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Chapter 0

Introduction

In my thesis I have worked on two problems:

1. On sequences of positive integers containing no k terms in arithmetic pro-

gressions.

2. On smooth numbers in short intervals.

The first two chapters of my thesis deal with the first problem and in the rest

of the thesis I have focused on the 2nd problem.

In the first chapter of my thesis I have considered the function rk(N) for a

fixed k ≥ 3, where, by definition, rk(N) is the cardinality of a maximal subset

of N consecutive natural numbers with the property that no k terms of it are

in an Arithmetic Progression (A. P.). Obtaining ‘good’ estimates for rk(N) for

sufficiently large N is one of the most challenging problems in this area. In

section 2 of this chapter, I have listed some results on the lower and upper bounds

of rk(N). Rankin’s theorem is the best known result on the lower bound of rk(N)

and Szemerédi’s theorem is the best known result on the upper bound of rk(N). I

have presented proofs of many known results on lower bounds of rk(N) in section

3. In particular I have presented a result which is a little weaker than Rankin’s

theorem for k = 3. I have used this result in chapter 2 to work on our problem.

In section 4 of this chapter, I have presented the proofs of many known results on

the upper bounds of rk(N). In particular, I have sketched the proof of Szemerédi’s

theorem for k = 3. I could not access the proof of theorem 1.4.4 of chapter 1. The

proof that I have given is my own.

Szemerédi’s theorem is a consequence of Erdös conjecture on sequences of

positive integers containing no k terms in an A. P. I have shown this fact in

Corollary 2.2.6 of chapter 2. In Chapter 2, I have assumed the conjecture of

Erdös and obtained a very strong consequence from it.

This famous conjecture of Erdös asserts that if A is a subset of the set of all

1



Chapter 0: Introduction 2

positive integers having the property that
∑

a∈A
1
a

= ∞, then A must contain

arithmetic progressions of arbitrary length. A special case of the conjecture,

when A is the set of prime numbers, was proved by Green and Tao [GT08]. The

conjecture implies that if a subset A of the set of positive integers contains no

arithmetic progression of length k, where k ≥ 3 is a fixed integer, then the sum∑
a∈A

1
a

must converge. One may ask whether the above sum can be arbitrarily

large as the sets A vary. Our first theorem of this chapter answers the question

in the negative.

Joseph L. Gerver [Ger77] considered the set Sp, given by the sequence {an},
where a1 = 1 and for n ≥ 1, an+1 is the smallest positive integer bigger than

an such that no p elements of a1, a2, · · · , an+1 lie in arithmetic progression. He

guessed in that paper that for any prime p, the set Sp may indeed maximize the

sum of the reciprocals of the elements of a set of positive integers having no p terms

in arithmetic progression. On the other hand Joseph L. Gerver and L.Thomas

Ramsey [GR79] showed heuristically that the set Sp does not maximize the above

sum for the composite p. A corollary to our second theorem in this chapter

says that the Erdös conjecture implies the existence of a set of positive integers

containing no p terms in arithmetic progression which maximizes the above sum.

That is, not only the sum of reciprocals is bounded above, the supremum of the

sums is actually achieved! This is the main result of section 2 in this chapter. The

result is consequence of the fact that a continuous function on a compact space

achieves its supremum.

In section 3 of this chapter, we have shown that, contrary to Gerver’s specula-

tion, the above greedy algorithm does not produce the sequence that maximizes

the sum by showing the existence of a ‘better’ sequence. This is where Rankin’s

theorem has been used. In section 4 of this chapter, we have considered Graham’s

conjecture, a multidimensional version of the Erdös conjecture. In this section we

have proved theorems analogous to those in section 2.

The last three chapters deal with the second problem. In chapter 3, I have

presented some preliminary results on the topics on distribution of smooth num-

bers. A positive integer n is called y-smooth if all the prime factors p of n are

smaller than or equal to y. An important problem is to count y-smooth numbers

up to x. This number is denoted by Ψ(x, y). Smooth numbers have applications

to both theoretical and applicable parts of number theory. For example, Lenstra’s

celebrated method of factoring large integers using elliptic curves relies in a crucial

way on the existence of smooth numbers in short intervals. In this context, a well-

known conjecture (see, for example [Gra00] , [FG93] ) predicts that there exist,
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for any α > 0, Xα-smooth numbers in intervals (X, X +
√

X] for all sufficiently

large X. This is the problem I have worked on. In Chapter 5, we present a proof

of this conjecture under an assumption weaker than the Lindelöf hypothesis. In

fact we can take the interval to be a little bit shorter than
√

X.

In section 2 of chapter 3, we have obtained bounds for Ψ(x, y) with several

known methods: Elementary Combinatorics Method, Geometric (Lattice Points)

Method, Rankin’s Upper Bound Method, Using Functional Equation: Buchstab

Identity, Hildebrand Identity, The Saddle point Method etc. These methods give

the following asymptotic result Ψ(x, y) ∼ ρ(u)x, u = log X
log Y

, (in a wider range of

x, y) where ρ(u) is a function of u. This function is called Dickman ρ-function.

In section 3 of this chapter, we have studied the Dickman function ρ. In section

4, we have listed some known results on smooth numbers in short intervals.

To work further on smooth numbers in short intervals we have applied the ζ

function technique initiated by Balog [Balo87] and continued, among others, by

Xuan [Xuan99]. Outcome of this method depends on bounds of the particular

Dirichlet series we are using (in our case, the Riemann zeta function). Thus, in

chapter 4, we have been led to study the Riemann ζ function in the critical strip.

I have been unable to improve upon the best known result unconditionally but

various improvements have been obtained under several widely believed hypothe-

ses. While studying the ζ function, I found some results on the distribution of

the non-trivial zeros of ζ function and the bounds of ζ and ζ′

ζ
near the critical

line under different hypotheses that I could not locate in the literature. We have

calculated number of zeros of the ζ function on the critical line in the intervals

(T, T + f(T )], where f(T ) = 1
log log T

or 1
log T

, under the Riemann Hypothesis and

the Montgomery conjecture. Using these results we have got bounds of ζ′(σ+it)
ζ(σ+it)

uniformly for 1/2 + 1
log log t

≤ σ ≤ σ1 < 1 and 1/2 + 1
log t

≤ σ ≤ σ1 < 1 respec-

tively. We have also proved some results on the bounds of the ζ function on the

line σ = 1/2 in section 2 of chapter 5. In chapter 5, we have also given a brief

description of Lenstra’s elliptic curve method of factoring large integers which is

an important application of the conjecture mentioned above.

Finally we have proved our main theorem under an assumption weaker than

the Lindelöf Hypothesis : If ζ(1/2 + it) � tα/2+o(1) then there is a Xα-smooth

number in the interval (X, X + (log X)−1/2+o(1)
√

X] for all sufficiently large X.
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Chapter 1

Sequences of positive integers

containing no k terms in an A. P.

I

1.1 Introduction.

In 1926, B.L. van der Waerden [Wae28] proved the following wonderful theorem:

If the set of all integers is partitioned into two classes then at least one class

contains arbitrarily long arithmetic progressions. It is obvious that neither class

must contain an infinite arithmetic progression. In fact, It is easy to see that

for any sequence {an} there is another sequence {bn}, with bn ≥ an, which con-

tains no arithmetic progression of three terms, but which intersects every infinite

arithmetic progression. The finite form of van der Waerden’s theorem goes as

follows : Let l be a positive integer. Then for each positive integer n, there ex-

ists a least positive integer f(n, l) with the property that if the integers from 1

to f(n, l) are partitioned into l classes, then at least one class contains an arith-

metic progression of n terms. For a short proof, see the note of Graham and

Rothschild [GR74]. However, the best upper bound on f(n, l) known at present is

extremely poor. The best lower bound known, due to Berklemp [Ber68], asserts

that f(n)
.
= f(n, 3) > n2n, which improves previous results of Erdös, Rado and

W. Schmidt.

In 1936, Erdös and Turán [ET36] considered the quantity rk(N), defined to be

the maximum number of positive integers not exceeding N containing no k terms

in arithmetic progression. They were led to the investigation of rk(N) by several

problems. First of all the problem of estimating rk(N) is by itself interesting.

Secondly, a good upper bound on rk(N) will improve the poor upper bound on

5
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f(n, l). Finally, the estimate rk(N) < π(N) will imply a famous conjecture (now

a theorem due to B. Green and T. Tao [GT08]) in number theory that says there

are arbitrarily long arithmetic progressions of prime numbers. This conjecture is

a particular case of a conjecture of Erdös [UL75]: If the sum of the reciprocals

of a set of positive integers is infinite then it contains arbitrarily long arithmetic

progressions.

The problem of finding the bounds of rk(N) for all k ≥ 3 or for some specific

values of k have been studied by several authors. Clearly the case k = 2 is quite

trivial. In this chapter we shall study some of those bounds on rk(N). Let us

denote r3(N) by r(N). We define the size(k) of the set of positive integers not

exceeding N by rk(N). Notice that the size(k) of an arithmetic progression with

N terms is also rk(N).

1.2 Results on bounds of size functions.

In this section we shall discuss the known results on the bounds of the size func-

tions. We shall prove some of these results in the next two sections.

G. Szekeres conjectured that r{(3n + 1)/2} = 2n and this was proved [ET36]

for n < 5. This will imply

r(N) < cN
log 2
log 3

for some fixed c > 0.

More generally, he conjectured that for any n and for any prime p,

rp

(
(p− 2)pn + 1

p− 1

)
= (p− 1)n.

An immediate consequence of this conjecture will be that for every n, there is

an infinity of n combinations of primes forming an arithmetic progression. That

is there are infinitely many arithmetic progressions of primes of arbitrary length.

Moreover, it will give a new proof of van der Waerden’s theorem with the

better upper bound for f(n, l) in any of the previous proofs, viz,

f(n, l) < ncn log l.

But this conjecture was proved to be false by Salem and Spencer [SS42] who
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showed that for every ε > 0 and sufficiently large N,

r(N) > N1− (log 2+ε)
log log N . (1.2.1)

This upper bound of r(N) was improved by Behrend [Beh46] who proved that

for every ε > 0 and sufficiently large N,

r(N) > N
1− (2

√
2 log 2+ε)√
log N . (1.2.2)

We shall prove both these results in the next section.

For k ≥ 3 let Ak be a set of positive integers no k terms of which are in an

arithmetical progression. In the foregoing discussion, let us denote A3 by A.

In Behrend’s method, the set A depends upon N , i.e., the set used for N =

10000 might be quite different from that for N = 10001, 10002 etc.. Moreover the

argument in Behrend’s method makes use of the pigeonhole principle and hence

is not constructive. Moser [Mos53] constructed an infinite sequence with no three

terms in an arithmetic progression, and which yields, for N sufficiently large,

r(N) > N
1− c√

log N (1.2.3)

where c > 0 is a fixed constant. Rankin [Ran60] constructed sets of positive

integers no k terms of which are in an arithmetic progression, and which gives,

for every ε > 0, and for N sufficiently large,

rk(N) > N exp{−c(1 + ε)(log N)
1

1+log k } (1.2.4)

for some c > 0. This improves Behrend’s corresponding inequalities for k > 4.

In the other direction, in 1936, P. Erdös and P. Turán [ET36] proved, if N ≥ 8,

r(2N) ≤ N. (1.2.5)

They also noted that the result is true for N = 4, 5, 6, but not for N = 7 as no

three terms of 1, 2, 4, 5, 10, 11, 13, 14 are in arithmetic progression and hence

r(14) = 8 > 7. In the same paper they improved it by proving that for each ε > 0

there exists a positive integer N0(ε) such that

r(N) < (
4

9
+ ε)N, (1.2.6)
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for all N ≥ N0(ε). In the same paper they again improved this result to

r(N) < (
3

8
+ ε)N, (1.2.7)

for all ε > 0 and N > N0(ε) and made the following conjecture:

r(N) = o(N), (1.2.8)

as N →∞.

The notation f(x) = o(g(x)) as x → a, for finite a (resp. as x → ∞ or −∞)

means f(x)
g(x)

→ 0 as x → a (resp. as x →∞ or −∞).

In 1953, Leo Moser [Mos53] proved that, for all N ≥ 1,

r(N) <
2

5
N + 3. (1.2.9)

In the same paper he also proved with little complicated combinatorial arguments

that, for all N ≥ 1,

r(N) <
4

11
N + 5. (1.2.10)

We shall sketch the proofs of some of these results in section 4.

P. Erdös and P.Turán [ET36] observed, for k ≥ 3

rk(M + N) ≤ rk(M) + rk(N) (1.2.11)

from which it follows by a simple argument that

lim
N→∞

rk(N)

N
= ck (1.2.12)

exists. Erdös and Turán conjectured [ET36] that ck = 0 for all k ≥ 3. In 1938

Behrend [Beh38] proved that either ck = 0 for all k, or limk→∞ ck = 1.

The first satisfactory upper bound for r(N) was due to K. F. Roth [Rot53]

who proved the conjecture (1.2.8) by proving that

r(N) = O(
N

log log N
). (1.2.13)

The notation f(x) = O(g(x)) or f(x) � g(x) as x → a (resp. x →∞) means that

there is a constant c > 0 such that |f(x)| ≤ c|g(x)| for all x in an open interval

containing a (resp. for all sufficiently large positive x).

In 1967, E. Szemerédi [Sze68] proved that c4 = 0 i.e. r4(N) = o(N). The
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proof used the general theorem of van der Waerden. K. F. Roth [Rot70,Rot72]

later gave an analytic proof for the result r4(N) = o(N) in which he did not use

van der Waerden’s theorem.

Finally in 1975, E. Szemerédi [Sze75] proved that rk(N) = o(N) for which he

used deep combinatorial results such as Szemerédi’s uniformity lemma. In 1998,

Gowers [Gow98, Gow01] extended the Fourier-analytic style of Roth’s argument

to k = 4, and then finally in 2001, to all k.

We shall sketch only the proof of the result r(N) = o(N) due to Roth in

section 4 and we refer to the original papers for the details of the proofs.

1.3 Results on lower bounds of size functions.

In this section we shall prove some known results on the lower bounds of the size

functions discussed in the previous section.

First we prove the lower bound on r(N) due to Salem and Spencer [SS42].

Theorem 1.3.1. For every ε > 0, there is a positive integer N0(ε) such that

r(N) > N1− log 2+ε
log log N

for all N > N0.

Proof. Let d ≥ 3 be an integer and n be another integer divisible by d. Let S(d, n)

be the set of all integers of the form

A = a0 + a1(2d− 1) + a2(2d− 1)2 + · · ·+ an−1(2d− 1)n−1

where the “coefficients” ai are integers with the condition that exactly n/d coeffi-

cients are equal to 0, exactly n/d coefficients are equal to 1, exactly n/d coefficients

are equal to 2, etc. . . ., and exactly n/d coefficients are equal to d − 1. Thus all

the integers in S(d, n) are distinct and

# (S(d, n)) =
n!

(n/d)!
. (1.3.1)

Here #(S) denotes the number of elements of the set S. Also, for all A ∈ S(d, n)

we have

A < (2d− 1)n. (1.3.2)
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First we shall prove that no three elements of S(d, n) are in an arithmetic progres-

sion. Suppose that A, B, C ∈ S(d, n) and that A + C = 2B. Let ai, bi, ci be the

coefficients of (2d− 1)i in the (2d− 1)-ary expansions of A, B, C respectively. We

shall prove that ai = ci = bi for all i. Since ai + ci ≤ 2d− 2 and 2bi ≤ 2d− 2, the

equality A+C = 2B implies ai +ci = 2bi for all i = 0, 1, . . . , n−1. We shall prove

by induction on m, 0 ≤ m ≤ d − 1, that the n/d coefficients equal to m occupy

the same places in A, B and C. This will prove that A = B = C. Now there are

in B exactly n/d coefficients equal to 0, and if bk = 0 then ak = ck = 0; i.e., the

n/d coefficients equal to 0 occupy the same places in A, C and B. Next there are,

in B, exactly n/d coefficients equal to 1, and if bl = 1, then as al 6= 0 and cl 6= 0,

the equality al + cl = 2bl implies al = cl = 1 = bl; i.e., n/d coefficients equal to

1 occupy the same places in A, C,B. Therefore, the result is true for m = 0, 1.

This is the base case of the induction. Let us assume the result for some m − 1,

1 ≤ m ≤ d− 1. Now if bh = m and ah, ch are different from 0, 1, · · · , m− 1, then

ah = ch = m = bh as ah + ch = 2bh. Hence the n/d coefficients equal to m occupy

the same places in A, B and C. This completes the induction and we have proved

that A=B=C. This proves that no three distinct elements of S(d, n) in arithmetic

progression.

Now if n and n/d are large enough, then by (1.3.1) and using the Stirling’s

formula, we have,

# (S(d, n)) >
nn
√

2πne−n

[(n/d)n/d
√

2π(n/d)e−n/d]d
1

Kd
,

K being a constant (as close to 1 as we want). Therefore,

# (S(d, n)) > (d/θn)d/2dn, (1.3.3)

θ being a constant (as close to 2π as we want).

Let us now fix an N and let us choose d such that

(2d− 1)dω(d) ≤ N < (2d + 1)(d+1)ω(d+1), (1.3.4)

where ω(d) is an integer increasing to infinity with d such that ω(d)
log d

→ ∞ but
log ω(d)

log d
→ 0 as d → ∞. For example, we may take ω(d) = [(log d)(log log d)].

(Here and in what follows, by [x] we mean the largest integer ≤ x). Now we
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construct the set S(d, n) with n = dω(d). We have by (1.3.2), (1.3.3) and (1.3.4)

r(N) ≥ r[(2d− 1)dω(d)] ≥ # (S(d, n)) >

(
1

θω(d)

)d/2

ddω(d).

Therefore,

r(N)

N
>

(
1

θω(d)

)d/2
ddω(d)

(2d + 1)(d+1)ω(d+1)
.

Now, as N →∞, d →∞, and

log

(
N

r(N)

)
< (d + 1)ω(d + 1) log(2d + 1)− dω(d) log(d) +

d

2
log ω(d) +

d

2
log θ = dω(d)[log 2 + o(1)], (1.3.5)

if we assume, as in our example, ω(d) increases regularly enough to have ω(d +

1)− ω(d) = o(1). By (1.3.4)

log N ≥ dω(d) log(2d− 1)

log log N < log(d + 1) + log ω(d + 1) + log log(2d + 1)

and so
log N

log log N
> dω(d)[1 + o(1)]. (1.3.6)

Now, by (1.3.5) and (1.3.6), it follows that, as N →∞

r(N) > N1− log 2+ε
log log N

for every ε > 0 which proves the theorem.

Now we shall prove a theorem which gives a better lower bound for r(N). This

is due to F. A. Behrend [Beh46].

Theorem 1.3.2. For each ε > 0 there is a positive integer N0(ε) such that

r(N) > N
1− 2

√
2 log 2+ε√
log N

for all N ≥ N0(ε).

Proof. The main idea behind Behrend’s proof is that in any Euclidean space Rd,

a sphere {x ∈ Rd : ‖x‖ = r} cannot contain a proper arithmetic progression of



Chapter 1: Sequences of positive integers containing no k terms in an A. P. I 12

length 3. For d ≥ 2, n ≥ 2 and k ≤ n(d − 1)2 consider the set Sk(d, n) of all

numbers of the form

A = a0 + a1(2d− 1) + a2(2d− 1)2 + · · ·+ an−1(2d− 1)n−1

where the coefficients ai are integers subject to the following conditions

0 ≤ ai < d. (1.3.7)

(normA)2 = k (1.3.8)

where

normA =
√

a2
0 + a2

1 + · · ·+ a2
n−1.

Therefore, this is a subset of an n dimensional sphere. Let us prove that no three

members of this set are in arithmetical progression. Suppose A, B, C are in this

set and A + C = 2B. Therefore normA = normB = normC. Also,

norm(A + C) = norm(2B) = 2
√

k

and

normA + normC = 2
√

k.

Thus, the triangle inequality

norm(A + C) ≤ normA + normC

is actually an equality. This is only possible if (a0, a1, . . . , an−1) and (c0, c1, . . . , cn−1)

are proportional and in fact, since their norms are equal, identical, i.e., if

A = C = B. There are dn different systems (a0, a1, . . . , an−1) satisfying (1.3.7)

and n(d− 1)2 + 1 possible values of k; hence for some k, Sk(d, n) must contain at

least

dn

n(d− 1)2 + 1
>

dn−2

n

terms; since all these terms are < (2d− 1)n we have

r((2d− 1)n) >
dn−2

n
.
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Now let N be given; choose n =
[√

2 log N
log 2

]
, and d such that

(2d− 1)n ≤ N < (2d + 1)n.

Here for x, a real number, [x] is the greatest integer ≤ x. Thus,

r(N) ≥ r((2d− 1)n) >
dn−2

n
>

(N1/n − 1)n−2

n2n−2
=

N1−2/n

n2n−2
(1−N−1/n)n−2,

and for all sufficiently large N,

r(N) >
N1−2/n

n2n−2
= N1− 2

n
− log n

log N
− (n−1) log 2

log N > N
1− 2

√
2 log 2+ε√
log N

for any ε > 0. This proves the theorem.

Now let us describe the Leo Moser construction [Mos53].

Theorem 1.3.3. We can construct an infinite sequence R, no three of which are

in an arithmetical progression, and if r∗(N) denotes number of elements in R not

exceeding N , then

r∗(N) > N
1− c√

log N

for some c > 0.

Proof. Given a positive integer x, written in denary (i.e., expanded in base 10)

form, we enclose x in a set of parentheses, putting the first digit (counting from

the right to the left) in the first parenthesis, the next two digits in the next one,

the next three digits in the one after that, and so on. If the last non-empty

parenthesis (the one farthest to the left which does not consist entirely of zeros)

does not have a maximal number of digits, we fill it with zeros. For example, we

write the number A = 125270890123400 as A = (12527)(0890)(123)(40)(0).

Now suppose that the rth parenthesis in x contains non-zero digits, but all

further parentheses to the left contain zeros. Let xi be the number represented

by the digits in the ith parenthesis, for i = 1, 2, . . . , r − 2. Further, let x be the

number represented by the digits in the last two parentheses of x taken together,

but excluding the last digit. In our example, A1 = 0, A2 = 40, A3 = 123, A4 =

0890, A5 = 12527 and A = 25270890. Now our R consists a number x if it satisfies

the following conditions:

1. The last digit of x must be 1.
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2. xi must begin with 0 for i = 1, 2, . . . , r − 2.

3. We must have

r−2∑
i=1

x2
i = x.

Let us first prove that no three terms of R are in arithmetical progression. Note

that if two elements of R have different number of non-empty parentheses then

their arithmetic mean cannot satisfy condition 1 and hence cannot be in R. Thus

we need to consider two elements x, y in R having the same number of parentheses.

We shall prove that z = x+y
2

is not in R by showing that z does not satisfy

condition 3. Since x, y are in R,

z =
x + y

2
=

r−2∑
i=1

x2
i + y2

i

2
.

On the other hand z is in R implies

z =
r−2∑
i=1

z2
i =

r−2∑
i=1

(
xi + yi

2
)2.

Hence if z is in R then

r−2∑
i=1

x2
i + y2

i

2
=

r−2∑
i=1

(
xi + yi

2
)2.

Thus

r−2∑
i=1

(
xi − yi

2
)2 = 0,

which implies xi = yi for i = 1, 2, . . . , r−2. This together with condition 1 implies

that x and y are not distinct.

We now estimate how many integers in R contain exactly r parentheses.

Among the r parentheses, we can make the first digit in each of first (r − 2)

parentheses 0. We then fill up the first (r − 2) parentheses arbitrarily. This can

be done in

100+1+2+···+(r−3) = 10
1
2
(r−2)(r−3)
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ways. The last two parentheses can then be filled up in such way as to satisfy

conditions (1) and (3). In this case we only need to check that the last two

parentheses should not be overfilled, and that the last digit, which we set equal

to 1, is not interfered with. This follows from the fact that we have 2r− 2 choices

in the last two parentheses other than the last digit and the sum of squares of the

numbers in the first (r − 2) parentheses satisfies

≤ (101)2 + (102)2 + · · ·+ (10r−2)2 < 102r−2.

Now for a given N let r be the positive integer such that

10
1
2
r(r+1) ≤ N < 10

1
2
(r+1)(r+2). (1.3.9)

Since all the integers with at most r parentheses will not exceed N , and since

r parentheses can be filled up at least 10
1
2
(r−2)(r−3) ways, we have, by the right-

hand inequality in (1.3.9),

r∗(N) ≥ 10
1
2
(r−2)(r−3) > 10log N−9

√
2 log N > N1−c/

√
logN .

This proves the theorem.

In 1961, R. A. Rankin [Ran60] found a lower bound for rk(N) for sufficiently

large N . We get Behrend’s result as a particular case of this result for k = 3.

We note that if no three terms of a set A of positive integers are in arithmetical

progression then no k ≥ 3 terms of the set A are in arithmetical progression.

Hence, for every ε > 0 and for some positive integer N0(ε), we have

rk(N) ≥ r(N) > N
1− 2

√
2 log 2+ε√
log N

> N exp{−2(2 log 2)
1
2 (1 + ε)(log N)

1
2}

for all N > N0(ε).

Rankin found a better lower bound for rk(N) and in greater generality. Let

us state the result for the lower bound of rk(N) and we refer to his paper [Ran60]

for the proof.

Theorem 1.3.4. (R. A. Rankin). Let k > 2m, where m is a positive integer.

Let c = (m + 1)2m/2(log 2)
m

m+1 and let ε be positive. Then there exists a positive

real number N0(ε) depending on ε and m such that for each N > N0(ε), we can

construct a set A ⊆ {1, 2, . . . , [N ]}, no k terms of which are in an arithmetical
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progression, with

#(A) > N exp{−c(1 + ε)(log N)
1

1+m}.

Therefore,

rk(N) > N exp{−c(1 + ε)(log N)
1

1+m}.

In particular, if k = 3 then m = 1 and we get Behrend’s result. For k = 4

the same lower bound for r4(N) holds as m = 1 in this case. But for k = 5 we

get a larger lower bound, since we can take m = 2. Thus it improves upon and

generalizes Behrend’s result.

1.4 Results on upper bounds of size functions.

In this section we shall sketch proofs of some known results on the upper bounds

on size functions.

Let us start with the results of P. Erdös and P. Turán [ET36].

Theorem 1.4.1. r(2N) ≤ N if N ≥ 8.

Theorem 1.4.2. For ε > 0, there exists a positive integer N0(ε) such that for all

N > N0(ε) we have,

r(N) < (
4

9
+ ε)N.

Theorem 1.4.3. For ε > o, there exists a positive integer N0(ε) such that for all

N > N0(ε) we have,

r(N) < (
3

8
+ ε)N.

Proof. The basic observation by P. Erdös and P. Turán [ET36] is that

r(M + N) ≤ r(M) + r(N), (1.4.1)

for all positive integers M and N . Hence for all N ≥ 1 we have,

r(2N) ≤ 2r(N). (1.4.2)

Next the proofs proceed by induction on N . They prove theorem 1.4.1 by showing

that r(2N) ≤ N for N = 8, 9, 10, 11 with elementary arguments and theorem 1.4.2
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by showing r(2k +2k−3−1) ≤ 2k−1 for all k ≥ 4 with elementary arguments. With

the similar short of arguments one can prove the theorem 1.4.3.

More generally it is easy to observe that, for all M, N ≥ 1 we have,

rk(M + N) ≤ rk(M) + rk(N). (1.4.3)

We shall prove the following theorem for each k ≥ 3. I could not access the

proof of the theorem in the literature. So I have given my own proof below.

Theorem 1.4.4. There is non-negative number ck ≤ 1 such that

lim
N→∞

rk(N)

N
= ck.

Proof. Let k ≥ 3 be a fixed integer. Define ak(N), for N ≥ 1, by

ak(N) =
rk(N)

N
. (1.4.4)

and let Ak(N) = Ak

⋂
[1, N ], (1.4.5)

for any set Ak of positive integers containing no k terms in arithmetic progression.

For any two positive integers M and N , we have

# (Ak(M + N)) ≤ # (Ak(M)) + # (Ak(N)) .

Thus

# (Ak(MN)) ≤ M# (Ak(N)) (1.4.6)

and

# (Ak(M)) ≤ #

(
Ak

{([
M

N

]
+ 1

)
N

})
≤ M + N

N
# (Ak(N)) . (1.4.7)

Hence,

ak(MN) ≤ ak(N), (1.4.8)

ak(M) ≤
(

1 +
N

M

)
ak(N). (1.4.9)

Finally we have trivial inequality

1

M
≤ ak(M) ≤ 1. (1.4.10)
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Let l ≥ 2 be a positive integer. Then by (1.4.8), {ak(l
t)}t≥0 is a decreasing

sequence which is bounded bellow and hence converges to ck ≥ 0 (say). Now for

every subsequence {xn}n≥0 of the sequence of all natural numbers we can find a

further subsequence {xnm}m≥0 such tha l2t < xnm ≤ l3t for some t ≥ 1. Now by

(1.4.9) we have

ak (xnm) ≤
(

1 +
lt

xnm

)
ak(l

t) <

(
1 +

1

lt

)
ak(l

t).

and hence

ak(l
4t) ≤

(
1 +

xnm

l4t

)
ak (xnm) ≤

(
1 +

1

lt

)2

ak(l
t). (1.4.11)

Now taking limit as m →∞ in (1.4.11) we have

lim
m→∞

ak (xnm) = ck.

Thus every subsequence of the sequence {ak(N)} has a further subsequence which

converges to ck. Hence the sequence {ak(N)} converges to ck, proving the theorem.

P. Erdös and P. Turán [ET36] made the conjecture that ck = 0 for all k ≥ 3.

A few years later, in 1938, Behrend [Beh38] proved that.

Theorem 1.4.5. Either ck = 0 for every k ≥ 3 or limk→∞ ck = 0.

For the proof of this theorem we refer to his paper [Beh38].

In 1953, Leo Moser [Mos53] proved the following theorems on upper bound of

r(N).

Theorem 1.4.6. For all N ≥ 1 we have

r(N) <
2

5
N + 3.

Theorem 1.4.7. For all N ≥ 1 we have

r(N) <
4

11
N + 3.

The proofs are not quite difficult and we refer to his original paper [Mos53]

for the proof. One should note here that these two theorems hold for all N ≥ 1.

In 1952, K. F. Roth [Rot53] proved the following theorem.

Theorem 1.4.8. r(N) = O( N
log log N

). i.e., a(N) = 1
log log N

.
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Below we shall sketch the proof of the theorem. For the details of the proof

we refer to the original paper of K. F. Roth [Rot53].

Let x and y be any two positive integers. Then we have the following obvious

facts.

# (A(x)) is also the greatest number of integers that can be selected from x

consecutive terms of an arithmetic progression containing no 3 terms in arithmeti-

cal progression.

# (A(x + y)) ≤ # (A(x)) + # (A(y)) , # (A(xy)) ≤ x# (A(y))

# (A(x)) ≤ #

(
A

({[
x

y

]
+ 1

}
y

))
≤ x + y

y
# (A(y)) .

a(xy) ≤ a(y), (1.4.12)

a(x) ≤ (1 + yx−1)a(y), (1.4.13)

x−1 ≤ a(x) ≤ 1. (1.4.14)

These follow from (1.4.8),(1.4.9), and (1.4.10) by setting r = 3.

Let u1, u2, . . . , uU be U elements from 1, 2, . . . ,M containing no three terms

in an arithmetic progression. We consider the exponential sum

S =
U∑

k=1

e(αuk) [e(θ) = e2πiθ],

where α is a real number. For each α, there exist two positive integers h and q

such that

α =
h

q
+ β, (h, q) = 1, q ≤ M

1
2 , q|β| ≤ M− 1

2 . (1.4.15)

Here the notation (h, q) means the greatest common divisor of h and q and |β|
denotes the absolute value of β. Now, assume m < M , and put

S ′ = a(m)q−1

(
q∑

l=1

e

(
rh

q

))( M∑
n=1

e(βn)

)
,

(so that S ′ = 0 if q > 1). Then he proved that

|S − S ′| < Ma(m)− U + O(mM
1
2 ). (1.4.16)

Next he used the Hardy-Littlewood method to obtain a functional inequality
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for the function a(x). Let m be an even integer, 2N = m4, and let u1, u2, . . . , uU

be a maximal subset of 1, 2, . . . , 2N containing no three terms in an arithmetic

progression, so that U = # (A(2N)). Let 2v1, 2v2, . . . , 2vV be the even integers

among uk. Therefore, by the definition of a(x), we have,

U = 2Na(2N). (1.4.17)

Also by (1.4.12), we have,

U ≤ 2Na(m), V ≤ # (A(N)) ≤ Na(m). (1.4.18)

Since the number of odd integers among the uk does not exceed # (A(N)), we

have, by (1.4.12),

V ≥ # (A(2N))−# (A(N)) ≥ 2Na(2N)−Na(m). (1.4.19)

We define

f1(α) =
U∑

k=1

e(αuk), f2(α) =
V∑

k=1

e(αvk);

F1(α) = a(m)
2N∑
n=1

e(αn), F2(α) = a(m)
N∑

n=1

e(αn).

By (1.4.18), we have

fj(α) = O(Na(m)), Fj(α) = O(Na(m)); j = 1, 2. (1.4.20)

Then he proved that, for any α,

fj(α)− Fj(α) = O
(
N {a(m)− a(2N)}+ N

3
4

)
; j = 1, 2. (1.4.21)

He proved (1.4.21) using

Fj(α) = O(N
3
4 ),

which follows from the fact that for any α,

M∑
n=1

e(αn) = O(‖α‖−1), (1.4.22)
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where ‖α‖ denotes the distance of α from the nearest integer.

Finally, by (1.4.21) and (1.4.22), if 0 < η < α < 1− η we have

f1(α) = O
(
a(m)η−1 + {a(m)− a(2N)}+ N

3
4

)
. (1.4.23)

Then by following the method of Hardy and Littlewood and supposing that

0 < η = η(m) <
1

2
. (1.4.24)

he proved

a2(m) = O
(
a2(m)N−2η−2

)
+ O

(
a(m)N−1η−1

)
+ O

(
{ηNa(m) + 1}{a(m)− a(2N) + N− 1

4}
)

(1.4.25)

Hence writing

δ = (Nη)−1, (1.4.26)

we obtain, noting 2N = m4,

a2(m) < c1

{
a(m)δ + a2(m)δ2 +

(
δ−1a(m) + 1

) (
a(m)− a(m4) + m−1

)}
.

(1.4.27)

Here δ = δ(m) is subject only to the restriction implied by (1.4.24). We now write

m = 24x
, b(x) = a(m), so that (1.4.27) becomes

b2(x) < c1

{
b(x)δ + b2(x)δ2 +

(
δ−1b(x) + 1

) (
b(x)− b(x + 1) + 2−4x)}

. (1.4.28)

Then using (1.4.12), (1.4.14),(1.4.13) and (1.4.28) he proved

b(2i) = O(2−i);

and hence, since b(x) is monotonically decreasing function,

b(x) = O(x−1). (1.4.29)

Finally, corresponding to any large integer y we may choose x to satisfy

24x

< y ≤ 24x+1

.
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Then, by (1.4.13), we have

a(y) ≤ 2a(24x

) = 2b(x),

so that (1.4.29) implies the theorem. In 1969, E. Szemerédi [Sze68] proved that

c4 = 0 and in 1975 he [Sze68] proved that ck = 0 for all k ≥ 3. His result is one

of the most celebrated theorems in combinatorics.

Theorem 1.4.9. We have rk(N) = o(N) i.e. ck = 0 for any fixed k ≥ 3.

Gowers [Gow98,Gow01] made a major breakthrough in giving the upper bound

for rk(N). We record his theorems and refer to his original papers for the proofs.

Theorem 1.4.10. Let k ≥ 3 be an integer. Then there is a constant dk > 0 such

that

rk(N) = O
(
N(log log N)−dk

)
.

This is still a long way from the conjecture that rk(N) < π(N) for N suf-

ficiently large. Here π(N) denotes the number of primes less than or equal to

N .

In chapter 2 we shall show, among other things, that P. Erdös conjecture

[UL75] implies E. Szemerédi’s theorem.



Chapter 2

Sequences of positive integers

containing no k terms in an A. P.

II

2.1 Introduction

This chapter is about some consequences of the following celebrated conjecture of

Erdös [UL75]:

Conjecture 1 (Erdös). If the sum of the reciprocals of a set of positive integers

is infinite then it contains arbitrarily long arithmetic progressions.

This amounts to saying that if a subset of natural numbers does not contain

any arithmetical progression of length k ≥ 3, where k is a fixed positive integer,

then the sum of the reciprocals of its elements is finite.

Joseph L. Gerver [Ger77] proved that for every ε > 0, there exists for all

but a finite number of integers k ≥ 3, sets Sk of positive integers, containing no

arithmetic progression of k terms, such that
∑

a∈Sk

1
a

> (1 − ε)k log k. The set

Sk is the sequence {an} where a1 = 1 and for n ≥ 1, an+1 is the smallest positive

integer bigger than an such that no k elements of a1, a2, · · · an+1 are in arithmetic

progression. He guessed in that paper that for any prime p, the set Sp may indeed

maximize the sum of the reciprocals of the elements of a set of positive integers

having no p terms in arithmetic progression. Though he made this speculation,

he did not give any reason for existence of such a subset of N. In section 2 we use

topological ideas to show that the Erdös conjecture is true if and only if there is

a set of positive integers containing no k terms in arithmetic progression which

maximizes the above sum.

23
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On the other hand Joseph L. Gerver and L. Thomas Ramsey [GR79] showed

heuristically that the set Sk is not maximizing the above sum for composite k. In

section 3 we prove that the set Sp is not maximizing the above sum for any prime

p ≥ 3.

2.2 Existence of Mp

In this section we shall assume the Erdös conjecture and derive a much stronger

consequence of it. We ask whether the sum above can be arbitrarily large as the

sets A vary. Our first theorem answers the question in the negative. A corollary

to our second theorem says that the Erdös conjecture implies the existence of

a set of positive integers containing no p terms in arithmetic progression which

maximizes the above sum.

Finally we shall prove Szemerédi’s theorem as a consequence of the Erdös

conjecture.

In the rest of this section, p is any fixed integer (not necessarily a prime)

greater than or equal to 3.

2.2.1 Main results of this section

Theorem 2.2.1. Let Ap be the collection of all subsets of N having no arithmetic

progression of length p. Then, under the assumption of the Erdös conjecture, there

is an absolute constant Bp such that

Sup

{∑
a∈A

1

a
: A ∈ Ap

}
≤ Bp. (2.2.1)

For further discussion, we need a topological structure on Ap. First we note

that there is a natural one-to-one correspondence between the power set P(N)

and the set {0, 1}N of all sequences of 0s and 1s ; namely, given any subset A ⊂ N,

we send it to the sequence {δA(n)}∞n=1, where

δA(n) =

{
1 if n ∈ A

0 otherwise .

Since {0, 1}N is compact by Tychonoff’s theorem, the above identification

makes P(N) into a compact topological space. In this topology, a sequence {An}
of subsets converges to A if, for any given k, there is some Nk such that, whenever
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n ≥ Nk,

δAn(j) = δA(j) for j = 1, 2, · · · , k. (2.2.2)

Proposition 4 below says that Ap is a compact subspace of P(N). For any set

A ∈ Ap, let us denote the sum
∑

a∈A
1
a

(which converges if we assume Erdös

conjecture) by µ(A). Then we have the following theorem.

Theorem 2.2.2. The map A 7−→ µ(A) between Ap and [0, Bp] is continuous.

Since Ap is compact, theorem 2.2.2 implies the following corollary.

Corollary 2.2.3. Under the assumption of the Erdös conjecture, there is a set

Mp ∈ Ap such that

µ(X) ≤ µ(Mp) for all X ∈ Ap. (2.2.3)

That is, the supremum of the set {µ(X) : X ∈ Ap} is attained.

2.2.2 Proofs

In this section, we shall present the proofs of theorem 2.2.1 and theorem 2.2.2.

First we prove a proposition that will be needed later.

Proposition 2.2.4. Ap is a compact subspace of P(N).

Proof. Since P(N) is compact, it is enough to show that Ap is closed. Let {An}
be sequence in Ap converging to some A ∈ P(N). We need to show that A ∈ Ap.

Let us denote

An = {a(n)
1 , a

(n)
2 , · · · } and A = {a1, a2, · · · }, where the terms in the sequences

are written in the increasing order. Suppose, if possible, that A /∈ Ap. So there is

an arithmetic progression {ak1 , ak2 , · · · , akp} ⊂ A. We shall obtain a contradiction

from this. Since An 7−→ A, by the criterion (2.2.2) for convergence, we must have,

for any given k, some integer Nk such that,

a
(n)
j = aj for j = 1, 2, · · · , k (2.2.4)

for all n ≥ Nk. In particular, if k = kp, we have, for n ≥ Nkp ,

a
(n)
ki

= aki
for i = 1, 2, · · · , p. (2.2.5)

Since {aki
: i = 1, 2, · · · , p} is an arithmetic progression, the above implies that

An /∈ Ap for n ≥ Nkp , which is a contradiction. So A ∈ Ap as was required to be

proved.
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Proof of theorem 2.2.1

Proof. We shall prove this theorem by contradiction. Let A0 = A ∈ Ap be any

finite set with
∑

a∈A
1
a

= L > 0. For example, we can take A0 = {1}. If we assume

that the statement of the theorem is not true, then we shall show that there is a

finite set B ⊃ A, B ∈ Ap with

∑
b∈B

1

b
≥ L + 1. (2.2.6)

This will result in a contradiction to the conjecture of Erdös in the following

manner. Repeating this process that produces B recursively, we get an increasing

sequence of sets A0 ⊂ A1 ⊂ A2 ⊂ · · · , each of them finite and they all are in Ap.

Moreover, ∑
a∈Aj

1

a
≥ L + j.

Now the set A∞ = A0∪A1∪A2∪ · · · must be in Ap since any given collection

of p elements in A∞ must also belong to An for some n, so those elements can not

be in arithmetic progression. On the other hand, the sum
∑

a∈A
1
a

must diverge

as it is bigger than any fixed number. So all that is now left to prove the theorem

is to produce such a set B, given A.

Let N be the maximum of the elements of A. If the theorem is untrue, then

there must exist a set E ∈ Ap such that

∑
e∈E

1

e
≥ 2N. (2.2.7)

In fact, we may take E to be a finite set; since, if E is infinite, the tail of the

convergent sum will be small. Now define

B = A t 2NE, (2.2.8)

where t denotes disjoint union, and 2NE = {2Ne : e ∈ E}. Clearly B is a finite

set containing A, and ∑
b∈B

1

b
=
∑
a∈A

1

a
+
∑
e∈E

1

2Ne
≥ L + 1 (2.2.9)

by (7 , 8). Now to show that B ∈ Ap, we first note that since A ∈ Ap and

E ∈ Ap, no p elements of either A or 2NE can be in arithmetic progression.
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Suppose, if possible, that b1, b2, · · · , bp ∈ B are in A.P., where b1, b2, · · · , bk ∈ A,

and bk+1, bk+2, · · · , bp ∈ 2NE. If k ≥ 2, then

bk+1 − bk = bk − bk−1. (2.2.10)

Now, bk−bk−1 ≤ N−1 since bk, bk−1 ∈ A and N is the maximum of the elements of

A. But the right hand side, bk+1− bk ≥ bk+1−N ≥ 2N −N = N , a contradiction.

If k = 1, then

b2 − b1 = b3 − b2, (2.2.11)

or equivalently,

b1 = 2b2 − b3. (2.2.12)

But b1 ≤ N , while 2b2− b3 is a multiple of 2N as both b2, b3 ∈ 2NE. So we arrive

at a contradiction again. Hence we conclude that B cannot have an arithmetic

progression of length p.

For proving theorem 2.2.2, we first prove a lemma.

Lemma 2.2.5. Given any ε > 0, there exist a natural number N such that for

any A ∈ Ap with Min A ≥ N ,

∑
a∈A

1

a
< ε. (2.2.13)

Note: In the above, Min A denotes the smallest element in A.

Proof. Suppose, if possible, the lemma is not correct. Then there exists some

ε > 0 such that for any given integer M ≥ 1, there is a set R ∈ Ap depending on

M with the following properties:

µ(R) =
∑
r∈R

1

r
> ε, (2.2.14)

and

Min R ≥ 2M. (2.2.15)

For that ε, we choose a set A ∈ Ap satisfying

µ(A) > Mp −
ε

12
. (2.2.16)

where Mp = Sup{µ(A) : A ∈ Ap} < ∞ by Theorem 2.2.1. Let A = {a1, a2, · · · }
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where a1 < a2 < · · · . Since
∑

a∈A
1
a

< ∞, there is some n0 such that

∞∑
n=n0+1

1

an

<
ε

12
(2.2.17)

for any ε > 0. Let A1 = {a1, a2, · · · , an0}. Then

µ(A1) > Mp −
ε

6
. (2.2.18)

by (2.2.16) and (2.2.17)

Now we take M = an0 and write, R = R1 tR2 tR3 tR4 where

Rj = R
⋂
{
∞⊔
i=0

[(j + 1)3iM, (j + 2)3iM)}; j = 1, 2, 3, 4. (2.2.19)

In other words,

R1 = R
⋂
{[2M, 3M) t [6M, 9M) t [18M, 27M) t · · · } ,

R2 = R
⋂
{[3M, 4M) t [9M, 12M) t [27M, 36M) t · · · } ,

R3 = R
⋂
{[4M, 5M) t [12M, 15M) t [36M, 45M) t · · · } ,

R4 = R
⋂
{[5M, 6M) t [15M, 18M) t [45M, 54M) t · · · } .

We have,

Max A1 = M < 2M ≤ Min R, (2.2.20)

which implies R ∩ A1 = φ, the empty set. We notice that no p elements of Rj,

1 ≤ j ≤ 4 are in arithmetic progression. Hence with the same argument as in

theorem 1 it is easy to check that no p elements of A1 t Rj, 1 ≤ j ≤ 4, can be in

an arithmetic progression. So A1 tRj ∈ Ap.

Since µ(R) > ε, we must have

µ(Rj) >
ε

4
(2.2.21)

for some j, 1 ≤ j ≤ 4.

For that j,

µ(A1 tRj) = µ(A1) + µ(Rj) > Mp +
ε

12
(2.2.22)

from (2.2.18). This is a contradiction to the fact that Mp is the supremum of the
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set {µ(A) : A ∈ Ap}. This proves the lemma.

Now we present the proof of theorem 2.2.2.

Proof of theorem 2.2.2

Proof. Suppose {An} ⊂ Ap be a sequence and An −→ A. We need to show that

µ(An) −→ µ(A).

Let us write the set A as, A = {a1, a2, a3, · · · } where a1 < a2 < a3 < · · · and

similarly for the sets An, we write them as, An = {a(n)
1 , a

(n)
2 , · · · }. Note that if the

set A is finite, then An = A for large enough n and there is nothing left to prove.

Let ε > 0 be any given real number. The lemma above allows us to select an N

such that for any set X ∈ Ap with Min X ≥ N , we must have

∑
x∈X

1

x
<

ε

2
. (2.2.23)

Let n0 be an integer such that an0 ≥ N . Since An −→ A, there is some N0 such

that a
(n)
k = ak for 1 ≤ k ≤ n0 and all n ≥ N0. Now, for n ≥ N0,

∣∣∣µ(An)− µ(A)
∣∣∣ =

∣∣∣ ∞∑
k=n0+1

1

ak
(n)
−

∞∑
k=n0+1

1

ak

∣∣∣
≤

∞∑
k=n0+1

1

ak
(n)

+
∞∑

k=n0+1

1

ak

< ε

(2.2.24)

by (2.2.23). Hence µ(An) −→ µ(A).

Remark

Here we have proved everything assuming the Erdös conjecture. But it is easy to

see the Lemma 2.2.5 and the conclusions of Theorem 2.2.1, Theorem 2.2.2, and

Corollary 2.2.3, each separately implies the conjecture. So, in fact, they are all

equivalent to the Erdös conjecture.

We conclude this section by showing that the Erdös conjecture implies the E.

Szemerédi’s theorem [Sze68]. Since Erdös conjecture is equivalent to Lemma 5

above, we prove that Lemma 2.2.5 implies the Szemerédi’s theorem.

Corollary 2.2.6. Erdös conjecture implies Szemerédi’s theorem.
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Proof. Let ε > 0. By lemma 2.2.5 there is a positive integer N0(ε) such that for

all A ∈ Ap and for all N ≥ N0 we have

ε/2 >
∑

a∈A, a≥N0

1

a
≥

∑
a∈A, N0≤a≤N

1

a
>

# (A
⋂

[N0, N ])

N
.

Hence

#
(
A
⋂

[N0, N ]
)

< Nε/2

for all N ≥ N0. Therefore

#
(
A
⋂

[1, N ]
)

< N0 + #
(
A
⋂

[N0, N ]
)

< N0 + Nε/2 < Nε

for all sufficiently large N . Since A ∈ Ap is arbitrarily chosen, therefore we have

rp(N) < Nε for all sufficiently large N . This is Szemerédi’s theorem.

2.3 Greedy sequences do not maximize the above

sum

In section 2 we have proved that the Erdös conjecture is true only if there is a set

in Ap which maximizes the function µ.

Joseph L. Gerver [Ger77] showed that the sum of the reciprocals of the elements

of Sp is larger than that of other likely candidates studied in the literature, in

particular Rankin’s sets, which has the highest known asymptotic density for sets

in Ap. He also speculated in that paper that for any odd prime p, among all sets

in Ap, the set Sp may indeed be the one which gives the largest number when the

reciprocals of its elements are added. On the other hand, Joseph L. Gerver and L.

Thomas Ramsey [GR79] showed heuristically that the set Sp does not maximize

the above sum if p is a composite number. In this section we prove that the set

Sp does not maximize the above sum for odd primes p. In rest of this section, p

is any fixed odd prime.

2.3.1 Main results of this section

Let us consider the increasing sequence {α(n) : n ≥ 0} of non-negative integers

defined as follows.

α(0) = 0; and for n ≥ 1, α(n) is the smallest positive integer greater than
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α(n − 1) such that no p terms of 0 = α(0) < α(1) < . . . < α(n − 1) < α(n) are

in arithmetic progression. This kind of simplistic algorithm that we have used to

define the sequence is often called a “greedy algorithm”, and accordingly we shall

refer to the sequence {α(n) + 1}n≥0 as the greedy sequence. For any sequence

0 = β(0) < β(1) < β(2) < . . . < β(n) < . . . of integers, containing no p terms in

arithmetic progression, we define, for all N ≥ 0,

µβ(N) =
N∑

k=0

1

1 + β(k)
(2.3.1)

For N fixed, we shall consider µβ(N) as function of the sequences β. J. L. Gerver

[Ger77] speculated that the greedy sequence maximizes the sum µβ(N) among

all sequences in Ap for all sufficiently large N . We disprove this speculation by

proving that µα(N) is maximum only for finitely many N . More precisely, we

have the following theorem.

Theorem 2.3.1. There is a positive integer N such that, for all n ≥ N , there is

a sequence 0 = γ(0) < γ(1) < γ(2) < . . . < γ(n) < . . . of integers containing no p

terms in arithmetic progression with µα(n) < µγ(n), i.e. ,

n∑
k=0

1

1 + α(k)
<

n∑
k=0

1

1 + γ(k)
. (2.3.2)

Finally we disprove the main speculation of J. L. Gerver by exhibiting a se-

quence of positive integers the sum of the reciprocals of which is bigger than that

of the greedy sequence. We have the following theorem.

Theorem 2.3.2. There is a sequence 0 = γ(0) < γ(1) < γ(2) < . . . < γ(n) < . . .

of integers containing no p terms in arithmetic progression such that

∞∑
n=0

1

1 + α(n)
<

∞∑
n=0

1

1 + γ(n)
. (2.3.3)

2.3.2 Properties of the greedy sequence

In this section we shall study some properties of the greedy sequence. These

properties of the greedy sequence will be used to prove our main theorems.

1. For n ≥ 0, if n =
∑k

t=0 et(p−1)t with et ∈ {0, 1, . . . , p−2} is the (p−1)-ary

expansion of n then,
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α(n) =
k∑

t=0

etp
t. (2.3.4)

2. For m ≥ 0, i ≥ 0, and 0 ≤ k ≤ (p− 1)m − 1, we have,

α(i(p− 1)m + k) = ipm + α(k). (2.3.5)

3. We have
∞∑

n=0

1

1 + α(n)
< 1 + p(p− 2) < ∞. (2.3.6)

4. For all m ≥ 0, we have,

(p−1)m−1∑
k=0

α(k) =
(p− 1)m

2
α((p− 1)m − 1). (2.3.7)

Proof. We shall prove property (1) by induction on n. For n = 0, 1, the result

is trivially true. Let us assume that the result is true for all positive integers

≤ n. Let n =
∑k

t=0 et(p− 1)t be the (p− 1)-ary expansion of n. Therefore α(0),

α(1), · · · , α(n) are of the form
∑k

t=0 etp
t for some et = 0, 1, · · · , p− 2.

Case1. Let et = p− 2 for all t, 0 ≤ t ≤ k. Therefore, we have,

n + 1 = 1 + (p− 2) + · · ·+ (p− 2)(p− 1)k

= 1 + (p− 2)
(p− 1)k+1 − 1

p− 2
= (p− 1)k+1. (2.3.8)

We shall show

α(n + 1) = pk+1. (2.3.9)

We have

pk+1 − α(n) = pk+1 − α((p− 2) + (p− 2)(p− 1) + · · ·+ (p− 2)(p− 1)k)

= pk+1 − {(p− 2) + (p− 2)p + · · ·+ (p− 2)pk}

= pk+1 − (p− 2)
pk+1 − 1

p− 1
=

pk+1 − 1

p− 1
+ 1. (2.3.10)

Hence,

pk+1 − α(0) = pk+1 < (p− 1)

{
pk+1 − 1

p− 1
+ 1

}
= (p− 1)(pk+1 − α(n)). (2.3.11)
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Therefore, no p terms of α(0), α(1), . . . , α(n), pk+1 are in arithmetic progres-

sion. Therefore, α(n + 1) ≤ pk+1. If possible, let α(n + 1) < pk+1.

Let α(n + 1) =
∑k

t=0 εtp
t, where, 0 ≤ εt ≤ p− 1, for 0 ≤ t ≤ k. We note that

at least one εt = p−1; otherwise we would have α(n+1) ∈ {α(0), α(1), . . . , α(n)}
by induction hypothesis. But we know that α(n + 1) > α(n). Let A = {t : 0 ≤
t ≤ k, and εt < p− 1} and B = {0, 1, 2, . . . , k} − A 6= ∅. Let T =

∑
t∈A εtp

t and

R =
∑

t∈B pt 6= 0, (∵ B 6= ∅). The non-negative integers T, T+R, T+2R, . . . , T+

(p− 1)R are in arithmetic progression and T , T + R, T + 2R, . . . , T + (p− 1)R ∈
{α(0), α(1), . . . , α(n+1)}. This contradicts the fact that no p terms of the greedy

sequence are in arithmetic progression.

Case2. Let et < p − 2 for some t, 0 ≤ t ≤ k. Let t0 = min{t : 0 ≤
t ≤ k, and et < p − 2}. Therefore, et = p − 2 for 0 ≤ t < t0. Clearly n =

(p− 2) + (p− 2)(p− 1) + · · ·+ (p− 2)(p− 1)t0−1 +
∑k

t=t0
et(p− 1)t. Therefore,

n + 1 = (et0 + 1)(p− 1)t0 +
k∑

t=t0+1

et(p− 1)t. (2.3.12)

We shall show

α(n + 1) = (et0 + 1)pt0 +
k∑

t=t0+1

etp
t. (2.3.13)

Let m =
∑k

t=t0+1 et(p − 1)t ≤ n. Therefore, by the induction hypothesis,

α(m) =
∑k

t=t0+1 etp
t. Also n+1−m = (et0 +1)(p−1)t0 . Define, β(x) = α(m+x)−

α(m), for 0 ≤ x ≤ n+1−m. Note that β(x) = α(m+x)−α(m) = α(x) for 0 ≤ x <

n+1−m. Since no p terms of β(0) = α(0), β(1) = α(1), . . . , β(n−m) = α(n−m),

and β(n + 1−m) are in arithmetic progression and α(n + 1−m) > α(n−m) is

the smallest positive integer such that no p terms of α(0), α(1), . . . , α(n + 1−m)

are in arithmetic progression then β(n + 1−m) ≥ α(n + 1−m).

Therefore,

α(n + 1) = α(m) + β(n + 1−m) ≥ α(m) + α(n + 1−m)

= (et0 + 1)pt0 +
k∑

t=t0+1

etp
t. (2.3.14)

On the other hand, it is easy to check that no p terms of α(0), α(1), . . . , α(n),

and (et0 + 1)pt0 +
∑k

t=t0+1 etp
t are in arithmetic progression (see [Ger77]). This

proves the property (1).

The property (2) follows from the property (1) directly.
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By the property (1), we have,

∞∑
n=0

1

1 + α(n)
= 1 +

∞∑
k=0

(p−1)k+1−1∑
n=(p−1)k

1

1 + α(n)
≤ 1 +

∞∑
k=0

(p− 1)k(p− 2)

1 + pk

< 1 + (p− 2)
∞∑

k=0

(1− 1

p
)k = 1 + p(p− 2) < ∞. (2.3.15)

This proves the property (3).

We shall prove the property (4) by induction on m ≥ 0. For m = 0, the result

is obvious. Let us assume (2.3.7) for some m ≥ 0. We shall prove it for m + 1.

By the induction hypothesis,

(p−1)m+1−1∑
k=0

α(k) =

(p−1)m−1∑
k=0

α(k) +

(p−1)m+1−1∑
k=(p−1)m

α(k)

=
(p− 1)m

2
α((p− 1)m − 1) +

(p−1)m+1−1∑
k=(p−1)m

α(k). (2.3.16)

Also,

(p−1)m+1−1∑
k=(p−1)m

α(k) =

p−2∑
i=1

(p−1)m−1∑
k=0

α(i(p− 1)m + k)

=

p−2∑
i=1

(p−1)m−1∑
k=0

{ipm + α(k)}

=

p−2∑
i=1

{ipm(p− 1)m +
(p− 1)m

2
α((p− 1)m − 1)

=
(p− 1)m

2
{(p− 2)(p− 1)pm + α((p− 1)m − 1)}.(2.3.17)

by the induction hypothesis and (2.3.5).

Therefore, by (2.3.4), (2.3.5), (2.3.16) and (2.3.17), we have,

(p−1)m+1−1∑
k=0

α(k) =
(p− 1)m+1

2
{(p− 2)pm + α((p− 1)m − 1)}

=
(p− 1)m+1

2
{α((p− 2)(p− 1)m) + (p− 1)m − 1)}

=
(p− 1)m+1

2
{α((p− 1)m+1 − 1)}. (2.3.18)
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This proves the property (4).

2.3.3 Construction of the sequence (γ(n))

In this section we shall construct a sequence in Ap which dominates the greedy

sequence. We start with the following theorem due to R. A. Rankin [Ran60].

Theorem 2.3.3. (R. A. Rankin).

Let p > 2k, where k is a positive integer. Let c = (k + 1)2k/2(log 2)
k

k+1 and let

ε be positive. Then there exists a positive real number X1 depending on ε and k

such that, for each X > X1, we can construct a set A ⊆ {1, 2, . . . , [X]}, A ∈ Ap,

with

#(A) > X exp{−c(1 + ε)(log X)
1

1+k }. (2.3.19)

Note: In the above [X] denotes the largest integer ≤ X and #(A) denotes

number of elements of A.

We have the following lemma.

Lemma 2.3.4. There is a positive integer m and a sequence 0 = β(0) < β(1) <

. . . < β((p − 1)m) of integers having no p terms in arithmetic progression such

that,

β((p− 1)m − 1) <
1

2
α((p− 1)m − 1), (2.3.20)

and
(p−1)m−1∑

k=0

β(k) <

(p−1)m−1∑
k=0

α(k). (2.3.21)

Proof. We have, for all m ≥ 0,

α((p− 1)m − 1) = α{(p− 2)(p− 1)m−1 + · · ·+ (p− 2)(p− 1) + (p− 2)}
= (p− 2)pm−1 + · · ·+ (p− 2)p + (p− 2)

= (p− 2)
pm − 1

p− 1
. (2.3.22)

by (2.3.4).

Let X1 = [p−2
2

pm−1
p−1

]− 1, X = p−2
2

pm−1
p−1

and let k be the largest positive integer

satisfying p > 2k.

Now, by Rankin’s construction, for sufficiently large m, there is a subset A of
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{1, 2, . . . , X}, A ∈ Ap such that,

#(A) >
p− 2

2

pm − 1

p− 1
exp{−c(1 + ε)(log

(p− 2)(pm − 1)

2(p− 1)
)

1
k+1}

>
p− 2

2

pm − 1

p− 1
exp{−m + 1

2
log

p

p− 1
}

=
p− 2

2

pm − 1

p− 1
exp{log

(
(
p− 1

p
)

m+1
2

)
} =

p− 2

2

pm − 1

p− 1
(
p− 1

p
)

m+1
2

=
p− 2

2

pm

p− 1
(
p− 1

p
)

m+1
2 − p− 2

2

1

p− 1
(
p− 1

p
)

m+1
2

>
p− 2

2

pm

p− 1
(
p− 1

p
)

m+1
2 − 1, (2nd term is < 1)

>
p− 2

2(p− 1)
(p− 1)m(

p

p− 1
)

m−1
2 − 1 = V (p− 1)m − 1 (say)

> (p− 1)m − 1, (2.3.23)

since, V = p−2
2(p−1)

( p
p−1

)
m−1

2 > 1, for all sufficiently large m (as p
p−1

> 1).

The 2nd inequality in (2.3.23) follows directly from the following inequalities

m + 1

2
log

p

p− 1
> c(1 + ε)(m log(p + 1))

1
1+k

> c(1 + ε)(log
(p− 2)(pm − 1)

2(p− 1)
)

1
1+k . (2.3.24)

for all sufficiently large m.

The first inequality of (2.3.24) follows from the inequality

m
k

k+1 > 2c(1 + ε) (log p)
1

k+1

log p
p−1

for all sufficiently large m.

The 2nd inequality of (2.3.24) follows from the inequality (p−2)(pm−1)
2(p−1)

< pm for

all m.

This proves (2.3.20).

Suppose (2.3.21) is not true. Then we have,

β((p− 1)m − 1) >
1

(p− 1)m

(p−1)m−1∑
k=0

β(k) ≥ 1

(p− 1)m

(p−1)m−1∑
k=0

α(k)

=
1

(p− 1)m

(p− 1)m

2
α((p− 1)m − 1)

=
1

2
α((p− 1)m − 1). (2.3.25)

by (2.3.7).

This contradicts (2.3.20). Thus we have proved (2.3.21).
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We need the following lemma to construct the sequence γ.

Lemma 2.3.5. Let x1, x2, . . . , xn and y1, y2, . . . , yn be two sets of non-negative

numbers with

x1 + x2 + · · ·+ xn < y1 + y2 + · · ·+ yn. (2.3.26)

Then there is some M ≥ 1, such that for all z ≥ M , we have,

n∑
k=1

1

z + xk

>

n∑
k=1

1

z + yk

. (2.3.27)

Proof. Suppose the lemma is not true. Then there is a monotonically increasing

sequence {Nt}t≥1 of positive numbers, with Nt →∞ as t →∞, such that,

n∑
k=1

1

Nt + xk

≤
n∑

k=1

1

Nt + yk

, for all t ≥ 1. (2.3.28)

That is,

1

Nt + x1

− 1

Nt + y1

≤
n∑

k=2

(
1

Nt + yk

− 1

Nt + xk

), for all t ≥ 1. (2.3.29)

That is,

y1 − x1 ≤
n∑

k=2

(xk − yk)(
Nt + x1

Nt + xk

)(
Nt + y1

Nt + yk

), for all t ≥ 1. (2.3.30)

By taking limit as t →∞ in (2.3.30), we have,

y1 − x1 ≤
n∑

k=2

(xk − yk).

That is, y1 + y2 + · · ·+ yn ≤ x1 + x2 + · · ·+ xn. This contradicts (2.3.26), and

hence we have proved the lemma 2.3.5.

Now by lemma 2.3.4 and lemma 2.3.5, there is a positive integer m, a number

M ≥ 1, and a sequence 0 = β(0) < β(1) < . . . < β((p − 1)m − 1 of integers such

that,

(p−1)m−1∑
k=0

1

z + β(k)
>

(p−1)m−1∑
k=0

1

z + α(k)
, for all z ≥ M. (2.3.31)
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Let n ≥ m be the smallest positive integer such that pn + 1 ≥ M . Therefore,

by (2.3.31), for all t ≥ (p− 1)n, we have,

(p−1)m−1∑
k=0

1

1 + α(t) + β(k)
>

(p−1)m−1∑
k=0

1

1 + α(t) + α(k)
. (2.3.32)

Now we define the sequence γ as follows.

γ(k) = α(k), for 0 ≤ k ≤ (p− 1)n − 1. (2.3.33)

For 1 ≤ l ≤ p− 2, and for l(p− 1)n ≤ k ≤ (l + 1)(p− 1)n − 1, write,

k = l(p− 1)n + s(p− 1)m + t, for

{
0 ≤ s ≤ (p− 1)n−m − 1

and 0 ≤ t ≤ (p− 1)m − 1
(2.3.34)

and define

γ(k) = α(l(p− 1)n + s(p− 1)m) + β(t), for


1 ≤ l ≤ p− 2,

0 ≤ s ≤ (p− 1)n−m − 1

and 0 ≤ t ≤ (p− 1)m − 1

(2.3.35)

γ(k) = α(k) for k ≥ (p− 1)n+1. (2.3.36)

Proposition 2.3.6. No p terms of the sequence γ defined above are in arithmetic

progression.

Proof. For simplicity we shall prove the proposition for p = 3 only. The proof

extends to a general odd prime p using the argument similar to the one used in

the proof of (2.3.4), but the details are too cumbersome to write.

For p = 3 the γ sequence is given by,

γ(k) = α(k) for 0 ≤ k ≤ 2n − 1. (2.3.37)

For 2n ≤ k ≤ 2n+1 − 1, write, k = 2n + 2ms + t, and define

γ(k) = α(2n + 2ms)) + β(t). (2.3.38)

for 0 ≤ s ≤ 2n−m − 1 and for 0 ≤ t ≤ 2m − 1.

γ(k) = α(k), for k ≥ 2n+1. (2.3.39)

Now the proof of the proposition 2.3.6 will be followed by the following two
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lemmas.

Lemma 2.3.7. No three γ(k)’s, for 0 ≤ k ≤ 2n+1 − 1, are in arithmetic progres-

sion.

Proof. We have, by (2.3.4), (2.3.7) and (2.3.20), for p = 3,

γ(0) + γ(2n) = α(0) + α(2n) = 3n > 23n−1
2

= 2α(2n − 1) = 2γ(2n − 1).

And,

γ(2n − 1) + γ(2n+1 − 1) = α(2n − 1) + α(2n+1 − 2m) + β(2m − 1)

< α(2n − 1) + α(2n+1 − 2m) + α(2m − 1)

= α(2n − 1) + α(2n+1 − 1)

=
1

2
(3n − 1) +

1

2
(3n+1−1) =

1

2
(1 + 3)3n − 1

= 2.3n − 1 < 2.3n = 2α(2n) = 2γ(2n).

Therefore, the average of a γ(k), for 0 ≤ k ≤ 2n − 1 and a γ(k), for 2n ≤
k ≤ 2n+1 − 1 lies in the open interval (γ(2n − 1), γ(2n)). Also, since, no three of

γ(k)’s, for 0 ≤ k ≤ 2n − 1 are in arithmetic progression, then, to prove lemma

13, it is enough to show no three γ(k)’s, for 2n ≤ k ≤ 2n+1 − 1 are in arithmetic

progression. For 2n ≤ k ≤ 2n+1 − 1, we define, δ(k) = γ(k)− α(2n).

We shall prove the following by induction on h.

For 0 ≤ h ≤ n−m, no three of δ(k), 2n ≤ k ≤ 2n +2m+h− 1 are in arithmetic

progression.

For 2n ≤ k ≤ 2n + 2m − 1, δ(k) = γ(k) − α(2n) = β(k − 2n), so the above

statement holds for h = 0 (as no three of β(k), 0 ≤ k ≤ 2m − 1, are in arithmetic

progression). This starts the induction.

Now assume that the above statement is true for some h in the range 0 ≤ h ≤
n−m− 1. We must prove that the statement remains true when h is replaced by

h + 1, ie., we must show that no three of δ(k), 2n ≤ k ≤ 2n + 2m+h+1 − 1, are in

arithmetic progression.

Of course by induction hypothesis no three of δ(k) for 2n ≤ k ≤ 2n + 2m+h− 1

are in arithmetic progression. For 2n + 2m+h ≤ k ≤ 2n + 2m+h+1 − 1,

δ(k) = γ(k)− α(2n) = {γ(k)− α(2n + 2m+h)}+ {α(2n + 2m+h)− α(2n)}
= β(k − 2n − 2m+h) + {α(2n + 2m+h)− α(2n)},

so no three δ(k), for 2n+2m+h ≤ k ≤ 2n+2m+h+1−1 are in arithmetic progression.

Induction will be completed if we can prove that average of any δ(k), 2n ≤



Chapter 2: Sequences of positive integers containing no k terms in an A. P. II 40

k ≤ 2n + 2m+h − 1, and any δ(k), 2n + 2m+h ≤ k ≤ 2n + 2m+h+1 − 1 is not a δ(k)

for 2n ≤ k ≤ 2n + 2m+h+1 − 1.

We are proving this by showing that any such average lies in the open interval(
δ(2n + 2m+h − 1), δ(2n + 2m+h)

)
.

By properties of α, β, γ and δ sequences, we have,

Minimum value of such an average =
1

2
{δ(2n) + δ(2n + 2m + h)}

=
1

2
δ(2n + 2m+h), (∵ δ(2n) = 0)

=
1

2
{γ(2n + 2m+h)− α(2n)}

=
1

2
α(2m+h) > α(2m+h − 1)

= α(2m+h − 2m) + α(2m − 1)

> α(2m+h − 2m) + β(2m − 1)

= δ(2n + 2m+h − 1).

And, Maximum value of such an average

=
1

2
{δ(2n + 2m+h − 1) + δ(2n + 2m+h+1 − 1)}

=
1

2

{
α(2m+h − 2m) + β(2m − 1) + α(2m+h+1 − 2m) + β(2m − 1)

}
<

1

2

{
α(2m+h − 2m) + α(2m − 1) + α(2m+h+1 − 2m) + α(2m − 1)

}
=

1

2
{α(2m+h − 1) + α(2m+h+1 − 1)} < α(2m+h) = δ(2n + 2m+h).

This completes the proof of lemma 2.3.7.

To complete the proof of the proposition 2.3.6, one proves the following lemma

by induction on h ≥ 1.

Lemma 2.3.8. No three terms of γ(k), for 0 ≤ k ≤ 2n+h − 1, are in arithmetic

progression.

Proof. The lemma 2.3.8 holds for h = 1 by lemma 2.3.7. This starts the induction.

Let us assume that the statement of lemma 2.3.8 is true for some h ≥ 1. To

complete the induction we must show that the lemma 2.3.8 is true if we replace

h by h + 1.

No three γ(k) for 0 ≤ k ≤ 2n+h−1 are in arithmetic progression (by induction
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hypothesis). Since γ(k) = α(k), for k ≥ 2n+1, then no three of γ(k) for 2n+h ≤
k ≤ 2n+h+1 − 1 are in arithmetic progression.

The proof will be completed if we can prove that the average of any γ(k) for

0 ≤ k ≤ 2n+h − 1 and any γ(k) for 2n+h ≤ k ≤ 2n+h+1 − 1 is not a γ(k) for

0 ≤ k ≤ 2n+h+1 − 1.

We may give same argument as in the proof of lemma 2.3.7 to show that any

such an average lies in the open interval (γ(2n+h − 1), γ(2n+h)).

This completes the proof of lemma 2.3.8.

2.3.4 Proofs of the main theorems

In this section we present the proofs of theorem 2.3.1 and theorem 2.3.2.

We have, by (2.3.32),

(p−1)n+1−1∑
k=0

1

1 + γ(k)

=

(p−1)n−1∑
k=0

1

1 + γ(k)

+

p−2∑
l=1

(p−1)n−m−1∑
s=0

(s+1)(p−1)m−1∑
k=s(p−1)m

{
1

1 + γ (l(p− 1)n + k)

}
=

(p−1)n−1∑
k=0

1

1 + α(k)

+

p−2∑
l=1

(p−1)n−m−1∑
s=0

(p−1)m−1∑
t=0

1

1 + α (l(p− 1)n + s(p− 1)m) + β(t)


>

(p−1)n−1∑
k=0

1

1 + α(k)

+

p−2∑
l=1

(p−1)n−m−1∑
s=0

(p−1)m−1∑
t=0

{
1

1 + α (l(p− 1)n + s(p− 1)m) + α(t)

}
=

(p−1)n+1−1∑
k=0

1

1 + α(k)
.

Therefore,
(p−1)n+1−1∑

k=0

1

1 + γ(k)
>

(p−1)n+1−1∑
k=0

1

1 + α(k)
. (2.3.40)
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Proof of theorem 2.3.1

Proof. Let N = (p − 1)n+1 − 1. Then for R ≥ N , by (2.3.36) and (2.3.40), we

have,

R∑
k=0

1

1 + γ(k)
=

k=N∑
k=0

1

1 + γ(k)
+

k=R∑
k=N+1

1

1 + γ(k)

>
k=N∑
k=0

1

1 + α(k)
+

k=R∑
k=N+1

1

1 + α(k)

=
R∑

k=0

1

1 + α(k)

And by proposition 2.3.6 we know no p terms of γ(k) for 0 ≤ k ≤ R are in

arithmetic progression.

This proves the theorem 2.3.1.

Proof of theorem 2.3.2

Proof. We have, by (2.3.33), (2.3.35), (2.3.36) and (2.3.40),

∞∑
k=0

1

1 + γ(k)
=

k=N∑
k=0

1

1 + γ(k)
+

k=∞∑
k=N+1

1

1 + γ(k)

>
k=N∑
k=0

1

1 + α(k)
+

k=∞∑
k=N+1

1

1 + α(k)

=
∞∑

k=0

1

1 + α(k)

And by proposition 2.3.6, no p terms of γ(k) for k ≥ 0 are in arithmetic

progression.

This proves the theorem 2.3.2.

Remark

Here we have constructed one sequence (viz, the sequence γ) of positive integers

having no p terms in arithmetic progression whose sum of reciprocals is bigger

than that of the terms of greedy sequence. We may construct better sequence

than the sequence γ as follows.

Define the sequence θ as follows. For 0 ≤ k ≤ pn+1 − 1, we define θ(k) = γ(k)

and for each h ≥ 1 we define θ(k), for (p−1)n+h ≤ k ≤ (p−1)n+h+1−1, inductively

as follows. For 1 ≤ l ≤ p− 2 and for l(p− 1)n+h ≤ k ≤ (l +1)(p− 1)n+h− 1, write
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k = l(p−1)n+h+t, for 0 ≤ t ≤ (p−1)n+h−1 and define θ(k) = α(l(p−1)n+h)+γ(t)

. Then no p terms of the θ sequence are in arithmetic progression. But the sum

of the reciprocals of the terms of the sequence {θ(n) + 1}n≥0 is bigger that the

sum of the reciprocals of the terms of the sequence {γ(n) + 1}n≥0.

We may improve this further. In lemma 2.3.4 we take that sequence β which

minimizes
∑(p−1)m−1

k=0 β(k). Then by lemma 2.3.5 this sequence β will maximize∑(p−1)m−1
k=0

1
M+β(k)

, for all sufficiently large M > 0. Then we define the sequences

γ and θ with this sequence β.

2.4 Related problems

In this section we consider Graham’s conjecture [Gra04], the two dimensional

version of the Erdös conjecture.

Conjecture 2 (Graham). If A ⊂ N× N satisfy

ν(A) =
∑

(x,y)∈A

1

x2 + y2
= ∞

then A contains 4 vertices of an axes-parallel square.

More generally, A will always contain a homothetic image of {1, 2, . . . , p} ×
{1, 2, . . . , p} for all p ∈ N i.e. A contains a p× p square grid.

Assuming Graham’s conjecture we can derive the theorems similar to theorem

2.2.1 and theorem 2.2.2 corresponding to Erdös conjecture.

Let Θp be the collection of all subsets of N×N containing no p×p square grid.

Theorem 2.4.1. If Graham’s conjecture is true then there is a positive absolute

constant Bp such that

Sup{ν(A) : A ∈ Θp} ≤ Bp.

Proof. Let A0 = {(1, 1)} ∈ Θp. If we assume that the statement of the theo-

rem is not true, then inductively we produce a sequence of increasing finite sets

{Ak}k≥0 ⊂ Θp as follows.

Let mk = max(x,y)∈Ak
(|x|+ |y|). Choose nk ∈ N and Bk ∈ Θp, such that

ν(Bk) ≥ m2
k.
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Let Ak+1 = Ak

⊔
mkBk. It is easy to verify that Ak+1 ∈ Θp and

ν(Ak+1)− ν(Ak) =
∑

(x,y)∈Bk

1

(mkx)2 + (mky)2
=

ν(Bk)

m2
k

≥ 1.

Now A∞ =
⋃

Ak ∈ Θp and ν(A∞) = ∞. This contradicts the Graham conjecture.

Hence we have the theorem.

2.4.1 ν is continuous

Lemma 2.4.2. Suppose the Graham conjecture is true. Given any ε > 0, there

exists a natural number N such that for all A ∈ Θp with

γ(A)
.
= min

(x,y)∈A

√
x2 + y2 ≥ N : ν(A) < ε.

Proof. We argue by contradiction and assume that there exists some ε > 0 such

that for any given M ≥ 1, there exists a set R ∈ Θp such that γ(R) ≥ 2M and

ν(R) > ε. For that ε, we choose a set A ∈ Θp satisfying ν(A) > Mp − ε
12

where

Mp = sup{ν(A) : A ∈ Θp} < ∞.

Furthermore, one can choose M ≥ 1 and corresponding R such that

ν
(
A
⋂
{(x, y) ∈ N× N :

√
x2 + y2 ≤ M}

)
> Mp −

ε

6
.

Now we divide R = R1 tR2 tR3 tR4 where

Rj = R
⋂{

(x, y) ∈ N× N :
√

x2 + y2 ∈
∞⊔
i=0

[(j + 1)3iM, (j + 2)3iM ]

}
;

j=1,2,3,4.

It is easy to check that Rj t AM ∈ Θp, for j = 1, 2, 3, 4, where

AM = A
⋂
{(x, y) ∈ N× N :

√
x2 + y2 ≤ M}

Also for some j, 1 ≤ j ≤ 4, we have

ν(Rj) >
ε

4
, ν(AM tRj) > Mp +

ε

12
.

Corollary 2.4.3. Under the assumption of the Graham conjecture, there is a set
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Mp ∈ Θp such that

ν(X) ≤ ν(Mp) for all X ∈ Θp.

That is, the supremum of the set {ν(X) : X ∈ Θp} is attained.

It is natural to guess the following:

Conjecture 3. If A ⊂ Nm satisfy

ν(A) =
∑

(x1,x2,...,xm)∈A

1

xm
1 + xm

2 + · · ·+ xm
m

= ∞

then A contains 2m vertices of an axes-parallel m-dimensional cube.

More generally, A will always contain a homothetic image of {1, 2, . . . , p}m for

all p, i.e., A contains an m-dimensional p× · · · × p (m times) cubic grid.

Dr. Lianagpan Li has communicated to me the proof of the fact that the higher

dimensional Graham conjecture implies lower dimensional Graham conjecture.
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Chapter 3

Smooth numbers I.

3.1 Introduction

Smooth numbers are positive integers having only small prime factors, and hence,

they are, in some sense, opposite of almost primes which are numbers having only a

few prime factors. Given a positive number y, an integer n is said to be a y-smooth

if all the prime factors of n are less than or equal to y. Smooth numbers play

an important role in prime number theory and in many other applied fields. For

example the results on smooth numbers are used to construct large gaps between

consecutive primes [Ran38] and in the analysis of algorithm and primality testing

as in the works of Pomerance [Pom87] and Lenstra [Len87]. The results on smooth

numbers are also used in some other problems in number theory: On Waring’s

problem by Vaughan [Vau89] and Wooley [Woo92]; On Fermat’s conjecture by H.

Lehmer and E. Lehmer [LL41]; On Bounds of the least kth power non-residues by

Vinogradov [Vin26]. It is of considerable importance for various applications to

count the number of y-smooth numbers in interval [1, x]. This number is denoted

by Ψ(x, y). Apart from the applicable side, studying the asymptotic behaviour of

Ψ(x, y) is by itself very interesting. In 1938, Rankin [Ran38] found the following

upper bound for the function Ψ(x, y):

Ψ(x, y) � xe−u/2 log y (x ≥ 1, y ≥ 2), (3.1.1)

where, u = log x
log y

. By carefully handling Rankin’s method, Tenenbaum (see [Ten95]

or [Ten90]) was able to remove the log y factor from (3.1.1) and he proved

Ψ(x, y) � xe−u/2 (x ≥ y ≥ 2). (3.1.2)

47
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We shall discuss this method in section 2.

In 1930, Dickman [Dic30] obtained the following asymptotic formula for

Ψ(x, y). For each fixed u, there is a constant ρ(u) such that

Ψ(x, y) ∼ xρ(u) as x →∞. (3.1.3)

This ρ, considered as a function of u is monotonically decreasing, continuous,

and satisfies the following differential- difference equation:

uρ′(u) = −ρ(u− 1) (u > 1), (3.1.4)

with the initial condition ρ(u) = 1 (0 ≤ u ≤ 1). (3.1.5)

This functions is called the Dickman function and sometimes, the Dickman-de

Bruijn function; and we shall study this function in some details.

In 1951, de Bruijn [Bru51b] showed that

Ψ(x, y) = xρ(u)

{
1 + O

(
log(u + 1)

log y

)}
(3.1.6)

holds uniformly in the range

y ≥ 2, 1 ≤ u ≤ (log y)3/5−o(1); that is, for y > exp
(
(log x)5/8+o(1)

)
. (3.1.7)

In 1986 Hildebrand [Hil86a] improved the range (3.1.7) to

y ≥ 2, 1 ≤ u ≤ exp
{
(log y)3/5−o(1)

}
; that is, for y > exp

(
(log log x)5/3+o(1)

)
.

(3.1.8)

In what range is the above asymptotic is valid? Hildebrand [Hil84] showed that

the above asymptotic formula holds uniformly for

1 ≤ u ≤ y1/2−o(1); that is, for y ≥ (log x)2+o(1), (3.1.9)

if and only if the Riemann Hypothesis is true.

In 1983, Canfield, Erdös, and Pomerance [CEP83] proved that

Ψ(x, y) =
x

uu+o(u)
(3.1.10)

holds for

u ≤ y1−o(1) with u →∞; that is, for y ≥ (log x)1+o(1) as x →∞. (3.1.11)
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In 1986, Hildebrand [Hil86b] improved the asymptotic formula (3.1.10) to

Ψ(x, y) = xρ(u) exp
{
O
(
u exp

(
−(log u)3/5−o(1)

))}
(3.1.12)

in the same range.

We shall discuss briefly some of the methods used to prove these results in

section 2.

For two positive numbers x, z, Ψ(x + z, y) − Ψ(x, y) counts the number of y-

smooth numbers in the interval (x, x+z]. We have good estimate of this quantity

if both z/x and y are large enough. Granville has conjectured [Gra00] that the

following should hold:

Ψ(x + c
√

x, y)−Ψ(x, y) �
√

x/uu+o(u), (3.1.13)

for y > L(x)c′ for some fixed c, 0 < c < 4 and for all sufficiently small c′ > 0

. Here u = log x
log y

and L(x)
.
= exp{

√
log x log log x}. Having such a bound will

have application to Lenstra’s elliptic curve factoring method [Gra00]. In fact, a

well-known problem in this theory (see, for example [Gra00], page 26) is to show

that for every α > 0, there is at least one xα-smooth number in an interval of

length
√

x around x for all sufficiently large x. In chapter 5 we have proved this

conjecture under the hypothesis that ζ(1/2 + it) � (t + 2)α/2+o(1). This was not

known even assuming the Riemann Hypothesis (see [Xuan99]).

3.2 Estimates for Ψ(x, y).

Let x be a positive number and S(x, y) be the set of all y-smooth numbers not

exceeding x. In this section we exhibit briefly many important techniques in-

troduced by several authors to estimate Ψ(x, y). Most of these are taken from

the article [Gra00] by A. Granville and the book [Ten95] by G. Tenenbaum. In

the rest of the chapter we let u = log x
log y

and let the first k = π(y) primes be

2 = p1 < 3 = p2 < p3 < . . . < pk−1 < pk.

3.2.1 Elementary combinatorics.

Clearly n ∈ S(x, y) if and only if we can write n as n = pa1
1 pa2

2 . . . pak
k ≤ x where

a′is are non-negative integers. Therefore evidently Ψ(x, y) is the number of non-

negative integer solutions in a′is of the following inequality.

a1 log p1 + a2 log p2 + · · ·+ ak log pk ≤ log x. (3.2.1)
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Since log 2 ≤ log pi ≤ log pk, for 1 ≤ i ≤ k, we have(
[u] + k

k

)
≤ Ψ(x, y) ≤

(
A + k

k

)
,

where A =
[

log x
log 2

]
. Now using prime number theorem [k = π(y) ∼ y

log y
] we have,

if c log x < k < ε log x
log log x

and y is large enough then

Ak

k!
� Ψ(x, y) � uk

k!
. (3.2.2)

For details of this method we refer to the survey article of Andrew Granville

[Gra00].

3.2.2 Geometric method: lattice points.

We note that Ψ(x, y) is the number of solution of the inequality (3.2.1) which is

equal to the number of lattice points inside the k dimensional tetrahedron given

by ai ≥ 0 and inequality (3.2.1). This quantity is equal to the number of unit

boxes ( hence the total volume of the unit boxes) whose side are parallel to the

axes and which have one corner one of this lattice points as the nearest point to

the origin. These boxes contain the above k-dimensional tetrahedron and hence

the total volume of the tetrahedron is less than or equal to the total volume of

these unit boxes. On the other hand, these unit boxes are contained inside the

tetrahedron

{(a1, a2, · · · , ak) : ai ≥ 0,
∑k

i=1(ai − 1) log pi ≤ log x}
and hence the volume of this k-dimensional tetrahedron is greater than or

equal to the ’total volume’ of those unit boxes.

Therefore, we have

1

k!

∏
p≤y

log x

log p
≤ Ψ(x, y) ≤ 1

k!

∏
p≤y

log X

log p
(3.2.3)

where log X = log x +
∑

p≤y log p.

Using the prime number theorem (
∑

p≤y log p ∼ y) coupled with the ideas as

above, Ennola [Enn69] proved the following asymptotic formula.

Theorem 3.2.1 (Ennola, 1969).

Ψ(x, y) =
1

π(y)!

∏
p≤y

(
log x

log p

){
1 + O

(
y2

log x log y

)}
(3.2.4)
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which holds in the range 2 ≤ y ≤
√

(log x log log x) uniformly.

For the details of the proof, the reader is referred to the book [Ten95] by

Tenenbaum (page 363).

3.2.3 Rankin’s upper bound method.

In 1938, Rankin introduced [Ran38] the following clever technique to obtain an

upper bound of Ψ(x, y) = #(S(x, y)). Let P (n) be the largest prime factor of n

and define the function χ(n, y) by

χ(n, y) =

{
1 if P (n) ≤ y

0 otherwise
(3.2.5)

Clearly for any σ > 0 we have,

Ψ(x, y) =
∑
n≤x

χ(n, y) ≤
∑
n≤x

(x

n

)σ

χ(n, y) = xσ
∏
p≤y

(
1− 1

pσ

)−1

.

Now the idea is to minimize the last expression as a function of σ > 0 using

calculus. Taking logarithm of this function and differentiating it with respect to

σ and equating that with 0 we get

log x =
∑
p≤y

log p

pσ − 1
. (3.2.6)

The equation (3.2.6) in σ has a unique solution (say α(x, y)) as the right hand

side of (3.2.6) is a continuous and decreasing function of σ and it decreases from

∞ to 0. In fact one can show that (see the above mentioned book, page 360)

α(x, y) = log(1+y/ log x)
log y

{
1 + O

(
log log y

log y

)}
≈ 1− u log u

log y
,

where the last approximation is valid if α > 1/2.

In 1966, a more careful analysis of Rankin’s upper bound method by de Bruijn

[Bru66] (and later more precisely by Tenenbaum [Ten90]), resulted in the following

theorem.
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Theorem 3.2.2 (de Bruijn). We have uniformly for x ≥ y ≥ 2,

log Ψ(x, y) = Z

{
1 + O

(
1

log y
+

1

log log 2x

)}
, (3.2.7)

where, Z :=
log x

log y
log

(
1 +

y

log x

)
+

y

log y
log

(
1 +

log x

y

)
= u

∫ 1

0

log

(
1 +

y

v log x

)
dv. (3.2.8)

Using the same method, C. Pomerance, in 1989, taking y = (log x)A for A > 1

and σ = 1− 1/A, derived the following estimate

Ψ(x, (log x)A) = x1−1/A+O(1/ log log x). (3.2.9)

3.2.4 Functional equation.

Ψ(x, y) satisfies the following functional equation.

Theorem 3.2.3. For x, y ≥ 1, we have

Ψ(x, y) = 1 +
∑
p≤y

Ψ(x/p, p). (3.2.10)

Proof. n > 1 is counted in Ψ(x, y) if and only if we can write n = mp, where

P (n) = p and P (m) ≤ p. Therefore for each n > 1, n ∈ S(x, y), there is unique

pair (p, m) satisfies the conditions n = pm, P (n) = p and P (m) ≤ p. Hence

Ψ(x, y)− 1 =
∑
p≤y

∑
{n≤x, P (n)=p}

1 =
∑
p≤y

∑
{m≤x/p, P (m)≤p}

1 =
∑
p≤y

Ψ(x/p, p).

The theorem follows.

It is straightforward that the above theorem implies the following identity.

Corollary 3.2.4 (Buchstab’s Identity). For x ≥ 1, z ≥ y ≥ 1, we have

Ψ(x, z) = Ψ(x, y) +
∑

y<p≤z

Ψ(x/p, p). (3.2.11)

Using Buchstab Identity, De Bruijn proved the following theorem by induction

on [u] =
[

log x
log y

]
Theorem 3.2.5. For every ε > 0, we have,

Ψ(x, y) ∼ xρ(u) (xε < y ≤ x). (3.2.12)
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Once again using Buchstab’s Identity one can prove [Ten95] by induction on

[u] =
[

log x
log y

]
the following theorem.

Theorem 3.2.6. Uniformly for x ≥ y ≥ 2 we have,

Ψ(x, y) = xρ(u) + O

(
x

log y

)
. (3.2.13)

The proof of the asymptotic formula (3.1.6) in the range (3.1.8) due to Hilde-

brand based on another functional equation.

Theorem 3.2.7 (Hildebrand Identity). For x ≥ 1 and y ≥ 2, Ψ(x, y) satisfies

the following functional equation.

Ψ(x, y) log x =

∫ x

1

Ψ(t, y)

t
dt +

∑
pm≤x, p≤y

Ψ(
x

pm
, y) log p. (3.2.14)

Proof. We consider the sum

S :=
∑

n∈S(x,y)

log n =
∑

n≤x, P (n)≤y

log n =
∑
n≤x

χ(n, y) log n.

Now we evaluate it in two different ways. On one hand, an application of the

partial summation formula gives us

S =
∑
n≤x

χ(n, y) log n = Ψ(x, y) log x−
∫ x

1

Ψ(t, y)

t
dt.

On the other hand, by writing log n =
∑

pm|n log p in S and interchanging the

order of the summation, we have

S =
∑
n≤x

χ(n, y) log n =
∑
n≤x

∑
pm|n

log p χ(n, y)

=
∑

pm≤x

∑
n≤ x

pm

χ(n, y) =
∑

pm≤x, p≤y

Ψ(
x

pm
, y).

We get the identity (3.2.14) by equating these two expressions of S. Hence we

have the result.

3.2.5 The saddle point method.

In 1986 Hildebrand and Tenenbaum [HT86] proved the following theorem.
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Theorem 3.2.8. Uniformly in the range x ≥ y ≥ 2, we have

Ψ(x, y) =
xαζ(α, y)

α
√

2πφ2(α, y)

{
1 + O

(
1

u
+

log y

y

)}
, (3.2.15)

where ζ(s, y) =
∏
p≤y

(1− p−s)−1 (3.2.16)

φ(s, y) = log ζ(s, y), φk(s, y) =
dk

dsk
φ(s, y) (k ≥ 1) (3.2.17)

and α(x, y) is given by the unique positive solution of the equation (3.2.6).

They start with the well-known contour integral used in the Perron formula.

Fix α > 0. Then

1

2πi

∫
Re(s)=α

ys

s
ds =


0 if 0 < y < 1

1/2 if y = 1

1 if y > 1

Using the above, we have

Ψ(x, y) =
∑
n≤x

χ(n, y) =
1

2πi

∑
n≥1

∫
Re(s)=α

(x/n)s

s
ds + O(1)

=
1

2πi

∫
Re(s)=α

(∑
n≥1

χ(n, y)

ns

)
xs

s
ds + O(1)

=
1

2πi

∫
Re(s)=α

ζ(s, y)
xs

s
ds + O(1), (3.2.18)

where ζ(s, y) :=
∏

p≤y (1− p−s)
−1

. Take α = α(x, y), the optimization point in

Rankin’s Method. One can show that the main contribution to the above integral

comes from a very short interval close to α(x, y), the saddle point, and so that

Ψ(x, y) =
1

2πi

∫ α(x,y)+i/ log y

α(x,y)−i/ log y

ζ(s, y)
xs

s
ds + small error.

Evaluation of the above integral gives the asymptotic formula (3.2.15). For the

details of the proof of this theorem we refer to their paper [HT86].

One can make some interesting deductions from this asymptotic formula. For

example, if 1 ≤ c ≤ y then

Ψ(cx, y) = Ψ(x, y)cα(x,y)

{
1 + O

(
1

u
+

log y

y

)}
. (3.2.19)
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Using this, one can solve an old conjecture of Erdös. It says

Ψ(2x, y)/Ψ(x, y) ∼
(

1 +
y

log x

)log 2/ log y

∼

{
1 iff y ≤ (log x)1+o(1)

2 iff y > (log x)∞

Here ‘iff’ means ‘if and only if’, and y > (log x)∞ means y > (log x)A for every

A > 0. In between, we have

Ψ(2x, y)/Ψ(x, y) ∼ 21−1/α if y = (log x)α+o(1) with α > 1.

3.3 The Dickman function ρ.

We have mentioned earlier that the Dickman function ρ is a non-negative con-

tinuous and monotonically decreasing function and it satisfies the differential-

difference equation (3.1.4) with the initial condition (3.1.5). We have the following

theorem for the Dickman function ρ.

Theorem 3.3.1. The Dickman’s function ρ satisfies the following properties.

ρ(u) =
1

u

∫ u

u−1

ρ(t)dt (u ≥ 0) (Integral-delay equation). (3.3.1)

ρ(u) > 0 (u > 0). (3.3.2)

ρ′(u) < 0 (u > 1). (3.3.3)

ρ(u) ≤ 1

Γ(u + 1)
(u ≥ 0). (3.3.4)

Proof. Let us first prove the differential-difference equation (3.1.4). We shall prove

by induction on N ≥ 0 that for N < u ≤ N + 1 ,

ρ(u) = ρ(N)−
∫ u

t=N

ρ(t− 1)
dt

t
. (3.3.5)

Clearly the result is true for 0 ≤ u ≤ 1 as Ψ(x, y) = x (since u ≤ 1 ⇔ x ≤ y).

Let us assume the result for N − 1 < u ≤ N for some N ≥ 1. We shall prove

the result for N < u ≤ N + 1. By Corollary 4, for N < u ≤ N + 1 (by taking

z = x1/N and y = x1/u resp.), we have

Ψ(x, x1/u) = Ψ(x, x1/N)−
∑

x1/u<p<x1/N

Ψ(
x

p
, p)

≈ xρ(N)−
∑

x1/u<p<x1/N

x

p
ρ

(
log(x/p)

log p

)
(3.3.6)
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as log(x/p)
log p

= log x
log p

− 1 < log x
log(x1/u)

− 1 = u − 1 ≤ N and so we have applied

the induction hypothesis. Let χ be the characteristic function of the set of all

primes. Now by using the prime number theorem θ(T ) :=
∑

p≤T,prime log p =

T + O(T/ log T ) we have

∑
x1/u<p<x1/N

1

p
ρ

(
log(x/p)

log p

)
=

∑
x1/u<n<x1/N

1

n log n
ρ

(
log(x/n)

log n

)
(log n)χ(n)

=

∫ x1/N

T=x1/u

ρ

(
log x

log T
− 1

)
dθ(T )

T log T

≈
∫ x1/N

T=x1/u

ρ

(
log x

log T
− 1

)
dT

T log T

= −
∫ N

t=u

ρ(t− 1)
dt

t
(Putting T = x1/t). (3.3.7)

Hence by (3.3.6) we have (3.3.5). Differentiating (3.3.5) with respect to u, we

have the differential difference equation for ρ.

Now we shall prove the Integral-delay equation by induction as follows. The

result is true for 0 ≤ u ≤ 1 (just set ρ(u) = 0 for −1 < u < 0). Let us assume

that the result is true for some u > 0. We shall prove that the result is true for

u + 1. Since it is true for u then by using differential-difference equation we have

uρ(u) =

∫ u

u−1

ρ(t)dt = −
∫ u

u−1

(t + 1)ρ′(t + 1)dt

= −(u + 1)ρ(u + 1) + uρ(u) +

∫ u+1

u

ρ(t)dt.

Therefore,
∫ u+1

u
ρ(t)dt = (u + 1)ρ(u + 1). This completes the induction and we

have proved the integral-delay equation.

Let θ = inf{t : ρ(t) = 0} < ∞. Since ρ(u) = 1 > 0 for 0 < u ≤ 1 then θ > 1.

But then 0 = θρ(θ) =
∫ θ

θ−1
ρ(t)dt. This implies that ρ(t) = 0 for θ − 1 ≤ t ≤ θ

as ρ is continuous and non-negative. This contradicts the definition of θ. This

proves (3.3.2).

From the differential-difference equation of ρ and (3.3.2) we get (3.3.3). This

also proves that ρ is strictly monotonically decreasing function.

Clearly if 0 ≤ u ≤ 1 then ρ(u) = 1 ≤ 1/Γ(u + 1). Let us assume that the

result is true for all u, k − 1 ≤ u ≤ k, for some k ≥ 1. We shall show that the

result is true for u + 1. By (3.3.1), (3.3.2), (3.3.3), and induction hypothesis we
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have,

ρ(u + 1) =
1

u + 1

∫ u+1

u

ρ(t)dt ≤ 1

u + 1
ρ(u)

≤ 1

u + 1

1

Γ(u + 1)
= 1/Γ(u + 2).

This proves (3.3.4).

3.3.1 The Laplace transform method.

One may use Laplace transform to evaluate the value of ρ(u). We have the

following theorem.

Theorem 3.3.2.

ρ(u) =

{
1 + O

(
1

u

)}√
ξ′(u)

2π
exp

{
γ − uξ(u) +

∫ ξ(u)

0

et − 1

t
dt

}
, (3.3.8)

where γ is Euler’s constant, and ξ(u) is the unique positive solution of the equation

eξ(u) = 1 + uξ(u).

This asymptotic formula first proved by de Bruijn [Bru51b] using contour

integration and saddle point method. Canfield [Can82] proved it by combinatorial

methods, Hildebrand and Tenenbaum [HT86] gave an arithmetic proof using the

function Ψ(x, y). The above quantitative result is due to Alladi [All82b]. A

different, but complicated expansion has been given by Xuan [Xuan93].

Let L(ρ, s) be the Laplace transform of ρ and let L′(ρ, s) be its derivative.

Using integral-delay equation we have,∫ ∞

u=0

uρ(u)e−sudu =

∫ ∞

u=0

e−su

(∫ u

t=u−1

ρ(t)dt

)
du

=

∫ ∞

u=0

(∫ u

t=u−1

ρ(t)e−ste−s(u−t)dt

)
du

=

∫ ∞

t=0

(
ρ(t)e−st

∫ t+1

u=t

e−s(u−t)du

)
dt

=

∫ ∞

t=0

ρ(t)e−stdt

∫ 1

v=0

e−svdv (v = u− t)

= L(ρ, s)

(
1− e−s

s

)
.
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Therefore,

−L′(ρ, s) = L(ρ, s)

(
1− e−s

s

)
Integrating this differential equation we get,

L(ρ, s) = L(ρ, 0) exp

(
−
∫ s

t=0

1− e−t

t

)
(3.3.9)

Using Laplace inversion formula we get,

ρ(u) =
1

2πi

∫
Re(s)=α

L(ρ, s)eusds

=
eγ

2πi

∫
Re(s)=α

exp

(
us−

∫
t=0

s
1− e−t

t
dt

)
ds. (3.3.10)

One can deduce (3.3.8) from (3.3.10). In 1983 Canfield, Erdös and Pomerance

[CEP83] derived the following useful asymptotic for ρ.

ρ(u) = 1/uu+o(u) as (u →∞). (3.3.11)

One may write the last equation with more precisely as

ρ(u) =

(
e + o(1)

u log u

)u

as (u →∞). (3.3.12)

For the proofs we refer their original paper [CEP83].

3.4 Smooth numbers in short intervals.

In the preceding section, we have discussed the distribution of smooth numbers

globally. In this section, we shall discuss the distribution of smooth numbers in a

short interval. More precisely we like to investigate the distribution of y-smooth

numbers in an interval (x, x + z] for large enough x and z quite small compared

to x. Since Ψ(x, y) ∼ xρ(u), one may expect that the asymptotic relation

Ψ ((x, x + z], y) := Ψ(x + z, y)−Ψ(x, y) ∼ (z/x)Ψ(x, y) = zρ(u)

should hold in wide ranges of y and z.

In 1986 Hildebrand [Hil86a] proved such an asymptotic relation in the range

x ≥ z ≥ x/y5/12. Let us record his result here and we refer to the original paper
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for the proof.

Theorem 3.4.1 (Hildebrand, 1986). For any fixed ε > 0, uniformly in the range

y ≥ 2, 1 ≤ u ≤ exp
{
(log y)3/5−ε

}
, x ≥ z ≥ x/y5/12, (3.4.1)

we have

Ψ(x + z, y)−Ψ(x, y) = zρ(u)

{
1 + O

(
log(u + 1)

log y

)}
. (3.4.2)

One can improve this range to x ≥ z ≥ x/y1−o(1). Since we do not know the

truth of global asymptotic relation Ψ(x, y) ∼ xρ(u) beyond the range (3.4.1), one

cannot find, at present, the asymptotic for Ψ(x+z, y)−Ψ(x, y) beyond this range

in terms of ρ(u). One can look, however, for an asymptotic formula beyond the

above range in terms of Ψ(x, y). Hildebrand and Tenenbaum [HT86] found one

such.

Theorem 3.4.2 (Hildebrand-Tenenbaum, 1986). For every fixed ε > 0, and uni-

formly for x ≥ y ≥ 2 and 1 ≤ z ≤ x, we have

Ψ(x+z, y)−Ψ(x, y) =
zα(x, y)

x
Ψ(x, y)

{
1 + O

(
z

x
+

1

u
+

log y

y

)}
+O (Ψ(x, y)Rε) ,

(3.4.3)

where α(x, y) is the saddle point of Rankin’s Method and

Rε(x, y) = exp
{
−(log y)3/2−ε

}
+ (log y) exp

{
−cu/(log(u + 2))2

}
,

for some constant c > 0.

It is easy to prove that the second error term is dominated by the first error

term if z ≥ x exp
{
−(log y)3/2−ε

}
. The above theorem gives very good estimates

for the function Ψ(x+z, y)−Ψ(x, y), provided z is close enough to x. The question

is how far the asymptotic Ψ(x+z, y)−Ψ(x, y) ∼ zρ(u) holds. In 1993, Friedlander

and Granville [FG93] proved such a formula in the range

exp
(
(log x)5/6+o(1)

)
≤ y ≤ x and

√
xy2 exp

(
(log x)1/6

)
≤ z ≤ x. (3.4.4)

A challenging problem in this area is to prove the above when z is an arbitrary

power of x. More specifically if β < 1, α > 0 then one wants to show that

Ψ(x + xβ, xα)−Ψ(x, xα) ∼ xβρ(1/α). (3.4.5)

Thus equation (3.4.4) gives this for β > 1/2 + 2α.
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Due to inaccessibility of such an asymptotic relation (3.4.5) by current tech-

niques, one modifies the problem in two directions. Find upper and lower bounds

of Ψ(x + z, y)−Ψ(x, y) in the same range with correct order of magnitude. One

also looks for the asymptotic formula (3.4.5) with a “small” exceptional set. In

1971, Wolke [Wol71] and in 1985, Hildebrand [Hil85] gave upper bounds for

Ψ(x + z, y) − Ψ(x, y). Here more difficult problem is to obtain a lower bound

with the right size and in a wide range. In 1987, Friedlander and Lagarias [FL87]

gave the following lower bound for Ψ(x + z, y)−Ψ(x, y).

Theorem 3.4.3. There exists a constant c > 0 such that, for any fixed α ∈ (0, 1)

and β > 1− α− cα(1− α) and for all sufficiently large x, we have

Ψ(x + xβ, xα)−Ψ(x, xα) �α,β xβ. (3.4.6)

The equation (3.4.4) gives such a lower bound for β > 1/2 + 2α and α > 0.

It seems very hard to prove such a lower bound for β = 1/2. In fact, proving

Ψ(x + x1/2, xα) − Ψ(x, xα) > 0 is itself one of the most challenging problem in

this area (see [Gra00], page 26). Despite the difficulty, some progress has been

made towards solving the problem. In 1987, A. Balog [Balo87] proved that for

every α > 0, there is an xα-smooth number in the interval (x, x + x1/2+o(1)].

In 1991, Harman [Har91] improved the smoothness of Balog’s result by showing

that for every ε > 0 and y ≥ exp
(
(log x)2/3+ε

)
, there is a y-smooth number

in the interval (x, x + x1/2+o(1)]. In 1993 Lenstra, Pila and Pomerance [LPP93]

made it stronger by giving explicit lower bound of correct order of magnitude. In

1999, Xuan [Xuan99] improved Balog’s result conditionally by proving that if the

Riemann Hypothesis is true then there is an xα smooth number in any interval

(x, x +
√

x(log x)1+o(1)] for all sufficiently large x. In chapter 5, we shall prove,

under an assumption weaker than Lindelöf, that there is an xαth smooth number

in the interval (x, x + (log x)−1/2+o(1)
√

x], for all sufficiently large x.

In the other direction, in 1987, Friedlander and Lagarias [FL87] proved the

following results.

Theorem 3.4.4. For any fixed ε > 0, 0 < β ≤ α ≤ 1, and for all sufficiently

large X, the estimate

Ψ(x + xβ, xα)−Ψ(x, xα) ≥ 1

64
βρ(1/α)xβ (3.4.7)

holds for all x ∈ [1, X] with the exception of a set of measure bounded by �ε,α,β

X exp{−(log x)1/3−ε}.
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Theorem 3.4.5. For any fixed ε > 0, for all sufficiently large X, in the range

exp{(log X)5/6+ε} ≤ y ≤ X, y exp{(log X)1/6} ≤ z ≤ X (3.4.8)

the estimate

Ψ(x + z, y)−Ψ(x, y) � ρ

(
log X

log y

)
z (3.4.9)

holds for all x ∈ [1, X] with the exception of a set of measure bounded by �ε

X exp{−1
2
(log X)1/6}.

Note that in Theorem 3.4.5, we have the estimate with a better smoothness

as well as a shorter interval around x compared with Theorem 3.4.4. The price

one pays for this is a larger exceptional set compared with Theorem 3.4.4.

The range (3.4.8) in Theorem 3.4.5 is a consequence of Vinogradov’s zero-free

region for the Riemann zeta function and can be made wider if one assumes a

large zero-free region. Indeed, Hafner [Haf93] proved, in 1993, that under the

Riemann Hypothesis, the conclusion of Theorem 3.4.5 holds for L(x) ≤ y ≤ x

and
√

L(x) ≤ z ≤ x, where L(x) := exp{
√

log x log log x}.
An asymptotic of this type has been given by Hildebrand and Tenenbaum

[HT93]. They prove the following very useful theorem.

Theorem 3.4.6 (Hildebrand-Tenenbaum 1993). For any fixed ε > 0, for all

sufficiently large X, and for y, z satisfying (3.4.8), the estimate

Ψ(x + z, y)−Ψ(x, y) = zρ(u)

{
1 + O

(
log(u + 1)

log y

)}
, (3.4.10)

holds for all x ∈ [1, X] with the exception of a set of measure bounded by �ε

X exp{−(log X)1/6−ε}.

For the proof of this theorem we refer to their original paper. The proof of

(3.4.4) entirely depends on this theorem.
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Chapter 4

Properties of the Riemann ζ

function and the Perron formula

4.1 Introduction.

In this chapter we shall present some useful results on the Riemann ζ function

in the critical strip under different conjectures. We shall use these results on the

ζ function in next chapter to improve the results on smooth numbers in short

intervals.

4.2 Introduction to the Riemann ζ function.

The Riemann ζ function is defined by

ζ(s) =
∞∑

n=1

1

ns
(4.2.1)

for Re s > 1.

It has a meromorphic continuation to the entire plane with only one pole at

s = 1. The pole is of order one and of residue 1. ζ(s) satisfies the following

functional equation :

ζ(s) = 2sπs sin
πs

2
Γ(1− s)ζ(1− s), (4.2.2)

The ζ function has zeros at the negative even integers which can be seen from the

functional equation. These are called trivial zeros. All other zeros of the ζ function

lie in the critical strip, 0 ≤ σ ≤ 1. These non-trivial zeros are symmetrically

distributed in the critical strip with respect to the real axis and the line σ = 1
2
.
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It is known that ζ(s) has no zero on the line σ = 1. Hence, by the functional

equation, all the non-trivial zeros are in the strip 0 < σ < 1. The Riemann

Hypothesis says that all the non-trivial zeros lie on the critical line σ = 1
2
. Let

T > 0 and let N(T ) denote the number of zeros in the region 0 < σ < 1, 0 < t ≤ T .

If T is not the ordinate of a zero, let S(T ) denote the value of π−1 arg ζ(1/2 + it)

obtained by continuous variation along the straight line joining 2, 2+iT , 1/2+iT ,

starting with the value 0. If T is the ordinate of a zero, let S(T ) = S(T + 0). Let

L(T ) =
1

2π
T log T − 1 + log 2π

2π
T +

7

8
. (4.2.3)

Then we have the following theorem due to Backlund [Bac14,Bac18], .

Theorem 4.2.1. As T →∞

N(T ) = L(T ) + S(T ) + O(
1

T
). (4.2.4)

We have S(T ) = O(log T ) unconditionally and S(T ) = O( log T
log log T

) under the

Riemann Hypothesis. Hence, for any fixed h > 0, we have,

N(T + h)−N(T ) = O(log T ). (4.2.5)

Also,

N(T +
1

log log T
)−N(T ) = O(log T ), (4.2.6)

unconditionally and

N(T +
1

log log T
)−N(T )

=
1

2π

{
(T +

1

log log T
) log(T +

1

log log T
)− T log T

}
− 1 + log 2π

2π

1

log log T
+

{
S(T +

1

log log T
)− S(T )

}
= O(

log T

log log T
) + O(S(T )) = O(

log T

log log T
), (4.2.7)

under the Riemann Hypothesis. Again,

N(T +
1

log T
)−N(T ) = O(log T ), (4.2.8)
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unconditionally and

N(T +
1

log T
)−N(T ) = O(

log T

log log T
) (4.2.9)

under the Riemann Hypothesis. Thus stronger bounds on S(T ) give better esti-

mates on the distribution of the non-trivial zeros of the ζ function.

H. L. Montgomery [Mon77] proved (under the Riemann Hypothesis) that

S(T ) = Ω+((
log T

log log T
)

1
2 ) i.e. S(T ) > A((

log T

log log T
)

1
2 )

S(T ) = Ω−((
log T

log log T
)

1
2 ) i.e. S(T ) < −A((

log T

log log T
)

1
2 ), (4.2.10)

for infinitely many T , and for some A > 0. In the same paper he has conjectured

that (4.2.10) represents the right rate of growth. It is thought [Odl87] likely that

S(T ) � (log T )1/2+ε, (4.2.11)

for every ε > 0. Under this conjecture, we have,

Theorem 4.2.2.

N(T +
1

log T
)−N(T ) = O((log T )1/2+ε), (4.2.12)

for every ε > 0.

Proof. Let ε > 0 be fixed. Let T > 0. We have

N(T +
1

log T
)−N(T ) =

1

2π

{
(T +

1

log T
) log(T +

1

log T
)− T log T

}
−1 + log 2π

2π

1

log T
+ S(T +

1

log T
)− S(T )

� 1

2π
T log(1 +

1

T log T
) + (log T )1/2+ε

� (log T )1/2+ε,

as T →∞. The theorem follows.
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4.3 Bounds on ζ and ζ ′

The following bounds on ζ and ζ ′ in the critical strip are known (see Theorem

5.12, Theorem 3.5, Equation 6.19.2, Equation 3.11.7, and page 135 of [Tit86] ).

ζ(
1

2
+ it) � t1/6 log t, (4.3.1)

ζ(σ + it) � log t, (σ ≥ 1/2, σ > 1− A

log t
, t ≥ e) (4.3.2)

ζ(σ + it) � (1 + t100(1−σ)3/2

)(log t)2/3, (0 ≤ σ ≤ 2, t ≥ 2) (4.3.3)

ζ ′(σ + it) � (log t)2, (σ ≥ 1/2, σ > 1− A

log t
, t ≥ e) (4.3.4)

ζ ′(σ + it)

ζ(σ + it)
� (log t)2/3(log log t)1/3, σ ≥ 1− A

(log t)2/3(log log t)1/3
,(4.3.5)

1

ζ(σ + it)
� (log t)2/3(log log t)1/3, σ ≥ 1− A

(log t)2/3(log log t)1/3
,(4.3.6)

for some A > 0. The last two bounds are due to I. N. Vinogradov.

Under the Riemann Hypothesis, we have the following bounds (see theorem

14.14(A) and theorem 14.5. of [Tit86]):

ζ(1/2 + it) = O

{
exp(A

log t

log log t
)

}
, (4.3.7)

ζ ′(σ + it)

ζ(σ + it)
= O{(log t)2−2σ}, (4.3.8)

log ζ(σ + it) = O

{
(log t)2−2σ

log log t

}
, (4.3.9)

uniformly for 1/2 < σ0 ≤ σ ≤ σ1 < 1.

We shall extend the range of σ to 1/2 + 1
log log t

≤ σ ≤ σ1 < 1 under the

Riemann Hypothesis.

Theorem 4.3.1. If the Riemann Hypotesis is true then we have

ζ ′(σ + it)

ζ(σ + it)
= O(log t), (4.3.10)

uniformly for 1
2

+ 1
log log t

≤ σ ≤ σ1 < 1 .

Proof. By (14.15.2) of [Tit86], we have,

ζ ′(σ + it)

ζ(σ + it)
=

∑
|t−γ|<1/ log log t

1

s− ρ
+ O(log t), (4.3.11)
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where ρ = 1
2
+ iγ varies over the non-trivial zeros of the ζ function. But by (4.2.7)

there are O( log t
log log t

) zeros 1/2 + iγ of the ζ function such that γ ∈ (t− 1
log log t

, t +
1

log log t
) and hence

ζ ′(σ + it)

ζ(σ + it)
=

∑
|t−γ|<1/ log log t

1√
( 1

log log t
)2 + (γ − t)2

+ O(log t),

� O(
log t

log log t
)(log log t) + O(log t) = O(log t),

uniformly for 1/2 + 1
log log t

≤ σ ≤ σ1 < 1.

With the above argument, we can say that (Under the Riemann Hypothesis)

ζ ′(σ + it)

ζ(σ + it)
= O{(log t)2}, (4.3.12)

uniformly for 1
2

+ 1
log t

≤ σ ≤ σ1 < 1.

We can give better bound on ζ′

ζ
near 1

2
+ 1

log t
under the conjecture S(t) �

(log t)1/2+ε.

Theorem 4.3.2. Under the Riemann Hypothesis and the above conjecture, we

have
ζ ′(σ + it)

ζ(σ + it)
= O{(log t)

3
2
+ε}, (4.3.13)

uniformly for 1
2

+ 1
log t

≤ σ ≤ σ1 < 1.

Proof. Let R =
[

log t
log log t

]
and 1

2
+ 1

log t
≤ σ ≤ σ1 < 1.
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Then by (4.3.11), we have

ζ ′(σ + it)

ζ(σ + it)
=

∑
|t−γ|<1/ log log t

1

s− ρ
+ O(log t),

�
∑

t<γ<t+ 1
log log t

1√
1

(log t)2
+ (γ − t)2

+ O(log t)

≤
R∑

k=0

∑
t+ k

log t
<γ≤t+ k+1

log t

1√
1

(log t)2
+ (γ − t)2

+ O(log t)

≤
R∑

k=0

∑
t+ k

log t
<γ≤t+ k+1

log t

log t√
1 + k2

+ O(log t)

�
R∑

k=0

(log t)
3
2
+ε

√
1 + k2

+ O(log t), (by theorem 4.2.2)

� (log t)
3
2
+ε

∫ R

u=0

1√
1 + u2

du + O(log t)

� (log t)
3
2
+ε log R � (log t)

3
2
+ε log log t.

Hence the result follows.

4.4 The Perron formula.

Let us record the Perron formula which will be used in several places in the next

chapter.

Let {an} be a sequence with an � nε for any fixed ε > 0 and let c > 1. We

shall write the sum
∑

n≤X an as a contour integral. The main contour integral we

need is:

1

2πi

∫ c+iT

c−iT

ys ds

s
= E(y) +


0 if 0 < y < 1
1
2

if y = 1

1 if y > 1

(4.4.1)

where the error estimate E(y) is given by

|E(y)| <

{
yc min{1, 1

T | log y|} if y 6= 1
c
T

if y = 1
(4.4.2)
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It follows that

∑
n≤X

an =
1

2πi

∫ c+iT

c−iT

(
∞∑

n=1

an

ns

)
Xs

s
ds + E(X), (4.4.3)

where

E(X) �
∞∑

n=1

an

(
X

n

)c

min

{
1,

1

T | log(X/n)|

}
(4.4.4)

if X is not an integer. If X is an integer, then the X-th term in the above sum is

replaced by aX( c
T

+ 1
2
). For estimating the error, we break up the above sum into

three parts {n/X > 3/2}, {n/X < 1/2} and {1/2 ≤ n/X ≤ 3/2}. For the first

two parts, | log(X/n)| is bounded from below by a fixed constant and the total

contribution from these two parts is O
(

Xc+ε

T

)
since

∑∞
n=1

an

nc is convergent. For

the third part, write

| log(X/n)| = | log(n/X)| = | log(1− (1− n/X))| > |1− n/X| = X

|X − n|
.

Let {X} = the integer nearest to X, if X is not an integer, and X if it is.

Define ||X|| := |X − {X}|. In the third part, we can bound
(

X
n

)c
by 2c � 1.

Each an is O(Xε). Hence the sum over all integers in the third part except {X}
is bounded by

O

X1+ε

T

∑
1≤m≤[X

2
]

1

m

 = O

(
X1+ε log X

T

)

which is absorbed in O
(

Xc+ε

T

)
coming from the first two parts. The term for

n = {X} has to be kept separate because ||X|| can be arbitrarily small.

Case X /∈ N.

For the third part, using the above bound, we finally have

E(X) � Xc+ε

T
+ a{X}

(
X

{X}

)c

min

{
1,

X

T ||X||

}
� Xc+ε

T
+ a{X} min

{
1,

X

T ||X||

}
.

Note that we have assumed
(

X
{X}

)c

� 1.
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So, finally we have

E(X) � Xc+ε

T
+ a{X} min

{
1,

X

T ||X||

}
.

Case X ∈ N
If X is an integer, then for n 6= X, |X − n| > 1/2, so we can bound all

terms in the third part by O (X1+ε/T ) except the X-th term which is bounded

by aXO( c
T
) + aX

2
because in the sum in the left hand side, the X-th term is not

aX but aX

2
and the corresponding error term is not O

(
Xc min

{
1, 1

T | log X|

})
but

O( c
T
). Finally,

E(X) = O

(
Xc+ε

T

)
+

aX

2

and letting T →∞,

∑
n≤X

an =

∫ c+i∞

c−i∞

(
∞∑

n=1

an

ns

)
Xs ds

s
+

aX

2
.

So for any X,

∑
n≤X

an =
1

2πi

∫ c+iT

c−iT

(
∞∑

n=1

an

ns

)
+

(
Xc+ε

T

)
+ O(Xε). (4.4.5)



Chapter 5

Smooth Numbers II

5.1 Introduction

In this chapter we shall present the major new work we have done on the distribu-

tion of smooth numbers in short intervals. What we are interested is the following

conjecture (see Smooth Numbers: Computational Number Theory and Beyond,

Page 8, section 1f of A. Granville ).

Conjecture 4 (A. Granville.). For some c, 0 < c < 4, and sufficiently small

c′ > 0, we have

Ψ(X + c
√

X, y)−Ψ(X, y) �
√

X/uu+o(u) where u =
log X

log y
(5.1.1)

for y > L(X)c′ and for all sufficiently large X.

Under the assumption of Riemann Hypothesis, Xuan [Xuan99] proved that

there is an Xα-smooth number in any interval (X, X + (log X)1+o(1)
√

X] for

sufficiently large X. The best unconditional result in this direction is due

to Granville and Friedlander [FG93] who proved that there are Xα-smooth

numbers in an interval (X, X +
√

Xf(X)], for all sufficiently large X, where

f(X) = exp(2(log X)
5
6
+ε +(log X)

1
6 ) for any ε > 0. In fact they proved this result

with a better smoothness, namely, with y = exp((log X)
5
6
+ε). Unfortunately, in

the essential application to the Lenstra’s elliptic curve factoring method, we must

have c < 4; result for larger c have no such consequences. Lenstra’s elliptic curve

factoring method proceeds as follows.

Let n ≥ 2 be a composite integer and we want to find a factor of n.

Step 1. Check that gcd(n, 6) = 1 and that n does not have the form mr for

some m, r ≥ 2. [ If the gcd(n, 6) is not 1 then we have got a factor of n, viz., the

71
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gcd and we are done. ] If it is 1 then go to Step 2.

Step 2. Choose random integers b, x1, y1 between 1 and n. Go to Step 3.

Step 3.

Let γ = y2
1 − x3

1 − bx1 (mod n) and let Γ be the cubic curve

Γ : y2 = x3 + bx + γ, and let P = (x1, y1) ∈ Γ.

Step 4. Check that gcd(4b3, 27γ2) = 1 [ If it equals to n, go to Step 2. and

choose a new b. If it is strictly between 1 and n, then it is a non-trivial factor of

n, and so we are done. ] If it is 1 then go to Step 5.

Step 5. Choose a number k = LCM [1, 2, 3, . . . , B], where B is any arbitrary

number. Go to Step 6.

Step 6. Compute kP = P + · · ·+ P , the k-fold sum of P .

Let kP =

(
ak

d2
k

,
bk

d3
k

)
.

[Given two points P1 = (x1, y1) and P2 = (x2, y2) on the curve

y2 = x3 + αx2 + βx + γ,

we define the sum P1 + P2 by the point P3 = (x3, y3), where x3, y3 are given by

the following formulas.

x3 = λ2 − α− x1 − x2 and y3 = −λx3 − ν,

where λ =

{
y2−y1

x2−x1
if x1 6= x2

3x2
1+2αx1+β

2y1
if P1 = P2

,

and ν = y1 − λx1 = y2 − λx2.]

One can compute kP in log2 k steps. But for large k one performs all computations

modulo n. For the details of the computational procedure look at pages 134-136

of the book [ST92]].

Step 7. Calculate D = gcd(dk, n). If 1 < D < n, then D is a non-trivial factor

of n and we are done. If D = 1, either go to Step 5 and take larger k or go to

Step 2 and choose a new curve. If D = n go to Step 5 and take a smaller k.

If p is a prime factor of n such that #Γ (Fp) divides k, then this procedure is

likely to factor n.

We note that if Γ is a non-singular cubic curve with coefficients in the finite
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field Fp, then

#Γ (Fp) = p + 1 + εp, where |εp| ≤ 2
√

p.

Furthermore, one can show that as Γ varies over all possible such curves, the

numbers |εp| are quite well spread out over the interval [−2
√

p,−2
√

p]. Now if in

an interval [p + 1− 2
√

p, p + 1 + 2
√

p] we have a smooth number then we will run

across a curve Γ with #Γ (Fp) having a smooth factor fairly rapidly. Thus under

the above assumption we shall get a smooth factor of n fairly rapidly. In fact,

under this assumption, algorithm takes expected time L(p)
√

2+o(1) to find a factor

of n.

The problem of finding a factor of n has come from a very important practical

reason. Recently, mathematicians have devised new short of codes (really ciphers)

based on trap-door functions built around the problem of factoring large integers.

In this thesis, I am not interested to describe these new ciphers, but let us say that

if a message is enciphered using the composite integer n, then one can read the

message if he can factor n. So the question of factoring large integers is of great

interest to the governments and businesses that wish to keep their message secret.

Our main interest is on the above conjecture. In next section We shall prove that

under Riemann Hypothesis and Montgomery conjecture that there are Xα-smooth

numbers in an interval (X, X + (log X)1/2+o(1)
√

X], for all sufficiently large X. In

section 3 we have proved that under a conjecture weaker than Lindelöf Hypothesis

that there are Xα-smooth numbers in an interval (X, X + (log X)−1/2+o(1)
√

X],

for all sufficiently large X.

5.2 Smooth numbers in short intervals.

Balog [Balo87] proved that there is always an Xα-smooth number in the interval

(X−X1/2+o(1), X] for all sufficiently large X. He proved it by proving the following

lemma.

Lemma 5.2.1 (Balog 1987). Let k ≥ 1 be an integer, 1
8k
≥ δ > 0, X > X0 be real

numbers, |am| ≤ 1 be arbitrary complex numbers and we define M = X1/2−1/4k,

Y = 1/2 + 1/8k + δ, and finally,

dn =
∑

m1m2|n,M<m1,m2≤2M

am1am2 . (5.2.1)
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Then for any A > 0 we have

∑
X−Y <n≤X

dn = Y

( ∑
M<m≤2M

am

m

)2

+ o

(
Y

(log X)A

)
. (5.2.2)

Now if we choose k > max{1/2α, 1/8ε} for a given ε > 0 and 0 < α ≤ 1

and take am = 1 or 0 according as m is Xα-smooth or not, then the lemma

guarantees that the interval (X − X1/2+ε, X] contains Xα-smooth numbers. In

fact, a more careful consideration show us ( as
∑

M<m≤M
am

m
� 1) that the above

interval contains � X1/2+ε−o(1) number of Xα-smooth numbers. To see this, we

just put Y = X1/2+ε in (5.2.2). Then
∑

(X−Y )<n≤X dn � X1/2+ε and for each

n, X − Y < n ≤ X there are at most Xo(1) choice of triples (m1, m2, l) with

n = m1m2l. By modifying Balog’s argument Granville and Friedlander [FG93]

proved that in any interval (X,X + X1/2+ε] there are �α,ε X1/2+ε number of

Xα-smooth numbers, for all sufficiently large X.

Harman [Har91] obtained a quantitative refinement of Balog’s result by show-

ing that the smoothness in the Balog’s result [Balo87] may be reduced to

exp
{
(log X)2/3+ε

}
. Lenstra, Pila and Pomerance [LPP93] slightly strengthened

this result and gave an explicit lower bound of the correct order of magnitude.

Xuan [Xuan99] showed, assuming the Riemann Hypothesis, that there is an Xα

smooth number in any interval [X, X +
√

X(log X)1+o(1)]. We record his result

below.

Theorem 5.2.2 (Xuan, 1999). If the Riemann Hypothesis is true, then for any

ε > 0, α > 0 and X ≥ X0(ε, α), the interval (X, X + Y ], where
√

X(log X)1+ε ≤
Y ≤ X, contains an integer having no prime factors exceeding Xα.

He proved this result by proving the following lemma.

Lemma 5.2.3 (Xuan, 1999). Let 0 < ε < 1/8 be fixed and put

M = X1/2(log X)−1−ε, N = (log X)2+2ε,

Y ≥ X

M
= X1/2(log X)1+ε, y = Xα

a(m) =

{
1 if m is y-smooth

0 otherwise,
M(s) =

∑
M<m≤2M

a(m)

m
.
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Then under the Riemann Hypothesis we have

∫ X+Y

x=X

(
?∑
a(m1)a(m2)Λ(r)

)
dx = Y 2M2(1) + O

(
Y 2(log X)−ε/4

)
, (5.2.3)

where ? represents the summation conditions

m1m2r ∈ (x, x + Y ], X ≤ x ≤ X + Y,

M < mi ≤ 2M, i = 1, 2.

Remark

We note that under the lemma, for all Y ≥ X
M

= X1/2(log X)1+ε left side of (5.2.3)

is � Y 2 as M2(1) � 1. But the integrand
∑ ? in (5.2.3) is non-negative. Hence

there is one x ∈ (X, X + Y ] for which
∑ ? � Y . But for each n ∈ (x, x + Y ]

number of triples (m1, m2, r) is � Xo(1) and each such triple will contribute

� Xo(1) log X to the sum. Hence there are at least� X1/2−o(1) number of different

smooth numbers of the form n = m1m2r where m1, m2 are y-smooth and r ≤ y

in the interval (x, x + Y ]. Therefore number of y-smooth numbers in any interval

(X, X + Y ] � X1/2−o(1).

Now we shall present our main theorem. We assume the bound (5.4.12).

Theorem 5.2.4. Assume that ζ(1/2 + it) � |1 + t|α/2. Then for all sufficiently

large X, there is an Xα-smooth number in the interval (X, X + Y ] for any Y �
X1/2(log X)−1/2+o(1).

The initial steps in our proof is similar to Xuan’s [Xuan99], but in estimating

an integral, we get a better bound by breaking up the interval into many small

pieces according to the size of the value of the zeta function (see the estimation

of I1).

5.3 Preliminary steps

Along with the preliminaries of section 2 we record the following result on mean

value of Dirichlet polynomial due to Montgomery and Vaughan [MV74].

Theorem 5.3.1. For any sequence {bn} of complex numbers and any positive real

number R, we have

∫ T

0

∣∣∣∣∣∑
n≤N

bnn
it

∣∣∣∣∣
2

dt �
∑
n≤N

|bn|2{T + O(n)}.
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Here we use the same technique of Balog for counting the smooth numbers.

Let α be fixed positive number. Define a sequence {am} where

am =

1 if p|m ⇒ p ≤ Xα,

0 otherwise.

Let M1 =
√

2X
1
2
−α

2 and M2 = X
1
2
−α

4 . Define a Dirichlet polynomial

M(s) =
∑

M1≤m≤M2

am

ms
,

and define, for any positive integer n,

An = {(m1, m2) : M1 < m1, m2 ≤ M2, m1m2|n}

and

dn =
∑

n=m1m2r,
(m1,m2)∈An

am1am2 .

If we can show that ∑
X<n≤X+Y

dn > 0,

with Y < X, then there must be some integer n = m1m2r between X and X +Y ,

with m1 and m2 smooth and therefore n itself is smooth, because, r = n/m1m2 ≤
(X + Y )/M2

1 = Xα.

Now, for any x ∈ [X, X + Y ], by the Perron formula,

∑
x<n≤x+Y

dn =
1

2πi

∫ 2+iT0

2−iT0

ζ(s)M2(s)
(x + Y )s − xs

s
ds

+ O

(
X2+ 1

100

T0

)
+ O(X

1
100 ),

where T0 is some positive real number for the moment, but later we shall choose

T0 � X4.
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We integrate this with respect to x, getting,

∫ X+Y

X

( ∑
x<n≤x+Y

dn

)
dx =

1

2πi

∫ 2+iT0

2−iT0

ζ(s)M2(s)A(s)ds

+O

(
Y X2+ 1

100

T0

)
+ O(Y X

1
100 ),

where

A(s) =
(X + 2Y )s+1 − 2(X + Y )s+1 + Xs+1

s(s + 1)
.

Now, to show that there is a smooth number between X and X +2Y , it is enough

to show that the left hand side is positive (for all X large enough), which is shown

in the next section. This integration results in saving one log X factor.

5.4 The proof

Our goal in this section is to show that
∫ X+Y

X

(∑
x<n≤x+Y dn

)
dx > 0 for all X

sufficiently large, and Y � X1/2(log X)−1/2+o(1)

We move the contour to Re s = 1
2
, and apply the residue theorem of Cauchy,

getting,

∫ X+Y

X

( ∑
x<n≤x+Y

dn

)
dx = Y 2M2(1) +

1

2πi

∫ 1
2
−iT0

2−iT0

+
1

2πi

∫ 1
2
+iT0

1
2
−iT0

+
1

2πi

∫ 2+iT0

1
2
+iT0

+O

(
X2+ 1

100 Y

T0

)
+ O(Y X

1
100 ) (5.4.1)

since Ress=1ζ(s) = 1, and A(1) = Y 2. Now, by (??),

M(1) =
∑

M1≤m≤M2

am

m
=

∫ M2

M1

1

t
d

(∑
m≤t

am

)

�
∫ M2

M1

1

t
ρ(1/α)dt � log X. (5.4.2)

So the first term, Y 2M2(1) � Y 2(log X)2, and we shall show that this term

dominates all other terms. We have the bound

(X + Y )s −Xs

s
� min

{
Y Xσ−1,

Xσ

|t|

}
,
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where s = σ + it as usual. This implies,

A(s) � min

{
Y 2Xσ−1,

Xσ+1

|t|2

}
. (5.4.3)

The horizontal integrals have T0 in the denominator and will be shown to be

very small by trivial estimation. Namely, using the second bound for A(s), and

the bound |ζ(σ + iT )| � T0 for 0 ≤ σ ≤ 1,

1

2πi

∫ 1
2
−iT0

2−iT0

ζ(s)M2(s)A(s)ds �
∫ 1

2

2

|ζ(σ + iT0)M
2(σ + iT0)A(σ + iT )|dσ

� X3+ 1
2 T0

−1 � X− 1
2 ,

by choosing T0 � X4 and similarly for the other integral
∫ 2+iT0

1
2
+iT0

.

Now, for estimating the vertical integral from 1
2
− iT0 to 1

2
+ iT0, we break up

the interval [0, T0] into [0, X/Y ] and [X/Y, T0].

1

2πi

∫ 1
2
+iT0

1
2
−iT0

|ζ(s)M2(s)A(s)|ds �
∫ T0

0

|ζ(
1

2
+ it)M2(

1

2
+ it)A(

1

2
+ it)|

= I1 + I2,

where

I1 =

∫ X/Y

0

,

and

I2 =

∫ T0

X/Y

.

For T > 2 and positive integers k ≥ 2, define

I(k)(T ) =
{
0 ≤ t ≤ T : (log T )k ≤ |ζ(1/2 + it)| ≤ (log T )k+1

}
. (5.4.4)

Let L1t = log t and L2t = log log t.

For l ≥ 0, define

J (l)(T ) = {0 ≤ t ≤ T :

(L1T )1/2(L2T )l ≤ |ζ(
1

2
+ it)| ≤ (L1T )1/2(L2T )l+1}. (5.4.5)

J ( 1
2
)(T ) = {0 ≤ t ≤ T : 0 ≤ |ζ(1/2 + it)| ≤ (log T )1/2}. (5.4.6)
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Note that

[0,
X

Y
] = J ( 1

2
)(X/Y )

⋃(
RJ⋃
l=0

J (k)(X/Y )

)⋃(
RI⋃
k=0

I(k)(X/Y )

)
,

where RI � β log X/Y
log log X/Y

and RJ � β log log X/Y
log log log X/Y

if we make the hypothesis that

|ζ(1/2 + it)| � |t|β for |t| > 1.

Lemma 5.4.1. The measure of the set I(k)(T ) satisfies the bound

µ(I(k)(T )) � T

(log T )2k−1
. (5.4.7)

Proof. We know that, ∫ T

0

|ζ(1/2 + it)|2dt � T log T. (5.4.8)

Hence,

µ(I(k)(T ))(log T )2k ≤
∫ T

0

|ζ(1/2 + it)|2dt � T log T. (5.4.9)

The lemma follows.

Lemma 5.4.2. We have, for 0 ≤ k ≤ RJ ,

µ(J (k)(T )) � T

(log log T )2k
(5.4.10)

Proof. By the mean value result (5.4.8), we have

µ(J (k)(T ))(log log T )2k log T ≤
∫ T

0

|ζ(1/2 + it)|2dt � T log T. (5.4.11)

The lemma follows.

Let, for k ≥ 2,

I(k) = {0 ≤ t ≤ T0 : (log
X

Y
)k ≤ |ζ(1/2 + it)| ≤ (log

X

Y
)k+1},

I
(k)
1 = {0 ≤ t ≤ X

Y
: (log

X

Y
)k ≤ |ζ(1/2 + it)| ≤ (log

X

Y
)k+1},

I
(k)
2 = {X

Y
≤ t ≤ T0 : (log

X

Y
)k ≤ |ζ(1/2 + it)| ≤ (log

X

Y
)k+1}.
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Let, for l ≥ 0,

J (l) = {0 ≤ t ≤ T0 :

(L1
X

Y
)1/2(L2

X

Y
)l ≤ |ζ(1/2 + it)| ≤ (L1

X

Y
)1/2(L2

X

Y
)l+1},

J
(l)
1 = {0 ≤ t ≤ X

Y
:

(L1
X

Y
)1/2(L2

X

Y
)l ≤ |ζ(1/2 + it)| ≤ (L1

X

Y
)1/2(L2

X

Y
)l+1},

J
(l)
2 = {X

Y
≤ t ≤ T0 :

(L1
X

Y
)1/2(L2

X

Y
)l ≤ |ζ(1/2 + it)| ≤ (L1

X

Y
)1/2(L2

X

Y
)l+1}.

Let

J (1/2) = {0 ≤ t ≤ T0 : 0 ≤ |ζ(1/2 + it)| ≤ (log
X

Y
)1/2},

J
(1/2)
1 = {0 ≤ t ≤ X

Y
: 0 ≤ |ζ(1/2 + it)| ≤ (log

X

Y
)1/2},

J
(1/2)
2 = {X

Y
≤ t ≤ T0 : 0 ≤ |ζ(1/2 + it)| ≤ (log

X

Y
)1/2}.
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Now,

I1 =

∫ X/Y

0

ζ(1/2 + it)M2(1/2 + it)A(1/2 + it)dt

� Y 2X− 1
2

RI∑
k=2

∫
I
(k)
1

ζ(1/2 + it)M2(1/2 + it)dt

+ Y 2X− 1
2

RJ∑
l=0

∫
J

(l)
1

ζ(1/2 + it)M2(1/2 + it)dt

+ Y 2X− 1
2

∫
J

(1/2)
1

ζ(1/2 + it)M2(1/2 + it)dt

� Y 2X− 1
2

RI∑
k=2

(log
X

Y
)k+1

∫
I
(k)
1

|M(1/2 + it)|2dt

+ Y 2X− 1
2

RJ∑
l=0

(log
X

Y
)1/2(log log

X

Y
)l+1

∫
J

(l)
1

|M(1/2 + it)|2dt

+ Y 2X− 1
2 (log

X

Y
)1/2

∫
J

(1/2)
1

|M(1/2 + it)|2dt

� Y 2X− 1
2

RI∑
k=2

(log
X

Y
)k+1{µ(I

(k)
1 ) log X + X1/2−α/4}

+ Y 2X− 1
2

RJ∑
l=0

(log
X

Y
)1/2(log log

X

Y
)l+1{µ(J

(l)
1 ) log X + X1/2−α/4}

+ Y 2X− 1
2 (log

X

Y
)1/2{µ(J

(1/2)
1 ) log X + X1/2−α/4}.

In the third step above we have assumed that the bound

∫
U

∣∣∣∣∣∑
n≤N

bnn
it

∣∣∣∣∣
2

dt �
∑
n≤N

|bn|2{T + O(n)} (5.4.12)

holds for U = I
(k)
1 , J

(l)
1 , J

( 1
2
)

1 with the special sequence bn = an.
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Therefore,

I1 �

{
Y 2X− 1

2 log X

RI∑
k=2

X

Y

(log X
Y

)k+1

(log X
Y

)2k−1
+ Y 2X−α

4

RI∑
k=2

(log
X

Y
)k+1

}

+ Y 2X− 1
2 (log

X

Y
)1/2

RJ∑
l=0

X

Y

(log log X
Y

)l+1

(log log X
Y

)2l
log X

+Y 2X− 1
2 (log

X

Y
)1/2

RJ∑
l=0

(log log
X

Y
)l+1X1/2−α/4

+

{
Y 2X− 1

2 (log
X

Y
)1/2(log X)

X

Y
+ Y 2X−α/4(log

X

Y
)1/2

}
� Y X

1
2 log X

1

1− 1
log X

Y

+ Y X1/2(log
X

Y
)1/2 log X

log log X
Y

1− 1
log log X

Y

+ Y X
1
2 (log

X

Y
)1/2 log X + Y 2X−α/4(log X)2(

X

Y
)β

� Y X1/2(log X)3/2 log log
X

Y
+ Y 2X−α/4(log X)2(

X

Y
)β.

Also,

I2 =

∫ T0

X
Y

ζ(1/2 + it)M2(1/2 + it)A(1/2 + it)dt

� X3/2

RI∑
k=1

(log
X

Y
)k+1

∫
I
(k)
2

|M(1/2 + it)|2

t2
dt

+ X3/2

RJ∑
k=0

(log
X

Y
)1/2(log log

X

Y
)k+1

∫
J

(k)
2

|M(1/2 + it)|2

t2
dt

+ X3/2(log
X

Y
)1/2

∫
J

(1/2)
2

|M(1/2 + it)|2dt

Now, ∫ T0

X/Y

|M(1/2 + it)|2

t2
dt

=

[∫ u

0
|M(1/2 + it)|2dt

u2

]T0

u=X/Y

+

∫ T0

X/Y

∫ u

0
|M(1/2 + it)|2dt

u3
du

� 1

T 2
0

∫ T0

0

|M(1/2 + it)|2dt− Y 2

X2

∫ X/Y

0

|M(1/2 + it)|2dt

� Y 2

X2

∫ X/Y

0

|M(1/2 + it)|2dt.
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Therefore, denoting the characteristic function of the set I(k) by χk(t), we have,∫
I
(k)
2

|M(1/2 + it)|2

t2
dt =

∫ T0

X/Y

χk(t)|M(1/2 + it)|2

t2
dt

� 1

T 2
0

∫ T0

0

|M(1/2 + it)|2χk(t)dt− Y 2

X2

∫ X/Y

0

|M(1/2 + it)|2χk(t)dt

� Y 2

X2

∫ X/Y

0

|M(1/2 + it)|2χk(t)dt =
Y 2

X2

∫
I
(k)
1

|M(1/2 + it)|2dt,

and similarly for the integrals over J
(k)
2 s and J

(1/2)
2 .

Hence,

I2 � Y 2X− 1
2

RI∑
k=2

(log
X

Y
)k+1

∫
I
(k)
1

|M(1/2 + it)|2dt

+ Y 2X− 1
2

RJ∑
k=0

(log
X

Y
)1/2(log log

X

Y
)k+1

∫
J

(k)
1

|M(1/2 + it)|2dt

+ Y 2X− 1
2 (log

X

Y
)1/2

∫
J

(1/2)
1

|M(1/2 + it)|2dt

� Y X1/2(log X)3/2 log log
X

Y
+ Y 2X−α/4(log X)2(

X

Y
)β

by the estimate for I1

So, the integral

1

2πi

∫ 1
2
+iT0

1
2
−iT0

ζ(s)M2(s)A(s)ds = I1 + I2

� Y X1/2(log X)3/2 log log
X

Y
+ Y 2X−α/4(log X)2(

X

Y
)β.

Choosing β = α/2 − o(1) and Y ≥ X
1
2 (log X)−

1
2
+o(1), we see that the above

integral is only o(Y 2(log X)2).

Remark

As before, we actually can get that the number of Xα-smooth numbers in the

interval (X, X + (log X)−
1
2
+o(1)

√
X] � X1/2−o(1).
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Journal de Théorie des Nombers de Bordeaux, tome 5, no, (1993), pp.

411-484.

[IK04] H. Iwaniec and E. Kowalski, Analytic Number Theory, American Math-

ematical Society Colloquium Publications, 53, American Mathematical

Society, Providence, RI, (2004).

[Len87] H. W. Lenstra, Factoring integers with elliptic curves, Ann. Math. 126,

(1987), 649-673.

[LF67] B. V. Levin and A. S. Fainleib, Application of some integral equations

to problems in number theory, Rusian Math. Surveys 22, (1967), pp.

119-204.

[LL41] D. H. Lehmer and E. Lehmer, On the first case on Farmat’s last theo-

rem, Bull. Amer. Math. Soc. 47, (1941), pp. 139-142.

[LPP93] H. W. Lenstra, Jr., J. Pila and C. Pomerance,A hyperelliptic smoothness

test, I, Philo. Trans. Roy. Soc. London Ser. A345, (1993), pp. 397-408.

[Mon77] H. L. Montgomery, Extreme values of the Riemann zeta function,

Comm. Math. Helv. 52(1977), 511-518.

[Mos53] L. Moser, On non-averaging sets of integers, Canad. J. Math. 5 (1953),

pp. 245-252.

[MV74] H. L. Montgomery and R. C. Vaughan, Hilbert’s inequality, J. London

Math. Soc. (2) 8 (1974), 73–82.

[Nor71] K. K. Norton, Numbers with small prime factors and the least kth power

non residue, Memoirs of the Amer. Math. Soc. 106, (1971).



89 BIBLIOGRAPHY

[Odl87] A. M. Odlyzko, On the distribution of spacings between zeros of the zeta

function, Mathematics of Computation, Vol. 48, No. 177. (1987), pp.

273-308.

[Pom87] C. Pomerance, Fast, rigorous factorization and discrete logarithm algo-

rithms, Discrete Algorithms and Complexity (Kyoto, 1986), Academic

Press, Boston.

[Ram51] V. Ramaswami, Number of positive integers in an assigned arithmetic

progression,≤ x and prime to primes greater than xε, Proc. Amer.

Math. Soc. 2, (1951), pp. 318-319.

[Ran38] R. A. Rankin, The difference between consecutive prime numbers, J.

London Math. Soc.,(1938) 13, pp. 242-247.

[Ran60] R. A. Rankin; Sets of integers containing not more than a given number

of terms in arithmetic progression, Proc.Roy.Soc.Edinburgh Sect.A 65

(1960/61), pp. 332-344.

[Rot53] K. F. Roth, On certain sets of integers (I), J. Lond. Math. Soc.,28,

(1953), pp. 104-109.

[Rot54] K. F. Roth, On certain sets of integers (II), J. Lond. Math. Soc.,29,

(1954), pp. 20-26.

[Rot70] K. F. Roth, Irregularities of sequences relative to arithmetic progres-

sions(III), J. Number Theory 2(1970), pp. 125-142.

[Rot72] K. F. Roth, Irregularities of sequences relative to arithmetic progres-

sions(IV), Per. Math. Hungar. 2(1972), pp. 301-326.

[SS42] R. Salem and D. C. Spencer, On sets of integers which contain no three

in arithmetical progression, Proc. Nat. Acad. Sci., 28 (1942), pp. 561-

563.

[ST92] J. H. Silverman and J. Tate, Rational Points on Elliptic Curves, Un-

dergraduate Texts in Mathematics, Springer-Verlag New York, Inc.,

(1992).
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