wierstrass Theorem [80]: Let X be a non-void compact set and G be a
separating family of functions on X containing the function 1, then for any continuous
function f(z) defined on X, and for any ¢ > 0, there exists a polynomial p(x) =
>i_y wi(g;(x))™ where g;(x) € G, such that

sup{|f(z) — p(z)||lz € X} <.

117

Figure 5.2: MLP with group feature selection (GFSMLP)

Let us denote the network output by GFSRBF(z), for an x = (a',a?,....d") € R*. In

other words

o o —ml|\]"
GFSRBF(x):ZwZ’H[e:L'p{—iZZH .
=1

j:l O-’i

Theorem : For any given continuous function f on the compact set X C R° and

arbitrary € > 0,

sup{|f(z) = GFSRBF(z)| |z = (a',a®d') € X | < ¢

Proof: Tt directly follows from Lemmas 1-Lemma3, and the Stone Wierstrass theorem.

5.3 A Group Feature Selecting Multilayer Perceptron

A multilayer perceptron (MLP) can also be modified to do group feature selection.
A feature selecting MLP was proposed by Pal and Chintalapudi [166] which used
sigmoidal attenuation functions in the input layer. We generalize their idea to propose

GFSMLP, a modified form of MLP for group feature selection.

Here the philosophy is different from that used in case of radial basis function network.
Let F} be an attenuator function attached to the [** group of features. FEach feature

z; of the [** group gets multiplied by the attenuator function F} before it gets into the

118

network. If F; = 0, then no feature of the [** group will get into the network; while
if F} = 1, then every feature of the [** group enters the network unattenuated. For
intermediate values of [, transformed values of the features enter into the network.
Figure 5.2 shows the architecture of a group feature selecting MLP (GFSMLP) with
just one hidden layer, and two groups of features with attenuation functions F; and
F5. Each attenuation function F} should be such that, it has a tunable parameter (3
and F} € [0,1]. To facilitate the learning of 3;, F; should be differentiable. Moreover,
Fy should be such that over a reasonably large interval (a,b), as 3 goes from «a to b,
F; should either monotonically increase from 0 to 1, or monotonically decrease from 1
to 0. There can be many choices for F}, we take [, = e %. 3, is a parameter related
to the [** group of features. If 8; — 0, I} — 1 and if 3; — Fo00, I} — 0. The objective
here is to select appropriate values of ;s through training such that F; — 1, if [is
associated with a useful group of features and £} — 0, if the [** group is a bad or
redundant group. The parameters 3; can be learnt by the backpropagation algorithm

along with other parameters of a multilayer perceptron.

Let us consider a network with sigmoidal activation functions and a single hidden layer.

For each input vector & = (z1, 7, ...,z;)T € R*, let S; denote the set of features which

belongs to the [** group. Let 22(1), 2(2), 22(3)

K3

be the outputs of the i*” nodes of the input,
hidden, output layers, respectively. Thus, for input =, if z; € S}, the output of the '

node in the input layer would be

P (5.20)

K3

Let w;?) be the weight of the link connecting the j* node of the hidden layer with

(12)
ij

node of the input layer with the 5% node of the hidden layer. Thus,

the k' node of the output layer. Similarly, w;:” denotes the weight connecting the i

(2) 1
z; = 5.21
7 L+ e Zizl(l)wl(]m) ()

and .
Zl(f) = ~ BNk (5.22)

1+e 3% Wik
For an input if the target is y, then we define an error F as
E=L1500) 5.23
SN E LAY (5.23)
k

119

We define

q=1,2.3. (5.24)

Thus, the update equations for the two sets of weights can be derived as
w;?)(n +1)= w;?)(n) — n5£3)252)2£3)(1 — Z,(f)) (5.25)

and
wz('?)(n +1) = wl(»?)(n) — UZ§2)(1 — 252))251)5]'. (5.26)
In the above equations, n is a predefined learning constant. The update equation for

the feature attenuator of the [** group, 3, can be derived as

Bin+1) = Bin) + v S 260 8,(1). (5.27)

iESl
Here, v is also a predefined learning constant. The ;s are so initialized that at the
beginning of training no feature group is important (i.e., no feature gets into the
network). As training continues, the ;s are changed in such a manner that for each

important group F; — 1.

Although, we have shown the derivation for an MLP with only one hidden layer, its
extension to MLLPs with more than one hidden layer is straightforward. Next we discuss

that the universal approximation property of MLP is retained in GFSMLP.

5.3.1 Universal Approximation Property of GFSMLP

The universal approximation property of MLP with sigmoidal activation functions is
well known [84]. Here we show that adding attenuation functions in the input layer

does not affect the universal approximation property of an ordinary MLP.

For convenience we assume one feature in one group. The net input to neuron j in the

hidden layer is
netj = Z w”(l'ZFZ) (528)

where F; is the attenuator for feature :. Note that, if the groups contain more than

one feature then the attenuators for features in the same group will be the same. We

120

can consider the attenuators as a part of the weights connecting the input to the first
hidden layer. Thus we can say

I/VZ']‘ = wijFZ'. (529)

and

netj == ZI/V”J}Z (530)

So the net input to a node in the first hidden layer remains of the same form as that of a
conventional MLP. But, the weight W;; is composed of two parts w;; and F; where both
w;; and F; are adjustable, w;; is unrestricted in sign and magnitude and F; € [0, 1].
For any trained MLP if we consider W;;s to be the weights connecting the input and
the first hidden layers then a decomposition as in eq. (5.29) is always possible, the
trivial one being F; = 1,Vi. Thus the GFSMLP is equivalent to an ordinary MLP,
and hence the universal approximation property would be retained. But finding such
a decomposition of weights for feature selection from a trained ordinary MLP would
be difficult; so we impose a nice structure on the weights through the concept of

attenuators to facilitate learning and feature selection.

5.4 Results

We provide here experimental results on five data sets: Chem, Iris, RS-Data, Wine,

Breast-Cancer.

The Chem data [222] set is used to test the function approximation capability of the

network. The description of this data set can be found in Section 3.7.

The remaining data are on classification problem. Here, in addition to the Iris data
and RS-Data (described in Section 4.6.1) we use two more data sets, Wine and Breast-
Cancer. The Wine data set [17] consists of 178 points in 13 dimension distributed in
3 classes. These data are the results of a chemical analysis of wines grown in the same
region in Italy but derived from three different cultivars. The analysis determined the
quantities of 13 constituents found in each of the three types of wines. The Breast-
Cancer data [17] consist of 684 points in 9 dimension distributed in 2 classes (malignant

and benign).

In the following subsections we discuss, in detail, the results obtained by GFSRBF and

121

Table 5.1: Values of v; in GFSRBF for Chem data (considering 3 groups of features)

Group 1 | Group 2 | Group 3

{u17u2} {US} {U47U5}
0.00 1.00 0.00

GFSMLP networks on these data sets. As stated earlier, the attenuation parameters
for each network are initialized with the aim, that at the onset of training the network
considers all feature groups to be unimportant. Thus, for GFSRBIF we set 3; = 0.001
which makes v; = 0,V7, where j represents a feature group. And in GFSMLP we set
B; = 3 thus making F; = 0.0001,V7. Both for GFSRBF and GFSMLP we consider
0.01 as a threshold for the feature attenuators, i.e., if the value of +; corresponding to

feature group j is less than 0.01 then we discard that feature group.

5.4.1 Chem

In this example we demonstrate the feature selection capability of our network for
the function approximation task. As stated earlier, the data set consists of 5 input
features. The five input features can be divided into 3 groups with respect to the type of
information. The monomer concentration (u;) and change of monomer concentration
(uz) can constitute one group, the monomer flow rate (us) as the second group and the
temperature parameters (w4 and us) can form the third group. With 15 basis functions
we find that the GFSRBF network accepts only the second group of features, i.e., only
us is important for the task (see Table 5.1). Figure 5.3 shows the plot of the output
y with us. Figure 5.3 reveals a very strong correlation between us and y(correlation
coefficient = 0.9984!). The Chem data set was used by Lin and Cunningham in [140].
To evaluate a system they used a performance index PI defined in eq. (3.27). They got
a PI of 0.0022 on Chem by using features uy, ug, us. The PI in our case was 0.0043. In
Chapter 3, using the neuro-fuzzy system we obtained a PI of 0.0021.

A close look into the Chem data shows that the values of feature 3 numerically dominate
all other features. Table 5.2 shows the ranges of the input features as well as of the

output. Since, a radial basis function type network computes the Euclidean norm, it is

122

7000

6000

5000

40001

30001

2000

1000

0

0

Table 5.2: Range of feature values for Chem data

OO§

1000 2000 3000 4000 5000 6000 7000 8000

U

Figure 5.3: Plot of y and us

Features | Minimum | Maximum
Uy 4.47 6.80
Us -0.29 0.17
Us 401.00 7032.00
Uy -0.40 0.20
Us -0.10 0.30
output 500.00 7000.00

123

quite natural that features with larger numerical values will dominate the output of the
basis functions. Therefore, uz will have the strongest influence on the network behavior.
Moreover, us has a strong positive correlation with the output y. Consequently, the
network picks up us. But previously it has been reported that the features u; and uy
also have some effect on the output [222]. Our network cannot detect that, and as a
result we get a reasonable (but not very good) performance as suggested by the PI
value. This is not a problem of the model or of the philosophy being used, but is due
to very wide variance of different features. To establish this fact we normalize feature
3 (us) and the output (y) so that each of these two lies in [0,1]. We call this new data

set as Normalized-Chem.

With Normalized-Chem we run GFSRBF with different number of basis functions and
different initializations of the FCM algorithm. The FCM outputs are used to compute
the centers and spreads of the basis functions. For a fixed number of basis functions,
various FCM initializations do not significantly change the feature attenuators and the
performance. Table 5.3 gives the average performance of GFSRBF on Normalized-
Chem data for different number of basis functions. With a fixed architecture (using a
given number of basis functions), 5 independent runs are made with different initial-
izations, and the average value of PI and the number of groups selected are shown in
Table 5.3. The frequency of each of the groups selected in these 30 runs are shown in
Fig. 5.4. From Fig. 5.4, we see that the network rejects the third group for most of the
runs. From Table 5.3 we see that the best performance is obtained by using 3 basis
functions and 15 basis functions. In case of 3 basis functions the network considers the
first and the second group of features, but for 15 basis functions it considers only the
second group. In both cases the networks result in almost the same average perfor-
mance. This proves that changing the number of basis functions changes the learning
machine, so the importance of the features may also vary. The best performance ob-
tained by GFSRBF is better than that obtained by Lin and Cunningham [140] and

also our neuro fuzzy system described in Chapter 3.

The performance of GFSMLP on Normalized-Chem data for different hidden nodes is
shown in Table 5.4. Here too the average performance in terms of PI and the number
of groups selected are shown for 5 independent runs for each architecture. Table 5.4
shows that the GFSMLP selects two groups for all runs. Also the two groups selected
are the first and the second groups. The PI value suggests that GFSMLP can also do

124

Table 5.3: Performance of GFSRBF on Normalized-Chem (considering 3 groups of

features)

No. of basis PI no. of groups
functions selected
Mean | Std. Dev. | Mean | Std. Dev.
2 0.0023 | 0.0000 2.0 0.00
3 0.0020 | 0.0000 1.8 0.44
5 0.0037 | 0.0001 1.0 0.00
7 0.0029 | 0.0002 2.0 0.00
10 0.0025 | 0.0005 2.0 0.00
15 0.0020 | 0.0000 1.0 0.00

Table 5.4: Performance of GFSMLP on Normalized-Chem (considering 3 groups of

features)

No. of hidden PI No. of groups
nodes selected
Mean | Std. Dev. | Mean | Std. Dev.
0.002360 0.0000 2.0 0.0
0.002295 0.0000 2.0 0.0
10 0.002258 0.0000 2.0 0.0
15 0.002022 0.0000 2.0 0.0

125

w
o

N
a
T

N
o

[E
o

no of times selected
[E=N
o1

1 2 3
feature groups

Figure 5.4: Bar diagram showing number of times each feature group gets selected for

Chem data using GFSRBF

the function approximation job with a good accuracy. The best PI value obtained for
15 hidden nodes is better than both Lin and Cunningham’s [140] system and our neuro-
fuzzy system in Chapter 3. Note that, GFSMLP gives relatively more importance on
the first group than that by GFSRBF. This emphasizes the fact that importance of
a feature (or of a group of features) is a function of the tool being used to solve a

problem.

5.4.2 Iris

For this data we select 100 points randomly as the training data. First we assume that
the four features present in Iris form four groups with one feature in each group. So
we obtain one feature modulator for each feature. We use a network with six basis
functions. The values of the modulator functions for all features are shown in Table 5.5.
Table 5.5 clearly shows that the network does not accept the first and the second
features. This result is consistent with the well known fact that the third and fourth
features of Iris data are enough for classification. The number of misclassifications
obtained on the training data is 3 and on the whole data (150 points) is 5. This

performance is quite comparable with other classifiers [12].

Physically the Iris features are the sepal length (fi), sepal width (fz), petal length

126

Table 5.5: Values of 4, for Iris data (considering 4 groups of features) using GFSRBF

Group 1 | Group 2 | Group 3 | Group 4

(f1) (f2) (f3) (f4)
0.00 0.00 0.33 0.99

Table 5.6: Misclassifications and number of groups selected for Iris data with GFSRBF

(considering 2 groups of features)

No. of basis | Trng Error (%) Test Error (%) no. of groups
functions selected
Mean | Std. Dev. | Mean | Std. Dev. | Mean | Std. Dev.
3.0 0.0 4.0 0.0 1.0 0.0
5 3.0 0.0 4.0 0.0 1.0 0.0
3.0 0.0 4.0 0.0 1.0 0.0
10 3.0 0.0 2.8 1.08 1.0 0.0

127

i
1<)
=}

N - ©
S = =]

misclassification

N
=)

-

0 1000 2000 3000 4000 5000
iterations

1 1
w05 u™o. 54{
o o
) 1000 2000 3000 4000 5000) 1000 2000 3000 4000 5000
iterations iterations
(b) ()

Figure 5.5: Variation of misclassifications and attenuator values with number of it-

o

erations for Iris data: (a) misclassification (b) attenuator values for group 1 features

(c)attenuator values for group 2 features

(fs)and petal width (fy) of iris flower. Therefore, we can make two natural groups of
features, i.e., one group characterizing the sepals and the other containing the petals.
In other words, we consider features 1 and 2 as the first group and features 3 and 4
as the second group. With this grouping we ran GFSRBF for different basis functions
and different FCM initializations. Table 5.6 shows the average misclassification and
the average number of groups selected for 5 independent runs of GFSRBF for each
architecture. Table 5.6 clearly suggests that our network selects only one group and
is consistent with the change in basis functions. Also in all cases the network selected

group 2 (i.e., f3 and fy) features.
GFSMLP also can select the relevant features for Iris data. We use a GFSMLP with 10

nodes in the hidden layer, each with a sigmoidal activation function. We use the same
100 samples for training as used for GFSRBF. Figure 5.5(a) gives the variation of the
misclassifications with the number of iterations for a typical run. Figures 5.5(b) and
5.5(¢c) depict the feature attenuator values (F}) for different iterations for group 1 and
group 2 respectively for the same run. Figure 5.5(a) shows that the misclassification

drops sharply from 100 to 10 at around 800 iterations. Figure 5.5(c) reveals that at that

128

Table 5.7: Values of v; in GFSRBF for RS-Data (considering 7 groups, 1 feature per
group)

Group 1 | Group 2 | Group 3 | Group 4 | Group 5 | Group 6 | Group 7
0.42 0.00 0.84 0.99 0.41 0.99 0.25

time the features in the second group enters the network. As the training continues
we find that again there is a sharp decrease in misclassification around 1800 iterations
when the first group of features gets in the network (Fig. 5.5(b)). This behavior is
consistent with most of the runs. We find that the 2nd group of features first gets in
the network to give an average misclassification of 10 (averaged over 10 runs of the
same network with different initializations). If training is continued, then the first
group of features also gets in and reduces the misclassifications to 0. The final network
produces a misclassification of 1 on the whole data. This clearly demonstrates the
feature selection capability of the network. It says that feature 3 and 4 constitute a very
important group of features for Iris, but the other group also have some discriminating
ability that can facilitate learning in MLP. In fact this observation is consistent with the
results reported elsewhere [166] which suggests that feature 1 and 3 have equally good
discriminating power as that of feature 3 and 4. Here we like to emphasize the fact,
that this network is primarily intended to select features. Once the features are selected
one can remove the nodes and links associated with the bad/redundant features and
retrain the net for a few more epochs for further improving the performance of the
network. For example, in this particular case, after features 3 and 4 are selected, one
can delete the links associated with features 1 and 2 and retrain the net to achieve a

very good performance.

5.4.3 RS-Data

This data set contains 262144 points distributed in 8 classes. From each class we
randomly select 200 points to get a training sample of 1600 points. For this data
set too initially we consider each of the 7 features as constituting a group. Running

GFSRBF with 30 basis functions we obtain a misclassification of 18.43% on the training

129

Table 5.8: Misclassifications and number of groups of features selected for RS14 data
with GFSRBF

No. of basis Trng Error % Test Error % no. of groups
functions selected
Mean | Std. Dev. | Mean | Std. Dev. | Mean | Std. Dev.
10 24.72 0.23 17.55 0.28 5.6 0.89
20 20.61 0.71 16.42 0.34 6.0 0.00
25 19.93 1.11 14.96 0.10 5.4 0.54
30 18.96 0.73 15.21 0.75 5.2 0.44

Table 5.9: Misclassifications and number of groups of features selected for RS14 data
with GFSMLP

No. of hidden Trng FError % Test Error % no. of groups
nodes selected
Mean | Std. Dev. | Mean | Std. Dev. | Mean | Std. Dev.
10 26.52 4.25 20.88 2.53 3.4 0.54
20 21.82 2.67 20.76 3.12 3.8 0.44
25 18.02 2.26 17.96 1.38 4.2 0.44
30 17.63 2.74 18.86 1.65 4.0 0.70

130

data and 15.59% on the test data. The final values of the feature attenuators are
shown in Table 5.7, which reveals that the network completely discards the second
feature. In [121] a misclassification of 21.8% was obtained on the test data. In [128],
a misclassification of about 14% on the test data was reported. The performance of
our system is comparable to theirs though our system uses less number of features. In
Chapter 4, using the neuro-fuzzy system we obtained a misclassification of 16% on test

data using only 5 features.

In another experiment we generate an additional feature from each of the 7 channels
of the image. For each pixel p in an image we consider its 8-neighborhood over a 3 x 3
window and compute the standard deviation of the 9 pixel values (the neighborhood of
p and the pixel itself), we call it d,. In the new data set, for each channel we take the
gray value of p and d, as features. So we have 14 features divided into 7 groups. We call
this as the RS14 data. Table 5.8 shows the average misclassification (in percentage) on
training and test data for 5 independent runs for different architectures. Figure 5.6(a)
shows the number of times each feature gets selected for these 20 runs. From Fig. 5.6(a)
we find that the features from the second sensor are selected the least number of times.

This is consistent with the results described in Table 5.7 using 7 features.

No previous study regarding the goodness of features of RS-Data exists. We made a
naive feature analysis to compare our results. We ran the k-nearest neighbor classifier
[12], on this data with all possible combination of 6 features, i.e., in each run we left
out one feature. Among the 7 possible combinations the feature set {1,3,4,5,6,7}
results in the least number of misclassification. This clearly points out that feature 2
is a bad feature. The neuro-fuzzy classifier proposed in Chapter 4 also discards feature

2 as a bad feature but additionally it rejects the 6" feature.
The GFSMLP selects fewer groups from RS14 data than GFSRBF. Table 5.9 shows

the percentage of misclassification and the number of groups of features selected for
different number of hidden nodes for GFSMLP. For each architecture (a fixed number
of hidden nodes) average misclassifications and average number of features selected for
5 independent runs are reported in Table 5.9. As evident from Table 5.9, GFSMLP
produces a poorer classification than GFSRBF. But, for all cases our results are better
than the result reported in [121]. In [121] a misclassification of 21.8% is reported on
the test data. Compared to the neuro-fuzzy system of Chapter 4, the performance of
GFSMLP is poor. Figure 5.6(b) shows the frequencies with which the various groups

131

Figure 5.6: Bar diagram showing the number of times each feature group gets selected

for RS14 data: (a) GFSRBF (b) GFSMLP

are selected by GFSMLP. Here too the features from the second sensor are selected
the least number of times. Hence this result is also consistent with the results of the

previous experiments on RS-Data.

5.4.4 Wine

For Wine data a natural grouping of features is not possible. Thus, we consider 13
groups with one feature in each group. We use 100 randomly chosen points from the

data set for training and the remaining 78 points for testing.

We train GFSRBF’s with different number of basis functions. As shown in column 1
of Table 5.10 we consider five different architectures of GFSRBF. For each architecture
we make 10 independent runs of the network with different initializations. Table 5.10
shows the average misclassifications along with their standard deviations for 10 inde-
pendent runs of GFSRBF’s with each architecture. Similarly for GFSMLP also we
consider 5 different architectures as shown in column 1 of Table 5.11. For each ar-
chitecture we make 10 independent runs. The summary of the runs by GFSMLP is
included in Table 5.11. Tables 5.10 and 5.11 show that the number of features selected
by GFSMLP is always less than that selected by GFSRBF. Figures 5.7(a) and 5.7(b)
show the frequency distribution of the number of times each feature is selected over 50

runs of GFSRBF and GFSMLP respectively.

132

Table 5.10: Misclassifications and number of features selected for Wine data with

GFSRBF

No of basis Trng Error % Test Error % no. of features
functions selected
Mean | Std. Dev. | Mean | Std. Dev. | Mean | Std. Dev.
3 4.5000 0.5270 5.1280 0 7.5000 0.5270
7.0000 0 4.8716 1.3240 6.0000 0
7 3.0000 0 1.2820 0 5.4000 0.8433
10 4.0000 0 2.5640 0 6.0000 1.0541
15 4.0000 0 2.5640 0 5.9000 0.3162

Table 5.11: Misclassifications and number of features selected for Wine data with

GFSMLP

No.of hidden Trng FError % Test Error % Features Selected

nodes

Mean | Std. Dev. | Mean | Std. Dev. | Mean | Std. Dev.
3 4.3000 1.3375 8.4612 1.5048 5.8000 | 0.6325
1.9000 1.1972 | 4.6153 1.9301 4.9000 | 0.5676
1.9000 1.1972 | 4.4871 2.2814 | 5.2000 1.2293

10 44000 | 1.9551 | 3.5897 | 3.1287 | 4.1000 | 0.7379
15 2.4000 | 1.4298 | 7.0794 | 2.7826 | 4.1000 | 0.8756
(a) (b)

Figure 5.7: Bar diagram showing the number of times each feature gets selected for

Wine data: (a) GFSRBF (b) GFSMLP

133

Table 5.12: Misclassifications and number of features selected for Breast-Cancer data

with GFSRBF

No. of Trng Error % Test Error % Features Selected
basis functions
Mean | Std. Dev. | Mean | Std. Dev. | Mean | Std. Dev.
5 4.06 0.3134 1.004 0.75 6.3000 0.6749
4.14 0.2319 1.14 0.24 6.4000 0.5164
10 3.90 0.2867 1.14 0.24 6.7000 0.8233
15 3.96 0.2065 1.00 0.00 6.1000 0.3162

40 40

35 35

530 530)
3 3
5 5

225 225
]]
3

820 820
£ £

£15 £15

o o
<10 <10

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
features features
(a) (b)

Figure 5.8: Bar diagram showing the number of times each feature gets selected for

Breast-Cancer data: (a) GFSRBF (b) GFSMLP

5.4.5 Breast-Cancer

For the Breast-Cancer data we randomly select 500 points from the 684 points to use
them as the training set and the rest are used for testing. For this data set also we
test the performance of GFSRBF using different architectures. We consider networks
with 5, 7, 10 and 15 basis functions. Table 5.12 shows the mean misclassification and
the standard deviation for 10 independent runs of GFSRBF for each architecture. It

also shows the average number of features selected.

Table 5.12 reveals that the performance of GFSRBF on this data in terms of misclas-
sification and the number of features selected does not vary much with the change in
the number of basis functions. The bar diagram in Fig. 5.8(a) shows the number of

times each feature is selected for the 40 runs.

134

Table 5.13: Misclassifications and number of features selected for Breast-Cancer data

with GFSMLP

No. of Trng Error % Test Error % Features Selected
hidden nodes

Mean | Std. Dev. | Mean | Std. Dev. | Mean | Std. Dev.
5 4.32 0.54 1.15 0.33 3.5000 0.5270

4.16 0.40 1.80 0.91 3.9000 0.8756
10 3.56 0.47 1.25 0.54 4.1000 0.7379
15 3.86 0.48 0.95 0.59 3.6000 0.8433

Table 5.13 exhibits the performance of GFSMLP on Breast-Cancer data. Here too we
follow the same protocol as in case of the GFSRBF network. We consider GFSMLPs
with 5, 7, 10 and 15 hidden nodes. Here also we find that the performance is quite
stable with the change in the number hidden nodes. Figure 5.8(b) depicts the frequency

of the selected features over the 40 runs.

5.4.6 Evaluation of Features

We now try to evaluate the quality of features that are selected by GFSRBF and GF-
SMLP. We use the Wine and Breast-Cancer data for this purpose. We again demon-
strate here that the suitability of the features depends not only on the task but also
on the learning machine. We train conventional MLPs and conventional RBFs with
all features present in the data and also with the features selected by GFSMLP and
GFSRBF and compare their performance.

From Wine data a GFSRBF selects on the average 6.16 features. Thus, we take the
six most frequently selected features as shown in Fig. 5.7(a) as the features selected
by GFSRBF for Wine data. These selected features are: 1, 2, 7, 10, 12, 13. The
GFSMLP selects 4.82 (= 5) features on average for Wine data, thus the GFSMLP
selected features for Wine data are: 1, 2, 8, 10, 13 (as evident from Fig. 5.7(b)).
Similarly, we get the GFSRBF selected features for Breast-Cancer data as 1, 2, 3, 6,
7, 8,9 and the GFSMLP selected features as 1, 2, 6, 8.

135

For the experiments we use the same training-test partition as used in the previous
experiments. We use standard MATLAB implementations of RBF and MLP. For
MLP we use sigmoidal activation functions and the trainlm algorithm for training.
The MATLAB implementation of RBF takes the same spread for all basis functions.
We experiment with spreads ranging from [0.1 10] with a difference of 0.1 and report
the best result that we obtain.

Table 5.14 depicts the results of a conventional MLLP when run with different hidden
nodes on different sets of features of Breast-Cancer data. For each architecture (a
fixed number of hidden nodes), 5 independent runs are made, and the average misclas-
sification in percentage on training and test data along with the standard deviation
are reported in Table 5.14. Table 5.14 shows that an ordinary MLP produces lesser
test error on the GFSMLP features for all four different architectures that we tried.
When MLPs are trained with features selected by GFSRBF the test result is slightly
worse than what is achieved with all features. This again re-emphasizes the fact that
features selected by GFSMLP are good, but they are best with MLP. Table 5.15 gives
the results of a conventional RBF on the same set of features. Here too we see that the
performance of an RBF network is better on the features selected by GFSRBF than
on that selected by GFSMLP reconfirming the fact that utility of features depends on

both the problem and the learning machine.

Tables 5.16 and 5.17 display the results on Wine data for MLLP and RBF on different
sets of features. Here too we notice that on average an ordinary MLP performs better
with the GFSMLP features and an ordinary RBF performs better with the GFSRBF

features.

5.5 Conclusions and Discussion

Many real life applications use data from several sensors for decision making. Intel-
ligent systems for automatic inspection and controlling of welding, medical diagnosis,
controlling of range safety for missile testing are some such examples. Typically, each
sensor output is converted into a set of features. For example, X-ray radiograph may
be used to compute a set of features for weld inspection. More sensors mean more

cost, more processing time and sometimes more hazardous too (X-rays) and do not

136

Table 5.14: Misclassifications produced by an ordinary MLP with various sets of fea-

tures on Breast-Cancer data

No. of All Features GFSMLP selected GFSRBF selected
hidden | Trng. Error Test Error Trng Error Test Error Trng. Error Test Error
nodes (%) (%) (%) (%) (%) (%)

Mean | S.D. | Mean | S.D. | Mean | S.D. | Mean | S.D. | Mean | S.D. | Mean | S.D.

1.00 | 1.44 | 2.80 | 1.78 | 1.40 | 0.51 1.2 0.83 | 1.00 | 0.24 2.3 0.97

0.76 | 0.86 | 1.90 | 0.74 | 0.84 | 0.33 1.6 0.82 | 0.84 | 0.45 2.3 0.70

10 0.36 | 054 | 2.30 | 1.03 | 2.40 | 0.56 2.1 0.65 | 0.12 | 0.19 3.3 0.27

15 0.20 | 0.24 | 230 | 1.25 | 2.20 | 0.35 1.9 1.24 | 0.20 | 0.34 2.4 1.29

Table 5.15: Misclassifications produced by an ordinary RBF network with various sets

of features on Breast-Cancer data

No. of All Features GFSMLP selected GFSRBF selected
basis Trng. | Test | spread | Trng | Test | spread | Trng. | Test | spread

functions | Error | Error Error | Error Error | Error
(%) | (%) (%) | (%) (%) | (%)

3.80 1.50 6.4 4.00 1.50 2.7 3.60 1.00 6.2

7 3.80 1.00 6.4 3.80 1.00 4.9 3.60 1.00 6.0

10 3.60 0.00 8.8 3.60 1.00 4.8 3.40 1.00 5.7

15 3.40 0.50 6.7 3.40 0.00 2.7 3.60 0.50 5.6

137

Table 5.16: Misclassifications produced by an ordinary MLP with various sets of fea-

tures on Wine data

No. of All Features GFSMLP selected GFSRBF selected
hidden | Trng. Error Test Error Trng Error Test Error Trng. Error Test Error
nodes (%) (%) (%) (%) (%) (%)

Mean | S.D. | Mean | S.D. | Mean | S.D. | Mean | S.D. | Mean | S.D. | Mean | S.D.

0.0 0.0 1.28 | 1.39 1.2 0.83 | 3.07 | 1.14 0.4 0.54 | 435 | 1.46

0.0 0.0 1.53 | 1.28 0.2 0.44 | 4.10 | 1.06 0.0 0.0 4.35 | 2.65

10 0.0 0.0 2.05 | 3.21 0.2 0.44 | 3.84 | 0.89 0.0 0.0 5.64 | 1.96

15 0.0 0.0 2.56 | 2.39 0.0 0.00 | 4.61 | 1.46 0.0 0.0 3.33 | 1.46

Table 5.17: Misclassifications produced by an ordinary RBF network with various sets

of features on Wine data

No. of All Features GFSMLP selected GFSRBF selected
basis Trng. | Test | spread | Trng | Test | spread | Trng. | Test | spread

functions | Error | Error Error | Error Error | Error
(%) | (%) (%) | (%) (%) | (%)

1.00 3.84 1.4 5 3.84 0.5 2.00 1.28 0.5

7 1.00 2.56 1.1 5 3.84 0.5 2.00 3.84 0.4

10 1.00 3.84 0.8 4 2.56 0.4 2.00 3.84 0.3

15 0.00 1.28 0.9 2 7.69 0.4 1.00 2.56 0.4

138

necessarily lead to better performance. Therefore, if we can reduce the number of re-
quired sensors we can save cost, time, design complexity and sometimes minimize risks.
This is a very important problem but not addressed in literature. In this chapter we

provided some novel solutions to this problem. In particular we achieved the following:

1. We proposed two novel schemes for solving these problems. One scheme is based
on RBF framework and the other uses MLP.

2. Both schemes are capable of selecting useful groups of features.

3. Both schemes can also select individual features.

4. We proved that both GFSRBF and GFSMLP retain the universal approximation
property.

5. Our experimental results reconfirm that the importance of features depends on

the tool used to solve a problem.

6. Our limited experiments show that GFSMLP needs lesser number of features to

do a given task than GFSRBF.

In near future, we like to extend this concept to neuro-fuzzy framework.

With this we conclude our study of integrated feature selection methods in this thesis.
In the next three chapters which follow, we discuss the generalization issue in MLP

networks.

139

Chapter 6

Strict Generalization and Incremental
Learning in Multilayer Perceptron Networks:

Classification!

6.1 Introduction

As stated before, in this thesis we deal with two attributes of efficiency of systems built
from data, namely, feature selection and generalization ability. In the three preced-
ing chapters we considered a new paradigm of feature selection based on modulator
functions which we called online feature selection. We applied the method for design-
ing neuro-fuzzy systems for function approximation and classification to get “optimal”
architectures which discard irrelevant features when they get trained. We also demon-
strated that the concept of modulator functions can be extended to do sensor (group
feature) selection with modified versions of RBF and MLP networks. In this chap-
ter and in the following two chapters we shall consider generalization properties of

multilayer perceptron networks.

Over the years multilayer perceptrons have been used to solve numerous problems in
various domains. It has been proved that MLPs can act as universal approximators
for a large class of nonlinear functions [77], further the learning and generalization
properties of these networks have found many diverse applications. The generalization
ability of MLPs is often over estimated. Users generally rely on the output of an
MLP for any input without paying due consideration on the position of the input with

!The contents of this chapter have been published in [26, 29].

140

respect to the training data. Modern methods of training MLPs involve strict phases
of training, validation and testing. But one generally depends on the data set at hand
for these phases and good performance can be guaranteed only on the available data.
The response of an MLP for a data point which lies well outside the “boundary” of
the training data is usually erratic and hence not reliable. For example, even when
a test data point is far away from the convex hull of the training data, an MLP will
produce some output, sometimes this response (for classification) could be very high
and can be totally useless and dangerous too. As MLPs are being used in critical areas
like medical diagnosis, non destructive testing (NDT) [220], this may lead to serious

problems. We will illustrate this issue latter with compelling examples.

MacKay [145, 146, 147] addresses more or less the same problem of designing classi-
fiers which are intended to give low response in areas with sparse training data. In
[147] MacKay elaborated that a network (classifier) designed with the most probable
parameter (weight) vector wy/p (obtained using a training data D) will typically give
more extreme, unrepresentative and overconfident output in areas with sparse training
data - and this is not desirable. Hence, he suggested a strategy to moderate the output
of a network with parameters wy;p. His results show that the network with moder-
ated output performs better. The moderated output is similar to the most probable
output in the regions where the training data are dense. On the other hand, where
the training data are sparse, the moderated output becomes significantly less certain
than the most probable output. This is certainly an interesting approach. But, since
MacKay’s training scheme [147] does not consider the input space having no data, the
moderated output could be high even in areas far away from the training data. The

results in [147] reveal that this is indeed the case for a simple two class problem.

Another very important issue concerned with MLP is how to learn new knowledge with-
out forgetting old knowledge. An MLP may (usually will) not retain its old knowledge
when it is retrained by a new data set. Also, there is no easy means to augment
an MLP to incorporate new knowledge. This issue of incremental learning has been

addressed by a few researchers in [57, 60, 177, 210, 245]. This problem of training a

neural network incrementally has been addressed in two distinct paradigms:

1. To use the old data points along with the new data points for training which

yields a new system with both the old and the new knowledge [177, 245]. This

141

is computationally expensive and also the old training data may not be available

in all cases.

2. While retraining with a new data set, only bounded modification of the network
parameters is allowed, so that the network does not forget its old memories. This
controlled update may not always guarantee complete learning in cases where the
new training data are not similar to the old training data. The method described

in [60] follows this philosophy.

In this chapter we address two issues. A network should learn only as much as dictated
by the training data. When an MLP is used as a classifier, this means that for test
data points which are away from the training data points, the class response for every
class should be very low. We call such a generalization as strict generalization. The
other issue deals with incremental learning. Given a trained network, if some new
training data points come for which the current class responses for all classes are very
low, then we should be able to augment the network so that it can learn the new data
without forgetting the old ones. Note that, the old training data are not available any

more.

Here we aim to build a classifier which will not make a class assignment for every data
point. Thus, this classifier does not conform to the definition of a classifier that we
provided in Chapter 4. In Chapter 4 we defined a classifier as a function S : R° — N,
where N,; are a set of label vectors defined as in eq. (4.1). According to this definition,
for any point ¢ € R* the classifier S should output a class label in N, and the class
label denotes the degree of belongingness of £ in one or more classes. Note that, N,
in eq. (4.1) excludes the all zero vector. Here, we want to design a classifier, that can
also output a label vector representing that the point £ does not belong to any of the
classes. This can be suitably done by redefining the set of label vectors N, as N/,.
Where N, is defined as

N ={y e Ry € [0, 1]Vi} = [0,1]" (6.1)

In eq. (6.1) N, includes the all zero vector 0 also. This vector 0 can serve as a class
label which indicates that a point does not belong to any of the classes. Now, we can

define our classifier as S : ®° — Nz’jt.

Rest of this chapter is organized as follows: First we discuss the concept of boundary

142

of a pattern class. Then we show by examples that the behavior of an MLP outside the
boundary of the training data is erratic when it is used as a classifier. We then present
a new training scheme which can achieve strict generalization. The proposed training
scheme is also capable of incremental learning, i.e., a trained network can easily be
augmented to incorporate new knowledge. Although in this chapter we concentrate
on MLPs used as classifiers, with some modification the methodology can be made
applicable to MLPs used for other applications like function approximation, system

identification etc. which we consider in the next chapter.

6.2 Boundary of a Pattern Class

The data points from a pattern class usually will be generated following some distribu-
tion. The distribution function can give information about the spatial boundary of the
pattern class. But in most real life cases such distribution functions are neither known
apriori nor are easy to estimate from the data points representing different classes.
One way to determine the class boundary may be to estimate the sampling window
from which the points of that class are generated. The sampling window is generally
defined as the convex compact support set of the distribution. The convex hull of the
points in a class is considered to be a good estimate of its sampling window [198, 219].
If the points of a class are generated from a convex support set and form a cluster in
the input space, then the convex hull of the points in the training data may be a good
estimate of its boundary. But, in real life data sets, points from a class can take any
shape - it may even form a number of separate clusters in the input space. And in
these cases finding boundary of a pattern class poses a serious problem. In a recent
work [212], Scholkopf et al. attempted to find the support of a multidimensional dis-
tribution using the support vector machine framework. This method can be suitably
used to determine the boundary of a class, but here we take a simpler and intuitive

definition of boundary.

We introduce the concept of “boundary” in terms of neighborhood. Suppose ' is a set
of points which belongs to a class. Any point & is considered to be a point outside the
boundary of the class if the distance of from its nearest neighbor in (' is greater than
a threshold th. The threshold th will depend on the shape and density of the points

in the class represented by C'. We continue with this naive definition of a boundary

143

(a) (b)

Figure 6.1: (a) Scatterplot of Scatteredl (b) Generalization by an MLP on Scattered1

and in Section 6.4 we shall device an algorithm to find points outside the boundary of

a pattern class.

6.3 Improper Behavior of MLP Outside the Boundary of the
Training Sample

With the naive definition of “boundary” in mind, we show by examples that the be-
haviour of an MLP for a point which lies outside the “boundary” of its training sample
is not predictable. For this purpose here we use three representative data sets, all in
R2. The data sets are named Scatteredl, Two-Shell and Dish-Shell. Scatteredl
has 3 reasonably well separated classes with 100 points in each class. The scatterplot
of Scatteredl is shown in Fig. 6.1(a) where *, 4+ and o represent the points from the
three different classes. Both Two-Shell and Dish-Shell have two classes with 500 points
in each class. Scatterplots of Two-Shell and Dish-Shell are shown in Figs. 6.2(a) and
6.3(a) respectively.

An MLP with 20 nodes in a the hidden layer with sigmoidal activation functions is
used to classify all three data sets. There is no misclassifications on the training data
for each of these data sets. This appears very encouraging. Let us now see, in each case
how the network generalizes to points outside the “boundary” of the classes. For this
we compute the smallest rectangle containing the data, with its sides parallel to the

axes of co-ordinates. Then we increase each edge by 5% on each side. Next we generate

144

o5t

04 06 o8

0z

06 04 02

08

Figure 6.2: (a) The scatterplot of Two-Shell (b) Generalization by a trained MLP

o

Figure 6.3: (a) The scatterplot of Dish-Shell (b) Generalization by a trained MLP

145

an array of 256 x 256(= 65536) points uniformly covering the entire rectangle. And
use these 65536 points as our test data. We consider a point to be classified to class k
if the output of the £ output node is more than 0.8 and the output of all other nodes
is less than 0.2. For Scatteredl the generalization realized by a trained MLP is shown
in Fig. 6.1(b). The areas marked by the two shades of gray and black represent the
three classes and white area represents the points for which the MLP could not make
any decision. We draw the attention of the reader to the U-shaped black patch at the
bottom right corner suggesting the class represented by * in Fig. 6.1(a). This is surely

a very poor generalization, although the training set resulted in zero misclassification.

In Figs. 6.2(b) and 6.3(b) the generalization by a trained MLP on Two-Shell and Dish-
Shell are shown. Here, black and white represent the two classes and gray represents the
points for which no decision is made by the MLP. In these cases too the generalizations
are not desirable. Note that, here we use a conservative approach to decide the class.
Usually, a data point z is classified to class k if the k** output node have the maximum
response (ignoring how strong or weak the maximum response is or what the response

to the other classes are). So, every point gets classified to one of the classes.

The above results clearly demonstrate that an MLP performs quite well on the training
data and also on the points which lie inside the “boundary” of each pattern class. But
its response on points outside the “boundary” of the training data may not follow any

specific behavior - often it behaves in a strange manner!

6.4 A New Training Scheme

Here we discuss a new training scheme which takes care of the problems discussed
above. Let us consider a classification problem of a data set X = {z,z,,...,2z,} C R°.
Suppose X consists of k classes and X = U S;, S; N S) = ¢, 7 # [, such that z; € S,
is from class . We assume that we have a mechanism to define the boundary of each

S;.

Let Qg0 be the smallest hypercube, which bounds X. By increasing each edge of
Qoman by (% on all sides, we inflate €,,,,; to Q, we call Q as the inflated hyperbox
of X. Our scheme will guarantee strict generalization on all test data points which

lie within €. Thus Q is the space from which the data points are expected to come.

146

We may have prior knowledge of) or we can compute) by inflating Q,,.; to some
extent. For our simulations we have used a specific inflation rate (I=5%). Now for
each pattern class 5;, let =; denote a set of points generated uniformly within 2, but
outside the boundary of points in 5;. For the data set X we construct £ training sets
T;,1=1,2,..., k; where T; includes points in S; with label 1 and points in =; with label
0.

We train & MLPs with these T;s, 1 = 1,2, ..., k; we call these networks M;, 1 =1,.... k.
The restriction on the architecture of each M; is that its input layer consists of s nodes
and the output layer consist of only 1 node. Thus each M; learns a 2 class problem

and can detect whether a data point is within the boundary of class 7 or not.

These & MLPs can be merged together, as shown in Fig. 6.4 to form a single network
M which solves the required £ class problem. Such merging of k subnets to identify &
different classes is called simple merging. The s dimensional input is fed to each M;, if
it belongs to class ¢,q € {1,2,..,k}, then the response of M, would be high and those
of the rest would be low (Fig. 6.4).

If the training data from different classes do not overlap, the network can make un-
ambiguous decision. But if the training data from more than one class overlap the
network will be able to signal that. We shall discuss this later. We now provide a
schematic description of the entire training process in algorithm TRAIN which is de-
picted in Table 6.1. In the algorithm we use (m : n : [) to indicate an MLP with m

input nodes, n hidden and [output nodes.

After the training is over we get a composite network, which, given a test input € R*
with unknown class label, will produce a k-dimensional output vector. The next issue is
how to interpret the output of the composite network M. To understand this, we need
to consider the structure of the training data. Suppose there is no overlap between the
training data from various classes. Thus for each training and test data points at most
one of the subnets will produce high response. And consequently either the class label
of & will be unambiguous or no decision can be made on it. If the training data from
classes 7 and j are overlapped, and if the test data point & € R° is from the overlapped
region, then output nodes corresponding to classes ¢+ and j of the composite network
will be high. In such a case we should not assign « to one of ¢ and j, but should make a

decision that & can be in either of the two classes. This gives an additional information

147

Figure 6.4: Simple Merging of £ trained MLPs

Table 6.1: Algorithm Train

Algorithm TRAIN

Let X = UL |S;, S; C R* be the set of points in class 1.

fori=1tok
Generate =; (the points outside the boundary of S;)
T, = S, UZ; (S; with class label 1 and =; with 0)
Train subnet M; (architecture s : n; : 1) with T;.

end for

Simple merge My, M, ..., My to get M

end

148

about «, that it probably comes from an overlapped region.

Thus, by properly interpreting the output of our network we can get more knowledge
about the points in an overlapped region, and also about the points on which our
network may give wrong decisions. We say that a point belong to class [if the ("
output o; of the composite network is greater than 0.8 and all other outputs are less
than 0.2. If every output unit gives a response less than 0.2, (i.e., 0o; < 2,Vj) then we
do not make any decision about the point. If o; > 0.8 for 5 = 1,12, ...,7; and 0; < 0.2
for all other classes, then # is probably in an overlapped area of the classes 11,14, ...,1;.
In all other cases, responses of one or more classes are high, but none of them is high
enough. In such cases we make a soft decision. We take the class label corresponding
to the output units giving the maximum response. But in this case our network warns
that this decision is a soft or weak decision, and it may be wrong. The test procedure

is summarized in the algorithm TEST, shown in Table 6.2.

In conventional training of an MLP, whenever there are overlapped classes, the MLP
will surely produce misclassifications. If an MLP learns overlapped classes without
any misclassification, then it is a sort of overfitting on the data, which will produce
bad generalization. The usual training of MLP is not designed in such a way that the
outputs can be interpreted to detect whether a test point belongs to an area of overlap.
We provide some simulation results in the results section in support of this. In case
of our network we can obtain multiple class labels for a data point which lies in an
area of overlap. Also when the class response for any class is not significantly high,
our network gives a soft decision. This is an additional advantage of our method over

the MLP.

Note that, the method for obtaining strict generalization assumes that the training
data set is reliable and does not have outliers. It cannot get rid of effect of outliers
in the training data. It is meant to verify whether a test point is an outlier with
respect to the data used for training. Next we discuss how our method can be used

for incremental learning.

149

Table 6.2: Algorithm Test

Algorithm TEST (z,M)
Let M contain k output nodes;
Input & to M,
Let U ={1,2,....,k}(The set of classes);
Let o0;, 1 € U be the output of the i"* output node;
Let [={i:0,>08,Vie U}
Ifo; <0.2,¥V5 € U—1 Then
if |[I| =0 Then
class for £ cannot be decided;
else if |[I| =1 (let I={c1}) Then
unambiguous decision, & belongs to class ¢;;
else (let I={cq, o, .y}, 1 <1< k)
ambiguous decision, can belong to any of the
classes ¢, ¢, ..., ¢ ;
end if
else
§ = Argmassep{o);
Soft decision, & belongs to class j;
endif

end

150

6.4.1 Incremental Learning

The proposed training scheme can be easily used to augment a trained network with
a new set of training data. We develop the method for incremental learning under the
assumption that we have prior knowledge about the input space €2, from which new
training data may come. This is really not a strong assumption as one can start with

a big enough () to account for future augmentation of the network.

Suppose, initially we have a data set X;,;; = U S;, which represents k classes. Let
us call the k classes as 1,2, ..., k, and S; contains the points in the i"* class. We train
k subnets, as discussed in the previous section to solve the k£ class problem. We name
the subnets as M}

sies 0= 1,2, .. k. Then we merge these subnets by a simple merge

to form a new network M,,;;. M,;: incorporates the knowledge in X;,,;.

Later suppose we obtain a new data set X,., which represents m = k + n classes,
where the first k£ classes are the same as the k classes in X,,;; and the other n classes

are new ones. Let X? denote the set of points in X,., which belongs to the first

new

k classes and XY = denote the set of points which belongs to the new n classes, so

Xpew = X2 UXN "and X9 NXN =& Usually the points in XY will lie outside

new new new new new

the boundary of the k classes in X,;;. If so, then because of our specialized training,
But, if M;,;; produces

then there is some overlap between the previous

Mie will not produce high response for the points in XN

new "

high response for some points in XV .

and the new classes. Irrespective of whether M,,;; produces high response for points in

N i
X", or not, for each of these n new classes we construct n separate MLPs, M

1 =k+1,k+2,...k + n, as discussed before and merge them by simple merge with
M to produce a new network M. Hence, M, should be able to classify points in
Xini U XY

., Into m = k 4+ n classes.

Although the points in X© represent the existing k classes, M, may not correctly

new

classify all points in X© . If it can, then we are done and M is the desired network.

new:*

Otherwise, we need to augment M;.

Let X0 = X UXFE =~ where X¢ is the set of points which is correctly classified

new new new? new

by M, and X~ contains the points which are not classified correctly by M;. Note

that, here by correct classification of points in chew we mean that the network M,

produces high response for all points in X in one or more classes which includes

the correct class. The points in X need not be considered for further training. The

151

init new
To OT To OT
x1 °e x D x1 ee x D

Figure 6.5: Compound Merge of two trained MLPs

points in Xfew are either outside the boundary of all the classes present in X;,;; or

there may be points representing class ¢ but lying within the boundary of S;, 7 # .

The latter case is a case of overlapped classes. In both cases points in X? contain

new

new information which is to be augmented with the initial network.

Suppose the set X2~ represents ¢ < k classes. So we train ¢ subnets, M (i =

new n

i1,12,...,1q), 1; denotes one of the ¢ classes. My is trained with the points which

belong to class i; in X® along with points generated outside the “boundary” of the

respective class. Note that, each of these ¢ subnets detects (represents) one of the
classes already represented by some subnet in M,;; (and also in M;). Let us denote
the initial subnets of M;,;; by M! . (i = 1,2,..., k). Subnet M! . is merged with M’

init int
l

if l =i;, by a compound merge (Fig. 6.5). In a compound merge the outputs of M, ,
and Myey (1; = [) are combined by an OR operator to get the final output. For our
case we use maxz as the OR operator. The network obtained by the compound merging

of the subnets of M; and Méjew, J=1,2...,q, is denoted by M finai. M fina should be
able to classify all points in X, U X,

For better clarity, we summarize the above method of augmenting a trained network by

152

the pseudo-code AUGMENT (shown in Table 6.3). The algorithm AUGMENT takes
as input a pretrained network M;,;; which represents k classes and has k& subnets
Mfmt,i =1,...,k, and a new data set X, ..,. Xyew = Xgew U Xévew,

The algorithm AUGMENT creates the augmented network My;,q;.

as discussed above.

The crucial step in the methodology described is generation of the training set for each
class which contains the given training points of that class along with points which
lie outside the boundary of that class. Thus, the success of the scheme will depend
on the generation of points outside the boundary of a given pattern class. In the
next subsection we define what we mean by the boundary of a class and a method to

generate points outside the boundary of a pattern class.

6.4.2 Generating Points Outside the Boundary of a Pattern
Class

Here we present a simple and approximate scheme to generate points outside the
boundary of a pattern class. Let € to be the inflated hyperbox which bounds the
data points in X (as discussed earlier). We define 527@ as the average edge length of a
minimal spanning tree (MST) which spans the points present in S, i.e., the training

points for class ¢.

Definition: Boundary of a pattern class

A point z is outside the boundary of the pattern class C' if the nearest neighbor of
c

avgr Where a > 1 is a predefined constant.

x in S¢ is at a distance greater than «d

Otherwise, it is inside the boundary of C.

The average edge length of an MST generally gives us some information about the
sparseness of the data points present in the pattern class. If S; forms a nice cluster
then clearly 527@ will give a good idea about the inter point distances. Even if S; forms
a few well separated clusters, and if the density of points in each cluster is almost
the same then also 5évg will give information about the sparseness of data points in

each cluster. Thus 5évg will not be much affected by the number of clusters and the

“distance” between the clusters present in 5;, for large |.S;|. We state this more clearly

in the next two propositions.

Let S; consist of k clusters, S, [= 1,2,....k. Let T; be an MST on S; and let 77,

153

Table 6.3: Algorithm Augment

Algorithm AUGMENT (M1, Xpew)

X?i\;w = Spr1 U Skyoeeee U Sk
(where Sk, contains points from class k + ¢)
fori=ktok+m

train subnet M’

additiona
end for

simple merge M}

init?

; with S; and points outside the boundary of S;;

k E+1 k+m)
o Mo M ditionats -+ Modittionar 10 get My ;

init?

M?

inity "

[(z;) be the class label of x;;
U={1,2,...,k} (the set of initial classes)

I = ¢;

Si = ¢, Vi e U;
Jor all z; € X2 ;

if TEST(M;.,x;) cannot decide &;
put &; in Sy,);

if lzi) & 1
put {(z;) in [;

end if;

end if;
end for;
if I = ¢ call My as My, and stop;
forallv el

train subnet M!_ with S; and points outside the boundary of S;;
end for;
Vi € I Compound merge M!_ with subnet M! ., of M, to get M ;

end

154

[= 1,...,k, be the subsets of the edges in 7; that spans the points in cluster S..
We assume that clusters are well separated, |5;| is large and number of clusters are
much smaller than |S;]. Under these assumptions we can safely say that 7; has only
k — 1 edges such that the two end points are in two different clusters. The remaining
|7i| — (k — 1) edges, i.e., |S;| — k edges have both end points belonging to the same
cluster. Then we can say:

Proposition 1: T} is the MST of points in S!.

Proof: If not, let 7/ be the MST on S!. From the MST 7; we remove the subtree T/}
and add 7! to get 7.**. Thus,

T = (T — Til) U Til‘

Now, 7% is a spanning tree of S;. Also, if W(T') denote the total weight of a tree T.

Then by construction

W(T") < W(T;),
as W(rH) < W(T!). Hence, T; is not an MST of S;. Which is a contradiction.

Thus each T} is a MST of the points in S!. Let §¢, be the average edge length of the

avg

MST 7; then we can arrive at the following proposition.

Proposition 2: For large |Si|, 8¢, is independent of the length of the MST edges

vg
connecting two different clusters.

Proof : Let the average edge length of T be §;, and let the lengths of the k — 1 edges
which connect points from two different clusters be ¢;, 7 = 1,...,k — 1. Let n; be the
number of points present in cluster [, [= 1,2, ...,k — 1. Hence the average edge length

of T; would be:
1

521}5] = |SZ| -1 {Z(nl - 1)51 + Z 6]‘} : (62)

=1 7=1

Let 0* be the average edge length of all the edges in 7; which connects points belonging
to the same cluster, i.e., §* is the average edge length of all the MST’s T, [= 1,2, ..., k.
Then

* Zle(nl -]‘)51
’ Zle(nl - 1) (6‘3)
k
e 9

155

Hence we get,

) 1 k—1
iy = (S| = k) 4+ ¢ (6.5)
195 =1 i=1

& (1 ~ |f_|) Yile

N 6.6
(1 — ﬁ) |Si] — 1 60

Here, k < |S;| and Zf;ll e; is finite. Thus,
lim &, =d" (6.7)

|S:i| =0

Hence, for large |.S;| the average edge length of 7; depends on the average length of the
edges in each MST of the clusters present in S5;. Again if we assume, that the density
of the points in each of the k clusters is same and hence the average edge lengths of
the MST’s of the points in each cluster is the same (say, 4). Then we have

=9

Y

thus 5évg is equal to the average edge length of each MST. Hence, for large |S;|, the
average edge length of an MST is independent of the number of clusters present in the
set. So &' can be used as a good measure of sparseness of the data even if S; contains

avg

clusters in it.

Next we summarize the method of generation of points outside the boundary of a
pattern class in procedure GENERATE (Table 6.4). GENERATE takes as input the
inflated hyperbox () of the total data and a set of points S¢ in the pattern class C.

The multiplier o in GENERATE controls the tightness of the boundary, ¢.e., a smaller
value of a will yield a tighter boundary than a larger value of . To demonstrate the
effect of o on the boundary we use a new data set called Square, which contains 500
points in R?, generated randomly over a square. The scatterplot of Square is shown
in Fig. 6.6. Figure 6.7 shows the points generated outside the boundary of Square for
different values of «. Figure 6.8 shows the points generated outside the boundary of
Dish-Shell, assuming that the entire data are from one class (scatterplot in Fig. 6.3).
Figures 6.7 and 6.8 clearly exhibit that the algorithm can capture the concept of the
boundary and its performance is quite good for o € [1.5 , 2.5]. So, in our simulations

we use o = 2.

156

Table 6.4: Algorithm Generate

Algorithm GENERATE (2, S¢)

begin
Select a;

Compute MST of the points in S¢;
c

avg

Compute
Select nCount; count =0 ;

while(count < nCount)
Randomly generate € s.t. € € ;

Find ¢ € S¢ s.t. ||€ — || = minges. ||€ — 2] ;
(116 — 2l < aduuy);

discard &;
else

accept € as a point outside the boundary of C ;

count = count + 1;

endif
end while
end
.
ol
Bty @ 0 85 0 08T o g o
N A T I
Hoborup, Lm0 8 soonn,
%DDQ DEDJD oo © o 0ol o
a5 & 27 oo i a
2+ o o DEE%D
&g wm O opegs o @I0ES
o0 B Bolo 70, P B 2®
ok s m? 0mP % [o e T
o o OBy, B g o
o t}_\bju o B 5tof gd
oFm DDDDD.D g %”u”agmg%@u
oo L
2 Q%DDDE%DD%@DEDDQE
5 2 u s tE g m 8
i oo obgd 0 5
0g,g,80 Bo o g g
4 sPo0” e L 58 oy g %o 8 o
WO cados | oG g80 @0 Fob,
ol
) 6 4 2 0 2 4 6 8

Figure 6.6: Scatterplot of Square

157

B 0 500 O o
| B :
4 "@GD&@EQ% ‘99%9@0 K %o@@ 4
2 oy o o ¥ 2
iﬁv@ﬁsyog@;ﬁ 20 F o
ﬂ %?OD s oy 8 0
&

28
| DX

-4 ooo

i %{gg, OD%@&%IPM 6%@&@0

o8& ©

£2 s -
| az%i?l‘?‘&ﬁ%ﬁf‘:@

Figure 6.7: Points generated outside the boundary of Square for different values of a:

(a)a=1.0((Mb)a=15(c)a=20(d) a=25

Figure 6.8: Points generated outside the boundary of Dish-Shell for various values of
a: (a)a=1.0(b)a=15(c)a=2.0(d) a=25

158

6.5 Results

We present here results on 5 data sets. The data sets are named Dish-Shell, 3D-
Elongated, Cone-Torus, Sat-Image and Scattered. We have some objectives in
mind behind the choice of these data sets. The first two data sets are in low dimension
and they have well separated classes. We use them to demonstrate the generalization
ability of our scheme. And, as they are in low dimension we pictorially demonstrate the
generalizations produced by our method. Cone-Torus and Sat-Image have considerable
overlap between classes. These two data sets have been previously used by many
researchers to evaluate different classifiers [122]. Hence, using Cone-Torus and Sat-
Image we compare the performance of our method with that of a normal MLP. Also,
we show that our method can handle overlapped classes in a better manner and can
signal that a test point lies in the area of overlap. The results demonstrating strict
generalization are presented in the next subsection. In a subsequent subsection we use
the synthetic data set, Scattered, to demonstrate the incremental learning ability of

our network.

In all the simulations we use networks with sigmoidal node functions and use the

Lavenberg Marquard algorithm [69] for training MLPs.

6.5.1 Demonstration of Good Generalization

Dish-Shell

This data set, as already stated, consists of 1000 points in R* equally distributed in
two classes. The scatterplot of the data set is shown in Fig. 6.3(a), and for convenience
it is again reproduced as Fig. 6.9(a), the points from the two classes are represented

by + and *.

As Dish-Shell contains two classes we need to train two subnets. For each of the
classes we generated 2500 points outside the boundary and trained two MLPs each
with 20 nodes in the hidden layer and then they were merged by a simple merge.
The generalization performed by the network is shown in Fig. 6.9(b). Comparison
of Fig. 6.9(b) with Fig. 6.3(b) (generalization produced by conventional MLP on the

same data set) reveals that the proposed method can do an excellent generalization.

159

(a) (b)

Figure 6.9: (a) Scatterplot of Dish-Shell (b) Generalization on Dish-Shell

3D-Elongated

3D-Elongated is a data set in ®* having two classes. Each class has 500 points (this
data set is similar to a data set used in [149]). Figure 6.10 shows the projection of the

data on various planes.

We generate 3500 points outside the boundary of each class and train two MLPs,
one for each class. Then these two nets are merged by a simple merge to obtain the
final network. To test the network we randomly generate 100000 data points in the
hyperbox bounding the data. We test the trained network with these data points. For
8848 data points the response of the network is high and is significantly low for other
points. The plot of those 8848 points are shown in Fig. 6.11. Comparing Fig. 6.10

with Fig. 6.11 we see that the proposed scheme results in an excellent generalization.

Cone-Torus

Cone-Torus has 400 points in R? in both the training and test sets [122, 258]. There
are three classes each representing three shapes, namely, a cone, a half torus and a
Gaussian. We train 3 subnets each with 5 hidden nodes using the data in each class
along with 400 points generated outside the boundary. The scatterplot of this data
(Fig. 6.12) shows that two of the classes have considerable overlap. Table 6.5 shows
the results of our network with this data set as interpreted by our procedure TEST.

In Table 6.5, column 2 lists the number of cases for which the network unambiguously

160

Figure 6.10: Scatterplot of 3D-Elongated (a) projected on 1-2 (b) projected on 2-3 (¢)

projected on 1-3

161

Figure 6.11: Generalization on 3D-Elongated (a) 1-2 (b) 2-3 (c) 1-3

Figure 6.12: Scatterplot of Cone-Torus (a) Training Data (b) Test Data

162

detects the correct class, column 3 shows the number of instances for which the network
suggests two classes including the correct class. In other words, column 3 represents
the data points that are suspected to be in the overlapped area. Column 4 suggests
that there is no area in the input space where all three classes overlap. This indeed
matches with the class structure shown in Fig. 6.12. The column labeled “soft correct”
depicts the number of data points that are correctly classified but the decisions are
soft. Column 6 gives the number of points on which the network could not make any
decision and column 7 gives the total number of points on which soft decisions were
made. The last column gives the total number of misclassifications when the decisions
are made like a conventional MLP, i.e., we take the maximum output of the network to
decide the class label of a test point. Comparing column 8 of Table 6.5 with Table 6.6
(which gives the performance of ordinary MLP on Cone-Torus as reported in [122]) we
find that our network can perform as good as ordinary MLP, in addition it can provide
a deeper insight into the data. For example, of 59 misclassifications on the test data,
19 are declared as undecided indicating that probably these 19 points are not in the
vicinity of the training data. If we take the maximum response of the output units
to decide the class we find that out of these 19 undecided points only 6 are classified
correctly. Thus of the 59 misclassifications 13(19-6) points were declared as undecided
by our network. Of the remaining 46 (59-13) points 8 (39-31) are wrongly classified by
the soft decision and the other 38 points probably fall in the overlapped region where

the network suggested two possible classes as output.

Table 6.7 shows the results obtained by a conventional MLLP with 15 nodes in the hidden
layer, but the network outputs are interpreted by our TEST procedure. Comparing
Tables 6.5 and 6.7 we see that our method gives high single class response to more
points than the MLP for both training and test data. Table 6.7 fails to point out
the overlapped cases and as expected many of the soft decisions are incorrect. For
example, of the 238 soft decisions 65 are incorrect for the training data; similarly, out
of 167 soft decisions for the test data, 58 are wrong. The number of undecided cases
are also lower than that by our network. This may be attributed to the fact that when
the network is confronted with similar data points but from different classes, it may
learn one of the two classes (it cannot learn both classes). Thus NOT for a SINGLE

data point we find high response for more than one class.

163

Table 6.5: Results on Cone-Torus by our method

1 class | 2 class | 3 Class | Soft Correct | Undecided | Tot. Soft Miss
Training | 258 104 0 35 2 36 50 (12.5 %)
Test 241 101 0 31 19 39 59 (14.75 %)

Table 6.6: Results on Cone-Torus using conventional MLP (reported in [122])

Architecture | Trg error | Test error

2:10:3 15.25 % 14.25%
2:15:3 13.50 % 12.0%

Table 6.7: Results on Cone-Torus using conventional MLP interpreted by TEST

1 class | 2 class | 3 Class | Soft Correct | Undecided | Tot. Soft Mis
Training 161 0 0 173 1 238 66 (16.5%)
Test 228 0 0 109 5 167 63 (15.75 %)

164

50

50}

-100 i .!a.f;é
e o.g @9

.
-150(° %

-200 L L L)
-200 -150 -100 -50 0 50

Figure 6.13: Scatterplot of Sat-Image along the two most significant components

Table 6.8: Results on Sat-Image using conventional MLP (reported in [122])

Architecture | Trg error | Test error

4:20:6 79.2 % 75.92%
4:65:6 24.4 % 23.08%

Sat-Image

The Sat-Image data set is generated from Landsat Multi-Spectral Scanner image data
[122, 128, 256, 257]. The present data set covers an area of 82 x 100 pixels portion of
the whole image. Fach feature vector has 4 components containing the gray value of a
pixel captured by 4 sensors operating in different spectral regions. The data set has 6
classes representing different kinds of ground covers. The training set has 500 points
and the test set has 5935 points. In the literature there are other studies which use
only these 4 features [128].

In this data set the classes have significant overlap as evident from Fig. 6.13, which
shows the scatterplot of the data along the two most significant principal components
(the various shades of gray shows the various classes). Some results on this data using
conventional MLP can be obtained in [122], we summarize these results in Table 6.8.
We also ran a conventional MLP with this data with various architectures. We got

better results than what was reported in [122]. Table 6.9 shows the results obtained

165

Table 6.9: Results on Sat-Image using conventional MLP obtained by us

Architecture | Trg error Test error

4:65:6 73 (14.6 %) | 1012 (17.0%)
4:50:6 155 (31.0 %) | 1917 (32.3%)
4:30:6 171 (34.0 %) | 2160 (36.39%)
4:15:6 | 308 (61.6 %) | 3718 (62.64%)

Table 6.10: Results on Sat-Image using conventional MLP interpreted by TEST

Arch. 1-class | 2-class | 3-class | 4-class | Undecided | Soft correct | Mis
4:65:6 | Trng 320 0 0 0 8 107 73
Test | 3750 0 0 0 198 1168 1012
4:50:6 | Trng 207 0 0 0 90 136 155
Test | 2390 0 0 0 1054 1540 1917
4:30:6 | Trng 57 0 0 0 14 272 171
Test 537 0 0 0 167 3231 2160
4:15:6 | Trng 0 0 0 0 0 192 308
Test 537 0 0 0 167 2217 3718

by us with conventional MLLP’s on this data set. Table 6.10 shows the results of these
MLPs as interpreted by our procedure TEST.

We shall describe two different runs with our network which we call Run-I and Run-II
respectively. In Run-I, we generate 5000 points in * in the boundary of each class
C; and additionally we take the points from the classes C;, 7 # ¢ which lie outside the
boundary of C;. Notice that, as the dimensionality of the input space increases, more
and more data points are to be generated outside the boundary to properly represent
the geometric structure of a class and consequently training of the subnets becomes
more expensive computationally. An easy way to bypass this is to consider the points
of the other classes which lie outside the boundary of the class in question. These
data points are very important to determine the structure of the class. In Run-I we

use o = 2, for generating points outside the boundary and also for considering the

166

Table 6.11: |C;] for Run I and Run 1T

(1l [1Cal | 1Cs] | |Cal | |C5] | |C6]
Run I | 379 | 342 | 342 | 288 | 212 | 316
Run 11| 394 | 417 | 373 | 381 | 403 | 365

points of other classes. The results of our method for Run-I are shown in Table 6.12.
Table 6.12 reveals that there is significant overlap between the classes, as we find many
points with multiple class labels. To obtain a more specific result, i.e., to get more
points classified with single class label, we consider Run-II. In Run-II, we generate
5000 points outside the boundary with o = 2, and consider the data points from other
classes with @ = 1. The results of Run-II are shown in Table 6.13.

We will analyze the results on Sat-Image in two parts. First we will explain why
Table 6.12 is so different from Table 6.13. Then we will compare Table 6.13 with
Table 6.10.

Let S; be the set of training data points from class ¢ and C; be the set of training
points from the remaining classes which lies outside the boundary of 5;. If the classes
are not overlapped then C; will be equal to U;;S;. Table 6.11 compares Run I and
Run II in terms of the number of points for C; considered by our algorithm for two
different values of «. Low value of « defines a tight boundary for each class. For
example, in case of class 5, we find that for & = 2, only 212 points in (5 are considered
to be outside the boundary of class 5 and this is increased to 402 (it becomes almost
double) for o = 1. This tells us that either class 5 has some overlap with the remaining
classes or the boundary of class 5 is probably “touching” the boundary of other classes.
Consequently for this data set with o = 1 we expect to get a better result. Next we
shall see that, this is indeed the case. But before that it is worth mentioning that using
two different values of o one can get some idea about whether different classes are well
separated or not. Comparing Tables 6.12 and 6.13, we find that use of a tighter class
boundary improves the performance of the system drastically. Tighter boundary also
reduces ambiguous choices. For example, o = 2 results in 79 cases for the training
data where our system suggests 3 classes and this 79 is reduced to 0 for a = 1. For

the test data 864 3-class cases are reduced to just 5.

167

Table 6.12: Results on Sat-Image by our method (Run -I)

1-class | 2-class | 3-class | 4-class | 5-class | Undecided Soft Total Miscl.
correct | Soft
Trng 251 126 79 4 0 1 31 39 90(18%)
Test 2712 1353 864 14 2 420 413 570 1246(20.9 %)

Table 6.13: Results on Sat-Image by our method (Run -1I)

1-class | 2-class | 3-class | 4-class | b-class | Undecided Soft Total Miscl.
correct | Soft
Trng 384 82 0 0 0 13 16 21 70 (14.0 %)
Test 3865 960 5 0 0 826 205 279 | 1211 (20.4 %)

A tighter boundary increases the number of undecided cases (the system declines to
classify a test point in an area not well supported by training data). Of the 1211
misclassifications that are obtained by taking the maximum output to decide the class,
826 cases are undecided. Of these 826 cases only 213 points are classified correctly if

the decision is made based on the maximum response.

Analysis of Table 6.10 reveals that the use of TEST to interpret the output of a
conventional MLP does not result in 2-class, 3-class cases - this behavior is exactly
the same as that of Cone-Torus data set. The misclassifications even with a high
architecture like (4:65:6), is comparable to that of our system. One may think, since
we are using several networks probably our system has more free parameters - this is
Just the opposite. Note that, a (4:65:6) MLP has 650 learnable weights and 71 biases,
i.e., a total of 721 parameters whereas our network has 300 weights and 66 biases, i.e.,

only 366 parameters - about half that of the net (4:65:6)!

168

e

Figure 6.14: (a) Scatterplot of Scattered_P1 (b) Scatterplot of Scattered

6.5.2 Demonstration of Incremental Learning

Scattered

With this data set we shall demonstrate the incremental learning capabilities of the
proposed scheme. Suppose Scattered is obtained in two phases. In the first phase
the data set has 600 points equally distributed in 3 classes, we call this data set as
Scattered_P1. Further 300 points are added to it to get the final data set Scattered.
The scatterplot of both data sets are shown in Fig. 6.14. Figure 6.14(b) shows that
the addition of 300 points changes the class structure drastically. Our objective is to
train a network My which can classify the points in Scattered _P1 and then augment
M to a new network M, to classify all points in Scattered. The augmentation will

be done using only the additional 300 points.

Since Scattered_P1 has 3 classes our first network M consists of 3 subnets. Each
subnet is trained with the data points in each class of Scattered_P1 along with 2000
point generated outside the boundary of each class. The generalization produced by
M on Scattered_P1 is shown in Fig. 6.15(a). Then we get the additional 300 points,
100 points in each of the existing 3 classes. We tried to classify them by M;. But
none of the 300 points gets classified by M;. Hence, we conclude that the 300 points
obtained later though belong to the set of classes already present in Scattered_P1, they
lie outside the boundary of the classes represented by Scattered_P1. Figure 6.14(b)
shows that this is indeed the case. So, we train 3 new subnets, each with 100 data

points and 2000 points generated outside the boundary of each class. These subnets

169

(a) (b)

Figure 6.15: (a) Generalization on ScatteredP1 by M; (b) Generalization by Mj on
Scattered

are merged with the 3 subnets of M, by a compound merge and we call the new
network as M. Figure 6.15(b) shows the generalization achieved by M on Scattered.
Figure 6.15(b) exhibits an excellent performance of our scheme in terms of incremental
learning ability and generalization capability. In the given example, the classes are
well separated. In case the classes have overlap, the discussion made in Section 6.4 is

equally applicable here.

6.6 Conclusions and Discussion

In this chapter we proposed a novel scheme to train an MLP so that it does not
respond to data points which lie far from the training sample. The training scheme
also equips the MLP with incremental learning capability. Unlike conventional MLP,
it can detect data points that fall in the overlapped regions. Our method is based on
training several nets with simpler tasks and then merging them for the complete task
expected of the network. In this context we have proposed two merging schemes. The
philosophy behind the proposed scheme is quite general and can be used with other
learning machines also. The crucial point in the scheme is a method of generating
points outside the “boundary” of a pattern class. As stated next, there are a few

issues that have not been adequately addressed in this work.

We have given a naive definition of the boundary of a pattern class and proposed

an algorithm to generate points outside the boundary of a pattern class represented

170

by a given set of points. The proposed algorithm although simple, works quite well.
This problem of generating points outside the boundary of a pattern class itself is
quite interesting but a difficult problem which needs further investigations. Another
important problem, estimation of the number of points to be generated outside the
boundary, for proper training has also not been addressed in the present work. The
number of points to be generated has been chosen in an ad hoc manner considering

the size of the inflated hyperbox of the data.

An important characteristic of the method is that it can detect points in the area of
overlap of two or more classes and can thus deal with overlapped classes in a better way
than the conventional MLP. Moreover, if we have a data set with two touching classes,
a conventional MLP or any other classifier will be able to arrive at zero misclassification
for all the training points. But in our method the points from either class which lie near
the separating plane of the classes will be classified into both classes. In such cases,
the classifier which produces zero misclassification on training data is very sensitive
to the training data, because, if we give a little perturbation to the points near the
separating plane, they will change classes. We think this is not desirable and is an

indicator of bad generalization.

Generation of points outside the boundary of a class for high dimensional data sets
may pose certain practical problems. As the dimensionality of the data increases, one
has to generate more points to characterize the boundary of a class. This restricts
the use of this method for reasonably high dimensional data sets. For the Sat-Image
data we used a simple scheme to overcome this difficulty. We considered the points
in other classes along with the points generated outside the boundary of a class. The
results demonstrate that this scheme works quite well. In the next chapter we discuss
strict generalization for MLP networks when used for function approximation prob-
lems. There we propose an alternative formulation to characterize the boundary of the
training sample. This formulation does not require any additional points to be gener-
ated outside the boundary and so can be used easily for high dimensional data sets.
The method formulated in the next chapter will also be demonstrated for classification

task.

This chapter aimed at testing the feasibility of a new training scheme for MLPs which
can realize strict generalization and support incremental learning. The simulation re-

sults demonstrate that our training scheme serves the purpose quite satisfactorily. In

171

the next chapter we discuss a modification of this scheme to solve function approxi-

mation type problems.

172

Chapter 7

Strict Generalization and Incremental
Learning in Multilayer Perceptron Networks:

Function Approximation'

7.1 Introduction

In the previous chapter we discussed strict generalization and incremental learning for
MLP networks. The training methodology that we developed in Chapter 6 is applicable
to classification problems only, as the scheme involves training subnets for each class.

Here we extend the methodology for function approximation (FA) problems.

For function approximation problems, our method involves training a network for two
different tasks: (a) to learn the input-output mapping present in the training set, and
(b) to learn the boundary of the training set. In other words, the network performs
the task of function approximation, additionally it learns a decision boundary as in
classification problems. To realize this we use two MLP networks together. We call
the first network which learns the input-output mapping as the mapping network and
the other network which learns the decision boundary as the vigilance network. The
vigilance network can be trained using the same scheme of generating points outside the
boundary of the training sample (see Chapter 6). The points in the training set serve
as positive examples (i.e., points inside the boundary) and the points generated outside
the boundary are considered negative examples. Thus a trained vigilance network will

have the capability to detect whether a test point falls within the boundary of the

!The contents of this chapter have been communicated in [32].

173

training set or not.

Generating points outside the boundary of the training set becomes quite expensive
for reasonably high dimensional data sets. In such cases one has to generate a huge
number of points outside the boundary to get a proper characterization of the boundary
of the training set. Thus, this method becomes computationally very expensive for
high dimensional data. We propose another method to train the vigilance network
which does not require generation of additional points, but it involves decomposing the
training sample into small subsets, and making the vigilance net learn the boundary of
such sets. A vigilance network trained in either way can be combined with a mapping
network to realize strict generalization for FA problems. The MLPs trained in this

manner also offer incremental learning as a byproduct.

In the following sections we discuss our methods in details. In Section 7.2 we begin
with a compelling example using a synthetic data set to motivate the problem. In
Section 7.3 we discuss our schemes for realizing strict generalization and in Section 7.4
we describe the incremental learnability of the scheme. Section 7.5 provides some

simulation results and Section 7.6 concludes the chapter.

7.2 The 3-Peaks Function: The Motivation

Let us consider the function:

z—25 z=T75)2

y=0.2e-CF) 0.4~ (52) 404 (5 (7.1)

We call this function as 3-Peaks. Fig. 7.1 depicts the function 3-Peaks. We sample
a few points from the function in eq. (7.1) to train an MLP. Intentionally we sample
points in such a manner that there remains a gap in the input space. Figure 7.2
shows the sampled points, we call this set of points as PT;. The MLP trained with
these sampled points are tested on a data set which contains 1000 equispaced points
generated in [0,100]. Figure 7.3 shows the generalization done on the test data by
four MLPs trained with different initializations. From Fig. 7.2 it is clear that the
interval [40, 60] is not represented by any training data, so the MLP is not expected to
perform well over this interval. Figure 7.3 shows some queer generalizations. Specially

the generalization shown in Fig. 7.3(b).

174

100

Figure 7.1: Plot of 3-Peaks

L L L L L L
0 10 20 30 40 50 60 70 80 90 100

Figure 7.2: The points in 3-Peaks used for training

When training data are collected from a live process then there may remain areas in
the input space which are not well represented by the training data or are not at all
represented by the training data. For test points which lie in those areas, ideally, an
MLP should not respond at all. But an MLP, as shown in Fig. 7.3, will always produce
some output. When an MLP is used for classification, we may interpret the output of
an output layer node as a confidence in favor of a class (although it may not produce
desired results). But when an MLP is used for FA type applications we cannot do so.

We device a mechanism here which can take care of this problem.

175

0.3 0.6

0.2 0.4

0.1 0.2

0.4
0.3
0.3
0.2
0.2

0.1
0.1

Figure 7.3: Generalization produced by an ordinary MLP trained with PTj for 4

different initializations

7.3 Training Scheme

Let T = (X,Y) = {(z1,91), (£2,Y3), -... (TN, yy)} be our training set with N training
samples where z; € R* be an input vector and y, € R’ be the corresponding output
vector. The task here is to learn the unknown input-output mapping that exists
between & and y. An ordinary MLP trained with conventional backpropagation or
any other method can accomplish the task with a reasonable accuracy for almost all
kinds of data. But we have an additional objective. We want to train an MLP in such
a manner that it does not respond to test points which are away from the boundary
of X. This can be realized if we can make the MLP learn the boundary of X along
with the input-output mapping between & and y. Thus, we want our network to learn
a decision boundary as in case of classification problems. To realize this we use two
networks. The first one is an usual MLP which learns the input-output mapping, we
call this as the mapping network. The second network is called the vigilance net which
decides whether the MLP should respond to a point or not. The final output for a
test point is obtained by suitably combining the outputs of both networks. Training of
the vigilance network can be done in two ways. The first approach requires additional

training points generated outside the boundary of the training set. We call a vigilance

176

network trained in this manner as the boundary vigilance network (BVN). The second
approach does not need any additional training examples but it builds receptive fields
around clusters of data points and the responses of the receptive fields are aggregated
to decide the position of a test point with respect to the training sample. A vigilance
network trained in this fashion is called the receptive field vigilance network (RVN). In

the following two subsections we discuss the construction of BVN and RVN in details.

7.3.1 Training the BVN: Training Vigilance Nets with Ad-
ditional Examples Generated Outside the Boundary of
the Training Set

We have at hand only the training samples, i.e., some positive examples of the instances
that lie inside the boundary of X (the set X itself). But, to make the MLP learn the
boundary of X, we need additional points which lie outside the boundary of X. To
be more precise, the additional points should be outside but close to the boundary of
X. Let Q01 be the smallest hypercube, which bounds X. By increasing each edge of
Qoman by (% on all sides, we inflate Q,,,,;; to 2, we call) as the inflated hyperbox of
X. Our scheme makes “strict generalization” on all test data points which lie within 2.
Thus Q is the space from which the data points are expected to come. One may have
initial information of 2 (the domain of the input space) or one can arrive at any desired
Q by choosing an appropriate measure of inflation. Let = be a set of points generated
randomly within € but outside the boundary of X (one can use the method described
in Section 6.4.2 for this). These points in = serve as examples outside the boundary
of X. The vigilance network is trained with points in X U Z. Since the vigilance
network is meant only to learn the boundary of the training data, the original outputs
associated with each point in X are ignored for its training. The output for every
x € X is taken as 1 and the output for every € € = is taken as 0. Thus, if properly
trained, the output of the vigilance network will be able to detect whether a test point
lies within the boundary of the training set or not. The method for training a BVN is

summarized in Table 7.1.

177

Table 7.1: Algorithm Train BVN

Algorithm Train BVN

Given training set T'= {(z1,y4), ..., (2n,y,))} C R° x R
Let X = {zy,....,ax} C R*;

Fix, 2, the inflated hyperbox of X;

Fix np, = Number of hidden nodes for the vigilance net;
Generate = = {£,,...,€,,} C R° , such that, &, € Q, but
outside the boundary of X using Algorithm GENERATE
(Table 6.4) ;

Let, TV = {(z1,1), ..., (zn, 1), (&,0),...,(§,,,0) };

Train an ordinary MLP, N, with architecture (p : nj, : 1)
with TV, call it the vigilance net;

178

7.3.2 Training the RVIN: Training Vigilance Nets with Recep-
tive Fields Around Data Points

As discussed in the previous subsection, the vigilance net can be trained to estimate the
sampling window of the input distribution by points generated outside the boundary
of the training sample. But, generation of points outside the boundary of the training
set becomes infeasible for high dimensional data, as in such cases we have to generate a
large number of points outside the boundary to characterize the shape of the sampling
window. Here we propose an alternative way to construct the vigilance network, which

does not need any additional training examples.

We can assume that the input vectors of the training set X can be divided into a

number of hyperspherical clusters X;,72 =1,2,...,n, such that
U, X, =X

and

XinX;=¢, Vi,j,1 #J.

Such decomposition into hyperspherical clusters can be done using any conventional
clustering algorithm like the k-means [48], or the Fuzzy c-means [12]. The vigilance
net is trained in such a manner that it can detect whether a test point falls in any of

these clusters or not.

This RVN is a three layered network. It has s nodes in the input layer (if X C %), k
nodes in the hidden layer and one node in the output layer. Each node in the hidden
layer has two parameters g; € R* and o; € R associated with it. For a input vector z,

the '* hidden node computes

2
a;

Z; = exp (—M) , Yi=1,2,... k. (7.2)

The single output node in the third layer aggregates the outputs of the k& hidden nodes
to give a single response. If the output of the third layer node be denoted by b, then

b= max {z}. (7.3)

1=1,2,....,k

Each node in the hidden layer represents a cluster in the data set X. The parameters

p; and o; are decided using the FCM algorithm. If we decide £ as the number of

179

hidden nodes then, we find out k clusters from X and denote g,, ¢+ = 1,2,...,k as
the ' cluster center. As discussed in the appendix of Chapter 4, FCM produces a
set of centroids V. = {vy,vs,...,v;}, and a partition matrix U = [u;j]gxn, Where u;;
denotes the degree to which z; belongs to the i cluster and v; is the centroid of the 1™
cluster. Here we take g, = v;. The fuzzy partition matrix obtained from FCM can be
hardened using the maximum membership rule [12]. In other words, we can consider

that a point &; € X belongs to cluster ¢,1 < ¢ <k, if

Uy = m]ax{uﬁ}.

So, the clustering algorithm partitions X into k disjoint sets X7, X, ..., Xi. o; is chosen
as the distance of u,, from the point which is farthest to g, in X;. Thus,

o; = max{||z; —p||},Vi=1,2,.. k. (7.4)

CL’JGXz

For a test point # € R® each hidden node in the vigilance network gives an output
related to the distance of & from the cluster center that the node represents. Thus, if a
test point lies in or around the boundary of the cluster that a hidden node represents,
then the output of that hidden node will be high. Therefore, for a test point & € R*,
if b takes a high value then we conclude that & lies within or around some cluster of
X; otherwise, it lies far from all k clusters of X. So, b can be used as an indicator of

whether & lies in or around the boundary of X.

7.3.3 The Composite Network

Another network is trained along with the vigilance network. This second network is an
ordinary MLP, which is trained with the points in X along with its associated output,
i.e., with (X, Y"). This network is called the mapping network (maps input to output).
The vigilance network and the mapping network are combined together to a composite
network which makes the final decision. Denoting the trained vigilance network as
N, and the mapping network as N,,, the final trained network A is represented by
the tuple A" = (N, N,). If the output dimension of the data is ¢, then the composite
network will have t+1 output nodes. The first ¢t output nodes correspond to the output
of the mapping network (N,,) and the (¢ + 1) node corresponds to the output of the

180

Mapping Network Vigilance Network
N N

m \4

.',/-

Figure 7.4: The composite network N = (N, N,)

vigilance network (N,). The output of N, is called the boundary indicator component
(BIC)(please refer to Fig. 7.4). A test point is fed to the composite network, and if
the BIC gives a value greater than a threshold th, then the output of the test point
corresponds to the output of the remaining ¢ nodes. If the BIC bears a value lower than
th, the network infers that the point is away from the boundary of the training set and
hence the net may not produce a correct output (decision) for it. The algorithm for
testing the composite network is given in Table 7.2. The algorithm is valid irrespective
of the way the vigilance network is trained, i.e., the vigilance net can be either a BVN
or a RVN. The threshold th is generally user defined. And, the threshold for different
types of vigilance networks can be different. In our simulations we use th = 0.5 if the
vigilance network is a BVN. In case the vigilance net is an RVN we use th = e™'. In
case of RVN, o; is the largest distance of a training point that belongs to the cluster
associated with the 7" receptive field. So, it is reasonable to assume that the receptive
field of a node is extended upto a distance equal to its o or a little beyond that. Based
on this idea we choose th equal to the response of a node at a distance o, which is

equal to e7?.

A composite network trained using either kind of vigilance network can be applied
for classification problems also. The method in Chapter 6 which was solely meant for

classification has some added advantages. As in the method in Chapter 6 different

181

Table 7.2: Algorithm Test-FA

Algorithm TEST-FA
Given a trained network V' = (N,,, N,) and a test point z;
Input = to both A,, and N,;
Call the output of NV, as the BIC;
if (BIC < th)
Qutput “cannot be decided”
else

Output of NV,, gives the desired output for x
endif

subnets are trained for different classes, and each subnet can detect the area in the
input space corresponding to a class, hence areas of overlap can be detected using the
output of the net. We have already given convincing picture of this fact in Section 6.5,
where we used two data sets having significant overlap between classes and found that
our network can handle such scenario in a better manner. But, a mapping network
and vigilance network pair, when used for classification, will not have such advantages.
If a BVN is used for classification, then the algorithm GENERATE (refer to Table 6.4)
considers all points in the data set as a single class. The mapping network learns the
classification problem as done by a conventional MLP. Hence, the output of a composite
network cannot be interpreted to find points which lie in the area of overlapped classes.
But, a composite network trained with RVN can be applied in case of high dimensional

classification problems.

7.4 Incremental Learning

The methods discussed in the previous section can support incremental learning. Let
us consider that the training points come in two phases. In the first phase we have a
training sample 7} = (X4,Y]), and we have trained a network say Ny = (N1, Vo)
with 7. At a later point of time we obtain a new set of data points say Ty = (X3, Y2).

The points in 15, i.e., X3 may carry new information. If the points in X, are away

182

from the boundary of the points in X, then our network N is not expected to decide
the output of the points in X;. In such a case we want to augment N with the new
knowledge contained in the training set 7,. Let us denote the BIC of Ny, i.e., the
output of N, by b;. If for some points £ € X, the BIC computed by N is high, we
assume that those points are within the boundary of X and we take the output of A,
as the correct output. These points are not considered to provide new information.
For points in X, which do not produce a high value of b; when tested with A are the
points that carry new information and this information needs to be augmented with
Ni. Let Ry, denote the set of points in Ty which does not produce high values of BIC.
Now, using Ry, we train a new composite network Ny = (N2, MVy2). We then combine
N and N, to construct a new network having the knowledge of both training sets T}
and 75.

In the preceding discussion, if * € X, results in a high BIC in A}, we do not consider
the associated input-output pair (z*,y*) € (X3, Y2) to provide new information irre-
spective of the value of y*. In this case if y* is close to the output produced by A for
x*, then it is fine; otherwise, one may argue to consider (z*,y*) as new information.

We do not recommend that because of the following reasons:

1. When the network N was trained, some input-output pairs (z,y;) were used
where 2 was close to £*, but y, was not close to y*. In such a situation use of

(z*,y*) is in direct conflict with some training points. So it is better to ignore.

2. There were some small gaps (hole) in the training set and our vigilance network
was unable to detect those holes. In this situation, one may consider (z*,y*) as
new information. But since we are not sure whether it corresponds to such a

situation, we do not use (z*,y*) as new information.

3. The point £* falls inside the boundary and the function rapidly changes around
it. In this case surely the point (z*,y*) carries new information, but again we
are not sure whether it corresponds to such a situation. Hence, here too we do

not use (x*,y*) as new information.

The next issue is then how to aggregate the output of the networks to infer the output
for a test point. We propose two schemes for the output aggregation. We call them

max aggregation and average aggregation. We discuss these schemes next.

183

Table 7.3: Algorithm Max Aggregation

Algorithm Max_Aggregation
Given, two trained composite networks A} = (le,/\/m)
and Ny = (N2, V,2) and a test point ;
feed z to both N} and N5;
call the output of NV,,1, Ny, Moo, Noo as 01, by, 04, by respec-
tively;
iflby < th and by < th)
Qutput “cannot be decided”;
elseif (by < th and by > th)

Output o0y;

elseif (by > th and by < th)
Output oy;

else Outpul L(0y + 03);

endif

7.4.1 Max aggregation

We have two trained composite networks Ny = (N1, N,1) and Ny = (N2, Vo).
These networks are trained by two different training sets T} and Rrs. Rpy contains
only those points of 75, for which the BIC values produced by A are low. In other
words, the points in Rpy are not expected to lie within the boundary of Ty. For an

arbitrary test point there can be four possibilities:

1. BIC of A is high and that of N3 is low.
2. BIC of N; is high and that of A7 is low.
3. BIC of both A; and N, are low.

4. BIC of both N} and A, are high.

Note that, case 4 will seldom arise for any training point in 7} U T, but this may

arise for a test point, as the boundaries represented by the two networks may have

184

Table 7.4: Algorithm Average Aggregation

Algorithm Avg_Aggregation
Given, two trained composite networks A} = (le,/\/m)
and Ny = (N2, V,2) and a test point ;

select ¢;
Feed z to both A} and A5;

Call the output of N1, Ny, Npa, Noo as 01,b1, 09, by te-
spectively;
iflmax(by,by) < th)

Qutput “cannot be decided”;

else
b(lzol -|—b(2102 .

Output W,

an overlap. Thus, for an arbitrary test point &, we infer the output as the output of
N1 for case 1. Similarly, for case 2, the output of N,,; is taken as the output. For
case 3 we infer that the output cannot be decided from the given network and for case
4 the output is computed as the average output of N,,; and A,;. In Table 7.3 we
summarize the procedure for generating output from the composite network using the

max aggregation.

7.4.2 Average Aggregation

In this case we calculate the aggregated output of the composite networks by an
weighted average. Let for a test point x, the output of N,,; and N2 be 0, and
0, tespectively and that of M,y and N,z be by and by respectively. If max(by,bs) is
low, then we conclude that the output cannot be decided. Otherwise, we compute the

aggregated final output, o as
. b(fol + b%OQ

b + b3 (7:5)

185

Here ¢ > 1 is a constant. Thus the aggregated output is weighted according to the
values of the BIC of the two networks. For a test point, if the BIC of a network is low
then the output of that network has a negligible effect on the aggregated output. Note
that, the choice of ¢ is not very crucial here. ¢ = 1 can be used. But for ¢ > 1

X b .
Ly > 2 if by > by

pd4pd b1 +b2
T (7.6)
T < btz ! 1< 02

Thus a bigger value of ¢ will lower the effect of the output of a network with lower
BIC and will increase the effect of the output of a network with higher BIC. For our
simulations we take ¢ = 2. The procedure for average aggregation is summarized in

Table 7.4.

7.5 Results

We present here results using various data sets to demonstrate the effectiveness of our
network. Through the experiments presented in this section we aim to demonstrate

two things:

1. A composite network N = (N,,, NV,) does meaningful generalizations, i.e., it
produces good generalization in the vicinity of the training data and it does not
respond to test points which come from areas in the input space that are not

represented in the training data.

2. Out method has incremental learning ability.

We present the results in three different subsections. In Section 7.5.1 we demonstrate
that our network can perform strict generalization using function approximation data
sets. In Section 7.5.2 we show that for classification problems also a vigilance network
and mapping network pair can be used. Finally, in Section 7.5.3 we show that our

network can support incremental learning.

We use four function approximation data sets for demonstrating the effectiveness of our
network. The data sets are 3-Peaks, Gabor, Normalized-Chem and Boston-Housing.
For two data sets, 3-Peaks and Gabor, we can show the generalization properties

pictorially and conclude that our network does a good job. But, for the two real life

186

data sets, Normalized-Chem and Boston-Housing, such a pictorial representation is
not possible as these data sets are in high dimension. For these data sets we define
some measures which help us to evaluate the performance of our network. Let T =
(X,Y) ={(zi,y;) : 1 = 1,2,..., N} be the training set and Xy, = {zl : 1 =1,2,.., M}
be the input vectors of the test set. A trained composite network N = (N, N,),
will either respond to a test point &} or will nor respond to it. Thus, the set X7, can
be partitioned into two disjoint sets X4 and XE. X2 contains the points for which
the composite network produces a response and X% includes the points for which the
composite network does not produce any response. Now, for each test point X! we

define a function A as:

K3

Ali) = min le; — zj]]. (7.7)

Hence, A(x!) represents the distance of &} from its nearest neighbor in X. Let a4 and
tar respectively denote the mean A for points which are accepted by the vigilance
network (i.e., points in X4) and the points which are rejected by the vigilance network

(i.e., points in XX) respectively. Thus,

1

paa = o7 2L Ale), (7.8)
XTel e,
and |
par = tog7 2 Al (7.9)
AP

For a test set Xp. if uaa < par then it is reasonable to assume that the network
serves the intended purpose. As, pas < ptar implies that on average the distance of
the points for which the composite network does not respond are away from the points

in the training set.

In all the simulations that we report here we use sigmoidal node functions for the
MLPs except for Gabor data, whose outputs lies in [-1 1]. For Gabor we use the tanh
function in the output nodes of the mapping networks. We train the MLPs using the
Lavenberg Marquardt algorithm [69]. Also as stated before, when a BVN is used we
take the threshold th = 0.5, and in case a RVN is used we use th = 0.368 ~ e 1.

187

7.5.1 Demonstration of Strict Generalization

3-Peaks

The 3-Peaks data set has been discussed in Section 7.2. We sample 80 points uni-
formly from the interval [0,100]-[40,60] and call them PTj. We test the generalization
capabilities of trained networks on a test set of 1000 equispaced points generated in

the interval [0,100].

As PT) does not contain any point in the interval [40,60] (refer Fig. 7.2), an ordinary
MLP is not expected to produce meaningful response for test points which lie in the
interval [40,60]. In Fig. 7.3 we have already shown that this is indeed the case. Fig. 7.3
clearly reveals that an ordinary MLP cannot do meaningful generalizations in the areas

of the input space which are not adequately represented by the training data.

A mapping network and vigilance network pair NP, = (N P,,1, NP,;1) trained with PT}
produces better generalizations. Figure 7.5 shows the generalizations for 4 different
composite networks trained with PT) when vigilance networks used are BVNs. Fig-
ure 7.6 shows the generalizations of 4 composite networks which use RVNs. Figures 7.5
and 7.6 reveal that the composite networks do not respond to test points which fall in
the area not represented in the training set. Note, the response is plotted only when
the BIC bears a value greater than or equal to th = 0.5 in case a BVN is used. And
in case a RVN is used, the output is plotted only if the BIC > 0.368.

Gabor

In this experiment we train the network with data generated from a 2-D Gabor func-

tion. The Gabor function that we use is:

1 o3 +ad

m€_2(0'5)2 008(27'['(1'1 + $2)) (710)

h(l’l, 1’2) =

A plot of the Gabor function is shown in Fig. 7.7.

We randomly generate 500 input output-pairs such that (1, 22) € [—0.5,0.5]x[—0.5, 0]U
[—.5,0] x [0,0.5]. We call this training set as GTj. A scatterplot of these points
is shown in Fig. 7.8. Additionally we generate 10201 points such that (xy,zq) €
[—0.5,0.5] x [=0.5,0.5], which we use as the test set. We call this test set as GT'e.

188

0.5

0.4

0.3

0.2

0.1

0.5

0.4

0.3

0.2

0.1

0 50 100 150
(a)
f 4l
it I
i .
N iy
iy R
SRV Vot
20 40 60 80 100

0.5

0.4

0.3

0.4

0.3

0.2

0.1

® #

I3 I3

i H

i o
9
20 40 60 80 100

Figure 7.5: Generalizations produced by NP, = (NP1, NP,1) (using BVN), when

trained with PTj for various initializations (the large dots denotes the training points).

0.5

0.4

0.3

0.2

0.1

0 20 40 60 80 100
(a)
0.5
0.4 & A

0.3

0.2

0.1

0.5

0.4

0.3

0.2

0.1

0.5

0.4

0.3

0.2

0.1

Figure 7.6: Generalizations produced by NP = (NP1, NP,;) (using RVN), when

trained with PTj for various initializations (the large dots denotes the training points).

189

Figure 7.7: Plot of Gabor function

05—

0.47.'
03p. . -
o.z—..
o1l
oi.:. RN .
-0.1
-0.2-*

—0.3[

“0ab L .o

05l L L " L o LI S L L
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Figure 7.8: Scatterplot of the input vectors in GT}

190

An ordinary MLP trained with GT}, produces erratic generalizations on the unrepre-
sented areas when tested with GT'e. The generalization produced by ordinary MLP
for 10 different initializations is shown in Fig. 7.9. In all the 10 cases, the right tail of
the function is distorted. For a few cases, such as 7.9(b), 7.9(f), 7.9(j), the distortion
is severe. With our method a composite network NGy = (NG 1, NG,) trained with
G'Ty produces better generalizations. Fig. 7.10 shows the generalizations produced by
NGy when the vigilance networks are BVNs. In each of the cases shown in Fig. 7.10,
we use the same architecture and initialization of the mapping network as the MLPs
shown in Fig. 7.9. Figure 7.11 shows generalizations produced by 10 different com-
posite networks trained using G'T}, when the vigilance nets are RVNs. Here too the
same architecture and initialization are used for the mapping network as in case of the
MLPs in Fig. 7.9. Figures 7.10 and 7.11 show that the composite networks refuse to

make any decision for inputs coming from the area not supported by the training data.

Comparing Figs. 7.10 and 7.11 we see that, using either of RVN and BVN the intended
purpose is served, but BVN gives better generalization. For all cases in Fig. 7.10 the
boundaries of the function are smooth which is not the case when a RVN is used
(Fig. 7.11). This occurs as the RVN partitions the training data set into hyperspherical
clusters, hence, for a two dimensional data set it approximates the boundary with
circular arcs. Figures 7.12(a) and (b) displays the functions in Fig. 7.10(a) and 7.11(a)
as seen from top. Comparing Fig. 7.12(a) and 7.12(b) we see that in Fig. 7.12(b) the
boundary is approximated with circular arcs and in Fig. 7.12(a) we get a more smooth

boundary.

Boston-Housing Data and Normalized-Chem Data

Boston-Housing data set [17] contains 506 samples in 13 dimension and it contains only
one output. We use a normalized version of this data set. We divide each input feature
and the output by the respective maximum value so that they lie between 0 and 1.
The Normalized-Chem data is discussed in Section 5.4.1. It has five input features and

one output. The total number of samples present is 70.

For Boston-Housing data, we create a random training-test partition so that the the
training and test set contains equal number of data points. We train 10 different

composite networks with different initializations. For each run we use a mapping

191

a5 '
N Y
.n'!

(a)

il 1)
(c)

i a8
(e)

il 1)
(2)

i a8
(1)

Figure 7.9: Generalization produced by an ordinary MLP when trained with GT; with

different initializations

= =

= oo |
/ ﬁ-\.
= ‘

nE b

= =
= o W
o
o

it (1]
0 05
®
0§ s
(h)
a5
0§ : :
it (1]

0§ 08

W)

192

a6

0§ t

ol O : o
@ o)
@ @
lilj %\ u:. \
A\
@ 0
lJi \
n.; v %
@ NG
-Jj_ ! \ u: o
o% v -_ a% ﬂ
ol s ,, O : : o
0 0

Figure 7.10: Generalization produced by 10 different initializations of NG (using a
BVN) when trained with GT;.

193

’r
€
re

ol &5 ol a8
a a a
g a5 g a5
(@) (b)
1 1
ah i ah 1
o \] \
0g " 0 '\
ol 5 il s
a a o a
s a0k g Ak
(© @
1 1
ah 1
o \
5 ‘
ol C T a8
a a a a
g s g aOf
O] ®
1 1
a5 3 a5
o \ o +
ol &5 il a8
a a a a
g a5 g a5
(2 (h)
1 1
ah 3
o \
a QU
il CT I a5
a a o a
s a0k g Ak
@) ()

Figure 7.11: Generalization produced by 10 different initializations of NG (using a RVN) when trained
with GT;.

194

Figure 7.12: (a) Fig. 7.10(a) as seen from top (b) Fig. 7.11(a) as seen from top

network with 10 hidden nodes and a RVN with 10 receptive fields. Table 7.5 shows
the results on the test sets for this data set. In Table 7.5, column 2 shows the number
of points for which the composite network makes a decision, while column 3 gives
the number of cases for which the network refuses to produce an output. Comparing
column 4 with column 5 we see that for all cases pa4 is significantly lower than pag,
indicating that the points for which the network made predictions are in the vicinity of
the training points. Columns 6 and 7 show the mean test error (the absolute deviation
of the network response from the true output) for accepted and the rejected points.
Comparing columns 6 and 7, we find that in all cases the network rejects those points
which produces more error. Note that, the composite network do not respond to
the rejected points (the points in X£), but in column 7 of Table 7.5 we report the
deviations of the outputs of the mapping network for the rejected points ignoring the
values of the BIC produced by the vigilance network. It is not expected that a trained
network will produce good results for test points which are away from the training set,
and comparing columns 6 and 7 we see that this is true for all runs with Boston-Housing

data.

From Table 7.5 we see that the number of rejected points are very low. Thus, conclud-
ing that the average distances of the rejected test points from their nearest neighbors
in the training set is always greater than those of the accepted points may not be
wise. To validate that in average pas < par, we perform another experiment. In
this experiment, we use all 506 points as training examples and test the networks with
1000 additional points generated in the 10% inflated hyperbox containing the training
data. Here too we train 10 different networks and test with different test sets each
containing 1000 points. Table 7.6 shows the results for the 10 networks. From columns

2 and 3 of Table 7.6 we see that the number of points rejected is much more than

195

Table 7.5: Run statistics for Boston-Housing on 50% training-test partition

Run No. | | X2 | | [XR| | pas | war Mean Test error Mean test error
for accepted points | for rejected points
1 245 8 0.155 | 0.324 0.090 0.149
2 246 7 0.152 | 0.369 0.092 0.212
3 249 4 0.158 | 0.395 0.068 0.386
4 245 8 0.153 | 0.439 0.078 0.187
5 251 2 0.152 | 0.280 0.068 0.304
6 246 7 0.157 | 0.330 0.115 0.140
7 243 10 0.160 | 0.317 0.098 0.397
8 246 7 0.158 | 0.454 0.445 0.602
9 247 6 0.161 | 0.425 0.438 0.585
10 248 5 0.158 | 0.246 0.153 0.219

Table 7.6: Run statistics for Boston-Housing on artificially generated test data

Run No. | | X2 | [|XR| | pas | war
1 86 914 | 0.810 | 1.242
2 155 845 | 0.862 | 1.243
3 103 897 | 0.804 | 1.242
4 135 865 | 0.864 | 1.230
5 108 892 | 0.818 | 1.231
6 88 912 | 0.799 | 1.233
7 56 944 | 0.812 | 1.218
8 143 857 | 0.873 | 1.235
9 118 882 | 0.796 | 1.241
10 139 861 | 0.851 | 1.233

196

Table 7.7: Run statistics for Normalized-Chem on artificially generated test data

Run No. | | X2 | [|XR| | pas | war
1 258 742 | 0.238 | 0.485
2 249 751 | 0.250 | 0.464
3 166 834 | 0.224 | 0.467
4 159 841 | 0.237 | 0.449
5 208 792 | 0.232 | 0.468
6 252 748 | 0.245 | 0.492
7 152 848 | 0.225 | 0.455
8 150 850 | 0.229 | 0.458
9 199 801 | 0.231 | 0.464
10 177 823 | 0.235 | 0.458

the number of points accepted by the composite network. This is due to the fact that
the input vectors are 13 dimensional, and we have only 506 training points. So, the
training points occupy only a small part of the total hyperbox bounded by the data.
And most of the artificially generated points fall outside the boundary of the training
sample. The scenario was different in case of Table 7.5 as there it is expected that
the test points follow the same probability distribution as that of the training points,
and hence in Table 7.5 only a few points got rejected. Comparing column 4 and 5 of
Table 7.6 we see that for all cases paa < ptar, which shows that the networks respond
only to points which are in the vicinity of the training points. As in this case the test
data are artificially generated, we cannot measure the deviation of the network output

from the true output.

Normalized-Chem contains only 70 points. So, we do not report the results on a
training-test partition for this data but use artificial points to test the network. Here
too we train 10 different composite networks, where the mapping networks use 10
hidden nodes and the RVN has 10 receptive fields. Fach network is tested with a
different test set containing 1000 points generated within the 10% inflated bounding
box containing the training data. Table 7.7 shows the performance of the 10 networks.

Comparing columns 4 and 5 of Table 7.7 we find that here too pas4 < par for all cases.

197

()

Figure 7.13: Generalizations on Dish-Shell using RVN (the four results are results

(b)
(d)

obtained by 4 networks with different initializations)

7.5.2 Results on Classification

We report results on three classification data sets using a RVN and mapping network
pair. The data sets we use are Dish-Shell (refer Section 6.3), Breast Cancer (refer
Section 5.4) and Wine (refer Section 5.4).

The Dish-Shell consists of data points in R? divided into two classes. The scatter
plot of Dish-Shell is shown in Fig. 6.9(a). The generalizations produced by 4 different
mapping network-RVN pairs are shown in Fig. 7.13. The four networks whose outputs
are shown in Fig. 7.13 use RVNs with 30 receptive fields and a mapping network with 10
hidden nodes. Here we have used an artificially generated array of 256 x 256(= 65536)
points uniformly covering the entire (inflated) rectangle bounding the data as the test
set (the same protocol was used in Section 6.3). In Fig. 7.13 black and white denote
the two classes and gray denotes the points for which the composite network did not
produce any response. The results in Fig. 7.13 clearly shows that the networks do not
respond to the test points which are away from the training points. But, we notice that
there are a few points within the dish (the black class) for which the network does not
respond. This is probably due to the fact that those areas were not well represented

by training data.

The performance of the composite network using RVN is also satisfactory for the 13

dimensional Wine data and 9 dimensional Breast-Cancer data. Tables 7.8 and 7.9

198

Table 7.8: Run statistics for Wine

Run No. | |[XZ.| | [XZ] | waa | par
1 86 3 0.390 | 0.560
2 &7 2 0.388 | 0.733
3 87 2 0.387 | 0.814
4 &7 2 0.398 | 0.618
5 84 5 0.377 | 0.606
6 87 2 0.406 | 0.767
7 88 1 0.391 | 0.912
8 88 1 0.402 | 0.781
9 82 7 0.394 | 0.723
10 88 1 0.399 | 0.912

show the run statistics of 10 networks trained and tested for Wine and Breast-Cancer
data respectively. For both these data sets we used equal number of points in the
training and test sets. Also we used 10 hidden nodes in the mapping network and 10
receptive fields in the RVN. Tables 7.8 and 7.9 clearly show that for all networks par
is significantly greater than a4, which means that the network refuses to respond to

data points which are far from the boundary of the training sample.

7.5.3 Demonstration of Incremental Learning

Now we show the incremental learning capabilities of our network using the 3-Peaks
and Gabor data sets. Here we assume that the data come in two phases. For 3-Peaks
the training data set PTj, generated in the interval [10,100]-[40,60], comes in phase
1. Also we sample 20 more points from [40,60], and call them PT;. PT; forms the
training data set for the second phase. To test the incremental learning capability
we train two networks NP, = (NP1, NP,;) and NPy, = (NP2, NP,3) using PTy
and PT, respectively. The generalization performance of NP and NP, is shown in
Figs. 7.14(a) and (b) respectively. Figures 7.14(c) and (d) show the generalization by
aggregating the outputs of NP, and N P, by max aggregation and average aggregation
respectively. We find that for this data set both aggregation operators produce good

199

Table 7.9: Run statistics for Breast-Cancer

Run No. | | X2 | [|XR| | pas | war
1 341 1 2.160 | 8.307
2 341 1 1.999 | 5.916
3 341 1 2.054 | 9.165
4 340 2 2.016 | 7.083
5 337 5 2.081 | 8.517
6 334 8 2.016 | 7.058
7 338 4 1.923 | 7.854
8 341 1 2.131 | 5.916
9 341 1 2.083 | 9.165
10 338 4 2.119 | 6.730

generalization; perhaps the average aggregation operator generates a little more smooth
output. Here we use BVN as the vigilance network. Figure 7.15 shows the same results
when a RVN is used. In this case, clearly the average aggregation operator results in

better generalization.

For Gabor data set we take (G1'1; that is used in Section 7.5.1 as the data set in
phase 1. Also we generate another set of 200 input-output pairs such that (1, 23) €
[0,0.5]x[0,0.5]. We call this set as GG'Ts, the training set for the second phase. With GTy
and G'Ty, we train two networks NGy = (NG, NGy1) and NGy = (NG, NGoa)
respectively. We use BVN as the vigilance network. The generalization produced by
NGy and NG5 on the test data is shown in Figs. 7.16 (a) and (b). Figures 7.16 (c)
and (d) display the aggregated output of the two networks by Max aggregation and
Average aggregation, on the same test set GT'e. Both aggregation schemes produce
good generalizations. Figure 7.17 shows the results when RVN is used as the vigilance
network. Figures 7.16 and 7.17 demonstrate that in both cases the networks are capable

of incremental learning.

200

0.5

0.4

0.3

0.2

0.1

0.5

0.4

0.3

0.2

0.1

50 100 150

()

0.5

0.4

0.3

0.2

0.1

0.5

0.4

0.3

0.2

0.1

50 100 150

50 100 150

(d)

Figure 7.14: Results on 3-Peaks by using BVN: (a) Generalization of NP, (b) Gen-
eralization of NP, (c) Generalization of the aggregated networks NP and N P, when

aggregated by Max aggregation (d) Generalization of the aggregated networks NP

and N P, when aggregated by Average aggregation

0.5

0.4

0.3

0.2

0.1

0.4

0.3

0.2

0.1

.
BV
0

0

60 80 100 120

0.5

0.4

0.3

0.2

0.1

o)

0

0.5

0.4

0.3

0.2

0.1

o

Figure 7.15: Results on 3-Peaks by using RVN : (a) Generalization of NP, (b) Gen-
eralization of NP, (c) Generalization of the aggregated networks NP and N P, when

aggregated by Max aggregation (d) Generalization of the aggregated networks NP

and N P, when aggregated by Average aggregation

’ 0% a5 ’ ' 0% 05 ’
(a) (b)
ol § il il
’ 0 a8 ! ' g s !
() (d)

Figure 7.16: Results on Gabor by using BVN (a) Generalization of NG,

(b) Generalization of NG, (c) Generalization of the aggregated networks NG; and NG,
when aggregated by Max aggregation (d) Generalization of the aggregated networks
NG, and NG, when aggregated by Average aggregation

o v -k o
0 i 0 v
ol § il il
’ 0 a8 ! ' g s !
(a) (b)
ol i il il
’ 0% a5 ’ ' 0% 05 ’
(©) (d)

Figure 7.17: Results on Gabor by using RVN (a) Generalization of NG,

(b) Generalization of NG, (c) Generalization of the aggregated networks NG, and NG,
when aggregated by Max aggregation (d) Generalization of the aggregated networks
NG, and NG, when aggregated by Average aggregation

202

7.6 Conclusions and Discussion

In this chapter we extended our methodology in Chapter 6 for function approximation
problems. Our method is based on training two nets performing entirely different
tasks. One network (the vigilance network) decides whether a test point lies within
the boundary of the training sample and the other (the mapping network) learns the
input-output mapping. Merging the output of these two networks we decide the output

for a test point.

The crux of the method lies in the scheme to train the vigilance network. Training of the
vigilance network has been considered by two different approaches. The first approach
depends on an algorithm to generate points outside the boundary of the training set.
This training scheme becomes computationally very expensive for high dimensional
data sets. Hence, we have proposed another method to train the vigilance network,
which does not need any additional points for training but it produces almost the same
results. This new method of training the vigilance network can be used for classification
problems also. For classification problems, we recommend use of RVN only for high
dimensional data because our use of RVN for classification has certain limitations over
the method discussed in Chapter 6. The network developed in Chapter 6 has capability
to detect data points which lie in the area of overlap of classes and hence, gives us
more information. But the mapping network and vigilance network pair discussed in
this chapter cannot do so. Further investigations are needed to make it more useful

for classification problems.

203

Chapter 8
Enhancing the Generalization Ability of

Multilayer Perceptron Networks!

8.1 Introduction

In Chapters 6 and 7 we addressed one facet of generalization in MLPs. We showed
through experiments that a conventional MLLP may not produce desirable results for
test points which lie far from the boundary of the training set. We also proposed
some new techniques to train MLPs which make them perform strict generalization,
i.e., these networks do not produce any response for points which are atypical to its
training points. In this chapter we shall deal with the problem of overfitting in MLPs.
The method that we discuss here has particular importance in situations where we

have insufficient training data.

Given a training set T' = {(z;,y,),¢ = 1,..., N}, where & is the input and y is its output,
there are plenty of procedures available in the literature which use T' to form a predictor
function (W,). W is a parameter vector which is decided using T'. A very popular
procedure of obtaining the predictor ¢ is by training a feed-forward neural network (like
a multilayer perceptron (MLP)) with 7. In this case the parameter vector W becomes
the parameters (weights and biases) of the neural network, which are learned with the
aid of the training set T'. An optimization procedure selects a W minimizing the error
on the training set. The operational performance measure for the trained network
is the error on future data outside the training set, also known as the generalization

error. Practice has shown that a direct minimization of the training error for a given

!Some materials of this chapter have been published in [30].

204

fixed training set by backpropagation or similar type of training algorithm does not
necessarily imply a minimization of the generalization error. A common means to
bypass this difficulty is to use a validation set to judge the generalization ability and
decide on the architecture of the network or the stopping time for training. To improve
generalization researchers have followed many different approaches including pruning
[196], weight sharing [40], and complexity regularization [189, 190] (refer to the short

survey in Section 2.2).

Generally, an MLP is trained using a finite training sample. The available training
data are reused in every epoch and as a result, the neural network “concentrates” more
and more on these points and this often results in a bad generalization. A probable
solution to this problem would be to have an infinitely large training set which is seldom
realizable in practice. Here we propose a method to expand the training set to any
required size, for better generalization. A related concept, suggested in [82], adds noise
to the training set. In [82] the authors considered adding white noise independently
to the input and output vectors to generate new training samples. In [100], Karistinos
and Pados gave an algorithmic procedure for random expansion of a given training
set. They proposed a locally most entropic estimate of the true joint input-output
probability density function of the training sample to generate new training samples.
They argued that the method in [82] is an extreme special case of that in [100]. Here
we present a scheme to generate new input vectors that are distributed in the same
fashion as the training samples. We use a k-nearest neighbor heuristic to generate the
outputs of the generated input vectors. Our experiments demonstrate that our method
can produce nice generalizations. Our method is different from that in [82, 100] as it

does not require an explicit density estimation, which is known to be unstable [226].

8.2 Expanding the Training Set: The Function Approxima-

tion Case

It is assumed that the training data are obtained from an unknown time invariant
probability distribution. Thus, expansion of the training data can be best done if
we attempt to learn the unknown probability distribution from which the data were
generated and generate additional samples from the obtained distribution. Estimating

probability distributions from data is an ill posed problem whose solutions are usually

205

unstable and tends to become inaccurate with the increase in dimensionality of the
data [226, 237]. Here we do not attempt to learn the probability distribution of the
data but we exploit its spatial distribution to generate additional data points which

maintains the spatial distribution of the given training set.

First we consider FA type problems. Let us denote the input vector &; augmented with
its output y; (which may be single valued or a vector, without loss of generality we
consider a single valued output) by &;. We also assume that y is continuous. To each
data point (x;,y;) in T, we assign a probability p; which is a function of the density of
input data points in the neighborhood of ;. We model p; using the mountain potential

which has been used successfully for numerous clustering applications [165, 241]. Thus
1 N

pi = 7 2 eap(=|lzi —), (8.1)
=1

where Z is a normalizing constant chosen to make 3%, p; = 1. Our algorithm samples
a point z; from T" with probability p;. Then it finds the k nearest neighbors of z;, we

~k

call them &;,%7,...,2¢. While computing the nearest neighbors we consider the point

~1

.
Z; also, i.e., ; = x;. A new point &,., is generated as a convex combination of the

ok

. ~1 ~2 .
points ;,x;,...,x;, l.e,

k .
%new — Z)\]%37 (82)
7=1

where

No=1, 0<A <1

j=1
The A;’s are randomly generated. Note that, & represents a new input-output pair but
the probability distribution assumed for sampling, depends on the input vectors only.
In each step, our algorithm samples a point according to the density, and generates
a point in its neighborhood. So, more points will be generated in dense regions and
less points in the sparse regions. This algorithm has a single user defined parameter k

which denotes the number of nearest neighbors considered.

An MLP is trained with the original training set 7' in the first epoch and in the
subsequent epochs it faces points generated by the above described algorithm. Thus,

in each iteration, the MLP faces a new set of points.

206

8.3 Expanding the Training Set: The Classification Case

The method of generation of points described in the previous section can be applied
for classification problems also with minor modifications. In case of classification, the
output vectors are class labels. If we have at hand a ¢ class problem, we encode the
class labels by ¢ dimensional hard label vectors in Np;(refer eq. (4.3)). In other words,
if a feature vector belongs to class 7, then the i"* component of the output vector is
1 and the other t — 1 components are all zero. Thus, an input-output pair can be

represented as (&;,y;), ;, € R and y, € Np;.

We follow the same strategy as in Section 8.2, and assign probabilities to each data
point in the training set based on the their spatial positions (refer eq. (8.1)). Next
we sample a point x; with probability p;. We find the k nearest neighbors of &; and
denote them by z!, 2%, ... x¥ Note that, unlike the FA case, here we are not using the

joint input-output vectors to find the nearest neighbors, but using the input vectors

only. A new input vector is generated by a convex combination of z!, 2% ... z¥ and
its class label as a convex combination of y},y? ... y¥. Where yf is the class label
corresponding to xf Thus,
k
Trew = Z)‘]$Z7 (83)
=1
k .
ynew = Z)\]y37 (84)
i=1

A;s are randomly generated. The same set of A;s are used in eq. (8.3) and eq. (8.4).
And

Y

No=1, 0<A <1

J=1
The labels generated for the new points are convex combination of hard labels, hence

they are fuzzy labels.

The input vector of the new generated point is a combination of £ original points. The
contribution of a particular point in generating the new point is decided by the weight
Aj. If a point xf has a greater A; associated with it then it contributes more to the
new point. The labels of the individual points are also weighted by the same factor
to generate the label for the new point. Thus, if a vector xf has more share in the

new point then the label vector of the new point will also be more close to the label

207

of xf If all £ nearest neighbors of a sampled point have the same label then the label
generated for the new point will be the same as that of the k& neighbors. Otherwise,

the label vector will be a fuzzy label vector with appropriate weights.

8.4 Results

Here we present results on one function approximation and three classification prob-

lems. The data sets we use for simulation are Sine, Iris, Breast-Cancer and Bupa.

We compare our results with the methods in [82, 100]. The method in [100] assumes
a mixture of Gaussians model to estimate the joint probability distribution of the
input-output samples in the training set. To determine the number of modes in the
distribution, they apply a clustering algorithm on the data. The number of clusters is
chosen so that the Gaussian mixture exhibits the minimum differential entropy. For
high dimensional data the method involves computation of multiple integrals using the
Monte-Carlo method, which is computationally expensive. Also, their method cannot
be applied directly to classification problems. So, we compare our method with that

of [100] only for the function approximation problem.

The method in [82] finds a kernel density estimate for the input-output pairs in case
the outputs are continuous and for classification problems they compute the class
conditional kernel density estimates. The authors in [82] provided certain guidelines
to choose the bandwidth of the Gaussian kernels including a method of cross validation
which was first proposed by Duin [51]. For implementing the method in [82] we use the
method of cross validation [51] to decide the bandwidth of the kernels. We compare
our method with the method in [82] for both function approximation and classification

problems.

In all the simulations, MLP networks with sigmoidal activation functions are used
and the networks are trained using the Lavenberg Marquardt algorithm [69]. In the

following subsections we present the results.

208

8.4.1 Results on Function Approximation
Sine data

We consider the problem of learning a noisy sine curve [100]
flz)=04sin 2405, =€R. (8.5)

As in [100], we generate 36 input-output pairs &, = (a;,y,;), ¢ = 1,..,36, with a;
generated uniformly on [—7, 7] and y; = f(x;) + r;, where r; ~ N(0, 0?) accounts for

the noise with variance o = 0.01.

With this data sets we trained conventional MLPs, where the same set of 36 points
were repeated in each epoch. Also we trained MLPs using points generated according
to the methods in [100], [82] and by our method. In each run we fix an initialization of
an MLP and train networks with all four methods. We make 10 such runs and name
them as (a)-(j). Hence, in total we train 40 networks. Fach of these 40 networks has
an architecture of 1:10:1. For implementing the method in [100] we consider the data
as a mixture of 11 Gaussians (the same was considered in [100]). For the method in
[82] we use a bandwidth of & = 0.1509 for the Gaussian kernels. This value of h is
obtained by a method of cross validation [51]. For generating points using our method

we used k£ = 5.

Table 8.1 gives the sum of square error (SSE) of the 40 networks. Fach row of Table
8.1 represents performance of the four methods of training keeping the initialization
fixed. The last two rows of Table 8.1 give the mean and standard deviation of the
performance of the 10 networks trained by a particular method. The generalizations

produced by the 40 networks whose performance is depicted in Table 8.1 are pictorially
shown in Figs. 8.1-8.4.

Figure 8.1 reveals that for all the initializations, an MLP trained by the conventional
method yields pretty bad generalization. The generalization is so bad because we have
chosen 10 hidden nodes, which is pretty high, given the size of the data set. Hence, in
almost all cases of Fig. 8.1 we see that the network has tried to memorize the training
data points. The poor performance in all cases is also revealed by the high SSE values
as depicted in column 2 of Table 8.1. Figure 8.2 shows a better scenario, as we see

that in this case the generalizations produced are consistent and more smooth than

209

Table 8.1: Results on Sine Data: The sum of square error on test set for networks

trained with different methods for 10 different initializations

‘ run No. ‘ Ord. MLP. ‘ Method in [100] ‘ Method in [82] ‘ our method

(a) 162.31 37.40 23.23 20.39
(b) 77.78 62.46 103.29 41.51
(c) 116.70 23.31 86.18 20.39
(d) 88.58 32.28 115.00 27.12
(e) 148.62 31.52 124.68 21.69
(f) 106.55 38.12 65.12 16.07
() 154.59 25.83 115.94 13.64
(h) 56.59 39.76 62.36 20.77
(i) 178.52 44.79 97.19 42.87
() 69.44 25.75 16.90 17.86
Mean 115.96 36.12 80.98 24.23
Std. Dev. | 42.95 11.55 38.17 10.11

those shown in Fig. 8.1. The generalizations produced by the method in [82] are shown
in Fig. 8.3. Figure 8.3 reveals that the generalizations produced by the networks are
better than those in Fig. 8.1 but are worse than those in Fig. 8.2. Figure 8.4 shows the
generalizations produced by networks trained using our method of generating points.

All the 10 networks in Fig. 8.4 produces consistent generalizations and they are better

than those in Figs. 8.1-8.3.

From Table 8.1 we see that both the mean and standard deviation of the 10 networks
trained by our method are much less compared to other methods. From Table 8.1 we
can conclude that for Sine data our method is much better than a conventional MLP

and the method in [82], and it is marginally better than the method in [100].

8.4.2 Results on Classification

We test the proposed method on three classification data sets, namely, Iris, Breast-
Cancer and Bupa. Iris data set is discussed in Section 4.6.1 and the Breast-Cancer
data set in Section 5.4. The Bupa data [17] contains 345 data points in six dimension.

The data points are divided into two classes.

210

output
12 target
+__training points
1
0.8
0.6
0.4
0.2
%
14
— output
12 target
+__training points
1
0.8
0.6
0.4
0.2
94 -2 2
(¢)
14
output
12 target
training points
1
0.8
0.6
0.4
0.2
94 -2 2
(e)
14
output
12 target
+__training points
1
0.8
0.6
0.4
0.2
94 -2 2
14
output
12 target
+__training points
1
0.8
0.6
0.4
0.2
%

211

14
output
12 target
+__training points
1
0.8
0.6
0.4
0.2
% -2
1.4
— output
12 target
+__training points
1
0.8
0.6
0.4
0.2
% -2
14
output
12 target
training points
1
0.8
0.6
0.4
0.2
% -2
14
output
12 target
+__training points
1
0.8
0.6
0.4
0.2
%
14
output
12 target
+__training points
1
0.8
0.6
0.4
0.2
%

Figure 8.1: Generalizations on Sine data by MLP trained by conventional method

0.8]

0.6

0.4

0.2

—— output
target
+__training points

0.8]

0.6

0.4

0.2

output
target
+ _training points

0.8]

0.6

0.4

0.2

output
target
+ _training points

0.8]

0.6

0.4

0.2

— output
target
+ _training points

0.8]

0.6

0.4

0.2

output
target
training points

Figure 8.2: Generalizations on Sine data by MLP trained by points generated by the

method in [100]

1.4
output
12 target
+__training points
1
0.8
0.6
0.4
0.2
% -2
14
output
12 target
+__training points
1
0.8
0.6
0.4
0.2
% -2
14
output
12 target
+__training points
1
0.8
0.6
0.4
0.2
% -2
14
— output
12 target
+__training points
1
0.8
0.6
0.4
0.2
% -2
14
output
12 target
training points
1
0.8
0.6
0.4
0.2
% -2

212

0.8]

0.6

0.4

0.2

— output
target
+__training points

0.8]

0.6

0.4

0.2

output
target
+ _training points

0.8]

0.6

0.4

0.2

output
target
+ _training points

0.8]

0.6

0.4

0.2

— output
target
+ _training points

0.8]

0.6

0.4

0.2

output
target
training points

Figure 8.3: Generalizations on Sine data by MLP trained by points generated by the

method in [82]

1.4
—— output
target
12, training points
1
0.8
0.6
0.4
0.2
% -2
14
output
12 target
+__training points
1
0.8
0.6
0.4
0.2
% -2
14
output
12 target
+__training points
1
0.8
0.6
0.4
0.2
% -2
14
— output
12 target
+__training points
1
0.8
0.6
0.4
0.2
% -2
14
output
12 target
training points
1
0.8
0.6
0.4
0.2
% -2

213

1.

1.2

4
— output

target
+ __training points

0.8]

0.6

0.4

0.2

1.4

1.2

— output
target
+ training points

0.8]

0.6

0.4

0.2

1.4

1.2

— output
target
+ training points

0.8]

0.6

0.4

0.2

1.2

— output
target
+ training points

0.8]

0.6

0.4

0.2

1.4

1.2

— output
target
+ training points

0.8]

0.6

0.4

0.2

Figure 8.4: Generalizations on Sine data by MLP trained by points generated by our

proposed method

1.4
— output
1.2] target
+ training points
1 A
0.8
0.6
0.4]
0.2]
.
94 -2 0 2 4
1.4
— output
1.2] target
+ training points
1
0.8
0.6
0.4]
0.2]
.
94 -2 0 2 4
1.4
— output
1.2] target
+ training points
1
0.8
0.6
0.4]
0.2]
.
94 -2 0 2 4
1.4
— output
1.2] target
+ training points
1
0.8
0.6
0.4]
0.2]
.
% -2 0 2 4
1.4
— output
1.2] target
+ training points
1
0.8
0.6
0.4]
0.2]
.
94 -2 0 2 4

214

Table 8.2: Bandwidths used for the classification data sets for implementing the method
in [82]

Data Set H Class ‘ Bandwidth
Iris Class 1 0.220
Class 2 0.170
Class 3 0.160
Breast-Cancer || Class 1 0.510
Class 2 1.590
Bupa Class 1 0.069
Class 2 0.062

We did a 10 fold cross validation for all data sets. In 10 fold cross validation the data
set is randomly divided into 10 equal sized subsets. In each step one subset is left out
and a network is trained with the data points in the remaining 9 subsets. The trained
network is then tested with the data points in the left out subset. This can be carried
out 10 times, and each time the network gets trained and tested with different data

points.

In our simulations, we train MLPs using the conventional method, the method in [82]
and our proposed method. Using our method we train MLPs with £ = 3.5,7 and 10.
For each of the methods, for each training-test partition we train 10 networks with
different initializations. Hence by each method we train a total of 100 MLPs. For
each of the MLPs we use 10 nodes in the hidden layer. The kernel bandwidths used
for different data sets for different classes that we used for implementing the method
in [82] are shown in Table 8.2. We obtained these bandwidths using the method of

cross-validation [51].

Table 8.3 shows the mean misclassification of the 100 trained networks on the test
data sets. The second and third rows of Table 8.3 show the mean misclassifications
obtained by conventional MLP and by the method in [82] respectively. The remaining
four rows show the mean misclassifications produced by our proposed method using
various values of k. Table 8.3 shows that for all data sets and almost for all values of

k our method produces lesser number of misclassifications compared to a conventional

215

Table 8.3: Mean misclassification on different data sets using different methods

Iris Breast-Cancer | Bupa

Conventional MLP | 3.66% 5.29% 35.15%
Method in[82] 3.73% 4.51% 34.57%
Our Method, k =3 | 3.53% 4.15% 32.92%
Our Method, k =5 | 3.20% 4.09% 32.14%
Our Method, k=7 | 4.13% 4.40% 31.88%
Our Method, &k = 10 | 3.40% 4.21% 31.79%

Table 8.4: Standard deviation of misclassifications on different training-test partitions

of Iris data

| 1 o |m|w | v |vi|vo|vin| X | X |

Ord MLP 0.31 | 051 | 0.00 | 0.67 | 0.42 | 048 | 0.42 | 0.31 | 0.42 | 0.31
Method in[82] 0.00 | 051 | 0.00 | 052 | 0.67 | 0.73 | 0.67 | 0.51 | 0.42 | 0.00
Our Method, k=3 | 0.00 | 0.42 | 0.31 | 0.52 | 0.42 | 0.56 | 0.42 | 0.31 | 0.00 | 0.31
Our Method, k=5 | 0.00 | 0.42 | 0.00 | 0.48 | 0.31 | 0.69 | 0.73 | 0.31 | 0.00 | 0.00

Our Method, k=7 | 0.00 | 0.69 | 0.31 | 0.52 | 0.52 | 0.31 | 0.73 | 0.52 | 0.00 | 0.00
Our Method, £ =10 | 0.00 | 0.51 | 0.00 | 0.51 | 0.52 | 0.31 | 0.70 | 0.42 | 0.00 | 0.00

MLP and the method in [82]. Only in case of Iris data, when k = 7 our method
produces more misclassifications than the other two methods. In case of Iris and
Breast-Cancer k = 5 gives the best performance, while for Bupa, the best performance

is obtained when k& = 10.

In Table 8.4 we show the standard deviation of the number of misclassifications pro-
duced by the 10 runs in each training-test partition of Iris by the three methods.
Tables 8.5 and 8.6 include the same statistics for the other two data sets. The roman
numbers in the title of each column of Tables 8.4,8.5 and 8.6 depict the training-test
partition number. In these tables we write the standard deviation in bold face if it is

equal to or lower than that produced by an ordinary MLP or by the method in [82].

From Table 8.4 we see that except for £ = 7 (row 6) in each row the number of bold
faced entries in nine. For & = 7 the number of bold faced entries is six. Thus, for Iris

data, in most of the cases, the networks trained by our method are more or equally

216

Table 8.5: Standard deviation of misclassifications on different training-test partitions

of Breast-Cancer data

| | 1 o |m|w | v |vi|vio|vin| X | X |
Ord MLP 179 | 194 [150 [150 [164 [073 [070 | 1.05 | 1.50 | 0.96
Method in[82] 183 | 223 [159 [122 | 1.13 | 056 | 0.99 | 0.67 | 0.99 | 0.67

Our Method, k=3 | 2.37 | 1.33 | 0.82 | 1.10 | 1.03 | 0.97 | 0.99 | 0.63 | 1.19 | 0.87
Our Method, k=5 | 3.39 | 0.78 | 0.51 | 1.03 | 0.63 | 0.94 | 0.87 | 0.94 | 0.99 | 0.51
Our Method, k=7 | 2.66 | 1.24 | 0.73 | 1.42 | 1.50 | 0.66 | 0.69 | 0.84 | 0.48 | 0.67
Our Method, k=10 | 1.44 | 1.76 | 1.15 | 0.94 | 1.31 | 1.17 | 0.82 | 0.67 | 0.69 | 0.81

Table 8.6: Standard deviation of misclassifications on different training-test partitions

of Bupa data

| 1 o |m|w | v |vi|vio|vin| X | X |

Ord MLP 275 | 2.67 | 285 | 1.95 | 1.87 | 353 | 1.26 | 1.89 | 2.22 | 2.58
Method in[82] 348 | 497 | 1.37 [042 | 069 | 253 | 1.61 | 2.60 | 177 | 1.77
Our Method, k=3 | 3.25 [1.70 | 1.95 | 1.59 [1.25 [1.54 | 1.05 | 0.87 | 1.79 | 1.06
Our Method, k=5 | 2.20 | 2.55 | 1.25 | 1.41 | 1.33 | 1.89 | 1.39 | 1.28 | 2.35 | 1.01
Our Method, k=7 | 3.44 | 2.27 [1.10 [0.99 | 0.94 [1.05 | 0.94 | 1.41 | 1.77 | 1.88
Our Method, k=10 | 2.99 | 1.88 [1.63 | 1.19 | 1.10 [1.75 | 2.04 | 0.91 | 1.59 | 1.39

217

consistent than the networks trained by the methods in [82] or an ordinary MLP. As
revealed by Tables 8.5 and 8.6, the same is true for Breast-Cancer and Bupa data sets.
In fact for Bupa data our network gives an excellent performance as only in two (out of

forty) cases our network produces a standard deviation greater than both conventional

MLP and MLP trained using the method in [82].

Thus, Tables 8.3-8.6 show that for all the three data sets considered our method
produces lesser misclassifications and more or equally consistent generalizations as

compared to MLPs trained by the conventional method and MLPs trained using the
method in [82].

8.5 Conclusions and Discussion

We presented a simple but effective method to improve the generalization ability of an
MLP for function approximation problems. The proposed method involves expanding
the available training set and then using new data points in each epoch to avoid
overfitting. Our method does not depend on any explicit density estimation technique
to generate additional points. It uses a simple k nearest neighbor heuristic which
generates additional points maintaining the spatial distribution present in the original
data set. The method depends only on a single user defined constant, i.e., the number
of nearest neighbors considered. We have also modified our method to deal with

classification problems.

The simulation results show that the performance of our system is always better than
an MLP trained by the actual data set and also for most cases it is better than other
techniques, which use additional points generated through explicit density estimation
to train MLPs. Thus, from our limited experiments we may conclude that the points
generated by our methods follow the same distribution as that of the original training
data set and can be suitably used to avoid overfitting in MLP. However, a formal

verification of this fact is needed.

218

Chapter 9

Conclusions and Future Work

9.1 Conclusions

This thesis dealt with theories and methodologies for designing efficient systems from
data using neural and neuro-fuzzy frameworks. Efficiency of a system built from data
depends not only on the prediction capability of the system but also on many other
factors. We identified the following characteristics that can make a system efficient:
readability, low complexity, ability to do feature selection, generalization ability, ability
to say “don’t know”, and incremental learnability. We have dealt with the problem
of feature selection and have developed systems which have an inherent property of
selecting suitable features when they get trained. We have also designed systems
capable of online sensor selection. It is worth mentioning here that reducing the number
of features also reduces the design cost and complexity as well as the running cost of
the system. The use of a smaller feature set also helps to enhance readability. Some
of the systems developed in this thesis have the capability to say “don’t know” when
appropriate and also have incremental learnability. In the preceding six chapters we
have developed several methodologies to design systems from input-output data which
are efficient in some respect. In each chapter we have drawn conclusions regarding the
methods proposed and the results presented therein. In this chapter we summarize

those again highlighting the main contributions in this thesis.

Chapters 3-5 dealt with a new paradigm for feature selection which we termed as online
feature selection. The online feature selection scheme is unique in the sense that it is
integrated with the main learning task. Thus, it equips a system to select the relevant

features as it gets trained. This produces better systems, as they use less number of

219

features and consequently have low complexity and better generalization abilities.

In Chapter 3 we proposed an online feature selection scheme for designing function
approximation type systems in a neuro-fuzzy framework. The system is realized using
a five layered network. FEach layer of the network performs specific task of a fuzzy
rule-based system. The system is different from other neural-fuzzy systems for its
inherent ability of feature selection. Feature selection is realized using feature gates
modeled through special types of functions which we call modulator functions. The
feature modulators are so designed that the training process restricts the entry of
irrelevant /bad features into the network. The network starts with all possible rules
and in subsequent phases it gets pruned to a smaller size. After completion of training
we get a small but adequate network which represents a reduced rule base. The rules
that are represented by the various parameters of the network can be easily extracted
from the network. The system is tested on synthetic and real data sets and found to

perform well for both function approximation and feature selection tasks.

The methodology developed in Chapter 3 was modified in Chapter 4 to cope with the
classification task. The structure of the classification rules are different from the rules
governing a function approximation system. Hence, the structure of the classification
network is different from that of the function approximation network. For the classifi-
cation network we have considered a few issues that are also applicable to the function
approximation network. For example, we considered the pruning of less used rules,
that are never fired by any data point or are fired only by a few data points. We also
considered tuning of the input membership functions, and have pointed out exactly
when the input membership functions should be tuned to avoid conflict between the
update of membership parameters and the feature modulators. The classification net-
work is tested on a set of benchmark problems and the results obtained are compared
with other methods available in literature. We found that with almost all data sets our
results are better than the other reported results, though our system uses less number

of features.

Chapter 5 dealt with the feature selection problem in a different setting. There, we
have assumed that the feature set can be partitioned into groups according to the
sensory origin of individual feature or by some other criteria. And, our method aims
to find the bad group of features, not a bad individual feature. This has immediate

applications in designing many real life systems. For most real life systems, data

220

are collected through sensors, and generally from a single sensory information several
features are computed. The designer often wants to reduce the number of sensors.
Thus, removing a sensor means removing the entire set of features computed from
that sensory information. This leads to a new problem of sensor selection or group
feature selection. Selecting individual feature is a special case of group feature selection.
Given any grouping of features, if we can find the groups that are not required for a
particular task, then we can discard that group or the sensor associated with that group
of features. This can give rise to savings in terms of hardware cost and computation
cost. This problem of sensor selection or group feature selection has been addressed
using two feed-forward architectures called GFSRBF and GFSMLP which are modified
versions of the conventional RBF and MLP networks. We have shown that these
modified versions of the RBF and MLP networks retain their universal approximation
properties. The experimental results show that these networks perform reasonably well
both for classification and function approximation problems. We have also studied
experimentally the utility of various features selected by GFSRBF and GFSMLP. Our
experiments show that for a given data set, the GFSMLP and GFSRBF select different
subsets of features. The features selected by GFSRBF are best suited for RBF networks
and those selected by GFSMLP are best suited for MLP networks. This reconfirms
the fact that the suitability of the features not only depends on the task but also on
the tool that is used to do the task.

In Chapters 6-8 we have addressed the problem of generalization in MLP networks.
Multilayer perceptron networks are widely used to realize nonlinear mappings between
a set of inputs and outputs. Also, it is believed that MLPs can generalize on unknown
data with reasonable accuracy. In Chapters 6 and 7 we demonstrated that the general-
ization capability of MLPs is often over estimated and they can generalize well only on
test points which are in the vicinity of the training data. The outputs of an MLP for
points which lie far away from the boundary of its training sample are never reliable.
This fact, though known, is seldom considered while training or using neural networks.
An user who gets a trained neural network may (usually will) not have the training
data with him (her). Thus, it is not possible for the user to know about the domain in
which the network can perform meaningful generalization. The experiments reported
in Chapters 6 and 7 clearly demonstrate that a trained MLP can produce very high

response (for classification tasks) on a test point which is far away from the boundary

221

of the training data. And in most cases such responses are useless, i.e., they do not
provide acceptable generalization. Ideally, a trained network must not respond to test
points which lie far away from its training sample. If a network is equipped with this

feature we call it to have a strict generalization capability.

In Chapter 6 we proposed a scheme which realizes strict generalization for classification
problems. Our method utilizes a scheme to generate additional training examples
outside the boundary of each class, and trains a subnet for each class. The subnets
are then merged to solve the multiclass problem. This method of training enables an
MLP to perform strict generalization. Additionally, it equips an MLP to deal with
overlapped classes in a better manner. An MLP trained by our method can signal
whether a test point lies in an area of overlap between two or more classes. Thus, the
output produced by our method is more interpretable and useful. Another important
advantage of this method is that it equips an MLP with incremental learning ability.
New knowledge contained in a new training set can be easily incorporated into an MLP

trained by our method without affecting its previous memories.

In Chapter 7 we addressed the problem of strict generalization for function approxima-
tion tasks. The method developed in Chapter 6 cannot be directly applied to function
approximation problems. For function approximation task, we train two networks to-
gether. One of the networks detects whether a test point lies within the boundary
of the training set, we call this the vigilance network. The other network is an usual
MLP which learns the input-output mapping present in the data. The final output
is produced by a suitable combination of the outputs of the vigilance and the map-
ping networks. We have proposed two schemes to train the vigilance network. One
scheme requires additional training examples generated outside the boundary of the
training sample (as in Chapter 6). The other method does not require any additional
training examples but it builds receptive fields around clusters of data points in the
training set. The responses of the receptive fields for a test point are then used to
decide whether the test point is within the boundary of the training sample or not.
We have also demonstrated that a mapping network, vigilance network pair can be
used for classification problems. This method of training MLPs for FA problems also

equips it for incremental learning.

In Chapter 8 we dealt with the problem of training with insufficient data. This is also
related to overfitting in MLP networks. To deal with this problem, we proposed an

222

easy way to expand any given training set using the density information and use these
generated points to train the network. The suggested training scheme uses a set of
new data points in every epoch. This reduces the problem associated with a finite
training set. Our experimental results show that expanding the training set enhances

the generalization ability of an MLP to a large extent.

9.2 Scope of Further Improvement and Research

In this section we summarize some of the weaknesses of the methods that we have
described in the preceding six chapters and point out the directions along which the

methods can be improved. We also discuss possible extensions of the methods.

In the online feature selection schemes using neuro-fuzzy paradigm discussed in Chap-
ters 3 and 4, we have not considered the important problem of deciding the initial fuzzy
sets. Also we did not provide any guideline to decide on the number of fuzzy sets. We
used a few fuzzy sets to span the entire domain of each feature. Each fuzzy set has con-
siderable overlap with its adjacent fuzzy sets. Then we have used the pruning phases
to discard the rules which are not required by the system. Such blind initialization of
a network can lead to a huge initial architecture in case of high dimensional data sets.
If there are s input features and we define [fuzzy sets on each feature then we have to
start with an initial network which represents [° rules. For reasonably high values of s
the number of rules would be very large and it increases exponentially with the number
of features. An effective way to handle this problem would be to apply a clustering
algorithm on the input data to decide on the antecedents. Cluster validity indices
[12] may be used to decide on the number of clusters and hence the number of fuzzy
sets. There have been many previous attempts to select initial rules using clustering
algorithms [38, 105, 159, 167]. Use of clustering algorithm to decide on the initial rules
(i.e., the initial architecture of the network) does not effect the other functioning of the
network. The feature selection strategy will work equally well with a network whose
architecture is defined using results of a clustering algorithm. In Chapter 4, we have
used exploratory data analysis for identification of the initial structure of the network
for RS-Data. But the method described for RS-Data needs further modification to

make it general in nature.

223

Another problem of interest would be to measure the sensitivity of the outputs of a
neuro-fuzzy system (or a fuzzy rule based system) with respect to its internal param-
eters. For both neuro-fuzzy systems described in this thesis, the output depends on
the membership function parameters and the certainty factors of the rules. A quan-
tification of sensitivity of output with respect to these parameters would help to gain
more insight into the method, and can lead to further improvement of these systems.
This is important as we do not like to use a system that is optimal with respect to the
design criteria (here training error) but too sensitive to small changes in the system
parameters. Such a system may indicate that a minor change in the training data

would result in a quite different system.

The group feature selection methodology of Chapter 5 is developed for Radial Basis
Function and Multilayer Perceptron type networks. The method can be extended for
neuro-fuzzy framework also. Further investigation in this regard is necessary to test

the feasibility of the method in case of neuro-fuzzy systems.

The strict generalization for classification discussed in Chapter 6 is a powerful method
for low dimensional data sets. For high dimensional data, the generation of points
outside the boundary becomes computationally expensive. We have provided a solution
to this by using a receptive field vigilance network (Chapter 7). But when a RVN
is used for classification problems it cannot provide information about overlapped
classes. Our method in Chapter 6 has enhanced ability to deal with overlapped classes
and can signal that a test point lies in a region of overlap of two or more classes.
Use of RVN for classification task does not equip the network with such capabilities.
Further investigation is required for using the RVNs for classification problems. The
performance of the system depends on the number of receptive fields chosen, and the
value of o for the receptive fields. Investigations are required to provide guidelines
to decide on these parameters. The crux of the method in Chapter 6 is to detect
the boundary of the training sample. This problem is different from computing the
convex hull of a multidimensional data, as in case the classes are not convex and if
the points in the same class form several clusters then the convex hull fails to serve as
the boundary of a class. Our definition of boundary based on neighborhood provides a
reasonable solution. The algorithm GENERATE (Table 6.4) produces nice results if a
proper « is chosen. But we believe that further investigation is required to define class

boundaries. The methodologies for strict generalization have been tested with MLP

224

networks only, but the schemes are quite general in nature and can be applied in case

of other learning systems like radial basis function networks, fuzzy rule based systems.

The method to avoid overfitting in MLLPs in Chapter 8 depends on a heuristic which
generates additional points following the same spatial density as that of the training
set. MLPs trained with these generated points give better generalization than MLPs
trained with a fixed training set. Thus, it seems that the points generated by our
method follow the same probability distribution as that of the training data, but
this fact needs to be verified. There are many problems for which data collection is
very expensive, and sometimes even risky. Consequently, to design systems for such
applications one has to rely on limited (“small”) training data. One such example from
mining is development of a prediction system for ground vibration from characteristics
of rocks and blast materials. For this problem, usually, the available data are very
limited because data are site specific and their generation is not only costly but also
risky. Our method of generating additional points for training could be useful in this
regard. We plan to investigate this in near future. The method for avoiding overfitting
in MLP can be used in other paradigms also where an iterative learning procedure is

used. We plan to investigate its use for other kinds of networks in future.

225

Bibliography

[1]

[2]

[12]

H. Akaike, “A new look at statistical model identification,” IEEFE Trans. Automatic
Control, vol. 19, pp. 716-723, 1974.

M. Anthony and P.L. Bartlett, Neural Network Learning: Theoretical Foundations,
Cambridge University Press, Cambridge, UK, 1999.

S. Amari, N. Murata, K.-R. Muller, M. Finke and H.H. Yang, “Asymtotic statistical
theory of overtraining and cross-validation,” IFEFE Transactions on Neural Networks,
vol. 8, no. 5, pp. 985-996, 1997.

H.R. Barenji and P. Khedkar, “Learning and tuning fuzzy controllers through reinforce-
ments,” IEFFE Trans. on Neural Networks, vol. 3, no. 5, pp. 724-740, 1992.

A. Barron, J. Rissanen, and B. Yu, “The minimum description length principle in coding
and modeling,” IFEFE Trans. Information Theory, vol. 44, no. 6, pp. 2743-2760, 1998.

R. Battiti, “Using mutual information for selecting features in supervised neural net
learning,” IEFFE Transactions on Neural Networks, vol. 5, no. 4, pp. 537-550, 1994.

L.M. Beleue and K.W. Bauer, “ Determining input features for multilayered percep-
tron,” Neurocomputing, vol. 7, no. 2, pp. 111-121, 1995.

M. Ben-Bassat, “Use of distance measures, information measures and error bounds in
feature evaluation,” In: Handbook of Statistics, vol. 2, (P. R. Krishnaiah and L. N.
Kanal, eds.), North Holland, pp. 773-791, 1982.

J. C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum,
NY, USA, 1981.

J. C. Bezdek, “A review of probabilistic, fuzzy and neural models for pattern recogni-
tion,” Journal of Intelligent and Fuzzy Systems, vol. 1, no. 1, pp. 1-23, 1993.

J. C. Bezdek, “What is computational Intelligence?,” In: J. Zurada, R. Marks, C.
Robinson (eds.),Computational Intelligence: Imitating Life, IEEE Press, Piscataway,
pp- 1-12, 1994.

J. C. Bezdek, J. Keller, R. Krishnapuram and N. R. Pal, Fuzzy Models and Algorithms
Jor Pattern Recognition and Image Processing, Kluwer, Massachusetts, 1999.

226

[13]

[14]

[15]

[16]

[24]

[25]

J. C. Bezdek and S. K. Pal, Fuzzy Models for Pattern Recognition, IEEE Press, Piscat-
away, NJ, USA, 1992.

C. Bishop, “Training with noise is equivalent to Tikohonv regularization,” Neural Com-
putation, vol. 7, pp. 108-116, 1995.

C. Bishop, Neural Networks for Pattern Recognition, Oxford University Press, 1996.

C. Bhattacharyya, L. R. Grate, A. Rizki, D. Radisky, F. J. Molina, M. 1. Jordan, M. J.
Bissell and 1. S. Mian, “Simultaneous classification and relevant feature identification
in high-dimensional spaces: application to molecular profiling data,” Signal Processing,
vol. 83, pp. 729-743, 2003.

C. L. Blake and C. J. Merz, UCI Repository of machine learning databases
[http://www.ics.uci.edu/ mlearn/MLRepository.html]. Irvine, CA: University of Cali-
fornia, Department of Information and Computer Science, 1998.

A. L. Blum and P. Langley, “Selection of relevant features and examples in machine
learning,” Artificial Intelligence, vol. 97, no. 1-2, pp. 245-271, 1997.

L. Breiman, “Bagging Predictors,” Machine Learning, vol 24, no. 2, pp. 123-140, 1996.

L. Breiman, J. H. Friedman, R.A. Olshen and C.J. Stone, Classification and Regression
Trees, Belmont, CA: Wadsworth.

J. J. Buckley and Y. Hayashi, “Fuzzy Neural Networks: a survey,” Fuzzy Sets and
Systems, vol. 66, pp. 1-13, 1994.

F. 7. Brill, D. E. Brown and W. N. Martin, “Fast genetic selection of features for neural
network classifiers,” IEFE Trans. Neural Networks, vol. 3, no. 2, pp. 324-328, 1992.

G. A. Carpenter and S. Grossberg, “A massively parallel architecture for a self-
organizaing neural pattern recognition machine,” Computer Vision, Graphics and Image
Processing, vol. 37, pp. 54-115, 1987.

D. Chakraborty and N. R. Pal, “Integrated feature analysis and fuzzy rule-based system
identification in a neuro-fuzzy paradigm,” IFEFE Trans. on Systems Man Cybernetics B,
vol. 31, no. 3, pp. 391-400, 2001.

D. Chakraborty and N. R. Pal, “Designing rule-based classifiers with on-line feature
selection: a neuro-fuzzy approach,” Advances in Soft Computing, LNAI 2275, Springer,
pp. 252-260, 2002.

D. Chakraborty and N. R. Pal, “Making a multilayered perceptron say Dont know’
when it should, ICONIP02, Proceedings of the 9-th International Conference on Neural
Information Processing, Singapore, pp. 45-49, 2002.

227

[27]

[28]

[29]

[30]

D. Chakraborty and N. R. Pal, “A Neuro-Fuzzy Scheme for Simultaneous Feature Se-
lection and Fuzzy Rule-Based Classification,” IFEFE Trans. on Neural Networks, vol. 15,
no. 1, pp. 110-123, 2004.

D. Chakraborty and N. R. Pal, “T'wo Connectionist Schemes for Selecting Groups of
Features (Sensors),” Proceedings of FUZZ-IFEE 2003, pp. 161-166 , 2003.

D. Chakraborty and N. R. Pal, “A Novel Training Scheme for Multilayered Perceptrons
to Realize Proper Generalization and Incremental Learning,” IFEE Trans. on Neural
Networks, vol. 14, no. 1, pp. 1-14, 2003.

D. Chakraborty and N. R. Pal, “Expanding the training set for better generalization
in MLP,” Proceedings of International Conference on Communication, Devices and
Intelligent Systems, CODIS-2004, pp. 454-457, 2004.

D. Chakraborty and N. R. Pal, “Selecting useful groups of features (sensors) in a con-
nectionist framework,” IEEFE Trans. Systems Man Cybernetics B, (communicated).

D. Chakraborty and N. R. Pal, “Training multilayered perceptrons to realize proper gen-
eralization and incremental learning for function approximation”, IFEFE Trans. Neural
Networks, (communicated).

S. Chakraborty and N. R. Pal, “Selection of structure preserving features with neural
networks,” Proceedings of 12" IEEE Conference on Fuzzy Systems, FUZZ-IEEE 2003,
vol. 2, pp. 822-827, 2003.

7. Chen and S. Hayken, “On different facets of regularization theory,” Neural Compu-
tation, vol. 14, no. 12, pp. 2791-2846, 2002.

K. J. Cherkauer, “Human expert level performance on a scientific image analysis task
by a system using combined artificial neural networks,” in: P. Chan, S. Stolfo and
D. Wolpert (Eds.), Proceedings of AAAI-96 Workshop on Integrating Multiple Learned
Models for Improving and Scaling Machine Learning Algorithms, Portland, OR, AAAI
Press, Menlo Park, CA, pp. 15-21, 1996.

S. L. Chiu, “Extracting fuzzy rules for pattern classification by cluster estimation”,
Proc. sizth Int. Fuz. Systs. Assoc, World Congress (IFSA '95), Sao Paulo, Brazil, pp.
1- 4, July 1995.

S. L. Chiu, “Fuzzy model identification based on cluster estimation”, J. Int. and Fuzzy
Sys., vol. 2, pp. 267 - 278, 1994.

S. L. Chiu, “Extracting fuzzy rules from data for function approximation and pattern
classification,” Fuzzy Information Engineering, eds. D. Dubois, H. Prade and R.R. Ya-
gar, Wiley and Sons, NY, pp. 149-162.

K. J. Cios and W. Pedrycz, “Neuro-fuzzy systems”, In: Handbook of Neural Computa-
tion, IOP Press and Oxford University Press, 1997.

228

[40]

[41]

Y. Le Cun, B. Boser, J. S. Denker, D. Henderson, R.E. Howard, W. Hubbard, and
L.D. Jackel, “Backpropagation applied to handwritten zip code recognition,” Neural
Computation, vol. 1, no. 4, pp. 541-551, 1989.

Y. Le Cun, J. S. Denker and S. A. Solla, “Optimal Brain Damage,” Advances in Neural
Information Processing Systems, vol. 2, pp. 598-605, Morgan Kaufmann, San Mateo,
CA, 1990.

M. Dash and H. Liu, “Feature selection for classification,” Intelligent Data Analysis,
vol. 1, no. 3, pp. 131-156, 1997.

R. De, N. R. Pal and S. K. Pal, “ Feature analysis: neural network and fuzzy set
theoretic approaches,” Pattern Recognition, vol. 30, no. 10, pp. 1579-1590, 1997.

P. Devijver and J. Kittler, Pattern Recognition: A Statistical Approach, Prentice-Hall,
Englewood Cliffs, NJ, USA, 1982.

K. I. Diamantaras and S. Y. Kung, Principal Component Neural Networks: Theory and
Applications, Wiley, New York, USA, 1996.

D. Driankov, H. Hellendoorn, M. Reinfrank, An Introduction to Fuzzy Control, Springer-
Verlag, Berlin, 1993.

W. Duch, R. Setiono and J. M. Zurada, “Computational intelligence methods for rule-
based data understanding,” Proceedings of the IFEFE, vol. 92, no. 5, pp. 771-805, 2004.

R. O. Duda, P. E. Hart, D. G. Stork, Pattern Classification, John Wiley, New York,
2000.

F.-B. Duh and C. T. Lin, “Tracking a Maneuvering Target Using Neural Fuzzy Net-
work,” IEFE Trans. Systems Man and Cybernetics-B, vol. 34, no. 1, pp. 16-33, 2004.

F.-B. Duh, C.-F. Juang and C. T. Lin, “A neural fuzzy network approach to radar pulse
compression,” IFFFE Geoscience and Remote Sensing Letters, vol. 1, no. 1, pp. 15-20,
2004.

R. P. W. Duin, “On the choice of smoothing parameters for parzen estimators of prob-
ability density functions,” IEFE Trans. on Computers, vol. 25, no. 11, pp. 1175-1179,
1976.

P. Dylan and L. F. Abbott, Theoretical Neuroscience: Computational and Mathematical
Modeling of Neural Systems, MIT Press, 2001.

B. Efron and R. Tibshirani, An Introduction to the Bootstrap, Chapman and Hall, New
York, 1993.

A. P. Engelbrecht, “A new pruning heuristic based on variance analysis of sensitivity
information,” IFEFE Trans. Neural Networks, vol. 12, no. 6, pp. 1386-1389, 2001.

229

[55]

[56]

[57]

I. Foroutan and J. Sklansky, “Feature selection for automatic classification of non-
Gaussian data,” IEFE Trans. Systems, Man and Cybernetics, vol. 17, pp. 187-198,
1987.

M. Figureiredo, F. Gomide, “Design of fuzzy systems using neuro-fuzzy networks,” IFEF
Transactions on Neural Networks, vol. 10, no. 4, pp. 815-827, 1999.

B. Firtzke, “Fast learning with incremental RBF networks,” Neural Processing Letters,
vol. 1, no. 1, pp. 2-5, 1994.

D. Fogel, “Review of ‘Computational Intelligence: Imitating Life,” IEEE Trans. Neural
Networks, vol. 6, pp. 1562-1565, 1995.

Y. Freund, “Boosting a weak algorithm by majority,” Information and Computation,
vol. 121, no. 2, pp. 256-285, 1995.

L. Fu, H. Hsu, and J. C. Principe, “Incremental backpropagation learning networks,”
IFEFE Transactions on Neural Networks, vol. 7, no. 3, pp. 757-761, 1996.

K. Fukunaga, Statistical Pattern Recognition, Academic Press, San Diego, CA, USA,
1991.

A. E. Gaweda, J. M. Zurada and R. Setiono, “Input selection in data driven fuzzy model-
ing,” Proceedings of 2001 IEFE International Conference on Fuzzy Systems, Melbourne,
Australia, 2001.

F. Girosi, M. Jones and T. Poggio, “Regularization theory and neural network archi-
tecture,” Neural Computation, vol. 7, pp. 219-269, 1995.

G. H. Golub and C. F. Van Loan, Matriz Computations, John Hopkins University Press,
Baltimore, 1989.

A. Gonzilez and R. Pérez, “Selection of relevant features in a fuzzy genetic learning
algorithm,” TFEFE Trans. on Systems Man and Cybernetics B, vol. 31, no. 3, pp. 417-
425, 2001.

Y. Grandvalet, “Anisotropic noise injection for input variables relevance determination,”
IFEFE Transactions on Neural Networks, vol. 11, no. 6, pp. 1201-1212, 2000.

I. Guyon, A. Elisseeff (Eds.), Journal of Machine Learning Research, vol. 3, March 2003.

I. Guyon, A. Elisseeff, “An introduction to variable and feature selection,” Journal of
Machine Learning Research, vol. 3, pp. 1157-1182, 2003.

M. T. Hagan and M. B. Menhaj, “Training Feedforward Networks with the Marquardt
Algorithm,” IFEF Trans. on Neural Networks, vol. 5, no. 6, pp. 989-993, 1994.

S. Halgamuge and M. Glesner, “Neural networks in designing fuzzy systems for real
world applications,” Fuzzy Sets and Syst., vol. 65, pp.1-12, 1994.

230

[71]

[72]

Y. Hamamoto, S. Uchimura, Y. Matsunra, K. Kanaoka and S. Tomita, “Evaluation of
the branch and bound algorithm for feature selection,” Pattern Recognition Letters, vol.
11, pp. 453-457, 1990.

J. Hampshire and A. Waibel, “ A novel objective function for improved phoneme recog-
nition using time delay neural networks,” IEFFE Trans. Neural Networks, vol. 1, no 2,
pp- 216-228, 1990.

S. J. Hanson and L. Y. Pratt, “Comparing biases for minimal network construction with
backpropagation,” In Advances in Neural Information Processing, vol. 1, pp. 177-185,
Morgan Kaufman, San Mateo, CA, 1989.

R. Haralick, K. Shanmugam and I. Dinstein, “Texture features for image classification,”
IFEE Trans. Syst. Man Cybern, vol. 3, no. 6, 610-621, 1973.

Y. Hayashi, J. Buckley and E. Czogala , “Fuzzy neural network with fuzzy signals and
weights,” Int. Jour. Intell. Systems, vol. 8, pp. 527-537, 1993.

T. Hastie, R. Tibshirani and J. Friedman, The FElements of Statistical Learning,
Springer, NY, 2001.

S. Haykin, Neural Networks - A Comprehensive Foundation, Prentice Hall, New York,
1994.

D.O. Hebb, The Organization of Behaviour, John Wiley and Sons, NY, USA, 1949.

J. Hertz, A. Krogh, R. G. Palmer, Introduction to the theory of neural computation,
Addison-Wesley Publishing Company, CA, USA, 1995.

E. Hewitt, Real and Abstract Analysis, Springer Verlag, Berlin, 1965.

G. E. Hinton, “Connectionist learning procedure,” Artificial Intelligence, vol. 40, pp.
185-234, 1989.

L. Holmstrom and P. Koistinen, “Using additive noise in backpropagation training,”
IFFEFE Trans. Neural Networks, vol. 3, pp. 24-38, 1992.

J. J. Hopfield, “Neural networks and physical systems with emergent collective compu-
tational abilities,” Proc. National Academy of Sciences, vol. 79, pp. 2554-2558, 1982.

K. Hornik, M. Stinchcombe and H. White, “Multilayered feedforward networks are
universal approximators,” Neural Networks, vol. 2, pp. 259-366, 1989.

C.-D. Huang, C. T. Lin and N. R. Pal, “Hierarchical learning architecture with auto-
matic feature selection for multiclass protein fold classification,” IEEE Transactions on
Nanobioscience vol. 2, no. 4, pp. 221- 232, 2003.

G. F. Hughes, “On the mean accuracy of statistical pattern recognizers,” IEFFE Trans.
Information Theory, vol. 14,pp. 55-63, 1968.

231

[87]

[88]

[89]

[96]

[97]

[98]

[99]

H. Ishibuchi, K. Nozaki, N. Yamamoto, H. Tanaka, “Selecting fuzzy if-then rules for
classification problems using genetic algorithms,” IFEF Transactions on Fuzzy Systems,
vol. 3, no. 3, pp. 260-270, 1995.

R. A. Jacobs, “Increased rates of convergence through learning rate adaptation,” Neural
Networks, vol. 1, pp. 297-307, 1988.

A. K. Jain, B. Chandrasekaran, “Dimensionality and sample size considerations in pat-
tern recognition practice,” in P.R. Krishnaiah, N.L. Kanal (eds.), Handbook of Statistics,
vol 2, North-Holland, Amsterdam, pp. 835-855, 1982.

A. K. Jain, R. P. W. Duin, J. Mao,“Statistical pattern recognition: a review,” IFEF
Transactions in Pattern Analysis and Machine Learning, vol. 22, pp. 4-37, 2000.

A. K. Jain and D. Zongker, “Feature selection: evaluation, application and small sample
performance,” IEFE Trans. Pattern Analysis and Machine Intelligence, vol. 19, no. 2,
pp- 153-148, 1997

J.-S. R. Jang, “ANFIS: Adaptive-network-based fuzzy inference system,” IFEF Trans.
Syst. Man. Cybern., vol. 23, pp. 665-685, 1993.

I. T. Jollife, Principal Component Analysis, Springer Verlag, New York, 1986.

C.-F. Juang and C.-T. Lin,“ An online self-constructing neural fuzzy inference network
and its applications,” ITEFFE Trans. Fuzzy Systems, vol. 6, no. 1, pp. 12-32, 1998

C. -F. Juang and C. -T. Lin, “A recurrent self-organizing neural fuzzy inference net-
work,” IEFE Trans. Neural Networks, vol. 10, no. 4, pp. 828-845, 1999.

L. Kanal, “Patterns in pattern recognition,” IFEF Transactions in Information Theory,
vol. 20, pp. 697-722, 1974.

A. Kandel and S. C. Lee, Fuzzy Switching and Automata: Theory and Applications,
Crane Russak, NY, USA, 1979.

P. P. Kanjilal and D. N. Banerjee, “ On application of orthogonal transformations for
design and analysis of feedforward networks,” IFEFE Transactions on Neural Networks,
vol. 6, no. 5, pp. 1061-1070, 1995.

J. Karhunen and J. Joutsensalo, “Representation and separation of signals using non-
linear PCA type learning,” Neural Networks, vol. 7, pp. 113-127, 1994.

[100] G. N. Karystinos and D. A. Pados, “On overfitting, generalization, and randomly

expanded training sets,” IFEF Trans Neural Networks vol 11, no. 5, pp. 1050-1057,
2000.

[101] N. Kasabov, “Learning fuzzy rules and approximate reasoning in fuzzy neural networks

and hybrid systems,” Fuzzy sets and Syst., vol. 82, pp. 135-149, 1996.

232

[102] N. Kasabov, “Evolving fuzzy neural networks for supervised/unsupervised on-line,
knowledge-based learning,” IEFFE Transactions on Systems, Man and Cybernetics B,
vol. 31, no. 6, pp. 902-918, 2001.

[103] N. Kasabov, R. 1. Kilgour and S. J. Sinclair, “From hybrid adjustable neuro-fuzzy
systems to adaptive connectionist based systems for phoneme and word recognition,”
Fuzzy Sets and Systems, vol. 103, pp. 349-367, 1999.

[104] N. Kasabov and R. Kozma eds., Neuro-Fuzzy Techniques for Intelligent Information
Systems, Physica-Verlag, Heidelberg, 1999.

[105] N. Kasabov and Q. Song, “DENFIS: Dynamic evolving neural-fuzzy inference system
and its application for time series prediction,” IEFFE Transactions on Fuzzy Systems,
vol. 10, no. 2, pp. 144-154, 2002.

[106] N. Kasabov and B. Woodford, “Rule insertion and rule extraction from evolving fuzzy
neural networks: algorithms and applications for building adaptive, intelligent expert
systems,” in Proc. IEEE Int. Conf. Fuzzy Syst. FUZIEEE 99, vol. 3, Seoul, Korea, pp.
1406-1411, Aug. 1999.

[107] M. J. Kearns and U. V. Vazirani,An Introduction to Computational Learning Theory,
MIT Press, 1994.

[108] J. Keller, Z. Chen, “Learning in fuzzy neural networks utilizing additive hybrid oper-
ators,” Proc. Int. Conf. on Fuzzy Logic and Neural Networks, lizuka, Japan, pp. 85-87,
1992.

[109] J. Keller and R. Krishnapuram,“Fuzzy decision models in computer vision,” In:Fuzzy
Sets, Neural Networks and Soft Computing, eds. R. Yagar and L. Zadeh, Van Nostrand,
pp- 213-232, 1994.

[110] J. Keller, R. Krishnapuram, Z. Chen, O. Nasraoui, “Fuzzy additive hybrid operators
for network based decision making,” International Journal of Intelligent Systems, vol.
9, no. 11, pp. 1001-1024, 1994.

[111] J. M. Keller and H. Qiu, “Fuzzy sets method in pattern recognition,” in Pattern Recog-
nition, LNCS 301, eds. J. Kittler, Springer-Verlag, pp. 173-182, 1988.

[112] J. Keller and H. Tahani, “Implementation of conjunctive and disjunctive fuzzy logic
rules in neural networks,” Int. Jour. Approz. Reasoning, vol. 6, pp. 221-240, 1992.

[113] J. Keller, R. Yager and H. Tahani, “ Neural network implementation of fuzzy logic,”
Fuzzy Sets and Systems, vol. 45, pp. 1-12, 1992.

[114] J. D. Kelly and L. Davis, “Hybridizing the genetic algorithm and the k-nearest neigh-
bors classification algorithm,” in Proc. 4th Intl. Conf. Genetic Algorithms Appl., pp.
377-383, 1991.

233

[115] J. Kim and N. Kasabov, “ HyFIS: adaptive neuro-fuzzy inference systems and their
application to nonlinear dynamical systems,” Neural Networks, vol. 12, pp. 1301-1319,
1999.

[116] J. Kittler, “Feature set search algorithms,” Pattern Recognition and Signal Processing,
C.H. Chen ed., Sijthoff and Noordhoff, Alphen aan den Rijn, The Netherlands, pp.
41-60, 1974.

[117] G.J. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic - Theory and Applications, Prentice
Hall, NJ, 1995.

[118] F. Kohavi and G. John, “Wrappers for feature subset selection,” Artificial intelligence,
vol. 97, no. 1, pp. 273-342, 1997.

[119] T. Kohonen, “Self-organization and associative memory,” Springer, Berlin, 1998.

[120] S. Konishi, T. Ando and S. Imoto, “Bayesian information criteria and smoothing pa-
rameter selection in radial basis function networks,” Biometrika, vol. 91, no. 1, pp.
27-43, 2004.

[121] A.S. Kumar, S. Chowdhury and K. L. Mazumder, “Combination of neural and statis-
tical approaches for classifying space-borne multispectral data,” Proc. of ICAPRDT99,
Calcutta, India, pp. 87-91, 1999.

[122] L. Kuncheva, Fuzzy Classifier Design, Physica-Verlag, 2000.

[123] R. Krishnapuram and J. Lee, “ Propagation of uncertainty in neural networks,” Proc.
SPIE Conf. on Robotics and Computer Vision, 1002, SPIE, Bellingham, WA, pp. 377-
383, 1988.

[124] R. Krishnapuram and J. Lee, “Determining the structure of uncertainty management
networks,” Proc. SPIE Conf. on Robotics and Computer Vision, 1192, SPIE, Belling-
ham, WA, pp. 592-597, 1989.

[125] R. Krishnapuram and J. Lee, “Fuzzy connective based hierarchical aggregation net-
works for decision making,” Fuzzy Sets and Systems, vol. 46, no. 1, pp. 11-27, 1992.

[126] R. Krishnapuram and J. Lee, “Fuzzy-sets-based hierarchical aggregation networks for
information fusion in computer vision,” Neural Networks, vol. 5, pp. 335-350, 1992.

[127] N. Kwak and C. -H. Choi, “Input feature selection for classification problems,” IEEFE
Transactions on Neural Networks, vol. 13, no. 1, pp. 143-159, 2002.

[128] A. Laha and N. R. Pal, “Some novel classifiers designed using prototypes extracted
by a new scheme based on self organizing feature map,” IFEF trans. Systems Man and
Cybernertics B, vol. 31, no. 8, pp. 881-890, 2001.

[129] C. C. Lee, “Fuzzy logic in control systems: fuzzy logic controler-1,” IEEE Trans. Sys-
tems man Cybernetics, vol. 20, no. 2, pp. 404-418.

234

[130] C. C. Lee, “Fuzzy logic in control systems: fuzzy logic controler 11,” IFFFE Trans.
Systems man Cybernetics, vol. 20, no. 2, pp. 419-435.

[131] H.-M. Lee, C. -M. Chen, J.-M. Chen and Y .-L. Jou, “An efficient fuzzy classifier with
feature selection based on fuzzy entropy,” IEFE Trans. Systems, Man and Cybernetics,
vol. 31, no. 3, pp. 426-432, 2001.

[132] K. Lee, D. Kwang and H. L. Wang,“A Fuzzy neural network model for fuzzy inference
and rule tuning,” International Journal of Uncertainty, Fuzziness, Knowledge-Based
Systems, vol. 2, no. 3, pp. 265-277, 1994.

[133] S. C. Lee and E. T. Lee, “ Fuzzy neural networks,” Math. Bio Sc. vol. 23, pp. 151-177,
1975.

[134] C. C. Li and C. J. Wu, “ Generating fuzzy rules for a neural fuzzy classifier,” in: Proc.
3rd IFEFE International Conference on Fuzzy Systems FUZZ IFEFE’94, Orlando, pp.
1719-1724, 1994.

[135] C. -T. Lin, I. F. Chung, “A reinforcement neuro-fuzzy combiner for multiobjective
control,” ITFEFE Transactions on System Man and Cybernetics B, vol. 29, no. 6, pp.
726-744, 1999.

[136] C. -T. Lin and C. S. G. Lee,“ Neural network based fuzzy logic control and decision
system,” IFEFE Transactions on Computers, vol. 40 no. 12, pp. 1320-1335, 1993.

[137] C.-T. Lin and C. S. G. Lee, Neural Fuzzy Systems, Prentice Hall, NJ, 1996.

[138] C.-T. Lin, Y. C. Lu, “ A neural fuzzy system with linguistic teaching signals,” IEEFE
Transactions on Fuzzy Systems, vol. 3, no. 2, pp. 169-189, 1995.

[139] C.-T. Lin, R. -C. Wu and G. -D. Wu, “Noisy speech segmentation/enhancement with
multiband analysis and neural fuzzy networks,” International Journal of Pattern Recog-
nition and Artificial Intelligence, vol. 16, no. 7, pp. 927-955, 2002.

[140] Y. Lin and G. A. Cunningham III, “A new approach to fuzzy neural system modeling,”
IFEFE Transactions on Fuzzy Systems, vol. 3, no. 2, pp. 190-198, 1995.

[141] Y. Lin, G. A. Cunningham III and S.V. Coggeshall, “Input variable identification -
fuzzy curves and fuzzy surfaces,” Fuzzy sets and Systems, vol. 82, pp. 65-71, 1996.

[142] D. A. Linkens, M. Y. Chen, “Input selection and partition validation for fuzzy modeling
using neural networks,” Fuzzy Sets and Systems, vol. 107, pp. 299-308, 1999.

[143] H. Liu and R. Setiono, “Incremental feature selection,” Applied Intelligence, vol. 9, no.
3, pp. 217-230, 1998.

[144] C. G. Looney, Pattern Recognition Using Neural Networks: Theory and Algorithms for
Engineers and Scientists, Oxford University Press, 1997.

235

[145] D. J. C. MacKay, “Bayesian interpolation,” Neural Computation, vol. 4, no. 3, 1992

[146] D. J. C. MacKay, “A practical Bayesian framework for backprop networks,” Neural
Computation, vol. 4, no. 3, 1992.

[147] D. J. C. MacKay, “The evidence framework applied to classification networks,” Neural
Computation, vol. 4, no. 5, pp. 698-714, 1992

[148] K. Z. Mao, “Fast orthogonal forward selection algorithm for feature subset selection,”
IFFEFE Trans. on Neural Networks, vol. 13, no. 5, pp. 1218-1224, 2002.

[149] J. Mao and A. K. Jain, “Artificial neural networks for feature extraction and multi-
variate data projection,” IFEF Trans. on Neural Networks, vol. 6, no. 2, pp. 296-317,
1995.

[150] W.S. McCulloch and W.H. Pitts, “ A logical calculus of the ideas immanent in nervous
activity,” Bull. Math. Biophys, vol. 5, pp. 115-133, 1943.

[151] S. Mitra and S. K. Pal, “Fuzzy multilayered perceptron, inferencing and rule genera-
tion,” IFEF Trans. on Neural Networks, vol. 6, pp. 51-63, 1995.

[152] P. M. Narendra and K. Fukunaga, “A branch and bound algorithm for feature subset
selection,” IFEFE Transactions Computers, vol. 26, no. 9, pp. 917-922, 1977.

[153] D. Nauck and R. Kruse, “A neuro-fuzzy method to learn fuzzy classification rules from
data,” Fuzzy Sets and Syst., vol 89, pp. 277-288, 1997.

[154] R. M. Neal, Bayesian Learning for Neural Networks, Lecture notes in statistics 118,
Springer, 1996.

[155] S. J. Nowlan and G. E. Hinton, “Simplifying neural networks by soft weight sharing,”
Neural Computation, vol. 4, pp. 473-493, 1992.

[156] K. Nozaki, H. Ishibuchi, H. Tanaka, “Adaptive fuzzy rule-based classification systems,”
IFEFE Transactions on Fuzzy Systems, vol. 4, no. 3, pp. 238-250, 1996.

[157] H. T. Nguyen and M. Sugeno, Fuzzy Systems: Modeling and Control, Kluwer Academic
Publishers, MA, USA, 1998.

[158] E. Oja, “Principal components, minor components and neural networks,” Neural Net-
works, vol. 5, pp. 927-936, 1992.

[159] K. Pal, R. Mudi and N. R. Pal, “A new scheme for fuzzy rule based system identification
and its application to self-tuning fuzzy controllers,” IFEFE Trans. Systems Man and
Cybernetics B, Aug 2002, to appear.

[160] K. Pal, N. R. Pal and J. M. Keller, “Some neural net realizations of fuzzy reasoning,”
Int. Journal of Intelligent Systems, vol. 13, pp. 859-886, 1998.

236

[161] N. R. Pal,“ Soft computing for feature analysis,” Fuzzy Sets and Systems, vol. 103, pp.
201-221, 1999.

[162] N.R. Pal and C. Bose, “Context sensitive inferencing and “reinforcement-type” tuning
algorithms for fuzzy logic systems,” International Journal of Knowledge-Based Intelli-
gent Engineering Systems, vol. 3, no. 4, 1999.

[163] N. R. Pal, T. C. Cahoon, J. C. Bezdek, K. Pal,;“ A new approach to target recognition
for LADAR data”, IEFE Trans. on Fuzzy Systems, vol 9, no. 1, pp. 44-52.

[164] N.R. Pal and D. Chakraborty, ”Simultaneous feature analysis and system identification
in a neuro-fuzzy framework,” in Neuro-Fuzzy Pattern Recognition, (eds.) Bunke and
Kandel, pp. 3-22, World Scientific, 2000.

[165] N. R. Pal and D. Chakraborty,“ Mountain and Subtractive Clustering Method: Im-
provements and Generalizations,” International Journal of Intelligent Systems, vol. 15,
pp. 329-341, 2000.

[166] N. R. Pal and K.K. Chintalapudi, “A connectionist system for feature selection,” Neu-
ral, Parallel & Scientific Computations, vol. 5, no. 3, pp. 359-381, 1997.

[167] N. R. Pal, K. Pal, J.C. Bezdek and T.A. Runkler, “Some issues in system identifica-
tion using clustering,” Int. Joint Conf. on Neural Networks, IJCNN 1997, IEEE Press,
Piscataway, NJ, 2524-2529, 1997.

[168] N. R. Pal and T. Pal,“ On rule pruning using fuzzy neural networks,” Fuzzy sets and
Systems, vol. 106, pp. 335-347, 1999.

[169] N. R. Pal and E. Vijay Kumar, “Two efficient schemes for structure preserving di-
mensionality reduction,” IFEFE Trans. Neural Networks, vol. 9, no. 6, pp. 1142 -1153,
1998.

[170] N. R. Pal, E. Vijay Kumar and G.K. Mandal, “ Fuzzy logic approaches to structure
preserving dimensionality reduction,” IFEFE Trans. Fuzzy Systems, vol. 10, no. 3, pp.
277-286, 2002.

[171] S. K. Pal and B. Chakraborty, “Fuzzy set theoretic measure for automatic feature
evaluation,” IFEF Trans. System Man Cybernetics, vol. 16, no. 5, pp. 754-760, 1986.

[172] S. K. Pal, R. K. De and J. Basak, “Unsupervised Feature Evaluation : A Neuro-fuzzy
Approach,” IEEE Trans. Neural Networks, vol. 11, no. 2, pp. 366-376, 2000.

[173] S. K. Pal and D. K. Dutta-Majumder, Fuzzy Mathematical Approach to Pattern Recog-
nition, Wiley, NY, USA, 1986.

[174] S. K. Pal and S. Mitra, Neuro-Fuzzy Pattern Recognition, Wiley, New York, 1999.

[175] S. K. Pal and S. Mitra, “Multilayered perceptrons, fuzzy sets and classification,” IEEE
Trans. Neural Networks, vol. 3, no. 5,pp. 683-697, 1992.

237

[176] S. K. Pal and N. R. Pal,“ Soft Computing: Goals, Tools and Feasibility,” J. IETE
42(4-5), pp. 195-204, 1996.

[177] D. C. Park, M. A. El-Sharkawi and R. J. Marks 1I, “An adaptively trained neural
network,” IEFE Trans. Neural Networks, vol. 2, pp. 334-345, 1991.

[178] B. N. Parlett, The Symmetric Figenvalue Problem, Prientice-Hall, Engelwood Cliffs,
NJ, 1980.

[179] S. Paul and S. Kumar, “Subsethood-product fuzzy neural inference system,” [EEFE
Trans. Neural Networks, vol. 13, no. 3, 578-599, 2002

[180] W. Pedrycz, Fuzzy Sets Engineering, C.R.C. Press.

[181] W. Pedrycz, “Fuzzy sets in pattern recognition: methodology and methods,” Pattern
Recognition, vol. 23, pp. 121-146, 1990.

[182] W. Pedrycz, “Fuzzy neural networks and neurocomputations,” Fuzzy Sets and Systems,
vol. 56, pp. 1-28, 1993.

[183] W. Pedrycz, A. Kandel and Y. -Q. Zhang, “Neurofuzzy systems,” in Fuzzy Systems:
Modeling and Control, eds. H.T. Nyugen and M. Sugeno, Kluwer Academic Publishers,
MA, USA, 1998.

[184] W. Pedrycz, C. H. Poskar and P. Czezowski, “A reconfigurable fuzzy neural network
with in-situ learning,” IEFE Micro Magazine, pp. 19-30, August 1995.

[185] W. Pedrycz and H. Reformat, “Evolutionary fuzzy modeling,” IEEFE Trans. on Fuzzy
Systems, vol. 11, no. 5, pp. 652-665, 2003.

[186] W. Pedrycz and A. Rocha, “A fuzzy set based model of neurons and knowledge based
neurons,” IEFE Trans. on Fuzzy Systems, vol. 1, no. 4, pp. 254-266, 1993.

[187] S. Perkins, K. Lacker and J. Theiler, “Grafting: Fast, Incremental Feature Selection
by Gradient Descent in Function Space,” Journal of Machine Learning Research, vol.
3, pp. 1333-1356, 2003.

[188] S. Perkins and J. Theiler, “Online feature selection using grafting,” Preeedings of the
20-th International Conference on Machine Learning, Washington D.C., pp. 592-599,
2003.

[189] T. Poggio and F. Girosi, “Networks for approximation and learning,” Proceedings of
the IFFE, vol. 78, pp. 1481-1497.

[190] T. Poggio and F. Girosi, “Regularization algorithms for learning that are equivalent to
multilayered networks,” Science, vol. 247, pp. 978-982, 1990.

[191] P. Pudil, J. Novovicova and J. Kittler, “Floating search methods in feature selection,”
Pattern Recognition Letters, vol. 15, pp. 1119-1125, 1994.

238

[192] W. F. Punch, E. D. Goodman, M. Pei, L. Chia-Shun, P. Hovland and R. Enbody,
“Further research on feature selection and classification using genetic algorithms,” in
Proc. Int. Conf. on Genetic Algorithms, 1993, pp. 557-564.

[193] J. R. Quinlan, “Learning efficient classification procedures and their applications to
chess end games,” In R.S. Michalski, J.G. Carbonell and T.M. Mitchell (Eds.), Machine
Learning: An Artificial Intelligence Approach, San Fransisco, CA: Morgan Kaufmann.

[194] J.R. Quinlan, C4.5: Programs for machine learning, San Fransisco: Morgan Kaufmann.

[195] M. L. Raymer, W. F. Punch, E. D. Goodman, L. A. Kuhn and A. K. Jain, “Dimen-
sionality reduction using genetic algorithms,” IEEF Trans. on Fvolutionary Computing,
vol. 4, no. 2, pp. 164-171, 2000.

[196] R. Reed, “Pruning algorithms - A survey,” IEEE Trans. on Neural Networks, vol. 4,
no. 5, pp. 740-747, 1993.

[197] M. R. Rezaee, B. Goedhart, B. P. F. Lelieveldt and J.H.C. Reiber, “Fuzzy feature
selection,” Pattern Recognition, vol. 32, pp. 2011-2019, 1999.

[198] B. D. Ripley and J. P. Rasson, “Finding the edge of a poisson forest,” Journal of
Applied Probability, vol. 14, pp. 483-491, 1977.

[199] J. Rissanen, “Modeling by shortest data description,” Automatica, vol. 14 , pp. 465-471,
1978.

[200] F. Rosenblatt, “The Perceptron: A probabilistic model for information storage and
organization in the brain,” Psychological Review, vol. 65, pp. 386-488, 1958.

[201] J. Rubner and K. Schulten, “Development of feature detectors by self organization,”
Biological Cybernetics, vol. 62, pp. 192-199, 1990.

[202] J. Rubner, P. Tavan, “A self organizing network for principal component analysis,”
Furophysics Letters, vol. 10, pp. 693-698, 1989.

[203] D. W. Ruck, S. K. Rogers, M. Kabrisky, “Feature selection using a multilayered per-
ceptron,” Journal of Neural Network Computing, vol. 20, pp. 40-48, 1990.

[204] D. E. Rumelhart, G. E. Hinton, R. J. Williams, “Learning representations by back-
propagating errors,” Nature, vol. 323, pp. 533-536, 1986.

[205] M. Russo, “Genetic fuzzy learning,” IFFFE Trans. Evolutionary Computation, vol. 4,
no. 3, pp. 259-273, 2000.

29

[206] M. Russo, “* Comments on “A New Approach to Fuzzy-Neural Systems Modeling”,
IFEFE Transactions on Fuzzy Systems”, vol. 4, no. 2, pp. 209-210, 1996.

[207] M. Russo, “FuGeNeSys - A fuzzy genetic neural system for fuzzy modeling,” IEEFE
Trans Fuzzy Systems, vol. 6, no. 3, pp. 373-387.

239

[208] M. Sugeno, T. Yasukawa, “A fuzzy-logic based approach to qualitative modeling,”
IFEFE Transactions on Fuzzy Systems, vol. 1, pp. 7-31, 1993.

[209] J. W. Sammon Jr., “A nonlinear mapping for data structure analysis,” IEEFE Trans.
Computers, C-18, pp. 401-409, 1969.

[210] S. Schaal, C. G. Atkeson, “ Constructive incremental learning from only local informa-
tion,” Neural Computation, vol. 10, pp. 2047-2084, 1998.

[211] B. Schélkopf, A. J. Smola and K. -R. Miiller, “Nonlinear component analysis as a kernel
eigen value problem,” Neural Computation, vol. 10, no. 5, pp. 1299-1319, 1998.

[212] B. Schélkopf, J. Platt, J. Shawe-Taylor, A. J. Smola and R.C. Williamson, “ Estimating
the support of a high-dimensional distribution,” Neural Computation, vol. 13, no. 7, pp.
1443-1471, 2001.

[213] R. Setiono, “A penalty function approach for pruning feed forward neural networks,”
Neural Computation, vol. 9, pp. 185-204, 1997.

[214] R. Setiono, “Extracting rules from neural networks by pruning and hidden unit split-
ting,” Neural Computation, vol. 9, no. 1, pp. 205-225, 1997.

[215] R. Setiono and H. Liu, “Neural network feature selector,” IEEE Trans. Neural Net-
works, vol. 8, pp.654-662, 1997.

[216] R. Setiono, W. K. Leow and J. M. Zurada, “Extraction of rules from artificial neural
networks for nonlinear regression,” IEFFE Trans. Neural Networks, vol. 13, no. 3, pp.
564-587, 2002.

[217] J. J. Shann, and H. C. Fu,* A fuzzy neural network for rule acquiring on fuzzy control
systems,” Fuzzy Sets and Systems, vol. 71, pp. 345-357, 1995.

[218] W. Siedlecki and J. Sklansky, “A note on genetic algorithms for large scale feature
selection,” Pattern Recognition Letters, vol. 10, pp. 335-347, 1989.

[219] S. P. Smith, A. K Jain, “Testing of uniformity in multidimensional data,” IEEE Trans.
on Pattern Analysis and Machine Learning, vol. 6, no. 1, pp. 73-81, 1984.

[220] F. F. Soulie, P. Gallinary (eds.), Industrial Applications of Neural Networks, World
Scientific, 1998.

[221] J. M. Steppe, K. W. Bauer, S. K. Rogers, “Integrated feature and architecture selec-
tion,” IFEF Trans. Neural Networks, vol. 7, pp. 1007-1014, 1996.

[222] M. Sugeno and T. Yasukawa, “ A Fuzzy-Logic based approach to qualitative modeling,”
IFEFE Transactions Fuzzy Systems, vol. 1, no. 1, pp. 7-31, 1993.

[223] G. Schwarz, “Estimating the dimension of a model,” The Annals of Statistics, vol. 6,
no. 2, pp. 461-464, 1978.

240

[224] 1. A. Taha and J. Ghosh, “Symbolic interpretation of artificial neural networks,” IEEE
Trans. Knowledge and Data Fngg., vol. 11, pp. 448-462, 1998.

[225] A. B. Tickle, R. Andrews, M. Golea and J. Diederich,“The truth will come to light:
directions and challenges in extracting the knowledge embedded within trained artificial
neural networks,” IFEF Trans. Neural Networks, vol. 9, pp. 1057-1068, 1998.

[226] A. N. Tikhonov and V. Y. Arsenin, Solution of Ill Posed Problems, Washington D.C.:
W.H. Winston, 1977.

[227] G. G. Towell and J. W. Shavlik, “Extracting refined rules from knowledge-based neural
networks,” Machine Learning, vol. 13, no. 1, pp. 71-101, 1993.

[228] T. Trappenberg, Fundamentals of Computational Neuroscience, Oxford University
Press, 2002.

[229] E. C. C. Tsang, D. S. Yeung and X. Z. Wang, “ OFSS: optimal fuzzy-valued feature
subset selection,” IEFE Trans. Fuzzy Systems, vol. 11, no. 2, pp. 202-213, 2003.

[230] N. Ueda, “Optimal linear combination of neural networks for improving classification
performance,” IEEFE Transaction Pattern Analysis and Machine Intelligence, vol. 22,
no. 2, pp. 207-215, 2000.

[231] L. G. Valiant,“A theory of the learnable,” Communications of the ACM, vol. 27, no.
11, pp. 1134-1142, 1984.

[232] V. N. Vapnik, Statistical Learning Theory, Wiley, New York, 1998.

[233] V. N. Vapnik, Estimation of Dependences Based on Fmpirical Data, Springer-Verlag,
New York, 1982.

[234] M. Vidyasagar, Theory of Learning and Generalization, with Application to Neural Net-
works and Control Systems, Springer, New York, 1997.

[235] L. X. Wang, J. M. Mendel, “Generating fuzzy rules by learning from examples,” IEEFE
Transactions on Systems, Man, Cybernetics, vol. 22, pp. 1414-1427, 1992.

[236] A. S. Weigend, “On overfitting and effective number of hidden units,” In Proc. of
Connectionist Models’s Summer School, pp. 335-342, Lawrence Erlbaum, Hillsdale, N.J.,
1993.

[237] J. Weston, A. Gammerman, M. Stitson, V. Vapnik, V. Vovk and C. Watkins, “Support
vector density estimation”, Advances in Kernel Methods - Support Vector Learning, MIT
Press, Cambridge, MA, pp. 293-306, 1999.

[238] D. H. Wolpert, “Stacked Generalization,” Neural Networks, vol. 5, no. 2, pp. 241-259,
1992.

241

[239] G.-D. Wu and C. -T. Lin, “A Recurrent Neural Fuzzy Network for Word Boundary
Detection in Noisy Environment,” International Journal of Fuzzy Systems, vol 2, no 1,
pp. 31-38, 2000.

[240] S. Wu and M. J. Er,“Dynamic fuzzy neural networks - a novel approach to function
approximation,” IEFE Transactions on System Man and Cybernetics B, vol. 30, no. 2,
pp-358-363, 2000.

[241] R. R. Yagar and D. P. Filev, “Approximate clustering via the mountain method,” IEEE
Trans. Systems Man Cybernetics, vol. 24, no. 8, pp. 1279-1284, 1994.

[242] T. Yamakawa, “Stabilization of an Inverted Pendulum by a High-speed Fuzzy Logic
Controller Hardware System,” Fuzzy Sets and Systems, vol. 32, pp. 161-180, 1989.

[243] T. Yamakawa, “A fuzzy inference engine in nonlinear analog mode and its application
to a fuzzy logic control,” IEFE Trans. on Neural Networks, vol. 4, no. 3, pp. 496-522,
1993.

[244] T. Yamakawa, “Silicon implementation of a fuzzy neuron,” IEEE Trans. on Fuzzy
Systems, vol. 4, no. 4, pp. 488-501, 1996.

[245] K. Yamauchi, N. Yamaguchi, N. Ishii, “Incremental learning methods with retrieving
of interfed patterns,” IEFFE Trans. Neural Networks, vol. 10, no. 6, pp. 1351-1365, 1999.

[246] X. Yao and Y. Liu, “Making use of population information in evolutionary artificial
neural networks,” IEFE Transactions on Systems Man and Cybernetics B, vol. 28, no.
3, pp. 417-425, 1998.

[247] S. Yao, C. Wei, Z. He, “Evolving fuzzy neural networks for extracting rules,” in: Proc.
Sth IFEFE International Conference on Fuzzy Systems FUZZ IEFE’96, New Orleans,
pp. 361-367, 1996.

[248] D. Yeung and X. Sun, “Using function approximation for sensitivity analysis of MLP,”
IFFEFE Trans. Neural Networks, vol 13, pp. 34-44, 2002.

[249] L. Zadeh, “Fuzzy logic and soft computing: issues, contentions and perspectives,”
Proc. 3¢ International Conference on Fuzzy logic, Neural Networks and Soft Computing,
IZUKA, Japan, pp. 1-2, 1994.

[250] L. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, pp. 338-353, 1965.

[251] X.Zeng, D.S. Yeung, “Sensitivity analysis of multilayer perceptron to input and weight
perturbation,” IFFFE Trans. Neural Networks, vol. 12, no. 6, pp. 1358-1366, 2001.

[252] Z.-H. Zhou, J. Wu and W. Tang, “Ensembling neural networks: many could be better
than all,” Artificial Intelligence, vol. 137, no. 1, pp. 239-263.

[253] J. M. Zurada, Introduction to Artificial Neural Systems, West Publishing Company,
MN, 1992.

242

[254] J. M. Zurada, A. Malinowski, S. Usui, “Perturbation method for deleting redundant
inputs of perceptron networks,” Neurocomputing, vol. 14, pp. 177-193, 1997

[255] J. M. Zurada and A. Lozowski, Generating linguistic rules from data using neuro-fuzzy
framework, in 4th Int. Conf. on Soft Computing, IIZUKA96, lizuka, Japan, vol. 2, pp.
618621, 1996.

[256] ftp://ftp.dice.ucl.ac.be/pub/neural-nets/ELENA
[257] http://www.dice.ucl.ac.be/neural-nets/Research/Projects/ELENA /elena.htm
[258] http://www.bangor.ac.uk/ mas00a/Z.txt and http://www.bangor.ac.uk/ mas00a/Zte.txt

[259] B.E. Boser, .M. Guyon and V.N. Vapnik, “A training algorithm for optimal margin
classifiers,” in 5 Annual ACM Workshop on Computational Learning Theory, pp. 144-
152, ACM Press, 1992.

[260] C.J.C. Burges, “A tutorial on support vector machines for pattern recognition,” Data
Mining and Knowledge Discovery, vol 2, no. 2, pp. 1-47, 1998

[261] C. Cortes and V. Vapnik, “Support Vector Networks,” Machine Learning, vol 20, n0.
3, pp. 273-297, 1995.

[262] N. Cristianini and J. Shaw-Taylor, An Introduction to Support Vector Machines, Cam-
bridge University Press, 1999.

[263] T. Joachims, “Making large scale support vector learning practical,” Advances in Ker-
nel Methods: Support Vector Learning, pp. 169-184, MIT Press, 1999.

[264] T. Joachims, “Text categorization with support vector machines,” in Furopean Con-
ference on Machine Learning, 1998.

[265] C.-J. Lin, “Formulations of support vector machines: a note from an optimization point
of view,” Neural Computation, vol. 17, pp. 307-317, 2001.

[266] J.C. Platt, “Fast training of support vector machines using sequential minimal opti-
mization”, Advances in Kernel Methods: Support Vector Learning, pp. 185-208, MIT
Press, 1999.

[267] C.W. Hsu and C.-J. Lin, “A comparison of methods for multiclass support vector
machines,” IEFE Trans. Neural Networks, vol. 13, no. 2, pp. 415-425, 2002.

[268] J.C. Platt, N. Cristianini, and J. Shawe-Taylor, ¢ Large margin DAGs for multiclass
classification,” Advances in Neural Information Processing Systems, vol. 12, pp. 547-553,
MIT Press, 2000.

[269] B. Scholkopf, A. J. Smola, Learning with kernels, MIT Press, 2002.

[270] A.J. Smola and B. Schélkopf, “A tutorial on support vector regression,” NeuroCOLT2
Technical Report, NC2-TR-~1998-030, 1998.

243

[271] C. Ding and I. Dubchak, “Multi-class protein fold recognition using support vector
machines and neural networks,” Bioinformatics, vol. 17, pp. 349-358, 2001

[272] A.Zien, G. Ratsch, S. Mika, B. Schélkopf, T. Lengauer, and K.-R. Muller, “Engineering
support vector machine kernels that recognize translation initiation sites,” BioInformat-
ies, vol. 16, no. 9, pp. 799-807, 2000

[273] T. S. Furey, N. Duffy, N. Cristianini, D. Bednarski, M. Schummer, and D. Haussler,
“Support Vector Machine Classification and Validation of Cancer Tissue Samples Using
Microarray Expression Data,” Bioinformatics, vol. 16, no. 10, pp. 906-914, 2000.

[274] 1. Guyon, J. Weston, S. Barnhill, V. Vapnik, “Gene selection for cancer classification
using support vector machines,” Machine Learning, vol. 46, pp. 389-422, 2000.

[275] H. Drucker, D. Wu and V. Vapnik, “Support vector machines for spam categorization,”
IFFEFE Trans. on Neural Networks , vol 10, no. 5, pp. 1048-1054. 1999.

[276] L.-F. Chung, C.-D. Huang, Y.-H. Shen and C.-T. Lin, “Recognition of structure classifi-
cation of protein folding by NN and SVM hierarchical learning architecture”, Proceedings
of ICANN/ICONIP 2003, pp. 1159-1167, Springer-Verlag, Berlin, 2003.

[277] M. Pontil and A. Verri, “Support vector machine for 3-D object recognition”, IEEE
Trans. Pattern Analysis and Machine Learning, vol. 20, pp. 637-646, 1998.

[278] E. Osuna, R. Fruend and F. Girosi, “Training support vector machines: an application
to face detection”, in Proc. Computer Vision and Pattern Recognition, pp. 181-201,
2001.

[279] Q. Zhao and J. Principe, “Automatic Target Recognition with Support Vector Ma-
chines,” NIPS-98 Workshop on Large Margin Classifiers, 1998.

[280] S. Romdhani, P. Torr and B. Schélkopf and A. Blake, “Computationally efficient face
detection”, in Proc. International Conference on Computer Vision, vol. 2, pp. 695-700,
2001.

[281] Y. Grandvalet and S. Canu,*“Adaptive scaling for feature selection in SVMs,” Neural
Information Processing Systems, vol. 15, 2002.

[282] K. Duan, S.S. Keerthi and A.N. Poo, “Evaluation of simple performance measures for
tuning SVM hyperparameters,” Neurocomputing, Vol. 51, pp. 41-59, 2003.

[283] J. Weston, S. Mukherjee, O. Chapelle, M. Pontil, T. Poggio and V. Vapnik, “Feature
selection for SVMs”, in Advances in Neural Information Processing Systems, vol 13, pp.
668-674, 2000.

[284] J. Bi, K.P. Bennett, M. Embrechts, C.M. Breneman, M. Song, “Dimensionality reduc-
tion via sparse support vector machines”, Journal of Machine Learning Research, vol.
1, pp. 1-16, 2002.

244

[285] A.Raktomamonjy, “Variable selection using SVM criteria”, Journal of Machine Learn-
ing Research, vol. 3, pp. 1357-1370, 2003.

245

Al.

A2,

A3.

A4,

Ab.

AB.

AT.

AS.

A9.

A10.

Publications of the Author Related to the Thesis

D. Chakraborty and N.R. Pal, “Integrated feature analysis and fuzzy rule-based system
identification in a neuro-fuzzy paradigm,” IEFE Trans. on Systems Man Cybernetics
B, vol. 31, no. 3, pp. 391-400, 2001.

D. Chakraborty and N.R. Pal, “A Novel Training Scheme for Multilayered Perceptrons
to Realize Proper Generalization and Incremental Learning,” IFEF Trans. on Neural
Networks, vol. 14, no. 1, pp. 1-14, 2003.

D. Chakraborty and N.R. Pal, “A Neuro-Fuzzy Scheme for Simultaneous Feature Se-
lection and Fuzzy Rule-Based Classification,” IFEFE Trans. on Neural Networks, vol.
15, no. 1, pp. 110-123, 2004.

D. Chakraborty and N.R. Pal, “Selection useful groups of features (sensors) in a con-

nectionist framework,” IEFFE Trans. Systems Man Cybernetics B, (communicated).

D. Chakraborty and N.R. Pal, “Training multilayered perceptrons to realize proper gen-
eralization and incremental learning for function approximation”, IFFFE Trans. Neural

Networks, (communicated).

N.R. Pal and D. Chakraborty, “Simultaneous feature analysis and system identification

in a neuro-fuzzy framework,” in Neuro-Fuzzy Pattern Recognition, (eds.) Bunke and
Kandel, pp. 3-22, World Scientific, 2000.

D. Chakraborty and N.R. Pal, “Designing rule-based classifiers with on-line feature
selection: a neuro-fuzzy approach,” Advances in Soft Computing, LNAI 2275, Springer,
pp. 252-260, 2002.

D. Chakraborty and N.R. Pal, “T'wo Connectionist Schemes for Selecting Groups of
Features (Sensors),” Proceedings of FUZZ-IEEE 2003, pp. 161-166 , 2003.

D. Chakraborty and N.R. Pal, “Making a multilayered perceptron say “Dont know”
when it should,” ICONIP 02, Proceedings of the 9-th International Conference on
Neural Information Processing, Singapore, pp. 45-49, 2002.

D. Chakraborty and N.R. Pal, “Expanding the training set for better generalization
in MLP,” Proceedings of International Conference on Communication, Devices and
Intelligent Systems, CODIS-2004, pp. 454-457, 2004.

246

