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Notations and abbreviations

Notation Meaning Page number
of first use

i
√−1 1

X Stationary stochastic process {X(t),−∞ < t < ∞} 1

C(·) Covariance function of X 1

φ(·) Power spectral density of X 1

Φ(·) Power spectral distribution of X 1

f Frequency 1

f0 Bandwidth of X when it is a bandlimited process 1

τ {tj , j = . . . ,−2,−1, 0, 1, 2, . . .} (set of sampling times) 2

Xτ {X(tj) : j = . . . ,−2,−1, 0, 1, 2, . . .} (sampled process) 2

c Covariance sequence of Xτ 2

sinc(u)





sin(u)
u if u 6= 0,

1 if u = 0.
3

T 1
2f0

, inter-sample spacing when bandlimited process X is

sampled at Nyquist rate

3

1E(·) Indicator function of the set E 4

n Sample size 4

K(·) Covariance averaging kernel 4

bn Kernel bandwidth 4

β Mean intensity of τ when it is a stationary point process 6



Notation Meaning Page number
of first use

ψ̂n(f)
2

βn

n−1∑

l=1

n−l∑

j=1

X(tj)X(tj+l)K(bn(tj+l−tj)) cos(2πf(tj+l−tj)),

an estimator of φ(f) based on n samples

6

d Minimum permissible inter-sample spacing 7

ρn Sampling rate when τ is a grid and sample size is n 13

ĉln
1
n

n−|l|∑

j=1

X

(
j

ρn

)
X

(
j + |l|

ρn

)
, an estimator of cl 13

φ̂n(f)
1
ρn

∑

|j|<n

ĉjnK(bnj)e−
i2πfj

ρn 1[−1/2ρn,1/2ρn](f), an estimator of

φ(f) based on n samples

13

MSE Mean squared error 14

Q(·) Fourth order cumulant function of X 15

p Decay parameter of φ(·) 16

q Smoothness parameter of φ(·) 16

DCT Dominated Convergence Theorem 24

µτ Reduced covariance measure of τ when it is a stationary

point process

83

γ(·) Probability density function of inter-sample spacing when

τ is a stationary renewal process

94

H(·) Renewal density function corresponding to γ(·) 94

Ĉnd(u) An estimator of C(u) defined in (5.15) 109

φ̂nd(f) TĈnd(0) + 2T
n−1∑

l=1

Ĉnd(lT )K(bnl) cos(2πflT )1[−f0,f0](f),

an estimator of φ(f) based on n samples with minimum

inter-sample spacing d

109
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Chapter 1

Introduction

1.1 Power spectral density and sampling

Let X = {X(t), −∞ < t < ∞} be a real valued, continuous time, mean square

continuous stationary stochastic process with mean 0 and integrable autocovariance

function (also referred to as covariance function) C(·) defined as

C(t) = E [X(t + u)X(u)] , −∞ < t < ∞. (1.1)

The power spectral density (also referred to as spectral density) of the process, φ(·), is

the Fourier transform of C(·), defined as

φ(f) =
∫ ∞

−∞
C(t)e−i2πftdt, −∞ < f < ∞. (1.2)

It can be shown that the power spectral density is not only real valued, but is also

non-negative, even and integrable (Brillinger, 2001). In the sequel, we shall refer to the

variable f as the frequency. The power spectral distribution function, Φ(·), is defined

as

Φ(f) =
∫ f

−∞
φ(u)du, −∞ < f < ∞. (1.3)

The process X is said to be bandlimited if φ(·) assumes the value zero outside a

finite interval. If the smallest such interval is [−f0, f0], then this interval is called the

spectral support, and the frequency f0 is called the bandwidth of the process X. If

there is no finite interval for which this condition holds, then the process is said to be

1
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non-bandlimited.

One often attempts to gather information about φ(·) through a set of sample values

of the process X. Let τ be a countable set of real numbers and Xτ be the sampled

process, defined as

Xτ = {X(t), t ∈ τ}. (1.4)

Note that Xτ can be regarded as a discrete time process. The most common example

of a sampled process is a uniformly (regularly) sampled process, which corresponds to

the choice τ = {j/ρ : j =, . . . ,−2,−1, 0, 1, 2, . . .}, where ρ is the (fixed) sampling rate.

In this case, the autocovariance sequence c = {. . . , c−2, c−1, c0, c1, c2, . . .} of the process

Xτ is defined as

cj = E

[
X

(
j + k

ρ

)
X

(
k

ρ

)]
= C

(
j

ρ

)
, j = . . . ,−2,−1, 0, 1, 2, . . . . (1.5)

The power spectral density of Xτ is the Fourier transform φρ(·) of the sequence c, given

by

φρ(ξ) =
∞∑

j=−∞
cje

−i2πξj , −1
2

< ξ <
1
2
, (1.6)

provided
∑∞

j=−∞ |cj | < ∞. This periodic function is related to the power spectral

density of the underlying continuous time process by the relation

φρ(ξ) = ρ

∞∑

l=−∞
φ (ρ(ξ + l)) , −1

2
< ξ <

1
2
. (1.7)

If φ(·) has bandwidth f0 and ρ ≥ 2f0, then the above relation simplifies to

φρ(ξ) = ρ φ(ρξ), −1
2

< ξ <
1
2
,

i.e.,

φ(f) =
1
ρ

φρ

(
f

ρ

)
, −ρ

2
< f <

ρ

2
. (1.8)

Thus, the power spectral density of the continuous time process can be obtained from

that of the sampled process. The corresponding representation of the covariance func-

tion C(·) in terms of
{

C
(

j
ρ

)
, j = . . . ,−2,−1, 0, 1, 2, . . .

}
, which had been noticed by

Whittaker (1915) and is currently found in textbooks (Oppenheim and Schafer, 2009),
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is given by

C(t) =
∞∑

m=−∞
C

(
m

ρ

)
sinc (π (tρ−m)) , (1.9)

where

sinc(x) =





sin x
x if x 6= 0,

1 if x = 0.

While the reconstruction (1.8) is possible if ρ ≥ 2f0, it is not possible if ρ < 2f0 (i.e.,

if the inter-sample spacing is more than T = 1
2f0

). This result is known as the Nyquist

theorem, and the threshold rate 2f0 is known as the Nyquist sampling rate (Shannon,

1949).

When the process X is not bandlimited, or when ρ < 2f0, the shifted versions of φ(·)
appearing on the right hand side of (1.7) overlap with one another, making it impossible

to recover φ(·) from φρ(·). This type of non-identifiability, where different forms of φ(·)
can lead to the same φρ(·), is called aliasing.

The sampled process Xτ can also be studied for some other forms of sampling

times τ , as we shall see later.

1.2 Spectrum estimation from different types of sampled

data

The classical problem of spectrum estimation refers to the estimation of the spectral

density φ(·), or of the spectral distribution Φ(·). Spectrum estimation has been found to

be useful in communication theory (Oppenheim and Schafer, 2009), seismology (Hung,

2002; Costain and Çoruh, 2004), oceanography (Hasselmann et al., 1963), physics (Mac-

Donald and Ness, 1961), signal and image processing (Eldar et al., 1997), analysis of

internet traffic data (Roughan, 2006), ecological studies (Matson et al., 1994), medical

sciences (French and Holden, 1971) and so on. A finite set of observations of the pro-

cess, sampled at either uniform or non-uniform time intervals, is generally used for the

purpose of spectrum estimation.

Uniform sampling is the most common form of sampling, mainly because it is

easy to implement and analyse (Higgins, 1996; Benedetto and Ferreira, 2001). A
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simple estimator of the spectral density φ(·), based on n uniformly spaced samples

X(1/ρ), X(2/ρ), . . . , X(n/ρ), is the periodogram defined as

In(f) =
1
nρ

∣∣∣∣∣∣

n∑

j=1

X

(
j

ρ

)
e
− i2πfj

ρ

∣∣∣∣∣∣

2

1[−ρ/2,ρ/2](f) =
1
ρ

∑

|j|<n

ĉje
− i2πjf

ρ 1[−ρ/2,ρ/2](f), (1.10)

where ĉj is an estimator of covariance cj , defined as

ĉj =
1
n

n−|j|∑

l=1

X

(
l

ρ

)
X

(
l + |j|

ρ

)
, j = −(n− 1),−(n− 2), . . . , n− 2, n− 1, (1.11)

and 1E(·) is the indicator function of the set E, which takes the value 1 when its

argument is in E and the value 0 otherwise. The periodogram is known to be an

inconsistent estimator of the spectral density (Brillinger, 2001). When the bandwidth

of the process X is smaller than ρ/2, the periodogram is asymptotically unbiased, but its

variance does not go to zero as the sample size goes to infinity. A common nonparametric

spectrum estimator that overcomes this defect is

φ̂ρ(f) =
1
ρ

∑

|j|<n

ĉjK(bnj)e−
i2πfj

ρ 1[−ρ/2,ρ/2](f), (1.12)

where K(·) is a covariance averaging kernel and bn is the kernel bandwidth. An alter-

native representation of this estimator is

φ̂ρ(f) =
1

ρbn

∫ ∞

−∞
In(ϕ)κ

(
f − ϕ

ρbn

)
dϕ, (1.13)

where

κ(f) =
∞∑

j=−∞

∫ ∞

−∞
K(t)e−i2π(f+jρ)tdt.

The convolution with κ(·) indicates smoothing of In(·). For this reason, the estimator

φ̂ρ(·) is known as the smoothed periodogram. If bn → 0 and nbn → ∞ as n →∞,

then, assuming that X has bandwidth f0 ≤ ρ/2, the estimator φ̂ρ(·) is known to be

consistent for the spectral density φ(·) (Parzen, 1957). However, if f0 > ρ/2, or if X

is non-bandlimited, then it follows from the definition of φ̂ρ(·) that this estimator has

bias that cannot go to zero, and hence it is inconsistent.
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Apart from these nonparametric methods, the literature on spectrum estimation

based on uniform sampling contains a large collection of parametric and nonparametric

methods, and these have been studied in detail in several books (Pillai and Shim, 1993;

Kay, 1999; Naidu, 1999).

Even though uniform sampling is easy to implement, it suffers from the problem of

aliasing, as discussed in the foregoing section. It follows from the Nyquist theorem that

the class of spectral densities that can be consistently estimated from samples collected

at the uniform rate ρ consists of spectral densities having bandwidth smaller than or

equal to ρ/2. This drawback of uniform sampling has prompted researchers to look for

alternative sampling strategies.

The scope of periodic sampling can be expanded somewhat in the case of processes

whose spectral support contain sub-intervals of zero spectral density. Prominent ex-

amples of such a process are bandpass processes (having spectral support of the form

[−f2,−f1]∪ [f1, f2] for some f2 > f1 > 0) and multiband processes (having spectral sup-

port in the form of union of more than two intervals). It has been shown that for such

processes, periodic non-uniform sampling (sampling at irregular intervals that follow a

periodic pattern) at sub-Nyquist average rate can lead to appropriate reconstruction of

the original process (Landau, 1967). This minimum rate, called the Landau rate, is the

Lebesgue measure of the support of the spectrum (Landau, 1967; Marvasti, 2001). This

work has been followed by substantial further research in the area, including consistent

estimation of the underlying spectrum (Marvasti, 2001; Venkataramani and Bresler,

2001).

While periodic non-uniform sampling nicely exploits the gaps in the spectral support,

it does not offer any advantage where such gaps do not exist. For a general process,

Shapiro and Silverman (1960) considered alias-free stochastic sampling schemes (τ) in

the sense that two continuous time processes with different spectral densities do not

produce the same spectral density of the sampled process. The most general form of

stochastic sampling that has been considered is one where the sampling times constitute

a point process. A special case of this is additive random sampling, where the samples

are drawn at the renewal epochs of a renewal process, i.e., the inter-sampling spacings are

independent and identically distributed (iid). A further special case is Poisson sampling,
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where the sampling times coincide with the jumps of a homogeneous Poisson process,

and the inter-sample spacings have an exponential distribution. Shapiro and Silverman

(1960) proved that additive random sampling through a class of renewal processes,

including Poisson sampling, is alias free. This was followed by much research in the

area of stochastic sampling. Masry (1978b) proposed an estimator based on Poisson

sampled data, similar to the smoothed periodogram defined in (1.12), and proved its

consistency under some conditions, without the restriction of any limited bandwidth of

the underlying spectral density.

Let τ be the set of jump points of a homogeneous Poisson process with rate β.

Consider the estimator ψ̂n(·), based on n samples of the process X at t1, t2, . . . , tn ∈ τ ,

defined as

ψ̂n(f) =
2

nβ

n−1∑

l=1

n−l∑

j=1

X(tj)X(tj+l)K(bn(tj+l−tj)) cos(2πf(tj+l−tj))1(−∞,∞)(f), (1.14)

where K(·) is a covariance averaging kernel and bn its bandwidth. Masry (1978b) proved

that for any arbitrary average sampling rate β, under some regularity conditions on the

process X that does not require X to be bandlimited, this estimator is consistent for

the spectral density φ(·) provided bn → 0 and nbn →∞.

Subsequently, the possibility of breaking free from the nuisance of aliasing with the

help of non-uniform sampling enthused many researchers and practitioners. Several non-

uniform sampling based methodologies of estimation of the spectral density of a non-

bandlimited process have been proposed (Mitchel, 1987; Lehr and Lii, 1997; Tarczynski

and Allay, 2004; Stoica and Sandgren, 2006; Stoica et al., 2009). Some of these methods

are analogous to methods developed for uniformly sampled data.

The estimation strategies mentioned above are meant for situations where one can

design the sampling epochs. Examples of such applications include internet traffic data

(Roughan, 2006), seismology (Hung, 2002; Costain and Çoruh, 2004), image processing

(Eldar et al., 1997) and so on. However, irregularly spaced data can also occur naturally

in many practical situations like seismic studies (Ozbek and Ferber, 2005), turbulent

velocity fluctuation (Tummers and Passchier, 2000), laser doppler anemometer studies

(Nobach et al., 1998), wide-band antenna arrays (Ishimaru and Chen, 1965), computer
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aided tomography, spotlight-mode synthetic aperture radar (Munson et al., 1983) and

so on. For spectrum estimation from such data, there have been attempts to use stan-

dard methods based on uniform sampling, after suitable weighting (Bronez, 1988) or

interpolation (Tummers and Passchier, 2000) of the data.

1.3 Matters investigated in this thesis

Whenever one has control over the sampling mechanism, selection of the sampling

scheme (uniform or non-uniform) is a serious issue in relation to the problem of spec-

trum estimation. Two major arguments in favour of uniform sampling are: (a) it is

logistically easy to implement, and (b) it provides the basis for a vast collection of es-

timators, most of which are computationally simple and theoretically understood well.

On the other hand, the possibility of aliasing and the proven inconsistency of spectral

estimators based on uniform sampling are arguments against it. In this thesis, we re-

examine the strengths and weaknesses of uniform and stochastic sampling through new

theoretical results as well as a series of carefully designed simulation studies.

We begin with the question of consistency of the estimator (1.12) based on uniform

sampling. The consistency of any estimator concerns its behaviour as the sample size

goes to infinity. However, it does not make practical sense to let the sample size tend

to infinity while keeping the uniform sampling rate fixed. If one gathers more and more

resources to increase the sample size, one can use some of those resources to sample

faster. In this thesis, we examine whether the estimator (1.12) can be consistent for a

non-bandlimited spectral density when the sampling rate increases suitably as the sample

size goes to infinity, how it performs in comparison to the estimator (1.14) based on

Poisson sampled data, and whether one can use this estimator to construct asymptotic

confidence intervals that shrink to the true spectral density.

Even if one has control over the sampling mechanism, there may be a practical con-

straint on the minimum separation between successive samples. Let d be the minimum

allowable separation between successive samples. Under this constraint, the fastest pos-

sible rate of uniform sampling is 1/d. It has already been observed that sampling at

this rate is alias-free only for the class of spectral densities that are restricted to the
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bandwidth 1/2d. Interestingly, non-uniform sampling schemes also pose difficulties in

this situation. Many stochastic sampling schemes, including Poisson sampling, are not

even feasible in the presence of this constraint, and some implementable schemes are no

longer alias-free. In this thesis, we investigate whether there exists a stochastic sampling

scheme which is alias-free for the class of all spectra, and if so, how one can use it to

estimate the power spectral density consistently.

In this thesis, we have dealt exclusively with continuous time, mean square contin-

uous stationary stochastic process with zero mean. Processes with a non-zero mean

are usually handled in the same manner as zero mean processes after centering, and

this adjustment generally does not pose any technical difficulty. We do not attempt to

work with non-stationary processes. Since such processes are often modeled in terms of

stationary processes (see for example, Priestley (1983)), it may be expected that clearer

understanding and enrichment of the latter area would be beneficial for the former.

1.4 Organization of the thesis

In Chapter 2, it is shown that under certain regularity conditions on the underlying

process, the smoothing mechanism and the sampling rate, the estimator given by (1.12)

is consistent for the spectral density, even when the latter is not bandlimited. These

results necessitate new asymptotic arguments, since the expressions for asymptotic bias

and variance of the estimators for fixed sampling rate, given in textbooks (Brillinger,

2001), become inappropriate when the sampling rate is allowed to go to infinity to-

gether with the sample size. The consistency of the estimator is proved under a set of

assumptions that are similar to those used to establish the consistency of the estimator

(1.14) based on Poisson sampled data. Under additional conditions on the smoothness

and the decay of the underlying spectral density, the optimal rates of convergence of the

estimators based on uniformly sampled and Poisson-sampled data are compared. Appli-

cability of the theoretical results to finite sample sizes is examined through Monte-Carlo

simulations.

In Chapter 3, we extend the above asymptotic approach to the case of multivariate

non-bandlimited stationary processes. After establishing consistency of the vector of
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smoothed periodogram estimators of the spectral and cross-spectral densities, we show

that, with appropriate scaling, the limiting distribution of this estimator is multivariate

normal. The rate of convergence is studied and compared with the rate for mean

square consistency. The results are used to construct asymptotic confidence intervals

for spectral and cross spectral densities. Appropriateness of the theoretical results and

empirical coverage probabilities at moderate sample sizes are studied through Monte-

Carlo simulations.

In Chapter 4, we consider stochastic sampling schemes that are alias-free, under the

constraint of a minimum separation between successive samples. This study is based on

two definitions of alias-free sampling given by Shapiro and Silverman (1960) (formalized

by Beutler (1970)) and Masry (1978a), respectively. We show that, subject to this

constraint, no point process sampling scheme is alias-free for the class of all spectra

under either definition. Subsequently, we restrict attention to the class of spectral

densities having arbitrary but finite spectral support, and look for alias-free sampling

schemes under both definitions.

In Chapter 5, we build on the positive answers emerging from the investigations

of Chapter 4, and look for a consistent estimator of a power spectral density that

has arbitrary but finite spectral support, using appropriately sampled data under the

constraint of a minimum separation between successive samples. It emerges that, the

approaches previously considered in the absence of this constraint would not work in

the present case. Subsequently, we develop a consistent estimator, and study its small

sample performance through Monte Carlo simulations.

In Chapter 6, we explain how the findings of this thesis improve the understanding

of the relative merits of uniform and stochastic sampling. For the sake of completion

of this discussion, we also compile and collate some previously known results. This

summary helps one to rationalize one’s expectations from uniform sampling, Poisson

sampling and other stochastic sampling schemes. We also outline a few potential areas

of further research.

Strategies for simulation from different continuous time stochastic processes, which

were found to be useful for the simulation results reported in this thesis, are given in

the appendix.
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The contents of Chapters 2–5 are based on Srivastava and Sengupta (2010), Sri-

vastava and Sengupta (2011a), Srivastava and Sengupta (2011c) and Srivastava and

Sengupta (2011b), respectively.



Chapter 2

Uniformly sampled

non-bandlimited processes:

Consistent estimation of spectral

density

2.1 Introduction

A common nonparametric spectrum estimator, based on n uniformly spaced samples at

rate ρ, is the smoothed periodogram defined in (1.12) as follows.

φ̂ρ(f) =
1
ρ

∑

|j|<n

ĉjK(bnj)e−
i2πfj

ρ 1[−ρ/2,ρ/2](f),

where K(·) is a covariance averaging kernel, bn is the kernel bandwidth and

ĉj =
1
n

n−|j|∑

l=1

X

(
l

ρ

)
X

(
l + |j|

ρ

)
, j = −(n− 1),−(n− 2), . . . , n− 2, n− 1,

as defined in (1.11). If bn → 0 and nbn → ∞ as n →∞, then, assuming that X has

bandwidth f0 ≤ ρ/2, the bias and the variance of the estimator φ̂ρ(·) go to zero as n

goes to infinity, implying that the estimator is consistent for the spectral density φ(·)
(Parzen, 1957). When the process X is non-bandlimited, the variance continues to go

to zero, but the bias does not, as we have seen in Section 1.2. Thus, the estimator is

inconsistent whenever X is a non-bandlimited process.

11
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As mentioned in Section 1.2, stochastic sampling can lead to a consistent spectrum

estimator, such as (1.14), even for a non-bandlimited process. One might question

whether, for finite sample size, the estimation error of (1.14) is substantially smaller

than that of the estimator (1.12). An empirical study by Roughan (2006) in the special

case of active measurements for network performance produced mixed results, which

led the author to conclude that, while spectral estimators based on Poisson sampling

have less efficiency (i.e., high variance), such techniques could be used to detect pe-

riodicities in the system, and to determine which rate of uniform sampling would be

inadequate. Moreover, it has been observed that generally, spectral estimators based

on non-uniformly sampled data have higher variances than those based on uniformly

sampled data (Roberts and Gaster, 1980; Moore et al., 2008). In the absence of a com-

prehensive empirical study, it is not possible to claim superiority of estimators based

on one type of sampling over the other. However, it appears that uniform sampling is

sometimes avoided because of the stigma of inconsistency attached to spectral estima-

tors based on uniformly sampled data (Wolf et al., 2007).

Consistency of an estimator is a large sample property of an estimator. It is rea-

sonable to expect that, as one has more and more resources to gather information, the

precision as well as the accuracy of the estimator should improve. However, the estima-

tor defined in (1.12) is designed to be biased, no matter how large the sample size is.

Upon closer examination though, it transpires that the phenomenon of non-diminishing

bias is largely due to a peculiarity of the asymptotic arguments, and not so much an

inherent limitation of the estimator. Specifically, if one has the resources to increase the

sample size, there is no reason why one should not use some of these resources to sam-

ple faster, so that better justice can be done to higher frequencies. Realizing this fact,

practitioners fix the intended range of spectrum estimation, and then sample an appro-

priately filtered process at a sufficiently high frequency to avoid aliasing. Sometimes

one goes for successively higher rates of uniform sampling to determine an appropriate

rate of sampling (Eldar et al., 1997). However, these common sense approaches are yet

to be backed up by appropriate asymptotic calculations. There is a need to bridge this

gap by working out the large sample properties of estimators when the sampling rate

increases suitably as the sample size goes to infinity.
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It may be noted that this asymptotic approach had been adopted by other authors

(Constantine and Hall, 1994; Hall et al., 1994; Lahiri, 1999) in other time series problems,

and was referred to by Fuentes (2002) as ‘shrinking asymptotics’. This approach is

different from the ‘fixed-domain asymptotics’ or ‘infill asymptotics’ approach (Chen

et al., 2000; Stein, 1995; Zhang and Zimmerman, 2005; Lim and Stein, 2008) which, in

the present case, would have required that the time-span of the original continuous-time

data (before sampling) remains fixed as the sampling rate goes to infinity.

Without assuming that the underlying process is bandlimited, we examine the

asymptotic properties of the estimator given in (1.12) by letting ρ go to infinity at

an appropriate rate, as n goes to infinity. In the sequel, we shall use the notation ρn

instead of ρ, in order to explicitly indicate the dependence of the sampling rate on the

sample size. The estimator of (1.12) is accordingly denoted as

φ̂n(f) =
1
ρn

∑

|j|<n

ĉjnK(bnj)e−
i2πfj

ρn 1[−ρn/2, ρn/2](f), (2.1)

where

ĉjn =
1
n

n−|j|∑

l=1

X

(
l

ρn

)
X

(
l + |j|

ρn

)
, j = −(n− 1),−(n− 2), . . . , n− 2, n− 1, (2.2)

and the alternative representation given in (1.13) is written as

φ̂n(f) =
1

ρnbn

∫ ∞

−∞
In(ϕ)κn

(
f − ϕ

ρnbn

)
dϕ, (2.3)

where

In(f) =
1

nρn

∣∣∣∣∣∣

n∑

j=1

X

(
j

ρn

)
e
− i2πfj

ρn

∣∣∣∣∣∣

2

1[−ρn/2,ρn/2](f),

κn(f) =
∞∑

j=−∞

∫ ∞

−∞
K(t)e−i2π(f+jρn)tdt.

The degree of smoothness of the smoothed periodogram, φ̂n(·), is controlled by the

parameter ρnbn of the frequency domain window κn(·).
In Section 2.2, we prove the consistency of the estimator φ̂n(·) under some general
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conditions. In Section 2.3, we calculate the rate of convergence of the bias and the

variance of this estimator, and determine the optimal rates at which ρn and nbn should

go to infinity so that the mean squared error (MSE) has the fastest possible rate of

convergence. Subsequently, we compare the rates of convergence of the bias and the

variance of this estimator with those of the estimator (1.14), based on Poisson sampling.

We provide proofs of all the theoretical results in section 2.4. We present the results of

a simulation study in Section 2.5 and provide some concluding remarks in Section 2.6.

2.2 Consistency of the smoothed periodogram estimator

Consider the mean square continuous, wide sense stationary stochastic process {X(t),

−∞ < t < ∞} with zero mean, (auto-)covariance function C(·) and spectral density

φ(·). In order to prove that the estimator (2.1) is consistent, it is sufficient to show that

the bias and the variance of the estimator tend to zero as the sample size (n) tends to

infinity.

We assume the following condition on the covariance function C(·).

Assumption 2.1. The function h0(·), defined over the real line as h0(t) =

sups≥|t| |C(s)| is integrable.

Remark 2.1. Assumption 2.1 is equivalent to saying that the covariance function C(·)
is bounded over [0,∞) by a non-negative, non-increasing and integrable function.

We assume the following conditions on the choice of the kernel K(·), the kernel

bandwidth bn and the sampling rate ρn.

Assumption 2.2. The covariance averaging kernel function K(·) is continuous even,

square integrable and bounded by a non-negative, even and integrable function having a

unique maximum at 0. Further, K(0) = 1.

Assumption 2.3. The kernel bandwidth is such that nbn →∞ as n →∞.

Assumption 2.4. The sampling rate is such that ρn →∞ and ρnbn → 0 as n →∞.

Note that Assumption 2.4 implies that bn → 0 as n →∞.
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Remark 2.2. Assumption 2.4 says that the smoothing parameter of smoothed peri-

odogram (see (2.3)) goes to zero, and the sampling rate goes to infinity, as the sample

size goes to infinity.

Theorem 2.1. Under Assumptions 2.1–2.4, the bias of the estimator φ̂n(·) given by
(2.1) tends to zero uniformly over any closed and finite interval.

Before examining the variance of the estimator we assume a set of conditions on some

fourth order moments/cumulants of finite dimensional distributions of the process X.

An s-th order cumulant of the random vector (Y1, . . . , Yr), corresponding to the index

set {j1, . . . , js} for 1 ≤ j1, . . . , js ≤ r, is given by

cum(Yj1 , . . . , Yjs) =
∑
ν

(−1)ϑ−1(ϑ− 1)!


E

∏

j∈ ν1

Yj


× · · · ×


E

∏

j∈ νϑ

Yj


 , (2.4)

where the summation is over all partitions ν = (νj1 , . . . , νjϑ
) of size ϑ = 1, . . . , s, of the

index set {j1, j2, . . . , js}. The relation between moments and cumulants up to any finite

order is well known (Brillinger, 2001).

Assumption 2.5. The fourth moment E|X(t)|4 exists for every t, and the fourth order
cumulant function cum [X(t + t1), X(t + t2), X(t + t3), X(t)] does not depend on t, and
this function, denoted by Q(t1, t2, t3), satisfies

|Q(t1, t2, t3)| ≤
3∏

j=1

gj(tj),

where gj(·), j = 1, 2, 3, are all continuous, even, nonnegative and integrable functions

over the real line, which are non-increasing over [0,∞).

Remark 2.3. The cumulant Q(t1, t2, t3) can be written as

Q(t1, t2, t3) = P (t1, t2, t3)− PG(t1, t2, t3),

where

P (t1, t2, t3) = E{X(t)X(t + t1)X(t + t2)X(t + t3)},

PG(t1, t2, t3) = C(t1)C(t2 − t1) + C(t2)C(t3 − t1) + C(t3)C(t1 − t2).
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Assumption 2.5 is satisfied by a Gaussian process, as the function P (·) reduces to the

function PG(·).

Theorem 2.2. Under Assumptions 2.1–2.5, the variance of the estimator φ̂n(·) given
by (2.1) converges as follows:

lim
n→∞nbnV ar[φ̂n(f)] =

(
1 + 1{0}(f)

)
[φ(f)]2

∫ ∞

−∞
K2(x)dx.

The convergence is uniform over any closed and finite interval that does not include the
frequency 0. In particular, the variance converges to 0.

It follows from Theorems 2.1 and 2.2 that, under Assumptions 2.1–2.5, the estimator

φ̂n(f) is consistent, and is uniformly consistent over any closed and finite frequency

interval that does not include the point 0.

2.3 Rate of convergence

The rate of convergence of the variance of φ̂n(f) follows from Theorem 2.2. We assume

a few further conditions in order to arrive at a rate of convergence for its bias. These

include additional conditions on the shapes of the covariance function and the kernel

function.

Assumption 2.1A. The function hq(·), defined over the real line as hq(t) =

sups≥|t| |s|q|C(s)| is integrable, for some positive number q greater than 1.

Assumption 2.1B. The spectral density is such that, for some p > 1, lim
f→∞

|f |pφ(f) = A

for some positive number A.

For any kernel K(·), let us define

kr = lim
x→0

1−K(x)
|x|r

for each positive number r such that the limit exists. The characteristic exponent of

the kernel is defined as the largest number r, such that the limit exists and is non-zero
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(Parzen, 1957). In other words, the characteristic exponent is the number r such that

1−K(1/y) is O(y−r).

Assumption 2.2A. The characteristic exponent of the kernel K(·) is a number, for

which Assumption 2.1A holds.

Remark 2.4. Assumption 2.1A implies Assumption 2.1 (see Remark 2.1), and also

that φ(·) is [q] times differentiable, where [q] is the integer part of q. Thus, the number

q indicates the degree of smoothness of the spectral density. If Assumption 2.1A holds

for a particular value of q, then it would also hold for smaller values.

Remark 2.5. The number p indicates the rate of decay of the spectral density. The

following are two interesting situations, where Assumption 2.1B holds.

1. The spectral density φ(·) is a rational function, i.e., φ(f) = P (f)
Q(f) , where P (·) and

Q(·) are polynomials such that the degree of Q(·) is more than degree of P (·) by

at least p. Note that continuous time ARMA processes possess rational power

spectral density.

2. The function C(·) has the following smoothness property: C(·) is p times differ-

entiable and the pth derivative of C(·) is in L1.

Remark 2.6. The number p can be increased indefinitely by continuous time low pass

filtering with a cut off frequency larger than the maximum frequency of interest. There

are well-known filters such as the Butterworth filter, which have polynomial rate of

decay of the transfer function with specified degree of the polynomial, that can be used

for this purpose.

Theorem 2.3. Under Assumption 2.2–2.4, 1A, 1B and 2A, the bias of the estimator
φ̂n(f) given by (2.1) is

E[φ̂n(f)− φ(f)] =
[
−kq

∫ ∞

−∞
|t|qC(t)e−i2πftdt

]
(ρnbn)q + o ((ρnbn)q)

+
[
−

∫ ∞

−∞
|t|C(t)e−i2πftdt

] (ρn

n

)
+ o

(ρn

n

)

+


A

∑

|l|>0

1
|l|p


 1

(ρn)p
+ o

(
1

(ρn)p

)
,
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i.e.,

E[φ̂n(f)− φ(f)] = O ((ρnbn)q) + O
(ρn

n

)
+ O

(
1
ρp

n

)
,

uniformly in f over any closed and finite interval.

Remark 2.7. Assumption 2.2A can be relaxed to the extent that the characteristic

exponent of the kernel K(·) is required to be greater than or equal to the number q,

for which Assumption 2.1A is assumed to hold. If it is strictly greater than q, then the

term O ((ρnbn)q) in the above theorem would have to be replaced by o ((ρnbn)q). This

follows from equation (2.33) in the Section 2.4 and the fact that kq = 0 in this case.

On the other hand, if a kernel with characteristic exponent less than q is used, then one

does not fully utilize the strength of the assumption on the smoothness of the spectral

density, implied by Assumption 2.1A, and hence gets a slower rate of convergence.

2.3.1 Choice of sampling rate and kernel bandwidth

From Theorem 2.3 and Theorem 2.2, it is observed that the bias and the variance of the

estimator φ̂n(f) converge to zero at different rates. We set out to choose the sampling

rate ρn and the bandwidth bn in order to ensure that the MSE of φ̂n(f) converges to

zero as fast as possible. It would turn out that this happens when the squared bias and

the variance go to zero at the same rate.

Theorem 2.4. Under Assumptions 2.2–2.5, 2.1A, 2.1B and 2.2A, the optimal rate of
convergence of the MSE of the estimator φ̂n(f) is given by

MSE[φ̂n(f)] = O
(
n
− 2pq

p+q+2pq

)
, (2.5)

which corresponds to the optimal choices

ρn = P n
q

p+q+2pq + o
(
n

q
p+q+2pq

)
, (2.6)

and bn = Q n
− p+q

p+q+2pq + o
(
n

p+q
p+q+2pq

)
, (2.7)

where P and Q are positive constants.

The above optimal rates of ρn and bn lead to the following corollaries to Theorems

2.2 and 2.3, respectively.
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Corollary 2.1. Under the Assumptions 2.1, 2.2, 2.5 and the choices of ρn and bn given
by (2.6–2.7), we have

lim
n→∞n

2pq
p+q+2pq V ar[φ̂(f)] =

1
Q

(
1 + 1{0}(f)

)
[φ(f)]2

∫ ∞

−∞
K2(x)dx. (2.8)

Corollary 2.2. Under the Assumptions 2.1A, 2.1B, 2.2, 2.2A and the choices of ρn

and bn given by (2.6–2.7), we have

lim
n→∞n

pq
p+q+2pq E[φ̂n(f)− φ(f)] = −(PQ)qkq

∫ ∞

−∞
|t|qC(t)e−i2πftdt+

1
P p

A
∑

|l|>0

1
|l|p ,

(2.9)

where the constant A is as in Assumption 2.1B.

2.3.2 Comparison with Poisson sampling estimator

Among the various schemes for sampling a continuous time stochastic process at irreg-

ular intervals, Poisson sampling proposed by Silverman (Shapiro and Silverman, 1960)

is the simplest and most popular. Here, we compare the asymptotic behaviour of the

estimator φ̂n(·) with the corresponding estimator based on Poisson sampling.

Let {tj}n
j=0 be the sampling points from a Poisson process with average rate β.

Masry (1978b) proved that, under Assumptions 2.1, 2.2, 2.3 and 2.5, the estimator

ψ̂n(·) defined in (1.14) as

ψ̂n(f) =
2

βn

n−1∑

l=1

n−l∑

j=1

X(tj)X(tj+l)K(bn(tj+l−tj)) cos(2πf(tj+l − tj)),

is consistent for φ(f) for any choice of β.

Under the above Assumptions, the asymptotic variance of ψ̂n(f) satisfies

lim
n→∞(nbn)V ar[ψ̂n(f)] = β

[
φ(f) +

C(0)
β

]2 (
1 + 1{0}(f)

) ∫ ∞

−∞
K2(t)dt. (2.10)

For specifying the rate of convergence of the bias, Masry (1978b) assumed the fol-

lowing additional conditions.

Assumption 2.1C. The function |t|qC(t) is integrable for some positive integer q.

Assumption 2.2B. The covariance averaging kernel K(·) is q times differentiable with
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bounded derivatives, where q is an integer for which Assumption 2.1C holds.

Note that Assumption 2.1C is implied by Assumption 2.1A with the same or higher

value of q as is used here. Masry (1978b) showed that, under Assumptions 2.1, 2.2, 2.3,

2.1C and 2.2B, the bias of the estimator ψ̂n(f) is given as

Bias[ψ̂n(f)] =E[ψ̂n(f)]− φ(f)

=
q−1∑

l=1

(i)lK(l)(0)bl
n

l!
φ(l)(f) + O(bq

n) + O

(
1
n

)
.

(2.11)

It follows from (2.11) that the bias of ψ̂n(f) is O
(
max

{
bm
n , n−1

})
, where

m =





q if K(l)(0) = 0 for 1 ≤ l < q,

l0 if K(l0)(0) 6= 0 and K(l)(0) = 0 for 1≤ l<l0 <q.

The fastest possible rate of convergence is O
(
max

{
bq
n, n−1

})
, and this is achieved

when one uses a kernel, which further satisfies Assumption 2.2A with the same or higher

value of q as is used here. In such a case, we have

Bias[ψ̂n(f)] = O(bq
n) + O

(
1
n

)
. (2.12)

If the Assumption 2.2A holds with a higher value of q, then the term O(bq
n) has to be

replaced by o(bq
n)

Let us now assume that the kernel is chosen appropriately to ensure (2.12). Note that

the bias and the variance of ψ̂n(f) converge to zero at different rates. One can choose the

rate of convergence of the bandwidth bn such that the MSE converges as fast as possible.

It turns out that the fastest convergence of the MSE happens when bn = O(n−
1

2q+1 ), in

which case the squared bias and variance of ψ̂n(f) are both O(n−
2q

2q+1 ).

In summary, under Assumptions 2.1, 2.1C, 2.2, 2.2A, 2.2B, 2.5 and

bn = R n
− 1

2q+1 + o(n−
1

2q+1 ), (2.13)

the MSE of ψ̂n(f) is

MSE[ψ̂n(f)] = O
(
n
− 2q

2q+1

)
.



21 2.3 Rate of convergence

The rate of convergence of MSE of φ̂n(f) is given in Theorem 2.4 under Assumptions

2.1A, 2.1B, 2.2, 2.2A, 2.5 and (2.6–2.7). Both the results hold when ρn and bn for

φ̂n(·) are chosen as in (2.6–2.7), bn for ψ̂n(·) is chosen as in (2.13) and the following

conditions hold simultaneously: Assumption 2.1A for some q greater than 1 (which

implies Assumption 2.1C for [q] and Assumption 2.1), Assumption 2.2, Assumption 2.2A

(for the same q as in Assumption 2.1A), Assumption 2.2B for [q], and Assumption 2.5.

Under this common set of conditions, we have

MSE[ψ̂n(f)] = O

(
n
− 2[q]

2[q]+1

)
,

MSE[φ̂n(f)] = O
(
n
− 2q

2q+1+q/p

)
.

When q is an integer, i.e., [q] = q, the rate of convergence of the MSE of φ̂n(f) is

slower than that of ψ̂n(f). The two rates are comparable if p is much larger than q.

When q is not an integer, the MSE of φ̂n(f) converges faster when p > q[q]/(q − [q]),

and in particular when p is very large. As we have indicated in Remark 2.6, for every

fixed q, one can make p suitably large through low pass filtering.

If the rates of convergence are comparable, the constants associated with these rates

become important. We will compare the constants of the asymptotic bias of φ̂n(f) and

ψ̂n(f) as well as the constants of their asymptotic variance separately, assuming that q

is an integer.

Under Assumptions 2.1, 2.2, 2.5 and (2.13), we have

lim
n→∞n

2q
2q+1 V ar[ψ̂n(f)] =

1
R

β

[
φ(f) +

C(0)
β

]2 (
1 + 1{0}(f)

) ∫ ∞

−∞
K2(x)dx. (2.14)

On the other hand, we have from Corollary 2.1 that under the Assumptions 2.1, 2.2,

2.5 and (2.6–2.7),

lim
n→∞n

2q
2q+1+q/p V ar[φ̂n(f)] =

1
Q

(
1 + 1{0}(f)

)
[φ(f)]2

∫ ∞

−∞
K2(x)dx.

The ratio of the constants for the asymptotic variances of ψ̂n(f) and φ̂n(f) is

Q

R
β

[
1 +

C(0)
βφ(f)

]2

. (2.15)
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This ratio depends on the Poisson sampling rate β and the true value of the power

spectral density φ(f). This ratio can be much larger than 1, particularly for larger values

of f . In fact, even if β is chosen to minimize this ratio for a given value of φ(f) (though

this is not practically possible), the minimum value happens to be 2QC(0)/[Rφ(f)],

which can be arbitrarily large for large values of f . Thus, the variance of ψ̂n(f) can

generally be expected to be larger than that of φ̂n(f).

We now turn to the comparison of the expressions for bias. Under Assumptions

2.1C, 2.2, 2.2A and 2.2B along with (2.13), we have

lim
n→∞n

q
2q+1 [E[ψ̂n(f)]− φ(f)] = −Rqkq

∫ ∞

−∞
|t|qC(t)e−i2πftdt. (2.16)

On the other hand, we have from Corollary 2.2 that under the Assumptions 2.1A, 2.1B,

2.2, 2.2A and (2.6–2.7),

lim
n→∞n

pq
p+q+2pq E[φ̂n(f)− φ(f)] = −(PQ)qkq

∫ ∞

−∞
|t|qC(t)e−i2πftdt +

1
P p

A
∑

|l|>0

1
|l|p .

The first term of the expression on the right hand side is proportional to the expression

on the right hand side of (2.16). These terms are small for large values of f , while the

second term of the expression on the right hand side of the above inequality does not

depend on f . Even if the value of the second term is small, it would make a difference

for large values of f . Consequently, ψ̂n(f) can generally be expected to have a smaller

bias than φ̂n(f).

In summary, even though both φ̂n(f) and ψ̂n(f) are consistent estimators under

the stated conditions, there is a trade-off between φ̂n(f) and ψ̂n(f) in terms of bias

and variance. There is no clear order between the constants of the MSE’s of the two

estimators.

In order to examine the validity of the asymptotic results and the above comparisons

for small samples, we turn to Monte Carlo simulations, reported in Section 2.5.
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2.4 Proofs

We denote by K1(·) a function that bounds the covariance averaging kernel K(·) as in

Assumption 2.2. Further, we denote K1(0) by M .

Proof of Theorem 2.1. We shall show that the bias of the estimator φ̂n(f) given by

(2.1) converges to 0 uniformly over [fl, fu] for any fl, fu such that fl < fu. In order to

compute the bias, we evaluate E[ĉvn]:

E[ĉvn] = E


 1

n

n−|v|∑

j=1

X

(
j

ρn

)
X

(
j + |v|

ρn

)
 =

(
1− |v|

n

)
C

(
v

ρn

)
. (2.17)

Therefore, we have

E[φ̂n(f)] =
1
ρn

∑

|v|<n

(
1− |v|

n

)
C

(
v

ρn

)
K(bnv)e

−i2πfv
ρn 1[−ρn/2,ρn/2](f).

Consider the simple function Sn(·), defined over [fl, fu]× (−∞,∞), by

Sn(f, t) =
∑

|v|<n

(
1− |v|

n

)
C

(
v

ρn

)
K (bnv) e

−i2πfv
ρn 1[−ρn/2,ρn/2](f)1(

v−1
ρn

, v
ρn

](t).

Observe that
∫∞
−∞ Sn(f, t)dt = E[φ̂n(f)]. Define the function S(·), over [fl, fu] ×

(−∞,∞), by

S(f, t) = C(t)e−i2πft.

Observe that
∫∞
−∞ S(f, t)dt = φ(f) which is continuous.

For any t ∈ (−∞,∞), let vn(t) be the smallest integer greater than or equal to ρnt.

Note that the interval (vn−1(t)
ρn

, vn(t)
ρn

] contains the point t and limn→∞
vn(t)
ρn

= t. For

sufficiently large n, we have from Assumptions 2.3 and 2.4,

Sn(f, t) =
(

1− |vn(t)|
ρn

· ρn

n

)
C

(
vn(t)
ρn

)
K

(
bnρn

vn(t)
ρn

)
e
−i2πfvn(t)

ρn 1[−ρn/2,ρn/2](f).

Proving the uniform convergence of Bias[φ̂n(f)] over finite interval [fl, fu] amounts to

proving

lim
n→∞

∫ ∞

−∞
Sn(f, t)dt =

∫ ∞

−∞
S(f, t)dt,
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uniformly over [fl, fu]. By virtue of the continuity of the limiting function, this in turn

is equivalent to proving that
∫∞
−∞ Sn(f, t)dt converges continuously over this interval

(Resnick, 1987), i.e., for any sequence of frequencies fn → f ,

lim
n→∞

∫ ∞

−∞
Sn(fn, t)dt =

∫ ∞

−∞
S(f, t)dt,

where fn, f ∈ [fl, fu].

By continuity of the function Sn(f, t) with respect to t and f , we have from As-

sumptions 2.3 and 2.4, for any fixed t,

lim
n→∞ |Sn(fn, t)− S(f, t)| = 0.

Note that from Assumptions 2.1 and 2.2, we have the dominance

|Sn(fn, t)| ≤M
∑

|v|<n

∣∣∣∣C
(

v

ρn

)∣∣∣∣ 1(
v−1
ρn

, v
ρn

](t) ≤ Mh0(t).

where h0(·) is the function described in Assumption 2.1. Thus, by applying the domi-

nated convergence theorem (DCT), we have

lim
n→∞

∫ ∞

−∞
Sn(fn, t)dt =

∫ ∞

−∞
S(f, t)dt.

Hence, E[φ̂n(f)] → φ(f) uniformly on [fl, fu]. 2

Proof of Theorem 2.2. The estimator φ̂n(f), given by (2.1), can be written as

φ̂n(f) =
1
ρn

ĉ0n +
2
ρn

n−1∑

j=1

ĉjnK(bnj) cos
(

2πfj

ρn

)
.

Therefore,

V ar[φ̂n(f)] = T1 + 2T2(f) + T3(f), (2.18)

where

T1 =
1
ρ2

n

V ar[ĉ0n],
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T2(f) = Cov


 1

ρn
ĉ0n,

2
ρn

n−1∑

j=1

ĉjnK(bnj) cos
(

2πfj

ρn

)
,

T3(f) = V ar


 2
ρn

n−1∑

j=1

ĉjnK(bnj) cos
(

2πfj

ρn

)
.

Before we consider the convergence of the above three terms, we simplify the computa-

tion of Cov(ĉj1n, ĉj2n) for non negative j1 and j2.

Note from Assumption 2.5 that

E[ĉj1nĉj2n] = E


 1

n2

n−j1∑

k1=1

n−j2∑

k2=1

X

(
k1

ρn

)
X

(
k1+j1

ρn

)
X

(
k2

ρn

)
X

(
k2+j2

ρn

)


=
1
n2

n−j1∑

k1=1

n−j2∑

k2=1

[
C

(
j1

ρn

)
C

(
j2

ρn

)
+ C

(
k1−k2+j1

ρn

)
C

(
k1−k2−j2

ρn

)

+C

(
k1−k2

ρn

)
C

(
k1−k2+j1−j2

ρn

)
+ Q

(
j1

ρn
,
k2−k1

ρn
,
k2−k1+j2

ρn

)]

=
(

1− j1

n

)
C

(
j1

ρn

)(
1− j2

n

)
C

(
j2

ρn

)

+
1
n

∑

|k|<n

Un(k, j1, j2) C

(
k + j1

ρn

)
C

(
k − j2

ρn

)

+
1
n

∑

|k|<n

Un(k, j1, j2) C

(
k

ρn

)
C

(
k + j1 − j2

ρn

)

+
1
n

∑

|k|<n

Un(k, j1, j2) Q

(
j1

ρn
,
−k

ρn
,
−k + j2

ρn

)
, (2.19)

where Un(k, j1, j2) is a function with values between 0 and 1 defined as follows

Un(k, j1, j2) =





0, k ≤ −n + j2,

1− j2−k
n −n+j2 <k<min(0, j2−j1),

1− max(j1,j2)
n min(0, j2−j1) ≤ k ≤ max(0, j2−j1),

1− k+j1
n max(0, j2−j1) < k < n−j1,

0 k ≥ n−j1.

(2.20)
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Therefore, by using (2.17) and (2.19), we have

Cov(ĉj1n, ĉj2n) = E[ĉj1nĉj2n]−E[ĉj1n]E[ĉj2n]

=
1
n

∑

|k|<n

Un(k, j1, j2)C
(

k + j1

ρn

)
C

(
k − j2

ρn

)

+
1
n

∑

|k|<n

Un(k, j1, j2)C
(

k

ρn

)
C

(
k + j1 − j2

ρn

)

+
1
n

∑

|k|<n

Un(k, j1, j2)Q
(

j1

ρn
,
−k

ρn
,
−k + j2

ρn

)
. (2.21)

We now use this simplified form of Cov(ĉj1n, ĉj2n) to establish the convergence of the

three terms, T1, T2(f) and T3(f).

By using (2.21) and Assumption 2.5, T1 can be written as

T1 =
1
ρ2

n


 2

n

∑

|u|<n

Un(u, 0, 0)C
(

u

ρn

)2

+
1
n

∑

|u|<n

Un(u, 0, 0)Q
(

0,
−u

ρn
,
−u

ρn

)


≤2C(0)
nρn

∑

|u|<n

∣∣∣∣C
(

u

ρn

)∣∣∣∣
1
ρn

+
g1(0)g2(0)

nρn

∑

|u|<n

g3

(
u

ρn

)
1
ρn

.

As in Theorem 2.1, we can view
∑
|u|<n

∣∣∣C
(

u
ρn

)∣∣∣ 1
ρn

as the integral of the function sn(·)
defined by

sn(t) =
∑

|u|<n

∣∣∣∣C
(

u

ρn

)∣∣∣∣ 1(u−1
ρn

, u
ρn

](t).

Since sn(t) → |C(t)|, and sn(t) ≤ h0(t) holds from Assumption 2.1, we get

limn→∞
∑
|u|<n

∣∣∣C
(

u
ρn

)∣∣∣ 1
ρn

=
∫∞
−∞ |C(t)|dt by applying the DCT as in Theorem 2.1,

under Assumption 2.4. A similar argument, together with Assumptions 2.4 and 2.5,

ensures that limn→∞
∑
|u|<n g3

(
u
ρn

)
1
ρn

=
∫∞
−∞ |g3(u)|du. Both the limiting integrals

are finite. So nbnT1 → 0 as n →∞.

By using (2.21) and Assumption 2.5, the term T2(f) is given as

|T2(f)| ≤ 2
ρ2

n

n−1∑

v=1

∣∣∣∣∣∣
1
n

∑

|u|<n

Un(u, 0, v) C

(
u

ρn

)
C

(
u+v

ρn

)∣∣∣∣∣∣
|K(bnv)|

+
2
ρ2

n

n−1∑

v=1

∣∣∣∣∣∣
1
n

∑

|u|<n

Un(u, 0, v) C

(
u

ρn

)
C

(
u−v

ρn

)∣∣∣∣∣∣
|K(bnv)|
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+
1
ρ2

n

n−1∑

v=1

∣∣∣∣∣∣
1
n

∑

|u|<n

Un(u, 0, v) Q

(
v

ρn
,
−u

ρn
,
−u

ρn

)∣∣∣∣∣∣
|K(bnv)|

≤4|C(0)|
nbnρn


 ∑

|u|<n

∣∣∣∣C
(

u

ρn

)∣∣∣∣
1
ρn




(
n−1∑

v=1

|K(bnv)|bn

)

+
2|g1(0)g2(0)|

nbnρn


 ∑

|u|<n

g3

(
u

ρn

)
1
ρn




(
n−1∑

v=1

|K(bnv)|bn

)
.

The last expression does not depend on f . An argument as in the case of T1 will

show that limn→∞
∑n−1

v=1 |K(bnv)|bn =
∫∞
0 K(x)dx, under Assumptions 2.2 and 2.3.

The convergence of the other sums have already been discussed in connection with the

term T1. Hence, nbnT2(f) → 0 as n →∞ uniformly for all f .

Now, we will consider T3(f). By using (2.21), this term can be written as

T3(f) =
4
ρ2

n

n−1∑

j1=1

n−1∑

j2=1

Cov[ĉj1n, ĉj2n]K(bnj1)K(bnj2) cos
(

2πfj1

ρn

)
cos

(
2πfj2

ρn

)

=T31(f) + T32(f) + T33(f),

where

T31(f) =
4
ρ2

n

n−1∑

j1=1

n−1∑

j2=1

K(bnj1)K(bnj2) cos
(

2πfj1

ρn

)
cos

(
2πfj2

ρn

)

×
{

1
n

(n−1)∑

k=−(n−1)

Un(k, j1, j2) C

(
k + j1

ρn

)
C

(
k − j2

ρn

)}
,

T32(f) =
4
ρ2

n

n−1∑

j1=1

n−1∑

j2=1

K(bnj1)K(bnj2) cos
(

2πfj1

ρn

)
cos

(
2πfj2

ρn

)

×
{

1
n

(n−1)∑

k=−(n−1)

Un(k, j1, j2) C

(
k

ρn

)
C

(
k + j1 − j2

ρn

)}
,

T33(f) =
4
ρ2

n

n−1∑

j1=1

n−1∑

j2=1

K(bnj1)K(bnj2) cos
(

2πfj1

ρn

)
cos

(
2πfj2

ρn

)

×
{

1
n

(n−1)∑

k=−(n−1)

Un(k, j1, j2) Q

(
j1

ρn
,
−k

ρn
,
−k + j2

ρn

)}
.
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From Assumptions 2.2 and 2.5,

|nbnT33(f)| ≤ 4M2ρnbn
1
ρ3

n

n−1∑

j1=1

n−1∑

j2=1

(n−1)∑

k=−(n−1)

g1

(
j1

ρn

)
g2

(
k

ρn

)
g3

(
k+j2

ρn

)
.

By using a similar argument as in the case of T1, we have

lim
n→∞

1
ρ3

n

n−1∑

v1=1

n−1∑

v2=1

(n−1)∑

u=−(n−1)

g1

(
v1

ρn

)
g2

(
u

ρn

)
g3

(
u+v2

ρn

)

=
∫ ∞

0
g1(v1)dv1

∫ ∞

0

[∫ ∞

−∞
g2(u)g3(u + v2)du

]
dv2.

Hence, nbnT33(f) → 0 as n →∞ uniformly for all f .

Consider the term T31(f), let u=j1 + j2, v=k − j2, w=j2.

T31(f) =
4
ρ2

n

n−1∑

w=1

n−1+w∑

u=w+1

K(bnw)K(bn(u−w)) cos
(

2πfw

ρn

)
cos

(
2πf(u−w)

ρn

)

×




1
n

(n−1)−w∑

v=−(n−1)−w

Un(v + w, u− w,w) C

(
u + v

ρn

)
C

(
v

ρn

)

 .

From Assumption 2.2, observe that

nbn|T31(f)| ≤ 4M
bn

ρ2
n

n−1∑

w=1

n−1+w∑

u=w+1

(n−1)−w∑

v=−(n−1)−w

∣∣∣∣K(bnw) C

(
u+v

ρn

)
C

(
v

ρn

)∣∣∣∣ .

Consider the simple function Sn, defined over (0,∞)× (0,∞)× (−∞,∞) by

Sn(x, t, t
′
) =4M

1
π2

n−1∑

w=1

n−1+w∑

u=w+1

(n−1)−w∑

v=−(n−1)−w

∣∣∣∣K(bnw) C

(
u+v

ρn

)
C

(
v

ρn

)∣∣∣∣

×1((w−1)bn,wbn](x)1(u−1
ρn

, u
ρn

](t)1( v−1
ρn

, v
ρn

](t
′
),

so that

nbn|T31(f)| ≤
∫ ∞

0

∫ ∞

0

∫ ∞

−∞
Sn(x, t, t

′
)dxdtdt

′
.

Since limn→∞ ρnbn = 0, we have, for any fixed (x, t, t′) ∈ (0,∞)×(0,∞)×(−∞,∞) and

for large enough n, the inequality ρnbn < x/t, i.e., tρn < x/bn. Therefore, for large n, the

unique integer u for which 1(u−1
ρn

, u
ρn

](t) is non-zero is smaller than the unique integer w for
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which 1((w−1)bn,wbn](x) is non-zero. However, the ranges of summations in the definition

of Sn(x, t, t
′
) do not permit the order u ≤ w. Therefore, limn→∞ Sn(x, t, t

′
) = 0. From

Assumption 2.1 and 2.2, we have the dominance

|Sn(x, t, t
′
)| ≤ 4M |K1(x)h0(t + t

′
)h0(t

′
)| ∈ L1.

By applying the DCT, we have

lim
n→∞

∫ ∞

0

∫ ∞

0

∫ ∞

−∞
Sn(x, t, t

′
)dxdtdt

′
= 0.

Since the function Sn(x, t, t
′
) does not depend on f , we have nbnI31(f) → 0 uniformly

for all f .

In view of the convergence of the terms T1, T2(f), T33(f) and T31(f), we have

lim
n→∞nbn

[
V ar

(
φ̂n(f)

)
− T32(f)

]
= 0 (2.22)

uniformly for all f , and so we need to prove the convergence of nbnI32(f) only.

Now, consider T32(f) and let u = j1 − j2, w = j2, v = k.

T32(f) =
4
ρ2

n

n−1∑

w=1

n−1−w∑

u=−w+1

K(bnw)K(bn(w+u)) cos
(

2πfw

ρn

)
cos

(
2πf(w+u)

ρn

)

×




1
n

(n−1)∑

v=−(n−1)

Un(v, w + u,w) C

(
v

ρn

)
C

(
v + u

ρn

)

 . (2.23)

For f = 0, it follows from (2.22) and Lemma 2.1 below that

lim
n→∞nbnV ar[φ̂n(0)] = 2[φ(0)]2

∫ ∞

−∞
K2(x)dx. (2.24)

For f 6= 0, we will further decompose T32(f) as follows. By applying the formula

2 cos(a) cos(b) = cos(a− b) + cos(a + b) and cos(a + b) = cos(a) cos(b)− sin(a) sin(b), we

have

T32(f) = T321(f) + T322(f)− T323(f),
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where

T321(f) =
2

nρ2
n

n−1∑

w=1

n−1−w∑

u=−w+1

K(bnw)K(bn(w+u)) cos
(

2πfu

ρn

)

×
{

(n−1)∑

v=−(n−1)

Un(v, w + u,w) C

(
v

ρn

)
C

(
v + u

ρn

)}
, (2.25)

T322(f) =
2

nρ2
n

n−1∑

w=1

n−1−w∑

u=−w+1

K(bnw)K(bn(w+u)) cos
(

2πfu

ρn

)
cos

(
4πfw

ρn

)

×
{

(n−1)∑

v=−(n−1)

Un(v, w + u,w) C

(
v

ρn

)
C

(
v + u

ρn

)}
, (2.26)

T323(f) =
2

nρ2
n

n−1∑

w=1

n−1−w∑

u=−w+1

K(bnw)K(bn(w+u)) sin
(

2πfu

ρn

)
sin

(
4πfw

ρn

)

×
{

(n−1)∑

v=−(n−1)

Un(v, w + u,w) C

(
v

ρn

)
C

(
v + u

ρn

)}
. (2.27)

It follows from equation (2.22), Lemma 2.2 and Lemma 2.3 below that

lim
n→∞nbnV ar[φ̂n(f)] = lim

n→∞nbnI321(f)

=[φ(f)]2
∫ ∞

−∞
K2(x)dx,

(2.28)

and the convergence is uniform over any closed interval that does not include the fre-

quency 0. This completes the proof. 2

Lemma 2.1.

lim
n→∞nbnI32(0) = 4

∫ ∞

0
K2(x)

∫ ∞

−∞

[∫ ∞

−∞
C(t + t

′
)C(t

′
) dt

′
]

dt dx.

Proof of Lemma 2.1. Consider the simple function Sn(·), defined over (0,∞) ×
(−∞,∞)× (−∞,∞) by

Sn(x, t, t
′
) =4

n−1∑

w=1

n−1−w∑

u=−w+1

(n−1)∑

v=−(n−1)

K(bnw)K(bn(w+u))Un(v, w+u,w)

× C

(
v

ρn

)
C

(
v+u

ρn

)
1((w−1)bn,wbn](x)1(u−1

ρn
, u
ρn

](t)1( v−1
ρn

, v
ρn

](t
′
).
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Observe from (2.23) that

nbnI32(0) =
∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
Sn(x, t, t

′
)dxdtdt

′
.

Define wn(x), un(t) and vn(t
′
) as the smallest integers greater than or equal to x/bn,

ρnt and ρnt′, respectively. Thus, (x, t, t
′
) ∈ (bnwn−1(x), bnwn(x)] ×

(
un−1(t)

ρn
, un(t)

ρn

]
×

(
vn−1(t′)

ρn
, vn(t′)

ρn

]
and bnwn(x)→x, un(t)

ρn
→ t, vn(t

′
)

ρn
→ t

′
as n → ∞. Since nbn → ∞ and

bnρn → 0 as n →∞, we have, for any point (x, t, t
′
) ∈ (0,∞)×(−∞,∞)×(−∞,∞) and

large enough n, the inequalities − x
bnρn

< t < nbn−x
bnρn

, i.e., −wn(x) < un(t) < n− wn(x).

Thus, for sufficiently large n, we have

Sn(x, t, t
′
) = 4K(bnwn(x))K

(
bnwn(x)+bnρn

un(t)
ρn

)
Un(vn(t

′
), wn(x)+un(t), wn(x))

× C

(
vn(t

′
)

ρn

)
C

(
vn(t

′
) + un(t)
ρn

)
.

Also, for large n, we have

−(n−xbn) +
t

ρn
<

t′

ρn
<(n−xbn),

and so Un(vn(t
′
), wn(x)+un(t), wn(x)) is positive and it converges to 1. Therefore, by

virtue of Assumptions 2.1 and 2.2, we have

lim
n→∞Sn(x, t, t

′
) =

1
π2

K2(x)C(t
′
)C(t

′
+ t).

Again, from Assumptions 2.1 and 2.2, we have the dominance

|Sn(x, t, t
′
)| ≤ 4M |K1(x)h0(t + t

′
)h0(t

′
)| ∈ L1.

By applying the DCT, we have

limn→∞ nbnI32(0) = lim
n→∞

∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
Sn(x, t, t

′
)dxdtdt′

= 4
∫ ∞

0
K2(x)

∫ ∞

−∞

[∫ ∞

−∞
C(t + t

′
)C(t

′
)dt

′
]

dtdx. 2
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Lemma 2.2. The function T321(·) converges as follows:

lim
n→∞nbnI321(f) = 2

∫ ∞

0
K2(x)

∫ ∞

−∞

[
cos(2πft)

[∫ ∞

−∞
C(t + t

′
)C(t

′
)dt

′
]

dt

]
dx.

The convergence is uniform on [fl, fu] for arbitrary fl and fu such that fl < fu and

flfu > 0.

Proof of Lemma 2.2. Consider the simple function Sn(·), defined over [fl, fu] ×
(0,∞)× (−∞,∞)× (−∞,∞) by

Sn(f, x, t, t
′
) =2

n−1∑

w=1

n−1−w∑

u=−w+1

(n−1)∑

v=−(n−1)

K(bnw)K(bn(w+u)) cos
(

2πfu

ρn

)
Un(v, w+u, w)

× C

(
v

ρn

)
C

(
v+u

ρn

)
1((w−1)bn,wbn](x)1(u−1

ρn
, u
ρn

](t)1( v−1
ρn

, v
ρn

](t
′
),

so that, from (2.25),

nbnI321(f) =
∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
Sn(f, x, t, t

′
)dxdtdt

′
.

A similar argument as in the proof of Lemma 2.1 will show that for (x, t, t
′
) ∈ (0,∞)×

(−∞,∞)× (−∞,∞) and sufficiently large n,

Sn(f, x, t, t
′
) =2K(bnwn(x)) K

(
bnwn(x) + bnρn

un(t)
ρn

)
cos

(
2πfun(t)

ρn

)

× Un(vn(t
′
), wn(x)+un(t), wn(x))C

(
vn(t

′
)

ρn

)
C

(
vn(t

′
)+un(t)
ρn

)
,

where wn(x), un(t) and vn(t
′
) are the smallest integers greater than or equal to x/bn,

ρnt and ρnt′, respectively, and that the function Sn(f, x, t, t
′
) converges to the function

S(·), defined over (0,∞)× (−∞,∞)× (−∞,∞) by

S(f, x, t, t
′
) = 2K2(x) cos(2πft)C(t

′
)C(t

′
+ t).

Observe also that
∫∞
0

∫∞
−∞

∫∞
−∞ S(f, x, t, t

′
)dxdtdt

′
is a continuous function in f . As

in the proof of Theorem 2.1, we prove the convergence of
∫∞
0

∫∞
−∞

∫∞
−∞ Sn(f, x, t, t

′
)dxdtdt

′
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uniformly on [fl, fu], by showing that for any sequence fn → f ,

lim
n→∞

∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
Sn(fn, x, t, t

′
)dxdtdt

′

=
∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
S(f, x, t, t

′
)dxdtdt

′

for fn, f ∈ [fl, fu]. The latter convergence follows, through Assumption 2.1 and 2.2 and

the DCT, from the dominance

|Sn(f, x, t, t
′
)| ≤ 2M |K1(x)h0(t + t

′
)h0(t

′
)| ∈ L1,

and the convergence of the integrand, which holds because of the continuity of the

kernel, the cosine and the covariance function.

Hence, nbnI321(·) converges as stated uniformly on [fl, fu]. 2

Lemma 2.3. The functions nbnI322(·) and nbnI323(·) converge to 0 uniformly on [fl, fu]

for arbitrary fl and fu such that fl < fu and flfu > 0.

Proof of Lemma 2.3. Consider the simple function Sn(·), defined over [fl, fu] ×
(0,∞)× (−∞,∞)× (−∞,∞) by

Sn(f, x, t, t
′
)

= 2
n−1∑

w=1

n−1+w∑

u=−w+1

(n−1)∑

v=−(n−1)

K(bnw)K(bn(w + u)) cos
(

2πfu

ρn

)
cos

(
4πfbnw

ρnbn

)

× Un(v, w+u,w)C
(

v

ρn

)
C

(
v + u

ρn

)
1((w−1)bn,wbn](x)× 1(u−1

ρn
, u
ρn

](t)1( v−1
ρn

, v
ρn

](t
′
),

so that, from (2.26),

nbnI322(f) =
∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
Sn(f, x, t, t

′
)dxdtdt

′
. (2.29)

A similar argument as in the proof of Lemma 2.1 will show that for (x, t, t
′
) ∈ (0,∞)×

(−∞,∞)× (−∞,∞) and sufficiently large n,
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Sn(f, x, t, t
′
)

= 2K(bnwn(x))K
(

bnwn(x) + bnρn
un(t)
ρn

)
cos

(
2πfun(t)

ρn

)
cos

(
4πfwn(x)bn

bnρn

)

× Un(vn(t
′
), un(t) + wn(x), wn(x))C

(
vn(t

′
)

ρn

)
C

(
vn(t

′
) + un(t)
ρn

)
,

where wn(x), un(t) and vn(t
′
) are the smallest integers greater than or equal to x/bn,

ρnt and ρnt′, respectively.

For obtaining the uniform convergence of T322(·), consider

sup
f∈[fl,fu]

∣∣∣∣
∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
Sn(f, x, t, t

′
)dxdtdt

′
∣∣∣∣

≤ sup
f∈[fl,fu]

∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
|Sn(f, x, t, t

′
)− gn(f, x, t, t

′
)|dxdtdt

′

+ sup
f∈[fl,fu]

∣∣∣∣
∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
gn(f, x, t, t

′
)dxdtdt

′
∣∣∣∣ , (2.30)

where the function gn(·) is defined over [fl, fu]× (0,∞)× (−∞,∞)× (−∞,∞) by

gn(f, x, t, t
′
) = 2 cos(2πft) cos

(
4πfx

bnρn

)
K2(x)C(t

′
)C(t + t

′
).

We shall prove the convergence of nbnI322(·) given in (2.29) by proving the convergence

of the two integrals on the right hand side of (2.30).

In order to prove the first convergence, we follow the route taken in Theorem 2.1,

i.e., we show that for any sequence fn→f

lim
n→∞

∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
|Sn(fn, x, t, t

′
)− gn(fn, x, t, t

′
)|dxdtdt

′
= 0,

for f, fn ∈ [fl, fu]. The above integral can be written as

∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
|Sn(fn, x, t, t

′
)− gn(fn, x, t, t

′
)|dxdtdt′

≤
∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
|Sn(fn, x, t, t

′
)−Gn(fn, x, t, t

′
)|dxdtdt′

+
∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
|Gn(fn, x, t, t

′
)− gn(fn, x, t, t

′
)|dxdtdt′, (2.31)
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where the function Gn(·) is defined over [fl, fu]× (0,∞)× (−∞,∞)× (−∞,∞) by

Gn(f, x, t, t
′
) = 2 cos(2πft) cos

(
4πfwn(x)bn

bnρn

)
K2(x)C(t

′
)C(t + t

′
)).

Now, observe that

|Sn(fn, x, t, t
′
)−Gn(fn, x, t, t

′
)| ≤ 2M

∣∣∣∣cos
(

4πfnwn(x)bn

bnρn

)
αn(fn, x, t, t

′
)
∣∣∣∣ ,

where

αn(fn, x, t, t
′
) =K(bnwn(x)) cos

(
2πfnun(t)

ρn

)
Un(vn(t

′
), un(t)+wn(x), wn(x))

× C

(
vn(t

′
)

ρn

)
C

(
vn(t

′
) + un(t)
ρn

)
− cos(2πfnt)K(x)C(t

′
)C(t + t

′
).

Since αn(fn, x, t, t
′
) → 0 as n →∞, it is easy to see that

lim
n→∞ |Sn(fn, x, t, t

′
)−Gn(fn, x, t, t

′
)| = 0.

From Assumption 2.1 and 2.2, we have the dominance

|Sn(fn, x, t, t
′
)−Gn(fn, x, t, t

′
)| ≤ 4M |K1(x)h0(t′)h0(t + t′)| ∈ L1.

By applying the DCT, we have

lim
n→∞

∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
|Sn(fn, x, t, t

′
)−Gn(fn, x, t, t

′
)|dxdtdt′=0.

Turning to the second term on the right hand side of (2.31), observe that for any

fixed x, |x−wn(x)bn| ≤ bn. By applying the Mean Value Theorem to the cosine function

in the interval [ fnx
ρnbn

, fnwn(x)bn

ρnbn
], we have

cos
(

2πfnwn(x)bn

ρnbn

)
− cos

(
2πfnx

ρnbn

)
= − sin(θ)

∣∣∣∣
2πfnwn(x)bn

ρnbn
− 2πfnx

ρnbn

∣∣∣∣ ,

for some θ ∈
[

2πfnx
ρnbn

, 2πfnwn(x)bn

ρnbn

]
. Therefore

∣∣∣∣cos
(

2πfnwn(x)bn

ρnbn

)
− cos

(
2πfnx

ρnbn

)∣∣∣∣ ≤
2πfn

ρn
.
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Thus,

|Gn(fn, x, t, t
′
)− gn(fn, x, t, t

′
)| ≤ 2M2C2(0)

∣∣∣∣cos
(

2πfnwn(x)bn

ρnbn

)
− cos

(
2πfnx

ρnbn

)∣∣∣∣

≤ 2M2C2(0)
2πfn

ρn
.

So

lim
n→∞ |Gn(fn, x, t, t

′
)− gn(fn, x, t, t

′
)| → 0.

From Assumption 2.1 and 2.2, we have the dominance

|Gn(fn, x, t, t
′
)− gn(fn, x, t, t

′
)| ≤ 4M |K1(x)h0(t + t

′
)h0(t

′
)| ∈ L1,

which leads us, through another use of the DCT, the convergence of the second integral

of (2.31). This establishes that the first term on the right hand side of (2.30) converges

to 0. We only have to deal with the second term.

Let

sn(f) =
∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
gn(f, x, t, t

′
)dxdtdt

′
.

In order to establish the uniform convergence of sn(·) over [fl, fu], it is enough to show

that sn(fn) → 0 for any sequence fn → f , where f, fn ∈ [fl, fu]. By using the Reimann-

Lebesgue lemma, we have sn(fn) → 0. Thus, the second term on the right hand side

of (2.30) also converges to 0. Hence, nbnI322(f) converges to 0 uniformly on [fl, fu] as

n →∞.

Convergence of nbnI323(f) to 0 can be established in a similar manner. 2

Proof of Theorem 2.3. Assumption 2.1 ensures absolute summability of the covari-

ance sequence {C(k/ρn), k = . . . ,−2,−1, 0, 1, 2, . . .} of the uniformly sampled process{
X

(
k
ρn

)
, k = . . . ,−2,−1, 0, 1, 2, . . .

}
, for fixed ρn. The corresponding spectral density

φρn(·) is defined as

φρn(f) =
1
ρn

∞∑

j=−∞
C

(
j

ρn

)
e
− i2πfj

ρn , f ∈ (−∞,∞).
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The function φρn(·) is periodic with period ρn and is related to φ(·) as follows:

φρn(f) =
∞∑

l=−∞
φ(f + lρn), f ∈ (−ρn/2, ρn/2].

In particular, for f ∈ [−ρn/2, ρn/2],

φ(f) = φρn(f)−
∞∑

l=1

φ(f + lρn)−
−1∑

l=−∞
φ(f + lρn).

For sufficiently large n, ρn/2 lies outside any finite interval [fl, fu], and the bias of

the estimator φ̂n(f) given by (2.1) on [fl, fu] can be decomposed as follows.

E[φ̂n(f)]− φ(f)

=
1
ρn

∑

|v|<n

(
1− |v|

n

)
C

(
v

ρn

)
K(bnv)e−

i2πfv
ρn − φ(f)

=
1
ρn

∑

|v|<n

(
1− |v|

n

)
C

(
v

ρn

)
K(bnv)e−

i2πfv
ρn − φρn(f) +

∞∑

l=1

φ(f+lρn) +
−1∑

l=−∞
φ(f+lρn)

= B1(f) + B2(f) + B3(f) + B4(f) + B5(f), (2.32)

where

B1(f) = − 1
ρn

∑

|v|<n

(1−K(bnv))C
(

v

ρn

)
e
− i2πfv

ρn ,

B2(f) = − 1
ρn

∑

|v|<n

|v|
n

C

(
v

ρn

)
K(bnv)e−

i2πfv
ρn ,

B3(f) = − 1
ρn

∑

|v|≥n

C

(
v

ρn

)
e
− i2πfv

ρn ,

B4(f) =
∞∑

l=1

φ(f + lρn),

B5(f) =
−1∑

l=−∞
φ(f + lρn).

We will consider each Bi(f), i = 1, . . . , 5, separately.

(
1

ρnbn

)q

B1(f) = −
∑

|v|<n

(
1−K(bnv)

bq
n|v|q

) |v|q
ρq

n
C

(
v

ρn

)
e
− i2πfv

ρn
1
ρn

.
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Consider the simple function Sn defined over [fl, fu]× (−∞,∞) as

Sn(f, t) = −
∑

|v|<n

(
1−K(bnv)

bq
n|v|q

) |v|q
ρq

n
C

(
v

ρn

)
e
− i2πfv

ρn 1( v−1
ρn

, v
ρn

](t).

Observe that
(

1
ρnbn

)q
B1(f) =

∫∞
−∞ Sn(f, t)dt.

For any t ∈ (−∞,∞), we define vn(t) as the smallest integer greater than or equal

to tρn. It follows that vn(t)
ρn

→ t as n → ∞, and for sufficiently large n and any

t ∈ (−∞,∞), we can write

Sn(f, t) = −
(

1−K(bnvn(t))
bq
n|vn(t)|q

) |vn(t)|q
ρq

n
C

(
vn(t)
ρn

)
e
− i2πfvn(t)

ρn .

From Assumptions 2.4 and 2.2A, we have

lim
n→∞Sn(t) = −kq|t|qC(t)e−i2πft.

Also, Assumption 2.1A implies

|Sn(t)| ≤ M1hq(t) where M1 = sup
x

1−K(x)
xq

.

By applying the DCT, we have

lim
n→∞

(
1

ρnbn

)q

B1(f)= lim
n→∞

∫ ∞

−∞
Sn(f, t)dt=−kq

∫ ∞

−∞
|t|qC(t)e−i2πftdt. (2.33)

Thus, B1(f) is O ((ρnbn)q). The fact that this convergence is uniform over the interval

[fl, fu] can be established by choosing any sequence fn in this interval that converges

to f , and showing that
∫∞
−∞ Sn(fn, t)dt converges to the right hand side of (2.33).

The term B2(f) can be written as

n

ρn
B2(f) =

∫ ∞

−∞
Sn(f, t)dt,

where Sn(·) is defined over [fl, fu]× (−∞,∞) as

Sn(f, t) = −
∑

|v|<n

|v|
ρn

C

(
v

ρn

)
K(bnv)e−

i2πfv
ρn 1( v−1

ρn
, v
ρn

](t).
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As in the case of B1(f), it can be shown that

lim
n→∞Sn(f, t) = −|t|C(t)e−i2πft.

From Assumption 2.1A, it follows that |Sn(f, t)| ≤ hq(t). Again, by applying the DCT,

we have

lim
n→∞

n

ρn
B2(f) = lim

n→∞

∫ ∞

−∞
Sn(f, t)dt = −

∫ ∞

−∞
|t|C(t)e−i2πftdt.

Thus, B2(f) is O(ρn

n ). The uniform convergence can be argued similarly as in the case

of B1(f).

The term B3(f) satisfies

|B3(f)| ≤ 1
ρn

∑

|v|≥n

∣∣∣∣C
(

v

ρn

)∣∣∣∣ =
(ρn

n

)q 1
2π

∑

|v|≥n

(
n

ρn

)q ∣∣∣∣C
(

v

ρn

)
1
ρn

∣∣∣∣

≤
(ρn

n

)q 1
π


∑

v≥1

(
v

ρn

)q ∣∣∣∣C
(

v

ρn

)
1
ρn

∣∣∣∣


 .

Observe that for each fixed n, we have from Assumption 2.1A,

lim
m→∞

m∑

v=1

(
v

ρn

)q ∣∣∣∣C
(

v

ρn

)∣∣∣∣
1
ρn

≤ lim
n→∞

m∑

v=1

hq

(
v

ρn

)
1
ρn

≤ lim
n→∞

∫ m
ρn

0
hq(t)dt ≤

∫ ∞

0
hq(t)dt.

So

lim sup
n→∞

∞∑

v=1

(
v

ρn

)q ∣∣∣∣C
(

v

ρn

)∣∣∣∣
1
ρn

≤
∫ ∞

0
hq(t)dt.

Hence, |B3(f)| is bounded by an O((ρn

n )q) term, which converges to zero faster

than B2(f).

As for the term B4(f), we have from Assumption 2.1B and the DCT

lim
n→∞(ρn)pB4(f) = lim

n→∞

∞∑

l=1

(ρn)p

|f+ lρn|p |f+ lρn|pφ(f+ lρn)

=
1

(2π)p

∞∑

l=1

lim
n→∞

1

| f
ρn

+l|p
(

lim
n→∞ |f+ lρn|pφ(f+ lρn)

)
= A

∞∑

l=1

1
|l|p .
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Hence B4(f) = O
(

1
(ρn)p

)
.

Similarly it can be proved that B5(f) = O
(

1
(ρn)p

)
.

The theorem is proved by combining the five terms. 2

Proof of Theorem 2.4. It follows from Theorems 2.2 and 2.3 that the MSE of the

estimator φ̂n(·) can be written as

MSE[φ̂n(f)] = [E{φ̂n(f)− φ(f)}]2 + V ar[φ̂n(f)]

= O
(
(ρnbn)2q

)
+ O

(
ρ2

n

n2

)
+ O

(
1

ρ2p
n

)

+O

(
1

nbn

)
. (2.34)

Let us first fix n and ρn and minimize the MSE with respect to bn. The squared

bias is an increasing functions of bn, while the variance is a decreasing function of bn.

Therefore, the maximum possible value is minimized (i.e., the fastest rate of convergence

is achieved) when (ρnbn)2q ∝ (nbn)−1, i.e., when

bn ∝
(
nρ2q

n

)− 1
2q+1 . (2.35)

By substituting this value in the expression for the MSE, and making use of the fact

that 2q
2q+1 < 2 and ρn/n < 1, we have

MSE[φ̂n(f)] = O

((ρn

n

) 2q
2q+1

)
+ O

(
1

ρ2p
n

)
.

The first term on the right hand side is an increasing function of ρn, while the second

term is a decreasing function of ρn. Therefore, the maximum of the two terms is

minimized when
(ρn

n

) 2q
2q+1 ∝ ρ−2p

n , i.e., when ρn is chosen as in (2.6). The optimal rate

for bn, as given in (2.7), is obtained by substituting the expression for ρn in (2.35).

Further substitution of these two optimal rates in (2.34) gives (2.5). 2

2.5 Simulation study

In this section, we shall present the reslts of a simulation study of performance of the

spectral density estimators based on uniform and Poisson sampled data. We consider
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the continuous time autoregressive (AR(4)) process having the spectral density

φ(f) = σ2 · 1
((2πf)2 + α2

1)((2πf)2 + α2
2)((2πf)2 + α2

3)((2πf)2 + α2
4)

, (2.36)

where α1 = 0.65, α2 = 0.75, α3 = 0.85, α4 = 0.95 and σ = 1/2. A procedure for

generating the samples is outlined in Section A.1 of the Appendix. For estimation,

we assume that the underlying power spectral density satisfies Assumption 2.1A with

q = 2. Accordingly, we use the Hanning Kernel

K(x) =
1
2
(1 + cos(πx))1[−1,1](x),

which has characteristic exponent 2.

2.5.1 Performance of the estimator

Here, we consider the performance of φ̂n(f) over the frequency range [0, 0.5]. We used

the optimal choice of sampling rate developed in Section 2.3.1 to generate uniformly

spaced samples of the process for sample sizes n = 100, 1000 and 10000. We assume

Assumption 2.1A with q = 2 and Assumption 2.1B with p = 8 (both of which actually

hold for the underlying power spectral density). For the above choices, the optimal

powers of n for the sampling rate and the bandwidth are ρn ∝ n1/21 and bn ∝ n−5/21.

We choose ρn = n1/21 and bn = 1
4n−5/21.

Figure 2.1 shows the average of the estimated power spectral density computed from

500 simulation runs, the empirically observed bias and variance, together with the true

power spectral density and the theoretical (asymptotic) bias and variance, respectively,

for the three samples sizes.

From these figures, it can be observed that as the sample size goes from 100 to 10000,

the empirical values of bias and variance get closer to the asymptotic results. Moreover,

the theoretical (asymptotic) computations are quite comparable to the empirical values,

even for sample size 100.
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Figure 2.1: The average estimated power spectral density φ̂n(·) (left column), the bias (middle
column) and the variance (right column) for sample sizes 100 (top row), 1000 (middle row) and
10000 (bottom row). The solid and the dotted lines correspond to theoretical (asymptotic) and
empirical values, respectively.

2.5.2 Comparison with Poisson sampling estimator

We generate Poisson sampled data with the average sampling rate β = 1 for sample

sizes n = 100, 1000 and 10000, and compute the estimator ψ̂n(f) on [0, 0.5]. Here, the

optimal power of n for the bandwidth is bn ∝ n−1/5. We use bn = 1
4n−1/5.

Figure 2.2 shows the empirical bias, variance and MSE of the estimators φ̂n(f) and

ψ̂n(f) computed from 500 simulation runs, as a function of the frequency, for sample

sizes 100, 1000 and 10000.

From these figures, it can be observed that the bias of ψ̂n(·) is generally less than

that of φ̂n(·) while the variance of ψ̂n(·) is larger than that of φ̂n(·). The differences

diminish with larger sample size. These patterns are in accordance with the large sample
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Figure 2.2: The estimated bias of the power spectral density φ̂n(·) and ψ̂n(·) (left column), the
variance (middle column) and the MSE (in log scale, right column) for sample sizes 100 (top
row), 1000 (middle row) and 10000 (bottom row). The solid and the dotted lines correspond to
uniform and Poisson samplings, respectively.

comparisons made in Section 2.3.2. The MSE of ψ̂n(·) is larger than that of the φ̂n(·)
for larger frequencies. The MSE is plotted in log-scale in order to highlight the fact that

this quantity, in the case of ψ̂n(·), levels off to a constant value for larger frequencies,

while in the case of φ̂n(·), it continues to decline. This difference in behaviour is in

accordance with the variance expressions given in (2.8) and (2.14).

2.6 Summary and discussion

In this chapter, we have shown that the smoothed periodogram based on uniformly

spaced samples of a continuous time stationary stochastic process is consistent, under

certain conditions, provided that the sampling rate increases appropriately as the sample
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size goes to infinity. We have also shown that, under the conditions used in the proofs,

the estimators based on uniformly and non-uniformly spaced samples have about the

same rate of convergence. Thus, our results remove a widely perceived theoretical

deficiency of a popular spectral estimator based on uniform sampling.

It has been a common experience, both theoretically and empirically (Roberts and

Gaster, 1980), that the smoothed periodogram estimator (1.12) of a non-bandlimited

power spectral density has less variance and more bias compared to the corresponding

estimator ψ̂n(·) based on Poisson sampling. What the results of Section 2.3 show is that,

even though the new asymptotic results presented in this chapter establish consistency

of the smoothed periodogram φ̂n(·) and the rates of convergence of the estimators φ̂n(·)
and ψ̂n(·) are comparable, the constants for the first order approximations of the bias

and variance of the two estimators exhibit the same type of trade off, i.e., the constant

for the bias term is larger in the case of φ̂n(·), and the constant for the variance term is

larger in the case of ψ̂n(·).
The new asymptotic calculations provide a common-sense theoretical justification

for using the smoothed periodogram, even if the underlying power spectral density is not

bandlimited. The approach consists of appropriate filtering of the continuous time pro-

cess followed by sampling at a suitably uniform rate. Remark 2.6 and Theorem 2.4 give

guidelines for choosing a suitable filter and an appropriate sampling rate, respectively,

which may be useful for practitioners.

The simulation results reported in Section 2.5 illustrate how one can choose an ap-

propriate sampling rate for estimating the power spectral density, and obtain results in

line with the theoretical results. Even though the underlying spectral density in this

example is not band-limited, the estimator φ̂n(·) (based on uniformly spaced samples)

is found to have smaller MSE than ψ̂n(·) (based on Poisson samples) for larger fre-

quencies. The reverse order holds for smaller frequencies. This shows that there is no

clear dominance of one kind of sampling over another. This finding for finite samples

complements our asymptotic results.

Our results do not take anything away from the vast literature on spectrum esti-

mation through non-uniformly sampled data. These methods may be quite appropriate

when one does not have control over the sampling mechanism, when non-uniform sam-
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pling is logistically feasible and methodologically not limited, or when uniform sampling

has to be avoided for a specific reason (other than its perceived inconsistency). Further,

a non-uniform sampling scheme can be used where an estimator based on it is expected,

either through theoretical analysis or through simulation studies, to have smaller MSE

than the corresponding estimator based on uniform sampling.

We have shown in Section 2.3.2 how our theoretical results can be used to compare

uniform and Poisson sampling schemes. The results compiled there may be used to

make further comparisons under different constraints. For example, if there is a limit

to the maximum average sampling rate and/or the maximum sample size, one may

make an optimal choice of the bandwidth for fixed values of these two parameters, and

then determine the corresponding MSE. In the case of φ̂n(·), the optimal choice of the

bandwidth (for given sample size and sampling rate) is given by (2.35), while the choice

in the case of ψ̂n(·) can be derived similarly from (2.10) and (2.11) (Masry, 1978b). The

best rates and constants achievable under the two sampling schemes, under appropriate

constraints, may then be used to make a suitable choice of the sampling scheme.

The asymptotic arguments of this chapter do not apply when there is a hard limit on

the minimum separation between two successive samples (rather than a restriction on

the average sampling rate). This is because the sampling rate cannot be allowed to go

to infinity. Thus, the scope of spectrum estimation through uniform sampling becomes

rather restricted under this constraint. On the other hand, under this constraint, one

cannot use Poisson sampling at all. The scope of spectrum estimation through non-

uniform sampling in such situations is investigated in Chapters 4 and 5.

The existence of a consistent spectrum estimator makes it possible to conceive of in-

terval estimators shrinking asymptotically to the true (possibly non-bandlimited) spec-

tral density. This problem is followed up in the next chapter.
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Chapter 3

Uniformly sampled

non-bandlimited processes: Point

and interval estimation of

cross-spectra

3.1 Introduction

Many methods for constructing estimators as well as confidence intervals of bandlimited

spectra have been proposed (Swanepoel and van Wyk, 1986; Brillinger, 2001; Politis

et al., 1992). For uniformly sampled non-bandlimited processes, the problem of aliasing

leads to estimators that are biased even if the sample size goes to infinity. Such an

estimator is not an appropriate pivot for constructing confidence intervals.

Masry’s work on consistent estimation of non-bandlimited spectra through Poisson

sampled data (Masry, 1978a) has been used to construct asymptotic confidence intervals

(Lii and Masry, 1994) on the basis of such data. These intervals shrink to the true (pos-

sibly non-bandlimited) power spectral density as the sample size goes to infinity. The

fact of consistency of a spectrum estimator computed from uniformly spaced samples,

proved in Chapter 2, opens up the possibility of constructing similar confidence intervals

through uniform sampling, which is easier to implement than Poisson sampling. This

is what we do in this chapter. We also extend the scope of the analysis so as to include

cross-spectra of multivariate processes.

47
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Let X = {X(t), − ∞ < t < ∞} be an r-dimensional mean square continuous

stationary stochastic process, having zero mean. We denote the components of the

process X by Xa = {Xa(t), − ∞ < t < ∞} for a ∈ {1, 2, . . . , r}, and the variance-

covariance matrix of the process X at lag τ by

C(τ) =




C11(τ) C12(τ) . . . C1r(τ)

C21(τ) C22(τ) . . . C2r(τ)
...

...
. . .

...

Cr1(τ) Cr2(τ) . . . Crr(τ)




,

where

Ca1a2(τ) = E [Xa1(t + τ)Xa2(t)] for a1, a2 ∈ {1, 2, . . . , r}.

The spectral and cross-spectral density matrix of the process X is denoted by

φ(·) =




φ11(·) φ12(·) . . . φ1r(·)
φ21(·) φ22(·) . . . φ2r(·)

...
...

. . .
...

φr1(·) φr2(·) . . . φrr(·)




,

where

φa1a2(f) =
∫ ∞

−∞
Ca1a2(t)e

−i2πftdt, for−∞ < f < ∞, a1, a2 ∈ {1, 2, . . . , r}.

In this chapter, we construct confidence intervals of φa1a2(f) for a1 , a2 ∈ {1, 2, . . . , r}
based on the following estimator:

φ̂a1a2(f)

=
1

nρn

n∑

j1=1

n∑

j2=1

K(bn(j1 − j2))Xa1

(
j1

ρn

)
Xa2

(
j2

ρn

)
e
− i2πf(j1−j2)

ρn 1[−ρn/2,ρn/2](f),

(3.1)

where n is the sample size, K(·) is a covariance averaging kernel, bn is the kernel

bandwidth and ρn is the sampling rate. Note that the estimator (2.1), considered in

Chapter 2, is a special case of the above estimator for a1 = a2.
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Consistency and weak convergence of the estimators are crucial to the construction

of confidence intervals shrinking to the true spectra and cross-spectra. In Section 3.2,

we establish the consistency of the spectrum estimator (3.1) for non-bandlimited pro-

cesses. This is done through generalization of some results of Chapter 2 to the case

of multivariate time series. These results also pave the way for computation of the

asymptotic distribution of the estimator. A formal description of the confidence inter-

vals is given in Section 3.3, which also contains some discussion on optimal rates of

shrinkage of these intervals. Section 3.4 contains the proofs of the theorems presented

in Sections 3.2 and 3.3. In Section 3.5, we investigate the question as to how large the

sample size should be, in order that the asymptotic confidence intervals are applicable.

We look for answers through a Monte Carlo simulation study and report the findings.

We make some concluding remarks in Section 3.6.

3.2 Large sample results for point estimates

3.2.1 Consistency

In order to establish the consistency of the estimator φ̂a1a2(·) given in (3.1), we make a

few assumptions on the process X, the kernel K(·) and the sequences bn and ρn. These

are either the same as the corresponding assumptions made in Section 2.2, or similar.

Assumption 3.1. The function ga1a2(·), defined over the real line as ga1a2(t) =

sup
|s|≥|t|

|Ca1a2(s)| is integrable for all a1, a2 ∈ {1, 2, . . . , r}.

Assumption 3.2. The covariance averaging kernel function K(·) is continuous, even,

square integrable and bounded by a non-negative, even and integrable function having a

unique maximum at 0. Further, K(0) = 1.

Assumption 3.3. The kernel bandwidth is such that nbn →∞ as n →∞.

Assumption 3.4. The sampling rate is such that ρn →∞ and ρnbn → 0 as n →∞.

Theorem 3.1. Under Assumptions 3.1–3.4, the bias of the estimator φ̂a1a2(·) tends to

zero uniformly over any closed and finite interval.
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In order to establish convergence of the variance-covariance matrix, we need a further

assumption on some fourth order moments/cumulants of the underlying process X.

Assumption 3.5. The fourth moment E
[(

Xaj (t)
)4

]
of the process X is finite for all

aj ∈ {1, . . . , r}, while the fourth order cumulant function

cum [Xa1(t + t1), Xa2(t + t2), Xa3(t + t3), Xa4(t)]

does not depend on t, and this function, denoted by Qa1a2a3a4(t1, t2, t3), satisfies

|Qa1a2a3a4(t1, t2, t3)| ≤
3∏

j=1

gaj (tj),

where gaj (·), j = 1, 2, 3, are all continuous, even, nonnegative and integrable func-

tions over the real line, which are non-increasing over [0,∞) for all a1, a2, a3, a4 ∈
{1, 2, . . . , r}.

Note that the cross spectral density is, in general, complex valued. Thus, the pro-

posed estimator φ̂a1a2(·) can be represented as the vector




Re
(
φ̂a1a2(f)

)

Im
(
φ̂a1a2(f)

)


 , (3.2)

where

Re
(
φ̂a1a2(f)

)

=
1

nρn

n∑

j1=1

n∑

j2=1

K(bn(j2 − j1))Xa1

(
j1

ρn

)
Xa2

(
j2

ρn

)

× cos
(

2πf(j2 − j1)
ρn

)
1[−ρn/2,ρn/2](f),

Im
(
φ̂a1a2(f)

)

=
1

nρn

n∑

j1=1

n∑

j2=1

K(bn(j2 − j1))Xa1

(
j1

ρn

)
Xa2

(
j2

ρn

)

× sin
(

2πf(j2 − j1)
ρn

)
1[−ρn/2,ρn/2](f).
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Theorem 3.2. Under Assumptions 3.1–3.5, the covariance of


Re

(
φ̂a1a2(·)

)

Im
(
φ̂a1a2(·)

)

 with


Re

(
φ̂a3a4(·)

)

Im
(
φ̂a3a4(·)

)

 converges as follows:

lim
n→∞nbnCov




 Re

(
φ̂a1a2(f1)

)

Im
(
φ̂a1a2(f1)

)

 ,


 Re

(
φ̂a3a4(f2)

)

Im
(
φ̂a3a4(f2)

)




=


σ11(f1, f2) σ12(f1, f2)

σ21(f1, f2) σ22(f1, f2)


 ,

where

σ11(f1, f2) = B ·Re
{
φ∗a1a3

(f2)φa2a4(f2)+φ∗a1a4
(f2)φa2a3(f2)

}
[1E2(f1, f2)+1E3(f1, f2)

+2× 1E4(f1, f2)],

σ12(f1, f2) = B ·Im
{
φa1a3(f2)φ∗a2a4

(f2)+φ∗a1a4
(f2)φa2a3(f2)

}
[1E2(f1, f2) + 1E3(f1, f2)],

σ21(f1, f2) = B ·Im
{
φ∗a1a3

(f2)φa2a4(f2)+φ∗a1a4
(f2)φa2a3(f2)

}
[1E2(f1, f2)− 1E3(f1, f2)],

σ22(f1, f2) = B ·Re
{
φa1a3(f2)φ∗a2a4

(f2)−φa1a4(f2)φ∗a2a3
(f2)

}
[1E2(f1, f2)− 1E3(f1, f2)],

B =
1
2

∫ ∞

−∞
K2(x)dx,

E1 = {(f1, f2) : f1−f2 6= 0, f1+f2 6= 0, −∞< f1, f2 <∞},
E2 = {(f1, f2) : f1−f2 = 0, −∞ < f1, f2 < ∞}\{(0, 0)},
E3 = {(f1, f2) : f1+f2 = 0, −∞ < f1, f2 < ∞}\{(0, 0)},
E4 = {(0, 0)}.

The convergence is uniform over any compact subset of E1, E2 or E3. In particular,

the variance-covariance matrix of the random vector


 Re

(
φ̂a1a2(·)

)

Im
(
φ̂a1a2(·)

)

 goes to zero

as n →∞, for all a1, a2 ∈ {1, 2, . . . , r}.

Theorems 3.1 and 3.2, which are generalizations of Theorems 2.1 and 2.2 of Chapter 2

to the case of multivariate processes, together establish the consistency of any vector of

estimators having elements of the form φ̂a1a2(·).

Remark 3.1. The covariance between two complex-valued random variables is often

defined as the trace of the 2× 2 cross-covariance matrix of the random vectors formed

by their real and imaginary parts (Brockwell and Davis, 1991). In the case of the pair

(φ̂a1a2(f1), φ̂a3a4(f2)), the limiting covariance according to this notion can be easily be
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computed from Theorem 3.2.

3.2.2 Asymptotic normality

We will make an additional assumption about the underlying process in order to prove

the asymptotic normality of the estimator.

Assumption 3.5A. The process X is strictly stationary; all moments of the process
exist, i.e., E

[
(Xa(t))

k
]

< ∞ for each k > 2 and for all a ∈ {1, . . . , r}; and for each
a1, a2, . . . , ak ∈ {1, 2, . . . , r} and each k > 2, the kth order joint cumulant denoted by

Qa1a2...ak
(t1, t2, . . . , tk−1)=cum

(
Xa1(t1+t), Xa2(t2+t), . . . , Xak−1

(tk−1+t), Xak
(t)

)
,

satisfies

|Qa1a2...ak
(t1, t2, . . . , . . . , tk−1)| ≤

k−1∏

j=1

gaj (tj),

where gaj (·), j = 1, . . . , k−1 are continuous, even, nonnegative and integrable functions

over the real line, which are non-increasing over (0,∞).

Note that Assumption 3.5A is stronger than Assumption 3.5.

Theorem 3.3. Under Assumptions 3.1–3.4 and 3.5A, a vector of real and imaginary
parts of the estimated spectra or cross-spectra converges weakly as follows.

√
nbn







Re{φ̂a1a2(f1)}
Im{φ̂a1a2(f1)}

...
Re{φ̂a2J−1a2J (fJ)}
Im{φ̂a2J−1a2J (fJ)}



−E




Re{φ̂a1a2(f1)}
Im{φ̂a1a2(f1)}

...
Re{φ̂a2J−1a2J (fJ)}
Im{φ̂a2J−1a2J (fJ)}







D→ N2J(0, Σ), (3.3)

where a1, a2, . . . , a2J ∈ {1, 2, . . . , r}, and the elements of Σ are defined in accordance

with Theorem 3.2.

The foregoing theorem only shows that the vector estimator, after appropriate mean

adjustment and scaling, converges weakly to a multivariate normal distribution. How-

ever, weak convergence around the vector of true spectra and cross-spectra remains to
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be established. Note that

√
nbn

(
φ̂a1a2(f)− φa1a2(f)

)

=
√

nbn

(
φ̂a1a2(f)−E[φ̂a1a2(f)]

)
+

√
nbn

(
E[φ̂a1a2(f)]− φa1a2(f)

)
.

(3.4)

We make some further assumptions on the smoothness and the rate of decay of the

spectrum and the shape of the kernel function in order to obtain the rate of convergence

of the bias E[φ̂a1a2(f)] − φa1a2(f). These are either the same as the corresponding

assumptions made in Section 2.3, or are similar to them.

Assumption 3.1A. The function gqa1a2(·), defined over the real line as gqa1a2(t) =

sup
|s|≥|t|

|s|q|Ca1a2(s)| is integrable for all a1, a2 ∈ {1, 2, . . . , r}, for some positive number q

greater than 1.

Assumption 3.1B. The power spectral density is such that, for all a1, a2 ∈ {1, 2, . . . , r}
and for some p > 1, lim

f→∞
|fpφa1a2(f)| = Aa1a2 for some non-negative number Aa1a2.

Assumption 3.2A. The characteristic exponent of the kernel K(·) is a number, for

which Assumption 3.1A holds.

Note that Assumption 3.1A is stronger than Assumption 3.1. As mentioned in

Remarks 2.4 and 2.5, the numbers q and p indicate the degree of smoothness and the

rate of decay, respectively, of the elements of the power spectral density matrix. (In

the present case, p indicates the slowest rate of decay of the various elements of the

power spectral density matrix.) The following are two interesting situations, where

Assumption 3.1B holds.

1. The real and imaginary parts of the components of the power spectral density

matrix are rational functions of the form P (f)
Q(f) , where P (·) and Q(·) are polynomials

such that the degree of Q(·) is more than degree of P (·) by at least p. Note that

continuous time ARMA processes possess rational power spectral density.

2. The function Ca1a2(·) has the following smoothness property: Ca1a2(·) is p times

differentiable and the pth derivative of Ca1a2(·) is integrable.
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Theorem 3.4. Under Assumptions 3.2–3.4, 3.1A, 3.1B and 3.2A, the bias of the
estimator φ̂a1a2(f) given by (3.1), for a1, a2 ∈ {1, 2, . . . , r}, is

E[φ̂a1a2(f)− φa1a2(f)]

=
[
−kq

∫ ∞

−∞
|t|qCa1a2(t)e

−i2πftdt

]
(ρnbn)q + o ((ρnbn)q)

+
[
−

∫ ∞

−∞
|t|Ca1a2(t)e

−i2πftdt

](ρn

n

)
+ o

(ρn

n

)

+


Aa1a2

∑

|l|>0

1
|l|p


 1

(ρn)p
+ o

(
1

(ρn)p

)
.

The convergence is uniform over any closed and finite interval.

Theorem 3.4 shows that the second term on the right hand side of (3.4) would go

to zero if the sampling rate ρn satisfies additional conditions.

Assumption 3.4A. The sampling rate is such that
√

nbn(ρnbn)q → 0 and
√

nbn/ρp
n → 0

as n →∞.

Note that, whenever Assumption 3.3 holds, Assumption 3.4A is stronger than As-

sumption 3.4. With this assumption, the expected values of the estimators in Theo-

rem 3.3 can be replaced by their true values.

Theorem 3.5. Under Assumptions 3.1–3.3, 3.1A, 3.1B, 3.2A, 3.4A and 3.5A, we have
the following weak convergence.

√
nbn







Re{φ̂a1a2(f1)}
Im{φ̂a1a2(f1)}

...
Re{φ̂a2J−1a2J (fJ)}
Im{φ̂a2J−1a2J (fJ)}



−




Re{φa1a2(f1)}
Im{φa1a2(f1)}

...
Re{φa2J−1a2J (fJ)}
Im{φa2J−1a2J (fJ)}







D→ N2J(0, Σ),

where a1, a2, . . . , a2J ∈ {1, 2, . . . , r}, and the elements of Σ are defined in accordance

with Theorem 3.2.
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3.3 Confidence intervals of spectra and cross-spectra

3.3.1 Construction of confidence intervals

By using the result of Theorem 3.5, we construct an asymptotic confidence interval of

the power spectral density φa1a1(·) with confidence level 1−α, for any a1 ∈ {1, 2, . . . , r},
as [

φ̂a1a1(f)− zα/2σ̂a1a1

nbn
, φ̂a1a1(f) +

zα/2σ̂a1a1

nbn

]
, (3.5)

where σ̂2
a1a1

= [1 + 1{0}(f)]
(∫∞
−∞K2(x)dx

)
φ̂2

a1a1
(f), which is a plug-in estimator ob-

tained from a simplified expression of the variance given in Theorem 3.5, and zα/2 is

the (α/2)th quantile of the standard normal distribution. Theorem 3.5 ensures that the

coverage probability of this interval would approach 1−α as the sample size increases to

infinity. The length of the interval is (2zα/2σ̂a1a1)/(nbn). Note that consistency of the

estimator (3.1) implies that σ̂a1a1 converges in probability to σa1a1 . Therefore, it follows

from Assumption 3.3 that the interval length shrinks to zero as n goes to infinity.

Similarly, by expressing the real and imaginary parts of the cross spectral density

φa1a2(f) as a vector, a confidence region with level 1− α, for any a1, a2 ∈ {1, 2, . . . , r},
is constructed as



Z : nbn


Re{φ̂a1a2(f)−Z}

Im{φ̂a1a2(f)−Z}



′

Σ̂−1


Re{φ̂a1a2(f)−Z}

Im{φ̂a1a2(f)−Z}


 ≤ χ2

α,2



 ,

where the constant χ2
α,2 is the (1−α)th quantile of the chi-square distribution with two

degrees of freedom and

Σ̂ =




σ̂2
1(f) σ̂12(f)

σ̂12(f) σ̂2
2(f)


 ,

σ̂2
1(f) = {1 + 1{0}(f)}B[φ̂a1a1(f)φ̂a2a2(f)+{Re(φ̂a1a2(f))}2−{Im(φ̂a1a2(f))}2], (3.6)

σ̂2
2(f) = {1− 1{0}(f)}B[φ̂a1a1(f)φ̂a2a2(f){Re(φ̂a1a2(f))}2 + {Im(φ̂a1a2(f))}2], (3.7)

σ̂12(f) = {1{0}(f)− 1}B{2Re(φ̂a1a2(f))Im(φ̂a1a2(f))}, (3.8)

B =
1
2

∫ ∞

−∞
K2(x)dx,
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Σ̂ being a plug-in estimator of Σ defined in Theorem 3.5 for J = 1.

One can also construct individual confidence limits for the real and imaginary parts

of the cross spectral density φa1a2(f), for any a1, a2 ∈ {1, 2, . . . , r}, as

[
Re[φ̂a1a2(f)]− zα/2σ̂1(f)

nbn
, Re[φ̂a1a2(f)] +

zα/2σ̂1(f)
nbn

]
, (3.9)

and [
Im[φ̂a1a2(f)]− zα/2σ̂2(f)

nbn
, Im[φ̂a1a2(f)] +

zα/2σ̂2(f)
nbn

]
, (3.10)

where zα/2 is the α/2th quantile of the normal distribution. Simultaneous confidence

intervals for the real and the imaginary parts can be obtained using standard techniques

(Brillinger, 2001).

3.3.2 Optimal rate of shrinkage

It can be seen from the expressions of confidence intervals and confidence regions based

on Theorem 3.5 that the size of these intervals/regions go to zero as 1√
nbn

goes to zero.

We now seek to optimize the rates of bn and ρn so that 1√
nbn

tends to 0 as fast as

possible under the conditions of Theorem 3.5.

Theorem 3.6. Under Assumptions 3.3 and 3.4A, the reciprocal of the scale factor
(
√

nbn) used in Theorem 3.5 has the fastest convergence to 0 when

bn = o
(
n
− p+q

p+q+2pq

)
,

ρn = O
(
n

q
p+q+2pq

)
,

and under these conditions, 1√
nbn

= o
(
n
− pq

p+q+2pq

)
.

It has been shown in Section 2.3 that under the assumptions of Theorems 2.4,

the optimal rate of convergence for mean square consistency of the estimator (2.1)

is O
(
n
− 2pq

p+q+2pq

)
. Similar arguments would show that under similar conditions, the

estimator (3.1) for any general cross-spectral density (i.e., a1 not necessarily equal to

a2) has the same property, i.e., the optimal rate of convergence of the MSE is

E
[
{φ̂a1a2(·)− φa1a2(·)}2

]
= O

(
n
− 2pq

p+q+2pq

)
,
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which corresponds to the choices

bn = O
(
n
− p+q

p+q+2pq

)
,

ρn = O
(
n

q
p+q+2pq

)
.

Theorem 3.6 shows that the optimal rate of weak convergence of the estimator φ̂a1a2(·)
is slower than the square root of the optimal rate corresponding to mean square consis-

tency.

It has already been observed in Remark 2.6 that for every fixed value of q, the num-

ber p, which indicates the rate of decay of the spectrum, can be increased indefinitely by

continuous time low pass filtering with a cut off frequency larger than the maximum fre-

quency of interest. For fixed q, the best rate of weak convergence given in Theorem 3.6,

obtained by allowing p to go to infinity, happens to be o
(
n
− q

1+2q

)
. This rate coincides

with the usual rate of weak convergence of the smoothed periodogram estimator for a

bandlimited spectral density, when the sampling rate is fixed and appropriate (Parzen,

1957).

The rate of weak convergence crucially depends on the number q, the assumed

degree of smoothness of the spectrum. The stronger the assumption, the faster is the

rate of convergence. The rate corresponding to large q (strong assumption) is o
(
n−

1
2

)
,

assuming that p can be allowed to be large. For q = 1 (weakest possible assumption)

and correspondingly large p, the rate approaches o
(
n−

1
3

)
. For q = 1 and p nearly equal

to one, the rate approaches o
(
n−

1
4

)
.

3.4 Proofs

We denote by K1(·) a function that bounds the covariance averaging kernel K(·) as in

Assumption 3.2. Further, we denote K1(0) by M . We represent the real line by R.

Proof of Theorem 3.1. We shall show that the bias of the estimator φ̂a1a2(f) given

by (3.1) converges to 0 uniformly over [fl, fu] for any fl, fu such that fl < fu. Note
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that

E[φ̂a1a2(f)] =
1
ρn

n−1∑

u=−(n−1)

(
1− |u|

ρn

)
K(bnu)Ca1a2

(
u

ρn

)
e
− i2πfu

ρn 1[−ρn/2,ρn/2](f).

Consider the simple function Sn(·), defined over [fl, fu]× R, by

Sn(f, x) =
n−1∑

u=−(n−1)

(
1− |u|

ρn

)
K(bnu)Ca1a2

(
u

ρn

)
e
− i2πfu

ρn 1[−ρn/2,ρn/2](f)1(
u−1
ρn

, u
ρn

](x).

Observe that
∫∞
−∞ Sn(f, x)dx = E[φ̂a1a2(f)]. Define the function S(·), over [fl, fu]× R,

by S(f, x) = Ca1a2(x)e−i2πfx.

For any x ∈ R, let un(x) be the smallest integer greater than or equal to ρnx.

Note that the interval
(

un−1(x)
ρn

, un(x)
ρn

]
contains the point x and limn→∞

un(x)
ρn

= x. For

sufficiently large n, we have from Assumptions 3.3 and 3.4,

Sn(f, x) =
(

1− |un(x)|
ρn

ρn

n

)
K

(
bnρn

un(x)
ρn

)
Ca1a2

(
un(x)

ρn

)
e
− i2πfun(x)

ρn 1[−ρn/2,ρn/2](f).

Proving the uniform convergence of Bias[φ̂a1a2(f)] over the finite interval [fl, fu]

amounts to proving

lim
n→∞

∫ ∞

−∞
Sn(f, x)dx =

∫ ∞

−∞
S(f, x)dx, (3.11)

uniformly over [fl, fu].

Observe that
∫∞
−∞ S(f, t)dt = φa1a2(f), which is continuous. By virtue of the con-

tinuity of the limiting function, (3.11) is equivalent to proving that
∫∞
−∞ Sn(f, x)dx

converges continuously over this interval (Resnick, 1987), i.e., for any sequence fn → f ,

lim
n→∞

∫ ∞

−∞
Sn(fn, x)dx =

∫ ∞

−∞
S(f, x)dx, (3.12)

where fn, f ∈ [fl, fu].

By continuity of the function Sn(f, x) with respect to x and f , we have from As-

sumptions 3.3 and 3.4, for any fixed x,

lim
n→∞ |Sn(fn, x)− S(f, x)| = 0.
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Note that from Assumptions 3.1 and 3.2, we have the dominance

|Sn(fn, x)| ≤ M
∑

|u|<n

∣∣∣∣Ca1a2

(
u

ρn

)∣∣∣∣ 1(
u−1
ρn

, u
ρn

](x) ≤ Mga1a2(x),

where ga1a2(·) is the function described in Assumption 3.1. Thus, by applying the DCT,

we have (3.12).

Hence, E[φ̂a1a2(f)] → φ(f) uniformly on [fl, fu]. 2

Proof of Theorem 3.2. We begin by calculating the covariance between the estimators

Re(φ̂a1a2(·)) and Re(φ̂a3a4(·)).

Cov
[
Re(φ̂a1a2(f1)), Re(φ̂a3a4(f2))

]

=
1

(nρn)2

n∑

j1=1

n∑

j2=1

n∑

j3=1

n∑

j4=1

K(bn(j2−j1))K(bn(j4−j3))

× Cov

[
Xa1

(
j1

ρn

)
Xa2

(
j2

ρn

)
, Xa3

(
j3

ρn

)
Xa4

(
j4

ρn

)]

× cos
(

2πf1(j2 − j1)
ρn

)
cos

(
2πf2(j4 − j3)

ρn

)

=
1

(nρn)2

n∑

j1=1

n∑

j2=1

n∑

j3=1

n∑

j4=1

K(bn(j2−j1))K(bn(j4−j3))
[
Ca1a3

(
j1 − j3

ρn

)
Ca2a4

(
j2 − j4

ρn

)

+Ca1a4

(
j1 − j4

ρn

)
Ca2a3

(
j2 − j3

ρn

)
+ Qa1a2a3a4

(
j1 − j4

ρn
,
j2 − j4

ρn
,
j3 − j4

ρn

)]

× cos
(

2πf1(j1 − j2)
ρn

)
cos

(
2πf2(j3 − j4)

ρn

)

=T1(f1, f2) + T2(f1, f2) + T3(f1, f2),

where the three terms correspond to the three summands appearing inside square brack-

ets in the previous step.

Now, consider the function T1(f1, f2). By using the transformations u1 = j1 − j2,

u2 = j1 − j3 and u3 = j2 − j4, we have

T1(f1, f2) =
1

(nρn)2

n∑

j1=1

j1−n∑

u1=j1−1

n−j1∑

u2=j1−1

j1−n−u1∑

u3=j1−1−u1

K(bnu1)K(bn(u1 − u2 + u3))

× Ca1a3

(
u2

ρn

)
Ca2a4

(
u3

ρn

)
cos

(
2πf1u1

ρn

)
cos

(
2πf2(u1 − u2 + u3)

ρn

)
.

The range of the four summations on the right hand side is described by the set of
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inequalities 1 ≤ j1 ≤ n and j1 − n ≤ u1, u2, u1 + u3 ≤ j1 − 1, which is equivalent to the

inequalities −(n − 1) ≤ u1, u2, u1 + u3 ≤ (n − 1) and max{u1, u2, u1 + u3} + 1 ≤ j1 ≤
min{u1, u2, u1 + u3}. Therefore, the expression for T1(f1, f2) simplifies to

1
nρ2

n

(n−1)∑

u1=−(n−1)

(n−1)∑

u2=−(n−1)

(n−1)−u1∑

u3=−(n−1)−u1

Un(u1, u2, u3)K(bnu1)K(bn(u1 − u2 + u3))

× Ca1a3

(
u2

ρn

)
Ca2a4

(
u3

ρn

)
cos

(
2πf1u1

ρn

)
cos

(
2πf2(u1 − u2 + u3)

ρn

)
,

where

Un(u1, u2, u3)=
(
1+

min(u1, u2, u1+u3)
n

−max(u1, u2, u1+u3)
n

)
.

By writing the cosine functions in terms of complex exponentials, we have

T1(f1, f2)

=
1

4nρ2
n

(n−1)∑

u1=−(n−1)

(n−1)∑

u2=−(n−1)

(n−1)−u1∑

u3=−(n−1)−u1

Un(u1, u2, u3)K(bnu1)K(bn(u1 − u2 + u3))

× Ca1a3

(
u2

ρn

)
Ca2a4

(
u3

ρn

){
e
−i

2π(f1−f2)u1
ρn e

−i
2πf2u2

ρn e
i
2πf2u3

ρn + e
i
2π(f1−f2)u1

ρn e
i
2πf2u2

ρn e
−i

2πf2u3
ρn

+e
i
2π(f1+f2)u1

ρn e
−i

2πf2u2
ρn e

i
2πf2u3

ρn + e
−i

2π(f1+f2)u1
ρn e

i
2πf2u2

ρn e
−i

2πf2u3
ρn

}

=T11(f1, f2) + T12(f1, f2) + T13(f1, f2) + T14(f1, f2), (3.13)

where the four terms correspond to the four summands appearing within braces in the

last factor on the right hand side of (3.13).

By using the results of Lemmas 3.1 and 3.2 given below, we have the convergence

lim
n→∞nbnT11(f1, f2)=

1
2
Bφa1a3(f2)φ∗a2a4

(f2)1E2∪E4(f1, f2),

and similar arguments show that

lim
n→∞nbnT12(f1, f2) =

1
2
Bφ∗a1a3

(f2)φa2a4(f2)1E2∪E4(f1, f2),

lim
n→∞nbnT13(f1, f2) =

1
2
Bφa1a3(f2)φ∗a2a4

(f2)1E3∪E4(f1, f2),

lim
n→∞nbnT14(f1, f2) =

1
2
Bφ∗a1a3

(f2)φa2a4(f2)1E3∪E4(f1, f2).
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For the function T2(f1, f2), one can similarly use the transformations u1 = j1 − j2,

u2 = j1 − j4 and u3 = j2 − j3, interchange the order of summation and expand the

cosine functions in terms of complex exponentials to obtain

T2(f1, f2)

=
1

nρ2
n

(n−1)∑

u1=−(n−1)

(n−1)∑

u2=−(n−1)

(n−1)−u1∑

u3=−(n−1)−u1

Un(u1, u2, u3)K(bnu1)K(bn(−u1 + u2 − u3))

× Ca1a4

(
u2

ρn

)
Ca2a3

(
u3

ρn

)
cos

(
2πf1u1

ρn

)
cos

(
2πf2(−u1 + u2 − u3)

ρn

)

=
1

4nρ2
n

(n−1)∑

u1=−(n−1)

(n−1)∑

u2=−(n−1)

(n−1)−u1∑

u3=−(n−1)−u1

Un(u1, u2, u3)K(bnu1)K(bn(−u1 + u2 − u3))

× Ca1a4

(
u2

ρn

)
Ca2a3

(
u3

ρn

){
e
−i

2π(f1−f2)u1
ρn e

−i
2πf2u2

ρn e
i
2πf2u3

ρn + e
i
2π(f1−f2)u1

ρn e
i
2πf2u2

ρn e
−i

2πf2u3
ρn

+e
i
2π(f1+f2)u1

ρn e
−i

2πf2u2
ρn e

i
2πf2u3

ρn + e
−i

2π(f1+f2)u1
ρn e

i
2πf2u2

ρn e
−i

2πf2u3
ρn

}

= T21(f1, f2) + T22(f1, f2) + T23(f1, f2) + T24(f1, f2).

By using similar arguments as in the case of nbnT11(f1, f2), it can be shown that

lim
n→∞nbnT21(f1, f2) =

1
2
Bφa1a4(f2)φ∗a2a3

(f2)1E2∪E4(f1, f2),

lim
n→∞nbnT22(f1, f2) =

1
2
Bφ∗a1a4

(f2)φa2a3(f2)1E2∪E4(f1, f2),

lim
n→∞nbnT23(f1, f2) =

1
2
Bφa1a4(f2)φ∗a2a3

(f2)1E3∪E4(f1, f2),

lim
n→∞nbnT24(f1, f2) =

1
2
Bφ∗a1a4

(f2)φa2a3(f2)1E3∪E4(f1, f2).

Finally, for the term T3(f1, f2), we use the transformations u1 = j1− j4, u2 = j2− j4

and u3 = j3 − j4 and interchange the order of summations to have

T3(f1, f2) =
1

(nρn)2

(n−1)∑

u1=−(n−1)

n−1∑

u2=−(n−1)

(n−1)∑

u3=−(n−1)

{n−min
i

(ui)+max
i

(ui)}K(bn(u1−u2))

×K(bnu3)Qa1a2a3a4

(
u1

ρn
,
u2

ρn
,
u3

ρn

)
cos

(
2πf1(u1−u2)

ρn

)
cos

(
2πf2u3

ρn

)
.
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From Assumptions 3.2 and 3.5, we have

nbn|T3(f1, f2)|

≤ nbnM2
n−1∑

u1=−(n−1)

n−1∑

u2=−(n−1)

n−1∑

u2=−(n−1)

ga1

(
u1

ρn

)
ga2

(
u2

ρn

)
ga3

(
u3

ρn

)
1
ρ3

n

. (3.14)

Now, consider the function Sn(·) defined over R as Sn(x) =
n−1∑

u1=−(n−1)

ga1

(
u1

ρn

)
1(

u1−1
ρn

,
u1
ρn

](x).

Observe that limn→∞ Sn(x) = ga1(x) and |Sn(x)| is dominated by ga1(·). By applying

the DCT, we have

lim
n→∞

∫ ∞

−∞
Sn(x)dx = lim

n→∞

n−1∑

u1=−(n−1)

ga1

(
u1

ρn

)
1
ρn

=
∫ ∞

−∞
ga1(x)dx.

Thus, the upper bound of nbnT3(f1, f2) given by (3.14) is O(ρnbn). Assumption 3.4

ensures that nbnT3(f1, f2) converges to zero uniformly.

By combining all these terms, we have the convergence of nbnCov
[
Re(φ̂a1a2(f1)),

Re(φ̂a3a4(f2))
]

as given in the theorem. Convergence of the other three covariances

follow from a similar argument. 2

Lemma 3.1. For f1 − f2 = 0, the function T11(f1, f2) converges as follows.

lim
n→∞nbnT11(f1, f2) =

1
2
Bφa1a3(f2)φ∗a2a4

(f2).

The convergence is uniform on any compact subset of the set

E = {(f1, f2) : f1 − f2 = 0, −∞ < f1, f2 < ∞}.

Proof of Lemma 3.1. Consider a compact subset E′ of the set E. Consider the simple

function Sn(·), defined over E′ × R3 by

Sn(f1, f2, x1, x2, x3)

=
(n−1)∑

u1=−(n−1)

(n−1)∑

u2=−(n−1)

(n−1)−u1∑

u3=−(n−1)−u1

Un(u1, u2, u3)K(bnu1)K(bn(u1 − u2 + u3))Ca1a3

(
u2

ρn

)

× e
−i

2πf2u2
ρn Ca2a4

(
u3

ρn

)
e
i
2πf2u3

ρn 1((u1−1)bn,u1bn](x1)1(
u2−1

ρn
,
u2
ρn

](x2)1(
u3−1

ρn
,
u3
ρn

](x3),
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so that

nbnT11(f1, f2) =
1
4

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
Sn(f1, f2, x1, x2, x3)dx1dx2dx3.

Define u1n(x1), u2n(x2) and u3n(x3) as the smallest integers greater than or equal

to x1/bn, ρnx2 and ρnx3, respectively. Thus, (x1, x2, x3) ∈ (bnu1n−1(x1), bnu1n(x1)] ×(
u2n−1(x2)

ρn
, u2n(x2)

ρn

]
×

(
u3n−1(x3)

ρn
, u3n(x3)

ρn

]
and bnu1n(x1) → x1,

u2n(x2)
ρn

→ x2,
u3n(x3)

ρn
→

x3 as n → ∞. Since nbn → ∞ and bnρn → 0 as n → ∞, we have, for any point

(x1, x2, x3) ∈ R3 and large enough n, the inequalities −nbn−x1
bnρn

< x3 < nbn−x1
bnρn

, i.e.,

−n + 1− u1n(x1) < u3n(x3) < n− 1− u1n(x1). Thus, for sufficiently large n, we have

Sn(f1, f2, x1, x2, x3)

=Un(u1n(x1), u2n(x2), u3n(x3))K(bnu1n(x1))K(bn(u1n(x1)− u2n(x2) + u3n(x3)))

× Ca1a3

(
u2n(x2)

ρn

)
e
−i

2πf2u2n(x2)
ρn Ca2a4

(
u3n(x3)

ρn

)
e
i
2πf2u3n(x3)

ρn .

(3.15)

Observe that, under Assumptions 3.1,3.3 and 3.4, the function Sn(f1, f2, x1, x2, x3)

converges to the function S(·), defined over E′ × R3 by

S(f1, f2, x1, x2, x3) = K2(x1)Ca1a3 (x2) e−i2πf2x2Ca2a4 (x3) ei2πf2x3 .

Note that
∫∞
−∞

∫∞
−∞

∫∞
−∞ S(f1, f2, x1, x2, x3)dx1dx2dx3 is a continuous function in (f1, f2).

As in the proof of Theorem 3.1, we prove the convergence of the left hand side of (3.15)

uniformly on E′, by showing that for any sequence (f1n, f2n) → (f1, f2),

lim
n→∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
Sn(f1n, f2n, x1, x2, x3)dx1dx2dx3

=
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
S(f1, f2, x1, x2, x3)dx1dx2dx3.

for (f1n, f2n), (f1, f2) ∈ E′. The latter convergence follows, through Assumption 3.1

and 3.2 and the DCT, from the dominance

|Sn(f1n, f2n, x1, x2, x3)| ≤ MK1(x1)ga1a3 (x2) ga2a4 (x3) .
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and the convergence of the integrand, which holds because of the continuity of Ca1a3(·),
Ca2a4(·) and the kernel and the exponential functions. Hence, nbnT11(·) converges as

stated uniformly on the compact set E′. 2

Lemma 3.2. For f1 − f2 6= 0, the function nbnT11(f1, f2) converges to zero. The

convergence is uniform on any compact subset of the set E1 given by

E = {(f1, f2) : f1 − f2 6= 0, −∞ < f1, f2 < ∞}.

Proof of Lemma 3.2. Let E′ be any compact subset of the set E. Consider the simple

function Sn(·), defined over E′ × R3 by

Sn(f1, f2, x1, x2, x3)

=
(n−1)∑

u1=−(n−1)

(n−1)∑

u2=−(n−1)

(n−1)−u1∑

u3=−(n−1)−u1

Un(u1, u2, u3)K(bnu1)K(bn(u1 − u2 + u3))

× e
−i

u12π(f1−f2)
ρn Ca1a3

(
u2

ρn

)
e
−i

2πf2u2
ρn Ca2a4

(
u3

ρn

)
e
i
2πf2u3

ρn

× 1((u1−1)bn,u1bn)](x1)1( (u2−1)
ρn

,
u2
ρn

](x2)1( (u3−1)
ρn

,
u3
ρn

](x3),

so that

nbnT11(f1, f2) =
1
4

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
Sn(f1, f2, x1, x2, x3)dx1dx2dx3.

An argument similar to that used in the proof of Lemma 3.1 shows that for (x1, x2, x3) ∈
R3 and sufficiently large n,

Sn(f1, f2, x1, x2, x3)

=Un(u1n(x1), u2n(x2), u3n(x3))K(bnu1n(x1))K(bn(u1n(x1)− u2n(x2) + u3n(x3)))

× e
−i

2π(f1−f2)u1n(x1)
ρn Ca1a3

(
u2n(x2)

ρn

)
e
−i

2πf2u2n(x2)
ρn Ca2a4

(
u3n(x3)

ρn

)
e
i
2πf2u3n(x3)

ρn ,

where u1n(x1), u2n(x2) and u3n(x3) are the smallest integers greater than or equal to

x1/bn, ρnx2 and ρnx3, respectively.
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For obtaining the uniform convergence of nbnT11(f1, f2), consider

sup
(f1,f2)∈E′

∣∣∣∣
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
Sn(f1, f2, x1, x2, x3)dx1dx2dx3

∣∣∣∣

≤ sup
(f1,f2)∈E′

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∣∣∣ Sn(f1, f2, x1, x2, x3)− gn(f1, f2, x1, x2, x3)
∣∣∣ dx1dx2dx3

+ sup
(f1,f2)∈E′

∣∣∣∣
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
gn(f1, f2, x1, x2, x3)dx1dx2dx3

∣∣∣∣, (3.16)

where the function gn(·) is defined over E′ × R3 by

gn(f1, f2, x1, x2, x3) = K2(x1)e
−i

x12π(f1−f2)
bnρn Ca1a3 (x2) e−i2πf2x2Ca2a4 (x3) ei2πf2x3 .

We will show the uniform convergence of the right hand side of (3.16) by considering

the two terms separately. For the first term, we follow the route taken in the proof of

Theorem 3.1, i.e., show that for any sequence (f1n, f2n) → (f1, f2),

lim
n→∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∣∣∣ Sn(f1n, f2n, x1, x2, x3)− gn(f1n, f2n, x1, x2, x3)
∣∣∣ dx1dx2dx3 = 0

for (f1n, f2n), (f1, f2) ∈ E′. For this purpose, we write the above integral as

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∣∣∣ Sn(f1n, f2n, x1, x2, x3)− gn(f1n, f2n, x1, x2, x3)
∣∣∣ dx1dx2dx3

≤
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∣∣∣ Sn(f1n, f2n, x1, x2, x3)−Gn(f1n, f2n, x1, x2, x3)
∣∣∣ dx1dx2dx3

+
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∣∣∣ Gn(f1n, f2n, x1, x2, x3)− gn(f1n, f2n, x1, x2, x3)
∣∣∣ dx1dx2dx3,

(3.17)

where the function Gn(·) is defined over E′ × R3 by

Gn(f1, f2, x1, x2, x3) = K2(x1)e
−i

u1n(x1)bn2π(f1−f2)
bnρn Ca1a3 (x2) e−i2πf2x2Ca2a4 (x3) ei2πf2x3 .

Now, observe that

|Sn(f1n, f2n, x1, x2, x3)−Gn(f1n, f2n, x1, x2, x3)|

≤ M

∣∣∣∣e
−i

u1n(x1)bn2π(f1n−f2n)
bnρn αn(f1n, f2n, x1, x2, x3)

∣∣∣∣ ,
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where

αn(f1n, f2n, x1, x2, x3)

=Un(u1n(x1), u2n(x2), u3n(x3))K(bnu1n(x1))K(bn(u1n(x1)− u2n(x2) + u3n(x3)))

× Ca1a3

(
u2n(x2)

ρn

)
e
−i

2πf2nu2n(x2)
ρn Ca2a4

(
u3n(x3)

ρn

)
e
i
2πf2nu3n(x3)

ρn

−K2(x1)Ca1a3 (x2) e−i2πf2nx2Ca2a4 (x3) ei2πf2nx3 .

Since αn(fn, x, t, t
′
) → 0 as n →∞, it follows that

lim
n→∞|Sn(f1n, f2n, x1, x2, x3)−Gn(f1n, f2n, x1, x2, x3)|=0.

From Assumption 3.1 and 3.2, we have the dominance

|Sn(f1n, f2n, x1, x2, x3)−Gn(f1n, f2n, x1, x2, x3)| ≤ 2MK1(x1)ga1a3(x2)ga2a4(x2).

By applying the DCT, we have

lim
n→∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∣∣∣ Sn(f1n, f2n, x1, x2, x3)−Gn(f1n, f2n, x1, x2, x3)
∣∣∣ dx1dx2dx3 = 0.

For the second term on the right hand side of (3.17), observe that for any fixed x1,

∣∣∣∣e−i
2π(f1n−f2n)u1n(x1)bn

bnρn − e
−i

x12π(f1n−f2n)
bnρn

∣∣∣∣ ≤
2π(f1n − f2n)

ρn
.

Thus,

|Gn(f1n, f2n, x1, x2, x3)− gn(f1n, f2n, x1, x2, x3)|

≤M2ga1a3(0)ga2a4(0)
∣∣∣∣e
−i

u1n(x1)bn2π(f1n−f2n)
bnρn − e

−i
x12π(f1n−f2n)

bnρn

∣∣∣∣

≤M2ga1a3(0)ga2a4(0)
2π(f1n − f2n)

ρn
,

and so

lim
n→∞ |Gn(f1n, f2n, x1, x2, x3)− gn(f1n, f2n, x1, x2, x3)| = 0.

From Assumption 3.1 and 3.2, we have the dominance

|Gn(f1n, f2n, x1, x2, x3)− gn(f1n, f2n, x1, x2, x3)| ≤ 2MK1(x1)ga1a3(x2)ga2a4(x2),
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which leads us, through another use of the DCT, to the convergence of the second

integral of (3.17). This establishes that the first term on the right hand side of (3.16)

converges to 0. We only have to deal with the second term. Let

sn(f1, f2) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
gn(f1, f2, x1, x2, x3)dx1dx2dx3.

In order to establish the uniform convergence of sn(·) over E′, it is enough to show that

sn(f1n, f2n) → 0 for any sequence (f1n, f2n) → (f1, f2), where (f1n, f2n), (f1, f2) ∈ E′.

By using the Reimann-Lebesgue lemma, we have sn(f1, f2) → 0. Thus, the second term

on the right hand side of (3.16) also converges to 0. Hence, nbnT11(f1, f2) converges

to 0 uniformly on E′ as n →∞. 2

In order to prove Theorem 3.3, we will need the following lemma, which describes

the asymptotic behaviour of the joint cumulants of the estimators φ̂a1a2(·) for a1, a2 ∈
{1, 2, . . . , r}. In the present case, a cumulant defined as in (2.4) may be complex-valued.

Lemma 3.3. Under the Assumptions 3.1–3.4 and 3.5A, for L > 2, the Lth order joint
cumulant of the vector

(
φ̂a1a2(f1), . . . , φ̂a2L−1a2L(fL)

)
for a1, a2, . . . , a2L ∈ {1, 2, . . . , r}

is bounded from above as follows.

∣∣∣cum
(
φ̂a1a2(f1), . . . , φ̂a2L−1a2L(fL)

)∣∣∣ ≤ Q · (nbn)−(L−1), (3.18)

where the constant Q does not depend on f1, . . . , fL.

Proof of Lemma 3.3. cum(φ̂a1a2(f1), φ̂a3a4(f2), . . . , φ̂a2L−1a2L(fL)) can be written as

cum(φ̂a1a2(f1), φ̂a3a4(f2), . . . , φ̂a2L−1a2L(fL))

=
1

(nρn)L

n∑

s1=1

n∑

s2=1

. . .

n∑

s2L−1=1

n∑

s2L=1

K(bn(s1 − s2)) . . . K(bn(s2L−1 − s2L))e−
i2πf1(s1−s2)

ρn

× · · · × e
− i2πfL(s2L−1−s2L)

ρn cum

(
Xa1

(
s1

ρn

)
Xa2

(
s2

ρn

)
, . . . , Xa2L−1

(
s2L−1

ρn

)
Xa2L

(
s2L

ρn

))
.

(3.19)
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It follows that

|cum(φ̂a1a2(f1), φ̂a3a4(f2), . . . , φ̂a2L−1a2L(fL))|

≤ 1
(nρn)L

n∑

s1=1

n∑

s2=1

. . .
n∑

s2L−1=1

n∑

s2L=1

|K(bn(s1 − s2)) . . . K(bn(s2L−1 − s2L))|

×
∣∣∣∣cum

(
Xa1

(
s1

ρn

)
Xa2

(
s2

ρn

)
, . . . , Xa2L−1

(
s2L−1

ρn

)
Xa2L

(
s2L

ρn

))∣∣∣∣ .

Now,

cum

(
Xa1

(
s1

ρn

)
Xa2

(
s2

ρn

)
, . . . , Xa2L−1

(
s2L−1

ρn

)
Xa2L

(
s2L

ρn

))

=
∑
ν

Qaj11
aj12

...aj1k1

(
sj11 − s′1

ρn
, . . . ,

sj1,k1−1
− s′1

ρn

)
× · · ·

×QajP1
ajP2

...ajPkP

(
sjP1 − s′P

ρn
, . . . ,

sjP,kP−1
− s′P

ρn

)
,

where the summation is over all indecomposable (Brillinger, 2001; Leonov and Shiryayev,

1959) partitions ν = (ν1, . . . , νP ), such that νϑ = (jϑ1, . . . , jϑkϑ
), ϑ = 1, . . . , P , of the

table
1 2

3 4
...

...

2L-1 2L

and s′ϑ = sjϑkϑ
, ϑ = 1, . . . , P . Since the partition ν is indecomposable, we have

sjϑl
− s′ϑ 6= s2m − s2m−1

for l = 1, . . . , kϑ; ϑ = 1, . . . , P ; m = 1, . . . , L.

Define

ujϑl
= sjϑl

− s′ϑ; l = 1, . . . , kϑ; ϑ = 1, . . . , P.

Note that ujϑkϑ
= 0 for ϑ = 1, . . . , P . Then the joint cumulant of (φ̂a1a2(f1), φ̂a3a4(f2),

. . ., φ̂a2L−1a2L(fL)) given by (3.19) is absolutely bounded by
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1
(nρn)L

∑
ν

n∑

s′1=1

n−s′1∑

uj11
=−(s′1−1)

. . .

n−s′1∑

uj1,k1−1
=−(s′1−1)

. . .

n∑

s′P =1

n−s′P∑

ujP1
=−(s′P−1)

. . .

n−s′P∑

ujP,kP−1
=−(s′P−1)

∣∣∣ K[bn(u1 + s′ϑ1
− u2 − s′ϑ2

)]× · · · ×K[bn(u2L−1 + s′ϑ2L−1
− u2L − s′ϑ2L

)]
∣∣∣

×
∣∣∣∣Qaj11

aj12
...aj1k1

(
uj11

ρn
, . . . ,

uj1,k1−1

ρn

)
× · · · ×QajP1

ajP2
...ajPkP

(
ujP1

ρn
, . . . ,

ujP,kP−1

ρn

)∣∣∣∣ ,

(3.20)

where ϑm is that member of the set {1, 2, . . . , P} which satisfies sm ∈ νϑm for m =

1, . . . , L.

We will now show that the set A = {s′ϑ1
− s′ϑ2

, . . . , s′ϑ2L−1
− s′ϑ2L

} has P − 1 linearly

independent elements. Note that the set A consists of differences of pairs of elements

of the set {s′1, s′2, . . . , s′P }. So the set A can have at most P − 1 linearly independent

differences. Suppose that the set A has exactly P − j linearly independent differences

for some j ≥ 1. Denote the P − j independent differences of the set A by

A1 =
{
s′ϑ2k1−1

−s′ϑ2k1
, s′ϑ2k2−1

−s′ϑ2k2
, . . . , s′ϑ2kP−j−1

−s′ϑ2kP−j

}
,

where k1, . . . , kP−j ∈ {1, 2, . . . , L}. Let, if possible, j > 1, and consider a difference

s′l1 − s′l2 for l1, l2 ∈ {1, 2, . . . , P} which is linearly independent of the elements of the

set A1. Since the partition ν is indecomposable, the sets νl1 and νl2 communicate

(Leonov and Shiryayev, 1959). Therefore, there exists an index set {α1, α2, . . . , αr}
with r ≥ 2, which is a proper subset of {1, 2, . . . , P}, such that α1 = l1, αr = l2 and

the pairs (να1 , να2), (να2 , να3), . . . , (ναr−1 , ναr) are hook (Leonov and Shiryayev, 1959).

Consequently, there exist indices j1, . . . , jr−1 ∈ {1, . . . , L} such that for m = 1, . . . , r−1,

one of the points s2jm−1 and s2jm belongs to ναm and the other belongs to ναm+1 . It

follows that for m = 1, . . . , r − 1, (s′ϑ2jm−1
− s′ϑ2jm

) is in A, and hence, they can be

written as linear combinations of the members of A1. Note that for m = 1, . . . , r − 1,

(s′αm−1
− s′αm

) is equal to either (s′ϑ2jm−1
− s′ϑ2jm

) or −(s′ϑ2jm−1
− s′ϑ2jm

). Thus,

s′l1 − s′l2 = s′α1
− s′αr

= (s′α1
− s′α2

) + (s′α2
− s′α3

) + · · ·+ (s′αr−1
− s′αr

)

can be written as a linear combination of the members of A1. This fact contradicts the
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assumption that s′l1−s′l2 is linearly independent of the elements of the set A1. Therefore,

j cannot be larger than 1. This proves that the set A cannot contain fewer than P − 1

linearly independent differences.

Consider the P − 1 linearly independent elements of the set A1, where j = 1, and

define

v1 = u2k1−1 + s′ϑ2k1−1
− u2k1 − s′ϑ2k1

,

...

vP−1 = u2kP−1−1 + s′ϑ2kP−1−1
− u2kP−1

− s′ϑ2kP−1
.

By using the above transformation, and by replacing the P sums over indices s′1, . . . , s
′
P

by P − 1 sums overs the indices v1, . . . , vP−1, we find that the joint cumulant given in

(3.20) is bounded from above by

1
nL−1ρL

n

∑
ν

ML−P+1
n−1∑

uj11
=−(n−1)

. . .
n−1∑

uj1,k1−1
=−(n−1)

. . .
n−1∑

ujP1
=−(n−1)

. . .
n−1∑

ujP,kP−1
=−(n−1)

3n∑

v1=−3n

. . .

3n∑

vP−1=−3n

|K(bnv1)| × · · · × |K(bnvP−1)|
∣∣∣∣Qaj11

aj12
...aj1k1

(
uj11

ρn
, . . . ,

uj1,k1−1

ρn

)∣∣∣∣× · · ·

×
∣∣∣∣QajP1

ajP2
...ajPkP

(
ujP1

ρn
, . . . ,

ujP,kP−1

ρn

)∣∣∣∣ .
(3.21)

The above simplification has been made by taking into account the upper bound for

L − P + 1 copies of K(·) and conservative estimates of the ranges of summation of

v1, . . . , vP−1. Now, one can rewrite the expression in (3.21) as follows:

∑
ν

ML−P+1 (ρnbn)L−P

(nbn)L−1

[
3n∑

v1=−3n

K(bnv1)bn

]
× · · · ×




3n∑

vP−1=−3n

K(bnvP−1)bn




×
{

1
ρk1−1

n

n−1∑

uj11
=−(n−1)

. . .
n−1∑

uj1,k1−1
=−(n−1)

∣∣∣∣Qaj11
aj12

...aj1k1

(
uj11

ρn
, . . . ,

uj1,k1−1

ρn

)∣∣∣∣
}
× · · ·

×
{

1

ρkP−1
n

n−1∑

ujP1
=−(n−1)

. . .
n−1∑

ujP,kP−1
=−(n−1)

∣∣∣∣QajP1
ajP2

...ajPkP

(
ujP1

ρn
, . . . ,

ujP,kP−1

ρn

)∣∣∣∣
}

.

(3.22)
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Consider the simple function Sn(·) defined over R by

Sn(x) =
3n∑

v1=−3n

K(bnv1)1(bnv1−1,bnv1](x).

Note that
∫∞
−∞ Sn(x)dx =

∑3n
v1=−3n K(bnv1)bn, and from Assumption 3.2 we have the

dominance Sn(x) ≤ K1(x). By applying the DCT, we have

3n∑

v1=−3n

K(bnv1)bn →
∫ ∞

−∞
|K(x)|dx.

This fact establishes the convergence of the sums over v1, . . . , vP−1.

Consider the simple function Tn(·) defined over Rk1−1 by

Tn(x1, x2, . . . , xk1−1) =
n−1∑

uj11
=−(n−1)

. . .
n−1∑

uj1,k1−1
=−(n−1)

Qaj11
aj12

...aj1k1

(
uj11

ρn
, . . . ,

uj1,k1−1

ρn

)

× 1(
uj11

−1

ρn
,
uj11
ρn

](x1) . . . 1( uj1,k1−1
−1

ρn
,
uj1,k1−1

ρn

](xk1−1).

Note that
∫ ∞

−∞
. . .

∫ ∞

−∞
Tn(x1, . . . , xk1−1)dx1 . . . dxk1−1

=
1

ρk1−1
n

n−1∑

uj11
=−(n−1)

. . .
n−1∑

uj1,k1−1
=−(n−1)

∣∣∣∣Qaj11
aj12

...aj1k1

(
uj11

ρn
, . . . ,

uj1,k1−1

ρn

)∣∣∣∣ .

From Assumption 3.5A, we have that the function Tn(·) is bounded by an integrable

function. Thus, by applying the DCT, we have

lim
n→∞

1
ρk1−1

n

n−1∑

uj11
=−(n−1)

. . .
n−1∑

uj1,k1−1
=−(n−1)

∣∣∣∣Qaj11
aj12

...aj1k1

(
uj11

ρn
, . . . ,

uj1,k1−1

ρn

)∣∣∣∣

=
∫ ∞

−∞
· · ·

∫ ∞

−∞

∣∣∣Qaj11
aj12

...aj1k1
(x1, . . . , xk1−1)

∣∣∣ dx1 . . . dxk1−1.

Likewise, we have the convergence for the remaining P − 1 sets of summations. By

using these above convergence results, the upper bound of (3.20) given in (3.22) can be

written as
∑
ν

(ρnbn)L−P

(nbn)L−1
dν ,



Chapter 3: Uniformly sampled non-bandlimited processes: Point and interval
estimation of cross-spectra 72

where dν are appropriate constants. The summation is over the finite number of inde-

composable partitions, and the worst-case value of the partition size P is L. Therefore,

the upper bound is O
(
(nbn)−(L−1)

)
. This completes the proof. 2

Proof of Theorem 3.3. Note that the first moment of the random vector on the

left hand side of (3.3) is zero and the second moment converges in accordance with

Theorem 3.2. Further,

cum(A1(Y1−B1), A2(Y2−B2), . . . , AJ(YJ−BJ)) = A1A2 · · ·AJ × cum(Y1, Y2, . . . , YJ),

for any set of constants A1, . . . , AJ , B1, . . . , BJ . From the above fact and Lemma 3.3, for

all k > 2, the absolute value of the kth order joint cumulant of the random vector on the

left hand side of (3.3) is bounded from above by an O((nbn)k/2−k+1) term. According

to Assumption 3.3, this upper bound tends to 0 as n tends to infinity. This completes

the proof. 2

Proof of Theorem 3.4. The result can be proved along the lines of the proof of

Theorem 2.3 given in Section 2.4. 2

Proof of Theorem 3.5. The weak convergence of the first term on the right hand side

of (3.4) follows from Theorem 3.3. On the other hand, the second term can be written,

in view of Theorem 3.4, as

√
nbn

(
E[φ̂a1a2(f1)]− φa1a2(f1)

)
=

√
nbn

(
O ((ρnbn)q) + O

(ρn

n

)
+ O

(
1
ρp

n

))
.

(3.23)

Under Assumption 3.3,

lim
n→∞

√
nbnρq

nbq
n = 0 ⇒ lim

n→∞
√

nbn
ρn

n
= 0.

Therefore, under Assumptions 3.3 and 3.4A, the right hand side of (3.23) goes to zero

as n →∞. This completes the proof. 2
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Proof of Theorem 3.6. Note that under Assumption 3.4A, we have

lim
n→∞

√
nbn

1
ρp

n
= 0 (3.24)

and

lim
n→∞

√
nbnρq

nbq
n = 0 ⇔ lim

n→∞ (nbn)
1
2q bnρn = 0

⇔ lim
n→∞ (nbn)1+ 1

2q
ρn

n
= 0 ⇔ lim

n→∞
√

nbn

(ρn

n

) q
1+2q =0. (3.25)

From (3.24) and (3.25), we have

1√
nbn

= o

((ρn

n

) q
1+2q

)
, (3.26)

and
1√
nbn

= o

((
1
ρn

)p)
. (3.27)

The right hand sides of (3.26) and (3.27) are increasing and decreasing functions, re-

spectively, of ρn. Assumption 3.3, together with (3.24), indicate that ρn goes to infinity

as n goes to infinity. The rate given by (3.26) will be unduly slow if ρn goes to infinity

too slowly, while the rate given by (3.27) will be unduly slow if ρn goes to infinity too

fast. At either event, 1/
√

nbn will have a sub-optimal rate of convergence to zero. It

follows that 1/
√

nbn has the fastest convergence to zero if

O

((
n

ρn

) q
1+2q

)
= O (ρp

n) .

This condition requires that ρn = O
(
n

q
p+q+2pq

)
. For this rate of ρn, (3.26) implies that

bn = o
(
n
− p+q

p+q+2pq

)
and

1√
nbn

= o
(
n
− pq

p+q+2pq

)
.

This completes the proof. 2

3.5 Simulation study

With a view to investigating the applicability of the asymptotic results given in Sec-

tion 3.2 and 3.3 to finite sample size, we consider the bivariate continuous time linear
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process




X1(t)

X2(t)


 =




∫ t
−∞ h1(t− u)Y1(u)du+

∫ t
−∞ h2(t− u)Y2(u)du

∫ t
−∞ h3(t− u)Y1(u)du+

∫ t
−∞ h4(t− u)Y3(u)du


 , (3.28)

where Yj(u), j = 1, 2, 3 are independent continuous time white noise with variance σ2

and hj(u) = βje
−αju for j ∈ {1, 2, 3, 4}. The elements of the spectral density matrix


 φ11(f) φ12(f)

φ∗12(f) φ22(f)




are defined as follows (Hoel et al., 1972):

φ11(f) =
1
σ2
· β2

1

α2
1 + (2πf)2

+
1
σ2
· β2

2

α2
2 + (2πf)2

,

φ22(f) =
1
σ2
· β2

3

α2
3 + (2πf)2

+
1
σ2
· β2

4

α2
4 + (2πf)2

,

Re(φ12(f)) =
1
σ2
· β1β3(α1α3 + (2πf)2)
(α2

1 + (2πf)2)(α2
3 + (2πf)2)

,

Im(φ12(f)) =
1
σ2
· β1β3(α3 − α1)2πf

(α2
1 + (2πf)2)(α2

3 + (2πf)2)
.

The procedure for drawing samples of this bivariate process is given in Section A.1

of the Appendix. We simulate this bivariate process with the choices β1 = 1, β2 = 1,

β3 = 2, β4 = 2
5 , α1 = β1 ·

√
3
2 , α2 = β2 ·

√
3, α3 = β3 ·

√
3, α4 = β4 ·

√
3 and σ = 0.5.

Note that for this process, Assumption 3.1A holds with q ≥ 1 and Assumption 3.1B

holds with p ≤ 2. For the purpose of estimation, we make these assumptions with p = 2

and q = 2. In accordance with this choice of q, we use the second order kernel function

K(x) =
1
2
{1 + cos(πx)}1[−1,1](x).

We also use the rates ρn = 5 · n 1
6 and bn = 1

4n−
1
3
−δ where δ = 1

6 .

We estimate the bivariate spectrum matrix for frequencies in the range [0, 2] at

intervals of .01 (i.e., 201 uniformly spaced grid points). We subsequently compute the
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normalized statistics

T1(f) =
√

nbn


 φ̂11(f)−φ11(f)√

2{1 + 1{0}(f)}Bφ̂2
11(f)


 ,

T2(f) =
√

nbn


 φ̂22(f)−φ22(f)√

2{1 + 1{0}(f)}Bφ̂2
22(f)


 ,

T3(f) =
√

nbn


 Re(φ̂12(f))−Re(φ12(f))√

{1+1{0}(f)}B[φ̂11(f)φ̂22(f)+{Re(φ̂12(f))}2−{Im(φ̂12(f))}2]


 ,

T4(f) =
√

nbn


 Im(φ̂12(f))−Im(φ12(f))√

B[φ̂11(f)φ̂22(f)−{Re(φ̂12(f))}2+{Im(φ̂12(f))}2]


 · [1−1{0}(f)

]
,

in accordance with Theorem 3.2. (According to Theorem 3.5, the asymptotic distribu-

tion of each of these four statistics is standard normal.) This procedure is repeated for

500 simulation runs. By regrading the values of the above statistics for the different

simulation runs as four data sets of size 500 each, we calculate the Kolmogorov-Smirnov

test statistic (Shorak and Wellner, 1986) for these data sets, and the corresponding

p-value. This procedure is repeated for the 301 frequency values mentioned above. The

percentage of p-values (across 201 frequency values) exceeding the number 0.05 are re-

ported in Table 1, for sample sizes n = 100, 1000, 10000 and 100000. The table shows

that for each statistic, the percentage approaches the ideal value of 95 very slowly as n

increases.

sample observed percentage

size (n) φ11 φ22 Re(φ12) Im(φ12)

100 0.0 % 0.0 % 0.0 % 0.5 %

1000 10.9 % 10.9 % 16.4 % 27.9 %

10000 80.1 % 71.1 % 80.1 % 87.1 %

100000 83.1 % 87.7 % 92.0 % 89.1 %

Table 3.1. Observed percentage of frequencies (in the range 0 to 2) for which p-values of the

Kolmogorov-Smirnov statistics for testing normality of φ11, φ22, Re(φ12) and Im(φ12) are greater

than 0.05 (ideal percentage is 95%).
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Figure 3.1: Empirical coverage probability (based on 500 simulation runs) of pointwise confi-
dence intervals of φ11, φ22, Re(φ12) and Im(φ12) for sample sizes 100, 1000, 10000 and 100000.

We now turn to computation of confidence limits of the power spectral density.

For each frequency value, we compute the 95% asymptotic confidence intervals of φ11,

φ22, Re(φ12) and Im(φ12) from the statistics T1(f), T2(f), T3(f) and T4(f), assuming

that the latter have the standard normal distribution (see (3.5), (3.9) and (3.10) for

the explicit forms of the confidence intervals). Subsequently, we compute the fraction

of times (out of 500 simulation runs) the confidence intervals contain the true value

of the function. These percentages are plotted against the frequency, for sample sizes

n = 100, 1000, 10000 and 100000, in Figure 3.1. It is seen that the observed fraction

approaches the ideal coverage probability (0.95) for larger sample sizes. Since there

is a discontinuity of the asymptotic variance function at the point f = 0, while the

estimated spectrum is constrained to be continuous, some anomalous behaviour in the

neighbourhood of the the point f = 0 is expected. This results in substantially lower

values of the empirical coverage probability in this region. However, this region of

anomaly is observed to shrink as the sample size increases. It is interesting to note that

the empirical coverage probability is reasonably close to the ideal coverage probability
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for most frequency values when the sample size as small as 1000, even though Table 3.1

indicates that the asymptotic distribution is not applicable at this sample size.

3.6 Summary and discussion

In this chapter, we have constructed asymptotic confidence intervals of spectral and

cross spectral densities on the basis of uniformly sampled data, using arguments that

allow the sampling rate to go to infinity at a suitable rate as the sample size goes to

infinity. The simulation results of section 3.5 indicates that these confidence intervals

have adequate coverage probability at moderate sample size.

The confidence intervals presented here are the first ones based on uniform sam-

pling, that are applicable to non-bandlimited processes. No parametric model has been

assumed for the power spectral density or the underlying probability distribution of the

samples. The method presented here is computationally simple (the order of compu-

tation being the same as that for the computation of the spectrum estimate), as no

resampling is needed. Another advantage is that it produces confidence intervals with

width shrinking to zero as the sample size goes to infinity.
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Chapter 4

Stochastically sampled processes:

Identifiability under inter-sample

spacing constraint

4.1 Introduction

In Chapters 2 and 3, we used a special asymptotic argument in connection with point

and interval estimation of a possibly non-bandlimited power spectral density, where we

allowed the uniform sampling rate to go to infinity at a suitable rate as the sample

size goes to infinity. However these asymptotic arguments do not hold when there is a

practical constraint on the spacing in between successive samples. This constraint may

occur due to technological or economic limitations.

In the presence of a constraint on minimum separation between successive samples,

the smoothed periodogram cannot be a consistent estimator of the underlying power

spectral density, if the latter is possibly non-bandlimited. However, this fact is not due

to a defect of the estimator, this is rather due to a limitation of the data. Let d be the

minimum allowable separation between successive samples. Then, the fastest feasible

uniform sampling rate is 1/d. The Nyquist theorem implies that the spectral density of a

continuous time, mean square continuous, stationary stochastic process can be identified

uniquely from the uniformly sampled process when bandwidth of the underlying process

is known to be less than 1/2d. It can be seen from (1.7) that one can construct a class

of continuous time processes, which would lead to uniformly sampled versions having a

79
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common wrapped-around power spectral density (Shapiro and Silverman, 1960). Thus,

the problem of aliasing is essentially that of non-identifiability of the underlying process

from the sampled process.

Given the limitation of uniform sampling in the present situation, one would won-

der whether it could be overcome through stochastic sampling. The issue of alias-

ing/identifiabiity has also been explored in that context, and some formalizations have

been made (Shapiro and Silverman, 1960; Beutler, 1970; Masry, 1978a). Masry (1978b)

proved that under certain conditions, the estimator (1.14) based on Poisson sampling

is consistent for the underlying power spectral density, regardless of whether it is ban-

dlimited, for any average sampling rate. This property implies that one can estimate

bandlimited spectra consistently, even if the sampling is done at a sub-Nyquist aver-

age rate. Such estimators show that deficiencies in sampling rate can be made up by

large sample size, provided one is prepared to sample at irregular intervals. In view

of this fact, one might expect that even when there is a constraint on the minimum

separation between successive samples, one can judiciously use non-uniform sampling

to consistently estimate spectra with much larger bandwidth than what can be achieved

through uniform sampling.

It is important to note that a small average sampling rate does not mean that any

two successive samples are far apart. In the case of Poisson sampling with any average

sampling rate, it can be seen that as the sample size goes to infinity, there would be a

large number of pairs of consecutive samples which are nearer to each other than any

specified threshold. Thus, in order to use Poisson sampling with any average sampling

rate, sometimes one has to sample the process very fast. Many other non-uniform

and alias-free sampling schemes also have this requirement. All these schemes become

infeasible if there is a hard limit on the minimum separation between successive samples.

Books on sampling (Higgins, 1996; Benedetto and Ferreira, 2001) give a clear pic-

ture of the limitations of uniform sampling in respect of a constraint on the minimum

separation between successive samples. However, suitability of non-uniform sampling

schemes in the presence of this constraint has not been studied so far.

In this chapter, we consider the problem of identification of the power spectral den-

sity of a stationary stochastic process through non-uniform sampling, under a constraint
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on the minimum separation between successive samples. In Section 4.2, we describe the

underlying set-up and discuss the notions of alias-free sampling provided by Shapiro

and Silverman (1960) as well as by Masry (1978a). In Section 4.3, we consider the class

of all power spectra, and show that under the above constraint, no stationary point

process sampling scheme is alias-free for this class. Subsequently, we study the possi-

bility of alias-free sampling for estimation of spectra that are known to be confined to

a certain bandwidth. The proofs of all the results of this section is given in Section 4.4.

In Section 4.5, we report the results of a simulation study of the performance of the

estimator (1.14) based on Poisson sampling, in the presence of the above constraint.

We summarize the findings and provide some concluding remarks in Section 4.6.

4.2 Existing notions of alias-free stochastic sampling

As in Chapter 1, let X = {X(t), −∞ < t < ∞} be a real, mean square continuous

and wide sense stationary stochastic process with mean zero, covariance function C(·)
and spectral distribution function Φ(·). If Φ(·) has a density, we denote it by φ(·). Let

τ = {tj , j = . . . ,−2,−1, 0, 1, 2, . . .} be a sequence of real-valued, stochastic sampling

times, i.e., a point process on the real line.

Shapiro and Silverman (1960) introduced a notion of alias-free sampling. Beutler

(1970) further formalized this definition of alias-free sampling for different classes of

power spectra. This notion of alias-free sampling is based on the following assumptions

about the sampling process.

Assumption 4.1. The process τ is independent of X.

Assumption 4.2. The sequence of sampling times τ is such that the probability distri-

bution of (tl+m − tl) does not depend on l.

Under a sampling scheme that satisfies Assumptions 4.1 and 4.2, the sampled process

Xτ = {X(t), t ∈ τ} is wide sense stationary. Denote the covariance sequence of the

sampled process Xτ by c = {. . . , c−2, c−1, c0, c1, c2, . . .}, where

cm = E[X(tl+m)X(tl)], for l, m integers,
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and the expectation is taken without conditioning on the sampling times. Beutler’s

definition of alias-free sampling, based on Shapiro and Silverman’s earlier idea, is as

follows.

Definition 4.1. The sampling process τ satisfying Assumptions 4.1 and 4.2 is alias-

free relative to the class of spectra S if no two random processes with different spectra

belonging to S yield the same covariance sequence (c) of the sampled process.

Shapiro and Silverman (1960) had considered the special case where the sampling

times constitute a renewal process, and S is the class of all spectra with integrable and

square integrable densities. They referred to this scheme as additive random sampling,

and showed that it is alias-free, provided the characteristic function of the inter-arrival

distribution takes no value more than once on the real line. In particular, Poisson

sampling is alias-free for the class of spectra S.

The above definition has the drawback that it does not make use of the information

contained in the sampling times. If one wishes to reconstruct φ(·) using a sampling

scheme that is alias-free according to the above definition, then that would be done on

the basis of the sequence c only. Beutler (1970) gave a procedure for this reconstruction,

and indicated that this procedure may be used to estimate φ(·) from estimates of c.

However, as Masry (1978a) pointed out, consistency of any estimator obtained from

this procedure has not been studied.

From all these considerations, this approach appears to be rather restrictive. In

practice, one would expect to use the information contained not only in the sampled

values, but also in the sampling times, in order to estimate the power spectral density.

In order to take into account the sampling times, Masry (1978a) gave an alternative

definition of alias-free sampling. This definition requires a property of point processes,

which we describe below.

Let B be the Borel σ-field on the real line. Any point process τ = {tj , j =

. . . ,−2,−1, 0, 1, 2, . . .} on the real line can be represented in terms of a counting process

{N(B), B ∈ B} defined as

N(B) =
∞∑

j=−∞
1B(tj). (4.1)
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A point process τ is said to be orderly if P {N(0, x] > 1} = o(x) as x ↓ 0. The point

process τ is said to be second order stationary if its second order moments exist and

E[N(A+t)] = E[N(A)] for all A ∈ B and −∞ < t < ∞, (4.2)

Cov[N(A+t), N(B+t)] = Cov[N(A), N(B)] for all A,B ∈ B and −∞ < t < ∞, (4.3)

where A + t denotes the set {x : x− t ∈ A}. By using (4.2) and additivity property of

(4.1), it can be easily shown that

E[N(A)] = E [N(0, 1]]×
∫ ∞

−∞
1A(t)dt.

The number E [N(0, 1]] is called the mean intensity of the point process. By using (4.3),

it can be shown that

Cov[N(A), N(B)] =
∫ ∞

−∞

∫ ∞

−∞
1A×B(t, t + u)µτ (du)dt,

where µτ is a σ-finite signed measure also known as the reduced covariance measure of

the point process τ (for details see Daley and Vere-Jones (2002)).

Assumption 4.3. The process τ constitutes a second-order stationary orderly point

process on the real line.

Let β be the mean intensity and µτ be the reduced covariance measure of the pro-

cess τ . Consider the compound process {Z(B), B ∈ B} defined by

Z(B) =
∑

tj∈B

X(tj).

The process Z = {Z(B), B ∈ B} is second order stationary (i.e., the first and second

moments of Z(B + t), for any real number t, does not depend of t). Let µz be the

covariance measure of the process Z. It can be shown that this measure is given by

µz(B) =
∫

B
C(u)[β2du + µτ (du)]. (4.4)

Masry’s notion of alias-free sampling is as follows.
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Definition 4.2. The sampling process τ satisfying Assumptions 4.1 and 4.3 is alias-

free relative to the class of spectra S if no two random processes with different spectra

belonging to S yield the same covariance measure (µz) of the compound process.

Note that this definition makes use of the information contained in the sampling

times, as the covariance measure µz involves the mean intensity β as well as the reduced

covariance measure µτ of the sampling process. It has been shown that, according to

Definition 4.2, Poisson sampling is alias-free for the class of all spectra having integrable

and square integrable densities (Masry, 1978a).

4.3 Sampling under constraint of minimum inter-sample

spacing

As mentioned in Section 4.1, the focus of the present work is on a sampling process τ

which satisfies the following constraint.

Assumption 4.4. The time separation between two successive sample points is at least

d (i.e., tm+1 − tm ≥ d for any index m) for some fixed d > 0.

In this section, we investigate whether a sampling scheme satisfying this constraint

can be alias-free.

4.3.1 General spectra

We present some negative results in the case when S is the class of all spectra – band-

limited or otherwise.

Theorem 4.1. No sampling point process satisfying Assumptions 4.1, 4.2 and 4.4 is

alias-free according to Definition 4.1, for the class of all spectra.

Theorem 4.2. No sampling point process satisfying Assumptions 4.1, 4.3 and 4.4 is

alias-free according to Definition 4.2, for the class of all spectra.

We prove these theorems in the Section 4.4 by constructing counter-examples, based
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on the following class of power spectral densities:

A =
{

φ(·) :
∫ ∞

−∞
φ(f)ei2πftdf = 0 for |t| > d

}
. (4.5)

The members of this class correspond to covariance functions supported over the interval

[−d, d]. For example, a member of this class is the power spectral density defined by

φa(f) =
2
a
· 1− cos(2πfa)

(2πf)2
, −∞ < f < ∞,

for any arbitrary positive a ∈ (0, d]. This density corresponds to the covariance function

Ca(t) =





1− |t|
a for |t| ≤ a,

0 for |t| > a.

Some other members of A can be constructed by convolving φa(·) with an arbitrary

power spectral density. We show in the Section 4.4 that if X1, X2 and X3 are indepen-

dent mean square continuous stochastic processes such that X2 and X3 have different

spectra belonging to A and have the same variance, then the spectra of X1 + X2 and

X1 + X3 cannot be distinguished from the sequence c or the measure µz, leading to

aliasing according to Definitions 4.1 and 4.2.

One can easily construct two integrable and square integrable power spectral densi-

ties that are indistinguishable from c or µz. Therefore, the statements of Theorems 4.1

and 4.2 also hold in respect of all spectra having integrable and square integrable den-

sities (rather than all spectra). Thus, the alias-free property of Poisson sampling men-

tioned in Section 4.2 become inapplicable, once the inter-sample spacings are adjusted

in accordance with Assumption 4.4.

These two theorems show that, under the constraint of a minimum inter-sample

spacing, any point process sampling scheme would be inadequate for the identification

of a completely unrestricted power spectral density – according to the existing notions of

alias-free sampling. If the power spectral density of the original continuous time process

is not identifiable from the sequence c or the covariance measure µz, then one cannot

expect to consistently estimate the power spectral density on the basis of estimates of

either of these.
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It is well known that estimators based on uniformly spaced samples, irrespective of

the sampling rate, also suffer from the limitation of non-identifiability. In fact, it is

this limitation of uniform sampling that has been historically used as one of the major

arguments in favor of non-uniform sampling schemes. The above theorems show that

the same difficulty applies to practical non-uniform sampling schemes as well.

4.3.2 Bandlimited spectra

In the case of uniform sampling, it is well known that a bandlimited process would not

lead to aliasing provided that the sampling is done at the Nyquist rate or faster. On

the other hand, uniform sampling at any fixed rate would be free from the problem

of aliasing if the spectrum of the continuous time process is known to be confined to

an appropriate band. This fact, together with the limitation of point process sampling

in the case of non-bandlimited spectra, gives rise to the question: Can point process

sampling under Assumption 4.4 be alias-free for the class of bandlimited spectra? If

so, it would be interesting to compare the maximum allowable spectral bandwidths for

alias-free sampling, arising from uniform and point process sampling schemes under

Assumption 4.4.

It turns out that alias-free sampling under Assumption 4.4 is possible for an im-

portant class of stochastic sampling schemes, namely, renewal process sampling. This

is a special case of point process sampling, which has received much attention from

researchers (Shapiro and Silverman, 1960; Beutler, 1970; Masry, 1978a; Tarczynski and

Allay, 2004). Poisson sampling is a further special case of renewal process sampling.

However, it is an ideal sampling scheme (see discussion in page 80), in contrast with

implementable renewal process sampling schemes that would satisfy Assumption 4.4.

Note that the fastest possible rate of uniform sampling under Assumption 4.4 is

1/d. Uniform sampling at this rate is alias-free for the class of spectra supported on

[−1/2d, 1/2d]. This frequency interval would be the benchmark for the present study.

First, we present a general result that would be useful in answering the foregoing

question, as far as Definition 4.1 of alias-free sampling is concerned.
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Figure 4.1: Graph of η(f) on the complex plane for the left truncated exponential distribution,
with mean 2d and truncation point d, for −1/2d < f ≤ 1/2d.

Theorem 4.3. A renewal process sampling scheme satisfying Assumptions 4.1 and 4.2,

and having characteristic function of the inter-sample spacing denoted by η, is alias-free

relative to a class of spectra supported on the closed and finite interval I according to

Definition 4.1 if and only if the graph of η(f) on the complex plane, for f ∈ I, does not

divide the complex plane.1

Theorem 4.3 relates the alias-free property of a renewal process sampling scheme to

the geometry of the characteristic function of the inter-sample spacing. It may be noted

that the distribution of d+X, where d is fixed and X has the gamma distribution with

any combination of parameters, does not satisfy the necessary and sufficient condition

given in Theorem 4.3 for I = [−1/2d, 1/2d]. It follows that the corresponding renewal

process sampling schemes, including the case of inter-sample spacing having a left-

truncated exponential distribution, are not alias-free according to Definition 4.1, relative

to a class of spectra limited to the band [−1/2d, 1/2d]. The graph of η(f) for the left-

truncated exponential distribution with mean 2d and truncation point d, for −1/2d ≤
f ≤ 1/2d, is shown in Figure 4.1. For such sampling schemes, aliasing can be avoided

only if the continuous time process is confined to a bandwidth that is even smaller than

1/2d, the maximum allowable bandwidth in the case of uniform sampling.

However, there are some other renewal process sampling schemes that satisfy As-
1A graph does not divide the complex plane if any two points on the complex plane can be connected

by a continuous path, which does not have a point of intersection with the graph (Lavrentieff, 1936).
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Figure 4.2: Graph of η(f) on the complex plane for the example given in the proof of Theo-
rem 4.4, for −1.1/2d < f ≤ 1.1/2d.

sumption 4.4 and are alias-free for the class of spectra limited to a band larger than

[−1/2d, 1/2d], as the next theorem shows.

Theorem 4.4. There exists a closed and finite interval I, which contains the interval

[−1/2d, 1/2d], and a renewal process sampling scheme satisfying Assumptions 4.1, 4.3

and 4.4 which is alias-free relative to the class of spectra supported on I, according to

Definition 4.1.

The proof of Theorem 4.4, given in the Section 4.4, invokes an example, for which I

is more than 10% larger than the interval [−1/2d, 1/2d], while the average inter-sample

spacing is about 35% more than the minimum allowable spacing (d). The graph of

η(f) for this inter-sample spacing distribution, for −1.1/2d ≤ f ≤ 1.1/2d, is shown in

Figure 4.2.

We now turn to Definition 4.2. Since this notion of alias-free sampling is weaker

than that of Definition 4.1, one can expect a stronger result.

Theorem 4.5. Any renewal process sampling scheme, satisfying Assumptions 4.1, 4.3

and 4.4 and the further assumption that the inter-sample spacing distribution has a

density that is positive over an interval, is alias-free according to Definition 4.2, for the

class of spectra limited to the band [−f0, f0] for every finite f0 > 0.

Theorem 4.5 shows that, under the constraint of a minimum allowable separation
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between successive samples, renewal process sampling is alias-free (according to Defi-

nition 4.2) for a wider range of power spectra than uniform sampling. It is interesting

to note that sampling schemes following the assumptions of Theorem 4.5 are alias-free

according to Definition 4.2 when the spectral density of the underlying continuous-time

process is known to be confined to any finite bandwidth (no matter how large), but

according to Theorem 4.2, these are not alias-free when the process is non-bandlimited.

It transpires from the foregoing discussion that there are contrasting scopes of alias-

free renewal process sampling under the constraint of a minimum allowable inter-sample

spacing, according to Definitions 4.1 and 4.2. The limited scope of alias-free sampling

in the case of Definition 4.1 stems from the fact that, under that notion, one aims to

identify spectra solely from the sequence c, which is rather restrictive.

4.4 Proofs

Proof of Theorem 4.1. Consider independent, zero mean, mean square continuous

stationary stochastic processes X1, X2 and X3, having covariance functions Cj(·), j =

1, 2, 3, respectively, such that C2(0) = C3(0) and X2 and X3 have different spectral

densities belonging to the class A defined in (4.5). Consider a sampling point process

τ = {tj , j = . . . ,−2,−1, 0, 1, 2, . . .} satisfying the Assumptions 4.1, 4.2 and 4.4. Let the

processes X1+X2 and X1+X3 have spectral distributions Φ12(·) and Φ13(·), respectively,

and covariance sequences of sampled processes c12 = {c12,m, m = . . . ,−2,−1, 0, 1, 2, . . .}
and c13 = {c13,m, m = . . . ,−2,−1, 0, 1, 2, . . .}, respectively. We have

c12,0 = C1(0) + C2(0) = C1(0) + C3(0) = c13,0.

For arbitrary integers l and m, let Fm(x) be the distribution function of (tl+m− tl).

Assumption 4.4 implies that Fm(x) is supported on the interval [|m|d,∞). It follows

that, for m 6= 0,

c12,m =E[X1(tl+m)X1(tl)] + E[X2(tl+m)X2(tl)]

=
∫ ∞

0
C1(u)dFm(u) +

∫ ∞

0
C2(u)dFm(u)
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=
∫ ∞

|m|d
C1(u)dFm(u) +

∫ ∞

|m|d
C2(u)dFm(u)

=
∫ ∞

|m|d
C1(u)dFm(u),

since C2(·) is supported on [−d, d]. Likewise, c13,m is also equal to the last expression.

This completes the proof. 2

Proof of Theorem 4.2. Consider independent, zero mean, mean square continuous

stationary stochastic processes X1, X2 and X3, having covariance functions Cj(·), j =

1, 2, 3, respectively, such that C2(0) = C3(0) and X2 and X3 have different spectral

densities belonging to the class A defined in (4.5). Consider a sampling point process

τ = {tj , j = . . . ,−2,−1, 0, 1, 2, . . .} satisfying the Assumptions 4.1, 4.3 and 4.4, and

having mean intensity β and reduced covariance measure µτ . Let the processes X1 +X2

and X1+X3 have spectral distributions Φ12(·) and Φ13(·), respectively. As in Section 4.2,

consider the compound processes

Z1j =



Z1j(B) =

∑

tk∈B

X1(tk) + Xj(tk), B ∈ B


 , j = 2, 3,

which have covariance measures µz12 and µz13 given by

µz1j (B) =
∫

B
{C1(u) + Cj(u)} [β2du + µτ (du)], j = 2, 3,

respectively.

The reduced covariance measure µτ of the point process τ can be expressed as

µτ (B) = βδ0(B) + β

∫

B
[dS(|u|)− βdu], B ∈ B,

where, for u > 0,

S(u) =
∞∑

m=1

Fm(u),

Fm(u) is the conditional probability

Fm(u) = lim
ε↓0

P
[
N(t, t + u] ≥ m

∣∣ N(t− ε, t] ≥ 1
]
,
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and {N(B), B ∈ B} is the counting process induced by the process τ (Beutler and

Leneman, 1966; Daley and Vere-Jones, 2002). Assumption 4.4 implies that S(u) = 0

for u ∈ [0, d].

It follows from the above representation of µτ that, for each Borel set B, the covari-

ance measures µz12 is given by

µz12(B) =
∫

B
C1(u)[β2du + µτ (du)] +

∫

B∩[−d,d]
C2(u)[β2du + µτ (du)]

=
∫

B
C1(u)[β2du + µτ (du)] + βC2(0)δ0(B ∩ [−d, d]).

Since C2(0) = C3(0), it is clear that the measures µz12 and µz13 agree on all Borel sets.

This completes the proof. 2

Proof of Theorem 4.3. Here, the sampling process τ = {tj , j = . . . ,−2,−1, 0, 1, 2, . . .}
is such that the inter-sample spacing tm+1−tm for different values of m are independent

and identically distributed, say with distribution function F (·).
Let S be the class of spectra supported on the closed and finite interval I. Let X

be a process as defined in the theorem, and have the power spectral distribution Φ(·)
belonging to S. The covariance sequence c of the sampled process is given by

cm = E[X(tl+m)X(tl)] = E
[
E

[
X(tl+m)X(tl)

∣∣ τ
]]

=E [C(tl+m − tl)] = E

[∫

I
ei2πf(tl+m−tl)dΦ(f)

]

=
∫

I
E

(
ei2πf(tl+m−tl)

)
dΦ(f).

The interchange of the integral and the expectation is possible by Fubini’s theorem,

since the power spectral distribution Φ(·) and the probability distribution of tl+m − tl

are both finite. Since the latter distribution is the m-fold convolution of the inter-sample

spacing distribution, we have

cm =
∫

I
[η(f)]m dΦ(f), (4.6)
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where η(·) is the characteristic function of inter-sample spacing distribution, i.e.,

η(f) =
∫ ∞

0
ei2πfydF (y), −∞ < f < ∞.

The sampling scheme τ is alias-free relative to the class of spectra S according to

Definition 4.1, if no two different spectra Φ1 and Φ2 belonging to S produce the same

covariance sequence c. Since the sequence c satisfies c−m = cm, the foregoing condition

is equivalent to the statement:
∫

I
[η(f)]m(dΦ1(f)− dΦ2(f)) = 0 for m = 0, 1, 2, . . . implies that Φ1(·) = Φ2(·).

(4.7)

The above integral with respect to the real variable f can be written as a complex

integral over the contour

Ω = {z : z = η(f), f ∈ I} . (4.8)

Thus, we can conclude that the sampling scheme τ is alias free relative to the class of

spectra S according to Definition 4.1 if and only if

For any signed measure ν defined on the Borel σ-field on Ω,
∫

Ω
zmν(dz) = 0 for m = 0, 1, 2, . . . =⇒ ν = 0.

(4.9)

Note that, since Ω is the image of the continuous function η(f) on the closed and

finite interval I, the contour Ω is compact. Let C(Ω) be the Banach space of all complex-

valued continuous functions on Ω equipped with the supremum norm. Let M be the

set of all signed measures defined on the Borel σ-field on Ω. For any ν ∈M, define the

complex valued bounded linear functional Lν defined on C(Ω) as

Lν(g) =
∫

Ω
g(z)ν(dz) for all g ∈ C(Ω). (4.10)

In terms of these notations, we rewrite (4.9) as

for any ν ∈M, “Lν(zm) = 0 for m = 0, 1, 2, . . . ” =⇒ ν = 0. (4.11)
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By the Riesz representation theorem, every bounded linear functional L on C(Ω) can

be represented as

L(g) =
∫

Ω
g(z)ν1(dz) + i

∫

Ω
g(z)ν2(dz) for all g ∈ C(Ω), (4.12)

for a unique pair of measures ν1 and ν2 inM (Rudin, 1987). It follows that the necessary

and sufficient condition (4.11) is equivalent to the condition:

For any bounded linear functional L on C(Ω),

“L(zm) = 0 for m = 0, 1, 2, . . . ” =⇒ L = 0.
(4.13)

The above condition is a statement about the sequence {1, z, z2, . . . , } in relation to the

Banach space C(Ω) {p. 257 of (Davis, 1975)}. By Theorem 11.1.7 of (Davis, 1975),

(4.13) is equivalent to the condition:

“The linear span of the sequence {1, z, z2, . . . , } is dense in C(Ω).” (4.14)

The above condition can be rephrased as: “Any g ∈ C(Ω) can be expanded in a uni-

formly convergent sequence of polynomials.” By a result of (Mergelyan, 1954) (see also

(Lavrentieff, 1936)), we get the further equivalent condition:

“The set Ω is nowhere dense and does not divide the plane.” (4.15)

Since the set Ω is a curve in the complex plane, it is always a nowhere dense set.

This completes the proof. 2

Proof of Theorem 4.4. Let I = [−1.1/2d, 1.1/2d]. Consider the two-point discrete

distribution F , given by

F (t) =





0 for t < d,

0.68 for d ≤ t < 2.1d,

1 for t ≥ 2.1d.

(4.16)
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It follows that the average inter-sample spacing is 1.352d. Also,

η(f) = 0.68ei2πfd + 0.32ei2πf×2.1d.

The plot of the imaginary part of η(f) against the real part, for f ∈ I, is given in

Figure 4.2. It can be verified that the graph does not divide the complex plane. The

result follows from Theorem 4.3. 2

Proof of Theorem 4.5. Here, the sampling process τ = {tj , j = . . . ,−2,−1, 0, 1, 2, . . .}
is such that the inter-sample spacing tm+1−tm for different values of m are independent

and identically distributed having probability density function γ(·). Let β and µτ be

the mean intensity and the reduced covariance measure, respectively, of the process τ .

The measure µτ can be expressed as

µτ (B) = βδ0(B) +
∫

B
β[H(|u|)− β]du for each B ∈ B, (4.17)

where H(u) is the renewal density function, i.e,

H(u) =
∞∑

m=1

γ(m)(u).

Note that Assumption 4.4 implies that γ(·) is supported on [d,∞), and so H(·) is

supported on [d,∞). Let l be and integer (greater than 1), such that H(u) > 0 for u ≥
ld. (The positivity of H(·) over some semi-infinite interval follows from the additional

assumption made in the statement of the theorem.)

Let S be the class of bandlimited spectra supported on [−f0, f0]. If the sampling

scheme τ is not alias-free relative to the class of spectra S, then there exist two zero

mean, mean square continuous stationary stochastic processes X1 and X2 with different

power spectral distributions Φ1(·) and Φ2(·) such that compound processes

Zj =



Zj(B) =

∑

tk∈B

Xj(tk), B ∈ B


 , j = 1, 2,

have the covariance measures µz1 and µz2 , respectively, satisfying µz1 = µz2 . Here, for
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B ∈ B, the covariance measures are given by (see (4.4) and (4.17))

µzj (B) = βCj(0)δ0(B) + β

∫

B
Cj(u)H(|u|)du, j = 1, 2,

where C1(·) and C2(·) are the covariance functions of the processes X1 and X2 respec-

tively. In order that the covariance measures µz1 and µz2 are the same, the point masses

at zero, as well as the absolutely continuous parts, must agree. The equality of the point

masses requires

C1(0) = C2(0). (4.18)

On the other hand, equality of the absolutely continuous parts means

C1(u)H(|u|) = C2(u)H(|u|) for −∞ < u < ∞.

Since H(u) > 0 for the u ≥ ld, we have

C1(u) = C2(u) for |u| ≥ ld. (4.19)

If the processes X1 and X2 have spectra limited to the band [−f0, f0], then the

covariance function Cj(·) for j = 1, 2 can be expressed as (see (1.9))

Cj(u) =
∞∑

m=−∞
Cj(mT )sinc

( π

T
(u−mT )

)
, (4.20)

where T = 1
2f0

.

Let k = [ld/T ], where [u] represents the integer part of the real number u. It follows

from (4.18)–(4.20) that

C1(u)− C2(u) =
k∑

m=−k

{C1(mT )− C2(mT )} sinc
( π

T
(u−mT )

)

+
∑

|m|>k

{C1(mT )− C2(mT )} sinc
( π

T
(u−mT )

)

=
k∑

m=1

{C1(mT )− C2(mT )}
(
sinc

( π

T
(u−mT )

)
+ sinc

( π

T
(u + mT )

))
.

By using the fact that sin(kπ + θ) = (−1)k sin θ for all integer k, we have for α =
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u/T − [u/T ] > 0,

C1(u)− C2(u)

=
k∑

m=1

{C1(mT )− C2(mT )}
(

sin
{(−m +

[
u
T

])
π + απ

}
π
T (u−mT )

+
sin

{(
m +

[
u
T

])
π + απ

}
π
T (u + mT )

)

=(−1)[u/T ] sin(απ)
k∑

m=1

{C1(mT )− C2(mT )}
(

(−1)−m

π
T (u−mT )

+
(−1)m

π
T (u + mT )

)
.

Since (−1)m = (−1)−m for each integer m, we have

C1(u)− C2(u) = (−1)[u/T ] 2uT

π
sin(απ)

k∑

m=1

[(−1)m{C1(mT )− C2(mT )}] 1
u2 −m2T 2

.

Let vm = [(−1)m{C1(mT ) − C2(mT )}]. In view of (4.19), the above equation implies

that
k∑

m=1

vm

u2 −m2T 2
= 0 (4.21)

for u ∈ {(ld, (k + 1)T )} ∪
{
∪∞j=k+1(mT, (j + 1)T )

}
.

Note that the function on the left hand side of (4.21) is a ratio of polynomials. The

polynomial in the numerator has degree 2k− 2, while the denominator is bounded over

the domain of the function. Thus, the ratio of the polynomials can be zero at most at

2k − 2 points. Therefore, the fact that this function assumes the value 0 everywhere

on the interval ((k + 1)T, (k + 2)T ) implies that the polynomial in the numerator is

identically equal to zero. Thus, the ratio of the polynomials is identically zero. Hence,

k∑

m=1

vm

u2 −m2T 2
= 0, for u ∈

∞⋃

j=0

(mT, (j + 1)T ).

By considering the limit of the left hand side as u ↓ mT , it is found that vm = 0 for

m = 1, . . . , k, that is,

C1(mT ) = C2(mT ) for |m| = 1, . . . , k.

According to (4.18), the above equality holds for m = 0, while (4.20) and (4.19) imply

that it holds for |m| = k + 1, k + 2, . . .. Thus, C1(mT ) = C2(mT ) for all m. It follows
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from (4.20) that C1(u) = C2(u) for each u, which contradicts the assumption that C1

and C2 are different. So the sampling scheme τ is alias-free for the class of the spectra

S. This completes the proof. 2

4.5 Simulation study

In view of Theorems 4.1, 4.2 and 4.5, it is clear that non-aliased sampling (and con-

sequently, consistent estimation) under the constraint of minimum separation between

successive samples may be possible only in the case of bandlimited processes. In this

context, performance of well-known estimators such as φ̂ρ(·) and ψ̂n(·) given in (1.12)

and (1.14), respectively, would be of interest.

The performance of the estimator φ̂ρ(·) under the constraint of minimum separation

between successive samples is understood from standard theory. On the other hand,

Poisson sampling is not implementable under this constraint. However, if one attempts

to implement Poisson sampling by generating successive inter-sample spacings from

the exponential distribution with mean θ, but is obliged to discard those inter-sample

spacings which are smaller than d, then the modified sampling scheme resulting from this

‘imperfect’ Poisson sampling amounts to a specific type of renewal process sampling.

For this renewal process, the inter-sample spacings have the exponential distribution

truncated from the left at d, the mean spacing being d + θ. An interesting question is,

how the estimator ψ̂n(·) would perform under such imperfect Poisson sampling.

We consider a continuous time stationary stochastic process X with mean 0 and

covariance function C(·) given by

C(u) =





σ2

q−|l|∑

j=0

ξjξj+|l| if u = l
2f0

, |l| = 0, 1, . . . , q,

0 if u = l
2f0

, |l| > q, q + 1, . . .,
∞∑

l=−∞
C

(
l

2f0

)
sin (2πf0u− lπ)

(2πf0u− lπ)
otherwise.

(4.22)

This covariance function corresponds to a process limited to the frequency band

[−f0, f0], whose samples at regular intervals of length 1
2f0

constitute a discrete time

MA(q) process with MA characteristic polynomial Ξ(z) = ξ0 + ξ1z + ξ2z
2 + · · · + ξqz

q
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and innovation variance σ2. We consider sampling with a stationary renewal pro-

cess τ whose inter-sample spacing has the exponential distribution left-truncated at

d, such that the mean is d + θ. We assume that n consecutive samples, denoted by

X(t1), X(t2), . . . , X(tn), are available for estimation.

We study the performance of the estimator ψ̂n(·) given in (1.14) as

ψ̂n(f) =
2

nβ

n−1∑

l=1

n−l∑

j=1

X(tj)X(tj+l)K(bn(tj+l − tj)) cos(2πf(tj+l − tj)),

under the constraint of minimum separation, for the choices

f0 = 1,

Ξ(z) = (1 + 1.2z)8,

σ = 1/202,

n = 1000,

bn = 1/10,

and K(x) =





1
2 {1 + cos(πx)} if −1 ≤ x ≤ 1,

0 otherwise.

We first investigate how this estimator performs when d > 0. We conduct multiple

simulation runs for each of the choices d = 0, 0.25, 0.5, 0.75, 1 and 2, together with

θ = 1. Figure 4.3 shows spectrum estimates from five typical simulation runs, along with

the true power spectral density. The plots show how the estimator begins to perform

poorly as one moves away from d = 0. For large values of d, the inter-sample spacing

has a small coefficient of variation. Therefore, the sampled data resemble that from

uniform sampling, which have the problem of aliasing. As a result, for large values of d,

spurious peaks in greater numbers begin to show in the estimates. The estimator also

assumes large negative values for some values of d.

Figure 4.4 shows the MSE of the estimate computed in each of the above cases from

500 simulated runs, along with the squared power spectral density. It is clear that the

MSE around the peak of the power spectral density are of the same order as the squared

power spectral density for large value of d, and the MSE at other frequencies is much
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Figure 4.3: Estimates of the power spectral density for θ = 1 and different values of d. The
bold line represents the true power spectral density, while the thinner lines represent five typical
estimates.

larger for d > 0 than for d = 0.

This simulation study indicates that the estimator, which is consistent in the absence

of the constraint on the minimum inter-sample spacing, may perform poorly in the

presence of the constraint.

The next question we try to answer is: Given the constraint d = 1 (so that uniform

sampling at any feasible sampling rate would necessarily lead to aliasing), is there an

appropriate choice of θ that would produce a reasonable estimate of the power spectral

density? In order to answer this question, we again run multiple simulations for θ = 0,

0.1, 0.2, 0.5, 1, 2, 5, and 10. In Figure 4.5, we present spectrum estimates from five

typical simulation runs in each of these cases, together with the true power spectral

density. For θ = 0, i.e., the case of uniform sampling at sub-Nyquist rate, there is clear

evidence of spurious peaks in the spectrum estimates. A similar occurrence is observed

for small positive values of θ. On the other hand, large values of θ give rise to large

variability in the estimates.
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Figure 4.4: Plot of the true squared power spectral density and the MSE’s of spectrum estimates
(in log scale) based on 500 simulation runs for θ = 1 and different values of d.
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Figure 4.5: Estimates of the power spectral density for d = 1 and different values of θ. The
bold line represents the true power spectral density, while the thinner lines represent five typical
estimates.
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Figure 4.6: Plot of the true squared power spectral density and the MSE’s of spectrum estimates
(in log scale) based on 500 simulation runs for d = 1 and different values of θ.

Figure 4.6 shows MSE’s of the estimates computed in each of the above cases from

500 simulated runs, along with the squared power spectral density. It transpires that

irrespective of the trade-off between bias and variance observed in Figure 4.5, the MSE’s

in all the cases are comparable. The MSE is of the order of the squared value of the true

power spectral density around the peak, while it is several orders of magnitude higher

elsewhere.

These findings indicate that the estimator ψ̂n(·) given in (1.14) does not perform

well for any choice of θ under the conditions of the present simulation study.

4.6 Summary and discussion

The constraint of a specified minimum inter-sample spacing is a natural one, in view of

technological and economic constraints. We have come across some interesting findings

after formally incorporating this constraint in the study of aliasing in the context of

spectrum estimation through stochastic sampling. The most important finding is that

under this constraint, no point process sampling scheme is alias-free for the class of all

spectra – according to any definition. It should be noted that the possibility of alias-

free sampling, leading to consistent estimation of the power spectral density, has been

a major argument put forward by some researchers in favour of point process sampling
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(in contrast with uniform sampling). This argument does not hold at all in the presence

of the above constraint.

We have shown in Section 4.3 that when the inter-sample spacing is constrained to

be larger than a threshold, renewal process sampling schemes are alias-free for suitably

bandlimited spectra according to Definition 4.1. The range of bandwidths for alias-free

renewal process sampling for some inter-sample spacing distributions is smaller than the

corresponding range for regular sampling, while it is larger for some other distributions.

On the other hand, according to Definition 4.2, all renewal process samplings schemes

satisfying the conditions of Theorem 4.5 are alias-free for the class of spectra limited to

any finite band.

The simulation study of Section 4.5 indicates that the estimator ψ̂n(·) described

in (1.14) performs poorly whenever Poisson sampling times are adjusted to ensure a

minimum separation between successive samples. This finding is not unexpected, as

the conditions under which Masry (1978b) proved the consistency of this estimator do

not hold in the presence of this constraint. The constraint-adjusted sampling scheme

constitutes a renewal process of a special kind. As we shall see in next chapter, a recipe

for constructing consistent estimators for general renewal processes, given by Masry

(1978a; see also (Brillinger, 1972)), does not work for such renewal processes (i.e., those

which satisfy the constraint of a minimum separation between successive samples). This

brings us back to square one as far as spectrum estimation (through sampling under

this restriction) is concerned. A new approach will be required.



Chapter 5

Stochastically sampled

bandlimited processes:

Estimation under inter-sample

spacing constraint

5.1 Introduction

We have seen in Chapter 4 that, under the constraint of a minimum separation between

successive samples, no point process sampling scheme is alias-free for the class of non-

bandlimited processes. This result implies that there can be two processes with different

spectra, which cannot be distinguished from their respective point process samples, and

hence the question of consistent spectrum estimation from these samples does not arise.

Theorem 4.4 and 4.5 open up the possiblility that, under the above constraint,

additive random sampling (i.e., sampling at the renewal epochs of a stationary renewal

process) can be alias-free for a class of spectra with a larger bandwidth than what

is permitted by the Nyquist theorem – the bench-mark arising from uniform sampling.

However, the results of Monte Carlo simulations reported in Section 4.5 indicate that the

estimator (1.14) may not work well when the underlying Poisson sampling is modified

as per the constraint.

We have also observed in Chapter 4 that the power spectral density of a continu-

ous time process may be reconstructed from the covariance sequence c or the covariance

103
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measure µz of its stochastically sampled versions, under appropriate conditions, depend-

ing on the notion of alias-free sampling being used. These reconstruction methods have

been used by Beutler (1970) and Masry (1978a) to propose spectrum estimators based

on empirical versions of c and µz, respectively. One has to examine the appropriate-

ness of these estimation approaches for arbitrarily bandlimited power spectral densities

under the constraint of minimum separation between successive samples.

In this Chapter, we investigate these issues and conclude that the existing estimation

approaches are not adequate for the problem at hand, for various reasons. Subsequently,

we develop a new method of consistent estimation of an arbitrarily bandlimited power

spectral density, using data obtained from additive random sampling under the said

constraint.

In Section 5.2, we present the existing estimation approaches and discuss the dif-

ficulties under the constraint of minimum separation between successive samples. In

Section 5.3, we develop a spectrum estimator based on constrained additive random

sampling, and establish its consistency. The proofs of the theoretical results are given

in Section 5.4. In Section 5.5, we study the performance of this estimator through Monte

Carlo simulations. In the absence of a competing estimator, we contrast this perfor-

mance with that of the estimator ψ̂n(·) given in (1.14). We summarize the findings and

provide some concluding remarks in Section 5.6.

5.2 Existing estimation approaches and their limitations

Consider a class of spectra having density supported on the closed and finite inter-

val I. Given a sampling scheme that is alias-free relative to this class according to

Definition 4.1, one would look for an estimator of the power spectral density based on

estimated values of the sequence c. Beutler (1970) outlined a method of estimation

based on the representation

Φ(f0) = lim
m→∞

m∑

k=1

akmck, (5.1)
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for a continuity point f0 of the spectral distribution function, where akm, k = 1, . . . , m

are the coefficients such that the uniform convergence of the sequence of partial sums

lim
m→∞

m∑

k=1

akmηk(f) = 1{(−∞,f0)∩I}(f) (5.2)

happens everywhere except perhaps at f0. Here, for k = 1, 2, . . ., ηk(·) is the charac-

teristic function of the distribution of the sum of k successive inter-sample spacings.

As an example, for the inter-sample spacing distribution mentioned in the proof of

Theorem 4.4, the characteristic function happens to be

ηk(f) = [0.68ei2πfd + 0.32ei2πf×2.1d]k.

Note that the representation (5.2) is possible whenever the sampling scheme is alias-free

according to Definition 4.1 (Beutler, 1970).

One can estimate the spectral distribution Φ(·) by plugging in estimators of

c1, c2, . . . , cm in (5.1), and can subsequently obtain an estimator of the spectral den-

sity φ(·). The coefficients a1m, . . . , amm defined by (5.2), however, are attributes of

the sampling scheme. These coefficients can be obtained numerically, either directly

from (5.2) or by using a Gram-Schmidt orthogonalization of the characteristic functions

as suggested in (Masry, 1978a). There is no closed form solution. In any case, the

consistency of the plug-in estimator based on (5.1) has not been proved. Moreover,

the largest spectral support I corresponding to this inter-sample spacing distribution is

only marginally larger than the Nyquist limit [−1/2d, 1/2d] achievable through uniform

sampling. These facts prompt us to abandon Beutler’s estimation approach.

We now explain the estimation approach based on the covariance measure µz (Masry,

1978a) and the difficulty of using this approach under the constraint of minimum sep-

aration between successive samples. We have seen in Section 4.2 that the covariance

measure µz of the process Z has the representation (4.4), i.e.,

µz(B) =
∫

B
C(u)[β2du + µτ (du)],

where β is the mean intensity and µτ is the reduced covariance measure of the sampling
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process τ . If τ is a stationary renewal process, then µτ has the simplified expression

µτ (B) = βδ0(B) + β

∫

B
(H(|u|)− β)du,

where H(·) is the renewal density defined over the positive real line as

H(u) =
∞∑

l=1

γ(l)(u), (5.3)

γ(l)(·) is the l-fold convolution of the inter-sample spacing density γ(·), and δ0 is the

degenerate measure having unit mass at the point 0. Consequently, the expression for

µz simplifies to

µz(du) = βC(u)H(|u|)du + βC(0)δ0(du). (5.4)

If the renewal density is strictly positive, i.e., H(u) > 0 for u > 0, then

C(u)du =
1

βH(|u|)µz(du)− C(0)
H(|u|)δ0(du), (5.5)

and the corresponding power spectral density is given as

φ(f) =
∫ ∞

−∞
e−i2πfuC(u)du =

1
β

∫ ∞

−∞

1
H(|u|)e

−i2πfuµz(du)− C(0)
H(0)

, (5.6)

provided the integral on the right hand side exists.

An estimator of φ(·) may be obtained from the above expression by plugging in

estimators of C(0) and the covariance measure µz. In particular, µz can be estimated

through its characteristic function φz(·) =
∫∞
−∞ e−i2πfuµz(du). Masry (1978a) suggested

that φz(·) may be estimated by

φ̂z(f) =
∫ ∞

−∞
κn(f − ν)În(ν)dν,

where

κn(f) =
∫ ∞

−∞
e−i2πfuK(bnu)du, În(f) =

β

n

∣∣∣∣∣
n∑

k=1

X(tk)e−i2πftk

∣∣∣∣∣
2

,

K(·) is a suitable window function and bn is the corresponding window width.

In the special case of Poisson sampling, we have H(u) = β for all u, so that (5.6)
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simplifies to

φ(f) =
1
β2

∫ ∞

−∞
e−i2πfuµz(du)− C(0)

β
=

1
β2

φz(f)− C(0)
β

,

and the corresponding plug-in spectrum estimator simplifies to

2
βn

n−1∑

j=1

n−j∑

l=1

X(tl)X(tj+l)K (bn(tj + l − tl)) cos(2πf(tj + l − tl)),

which is the estimator ψ̂n(·), defined in (1.14).

In the special case of renewal process sampling subject to the constraint that the

separation between successive samples is at least d units of time, the renewal density

H(u) = 0 for u ∈ [0, d]. In this situation, a direct representation of C(·) similar to (5.5)

is not possible. Consequently, there is no scope of a plug-in estimator, as above.

A new estimation strategy is developed in the next section.

5.3 Spectrum estimation under inter-sample spacing con-

straint

5.3.1 The estimator

Even though a direct representation of the covariance function C(·) similar to (5.5) for

the entire real line is not possible, one can still use (5.5) for u ∈ (d,∞). We have seen

in Theorem 4.5 that this part of the function contains complete information about C(·)
over its entire domain. A possible way of recovering the missing information for the

range (0, d] is to use the representation of C(·) in terms of its values over a grid.

It had been mentioned in Chapter 1 (see (1.9)) that the covariance function C(·)
of a continuous time, mean square continuous, stationary stochastic process X having

power spectral density limited to a finite band [−f0, f0], has the representation

C(u) =
∞∑

l=−∞
C(lT )sinc

( π

T
(u− lT )

)
, (5.7)

where T = 1
2f0

. Therefore, in order to specify the function C(·) completely, one only

needs to specify the sequence {C(lT ), l = . . . ,−2,−1, 0, 1, 2, . . .}. By using equation
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(5.5), one can directly estimate the values C(lT ) for l = 0 and l > J , where J = [d/T ],

the integer part of d/T . The remaining values, i.e., C(T ), . . . , C(JT ), can be expressed

in terms of the left hand side of (5.7) and the known terms of the right hand side. Note

that the left hand side of (5.7) can also be estimated directly for any u > d. Thus, the

missing values satisfy the linear equations

J∑

l=1

xl(u)C(lT ) = y(u) for u > d, (5.8)

where

xl(u) =
{

sinc
( π

T
(u− lT )

)
+ sinc

( π

T
(u + lT )

)}
, l = 1, 2, . . . , J, (5.9)

y(u) = C(u)− sinc(πu/T )C(0)

−
∞∑

l=J+1

{
sinc

( π

T
(u− lT )

)
+ sinc

( π

T
(u + lT )

)}
C(lT ), (5.10)

for u > d. One can use these equations to estimate C(T ), . . . , C(JT ).

For direct estimation of C(u) for u = 0 and u > d, we assume that the renewal

density H(·) defined in (5.3) is strictly positive over the interval (d,∞), and use the

estimators

Ĉnd(0) =
1
n

n∑

k=1

X2(tk), (5.11)

Ĉnd(u) =
1

nH(u)

n∑

k=1

n∑

j=1

mnW (mn(u− tk + tj))X(tk)X(tj), for u > d, (5.12)

where W (·) is a weight function and mn is the smoothing parameter.

For indirect estimation of C(T ), . . . , C(JT ) from the linear equations (5.8), we define

for u > d

yn(u) = Ĉnd(u)− sinc(πu/T )Ĉnd(0)

−
Ln∑

l=J+1

{
sinc

( π

T
(u− lT )

)
+ sinc

( π

T
(u + lT )

)}
Ĉnd(lT ), (5.13)

where Ln is a finite integer. We use yn(u) as an estimator of y(u) defined in (5.10),

with the infinite sum truncated at Ln. Substitution of this estimator on the right hand
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side of (5.8) gives a set of approximately linear equations in C(T ), . . . , C(JT ). This

‘functional data’ linear model (Ramsay et al., 2009) leads to the least squares estimator




Ĉnd(T )

Ĉnd(2T )
...

Ĉnd(JT )




=




∫ u2

u1
x2

1(u)du
∫ u2

u1
x1(u)x2(u)du · · · ∫ u2

u1
x1(u)xJ(u)du

∫ u2

u1
x2(u)x1(u)du

∫ u2

u1
x2

2(u)du · · · ∫ u2

u1
x2(u)xJ(u)du

...
...

. . .
...

∫ u2

u1
xJ(u)x1(u)du

∫ u2

u1
xJ(u)x2(u)du · · · ∫ u2

u1
x2

J(u)du




−1

×




∫ u2

u1
x1(u)yn(u)du

∫ u2

u1
x2(u)yn(u)du

...
∫ u2

u1
xJ(u)yn(u)du




,

(5.14)

where the interval [u1, u2] is a suitable sub-interval of (d,∞).

In summary, the estimator of C(·) is

Ĉnd(u) =





1
n

∑n
j=1 X2(tj) if u = 0,

1
nH(u)

∑n
k=1

∑n
j=1 mnW (mn(u− tk + tj))X(tk)X(tj)

if u > d,

as defined in (5.14) if u = lT for some integer l and 0 < u < d,

Ĉnd(0)sinc
(

π
T u

)
+

∑Ln
j=1 Ĉnd(jT )

{
sinc

(
π
T (u− jT )

)
+ sinc

(
π
T (u + jT )

)}

if u 6= lT for any integer l and 0 < u < d,

Ĉnd(−u) if u < 0.
(5.15)

Once the function C(·) is completely estimated, we estimate the power spectral

density by the lag window estimator

φ̂nd(f) = TĈnd(0) + 2T
n−1∑

l=1

Ĉnd(lT )K(bnl) cos(2πflT )1[−f0,f0](f), (5.16)

where K(·) is a covariance averaging Kernel and bn is the kernel bandwidth.
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5.3.2 Consistency

In order to establish the consistency of the proposed spectrum estimator, we will show

that the bias and the variance of the corresponding estimator of the covariance function

go to zero, as the sample size goes to infinity. For this purpose, we need to make some

assumptions regarding the underlying process, the weight function used for estimating

its covariance function, the smoothing parameter used for this weight function and the

additive random sampling scheme.

Assumption 5.1. The function h0(·) defined over the real line as h0(u) = sup
t≥|u|

|C(t)|
is integrable.

Assumption 5.2. The inter-sample spacings density γ(·) has a finite mean and its

support contains an interval with d at its left endpoint.

Note that Assumption 5.2 ensures that H(·) is positive over (d,∞), as required in

(5.12).

Assumption 5.3. The weight function W (·) used in (5.12) is compactly supported,

even, continuous and square integrable, with
∫∞
−∞W (v)dv = 1.

Assumption 5.4. The smoothing parameter mn used in (5.12) is such that mn → ∞
as n →∞.

Assumption 5.5. The truncation parameter Ln used in (5.13) is such that Ln → ∞
as n →∞.

Theorem 5.1. Under Assumptions 5.1–5.5, the bias of the estimator Ĉnd(·) converges

pointwise to zero as the sample size n goes to infinity.

A few additional conditions are needed for proving convergence of the variance of

the covariance estimator.

Assumption 5.5A. The truncation parameter Ln used in (5.13) is such that Ln →∞
and mn(log Ln)2

n → 0 as n →∞.
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Assumption 5.6. The fourth moment E|X(t)|4 exists for every t, and the fourth order
cumulant function cum [X(t + t1), X(t + t2), X(t + t3), X(t)] does not depend on t, and
this function, denoted by Q(t1, t2, t3), satisfies

|Q(t1, t2, t3)| ≤
3∏

j=1

gj(tj),

where gj(·), j = 1, 2, 3, are all continuous, even, nonnegative and integrable functions

over the real line, which are non-increasing over [0,∞).

Remark 5.1. Assumption 5.5A is stronger than Assumption 5.5. It also implies that
mn
n → 0 as n →∞.

Theorem 5.2. Under Assumptions 5.1–5.4, 5.5A and 5.6, the variance of the estimator

Ĉnd(·) converges pointwise to zero as the sample size n goes to infinity.

Theorems 5.1 and 5.2 together imply that under Assumptions 5.1–5.4, 5.5A and 5.6,

Ĉnd(u) is a consistent estimator of the covariance function C(u) for any lag u.

We now turn to the convergence of the bias of the spectrum estimator φ̂nd(f) given

in (5.16), for which we need to make further assumptions.

Assumption 5.7. The covariance averaging kernel K(·) used in (5.16) is an even,

continuous, integrable and square integrable function with K(0) = 1, and is bounded by

a nondecreasing function over (0,∞).

Assumption 5.8. The kernel bandwidth bn used in (5.16) is such that bn → 0 as

n →∞.

Theorem 5.3. Under Assumptions 5.1–5.5, 5.7 and 5.8, the bias of the estimator

φ̂nd(·) converges pointwise to zero as the sample size n goes to infinity.

In order to prove the convergence of the variance of the spectrum estimator, we

replace Assumption 5.8 by a stronger assumption.

Assumption 5.8A. The kernel bandwidth bn used in (5.16) is such that bn → 0,

nbn →∞ and mn
bn
→ 0 as n →∞.
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Theorem 5.4. Under Assumptions 5.1–5.4, 5.5A, 5.6, 5.7 and 5.8A, the variance of

the estimator φ̂nd(·) converges pointwise to zero as the sample size n goes to infinity.

Theorem 5.3 and 5.4 show that, under Assumptions 5.1–5.4, 5.5A, 5.6, 5.7 and 5.8A,

φ̂nd(f) is a consistent estimator of the power spectral density φ(f) for any frequency f .

5.4 Proofs

We denote the domain of the function W (·) by [−a, a], the suprema of the functions

|W |(·) and H(·) by M1 and M2, respectively, and the infimum of H(·) by M3.

Proof of Theorem 5.1. It is enough to prove that the bias of the estimator Ĉnd(u)

converges to 0 for u ≥ 0. Observe that

E[Ĉnd(0)] =
1
n

n∑

j=1

E[X2(tj)] = C(0), (5.17)

i.e., Ĉnd(0) is an unbiased estimator of C(0). For u > d, using (5.12) we have

E[Ĉnd(u)] =
1

nH(u)

n∑

k=1

n∑

j=1

mnE[E {W (mn(u− tk + tj))X(tk)X(tj)|tk, k = 1, . . . , n}]

=
1

nH(u)

n∑

k=1

n∑

j=1

mnE[W (mn(u− tk + tj))C(tk − tj)].

After considering the case k = j separately, and combining the cases k < j and k > j,

we have

E[Ĉnd(u)]

=
mnW (mnu)C(0)

H(u)

+
1

H(u)

∫ ∞

0
mn{W (mn(u + v)) + W (mn(u− v))}C(v)

{
1
n

∑

1≤k<j≤n

γ(j−k)(v)
}

dv

=
mnW (mnu)C(0)

H(u)
+

1
H(u)

∫ ∞

0
mn{W (mn(u + v))+W (mn(u− v))}C(v)Hn(v)dv,

where

Hn(u) =
n−1∑

l=1

(
1− l

n

)
γ(l)(u).
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By making a transformation of the variable of integration and using the symmetry of

the covariance function C(·), we have

E[Ĉnd(u)]

=
mnW (mnu)C(0)

H(u)
+

1
H(u)

∫ ∞

−∞
W (v)C

(
u− v

mn

){
Hn

(
u− v

mn

)
+Hn

(
−u+

v

mn

)}
dv.

(5.18)

For sufficiently large n, we have mn > a/d, and consequently W (mnu) = 0 for all

|u| > d. This implies that the first term is identically zero for large n. Further, by using

Assumptions 5.1 and 5.2, we have the dominance

∣∣∣∣W (v)C
(
u− v

mn

){
Hn

(
u− v

mn

)
+ Hn

(
−u +

v

mn

)}∣∣∣∣

≤ |W (v)|h0(0)
{
H

(
u− v

mn

)
+ H

(
−u +

v

mn

)}

≤ 2|W (v)|h0(0)M2,

and Assumption 5.3 ensures that the bounding function is integrable. From Assump-

tion 5.4, we have the convergence

lim
n→∞W (v)C

(
u− v

mn

) {
Hn

(
u− v

mn

)
+ Hn

(
−u +

v

mn

)}

= W (v)C(u)H(u).

By applying the DCT, we have

lim
n→∞E[Ĉnd(u)] = C(u).

Now, we consider the case of Ĉnd(u), when u = T, 2T, . . . , JT . In order to compute

expectation of the indirect estimator (Ĉnd(T ), . . . , Ĉnd(JT )) given in (5.14), we first

compute E
[∫ u2

u1
xj(u)yn(u)du

]
. Note that for j = 1, 2, . . . , J , we have

E

[∫ u2

u1

xj(u)yn(u)du

]
=

∫ u2

u1

xj(u)E[yn(u)]du,
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where interchange of the integrals is justified by the finiteness of the double integral,

which follows from arguments similar to those given below to establish the convergence.

We compute

E[yn(u)] = E[Ĉnd(u)]− sinc(πu/T )E[Ĉnd(0)]

−
Ln∑

l=J+1

E[Ĉnd(lT )]
{

sinc
( π

T
(u−lT )

)
+sinc

( π

T
(u+lT )

)}
.

We have already proved that E[Ĉnd(u)] → C(u) as n → ∞ for u > d and E[Ĉnd(0)] =

C(0). From (5.18), we have

Ln∑

l=J+1

E[Ĉnd(lT )]
{

sinc
( π

T
(u− lT )

)
+ sinc

( π

T
(u + lT )

)}

=
Ln∑

l=J+1

[
mnW (mnlT )C(0)

H(lT )

+
1

H(lT )

∫ ∞

−∞
W (v)C

(
lT − v

mn

) {
Hn

(
lT− v

mn

)
+Hn

(
−lT +

v

mn

)}
dv

]

×
{

sinc
( π

T
(u− lT )

)
+ sinc

( π

T
(u + lT )

)}
.

Choose n sufficiently large so that mn > a/d. Then we have

Ln∑

l=J+1

E[Ĉnd(lT )]
{

sinc
( π

T
(u− lT )

)
+ sinc

( π

T
(u + lT )

)}

=
Ln∑

l=J+1

[
1

H(lT )

∫ ∞

−∞
W (v)C

(
lT − v

mn

){
Hn

(
lT− v

mn

)
+Hn

(
−lT +

v

mn

)}
dv

×
{

sinc
( π

T
(u−lT )

)
+sinc

( π

T
(u+lT )

)}]

=
∫ ∞

−∞
W (v)

[
Ln∑

l=J+1

1
H(lT )

C

(
lT − v

mn

) {
Hn

(
lT − v

mn

)
+Hn

(
−lT +

v

mn

)}

×
{

sinc
( π

T
(u−lT )

)
+sinc

( π

T
(u+lT )

)}]
dv. (5.19)
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By using Assumptions 5.1 and 5.2, we have the dominance

∣∣∣∣W (v)
Ln∑

l=J+1

1
H(lT )

C

(
lT− v

mn

){
Hn

(
lT− v

mn

)
+Hn

(
−lT +

v

mn

)}

×
{

sinc
( π

T
(u−lT )

)
+sinc

( π

T
(u+lT )

)} ∣∣∣∣

≤ |W (v)|2M2

M3

Ln∑

J+1

h0

(
lT − v

mn

)
≤ |W (v)|2M2

M3
× 2

∞∑

l=1

h0(lT ),

and the integrability of the bound is guaranteed by Assumption 5.3. From Assumptions

5.4 and 5.5, the integrand of (5.19) converges pointwise as

lim
n→∞W (v)

Ln∑

l=J+1

E[Ĉnd(lT )]
{

sinc
( π

T
(u− lT )

)
+ sinc

( π

T
(u + lT )

)}

= W (v)
∞∑

l=J+1

C (lT )
{

sinc
( π

T
(u− lT )

)
+ sinc

( π

T
(u + lT )

)}
.

Thus, by using the representation (5.7) and the DCT, we have

lim
n→∞E[yn(u)]

= C(u)−sinc(πu/T )C(0)−
∞∑

l=J+1

C(lT )
{

sinc
( π

T
(u−lT )

)
+sinc

( π

T
(u+lT )

)}

=
J∑

l=1

xl(u)C(lT ). (5.20)

Thus for j = 1, . . . , J , we have

lim
n→∞E

[∫ u2

u1

xj(u)yn(u)du

]
=

∫ u2

u1

xj(u) lim
n→∞E[yn(u)]du =

∫ u2

u1

xj(u)
J∑

l=1

xl(u)C(lT ).

(5.21)

By using (5.21) and (5.14), we have

lim
n→∞E




Ĉnd(T )

Ĉnd(2T )
...

Ĉnd(JT )




=




C(T )

C(2T )
...

C(JT )




. (5.22)
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Consider Ĉnd(u), when 0 < u < d and u 6= lT for any integer l. From (5.15), we have

E[Ĉnd(u)]

= E
[
Ĉnd(0)

]
sinc

( π

T
u
)

+
J∑

j=1

E
[
Ĉnd(jT )

]{
sinc

( π

T
(u−jT )

)
+ sinc

( π

T
(u+jT )

)}

+
Ln∑

j=J+1

E
[
Ĉnd(jT )

]{
sinc

( π

T
(u−jT )

)
+ sinc

( π

T
(u+jT )

)}
.

By using an argument similar to that used in proving (5.20), it can be shown that

lim
n→∞E[Ĉnd(u)] = C(u) if u 6= lT for any integer l and 0 < u < d.

This completes the proof. 2

Proof of Theorem 5.2. It suffices to prove that the variance of the estimator Ĉnd(u)

converges to 0 for u ≥ 0. Observe that

V ar[Ĉnd(0)] =
1
n2

n∑

k1=1

n∑

k2=1

E[X(tk1)X(tk2)] =
C(0)

n
+

1
n2

∫ ∞

0
C(v)

∑

1≤k1<k2≤n

γ(k2−k1)(v)dv.

Thus, we have, from Assumption 5.2

nV ar[Ĉnd(0)] ≤ C(0) + M2

∫ ∞

0
C(v)dv.

Thus we have,

lim
n→∞V ar[Ĉnd(0)] = 0. (5.23)

By using Assumption 5.6, we have for u > d

E[Ĉ2
nd(u)] =

m2
n

n2H2(u)

n∑

k1=1

n∑

k2=1

n∑

k3=1

n∑

k4=1

E

[
W (mn(u− tk1 + tk2))W (mn(u− tk3 + tk4))

×X(tk1)X(tk2)X(tk3)X(tk4)
]

=
m2

n

n2H2(u)

n∑

k1=1

n∑

k2=1

n∑

k3=1

n∑

k4=1

E

[
W (mn(u− tk1 + tk2))W (mn(u− tk3 + tk4))

×
{

C(tk1 − tk2)C(tk3 − tk4) + C(tk1 − tk3)C(tk2 − tk4)

+ C(tk1 − tk4)C(tk2 − tk3) + Q(tk1 − tk4 , tk2 − tk4 , tk3 − tk4)
}]

.
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Thus, we have for u > d,

V ar[Ĉnd(u)]

=
m2

n

n2H2(u)

n∑

k1=1

n∑

k2=1

n∑

k3=1

n∑

k4=1

E

[
W (mn(u− tk1 + tk2))W (mn(u− tk3 + tk4))

×
{

C(tk1 − tk3)C(tk2 − tk4) + C(tk1 − tk4)C(tk2 − tk3)

+Q(tk1 − tk4 , tk2 − tk4 , tk3 − tk4)
}]

= I1(u) + I2(u) + I3(u). (5.24)

Observe that the terms I1(u) and I2(u) are bounded from above by

I(u) = M1
mn

n

1
nH2(u)

×
n∑

k1=1

n∑

k2=1

n∑

k3=1

n∑

k4=1

E

[
|mnW (mn(u− tk1 + tk2))C(tk1 − tk3)C(tk2 − tk4)|

]
.

(5.25)

It follows from Lemma 5.1 proved below that n
mn

I(u) is bounded from above by a

constant that does not depend on u. Lemma 5.2 proved below indicates that n
mn

I3(u)

is bounded from above by a constant that does not depend on u. Therefore, for u > d,

V ar(Ĉnd(u)) converges to 0 as n →∞.

We now consider the indirect estimators Ĉnd(T ), . . . , Ĉnd(JT ). From (5.14), it is

enough to show that the variance covariance matrix of the vector
(∫ u2

u1
x1(u)yn(u)du ,

∫ u2

u1
x2(u)yn(u)du, . . . ,

∫ u2

u1
xJ(u)yn(u)du

)
converges to zero.

For j, j′ ∈ {1, 2, . . . J}, we compute

Cov

(∫ u2

u1

xj(u)yn(u)du,

∫ u2

u1

xj′(u)yn(u)du

)

=
∫ u2

u1

∫ u2

u1

xj(u)xj′(v)Cov(yn(u), yn(v))dudv.

The interchange of the integrals is justified by the finiteness of the double integral, which

follows from arguments similar to those given below to establish the convergence. Note
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that

V ar[yn(u)]

= V ar

[
Ĉnd(u)−sinc(πu/T )Ĉnd(0)−

Ln∑

l=J+1

Ĉnd(lT )
{

sinc
( π

T
(u−lT )

)
+sinc

( π

T
(u+lT )

)}]

≤ 3V ar[Ĉnd(u)] + 3V ar[sinc(πu/T )Ĉnd(0)]

+ 3V ar

[ Ln∑

l=J+1

Ĉnd(lT )
{

sinc
( π

T
(u− lT )

)
+ sinc

( π

T
(u + lT )

)}]
.

We have already shown that the first two terms are uniformly bounded from above by
mn
n M for some constant M . We now consider the third term.

V ar

[ Ln∑

l=J+1

Ĉnd(lT )
{

sinc
( π

T
(u− lT )

)
+ sinc

( π

T
(u + lT )

)}]

=
Ln∑

l=J+1

Ln∑

l′=J+1

Cov(Ĉnd(lT ), Ĉnd(l′T ))
{

sinc
( π

T
(u− lT )

)
+ sinc

( π

T
(u + lT )

)}

×
{

sinc
( π

T
(u− l′T )

)
+ sinc

( π

T
(u + l′T )

)}

≤ M
mn

n

[ Ln∑

l=J+1

∣∣∣∣
{

sinc
( π

T
(u− lT )

)
+ sinc

( π

T
(u + lT )

)} ∣∣∣∣
]2

≤ M ′mn

n
(log(Ln))2, (5.26)

where M ′ is a constant which does not depend on u.

Thus, for j, j′ ∈ {1, 2, . . . , J}, we have

Cov

(∫ u2

u1

xj(u)yn(u)du,

∫ u2

u1

xj′(u)yn(u)du

)

=
∫ u2

u1

∫ u2

u1

xj(u)xj′(v)Cov(yn(u), yn(v))dudv

≤ M ′mn(log(Ln))2

n

(∫ u2

u1

|xj(u)|du

)(∫ u2

u1

|xj′(v)|dv

)
.

By using Assumption 5.5A, we have

lim
n→∞Cov

(∫ u2

u1

xj(u)yn(u)du,

∫ u2

u1

xj′(u)yn(u)du

)
= 0.
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Thus, we have

lim
n→∞Cov(Ĉnd(jT ), Ĉnd(j′T )) = 0 for j, j′ = 1, . . . , J. (5.27)

Now, we consider V ar(Ĉnd(u)), when u 6= lT for any integer l and 0 < u < d. By

using (5.15), we have

V ar[Ĉnd(u)] ≤ 3V ar

[
Ĉnd(0)sinc

( π

T
u
)]

+3V ar

[ J∑

j=1

Ĉnd(jT )
{
sinc

( π

T
(u− jT )

)
+sinc

( π

T
(u + jT )

)}]

+3V ar

[ Ln∑

j=J+1

Ĉnd(jT )
{
sinc

( π

T
(u− jT )

)
+sinc

( π

T
(u + jT )

)}]
.

By using (5.23), (5.26) and (5.27), we have

lim
n→∞V ar[Ĉnd(u)] = 0 if u 6= lT for any integer l and 0 < u < d.

This completes the proof. 2

Lemma 5.1. Under the Assumptions of Theorem 5.2, the function I(·) defined in (5.25)

is uniformly bounded from above by mn
n M , where M is a constant.

Proof of Lemma 5.1. We partition the range of summation as

{(k1, k2, k3, k4) : 1 ≤ k1, k2, k3, k4 ≤ n} =
24⋃

j=1

S1,j

36⋃

j=1

S2,j

8⋃

j=1

S3,j

⋃
S4,

where S1,j for j = 1, . . . , 24 are sets of quadruples of indices having different types of

strict order among themselves (k1 < k2 < k3 < k4, k1 < k2 < k4 < k3, and 22 other

permutations) S2,j for j = 1, . . . , 36 are sets of quadruples of indices exactly two of

which are equal and are in strict order with the other two indices (k1 < k2 < k3 = k4,

k1 < k3 = k4 < k2, and 34 other arrangements) S3,j for j = 1, . . . , 8 are sets of

quadruples of indices exactly three of which are equal and are in strict order with the

fourth (k1 < k2 = k3 = k4, k2 = k3 = k4 < k1, and 6 other arrangements), and S4 is

the set {(k1, k2, k3, k4) : 1 ≤ k1 = k2 = k3 = k4 ≤ n}.
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Consider S1,1 = {(k1, k2, k3, k4) : 1 ≤ k1 < k2 < k3 < k4 ≤ n}. By using the

transformation tk2 − tk1 = ϑk2−k1 , tk3 − tk2 = ϑk3−k2 and tk4 − tk3 = ϑk4−k3 , and by

making use of the fact that the transformed random variables are independent, we have

M1

nH2(u)

∑

S1,1

E
[ |mnW (mn(u− tk1 + tk2))C(tk1 − tk3)C(tk2 − tk4)|

]

=
M1

nH2(u)

∑

S1,1

E

[
|mnW (mn(u− ϑk2−k1))C(ϑk3−k2 + ϑk2−k1)C(ϑk4−k3 + ϑk3−k2)|

]

=
M1

nH2(u)

∑

S1,1

∫ ∞

0

∫ ∞

0

∫ ∞

0
|mnW (mn(u− v1))C(v2 + v1)C(v3 + v2)|

×γ(k2−k1)(v1)γ(k3−k2)(v2)γ(k4−k3)(v3)dv1dv2dv3

=
M1

H2(u)

∫ ∞

0

∫ ∞

0

∫ ∞

0
|mnW (mn(u− v1))C(v2 + v1)C(v3 + v2)|

{
× 1

n

∑

S1,1

γ(k2−k1)(v1)γ(k3−k2)(v2)γ(k4−k3)(v3)
}

dv1dv2dv3.

Now, note that

1
n

∑

S1,1

γ(k2−k1)(v1)γ(k3−k2)(v2)γ(k4−k3)(v3) ≤ H(v1)H(v2)H(v3) ≤ M3
2 .

Thus, we have

M1

nH2(u)

∑

S1,1

E
[ |mnW (mn(u− tk1 + tk2))C(tk1 − tk3)C(tk2 − tk4)|

]

≤ M1M
3
2

M2
3

∫ ∞

0

∫ ∞

0

∫ ∞

0
|mnW (mn(u− v1))C(v2 + v1)C(v3 + v2)| dv1dv2dv3.

= M4

∫ ∞

0
mn|W (mn(u− v1)) |

[ ∫ ∞

0
|C(v2 + v1)|

{∫ ∞

0
|C(v3 + v2)|dv3

}
dv2

]
dv1

≤ M5

∫ ∞

0
mn|W (mn(u− v1)) |

[ ∫ ∞

0
|C(v2 + v1)|dv2

]
dv1

≤ M6

∫ ∞

0
mn|W (mn(u− v1)) |dv1 ≤ M7,

where M4, M5, M6 and M7 are different constants.

By using similar arguments, one can establish the boundedness of

M1

nH2(u)

∑

S1,j

E
[ |mnW (mn(u− tk1 + tk2))C(tk1 − tk3)C(tk2 − tk4)|

]
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for the partitions S1,j , 2 ≤ j ≤ 22. A slightly different argument is needed for S1,23 =

{(k1, k2, k3, k4) : 1 ≤ k1 < k4 < k3 < k2 ≤ n} and S1,24 = {(k1, k2, k3, k4) : 1 ≤
k2 < k3 < k4 < k1 ≤ n}. Consider the case of S1,24. By using the transformation

ϑk4−k1 = tk4 − tk1 , ϑk3−k4 = tk3 − tk4 and ϑk2−k3 = tk2 − tk3 and using the fact that

ϑk4−k1 , ϑk3−k4 and ϑk2−k3 are independent random variables, we have

M1

nH2(u)

∑

S1,23

E
[ |mnW (mn(u− tk1 + tk2))C(tk1 − tk3)C(tk2 − tk4)|

]

=
M1

nH2(u)

∑

S1,23

E

[
|mnW (mn(u + ϑk4−k1 + ϑk3−k4 + ϑk2−k3))|

× |C(ϑk4−k1 + ϑk3−k4)C(ϑk3−k4 + ϑk2−k3)|
]

=
M1

H2(u)

∫ ∞

0

∫ ∞

0

∫ ∞

0
|mnW (mn(u + v1 + v2 + v3))C(v1 + v2)|

×|C(v2 + v3)|
{

1
n

∑

S1,23

γ(k4−k1)(v1)γ(k3−k4)(v2)γ(k2−k3)(v3)
}

dv1dv2dv3

≤ M1M
3
2

M2
3

∫ ∞

0

∫ ∞

0

∫ ∞

0
|mnW (mn(u + v1 + v2 + v3))C(v1 + v2)|

×|C(v2 + v3)|dv1dv2dv3

≤ M1M
3
2

M2
3

∫ ∞

0
mn|W

(
mn(u + v′1)

∣∣

×
[∫ ∞

0
|C(v′1 − v3)|

{∫ ∞

0
|C(v2 + v3)|dv2

}
dv3

]
dv′1

≤ M4

∫ ∞

0
mn|W

(
mn(u + v′1)

) |
[∫ ∞

0
|C(v′1 − v3)|dv3

]
dv′1

≤ M5

∫ ∞

0
mn|W

(
mn(u + v′1)

) |dv′1 ≤ M6,

where M4, M5, and M6 are different constants. The boundedness of the sum over S1,23

can be established in a similar manner.

In subsets S2,j for j = 1, . . . , 36, the summation runs over only three indices.

Consider S2,1 = {(k1, k2, k3, k4) : k1 < k2 < k3 = k4}, and the transformation

ϑk2−k1 = tk2 − tk1 and ϑk3−k2 = tk3 − tk2 . Then we have
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M1

nH2(u)

∑

S2,1

E
[ |mnW (mn(u− tk1 + tk2))C(tk1 − tk3)C(tk2 − tk4)|

]

=
M1

nH2(u)

∑

S2,1

E

[
|mnW (mn(u + ϑk2−k1))C(ϑk2−k1 + ϑk3−k2)C(ϑk3−k2)|

]

=
M1

H2(u)

∫ ∞

0

∫ ∞

0
|mnW (mn(u + v1))C(v1 + v2)C(v2)|

×
{

1
n

∑

S2,1

γ(k2−k1)(v1)γ(k3−k2)(v2)
}

dv1dv2

≤ M1

H2(u)

∫ ∞

0

∫ ∞

0
|mnW (mn(u + v1))C(v1 + v2)C(v2)|H(v1)H(v2)dv1dv2

≤ M1M
2
2 C(0)

M2
3

∫ ∞

0
mn|W (mn(u + v1)) |

{∫ ∞

0
|C(v2)|dv2

}
dv1 ≤ M4,

where M4 is a constant. A similar argument can be used to establish the boundedness

of the sums over 29 other sets of quadruples of indices with k1 6= k2. A slightly different

argument is needed in the cases of the six sets with k1 = k2. We show the calculations

for S2,31 = {(k1, k2, k3, k4) : k1 = k2 < k3 < k4}, as a representative of these six sets.

By using the transformation ϑk3−k2 = tk3 − tk2 and ϑk4−k3 = tk4 − tk3 , we have

M1

nH2(u)

∑

S2,31

E

[
|mnW (mn(u− tk1 + tk2))C(tk1 − tk3)C(tk2 − tk4)|

]

=
M1

nH2(u)

∑

S2,31

E

[
|mnW (mnu) C(ϑk3−k2)C(ϑk3−k2 + ϑk4−k3)|

]

=
M1

H2(u)
·mn|W (mnu) |

∫ ∞

0

∫ ∞

0
|C(v1)C(v1 + v2)|

×
{

1
n

∑

S2,31

γ(k3−k2)(v1)γ(k4−k3)(v2)
}

dv1dv2

≤ M1

H2(u)
·mn|W (mnu) |

∫ ∞

0

∫ ∞

0
|C(v1)C(v1 + v2)|H(v1)H(v2)dv1dv2

≤ M1M
2
2

M2
3

·mn|W (mnu) |
∫ ∞

0
|C(v1)|

{∫ ∞

0
|C(v1 + v2)|dv2

}
dv1

≤ M4 ·mn|W (mnu) |,

where M4 is a constant. For sufficiently large n (such that mn > a/d), the last expres-

sion is identically zero. The threshold a/d does not depend on u. Thus, this term is

identically zero for large n, uniformly for all u.
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Now, consider the double sums over the subsets S3,1, . . . , S3,8. We will show the

boundedness of the sums over S3,1 = {(k1, k2, k3, k4) : 1 ≤ k1 = k2 = k3 < k4 ≤ n} and

S3,2 = {(k1, k2, k3, k4) : 1 ≤ k1 < k2 = k3 = k4 ≤ n}, each case being a representative

of the calculations needed in three other cases. We proceed with the sum over S3,1 as

follows:

M1

nH2(u)

∑

S3,1

E

[
|mnW (mn(u− tk1 + tk2))C(tk1 − tk3)C(tk2 − tk4)|

]

=
M1

H2(u)

∫ ∞

0
|mnW (mnu) C(0)C(v)|

{
1
n

∑

S3,1

γ(k4−k3)(v)
}

dv

≤ M1

H2(u)
mn|W (mnu) |C(0)

∫ ∞

0
|C(v)|H(v)dv

≤ M1M2

M2
3

mn|W (mnu) |C(0)
∫ ∞

0
|C(v)| dv = M4 ×mn|W (mnu) |

for some constant M4. For sufficiently large n (such that mn > a/d), the last expression

is identically zero. The threshold a/d does not depend on u. Thus, this term is also

identically zero for large n, uniformly for all u. On the other hand,

M1

nH2(u)

∑

S3,2

E

[
|mnW (mn(u− tk1 + tk2))C(tk1 − tk3)C(tk2 − tk4)|

]

=
M1

H2(u)

∫ ∞

0
|mnW (mn(u + v))C(v)C(0)|

{
1
n

∑

S3,2

γ(k2−k1)(v)
}

dv

≤ M1

H2(u)
C2(0)

∫ ∞

0
mn |W (mn(u + v))|H(v)dv

≤ M1M2

M2
3

C2(0)
∫ ∞

0
|W (v)| dv ≤ M4

for some constant M4.

The sum over S4 does not involve any random variable, and is bounded as

M1

nH2(u)

∑

S4

E
[ |mnW (mn(u− tk1+ tk2))C(tk1− tk3)C(tk2− tk4)|

]

≤ M1

nM2
3

mnW (mnu)C2(0).

Again for large n such that mn > a/d, the upper bound happens to be identically zero.

This completes the proof. 2
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Lemma 5.2. Under the Assumptions of Theorem 5.2, the function I3(·) defined in

(5.24) is uniformly bounded from above by mn
n M , where M is a constant.

Proof of Lemma 5.2. It follows from Assumption 5.6 that I3(u) is bounded as

n

mn
|I3(u)|

≤ M1

nM2
3

n∑

k1=1

n∑

k2=1

n∑

k3=1

n∑

k4=1

E
[
mn|W (mn(u− tk1 + tk2)) |g(tk2 − tk4)g(tk3 − tk4)

]
.

A similar argument as in Lemma 5.1 shows that n
mn
|I3(u)| is bounded uniformly from

above. 2

Proof of Theorem 5.3. From (5.16), for f ∈ [−f0, f0], we have

E[φ̂nd(f)] =TE[Ĉnd(0)]+ 2T
J∑

l=1

E[Ĉnd(lT )]K(bnl) cos(2πflT )

+ 2T
n−1∑

l=J+1

E[Ĉnd(lT )]K(bnl) cos(2πflT ).

Note that the second term in the above expression is a finite sum. By using Theorem 5.1

and Assumption 5.7 and 5.8, we have

lim
n→∞E[φ̂nd(f)] = TC(0) + 2T

J∑

l=1

C(lT ) cos(2πflT )

+ lim
n→∞ 2T

n−1∑

l=J+1

E[Ĉnd(lT )]K(bnl) cos(2πflT ). (5.28)

By using the exact expectation of E(Ĉnd(lT )) for l > J , from the expression (5.18), we

have

2T
n−1∑

l=J+1

E[Ĉnd(lT )]K(bnl) cos(2πflT )

= 2T
n−1∑

l=J+1

K(bnl) cos(2πflT )
[
mnW (mnlT )C(0)

H(lT )

+
1

H(lT )

∫ ∞

−∞
W (v)C

(
lT− v

mn

){
Hn

(
lT− v

mn

)
+ Hn

(
−lT +

v

mn

)}
dv

]
.
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For sufficiently large n such that mn > a/d, we have

2T

n−1∑

l=J+1

E[Ĉnd(lT )]K(bnl) cos(2πflT )

= 2T

n−1∑

l=J+1

K(bnl) cos(2πflT )
[

1
H(lT )

∫ ∞

−∞
W (v)C

(
lT − v

mn

)

×
{

Hn

(
lT − v

mn

)
+ Hn

(
−lT +

v

mn

)}
dv

]

= 2T

∫ ∞

−∞
W (v)

[ n−1∑

l=J+1

K(bnl) cos(2πflT )
1

H(lT )
C

(
lT − v

mn

)

×
{

Hn

(
lT − v

mn

)
+ Hn

(
−lT +

v

mn

)}]
dv. (5.29)

From Assumptions 5.1, 5.2 and 5.7, the integrand of (5.29) is dominated as

|W (v)|
n−1∑

l=J+1

∣∣∣∣K(bnl) cos(2πflT )
1

H(lT )
C

(
lT − v

mn

)

×
{

Hn

(
lT − v

mn

)
+ Hn

(
−lT +

v

mn

)} ∣∣∣∣

≤ |W (v)| sup |K(·)|2M2

M3

n−1∑

l=J+1

h0

(
lT − v

mn

)

≤ |W (v)| supK(·)2M2

M3
× 2

∞∑

l=0

h0 (lT ) .

Integrability of the bounding function is ensured from Assumption 5.2. From Assump-

tions 5.4 and 5.8, we have pointwise convergence as

lim
n→∞W (v)

n−1∑

l=J+1

K(bnl) cos(2πflT )
1

H(lT )
C

(
lT− v

mn

)

×
{
Hn

(
lT− v

mn

)
+Hn

(
−lT +

v

mn

)}

= W (v)
∞∑

l=J+1

cos(2πflT )C(lT ).

By applying the DCT, we have

lim
n→∞ 2T

n−1∑

l=J+1

E[Ĉnd(lT )]K(bnl) cos(2πflT ) = 2T
∞∑

l=J+1

C(lT ) cos(2πflT ).
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From (5.28), we have

lim
n→∞E[φ̂nd(f)] = TC(0) + 2T

∞∑

l=1

C(lT ) cos(2πflT ) = φ(f).

This completes the proof. 2

Proof of Theorem 5.4. From (5.16), we have

V ar[φ̂nd(f)] ≤ 3× T 2V ar[Ĉnd(0)] + 3× 4T 2V ar

[
J∑

l=1

Ĉnd(lT )K(bnl) cos(2πflT )

]

+ 3× 4T 2V ar

[
n−1∑

l=J+1

Ĉnd(lT )K(bnl) cos(2πflT )

]
.

From Theorem 5.2, the first term on the right hand side goes to zero as n → ∞. The

second term is a constant multiple of

V ar

[
J∑

l=1

Ĉnd(lT )K(bnl) cos(2πflT )

]

=
J∑

l=1

J∑

l′=1

Cov(Ĉnd(lT ), Ĉnd(l′T ))K(bnl) cos(2πflT )K(bnl′) cos(2πfl′T ).

Observe that the above sum is over a finite number of terms. From Theorem 5.2, we

have

lim
n→∞V ar

[
J∑

l=1

Ĉnd(lT )K(bnl) cos(2πflT )

]
= 0.

Now, consider the third term. We have from Theorem 5.2

V ar

[
n−1∑

l=J+1

Ĉnd(lT )K(bnl) cos(2πflT )

]

=
n−1∑

l=J+1

n−1∑

l′=J+1

Cov(Ĉnd(lT ), Ĉnd(l′T ))K(bnl) cos(2πflT )K(bnl′) cos(2πfl′T )

≤ M ′mn

n

{
n−1∑

l=J+1

|K(bnl)|
}2

,
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where M ′ is a constant. Note that from Assumption 5.7, we have

lim
n→∞

n−1∑

l=J+1

|K(bnl)|bn ≤
∫ ∞

0
|K(v)|dv.

Thus we have, from Assumption 5.4 and 5.8A,

lim
n→∞V ar

[
n−1∑

l=J+1

Ĉnd(lT )K(bnl) cos(2πflT )

]

≤ lim
n→∞M ′mn

bn

1
nbn

∫ ∞

0
|K(v)|dv = 0.

This completes the proof. 2

5.5 Simulation study

We consider the continuous time stationary stochastic process X limited to the frequency

band [−f0, f0], sampled as per the additive random sampling scheme mentioned in Sec-

tion 4.5, where the inter-sample spacing has the exponential distribution left-truncated

at d and the mean spacing is d + θ. We assume that n consecutive samples, denoted by

X(t1), X(t2), . . . , X(tn), are available for estimation. We study the performance of the

estimator φ̂nd(·), and compare this performance with that of the Poisson sampling based

estimator ψ̂n(·) given in (1.14), regardless of the fact that Poisson sampling has not been

used. We also generate uniformly spaced samples of the same continuous time process

at the Nyquist rate when this is feasible under the constraint, and if so, compare the

performance of the above estimators with the uniform sampling based estimator φ̂ρ(·)
given in (1.12).

We continue to choose the following values of the parameters:

f0 = 1,

Ξ(z) = (1 + 1.2z)8,

σ = 1/202,

θ = 1.
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We study the performance of the estimators φ̂nd(·) and ψ̂n(·) for the choices

W (x) =





1
2 {1 + cos(πx)} if −1 ≤ x ≤ 1,

0 otherwise,

and

K(x) =





1
2 {1 + cos(πx)} if −1 ≤ x ≤ 1,

0 otherwise.

We first assume that the minimum separation between successive samples is d = 0.25.

For this value of d, uniform sampling at the Nyquist rate (which happens to be equal

to 2) is feasible. We run simulations for sample sizes n = 100 and n = 1000. For the

estimators φ̂nd(·), φ̂ρ(·) and ψ̂n(·) and both sample sizes, we use bn = 0.1. We use ρ = 2

for φ̂ρ(·). Also, for φ̂nd(·) and both sample sizes, we use Ln = 20, u1 = d + 0.25 and

u2 = 6. Finally, we use mn = 2 for n = 100 and mn = 2.5 for n = 1000.

Figure 5.1 shows the average of the estimates of φ̂nd(f), φ̂ρ(f) and ψ̂n(f) computed

from 500 Monte Carlo simulation runs, along with the true density, for f ∈ [0, f0]. In

order to highlight the inconsistency of ψ̂n(f) in the present situation, we also include in

this figure the plot of the limiting expected value of this estimator, which turns out to

be

2
∫ ∞

d
C(u) cos(2πfu)du.

The plot indicates that both φ̂nd(f) and φ̂ρ(f) converges to the true power spectral

density while ψ̂n(f) converges to the wrong function, which is not even positive over its

entire range. Figure 5.2 indicates that the MSE of the estimator φ̂nd(f) is much smaller

than that of ψ̂n(f), but larger than that of φ̂ρ(f).

We now assume that the minimum inter-sample spacing is d = 0.75. For this value of

d, uniform sampling of the process at the Nyquist rate is not feasible, and therefore we

confine our comparison to φ̂nd(·) and ψ̂n(·). We run the simulations using the parameters

as chosen in the case of d = 0.25. Figure 5.3 shows the average of the estimates of φ̂nd(f)

and ψ̂n(f) computed from 500 Monte Carlo simulation runs, along with the true density

and the limiting expected value of the estimator ψ̂n(f), for f ∈ [0, f0]. Again the plots

suggest that the ψ̂n(f) converges to the wrong function. The empirical bias of the
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Figure 5.1: Average of the estimates of φ̂nd(f), φ̂ρ(f) and ψ̂n(f) for minimum separation
d = 0.25 based on sample sizes 100 and 1000 computed from 500 Monte Carlo simulation runs,
along with True PSD and limn→∞E[ψ̂n(f)].

True PSD

φ̂nd(f) for n = 100

φ̂nd(f) for n = 1000

φ̂ρ(f) for n = 100

φ̂ρ(f) for n = 1000

ψ̂n(f) for n = 100

ψ̂n(f) for n = 1000
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Figure 5.2: Empirical MSE of φ̂nd(f), φ̂ρ(f) and ψ̂n(f) for minimum separation d = 0.25
based on sample sizes 100 and 1000 computed from 500 Monte Carlo simulation runs along with
squared True PSD.

Squared density

MSE for φ̂nd(f) for n = 100

MSE for φ̂nd(f) for n = 1000

MSE for φ̂ρ(f) for n = 100

MSE for φ̂ρ(f) for n = 1000

MSE for ψ̂n(f) for n = 100

MSE for ψ̂n(f) for n = 1000

estimator φ̂nd(f) is smaller for larger n. Figure 5.4, which shows the empirical MSE

of the two estimators along with the squared power spectral density, indicates that the

MSE of φ̂nd(f) is smaller, and it reduces with sample size, while that of ψ̂n(f) saturates

to a non-zero level, because of the bias component.

We now turn to the more challenging case of d = 1. The simulations are run
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Figure 5.3: Average of the estimates of φ̂nd(f) and ψ̂n(f) for minimum separation d = 0.75
based on sample sizes 100 and 1000 computed from 500 Monte Carlo simulation runs, along
with True PSD and limn→∞E[ψ̂n(f)].

True PSD

φ̂nd(f) for n = 100

φ̂nd(f) for n = 1000

ψ̂n(f) for n = 100

ψ̂n(f) for n = 1000
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Figure 5.4: Empirical MSE of φ̂nd(f) and ψ̂n(f) for minimum separation d = 0.75 based on
sample sizes 100 and 1000 computed from 500 Monte Carlo simulation runs along with squared
True PSD.

Squared density

MSE for φ̂nd(f) for n = 100

MSE for φ̂nd(f) for n = 1000

MSE for ψ̂n(f) for n = 100

MSE for ψ̂n(f) for n = 1000

with the parameters chosen as in the previous case. Figures 5.5 and 5.6 depict the

empirical average and the MSE, respectively, for the two estimators, computed from

500 simulation runs. Figure 5.5 indicates convergence of ψ̂n(f) to a wrong function,

which is different from the asymptotic mean curves shown in Figures 5.1 and 5.3. For

n = 100, the estimator φ̂nd(f) has larger MSE than that of ψ̂n(f) for some values of
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Figure 5.5: Average of the estimates of φ̂nd(f) and ψ̂n(f) for minimum separation d = 1 based
on sample sizes 100 and 1000 computed from 500 Monte Carlo simulation runs, along with True
PSD and limn→∞E[ψ̂n(f)].

True PSD

φ̂nd(f) for n = 100

φ̂nd(f) for n = 1000

ψ̂n(f) for n = 100

ψ̂n(f) for n = 1000
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Figure 5.6: Empirical MSE of φ̂nd(f) and ψ̂n(f) for minimum separation d = 1 based on
sample sizes 100 and 1000 computed from 500 Monte Carlo simulation runs along with squared
True PSD.

Squared density

MSE for φ̂nd(f) for n = 100

MSE for φ̂nd(f) for n = 1000

MSE for ψ̂n(f) for n = 100

MSE for ψ̂n(f) for n = 1000

f . However, for n = 1000, the MSE of φ̂nd(f) reduces sharply. On the other hand, the

MSE of ψ̂n(f) saturates to a certain positive value, determined by the asymptotic bias.

The MSE of φ̂nd(f) is seen to be larger for higher values of d. This finding can be

explained by the fact that in the case d = 1, the estimator φ̂nd(·) would involve indi-

rect estimation of two covariance parameters, C(T ) and C(2T ), as opposed to indirect
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estimation of C(T ) only in the case of d = 0.75 and no indirect estimation at all in the

case of d = 0.25. Diminishing of the set of lags suitable for direct estimation is another

reason why the estimator has poorer performance for larger values of d. In any case,

such difficulties are made up by large sample size, as is evident from the MSE of φ̂nd(f)

for n = 1000. This pattern is observed to continue for d = 2, but even higher sample

sizes are needed for satisfactory performance. These graphs are not shown here.

5.6 Summary and discussion

This chapter provides a method of consistent estimation of an arbitrarily bandlimited

power spectral density of a continuous time stationary stochastic process, under the

constraint that there has to be at least a specified amount of separation between suc-

cessive samples. The proposed nonparametric estimator is based on additive random

sampling of the underlying process subject to this practical constraint. The estimator

is the first of its kind, as its known competitors based on stochastic sampling are not

consistent, and the known competitors based on uniform sampling are consistent only

when the bandwidth of the underlying process is within the limit implied by the Nyquist

theorem. The theoretical studies and Monte Carlo simulations reported in this chapter

demonstrate that it is possible to judiciously use additive random sampling to surpass

the Nyquist limit with the help of large sample size. It also illustrates an exclusive

advantage of stochastic sampling over uniform sampling.

The constraint of a minimum separation between successive samples makes it im-

possible to estimate autocovariances at small lags directly from the data. The proposed

method circumvents this difficulty by expressing these autocovariances in terms of di-

rectly estimable autocovariances through the representation (5.7). It appears that this

indirect method of estimation leads to larger variance than in the case of direct esti-

mation. The greater the minimum separation, the larger becomes the need for indirect

estimation and the larger is the variance of the resulting spectrum estimator. The sim-

ulation results reported in Section 5.5 confirm this fact. Thus, while it is possible to

make up for the deficiency of sampling resolution through sample size, the requirement

of sample size becomes large when the resolution is poor.
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The convergence rate of MSE of an estimator is often used as a measure of perfor-

mance of the estimator. In a subsequent work, the optimal rate of convergence of the

MSE of the covariance estimator (5.15) and of the spectrum estimator (5.16) have been

established. The optimal rates of convergence for both the estimators turn out to be a

polynomial rate (see Srivastava and Sengupta (2011b) for details).
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Chapter 6

Uniform vs. Stochastic Sampling:

Present Status and Future Work

6.1 Introduction

In this thesis, we have looked at the problem of estimation of the power spectral density

of a continuous time, mean square continuous, stationary stochastic process based on

finitely many samples of the process. When one has control over the sampling mech-

anism, selection of the sampling scheme becomes an important issue. The two most

common forms of sampling are uniform and stochastic sampling. It is well known that

uniform sampling is relatively easy to implement, and the data produced from such

sampling are amenable to analysis through a rich collections of methods. On the other

hand, stochastic sampling is sometimes advocated by citing certain weaknesses of uni-

form sampling. The findings of Chapters 2–5 of this thesis should be useful in comparing

the two sampling schemes from various angles, and making an informed choice. In this

chapter, we attempt to summarize all the information relevant for this comparison,

including results that have been obtained in this thesis and those which were already

known. We also identify the gaps in the existing body of knowledge, which can be filled

through future research.

Section 6.2 contains a summary of the information available on this matter till date,

and Section 6.3 outlines the areas of possible further work.
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6.2 Uniform vs. stochastic sampling: Present status

6.2.1 Estimation of possibly non-bandlimited spectral density

It has been known for over three decades that a possibly non-bandlimited power spectral

density can be consistently estimated through stochastic sampling. Masry (1978a) gave

a recipe for constructing a consistent estimator, and Masry (1978b) made the detailed

asymptotic calculations for the estimator (1.14) based on Poisson sampling. On the

other hand, it had been wrongly argued that consistent estimation through uniform

sampling is not possible (Shapiro and Silverman, 1960; Beutler, 1970; Masry, 1978a).

The ‘shrinking asymptotic’ arguments given in Chapter 2 prove that the smoothed pe-

riodogram estimator (2.1) is actually consistent for a possibly non-bandlimited power

spectral density, under conditions that are similar to those used in proving the con-

sistency of the estimator (1.14). Moreover, the two estimators have about the same

optimal rate of convergence. The estimator (2.1) has larger bias, but smaller variance,

in comparison with the estimator (1.14). Both the estimators are asymptotically nor-

mal, subject to appropriate scaling, and can be used to construct asymptotic confidence

intervals that shrink to the true power spectral density (see Chapter 3 and Lii and

Masry (1994)).

6.2.2 Spectrum estimation with restriction on average sampling rate

A restriction on the sampling rate makes the asymptotic arguments of Chapters 2 and 3

inapplicable. Consistent estimation through uniform sampling is possible only if the

underlying power spectral density is known to have bandwidth smaller than half of the

largest permissible sampling rate. However, no such condition is necessary for stochastic

sampling. In particular, the estimator (1.14) based on Poisson sampling is consistent

and asymptotically normal, subject to appropriate scaling.

If the underlying power spectral density is suitably bandlimited so as to permit

consistent estimation through uniform sampling, then the smoothed periodogram esti-

mator (1.12) is consistent and asymptotically normal, subject to appropriate scaling. It

has the same rate of convergence as (1.14). First order calculations produce identical

constants for the bias of the two estimators, but the constant for the variance is smaller
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in the case of (1.12) (Parzen, 1957; Masry, 1978b).

6.2.3 Spectrum estimation with restriction on minimum inter-sample

spacing

If there is a restriction on the minimum spacing between successive samples, and the

underlying power spectral density is possibly non-bandlimited, then neither uniform

sampling nor point process sampling can lead to a consistent estimator. The limitation

of uniform sampling in this regard is well known (Kay, 1999), while the limitation of

point process sampling has been proved in Section 4.3.

Now suppose that the restriction on inter-sample spacing continues to be there, but

the underlying power spectral density is bandlimited. Consistent estimation through

uniform sampling is possible only if the maximum permissible rate of uniform sampling

happens to be the same as the Nyquist rate or higher. In particular, the smoothed

periodogram estimator (1.12) based on uniform sampling is consistent in such a case. On

the other hand, irrespective of the magnitude of the minimum permissible inter-sample

spacing, consistent estimation through additive random sampling is possible. Even

though the estimator (1.14) based on Poisson sampling is not feasible in this case, the

estimator (5.16) developed in Chapter 5 based on additive random sampling satisfying

Assumption 5.2 is consistent, under appropriate conditions. An empirical study (see

Section 5.6) indicates that when the permissible inter-sample spacing is smaller than

the reciprocal of the Nyquist rate (i.e., the estimator (1.12) is consistent), the MSE of

the estimator (5.16) may be larger than that of the estimator (1.12).

6.2.4 Discrete power spectral distribution: Estimation of sinusoids

We have considered in this thesis power spectral distributions that have a density.

Estmation of power spectral distributions consisting of mass at only a countable number

of points is also an important problem. In this case, the underlying process is a linear

combination of sinusoids. The locations of the point masses on the frequency axis (i.e.,

the frequencies of the sinusoids) as well as the magnitudes of those masses are to be

estimated.

Many methods based on uniform sampling have been developed for this problem.
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Usually a finite (and specified) number of sinusoids is assumed. These estimators have

the limitation that if there is a restriction on the maximum sampling rate, but the

sinusoids of the underlying process are not necessarily restricted to have frequencies

smaller than half of this maximum rate, then the estimators cannot be consistent.

Stochastic sampling can be useful in this situation. Isokawa (1983) considered the

case of a single sinusoid, proposed a general estimator based on stationary orderly point

process sampling. For this estimator, the frequency of the sinusoid is estimated by

locating the global maximum of a function that can be called an extension of the peri-

odogram for non-uniformly sampled data. The amplitude parameters are subsequently

estimated through a least square fit. This estimator, which can be generalized to the

case of multiple sinusoids in the same manner as its uniform sampling counterparts

(Walker, 1971; Hannan, 1973) are generalized, is consistent under appropriate condi-

tions, as long as the underlying sinusoid has frequency restricted to a maximum (but

possibly unknown) limit. It is also asymptotically normal, subject to appropriate scal-

ing. Restrictions on average sampling rate or minimum inter-sample spacing do not

invalidate the asymptotic results.

6.3 Uniform vs. stochastic sampling: Future work

The asymptotic arguments involving a sampling rate that goes to infinity in tune with

the sample size (‘shrinking’ asymptotics) can be useful for a number of problems re-

lated to those considered in Chapters 2 and 3. Some potential areas of application are

indicated below.

A. The results of Chapter 3, can be built upon in order to obtain asymptotic confi-

dence bands that shrink to the true power spectral density, which may possibly

be non-bandlimited.

B. One can try and establish consistency of parametric estimators of the power spec-

tral density of a continuous time process based on uniformly spaced samples.

Such asymptotic calculations may potentially be used to justify and/or fine-tune

multi-resolution methods of spectrum estimation (Eldar et al., 1997).
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C. For the problem of estimation of a power spectral distribution function arising

from a linear combination of sinusoids, the possibility of an underlying sinusoid

having arbitrarily large frequency is often avoided for technical reasons. The above

arguments can be used to remove this difficulty for estimators based on uniformly

sampled data.

Our work on stochastic sampling also gives rise to new research questions.

In Chapter 5, we have established the consistency of the estimator (5.16) based on

renewal process sampling under the constraint of a minimum spacing between successive

samples. One can look into the asymptotic distribution of this estimator under suitable

scaling. The simulation results reported in Section 5.5 indicate that the estimator

may have larger MSE than the smoothed periodogram estimator based on uniform

sampling, when the latter is feasible under the specified minimum inter-sample spacing.

Of course, the estimator (5.16) is meant to be used only where the bandwidth of the

underlying process is larger than half of the maximum rate of uniform sampling, i.e.,

when there is no competing estimator. It is not clear whether the large MSE of the

estimator (5.16), indicated by the simulation results, is due the inherent difficulty of

the estimation problem under the given constraint, or it is due to a poor strategy for

estimation. This question can be looked into.
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Appendix

The simulations reported in Sections 2.5, 3.5, 4.5 and 5.5 involve generating samples

from a continuous time AR process and a continuous time bandlimited process. Here, we

give a detailed description of the methods used to generate samples from such processes.

A.1 Generating samples from a continuous time AR pro-

cess

The spectral density (2.36) is that of an AR(4) process. A general AR(P ) process

X = {X(t), −∞ < t < ∞} having the spectral density

φ(f) = σ2
P∏

j=1

1
(2πf)2 + α2

j

can be represented in terms of stochastic integral as (Hoel et al., 1972)

X(t) =
∫ t

−∞
h(t− s)dB(s),

where {B(t), −∞ < t < ∞} is the Brownian motion with variance σ2 and h(·) is the

‘impulse response’ function given by

h(t) =
P∑

j=1

cje
−αjt1[0,∞)(t).

Here, the constants cj , j = 1, . . . , P , are solutions to the system of linear equations:

h(0) = h(1)(0) = h(2)(0) = · · · = h(P−2)(0) = 0; h(P−1)(0) = 1,

hj(0) being the jth derivative of h(·) evaluated at 0.
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In view of the above representation, we aim at simulating the process X0 =

{X0(t), 0 < t < ∞} given by

X0(t) =
∫ t

0
h(t− s)dB(s).

The process X0 is not stationary. However, as t becomes large, the variance of the

difference between the processes X and X0 becomes small. We find out the value of t

such that V ar(X0(t)−X(t)) is less than a threshold (we choose the threshold as 10−9),

and consider the path of the simulated process X0 for larger values of t.

Given the time point t0 = 0 < t1 < t2 < . . . < tn, the sampled process X0(tk) for

k = 1, 2, . . . , n can be expressed as

X0(tk+1) =
P∑

j=1

cj

{
e−αj(tk+1−tk)

∫ tk

0
e−αj(tk−s)dB(s) +

∫ tk+1

tk

e−αj(tk+1−s)dB(s)
}

=
P∑

j=1

cj

[
e−αj(tk+1−tk)

{
k∑

l=1

e−αj(tk−tl)

∫ tl

tl−1

e−αj(tl−s)dB(s)

}

+
∫ tk+1

tk

e−αj(tk+1−s)dB(s)
]

=
P∑

j=1

cj

{
k∑

l=1

e−αj(tk−tl)Tl,j + Tk+1,j

}
, (A.1)

where Tk,j =
∫ tk
tk−1

e−αj(tk−s)dB(s) for j = 1, . . . , P and k = 1, . . . , n. Note that the

random vectors Tk = (Tk,1, Tk,2, . . . , Tk,P ) for k = 1, . . . , n are independent normal. The

P -dimensional random vectors Tk have mean 0 and the covariance between Tk,j and

Tk,j′ , for j, j′ = 1, . . . , P , is

σ2

∫ tk

tk−1

∫ tk

tk−1

e−αj(tk−s1)e−αj′ (tk−s2)ds1ds2

=
σ2

αjαj′

(
1− e−αj(tk−tk−1)

)(
1− e−αj′ (tk−tk−1)

)
.

Once n samples of Tk are generated, X0(tk) for k = 1, . . . , n can be generated from (A.1).

The bivariate process described in (3.28) consists of components that are sums of

AR(1) processes, which can be generated in a similar manner.
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A.2 Generating samples from a continuous time bandlim-

ited process

The process described by the covariance function (4.22) is bandlimited. From the spec-

tral representation of a general process X having bandwidth f0 and spectral density

φ(·), we have

X(t) =
∫ f0

−f0

cos(2πft)dY1(f) +
∫ f0

−f0

sin(2πft)dY2(f), (A.2)

where Yj = {Yj(f), − f0 < f < f0} for j = 1, 2 are mutually uncorrelated, orthogonal

increment stochastic processes with mean 0 and variance given as V ar(dYj(f)) = φ(f)df

(Priestley, 1983).

Consider the process X0 = {X0(t), 0 < t < ∞} defined as

X0(t) =
m∑

k=1

cos(2πskt)
√

(sk−sk−1)Y01(sk)+
m∑

k=1

sin(2πskt)
√

(sk−sk−1)Y02(sk), (A.3)

where the frequencies s0, s1, . . . , sm form a grid satisfying the relations s0 = −f0 < s1 <

s2 < . . . < sm = f0, and Y01(sk) and Y02(sk) for k = 1, 2 . . . ,m are independent random

variables with mean 0 and variance φ(sk). Note that X0 is a stationary stochastic

process with mean 0 and

Cov(X0(u), X0(v)) =
m∑

k=1

cos(2πsku) cos(2πskv)(sk − sk−1)V ar(Y01(sk))

+
m∑

k=1

sin(2πsku) sin(2πskv)(sk − sk−1)V ar(Y02(sk))

=
m∑

k=1

cos(2πsk(u− v))(sk − sk−1)φ(sk).

Further,

lim
max(sk−sk−1)→0

Cov(X0(u), X0(v)) =
∫ f0

−f0

cos(2πf(u− v))φ(f)df = Cov(X(u), X(v)).

Thus, by choosing the grid to be sufficiently fine, the difference between the covariance

functions of X and X0 can be made arbitrary small.
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We assume that Y01(sk) and Y02(sk) for k = 1, 2 . . . , m are normal, and use (A.3) to

generate the samples of the process X0 (in lieu of X) at any time point t.
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Boston.

Beutler, F. J. (1970). Alias-free randomly timed sampling of stochastic processes. IEEE

Trans. Inf. Theory, IT-16(2):147–152.

Beutler, F. J. and Leneman, O. A. Z. (1966). The theory of stationary point processes.

Acta Math., 116(1):159–197.

Brillinger, D. R. (1972). The spectral analysis of stationary interval functions. Proc.

Sixth Berkeley Symp. Prob. Statist., 1:483–513.

Brillinger, D. R. (2001). Time Series Data Analysis and Theory. SIAM, Philadelphia.

Brockwell, P. J. and Davis, R. A. (1991). Time Series: Theory and Methods. Springer-

Verlag, New York.

Bronez, T. P. (1988). Spectral estimation of irregularly sampled multidimensional pro-

cesses by generalized prolate spheroidal sequences. IEEE Trans. Acoustics Speech

Signal Processing, 36(12):1862–1873.

Chen, H., Simpson, D. G., and Ying, Z. (2000). Infill asymptotics for a stochastic

process model with measurement error. Statist. Sinica, 10:141–156.

Constantine, A. G. and Hall, P. (1994). Characterizing surface smoothness via estima-

tion of effective fractal dimension. J. Roy. Statist. Soc. Ser. B, 56(1):97–113.
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des Séries de Polynômes. Hermann and Cie, Paris.

Lehr, M. and Lii, S. K. (1997). Wavelet spectral density estimation under irregular

sampling. Conference Record of the Thirty-First Asilomar Conference on Signals,

Systems and Computers, 2:1117–1121.

Leonov, V. and Shiryayev, A. N. (1959). On a method of calculation of semi-invariants.

Theory Probab. Appl., 4(3):319–329.

Lii, K. S. and Masry, E. (1994). Spectral estimation of continuous-time stationary

processes from random sampling. Stochastic Process. Appl., 52(1):39–64.

Lim, C. Y. and Stein, M. (2008). Properties of spatial cross-periodograms using fixed-

domain asymptotics. J. Multivariate Anal., 99(9):1962–1984.

MacDonald, G. J. F. and Ness, N. (1961). A study of the free oscillations of the earth.

J. Geophys Res., 66(8):1865–1911.

Marvasti, F. A. (2001). Nonuniform Sampling. Kluwer Plenum, New York.

Masry, E. (1978a). Alias-free sampling: An alternative conceptualization and its appli-

cations. IEEE Trans. Inf. Theory, IT-24(3):173–183.

Masry, E. (1978b). Poisson sampling and spectral estimation of continuous-time pro-

cesses. IEEE Trans. Inf. Theory, IT-24(2):173–183.



BIBLIOGRAPHY 148

Matson, P., Johnson, L., Billow, C., Miller, J., and Pu, R. (1994). Seasonal patterns and

remote spectral estimation of canopy chemistry across the oregon transect. Ecological

Applications, 4(2):280–298.

Mergelyan, S. N. (1954). Uniform approximations of functions of a complex variable.

Amer. Math. Soc. Trans. Ser. 1 Series Approximation, 3:295–291.

Mitchel, D. P. (1987). Generating antialiased images at low sampling density. Comp.

Graphics, 21(4):65–72.

Moore, M. I., Visser, A. W., and Shirtcliffe, T. L. G. (2008). Experiances with the

brillinger spectral estimator applied to simulated irregularly observed process. J.

Time Series Anal., 8(4):433–442.

Munson, D., OBrien, J., and Jenkins, W. (1983). A tomographic formulation of

spotlight-mode synthetic aperture radar. Proc. IEEE, 71(8):917–925.

Naidu, P. S. (1999). Modern Spectrum Analysis of Time Series. CRC-Press, Florida.

Nobach, H., Mller, E., and Tropea, C. (1998). Efficient estimation of power spectral

density from laser doppler anemometer data. Experiments in Fluids, 24(5–6):499–509.

Oppenheim, A. V. and Schafer, R. W. (2009). Discrete-Time Signal Processing. Pentice-

Hall, Upper Saddle River, N. J.

Ozbek, A. and Ferber, R. (2005). Multidimensional filtering of irregularly sampled

seismic data. Proceedings of the 13th European Signal Processing Conference.

Parzen, E. (1957). On consistent estimates of the spectrum of a stationary time series.

Ann. Math. Statist., 28(2):329–348.

Pillai, S. U. and Shim, T. I. (1993). Spectrum Estimation and System Identification.

Springer, New York.

Politis, D. N., Romano, J. P., and Lai, T. L. (1992). Bootstrap confidence bands for

spectra and cross-spectra. IEEE Trans. Signal Processing, 40(5):1206–1215.



149 BIBLIOGRAPHY

Priestley, M. B. (1983). Spectral Analysis and Time Series: Vol. II. Academic Press,

New York.

Ramsay, J. O., Hooker, G., and Graves, S. (2009). Functional Data Analysis with R

and Matlab. Spriger, New York.

Resnick, S. I. (1987). Extreme Values Regular Variation and Point Processes. Springer-

Verlag, New York.

Roberts, J. B. and Gaster, M. (1980). On estimation of the spectra from randomly sam-

pled signals: a method of reducing variability. Proc. Roy. Soc. Ser. A, 371(1745):235–

258.

Roughan, M. (2006). A comparision of poisson and uniform sampling for active mea-

surements. IEEE Trans. Selected Areas Communication, 24(12):2299–2312.

Rudin, W. (1987). Real and Complex Analysis. McGraw-Hill, New York.

Shannon, C. E. (1949). Comunication in presence of noise. Proc. IRE, 37:10–21.

Shapiro, H. S. and Silverman, R. A. (1960). Alias-free sampling of random noise. J.

Soc. Indust. Appl. Math, 8(2):225–248.

Shorak, G. R. and Wellner, J. A. (1986). Empirical Processes with Applications to

Statistics. John Wiley, New York.

Srivastava, R. and Sengupta, D. (2010). Consistent estimation of non-bandlimited spec-

tral density from uniformly spaced samples. IEEE Trans. Inf. Theor., 56(8):3642–

3659.

Srivastava, R. and Sengupta, D. (2011a). Asymptotic confidence intervals of spectra

and cross-spectra of continuous time processes based on uniformly spaced samples.

Technical report, ASD/2011/2.

Srivastava, R. and Sengupta, D. (2011b). Bandlimited spectrum estimation under the

constraint of a minimum inter-sample spacing. Technical report, ASD/2011/1.



BIBLIOGRAPHY 150

Srivastava, R. and Sengupta, D. (2011c). Effect of inter-sample spacing constraint on

spectrum estimation with irregular sampling. IEEE Trans. Inf. Theor., to appear.

Stein, M. L. (1995). Fixed-domain asymptotics for spatial periodograms. J. Amer.

Statist. Assoc., 90(432):1277–1288.

Stoica, P., Li, P. J., and He, H. (2009). Spectral analysis of nonuniformly sampled

data: A new approach versus the periodogram. IEEE Trans. Signal Processing, IT-

24(2):173–183.

Stoica, P. and Sandgren, N. (2006). Spectral analysis of irregularly-sampled data: Paral-

leling the regularly-sampled data approach. Digital Signal Processing, 16(6):712–734.

Swanepoel, J. W. H. and van Wyk, J. W. J. (1986). The bootstrap applied to power

spectral density function estimation. Biometrika, 73(1):135–141.

Tarczynski, A. and Allay, N. (2004). Spectral analysis of randomly sampled signals: Sup-

pression of aliasing and sampler jitter. IEEE Trans. Signal Processing, 52(12):3324–

3334.

Tummers, M. J. and Passchier, D. M. (2000). Estimation of the spectral density function

from randomly sampled lda data. 10th International Symposium on Applications of

Laser Techniques to Fluid Mechanics.

Venkataramani, R. and Bresler, Y. (2001). Optimal sub-nyquist nonuniform sam-

pling and reconstruction for multiband signals. IEEE Trans. Signal Processing,

49(10):2301–2313.

Walker, A. M. (1971). On the estimation of a harmonic component in a time series with

stationary independent residuals. Biometrika, 58(1):21–36.

Whittaker, E. T. (1915). On the functions which are represented by the expansion of

the interpolation theory. Proc. Roy. Soc. Edingburgh, Sect. A(35):181–194.

Wolf, T., Cai, Y., Kelly, P., and Gong, W. (2007). Stochastic sampling for internet

traffic measurement. Proc. of 10th IEEE Global Internet Symposium, pages 31–36.



151 BIBLIOGRAPHY

Zhang, H. and Zimmerman, D. L. (2005). Towards reconciling two asymptotic frame-

works in spatial statistics. Biometrika, 92(4):921–936.


