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0. PREFACE

Topological and geometric methods have played a major role in the study of infinite groups since the time

of Poincaré and Klein, with the work of Nielsen, Dehn, Stallings and Gromov showing particularly deep

connections with the topology of surfaces and three-manifolds. This is in part because a surface or a

3-manifold is essentially determined by its fundamental group, and has a geometric structure due to the

Poincaré-Köbe-Klein uniformisation theorem for surfaces and Thurston’s geometrisation conjecture, which

is now a theorem of Perelman, for 3-manifolds.

A particularly fruitful instance of such an interplay is the relation between intersection numbers of

simple curves on a surface and the hyperbolic geometry and topology of the surface. This has reached its

climax in the classification of finitely generated Kleinian groups by Yair Minsky and his collaborators, who

along the way developed a deep understanding of the geometry of the curve complex.

Free (nonabelian) groups and the group of their outer automorphisms have been extensively studied in

analogy with (fundamental groups of) surfaces and the mapping class groups of surfaces.

In my thesis, we study the analogue of intersection numbers of simple curves, namely the Scott-Swarup

algebraic intersection number of splittings of a free group and we also study embedded spheres in 3-

manifold of the form M = ]nS2 × S1. The fundamental group of M is a free group of rank n. This

3-manifold will be our model for free groups. We construct geosphere laminations in free group which are

analogues of geodesic laminations on a surface.

Chapter 1 In this chapter, we introduce basic concepts related to free product, free groups and splittings

of groups.

Chapter 2 In this chapter, we study geometric intersection number of simple closed curves on a surface.

In particular, we see its applications to study geometric properties of curve complex of the surface. We

also study topological properties of curve complex. We shall see how curve complex is used to study

mapping class group of surfaces. The geometric intersection number has been used to study Thurston’s

compactification of Teichmüller space of surface and the boundary of Teichmüller space, namely the space

of projectivized measured laminations. At the end of this chapter, we study its analogue sphere complex

of a 3-manifold and its topological properties.
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Chapter 3 In this chapter, we study the model 3-manifold M = ]kS2 × S1. We also see how a partition

of ends of the space M̃ , the universal cover of M , corresponds to an embedded spheres in M̃ . We also

discuss the intersection number of a proper path in M̃ with a homology class in H2(M̃). At the end of this

chapter, we see how embedded spheres in M correspond to splittings of the fundamental group of M .

Chapter 4 Scott and Swarup [39] introduced an algebraic analogue, called the algebraic intersection

number, for a pair of splittings of groups. This is based on the associated partition of the ends of a

group [42]. Splittings of groups are the natural analogue of simple closed curves on a surface F – splittings

of π1(F ) corresponding to homotopy classes of simple closed curves on F . Scott and Swarup showed that,

in the case of surfaces, the algebraic and geometric intersection numbers coincide.

Embedded spheres in M correspond to splittings of the free group. Hence, given a pair of embedded

spheres in M , we can consider their geometric intersection number as well as the algebraic intersection

number of Scott and Swarup for the corresponding splittings. Our main result is that, for embedded

spheres in M these two intersection numbers coincide. The principal method we use is the normal form for

embedded spheres developed by Hatcher. The results in this chapter are the outcome of joint work with

my adviser Siddhartha Gadgil.

Chapter 5 In this chapter, we study embedded spheres in M = ]kS2 × S1 and M̃ , the universal cover of

M . In the Section 5.1, we see how a partition A of the set of ends of M̃ corresponds to an embedded sphere

in M̃ which is in normal form in the sense of Hatcher, by specifying the data determining the partition A

and the normal sphere. Given a properly embedded path c : R→ M̃ and a homology class A ∈ H2(M̃), we

have an intersection number c ·A. Further, this depends only on the ends c± of the path c. In the Section

5.2, we prove that the class A ∈ H2(M̃) can be represented by an embedded sphere in M̃ if and only if, for

each proper map c : R→ M̃ , c ·A ∈ {0, 1,−1}. We also constructively prove that the class A ∈ π2(M) can

be represented by an embedded sphere in M if and only if A can be represented by an embedded sphere

in M̃ and for all deck transformations g ∈ π1(M), A and gA do not cross. The results in this chapter are

the outcome of joint work with my adviser Siddhartha Gadgil.

Chapter 6 Geodesic laminations (and measured laminations) on surfaces have proved to be very fruitful in

three-manifold topology, Teichmüller theory and related areas. In this chapter, we construct analogously

geosphere laminations for free groups. They have the same relation to (disjoint unions of) embedded

spheres in the connected sum M = ]nS2 × S1 of n copies of S2 × S1 as geodesic laminations on surfaces

have to (disjoint unions of) simple closed curves on surfaces. The manifold M has fundamental group the

free group on n generators, and is a natural model for the study of free groups.
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Laminations for groups (including free groups) have been constructed and studied in various contexts.

However, they are one-dimensional objects, corresponding to geodesics. We study here objects of codi-

mension one, which correspond to splittings. In the case of surfaces, dimension one and codimension one

coincide. Our main result is a compactness theorem for the space of (non-trivial) geosphere laminations.

We also show that embedded spheres in M are geosphere laminations. Hence sequences of spheres, in

particular under iterations of an outer automorphism of the free group, have subsequences converging to

geosphere laminations. It is such limiting constructions that make geodesic laminations for surfaces a very

useful construction.

Our construction is based on the normal form for disjoint unions of spheres in M due to Hatcher. The

normal form is relative to a decomposition of M with respect to a maximal collection of spheres in M .

This is in many respects analogous to a normal form with respect to an ideal triangulation of a punctured

surface. In particular, isotopy for spheres in normal form implies normal isotopy, i.e., the normal form

is unique. As in the case of normal curves on surfaces and normal surfaces in three-manifolds, we can

associate the number of pieces of each type to a collection of spheres in Hatcher’s normal form. However,

these numbers do not determine the (collection of) spheres up to isotopy. We instead proceed by consid-

ering lifts of normal spheres to the universal cover M̃ of M . In the universal cover M̃ , a normal sphere

is determined by a finite subtree τ of a tree T associated to M̃ together with some additional data. We

construct geospheres in M̃ by dropping the finiteness condition. We construct an appropriate topology

on the space of geospheres and show that the space is locally compact and totally disconnected. The lift

of a normal sphere in M to its universal cover satisfies an additional condition, namely it is disjoint from

all its translates. This can be reformulated in terms of the notion of crossing of spheres in M̃ , following

Scott-Swarup, which depends on the corresponding partition of ends of M̃ . We show that there is an

appropriate notion of crossing for geospheres, which is defined in terms of the appropriate partition of ends

(into three sets in this case). Our main technical result is that crossing is an open condition. We recall that

this is the case for crossing of geodesics in hyperbolic space, and that this plays a central role in the study

of geodesic laminations. The proof of compactness of the space of geospheres uses the result that crossing

is open. The construction based on normal forms is not intrinsic, as it depends on the maximal collection

of spheres with respect to which M is decomposed. However, we show that geospheres can be described in

terms of their associated partitions. This gives an intrinsic definition. The results in this chapter are the

outcome of joint work with my adviser Siddhartha Gadgil.

Chapter 7 In this chapter, we discuss the natural questions arising out of this thesis and further directions

for research.



1. FREE PRODUCTS, FREE GROUPS AND SPLITTINGS OF GROUPS

In this chapter, we introduce basic concepts related to free products, free groups and splittings of groups.

1.1 Free Products of Groups

We shall see the concept of the free product of groups. For more details, see [38].

Let G be a group. If {Gα}α∈J is a family of subgroups of G, we say that these groups generate G if

every element x of G can be written as a finite product of elements of the groups Gα. This means that

there is a finite sequence (x1, . . . , xn) of elements of Gα such that x = x1 · · ·xn. Such a sequence is called

a word of length n in groups Gα; it is said to represent the element x of G. As we lack commutativity, we

can not rearrange the factors in the expression for x so as to group together factors that belong to a single

one of the groups Gα. However, if in the expression for x, xi and xi+1 both belong to the same group

Gα, we can group them together, thereby obtaining the word (x1, . . . , xi−1, xixi+1, xi+2, . . . , xn) of length

n− 1, which also represents x. Furthermore, if any xi equals 1, we can delete xi from the sequence, again

obtaining a shorter word that represents x.

Applying these reduction operations repeatedly, one can in general obtain a word representing x of the

form (y1, . . . , ym), where no group Gα contains both yi and yi+1, and yi 6= 1, for all i. Such a word is called

reduced word. This discussion does not apply, however, if x is the identity element of G. For, in that case,

one might represent x by a word such as (a, a−1), which reduces successively to the word (aa−1) of length

1, and then disappear altogether. Accordingly, we make the convention that the empty set is considered

to be reduced word of length zero that represents the identity element of G. With this convention, it is

true that if the groups Gα generate G, then every element of G can be represented by a reduced word in

the elements of group Gα. If (x1, . . . , xn) and (y1, . . . , ym) are words representing x and y, respectively,

then (x1, . . . , xn, y1, . . . , ym) is a word representing xy. Even if two words are reduced words, however, the

third will not be a reduced word unless none of the groups contains both xn and y1.

Definition 1.1.1. Let G be a group, let {Gα}α∈J be a family of subgroups of G that generates G. Suppose

that Gα ∩Gβ consists of identity alone whenever α 6= β. We say that G is the free product of the groups

Gα if for each x ∈ G, there is only one reduced word in the groups Gα that represents x. In this case, we

write G = ∗α∈JGα or in the finite case, G = G1 ∗ · · · ∗Gn.

The free product satisfies an extension condition:
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Proposition 1.1.2. Let G be a group, let {Gα} be a family of subgroups of G. If G is the free product of

the groups Gα, then G satisfies the following condition:

Given any group H and any family of homomorphisms hα : Gα → H, there exists a homomorphism

h : G → H whose restriction to Gα equals hα, for each α.

Furthermore, h is unique.

For proof, see [38, Lemma 68.1].

We now consider the problem of taking an arbitrary family of groups {Gα} and finding a group G that

contains subgroup G′α isomorphic to the groups Gα, such that G is free product of the groups G′α.

Definition 1.1.3. Let {Gα} be an indexed family of groups. Suppose that G is a group and that iα :

Gα → G is a family of monomorphisms, such that G is the free product of the groups iα(Gα). Then, we

say that G is the external free product of the groups Gα, relative to the monomorphisms iα.

The group G is not unique. We shall see later that it is unique up to isomorphism. Now, we shall see

a construction of G.

Theorem 1.1.4. Given a family {Gα}α∈J of groups, there exists a group G and a family of monomor-

phisms iα : Gα → G such that G is the free product of the groups iα(Gα).

We can assume that the groups Gα are disjoint as sets. Then as before, we define a word (of length

n) in the elements of the groups Gα to be an n-tuple w = (x1, . . . , xn) of elements of ∪Gα. It is called a

reduced word if αi 6= αi+1, for all i, where αi is the index such that xi ∈ Gα, and if for each i, xi is not

the identity element of Gαi . We define the empty set to be the unique reduced word of length zero. We

denote the element w as w = x1 · · ·xn.

Let W denote the set of all reduced words in the elements of the groups Gα. We define the group

operation in W as juxtaposition,

(x1 · · ·xn)(y1 · · · ym) = x1 · · ·xny1 · · · ym.

This product may not be reduced, however: if xn and y1 belong to the the same Gα, then they should be

combined into single letter (xny1) according to the multiplication in Gα and if this new letter xny1 happens

to be the identity of Gα, then it should be canceled from the product. This may allow xn−1 and y2 to be

combined, and possibly canceled too. Repetition of this process eventually produces a reduced word. For

example, in the product (x1 · · ·xm)(x−1
m · · ·x−1

1 ) everything cancels and we get the identity element of W ,

the empty word. One can easily see that W with this group operation forms a group. For detailed proof

of this, see [38, Theorem 68.2]. We denote W = G = ∗αGα. Each group Gα is naturally identified with a

subgroup of G, the subgroup consisting of the empty word and the nonidentity one-letter word x ∈ Gα.

From this point of view, the empty word is the common identity element for all the subgroups Gα, which

are otherwise disjoint. Thus, we can easily see that we get a family of monomorphisms iα : Gα → G such

that G is the free product of the groups iα(Gα).
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The extension condition for ordinary free products translates immediately into an extension condition

for external free product. For proof, see [38, Lemma 68.3].

Lemma 1.1.5. Let {Gα} be a family of groups; let G be a group; let iα : Gα → G be a family of

homomorphisms. If each iα is a monomorphism and G is the free product of the groups iα(Gα), then G

satisfies the following condition:

Given a group H and a family of homomorphisms hα : Gα → H, there exists a homomorphism h : G →
H such that h ◦ iα = hα for each α.

Furthermore, h is unique.

An immediate consequence is a uniqueness theorem for (external) free products:

Theorem 1.1.6. Let {Gα} be a family of groups. Suppose G and G′ are groups and iα : Gα → G and

i′α : Gα → G′ are families of monomorphisms, such that the families {iα(Gα)} and {i′α(Gα)} generate G

and G′, respectively. If both G and G′ have the extension property stated in the preceding lemma, then

there is a unique isomorphism φ′ : G → G′ such that φ′ ◦ iα = i′α, for all α.

For proof, see [38, Theorem 68.4].

Now, we state the following result which shows that the extension condition characterizes free products:

Theorem 1.1.7. Let {Gα} be a family of groups; let G be a group; let iα : Gα → G be a family of

homomorphisms. If the extension condition of the Lemma 1.1.5 holds, then each iα is a monomorphism

and G is the free product of the groups iα(Gα).

For detailed proof, see [38, Lemma 68.5].

1.2 Free Groups

Let G be a group; let {aα} be a family of elements of G, for α ∈ J , where J is some index set. We say that

the elements {aα} generate G if every element of G can be written as a product of powers of the elements

aα. If the family {aα} is finite, we say G is finitely generated.

Definition 1.2.1. Let {aα} be a family of elements of a group G. Suppose each aα generates an infinite

cyclic subgroup Gα of G. If G is the free product of the groups {Gα}, then G is said to be a free group,

and the family {aα} is called a system of free generators for G.

In this case, for each element x of G, there is a unique reduced word in the elements of the groups Gα

that represents x. This says that if x 6= 1, then x can be written uniquely in the form x = (an1
α1

) · · · (ank
αk

),

where αi 6= αi+1 and ni 6= 0, for each i. The integers ni may be negative.

Free groups are characterized by the following extension property:

Lemma 1.2.2. Let G be a group; let {aα} be a family of elements of G. If G is a free group with system

of free generators {aα}, then G satisfies the following condition:
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Given any group H and any family {yα} of elements of H, there is a homomorphism h : G → H such

that hα(aα) = yα for each α.

Furthermore, h is unique. Conversely, if the above extension condition holds, then G is a free group

with system of free generators {aα}.

For the proof see [38, Lemma 68.1].

In other words, a free group is the free product of any number of copies of Z, finite or infinite, where Z
is the group of integers. The elements of a free group are uniquely representable as reduced words in the

powers of generators of the various copies Z, with one generator of each Z. These generators are called basis

for the free group, and the number of basis elements is the rank of the free group. The abelianization of a

free group is the a free abelian group with basis the same set of generators (images in the abelianization),

so since the rank of a free abelian group is well defined, independent of the choice of basis, the same is true

for the rank of a free group. For details, see [38, section 69].

An example of a free product that is not a free group is Z2 ∗ Z2.

We have the following result for subgroups of a free group.

Proposition 1.2.3. Every subgroup of a free group is free.

For proof, see [38, Theorem 85.1].

1.3 Presentation of a group

One method of defining a group is by a presentation. One specifies a set S of generators so that every

element of the group can be written as a product of some of these generators, and a set R of relations

among those generators. We then say G has presentation 〈S | R〉.
Informally, G has the above presentation if it is the ”freest group” generated by S subject only to the

relations R. Formally, the group G is said to have the above presentation if it is isomorphic to the quotient

of a free group on S by the normal subgroup generated by the relations R.

As a simple example, the cyclic group of order n has the presentation 〈a | an = 1〉, where 1 is the group

identity. This may be written equivalently as 〈a | an〉, since terms that don’t include an equals sign are

taken to be equal to the group identity.

Every group G has a presentation. To see this consider the free group 〈G〉 on G. Since G clearly

generates itself, one should be able to obtain it by a quotient of 〈G〉. Indeed, by the universal property of

free groups, there exists a unique group homomorphism φ : 〈G〉 → G which covers the identity map. Let

K be the kernel of this homomorphism. Then, G clearly has the presentation 〈G | K〉.
Every finite group has a finite presentation, in fact, many different presentations.

A presentation is said to be finitely generated if S is finite and finitely related if R is finite. If both

are finite it is said to be a finite presentation. A group is finitely generated (respectively, finitely related,
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finitely presented) if it has a presentation that is finitely generated (respectively, finitely related, a finite

presented).

Some more examples of group presentations include the following.

1. The presentation 〈x, y | x2 = 1, yn = 1, (xy)n = 1〉 defines a group, isomorphic to the dihedral group

Dn of finite order 2n, which is the group of symmetries of a regular n-gon.

2. The fundamental group of a surface of genus g has the presentation:

〈x1, y1, x2, ..., xg, yg | [x1, y1][x2, y2]...[xg, yg] = 1〉.

1.4 Amalgamated Free products and HNN-Extension

Free products of groups are generalized by a notion of amalgamated products of groups joined together along

specified subgroups. For the sake of concreteness, we will carry out this construction for an amalgamated

product of two groups. Suppose, we have two groups G1 and G2 and homomorphisms f1 : H → G1 and

f2 : H → G2. We define:

Definition 1.4.1. The amalgamated product G1∗H G2 is defined as follows: let N be the normal subgroup

of G1 ∗G2 generated by elements of the form f1(h)(f2(h))−1 for h ∈ H; then

G1 ∗H G2 := (G1 ∗G2)/N.

Note that G1 ∗G2 can be expressed as the special case of the amalgamated product where H is trivial.

The amalgamated product satisfies a natural universal property generalizing the one for the free product:

Proposition 1.4.2. For a group G′, write Hom(G1, G
′)×H Hom(G2, G

′) for {(g1, g2) ∈ Hom(G1, G
′)×

Hom(G2, G
′) : f1 ◦ g1 = f2 ◦ g2}. Then, the natural map induced by composition with G1 → G1 ∗H G2 and

G2 → G1 ∗H G2 induces a bijection Hom(G1 ∗H G2, G
′) → Hom(G1, G

′)×H Hom(G2, G
′).

For a proof, see [41].

The amalgamated product also arises naturally in topology: the fundamental group of the gluing of

two topological spaces along given subspaces is the amalgamated product of the fundamental groups of the

two spaces, over the fundamental group of the subspaces being glued.

Definition 1.4.3. Let G be a group with presentation G = 〈S | R〉, and let α be an isomorphism between

two subgroups H and K of G. Let t be a new symbol not in S, and define

G∗α = 〈S, t | R, tht−1 = α(h), ∀h ∈ H〉
The group G∗α is called the HNN- extension of G relative to α. The original group G is called the

base group for the construction, while the subgroups H and K are the associated subgroups. The new

generator t is called the stable letter. Sometimes, we also write G∗H for G∗α.

Since the presentation for G∗α contains all the generators and relations from the presentation for G,

there is a natural homomorphism, induced by the identification of generators, which takes G to G∗α.
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Higman, Neumann and Neumann proved that this homomorphism is injective, that is, an embedding of

G into G∗α. A consequence is that two isomorphic subgroups of a given group are always conjugate in

some over group; the desire to show this was the original motivation for the construction. In terms of the

fundamental group in algebraic topology, the HNN- extension is the construction required to understand

the fundamental group of a topological space X that has been ’glued back’ on itself by a mapping f .

1.5 Graph of groups

We now introduce the terminology, due to Serre, of a graph of groups. A graph Γ is a 1-dimensional

CW-complex, so that a it may contain a loop, i.e., an edge with its two endpoints identified. This gives

rise to difficulties with orientations of such an edge. In order to avoid these difficulties, we first introduce

the idea of an abstract graph. Essentially this has twice many edges as Γ, one for each orientation of an

edge of Γ.

Definition 1.5.1. An abstract graph Γ consists of two sets E(Γ) and V (Γ) called the edges and vertices

of Γ, an involution on E(Γ) which sends e to ē, where ē 6= e and a map ∂0 : E(Γ) → V (Γ).

We define ∂1e = ∂0ē and say that e joins ∂0e to ∂1e.

An abstract graph Γ has an obvious geometric realization |Γ| with vertices V (Γ) and edges corresponding

to pairs (e, ē). When we say that Γ is connected or has some topological property, we shall mean that the

realization of Γ has the appropriate property. An orientation of an abstract graph is a choice of one edge

out of each pair (e, ē).

A graph of groups consists of an abstract graph Γ together with a function assigning to each vertex v of Γ

a group Gv and to each edge e a group Ge, with Gē = Ge, and an injective homomorphism fe : Ge → G∂0e.

Similarly, we may define a graph χ of topological spaces, or of spaces with preferred base point: here, it

is not necessary for the map Xe → X∂0e to be injective, as we can use the mapping cylinder construction to

replace the maps by inclusions and this does not alter the total space defined below. But, we will suppose

for the convenience that the spaces are CW-complexes and maps are cellular.

Given a graph χ of spaces, we can define total space χΓ as the quotient of ∪{Xv : v ∈ V (Γ)}∪{∪{Xe×I :

e ∈ E(Γ)}} by identifications,

Xe × I → Xē × I by (x, t) → (x, 1− t)

Xe → X∂0e by (x, 0) → fe(x)

.

If χ is a graph of (connected) based spaces, then by taking fundamental groups we obtain a graph Σ of

groups (with the same underlying abstract graph Γ). The fundamental group GΓ of the graph of groups is

defined to be the fundamental group of the total space χΓ. One can show that GΓ is independent of the



1. Free products, Free groups and Splittings of Groups 10

choice of χ. Observe that in the case when Γ has just one pair (e, ē) of edges and two vertices v1 and v2, if

groups associated to v1, v2 and (e, ē) are A, B and C, respectively, the fundamental group GΓ is A ∗C B.

In the case when Γ has just one pair (e, ē) of edges and one vertex v, if the associated groups are C and

A, respectively, then the fundamental group GΓ is A∗C . For more details, see [40].

1.6 Splittings of a group

A group G is said to split over a subgroup H if G is isomorphic to A∗H or to A ∗H B, with A 6= H 6= B.

We will need a precise definition of a splitting of G.

Definition 1.6.1. We shall say that a splitting of G consists either of proper subgroups A and B of G

and a subgroup H of A ∩ B such that the natural map A ∗H B → G is an isomorphism, or it consists of

a subgroup A of G and subgroups H0 and H1 of A such that there is an element t of G which conjugates

H0 to H1 and the natural map A∗H → G is an isomorphism.

If G splits over some subgroup, we say G is splittable. For example, Z is splittable as Z = {1}∗{1}.
A collection of n splittings of a group G is compatible if G can be expressed as the fundamental group

of graph of groups with n edges, such that, for each i, collapsing all edges but i-th, yields the i-th splitting

of G. For more details, see [39].

1.7 Some Important theorems

Two of most important theorems about free products are the theorems of Grushko (1940) and Neumann

(1943) and that of Kurosh (1934) [33].

Theorem 1.7.1. Let F be a free group, and let φ : F → ∗Aα. Then, there is a factorization of F as a

free product, F = ∗Fα such that φ(Fα) = Aα.

It has a following important corollary:

Corollary 1.7.2. If G = A1 ∗ ... ∗ An and the rank (minimal number of generators) of Ai is ri, then the

rank of G is r1 + · · ·+ rn.

Theorem 1.7.3. Let G = ∗Aα, and let H be a subgroup of G. Then, H is a free product, H = F ∗ (∗Hβ),

where F is a free group and each Hβ is the intersection of H with a conjugate of some factor Aα of G.

1.8 Kneser conjecture on free products

Now, we shall prove that each splitting of the fundamental group of a 3-manifold as a free product is

induced by splitting of the manifold as a connected sum. We need the following definitions:
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Definition 1.8.1. The connected sum M1]M2 of n-manifolds M1 and M2 is formed by deleting the

interiors of n-balls Bn
i in Mn

i and attaching the resulting punctured manifolds Mi − int(Bi) to each other

by a homeomorphism h : ∂B2 → ∂B1, so M1]M2 = (M1 − int(B1)) ∪h (M2 − int(B2)).

The n-balls Bi is required to be interior to Mi and ∂Bi bicollared in Mi to ensure that the connected

sum is a manifold.

An incompressible surface, heuristically, is a surface, embedded in a 3-manifold, which has been sim-

plified as much as possible while remaining ”nontrivial” inside the 3-manifold.

Definition 1.8.2. Suppose that S is a compact surface properly embedded in a 3-manifold M . Suppose

that D is a disk, also embedded in M , with D ∩ S = ∂D.

Suppose that the curve ∂D in S does not bound a disk inside of S. Then, D is called a compressing

disk for S and we also call S a compressible surface in M . If no such disk exists and S is not the 2-sphere,

then we call S incompressible (or geometrically incompressible).

There is also an algebraic version of incompressibility: Suppose ι : S → M is a proper embedding

of a compact surface. Then, S is π1-injective (or algebraically incompressible) if the induced map on

fundamental groups ι? : π1(S) → π1(M) is injective. The loop theorem then implies that a two-sided,

properly embedded, compact surface (not a 2-sphere) is incompressible if and only if it is π1-injective.

An incompressible sphere is a 2-sphere in a 3-manifold that does not bound a 3-ball. Thus, such a

sphere either does not separate the 3-manifold or gives a nontrivial connected sum decomposition. Since

this notion of incompressibility for a sphere is quite different from the above definition for surfaces, often

an incompressible sphere is instead referred to as an essential sphere or reducing sphere.

Definition 1.8.3. For a 3-manifold M and a space X, we say that two maps f, g : M → X are C-equivalent

if there are maps f = f0, ..., fn = g of M to X with either fi homotopic to fi−1 or fi agreeing with fi−1

on M −B for homotopy 3-cell B ⊂ M with B ∩ ∂M empty or a 2-cell.

If π3(X) = 0, C-equivalent maps are homotopic. In any case, C-equivalent maps induce the same

homomorphism π1(M) → π1(X) up to choices of base point and inner automorphisms. Now, we see the

following theorem from [25].

Theorem 1.8.4. Let M be a compact 3-manifold such that each component of ∂M (possibly empty) is

incompressible in M . If π1(M) ∼= G1 ∗G2, then M = M1]M2, where π1(Mi) ∼= Gi, for i = 1, 2.

Proof. Choose complexes X1 and X2 with π1(Xi) ∼= Gi and π2(Xi) = 0. Join a point of X1 to a point of

X2 by a 1-simplex A to form a complex X = X1 ∪ A ∪X2. Note that π1(X) ∼= G1 ∗ G2 and π2(X) = 0.

Thus, we can construct a map f : M → X such that f∗ : π1(M) → π1(X) is an isomorphism (which

can be preassigned). Choose x0 ∈ int(A). We may assume that each component of f−1(x0) is a 2-sided

incompressible surface properly embedded in M . If F is a component of f−1(x0), then since ker(π1(F ) →
π1(M)) = 1, f∗ is injective, and f(F ) = x0, we must have π1(F ) = 1. If some component F of f−1(x0)
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is a (incompressible) 2-cell, then by hypothesis ∂F bounds a 2-cell D ⊂ ∂M . The 2-sphere F ∪ D can

be pushed slightly into int(M) to obtain an incompressible 2-sphere F ′. Since, π2(Xi) = 0, f can be

modified by a C-equivalence, to a map which replaces F by F ′ as a component of the inverse of x0. By this

reasoning, we may now assume that each component of f−1(x0) is an incompressible 2-sphere in int(M).

If f−1(x0) is connected, we are done. If not, there is a path β : I → M such that β(0) and β(1) lie in

different components of f−1(x0). Now, f ◦ β is a loop in X and since f∗ is surjective, there is a loop γ

based at β(1) such that [f ◦ γ] = [f ◦ β]−1. Then, α = βγ is a path satisfying

1. α(0) and α(1) are in different components of f−1(x0),

2. [f ◦ α] = 1 ∈ π1(X).

We may assume that α is a simple path which crosses f−1(x0) transversely at each point of α(int(I).

Of all such paths satisfying the above conditions, we assume that ](α−1(f−1(x0))) is minimal. We must

have α(int(I)) ∩ f−1(x0) = ∅. For if not, we can write α = α1α2 · · ·αk (k ≥ 2) where for each i,

αi(int(I) ∩ f−1(x0) = ∅ and αi(∂I) ⊂ f−1(x0). Then, [f ◦ α1][f ◦ α2] · · · [f ◦ αk] is a representation of the

identity element as an alternating product in the free product G1 ∗ G2. Thus, for some i, [f ◦ αi] = 1. If

αi(0) and αi(1) lie in the same component of f−1(x0), we could reduce ]α−1(f−1(x0)). If not, we contradict

our minimality assumption. Thus, we have α(int(I)) ∩ f−1(x0) = ∅. Let Fj (j = 0, 1) be the component

of f−1(x0) containing α(j). Let C be a small regular neighborhood of α(I) such that C ∩ Fj = Dj is a

spanning 2-cell of C and C∩f−1(x0) = D0∪D1. Let B be the annulus in ∂C bounded by ∂D0∪∂D1. Push

int(B) slightly into int(C) to obtain an annulus B′ with ∂B′ = ∂B and B ∪ B′ the boundary of a solid

torus T . We define a map f1 : M → X as follows. Put f1|M − int(C) = f |M − int(C) and f1(B′) = x0.

Since, [f ◦α] = 1, we can extend f1 across a meridional 2-cell E of T . Now, it remains to extend f1 across

the remaining two open 3-cells; this can be done since π2(Xi) = 0, for i = 1, 2. The extension can be done

so that f−1
1 (x0) ∩ C = B′. Thus, f1 is C-equivalent to f and f−1

1 (x0) = (F−1(x0) − (D0 ∪D1)) ∪ B′ has

one less component than f−1(x0). The proof is completed by induction.

1.9 The mapping class group of a surface and Out(Fn)

Definition 1.9.1. Let Σ = Σg,n be a compact oriented surface of genus g and with n boundary components.

The mapping class group Mg,n = M(Σ) is the group of isotopy classes of homeomorphisms of Σ.

Definition 1.9.2. The outer automorphism group Out(Fn) is group whose elements are equivalence classes

of automorphisms Φ : Fn → Fn, where two automorphism are equivalent if they differ by an inner auto-

morphism.

The outer automorphism group Out(Fn) of the free group of rank n is naturally maps onto GLn(Z)

and contains as a subgroup of the mapping class group of a compact surface with fundamental group Fn.

It is not surprising then to expect Out(Fn) to exhibit the phenomena present in both linear groups and
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mapping class groups. Much of the recent of Out(Fn) has focused on developing tools and proving results

known in other two categories.

1.9.1 Dehn-Nielsen-Baer theorem

Theorem 1.9.3. Let S be a closed surface of positive genus. Then, the mapping class group of S is

isomorphic to the group of outer automorphisms of π1(S).

This is a beautiful example of the interplay between topology and algebra in the mapping class group.

For proof, see [29].



2. GEOMETRIC INTERSECTION NUMBER, CURVE COMPLEX AND SPHERE

COMPLEX

2.1 Introduction

In this chapter, we study geometric intersection number of simple closed curves on a surface. In particular,

we see its applications to study geometric properties of curve complex of the surface. We also study

topological properties of curve complex. We shall see how curve complex is used to study mapping class

group of surfaces. The geometric intersection number of curves on surfaces has been used to study Thurston

compactification of Teichmüller space of a surface and the boundary of Teichmüller space, namely the space

of projectivized measured laminations. At the end of this chapter, we study its analogue sphere complex

of a 3-manifold and its topological properties.

2.2 Intersection numbers of curves on surfaces

(1) Let Σ be an orientable surface.

Definition 2.2.1. A simple closed curve in Σ is said to be essential if it does not bound a disk in Σ.

Henceforth, we shall deal with essential simple closed curves only.

Definition 2.2.2. Given two isotopy classes α and β of essential simple closed curves in Σ, we define the

geometric intersection number I(α, β) as the minimal of the cardinality of |α∩β| among all the realizations

of α and β in Σ, i.e.,

I(α, β) = min{|a ∩ b||a ∈ α, b ∈ β}.

Here, a and b are simple closed curves on Σ representing the isotopy classes α and β respectively.

It is clear that this number is symmetric in the sense that it is independent of the order of α and β.

Also, I(α, β) = 0 if and only if there exists representatives a and b of α and β, respectively, such that a

and b are disjoint simple closed curves in Σ.

(2) We can also define intersection number Í(α, β) of α and β as follows:

One can always choose representatives a and b of α and β respectively, to be shortest closed geodesic

in some Riemannian metric with negative curvature on Σ so that they automatically intersect minimally.



2. Geometric Intersection Number, Curve complex and Sphere Complex 15

Let G denote π1(Σ). Let H denote the infinite cyclic subgroup of G carried by a, and let ΣH denote

the cover of Σ with fundamental group equal to H. Then a lifts to ΣH and we denote its lift by a again.

Let ã denote the pre-image of this lift in the universal cover Σ̃ of Σ . The full pre-image of a in Σ̃ consists

of disjoint lines which we call a-lines, which are all translates of ã by the left action of G. Similarly, we

define K, ΣK , the line b̃ and b-lines in Σ̃. Now, we consider the images of the a-lines in ΣK . Each a-line

has image in ΣK which is a line or circle. Then we define I ′(α, β) to be the number of images of a-lines in

Σk which meet b̃. Similarly, we define I(β, α) to be the number of images of b-lines in ΣH which meet a.

Using the assumption that a and b are shortest closed geodesics, that each a-line in Σk crosses b at most

once, and similarly for b-lines in ΣH . It follows that I ′(α, β) and I ′(β, α) are each equal to the number of

points of a ∩ b, and so they are equal to each other.

(3) We can define geometric intersection number for surfaces with nonempty boundary as follows:

Given a compact orientable surface Σ = Σg,n of genus g with n boundary components, a curve system

on Σ is a proper 1-dimensional sub-manifold so that each component of it is not null homotopic and not

relatively homotopic into the boundary. The space of all isotopy classes of curve systems on Σ is denoted

by CS(Σ). This space was introduced by Max Dehn in 1938 who called it the arithmetic field of the

topological surface.

Definition 2.2.3. Given two classes α and β in CS(Σ), their geometric intersection number I(α, β) is

defined to be min{|a ∩ b||a ∈ α, b ∈ β}.

2.3 Curve complex

The complex of curves of a surface Σ is the simplicial complex with vertices isotopy classes of simple

closed curves on Σ and simplices disjoint families of simple closed curves on Σ. The complex of curves is

used in the study of 3-manifolds and mapping class groups. This complex was considered by Harer from

homological point of view (with applications to the homology of the mapping class group). In particular,

Harer determined the homotopy type of the curve complex [15], [16]. Ivanov used the curve complex to

determine the structure of the mapping class group [27]. Masur and Minsky [36] showed that the curve

complex is δ−hyperbolic in the sense of Gromov. Hempel and others used the curve complex for studying

3-manifolds.

A particularly useful tool in studying the complex of curves is intersection numbers. For instance, these

have been used to prove geometric property of curve complex like hyperbolicity of the curve complex.

Feng Luo has been used intersection number of curves on a surface to study Thurston’s compactification

of Teichmüller space of a surface [35]. The intersection numbers of curves on a surface has been used to

give important constructions like Thurston’s space of measured laminations. Now, we shall see precise

definitions.
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2.3.1 The curve complex

Let Σ be a closed orientable surface and let π ⊂ Σ be a (possibly empty) finite set. Harvey associated a

curve complex to (Σ, π) as follows:

The vertex set X = X(Σ, π), consists of the set of isotopy classes of essential simple closed curves in

Σ\π (which we refer to simply as curves). A set of curves is deemed to span a simplex in the curve complex

if they can be realized disjointly in Σ\π.

There are a few exceptional cases (sporadic cases) namely,

(1) If Σ is a 2-sphere and |π| ≤ 3, then X= φ.

(2) If Σ is either a 2- sphere with |π| = 4 or a torus with |π| = 1, then the associated curve complex is

just a countable set of points.

For non-exceptional cases (Σ, π), one can see that the curve complex is connected and has dimension

3g(Σ)+ |π|−4, where g(Σ) = genus of Σ. We define complexity of C(Σ, π)= 3g(Σ)+ |π|−4, where C(Σ, π)

is the curve complex associated to (Σ, π).

The curve complex is locally infinite. The finiteness of dimension follows by an Euler characteristic

argument. The maximal dimensional simplex in the curve complex is called Fenchel- Nielsen system (or

pants decomposition).

People have used topology and geometric properties of the curve complex to study various objects like

mapping class groups and Teichmüller spaces. Now, we shall see how topology of curve complex has been

used.

2.4 Topology of curve complex

The homotopy type of the curve complex was determined by Harer [16].

Theorem 2.4.1. Let Σ = Σg,n be compact orientable surface with genus g and n boundary components,

then the curve complex associated to it is homotopically equivalent to a wedge of spheres of dimension r,

where

(i)r = 2g + n− 3 if g > 0 and n > 0.

(ii)r = 2g − 2 if n = 0.

(iii)r = n− 4 if g = 0.

This shows that the curve complex is simply connected and not contractible. Topology of curve complex

has been used by Harer to compute the virtual cohomological dimension of the mapping class group of

surface Σ = Σr
g,n of genus g with n boundary components and r punctures.

Theorem 2.4.2. For 2g + s + r > 2, the mapping class group Mr
g,n = M(Σ = Σr

g,n) is a virtual duality

group of dimension d(g, r, s), where d(g, 0, 0) = 4g − 5, d(g, r, s) = 4g + 2r + s − 4, g > 0 and r + s > 0,

and d(O, r, s) = 2r + s− 3. In particular, the virtual cohomological dimension of Mr
g,n is d(g, r, s).
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For proof, see [16].

2.5 Mapping class group and the curve complex

We recall the definition of mapping class group of surfaces.

2.5.1 Mapping class group:

Let Σ = Σg,n be a compact oriented surface of genus g and n boundary components. The mapping class

groups Mg,n = M(Σ) is the group of homeomorphisms of Σ which are identity on boundary ∂Σ modulo

isotopy. Here, isotopies leave points on ∂Σ fixed.

The mapping class group has a natural simplicial action on the curve complex C(Σ), where vertices are

isotopy classes of essential unoriented non boundary parallel simple loops in Σ.

If [h] ∈ M(Σ) and α = [a] ∈ C(Σ), then [h] · α = [h(a)]. Here, simplicial action means simplicial

structure preserving action.

A natural question one would like to ask is whether every automorphism of the curve complex is induced

by a homeomorphism of the surface.

In 1989, Ivanov [28] sketched a proof the result that if the genus of a surface is at least 2, then any

automorphism of the curve complex C(Σ) is induced by a homeomorphism of the surface.

Feng Luo [32] has settled the automorphism problem for the rest of the surfaces. His proof does not

distinguish the case genus g ≥ 2 from the case genus g ≤ 1 .

Theorem 2.5.1. (a)If the dimension 3g +n− 4 of the curve complex is at least 1 and (g, n) 6= (1, 2), then

any automorphism of C(Σg,n) is induced by a self homeomorphism of the surface.

(b)Any automorphism of C(Σ1,2) preserving the set of vertices represented by separating loops is induced

by the self homeomorphism of the surface.

(c)There is an automorphism of C(Σ1,2) which is not induced by any homeomorphism of the surface

Σ1,2.

This proof uses the work of Harer on homotopy type of the curve complex. An important step is to

show that any automorphism of C(Σ) preserving the multiplicative structure (See [32]) on C(Σ) is induced

by the homeomorphism of the surface. For proof, see [32].

2.6 Geometric properties of the curve complex

Among others, Masur, Minsky, Bowditch, Feng Luo have studied geometric properties of curve complex.

Geometry of curve complex plays a central role in recent work on the geometry of non-compact hyperbolic

3- manifolds, in particular by Minsky and his collaborators towards proving Thurston’s ending lamination

conjecture. Now, we see some of the geometric properties of curve complex and how these are used.
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2.6.1 Intersection numbers and Hyperbolicity of the Curve Complex

Let Σ be a closed orientable surface and π be a (possibly empty) finite. The 1-skeleton of the curve complex

C(Σ) is a graph which we denote by G = G(Σ, π). We write d for the induced combinatorial path metric

on X which assigns unit length to each edge of G. Thus, (G, d) is a metric space, which is actually a

path connected metric space. Mazur and Minsky [36] showed that the curve complex C(Σ) associated with

the surface is hyperbolic in the sense of Gromov. This geometric property of curve complex is useful in

studying mapping class group of surfaces. To prove hyperbolicity of the curve complex, we require a simple

inequality relating intersection number to distances in the curve complex. The inequality is :

Lemma 2.6.1. If the complexity of C(Σ) is positive, then ∀α, β ∈ X we have,

d(α, β) ≤ I(α, β) + 1

Now, we recall notions of geodesic metric space and hyperbolicity. The notion of hyperbolic metric

space is due to Gromov.

Hyperbolicity :

1.A geodesic metric space X is a path-connected metric space in which any two points x and y are

connected by an isometric image of an interval in the real line, called a geodesic and denoted by [xy].

2. We say that X satisfies the ” thin triangle condition ” if there exists some δ such that for any

geodesic triangle [xy] ∪ [yz] ∪ [xz] in X each side is contained in a δ- neighborhood of the other two. This

is one of the several equivalent conditions for X to be δ hyperbolic in the sense of Gromov or negatively

curved in the sense of Cannon.

Examples :

1. Classical Hyperbolic Spaces.

2. All simplicial trees.

3. Cayley Graphs of the fundamental groups of a closed negatively curved manifolds.

4. Every finite diameter space is trivially hyperbolic space with δ equal to diameter.

Bowditch [5] has given another proof of the same result. The constructions in his proof are more

combinatorial in nature and allow for certain refinements and elaborations. Mazur and Minsky has not

given an explicit estimate of the hyperbolicity constant, but Bowditch has shown that the hyperbolicity

constant is bounded by a logarithmic function of complexity. Thus, hyperbolic constant depends on (Σ, π).

Any upper bound on d(α, β) in terms of I(α, β) is enough to prove hyperbolicity.

The logarithmic bound on the hyperbolicity constant is obtained by the bound on d(α, β) in the following

lemma:

Lemma 2.6.2. There is a function F : N → N with F (n) = O(logn) such that if complexity of curve

complex is positive and α, β ∈ X, then

d(α, β) ≤ F (I(α, β))
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.

2.6.2 Infinite diameter of the curve complex

All this would be rather trivial if the curve complex had finite diameter because a space of finite diameter is

obviously hyperbolic. Feng Luo has given a simple argument which shows that any non-exceptional curve

complex has infinite diameter [36]. We will see the sketch of this proof.

The sketch of the proof: Let µ be a maximal geodesic lamination and λi be any sequence of closed

geodesics converging geometrically to µ. Then, if d(γ0, γn) remains bounded, then after restricting to a

subsequence, we may assume that d(γ0, γn) = N, ∀n ≥ 0. For each γn, we may then find βn such that

d(βn, αn) = 1 and d(γ0, βn) = N − 1. But γn → µ and µ is maximal implies that βn → µ as well, since

γn and βn are disjoint in Σ. Proceeding inductively, we arrive at the case N = 1 and in this case the

conclusion is that βn → µ and βn = γ0, which is a contradiction .

The basic idea to prove hyperbolicity of curve complex is to construct a preferred family of of paths

connecting any pair of vertices in G. Thus, if α, β ∈ X, we have a path πab in G from α to β. Then,

we show that any triangle formed by three paths παβ , πβγ and πγα is ”thin” in an appropriate sense. In

particular, there is a ”center”, φ(α, β, γ) ∈ X, which is a bounded distance from all three sides. A key

point in the argument is to show that if γ, δ ∈ X are adjacent, then d(φ(α, β, γ), φ(α, β, δ)) is bounded.

Given this one sees that the paths πα,β are uniformly quasigeodesic. From this the hyperbolicity of G

follows via a subquadratic isoperimetric inequality .

The curve complex encodes the asymptotic geometry of the Teichmüller space of a surface. We shall

also see how geometric intersection number of curve curves on a surface is used to give various important

constructions like Thurston’s space of measured laminations. Now, we shall see what is the Teichmüller

space of a surface.

2.7 Teichmüller space of surface and Thurston’s compactification of Teichmüller space

Let Σ = Σg,n be a compact, connected, orientable surface of genus g and n boundary components (n may

be 0) and of negative Euler characteristic. By a hyperbolic metric on the surface Σ, we mean a Riemannian

metric of curvature −1 on the surface Σ so that its boundary components are geodesics. The Teichmüller

space T(Σ) is the space of all isotopy classes of hyperbolic metrics on the surface Σ. Two hyperbolic metrics

are isotopic if there is an isometry between the two metrics which is isotopic to identity.

Thurston introduced the space of projective measured laminations on Σ, which will be denoted by

PML(Σ), and a compactification of T(Σ) whose boundary is equal to PML(Σ). Thurston boundary

PML(Σ) is a natural boundary of T(Σ), in the sense that the action of mapping class group of Σ extends

continuously to the Thurston compactification T(Σ) = T(Σ) ∪ PML(Σ).



2. Geometric Intersection Number, Curve complex and Sphere Complex 20

Intersection number and Thurston’s space of measured laminations

Recall from [35], given a compact, orientable surface Σ with possibly non empty boundary, space of all

isotopy classes of curve system on Σ is denoted by CS(Σ). Thurston observed that the pairing I(, ) :

CS(Σ)× CS(Σ) → Z behaves like a non-degenerate bilinear form in the sense that

(1) Given any α in CS(Σ), there is β in CS(Σ) so that their intersection number I(α, β) is non-zero.

(2) I(k1α1, k2α2) = k1k2I(α1, α2), for ki ∈ Z≥0, αi ∈ CS(Σ), where kiαi is the collection of ki copies

of αi.

Thurston’s space of measured laminations on the surface Σ, denoted by ML(Σ) is defined to be the

completion of the pair (CS(Σ), I(, )) in the following sense : Given α in CS(Σ), let π(α) be the map sending

β to I(α, β). This gives an embedding π : CS(Σ) → RCS(Σ), where the target has product topology. The

space ML(Σ) is defined to be the closure of Q>0 × π(CS(Σ)) = {rπ(x) : r ∈ Q>o, x ∈ CS(Σ)}
Using notion of train tracks, Thurston showed that ML(Σ) is homeomorphic to a Euclidean space and

intersection pairing I(, ) extends to a continuous homogeneous map from ML(Σ)×ML(Σ) to R. See [35].

2.7.1 Thurston’s compactification of Teichmüller spaces

Consider a fixed hyperbolic structure σ on Σ.

Definition 2.7.1. A geodesic lamination µ is a closed subset of Σ, which is a disjoint union of simple

geodesics which are called leaves of µ. The leaves of a geodesic lamination are complete, i.e., each leaf

is either closed or has infinite length in both of its ends, and a geodesic lamination is determined by its

support, i.e., a geodesic lamination is a union of geodesics in just one way.

We write GL(Σ) to denote the space of geodesic laminations on Σ, which is equipped with the Hausdorff

metric on closed subsets. Note that GL(Σ) is compact and therefore, in particular, every infinite sequence

of nontrivial simple closed geodesics has a convergent subsequence.

A transverse measure on a geodesic lamination µ is a rule, which assigns to each transverse arc α a

measure that is supported on µ∩α, which is invariant under a map from α to another arc β if it takes each

point of intersection of α with a leaf of µ to a point of intersection of β with the same leaf. A measured

lamination on Σ is a geodesic lamination µ with a transverse measure of full support, i.e., if (α ∩ µ) 6= φ

then α has nonzero measure for any transverse arc α. For example, a simple closed geodesic equipped with

counting measure is a measured lamination. We write ML(Σ) to denote the space of measured laminations

on Σ. There is a natural action of R+ on ML(Σ). Suppose that r > 0. The measured lamination rµ has

the same geodesic lamination as µ with the transverse measure scaled by r. We write PML(S) to denote

the set of equivalence classes of projective measured laminations.

Then, Thurston’s compactification of T(Σ) is T(Σ) = T(Σ)∪PML(Σ), with appropriate topology. See

[30].

Now, we study one dimensional higher analogue of curve complex, namely sphere complex.
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2.8 Sphere complex

The sphere complex associated to M = ]kS2 × S1, i.e., the connected sum of k copies of S2 × S1, is a

simplicial complex whose vertices are the isotopy classes of embedded spheres in M . A set of isotopy classes

of embedded spheres in M is deemed to span a simplex if they can be realized disjointly in M . This is an

analogue of the curve complex associated to a surface. The topological properties of the sphere complex

have been studied by Hatcher, Hatcher-Vogtmann and Hatcher-Wahl in [17], [20], [21], [22], [23], [24].

Definition 2.8.1. A smooth, embedded 2-sphere in M is said to be essential if it does not bound a 3-ball

in M .

Definition 2.8.2. A system of 2-spheres in M is defined as a finite collection of disjointly embedded,

pair-wise non-isotopic, essential smooth 2-spheres Si ⊂ M .

Definition 2.8.3. The sphere complex S(M) associated to M is a simplicial complex whose vertices are

the isotopy classes of essential embedded 2-spheres in M . A set of isotopy classes of embedded spheres in

M is deemed to span a simplex in the sphere complex if they can be realized disjointly in M .

The maximal simplices of S(M) all have the same dimension, namely 3n + s − 4, as one sees by

Euler characteristic considerations using the fact that the complementary regions of a maximal system of

2-spheres are all 3-punctured spheres.

2.8.1 Topology of sphere complex

In [17], Hatcher has proved that the sphere complex S(M) is contractible. This is proved by imitating the

simple proof in [19] of contractibility of the analogous complex of arcs on a punctured surface. However,

for this scheme to work one needs the fact that sphere systems can be isotoped into a fairly canonical

normal form with respect to a decomposition of M into “pairs of pants”, i.e., 3-punctured S3’s. This

normal form is analogue of a well-known property of curves on a surface. We shall discuss “normal forms

of sphere systems“ in details in the Chapter 4. Culler and Vogtmann [7], introduced a space Xn on which

the group Out(Fn) acts with finite point stabilizers, and proved that Xn is contractible. Peter Shalen later

invented the name “ Outer space” for Xn. Outer space with the action of Out(Fn) can be thought of as

free group analogous to the Teichmüller space of a surface with the action of the mapping class group of

the surface. Culler and Morgan have constructed a compactification of Outer space much like Thurston’s

compactification of Teichmüller space [6].

Now, we see the connection between the sphere complex and the outer space.

2.8.2 Sphere complex and Outer space

The points of the rank n Outer Space Xn of Culler-Vogtmann are equivalence classes of homotopy equiva-

lences f : X0 → X, where X0 is a bouquet of n circles and X is a metric graph which doesn’t deformation
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retract onto any subgraph, the metric being normalized so that the total length of all the edges is 1.

The equivalence relation on such ”marked metric graphs“ f : X0 → X is given by homotopy of f and

composition with isometries X → X ′. Fixing the topological type of X and varying only the lengths of

its edges traces out an open simplex in Xn. Passing to faces of this simplex corresponds to letting the

lengths of some edges go to zero. Depending on which edges are collapsing in this way, the face might or

might not belong to Xn. Let S = S(M), and let S∞ be the subcomplex of S consisting of sphere systems

having at least one non simply-connected complementary component in M . A sphere System S has a dual

graph G(S) having vertices the components of M − S and edges the spheres of S. We may view G(S) as

embedded in M by choosing a vertex point in each component of M − S and connecting these vertices

by edges crossing the spheres of S, each sphere having a single edge crossing it exactly once. Some what

more canonically, G(S) is also a quotient of M , obtained by thickening S to a product S × [−1, 1] ⊂ M ,

then collapsing the components of M − (S × (0, 1)) to points and also the components of S × t, for each

t ∈ (0, 1). If S is in S− S∞, then both maps G(S) → M and M → G(S) are isomorphisms on π1.

Fixing a System S0 with G(S0) = X0, the composition G(S0) → M → G(S) is then a homotopy

equivalence. The barycentric coordinates of a point in the open simplex of S determined by S give weights

on the components of S and hence lengths on the corresponding edges of G(S). In this way we obtain

a map Θ : S − S∞ → Xn sending the weighted system S to G(S0) → G(S). On each open simplex of

S − S∞,Θ is a linear homeomorphism onto an open simplex of Xn, and Θ is continuous when we pass to

faces of simplices, hence Θ is continuous everywhere. Also, Θ is equivariant with respect to the natural

action of Out(Fn) on S− S∞ and Xn. This maps actually turns out be a homeomorphism. See [17].

The space Xn has dimension 3n − 4, and Culler-Vogtmann describe a nice ”spine“ of Xn which is a

contractible subcomplex of dimension 2n−3 on which Out(Fn) acts with finite stabilizers and finite quotient.

Using this they prove that Out(Fn) has finitely generated homology groups and virtual cohomological

dimension 2n− 3. See [7].



3. THE MODEL 3-MANIFOLD M AND ENDS

3.1 Introduction

In this chapter, we study the model 3-manifold M = ]kS2 × S1. We also see how a partition of ends of

the space M̃ , the universal cover of M , corresponds to an embedded sphere in M̃ . We also discuss the

intersection number of a proper path in M̃ with a homology class in H2(M̃). In the last section of this

chapter, we discuss splittings of the fundamental group of M .

3.2 The model 3-manifold M

Consider the 3-manifold M = ]kS2 × S1, i.e., the connected sum of k copies of S2 × S1. A description

of M can be given as follows: Consider the sphere S3 and let Ai, Bi, 1 ≤ i ≤ k, be a collection of 2k

disjoint embedded balls in S3. Let P be the complement of the union of the interiors of these balls and

let Si (respectively, Ti) denote the boundary of Ai (respectively, Bi). Then, M is obtained from P by

gluing together Si and Ti with an orientation reversing diffeomorphism ϕi for each i, 1 ≤ i ≤ k. Let

Σ′i = Si

⊔
ϕi

Ti, for 1 ≤ i ≤ k. The fundamental group π1(M) = G of M , which is a free group of rank k,

acts freely on the universal cover M̃ of M by deck transformations.

Let Σ = ∪jΣj be a maximal system of 2-sphere in M . Splitting M along Σ, then produces a finite

collection of 3-punctured 3-spheres Pk. Here, a 3-punctured 3-sphere is the complement of the interiors of

three disjointly embedded 3-balls in a 3-sphere.

We recall some constructions from [17]. First, we associate a tree T to M̃ corresponding to the de-

composition of M by Σ. Let Σ̃ be the pre-image of Σ in M̃ . The closure of each component of M̃ − Σ̃

is a 3-punctured 3-sphere P̃k which is a lift of a Pk. The vertices of the tree are of two types, with one

vertex corresponding to the closure of each component of M̃ − Σ̃ and one vertex for each component of Σ̃.

An edge of T joins a pair of vertices if one of the vertices corresponds to the closure of a component X of

M̃ − Σ̃ and the other vertex corresponds to a component of Σ̃ that is in the boundary of X. Thus, we have

a Y -shaped subtree corresponding to each complementary component. We pick an embedding of T in M̃

respecting the correspondences. This tree has bivalent and trivalent vertices. Bivalent vertices correspond

to components of Σ̃. We call components of Σ̃ as standard spheres in M̃ .

Let τ = τ1 ⊂ τ2 ⊂ . . . be an exhaustion of T by finite subtrees of T such that all the terminal vertices of

each τi are bivalent in T . Let Kτ be the union of closures of P̃k’s which corresponds to vertices in τ which
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are trivalent in T . Then, one can easily see that Kτ is a compact, simply-connected space homeomorphic

to a space of the form S3 − ∪n
j=1int(Dj) with Dj disjoint embedded balls in S3.

We observe that π2(M) = π2(M̃) = H2(M̃). This follows from Hurewicz theorem which we state below:

Theorem 3.2.1. If a CW-complex X is (n− 1)-connected, n ≥ 2,then πn(X) is isomorphic to Hn(X).

A topological space X is said to be m-connected if and only if it is path-connected and its first m

homotopy groups vanish identically, that is,

πi(X) = 0, 1 ≤ i ≤ m.

So a class in π2(M) can be considered as a class in π2(M̃) as well as a class in H2(M̃). We shall implicitly

use this identification throughout. For reference, see [18].

3.3 Ends of M̃

We recall the notion of ends of a topological space: Let X be a topological space. For a compact set

K ⊂ X, let C(K) denote the set of components of X −K. For L compact with K ⊂ L, we have a natural

map C(L) → C(K). Thus, as compact subsets of X define a directed system under inclusion, we can define

the set of ends E(X) as the inverse limit of the sets C(K). Further, we can compute the inverse limit with

respect to any exhaustion by compact sets.

It is easy to see that a proper map f : X → Y induces a map E(f) : E(X) → E(Y ) and that if

f : X → Y and g : Y → Z are proper maps, then E(g ◦ f) = E(g) ◦ E(f). In particular, the real line R
has two ends which can be regarded as ∞ and −∞. Hence, a proper map c : R→ X gives a pair of ends

c− and c+ of X which may be equal.

Now, consider proper maps c : R→ M̃ . As M̃ is a union of the simply-connected compact sets Kτ , the

following lemma is straightforward.

Lemma 3.3.1. There is a one-one correspondence between proper homotopy classes of maps c : R → M̃

and pairs (c−, c+) ∈ E(M̃)× E(M̃).

3.3.1 Topology on the set E(M̃)

To define topology on E(M̃), we use compact subsets of M̃ . If K is any compact subset of M̃ , then

M̃ − K has finitely many components. Then, we have the set of ends of a component of M̃ − K whose

closure is non-compact to be a basis element. We can easily see that the collection of all the sets of ends

of components of M̃ −K whose closures are non-compact, for all compact subsets K of M̃ , forms a basis

for a topology on E(M̃).

The set E(M̃) is homeomorphic to a Cantor set, hence compact. Note that the set E(T ) of ends of T

can be identified with the set E(M̃).
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3.4 Embedded spheres in M̃ and partitions of ends of M̃

Fix an orientation of M and hence, of M̃ .

Lemma 3.4.1. Let S is an embedded sphere in M̃ . Then, S separates M̃ .

Proof. Suppose S is non-separating. Choose a regular neighborhood V = S2×[−1, 1] of S and an embedded

path γ in M − V from a point of S2 ×−1 to a point S2 × 1. The sphere S′ which is the connected sum of

S2 ×−1 with S2 × 1 along with the boundary of a regular neighborhood U of γ, clearly bounds U ∪ V in

M̃ . Thus, M̃ = (U ∪V )∪ (M − (U ∪V )). Then, U ∪V is (S2×S1)−B3 with boundary S′, where B3 is a

3-ball and (M − (U ∪ V )) is a 3-manifold with boundary S′. Thus, M̃ is a connected sum of S2 × S1 with

some three manifold. This implies, by applying Van-Kampen theorem, that the fundamental group of M̃

is non-trivial, which is a contradiction. So, S separates M̃ .

If S is an embedded sphere in M̃ , then S separates M̃ into two components, say V + and V −, with

V + on the positive side of S according to the given orientations on S and M̃ . If the closure of one of

these components is compact, then S is homologically trivial. If the closures of both the components are

non-compact, then we get a partition of the set E(M̃) of ends of M̃ into two non-empty subsets E±(S) of

E(M̃). The sets E±(S) are the sets E(V ±) of ends components V ±.

Proposition 3.4.2. The sets E±(S) are open in E(M̃).

Proof. Suppose τ is finite subtree of T with all of its terminal vertices bivalent such that S is contained

in Kτ . Then, K = Kτ is a compact, 3-dimensional, connected manifold contained in M̃ such that the

closure Wi of each complementary component of K is non-compact. As M̃ is simply-connected and K

is connected, Ni = ∂Wi is connected for each Wi. Note that there are finitely many sets Wi and E(M̃)

is partitioned into the sets E(Wi). The space K is S3− interior of finitely many disjointly embedded

3-balls with boundary spheres Ni. The sphere S separates K and gives a partition of the collection {Ni}).
Note that interior of each Wi is completely contained either in V + or V − and hence each set E(Wi) lies

entirely either inside E+ or inside E−. Thus, both E+ and E− are unions of basis elements, hence they

are open.

As the sets E±(S) give partition of E(M̃), both E+ and E− are closed subsets of E(M̃). As E(M̃) is

compact, both E+ and E− are compact subsets of E(M̃).

Proposition 3.4.3. If S′ is an embedded sphere in M̃ , homologous to S, then both S and S′ give the same

partition of the set of ends of M̃ .

Proof. As S and S′ are embedded spheres in M̃ , there exist a finite subtree τ of T with all of its terminal

vertices bivalent in T , such that both S and S′ are contained in Kτ . The space K = Kτ is a compact,
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3-dimensional, connected manifold contained in M̃ such that the closure Wi of each complementary com-

ponent of K is non-compact. As M̃ is simply-connected and K is connected, Ni = ∂Wi is connected for

each Wi. There are finitely many sets Wi and E(M̃) is partitioned into the sets E(Wi). The space K

is S3− interior of finitely many 3-balls with boundary spheres Ni. As each Wi is non-compact and the

boundary sphere Ni is non-trivial in H2(Wi), an algebraic topology argument implies that spheres S and

S′ are homologous in M̃ if and only if they are homologous in K. Now, we claim the following:

The embedded spheres S and S′ in K are homologous in K if and only if they give the same partition

of the collection of boundary spheres Ni.

Let K−S = K1∪K2 and K−S′ = K ′
1∪K ′

2. Let ∂K̄1−S = N1∪· · ·∪Nr and ∂K̄2−S = Nr+1∪· · ·∪Nk.

Let A1 = N1 ∪ · · · ∪Nr and A2 = Nr+1 ∪ · · · ∪Nk. We have ∂K = A1

⊔
A2. Similarly, let ∂K̄ ′

1 − S′ = A′1
and ∂K̄2−S = A′2, where each A′i is a disjoint union boundary spheres and ∂K = A′1

⊔
A′2. It follows that

S is homologous to A1 and also to A2. Similarly, S′ is homologous to A′1 and also to A′2.

If S and S′ are homologous in K, then Ai is homologous A′j , for all 1 ≤ j, k ≤ 2. Note H2(K) is

generated by the homology classes [Ni] of the boundary spheres Ni with the relation
∑

i[Ni] = 0. Now, A1

is homologous to A′1 and if A1 6= A′1, then A′1 = A2, as the class B = [A1] − [A2] = 0 can be represented

by union of boundary spheres Ni. From this, it clear that both S and S′ give the same partition of the

collection of boundary spheres.

Conversely, if S and S′ give the same partition {A1, A2} of the collection of boundary spheres Ni of K.

Then, both S and S′ are homologous to A1. Hence, S and S′ are homologous in K.

Now, if S and S′ are homologous in M̃ , then they are homologous in K. So, they give the same partition

of the collection of boundary spheres Ni of K. Therefore, they give the same partition of the collection

{E(Wi)} and hence, give the same partition of the set E(M̃).

Conversely,

Proposition 3.4.4. If S and S′ are two embedded spheres in M̃ such that they give the same partition

(E+, E−) of the set E(M̃) of ends of M̃ , then S and S′ are homologous in M̃ .

Proof. As S and S′ are embedded spheres in M̃ , there exist a finite subtree τ of T with all of its terminal

vertices bivalent in T , such that both S and S′ are contained in Kτ . The space K = Kτ is a compact,

3-dimensional, connected manifold contained in M̃ such that the closure Wi of each complementary com-

ponent of K is non-compact. Let Ni = ∂Wi. There are finitely many sets Wi and E(M̃) is partitioned

into the sets E(Wi). The space K is S3− interior of finitely many 3-balls with boundary spheres Ni. The

sphere S separates K and gives a partition of the boundary spheres of K into two sets. This partition of

boundary sphere into two sets gives a partition of the collection {E(Wi)} into two sub collections. Each set

E(Wi) lies entirely either inside E+ or E− and theses two sub collections of {E(Wi)} determine the sets

E+ and E−. Similarly, this is true for S′. This implies S and S′ give the same partition of the boundary

spheres of K. Hence, S and S′ are homologous in K and therefore, homologous in M̃ .
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Proposition 3.4.5. Given a partition of the set E(M̃) into two infinite closed (hence open) sets E+ and

E−, there exist an embedded sphere S in M̃ , which gives the same partition of E(M̃).

Proof. Suppose that E+ and E− are two disjoint closed subsets of E(M̃), which give a partition of E(M̃).

If τ ⊂ T is a tree such that all the terminal vertices of τ are bivalent in T , then K = Kτ is a com-

pact, 3-dimensional, connected manifold contained in M̃ such that the closure Wi of each complementary

component of K is non-compact. Let Ni = ∂Wi.

Suppose that we can choose a subtree τ ⊂ T with all the terminal vertices of τ bivalent in T such that

each E(Wi) lies entirely either in E+ or E−. We can assign signs to Ni, + or − depending upon whether

E(Wi) lies inside E+ or E−. Then, we can choose a sphere S in K which separates all positive signed Ni

from all negative signed Ni, as K is S3− interior of finitely many 3-balls with boundary spheres Ni. Then,

one can easily see that S gives the partition of E(M̃) into the sets E+ and E−.

Now, we see how to choose such a tree τ . We have both E+ and E− are both open and closed. As the

set E(M̃) is compact, both E+ and E− are compact. Let e ∈ E+. As E+ is open, we can choose a finite

tree τ ⊂ T such that e is an element of the set Ue of the ends of a component of M̃ −Kτ and Ue ⊂ E+. We

can choose such a basic open set Ue for each e ∈ E+. As E+ is compact, there exists finitely many basic

open sets Ue1 , . . . , Uen such that E+ = ∪n
i=1Uei . Let τi be finite subtree of T with all their terminal vertices

bivalent such that Uei is the set of ends of a component of M̃ −Kτi , for each i = 1, . . . , n. Let Wi be the

closure of the component of M̃ −Kτi such that Uei = E(Wi), the set of ends of Wi. Let Ni = ∂Wi. Then,

Ni corresponds to a terminal vertex vi of τi. If for some 1 ≤ j, k ≤ n, Nk lies in Wj , then we have Wk ⊂ Wj

and Uk = E(Wk) ⊂ E(Wj) = Uj . Then, we discard the vertex vk corresponding to Nk from the collection

of bivalent vertices {v1, . . . , vn} of T . So finally, we get bivalent vertices vj1 , . . . , vjm such that the sets

Wj1 , . . . ,Wjm are disjoint. Then, we have the sets Uj1 , . . . , Ujm are disjoint and E+ = ∪m
i=1Uji . Note that

given any two bivalent vertices vji and vjk
, 1 ≤ i, k ≤ m, the reduced path joining them does not contain

any other vjl
, j 6= l 6= k. We consider the subtree τ ′ of T which is the span of the vertices vi. Then, all vji ,

1 ≤ i ≤ m, are the terminal vertices of τ ′. We enlarge the tree τ ′ to the subtree τ of T by taking unions of

those Y ’s which have non-empty intersection with the interior of the tree τ ′. The tree τ is a subtree of T

with all the terminal vertices of τ are bivalent in T and all the Vji ’s are terminal vertices of τ . Now, one can

easily see that τ has the required property. For, if K = Kτ , K is S3− interior of finitely many 3-balls with

boundary spheres Nj1 , . . . , Njm , N ′
1, . . . , N

′
l . The boundary sphere Nji corresponds to the vertex vji . The

space M̃ −K has components with closures Wj1 , . . . , Wjm ,W ′
1, . . . , W

′
l . For each 1 ≤ i ≤ m, Nji = ∂Wji

and for each 1 ≤ k ≤ l, N ′
k = ∂W ′

k. As the sets Uj1 , . . . , Ujm are disjoint and E+ = ∪m
i=1Uji , for each

1 ≤ k ≤ l, E(W ′
k) ⊂ E−. Thus, we have τ ⊂ T with all the terminal vertices of τ bivalent in T such that

each the set of ends of the closure of each complementary component of K lies entirely either in E+ or

E−.
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3.5 Crossings of spheres in M̃

Let A and B be two homology classes in H2(M̃) represented by embedded spheres in M̃ . We saw a

homology classes A of embedded spheres S in M̃ is completely determined by a partition of E(M̃) into two

open subsets of E(M̃). If S gives partition of E(M̃) into two open subsets E+(S) and E−(S) of E(M̃),

then we can write E+(A) = E+(S) and E−(A) = E−(S).

Definition 3.5.1. We say that A and B cross each of the four sets Eε(A) ∩ Eη(B) 6= φ, for ε and η

obtained by choosing signs ε and η in {+,−} is non-empty.

Suppose A and B do not cross, then for some choice of sign Eε(A) ⊃ Eη(B). It follows that E ε̄(A) ⊂
Eη̄(B), where ε̄ and η̄ denote the opposite signs. Further, if A 6= B, then the inequalities are strict.

Definition 3.5.2. We say that B is on the positive side of A if E+(A) ⊃ Eη(B) for some sign η. Otherwise,

we say that B is on the negative side of A. In general, we say that B is on the ε-side of A for the appropriate

sign ε.

Proposition 3.5.3. Let A and B be two homology classes in H2(M̃) represented by embedded spheres in

M̃ . Then A and B can be represented by disjoint embedded spheres in M̃ if and only if A and B do not

cross.

Proof. Suppose A and B can be represented by embedded spheres S and S′ respectively. Denote the closures

of the components of the complement of S (respectively, S′) by X1 and X2 (respectively, Y1 and Y2) so

that E(X1) = E+(A) = E+(S) and E(X2) = E−(A) = E−(S) (respectively, E(Y1) = E+(B) = E+(S′)

and E(Y2) = E−(B) = E−(S′)). Suppose S and S′ are disjoint embedded spheres in M̃ . Suppose S′

is contained in the interior of X1. Then, the component Yi which does not intersect S is completely

contained inside X1. Let this component be Y1. Then, E+(B) = E(Y1) ⊆ E(X1) = E+(A). This implies

E+(B) ∩ E−(A) = φ. Similarly, we can see in all other cases at least one of the four sets Eε(A) ∩ Eη(B),

for ε and η obtained by choosing signs ε and η in {+,−}, is empty.

Conversely, suppose A and B do not cross. We shall show that A and B can be represented by disjoint

embedded spheres in M̃ . Let τ be a finite subtree of T with all of its terminal vertices bivalent in T , such

that both A and B are supported in K = Kτ . The space K = Kτ is a compact, 3-dimensional, connected

manifold contained in M̃ such that the closure Wi of each complementary component of K is non-compact.

Let Ni = ∂Wi. Note that there are finitely many sets Wi and E(M̃) is partitioned into the sets E(Wi).

Note K is S3− interior of finitely many 3-balls with boundary spheres Ni. Each set E(Wi) is completely

contained either in E+(A) or E−(A) (respectively, each set E(Wi) is completely contained either in E+(B)

or E−(B)). We can assign signs to Ni, +A or −A depending upon whether E(Wi) lies inside E+(A) or

E−(A) (respectively, we can assign signs to Ni, +B or −B depending upon whether E(Wi) lies inside

E+(B) or E−(B)). Thus, the collection of boundary spheres Ni of K get partitioned into two sets U+
A

and U−
A containing +A signed and −A signed boundary spheres, respectively. Similarly, the collection of

boundary spheres Ni of K get partitioned into two sets U+
B and U−

B containing +B signed and −B signed
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boundary spheres, respectively. As A and B do not cross, we can assume that for some choice of sign,

Eε(A) ⊃ Eη(B). Suppose E+(A) ⊂ E+(B). This implies U+
A ⊂ U+

B . Then, inside K, we can choose

disjointly embedded spheres S and S′ which give partitions {U+
A , U−

A } and {U+
B , U−

B } of boundary spheres

Ni of K, respectively. Thus, we get two disjointly embedded spheres S and S′ representing the homology

classes A and B, respectively. Similarly, we can consider all the other cases.

3.6 Intersection number of a proper path and homology classes

Let A ∈ H2(M̃) = π2(M̃). Represent A by a (not necessarily connected) surface in M̃ (also denoted A).

Given a proper map c : R → M̃ which is transversal to A, we consider the algebraic intersection number

c · A. This depends only on the homology class of A and the proper homotopy class of c. Now we shall

discuss this intersection number in details: The proper map c : R → M̃ gives a pair of ends c− and c+ of

M̃ . We shall refer c as a proper path from c− to c+ or as a proper path joining c− and c+. We denote

such a path c by (c−, c+). This is well defined up to proper homotopy. In particular, for a homology class

A ∈ H2(M̃), the intersection number (c−, c+) ·A (which we define in detail below) is well defined and can

be computed using any proper path joining c− and c+. We shall use this implicitly throughout.

For a proper path c : R → M̃ and an element A ∈ H2(M̃), we can define the algebraic intersection

number c ·A by making c transversal to A and computing the intersection number. We formalize this using

the exhaustion of M̃ by the sets Kτ . Namely, if c : R → M̃ is a proper path, then there is an interval

[−L,L] such that c−1(Kτ ) ⊂ [−L,L]. It follows that c|[−L,L] gives an element in H1(M̃, M̃ − int(Kτ )) =

H1(Kτ , ∂Kτ ) = H2(Kτ ), where the first isomorphism is by excision and the second by Poincaré duality.

On passing to inverse limits, we see that c gives an element of H2(M̃). Evaluating this element on A gives

c ·A.

Note that every class A ∈ H2(M̃) is supported in Kτ for some finite tree τ , and a proper path c gives

an element of H2(Kτ ). Further, as the closures of the complementary components of Kτ in M are all non-

compact, any proper path α : [0, 1] → Kτ can be extended to a proper path c : R→ M̃ whose intersection

with Kτ is α. In particular, the cohomology class in H2(Kτ ) = H1(Kτ , ∂Kτ ) corresponding to α is the

image under the map induced by inclusion of the class corresponding to c. It follows that α ·A = c ·A for

A ∈ H2(Kτ ).

We use the above observations and the fact that Kτ is a compact, simply-connected space homeomorphic

to S3 with finitely many balls deleted, with the boundary components corresponding to the edges in δτ to

deduce some elementary results concerning the homology of M̃ .

As H2(Kτ ) is generated by its boundary components of Kτ , it follows that these spheres generate

H2(M̃).

Next, note that if A and B are two homology classes, then for some finite subtree τ ⊂ T , they are both

supported by Kτ . If A is not homologous to B, then as H1(Kτ ) = 0, by Poincaré duality there exists a
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proper path α in Kτ such that α ·A 6= α ·B. By extending α to a proper path c : R→ M̃ , we deduce that

there is a proper path c : R → M̃ with c · A 6= c · B. Thus, an element A ∈ H2(M̃) is determined by the

intersection numbers c ·A, for proper paths c : R→ M̃ .

If S is an embedded sphere in M , then S separates M̃ into two components. If the closure of one of

these is compact, then S is homologically trivial. Otherwise, we can find a proper path c : R → M̃ with

c · S = 1, from which it follows that S is primitive.

3.7 Splitting of the fundamental group and embedded spheres

Recall from section 3.2, the description of M . Fix a base point x0 away from Σ′i. For each 1 ≤ i ≤ k,

consider the element αi ∈ π1(M) represented by a closed path γi starting from x0 of M , going to Ai,

piercing Σ′i, and returning to the base point from Bi. We choose this closed path γi such that it does not

intersect any Σ′j , j 6= i. Then, the collection {α1, . . . , αk} forms a free basis of G = π1(M) = 〈α1, . . . , αk〉
which is a free group of rank k. Any directed closed path in M hitting the Σ′i transversely represents a

word in {α1, . . . , αk} by the way it pierces each Σ′i and the order in which it does so. Without a base point

chosen, such a closed path represents a conjugacy class, or equivalently the cyclic word. We call the basis

{α1, . . . , αk} as a standard basis and spheres Σ′1, . . . , Σ
′
k as standard basic spheres.

Group theoretically, embedded spheres in M correspond to splittings of the fundamental group of M .

Now, we shall see how an embedded sphere in M corresponds to a splitting of G.

Let S is an embedded sphere in M . If S separates M , then using Van-Kampen’s theorem, we can

easily get a splitting of the fundamental group G of M . Now, suppose S is non-separating. Choose a

regular neighborhood V = S2× [−1, 1] of S and an embedded path γ in M −V from a point of S2×−1 to

a point S2× 1. The sphere S′ which is the connected sum of S2×−1 with S2× 1 along with the boundary

of a regular neighborhood U of γ, clearly bounds U ∪ V in M . We have M = U ∪ V ∪ (M − (U ∪ V )).

The set U ∪ V is (S2 × S1) − B3 with boundary S′ and (M − (U ∪ V )) is a 3-manifold M ′ − B3 with

boundary S′. Thus, M is a connected sum of S2×S1 with the three manifold M ′. Then, we get a spitting

of G = G′ ∗ 〈t〉, where π1(M ′) = G′ and π1(S2 × S1) = 〈t〉. Thus, G can be viewed as an HNN-extension

of G′ over the trivial subgroup {1} of G′.

Now, we shall see that given a splitting of G, there exists an embedded sphere S in M which gives

that splitting of G. It follows from 1.8. Here, we give another proof of this in M . There are two cases

depending on whether the splitting is an amalgamated free product or a HNN extension over the trivial

group.

Suppose G = F1 ∗ F2. As subgroups of free group are free, both F1 and F2 are free. Choose free bases

{a1, . . . , am} and {bm+1, . . . , bm+n} of F1 and F2, respectively. The set {a1, . . . , am, bm+1, . . . , bn} forms a

free basis for G. Therefore, m+n = k. Any two bases of a free group are equivalent in the sense that there

exists an automorphism of that free group sending one basis to another. So, we have an automorphism

φ of G sending the basis {a1, . . . , am, bm+1, . . . , bk} to the standard basis with φ(ai) = αi, for 1 ≤ i ≤ m
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and φ(bm+j) = αm+j , for 1 ≤ j ≤ n. Every automorphism of a free group is finite composition of Nielsen

automorphisms and every Nielsen automorphism of G is induced by a homeomorphism of M , [33], [42].

Thus, every automorphism of G is induced by a homeomorphism of M fixing the base point. Let h be

a homeomorphism of M which fixes the base point and induces the automorphism φ on G. The element

φ(ai) = h∗(ai) = αi, for 1 ≤ i ≤ m, corresponds to the basic standard sphere Σ′i and φ(bm+j) = h∗(bm+j) =

αm+j , for 1 ≤ j ≤ n corresponds to the basic standard sphere Σ′m+j . We can choose an embedded sphere

S, disjoint from all Σ′i such that it partitions the collection of basic standard spheres into two sets, namely,

{Σ′i, . . . , Σ′m} and {Σ′m+1, . . . , Σ
′
m+n}. Then, S gives a free splitting of G = A∗B, where A = 〈α1, . . . , αm〉

and B = 〈αm+1, . . . , αm+n〉. Now, the sphere h−1(S) = S′ gives partition of the collection of spheres

{h−1(Σ′1), . . . , h
−1(Σ′m+n)} into two sets {h−1(Σ′i), . . . , h

−1(Σ′m)} and {h−1(Σ′m+1), . . . , h
−1(Σ′m+n)}. The

sphere structure {h−1(Σ′1), . . . , h
−1(Σ′m+n)} corresponds to the basis {a1, . . . , am, bm+1, . . . , bm+n}. Then,

by applying Van-Kampen theorem, we can see that S′ gives the splitting G = F1 ∗ F2.

Note that if G is an HNN-extension of a subgroup G′ of G relative to the subgroups H, K of G′ and

an isomorphism θ : H → K, then H = K = {1} and G′ is a subgroup of rank n − 1. Thus, G = G′ ∗ 〈t〉,
where t ∈ G. We choose a basis {c1, . . . , ck−1} of G′. The set {c1, . . . , ck−1, t} forms a basis of G. Then,

we have an isomorphism φ′ of G sending the basis {c1, . . . , ck−1, t} to the standard basis with φ′(ci) = αi,

for 1 ≤ i ≤ k− 1 and φ′(t) = αk. Let h′ be a homeomorphism of M which fixes the base point and induces

the automorphism φ′ on G. The element φ′(ci) = h′∗(ci) = αi, for 1 ≤ i ≤ k − 1, corresponds to the

basic standard sphere Σ′i and φ′(t) = h′∗(t) = αk corresponds to the basic sphere Σ′k. The sphere structure

{h′−1(Σ′1), . . . , h
′−1(Σ′k−1), h

′−1(Σ′k)} corresponds to the basis {c1, . . . , ck−1, t} of G. Now, one can easily

see that the sphere h′−1(Σ′k) gives a splitting of G as an HNN-extension of G′ over the trivial subgroup

{1}. Thus, embedded spheres in M corresponds to splittings of the fundamental group of M .



4. ALGEBRAIC AND GEOMETRIC INTERSECTION NUMBERS FOR FREE

GROUPS

The geometric intersection number of homotopy classes of (simple) closed curves on a surface is the mini-

mum number of intersection points of curves in the homotopy classes. In Chapter 2, we saw that this is a

much studied concept and has proved to be extremely useful in low-dimensional topology.

Scott and Swarup [39] introduced an algebraic analogue, called the algebraic intersection number, for a

pair of splittings of groups. This is based on the associated partition of the ends of a group [42]. Splittings

of groups are the natural analogue of simple closed curves on a surface F – splittings of π1(F ) corresponding

to homotopy classes of simple closed curves on F . Scott and Swarup showed that, in the case of surfaces,

the algebraic and geometric intersection numbers coincide.

We show here that the analogous result holds for free groups, viewed as the fundamental group of the

connected sum M = ]nS2 × S1 of n copies of S2 × S1. Thus, the manifold M can be regarded as a model

for studying the free group and its automorphisms.

Embedded spheres in M correspond to splittings of the free group. Hence, given a pair of embedded

spheres in M , we can consider their geometric intersection number (defined below) as well as the algebraic

intersection number of Scott and Swarup for the corresponding splittings. Our main result is that, for

embedded spheres in M these two intersection numbers coincide. The principal method we use is the

normal form for embedded spheres developed by Hatcher.

Before stating our result, we recall the definition of the intersection numbers.

4.1 Intersection numbers

Definition 4.1.1. Let A and B be two isotopy classes of embedded spheres S and S′, respectively, in

M . The geometric intersection number I(A, B) of A and B is defined as the minimum of the number of

components |S ∩S′| of S ∩S′ over embedded transversal spheres S and S′ representing the isotopy classes

A and B, respectively.

This is clearly symmetric. Further, for an embedded sphere S, if A = [S], then I(A,A) = 0.

We consider next the algebraic intersection number. Let M̃ be the universal cover of M . Observe that

π2(M) = π2(M̃) = H2(M̃). The fundamental group π1(M) = G of M , which is a free group of rank n,

acts freely on the universal cover M̃ of M by deck transformations. Homotopy classes of spheres in M
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correspond to equivalence classes of elements in H2(M̃) up to the action of deck transformations. For

embedded spheres, we can consider isotopy classes instead of homotopy classes as the homotopy classes of

embedded spheres are the same as isotopy classes of embedded spheres [31].

For an embedded sphere S ∈ M with lift S̃ ∈ M̃ , all the translates of S̃ are embedded and disjoint

from S̃. In particular, if Ã = [S̃] is the isotopy class represented by S̃, then Ã and gÃ can be represented

by disjoint embedded spheres for each deck transformation g ∈ G.

Definition 4.1.2. Let A = [S] and B = [S′] be two isotopy classes of embedded spheres S and S′,

respectively, in M . Let Ã = [S̃] and B̃ = [S̃′], where S̃ and S̃′ are the lifts of S and S′, respectively, to

M̃ . The algebraic intersection number Ĩ(A,B) of A and B is defined as the number of translates gB̃ of B̃

such that Ã and gB̃ can not be represented by disjoint embedded spheres in M̃ .

It was shown in [11] that this coincides with the algebraic intersection number of Scott and Swarup.

Definition 4.1.3. We say that two isotopy classes Ã = [S̃] and B̃ = [S̃′] of embedded spheres in M̃ cross

if they cannot be represented by disjoint embedded spheres.

Thus, the algebraic intersection number is the number of elements g ∈ π1(M) such that Ã and gB̃

cross. We shall also say that S̃ and S̃′ cross if the classes they represent cross.

It is immediate that Ã and gB̃ cross if and only if g−1Ã and B̃ cross. It follows that Ĩ(A,B) = Ĩ(B,A).

Thus, the algebraic intersection number is symmetric.

Clearly, for all but finitely many translates gB̃ of B̃, Ã and gB̃ can be represented by disjoint embedded

spheres in M̃ . This is because, for any pair of embedded spheres S and S′ in M , all but finitely many

translates of S̃′ are disjoint from S̃ in M̃ . Hence, Ĩ(A, B) is finite for all isotopy classes A and B of

embedded spheres in M .

As was shown in [11], it follows from results of Scott and Swarup that if the algebraic intersection

number between classes A and B as above vanishes, then they can be represented by disjoint embedded

spheres, i.e., their geometric intersection number vanishes. The converse is an easy observation.

We prove here a much stronger result that the algebraic and geometric intersection numbers are equal.

Theorem 4.1.4. For isotopy classes A and B of embedded spheres in M , Ĩ(A,B) = I(A,B).

Our proof is based on the normal form for spheres in M due to Hatcher [17], which we recall in

Section 4.2. We extend a sphere Σ in the isotopy class B to a maximal system of spheres and consider a

sphere S in the isotopy class of A in normal form with respect to this system. We then show in Section 4.3

that, when S is in normal form, the number of components of intersection between S and Σ is the algebraic

intersection number between the isotopy classes A = [S] and B.

Our methods also show that, if A1,. . . An is a collection of isotopy classes of embedded spheres, each pair

of which can be represented by disjoint spheres, then all the classes Ai can be simultaneously represented

by disjoint spheres. We prove this in Theorem 4.3.3.
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An important ingredient of our proofs is the observation that if S and S′ are embedded spheres in M

and S is in normal form with respect to a maximal system of spheres containing S′, then S and S′ intersect

minimally. This is somewhat analogous to results for geodesics and least-area surfaces [9],[10]. Further

the components of intersection correspond to crossing. This is very similar to the case of geodesics, where

intersections correspond to linking of end points.

4.2 Normal spheres

We recall the notion of normal sphere systems from [17].

Let Σ = ∪jΣj be a maximal system of 2-sphere in M . Splitting M along Σ, then produces a finite

collection of 3-punctured 3-spheres Pk. Here a 3-punctured 3-sphere is the complement of the interiors of

three disjointly embedded 3-balls in a 3-sphere.

Definition 4.2.1. A system of 2-spheres S = ∪iSi in M is said to be in normal form with respect to Σ if

each Si either coincides with a sphere Σj or meets Σ transversely in a non empty finite collection of circles

splitting Si into components called pieces, such that the following two conditions hold in each Pk:

1. Each piece in Pk meets each component of ∂Pk in at most one circle.

2. No piece in Pk is a disk which is isotopic, fixing its boundary, to a disk in ∂Pk.

From (1), it follows that the pieces are either disks, cylinders, or pairs of pants. A cylinder piece

connects two components of ∂Pk and a pants piece connects all three components of ∂Pk. A disk piece

has boundary on one component of ∂Pk and separates the other two components of ∂Pk, by (2). Hence a

Pk can not contain both disk and pants pieces, and all the disk pieces in a Pk must have their boundaries

on the same component of ∂Pk. Each individual cylinder or pants piece in a Pk must be unknotted in Pk

since its boundary circles lie on different components of ∂Pk, but a collection of cylinder and pants pieces

can be knotted and linked in a complicated fashion. However, since homotopic systems are isotopic, such

knotting and linking can always be eliminated by an isotopy of the system in M , though the isotopy will

generally have to move outside Pk.

Recall the following result from [17].

Proposition 4.2.2 (Hatcher). Every system S ⊂ M can be isotoped to be in normal form with respect to

Σ. In particular, every essential embedded sphere S in M can be isotoped to be in normal form with respect

to Σ.

We recall some constructions from [17]. First, we associate a tree T to M̃ corresponding to the de-

composition of M by Σ. Let Σ̃ be the pre-image of Σ in M̃ . The closure of each component of M̃ − Σ̃

is a 3-punctured 3-sphere. The vertices of the tree are of two types, with one vertex corresponding to

the closure of each component of M̃ − Σ̃ and one vertex for each component of Σ̃. An edge of T joins

a pair of vertices if one of the vertices corresponds to the closure of a component X of M̃ − Σ̃ and the
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other vertex corresponds to a component of Σ̃ that is in the boundary of X. Thus, we have a Y -shaped

subtree corresponding to each complementary component. We pick an embedding of T in M̃ respecting

the correspondences.

Given a sphere S in normal form with respect to Σ and a lift S̃ of S to M̃ , we associate a tree

T (S̃) corresponding to the decomposition of S̃ into pieces. The tree has two types of vertices, vertices

corresponding to closures of components of S̃−Σ̃ (i.e., pieces) and vertices corresponding to each component

of S̃∩Σ̃. Edges join a pair of vertices if one of the vertices corresponds to a piece and the other to a boundary

component of the piece.

In [17], it is shown that T (S̃) is a tree. Moreover, the inclusion S̃ ↪→ M̃ induces a natural inclusion

map T (S̃) ↪→ T . So, we can view T (S̃) as a subtree of T . The bivalent vertices of T correspond to spheres

components in Σ̃, i.e., lifts of the spheres Σj and their translates.

4.3 Algebraic and Geometric Intersection numbers

Consider now two isotopy classes A and B of embedded spheres in M . Choose an embedded sphere Σ1 in

the isotopy class B and extend this to a maximal collection Σ of spheres. Let S be a representative for A

in normal form with respect to Σ. Theorem 4.1.4 is equivalent to showing that Ĩ(A, [Σj ]) = I(A, [Σj ]) for

j = 1. We begin by showing the non-trivial inequality here.

Lemma 4.3.1. If A = [S] is the isotopy class of the embedded sphere S in M , then for the isotopy class

[Σj ] of Σj in M , Ĩ(A, [Σj ]) ≥ I(A, [Σj ]).

Proof. The sphere S, which is in normal form with respect to Σ, represents the class A. We shall show

that the number of components of intersection of S with Σj is Ĩ(A, [Σj ]). As the geometric intersection

number is the minimum of the number of components of intersection of spheres in the isotopy classes, the

lemma is an immediate consequence of this claim.

Fix a lift S̃ of S. The components of S ∩ Σj are homotopically trivial circles in M . These lift to

circles of intersection between S̃ and components of the pre-image of Σj . These correspond to vertices

of T (S̃). As T (S̃) is a tree which embeds in T , different circles of intersection of S and Σj correspond

to intersections of S̃ with different components of the pre-image of Σj . It follows that the number of

components of intersection of S with Σj is the number of components of the pre-image of Σj that intersect

S̃.

The main observation needed is the following lemma.

Lemma 4.3.2. If S̃ intersects a component Σ̃j of the pre-image of Σj, then the spheres S̃ and Σ̃j cross.

Proof. Assume that S̃ intersects the component Σ̃j of the pre-image of Σj . The sphere Σ̃j corresponds to

a vertex v0 of T . As S̃ intersects Σ̃j and S is in normal form, the vertex v0 is an interior vertex of T (S̃).

We recall the notion of crossing due to Scott and Swarup, which by [11] is equivalent to the notion

we use. The spheres S̃ and Σ̃j partition the ends of M̃ into pairs of complementary subsets E±
S and E±

Σ ,
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corresponding to the components of the complement of the respective spheres in M̃ . The spheres S̃ and

Σ̃j cross if all the four intersections E±
S ∩ E±

Σ are non-empty.

A properly embedded path c : R→ M̃ induces a map from the ends ±∞ of R to the ends of M̃ . Thus,

we can associate to c a pair of ends c±. We say that the path c is a path from c− to c+. Poincaré duality

gives a useful criterion for when two ends E and E′ of M̃ are in different equivalence classes with respect

to the partition corresponding to S̃. Namely, E and E′ are in different equivalence classes if and only if

there is a proper path c from E to E′ so that c · S̃ = ±1, with c · S̃ the intersection pairing obtained from

the cup product using the duality between homology and cohomology with compact support.

The ends of M̃ can be naturally identified with the ends of the tree T . The sets E±
Σ correspond to the

ends of the two components of T −{v0}. It is easy to see that Σ̃j and S̃ cross if and only if each of the sets

E±
Σ contain pairs of ends E1 and E2 which are in different equivalence classes with respect to the partition

corresponding to S̃. By symmetry, it suffices to consider the case of E+
Σ . Let X denote the closure of the

component of M̃ − Σ̃j with ends(X) = E+
Σ .

As v0 is an internal vertex of the tree T (S̃), there is a terminal vertex w of T (S̃) contained in X. A

terminal vertex of T (S̃) corresponds to a piece which is a disc D in a 3-punctured sphere P , with P the

closure of a component of M̃ − Σ̃. Let Q1 and Q2 denote the boundary components of P disjoint from D

(hence from S). Then D separates Q1 and Q2.

For i = 1, 2, let Wi denote the closure of the component of M̃ − Qi which does not contain S. As Qi

is the lift of an essential sphere, and M̃ is simply-connected, Qi is non-trivial as an element of H2(M̃).

Hence Wi is non-compact. By construction Wi ⊂ X, hence the ends of Wi are contained in E+
Σ .

As D separates Q1 and Q2, (after possibly interchanging Q1 and Q2) there is a path c : [0, 1] → P

intersecting S transversely in one point (with the sign of the intersection +1) so that c(0) ∈ Q1 and

c(1) ∈ Q2. As W1 and W2 are non-compact, we can extend c to a proper function c : R → M̃ with

c((−∞, 0)) ⊂ W1 and c((1,∞)) ⊂ W2.

The ends E1 and E2 of c are ends of X (as Wi ⊂ X for i = 1, 2). Further, by construction c · S̃ = 1. It

follows that the ends E1, E2 ⊂ E+
Σ are in different components with respect to the partition corresponding

to S̃. By symmetry, we can find a similar pair of ends in E−
Σ . It follows that S̃ and Σ̃ cross.

We now complete the proof of Lemma 4.3.1. We have seen that the number of components of S ∩ Σj

is the number of components of the pre-image of Σj which intersect S̃. For a fixed lift Σ̃j of Σj , the

components of the pre-images of Σj are the translates gΣ̃j of Σ̃j .

By Lemma 4.3.2, it follows that if S̃ intersects gΣ̃j , then S̃ crosses gΣ̃j . The converse of this is obvious.

By the definition of algebraic intersection number, Lemma 4.3.1 follows.

Proof of Theorem 4.1.4. We have seen that it suffices to consider the case when A = [S], B = [Σ1] and S

is in normal form with respect to Σ. By Lemma 4.3.1, Ĩ(A,B) ≥ I(A,B).
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Conversely, let S and Σ1 be embedded spheres with A = [S], B = [Σ1] and I(A,B) = |S ∩ Σ1|. Let

S̃ and Σ̃1 be lifts of S and Σ1, respectively, to M̃ . Observe that (distinct) components of intersection of

S with Σ1 lift to (distinct) components of intersection of S̃ with translates of Σ̃1. Hence the number of

translates of Σ̃1 that intersect S̃ is at most I(A,B). As Ĩ(A,B) is the number of translates of Σ̃1 that

cross S̃, and components that cross must intersect, it follows that Ĩ(A,B) ≤ I(A,B).

This completes the proof of the theorem.

Our methods also yield the following result. This also follows from the work of Scott and Swarup, see

[39].

Theorem 4.3.3. If A1,. . . ,An are isotopy classes of embedded spheres in M such that, for 1 ≤ i, j ≤ n, Ai

and Aj can be represented by disjoint spheres, then there exist disjointly embedded spheres Si, 1 ≤ i ≤ n,

such that Ai = [Si].

Proof. We prove this by induction on n. For n = 1, 2, the conclusion is immediate from the hypothesis.

Assume that the result holds for n = k and consider a collection Ai as in the hypothesis with n = k + 1.

Suppose one of the spheres, which we can assume without loss of generality is An, is not essential. By

the induction hypothesis, there are disjoint embedded spheres Si, 1 ≤ i < n, with [Si] = Ai. Choose a

3-ball disjoint from the spheres Si, 1 ≤ i < n and let Sn be its boundary. Then, the spheres Si, 1 ≤ i ≤ n,

give the required collection.

Thus, we may assume that all the isotopy classes Ai of spheres are essential. By induction hypothesis,

there are disjoint embedded spheres Si, 1 ≤ i < n, with [Si] = Ai. As these are essential by our assumption,

we can extend the collection Si to a maximal system of spheres. We let Sn be a sphere in normal form

with respect to this collection. By hypothesis, I(Sn, Si) = 0 for 1 ≤ i ≤ n. By the proof of Lemma 4.3.1,

it follows that Sn is disjoint from Si. Thus, Si, 1 ≤ i ≤ n, is a collection of disjoint embedded spheres with

Ai = [Si].

Remark 4.3.4. The above theorem shows that the sphere complex associated to M is a full complex in the

sense that if V1, V2, ...., Vk are the vertices of the sphere complex and if there is an edge between every pair

Vi, Vj of vertices, where 1 ≤ i, j ≤ k, then these vertices bound a simplex in the sphere complex.

The geometric intersection number of curves on a surface has been used to give constructions like the

space of measured laminations whose projectivization is the boundary of Teichmüller space, [35], as well as

to study geometric properties, including hyperbolicity of the curve complex in [5], [36]. One may hope that

the geometric intersection number of embedded spheres in M might be useful to give such constructions

in case sphere complex and Outer space.



5. EMBEDDED SPHERES, NORMAL FORM AND PARTITIONS OF ENDS

In this chapter, we study embedded spheres in M = ]kS2 × S1 and M̃ , the universal cover of M . In the

Section 5.1, we see how a partition A of the set of ends of M̃ corresponds to an embedded sphere in M̃

which is in normal form in the sense of Hatcher, by specifying the data determining the partition A and

the normal sphere. Given a properly embedded path c : R → M̃ and a homology class A ∈ H2(M̃), we

have an intersection number c ·A. Further, this depends only on the ends c± of the path c. In the Section

5.2, we prove that the class A ∈ H2(M̃) can be represented by an embedded sphere in M̃ if and only if, for

each proper map c : R→ M̃ , c ·A ∈ {0, 1,−1}. We also constructively prove that the class A ∈ π2(M) can

be represented by an embedded sphere in M if and only if A can be represented by an embedded sphere

in M̃ and for all deck transformations g ∈ π1(M), A and gA do not cross.

5.1 Partition of ends and normal forms

This section is devoted to associating to a partition A = (E+(A), E−(A)) of the space E(M̃) of ends of

M̃ into open sets, an embedded sphere S in M̃ which is in normal form in the sense of Hatcher, so that

E±(S) = E±(A). Along the way, we see what data determines a sphere in normal form in M̃ and the

relation between this data, partitions of ends and crossings. Specifically, we prove the following:

Theorem 5.1.1. Given a partition A = (E+(A), E−(A)) of the set E(M̃) of ends of M̃ into two open

sets, there is a normal sphere S in M̃ so that A is the partition given by the ends of the components of

M̃ − S.

In this case, we say S represents A. We recall the notion of crossing of two such partitions A and B.

Definition 5.1.2. We say that A and B cross if each of the four sets Eε(A) ∩ Eη(B) is non-empty, for ε

and η obtained by choosing signs ε and η in {+,−}.

Suppose A and B do not cross, then for some choice of sign, Eε(A) ⊃ Eη(B). It follows that E ε̄(A) ⊂
Eη̄(B), where ε̄ and η̄ denote the opposite signs. Further, if A 6= B, then the inequalities are strict.

Definition 5.1.3. We say that B is on the positive side of A if E+(A) ⊃ Eη(B) for some sign η. Otherwise,

we say that B is on the negative side of A. In general, we say that B is on the ε-side of A, for the appropriate

sign ε.
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Note also that if A and B do not cross, then either E+(A) ⊂ Eη(B) for some sign η or E−(A) ⊂ Eη(B)

for some sign η. Further, these are exclusive unless A = B.

We shall need the following elementary observation.

Lemma 5.1.4. If B is on the ε-side of A and C is on the ε̄-side, then B and C do not cross.

Proof. For appropriate signs η and ξ, Eη(B) ⊂ Eε(A) and Eξ(C) ⊂ E ε̄(A). Hence, Eη(B) ∩ Eξ(C) = φ,

which shows that B and C do not cross.

If B is on the ε-side of A and C is on the ε̄-side, then we say that A is between B and C.

Given a sphere S in M̃ , we have a natural partition of ends of M̃ associated to it. So, we can talk

about crossing of a partition A of E(M̃) and sphere S. We now turn to the construction of the normal

sphere in M̃ representing A.

We recall the notion of normal sphere systems from [17].

Let Σ = ∪jΣj be a maximal system of 2-sphere in M . We recall that splitting M along Σ, then

produces a finite collection of 3-punctured 3-spheres Pk. Here, a 3-punctured 3-sphere is the complement

of the interiors of three disjointly embedded 3-balls in a 3-sphere.

Definition 5.1.5. A system of 2-spheres S = ∪iSi in M is said to be in normal form with respect to Σ if

each Si either coincides with a sphere Σj or meets Σ transversely in a non-empty finite collection of circles

splitting Si into components called pieces, such that the following two conditions hold in each Pk:

1. Each piece in Pk meets each component of ∂Pk in at most one circle.

2. No piece in Pk is a disk which is isotopic, fixing its boundary, to a disk in ∂Pk.

Similarly, we can define sphere systems in normal form with respect to the pre-image Σ̃ of Σ in M̃ .

We call each sphere Σi as a standard sphere in M and Σ̃i as standard sphere in M̃ .

Given a sphere S in normal form with respect to Σ in M and a lift S̃ of S to M̃ , we associate a tree

T (S̃) corresponding to the decomposition of S̃ into pieces. We consider the dual tree T (S̃) to S̃ ∩ Σ̃ in S̃,

having a vertex for each component of S̃ \ Σ̃ and an edge for each circle of S̃ ∩ Σ̃.

In [17], it is shown that T (S̃) is a tree. Moreover, the inclusion S̃ ↪→ M̃ induces a natural inclusion

map T (S̃) ↪→ T . So, we can view T (S̃) as a subtree of T . The bivalent vertices of T correspond to spheres

components in Σ̃, i.e., lifts of the spheres Σj and their translates. This shows that each P̃k contains at the

most one piece of S̃. Similarly, one can easily see that if S′ is a normal sphere in M̃ , then each P̃k contains

at the most on piece of S′. If S is a standard sphere (or can be isotoped to standard sphere), then the

associated tree T (S̃) is single vertex in T corresponding to that standard vertex.

Our construction is motivated by the following lemma from [12].

Lemma 5.1.6. Let S be a normal sphere in M̃ and let Σ̃i be a standard sphere.

• The spheres S and Σ̃i intersect if and only if they cross.
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• If S and Σ̃i intersect, they intersect transversally in a circle S1.

Thus, if A is represented by a normal sphere S in M̃ , we can determine the intersection of S with

each standard sphere in M̃ , in terms of crossings. The standard spheres in M̃ correspond to the bivalent

vertices of the tree T . We call them as “standard vertices”. We can talk about the crossing of A with

the classes of standard spheres in M̃ . Now, we associate a subgraph τ of T to A as follows: If A crosses

standard sphere Σ̃i, then τ contains the bivalent vertex vi corresponding to Σ̃i and the edges ei
1 and ei

2

containing that vertex vi. The other end vertex vi
j of each edge ei

j , j = 1, 2 is a trivalent vertex in T which

corresponds to a component of M̃ − Σ̃. Each vi
j may be a bivalent or univalent or a trivalent vertex in τ . If

A does not cross some standard sphere in M̃ , then τ does not contain the standard vertex corresponding

this standard sphere and hence, it does not contain the edges containing this standard vertex. Note that

any edge e in T has a unique end vertex which is a standard bivalent vertex in T .

Lemma 5.1.7. Suppose A = (E+, E−) is a partition of E(M̃) into two open sets such that E+ 6= φ 6= E−.

Suppose no standard sphere crosses A. Then, there exists a standard sphere Σ0 such that E± = E±(Σ0).

Proof. By hypothesis, if v is a standard bivalent vertex of T , the standard sphere Σ(v) corresponding to v

does not cross A. Hence, after choosing orientations appropriately, either E+(Σ(v)) ⊂ E+ or E−(Σ(v)) ⊂
E−. If Σ(v) = Σ0 satisfies both the conditions, then E± = E±(Σ0).

Suppose no Σ(v) satisfies both the above conditions, we get a partition of bivalent vertices of T as

V + = {v : E+(Σ(v)) ⊂ E+}

and

V − = {v : E−(Σ(v)) ⊂ E−}.

Let X± is the union of all the edges e in T such that the bivalent vertex of e lies in V ±. Then X±

are closed and T = X+ ∪ X−. Hence, X+ ∩ X− 6= φ. By construction, X+ ∩ X− consists of trivalent

vertices of T . Let w ∈ X+∩X− and let v1, v2 and v3 be bivalent vertices adjacent to w. Note that at least

one vi ∈ X+ and at least one vj ∈ X−. Without loss of generality, suppose v1, v2 ∈ X+ and v3 ∈ X−.

Let N(w) denote the set of all the points in T distance at most 1 from w. Then, T − N(w) has three

components V1, V2 and V3 whose closures contain the vertices v1, v2 and v3, respectively. It is easy to see

that E(V1) ⊂ E+, E(V2) ⊂ E+ and E(V3) ⊂ E−. It follows that E+(Σ(v3)) = E+(Σ(v1)) ∪ E+(Σ(v2)).

This implies E+(Σ(v3)) ⊂ E+. As v3 ∈ X−, E−(Σ(v3)) ⊂ E−. But then, v3 ∈ V + ∩ V −. This is

a contradiction as V + and V − are disjoint. Hence, there must exist a standard sphere Σ0 such that

E± = E±(Σ0).

Thus, if A does not cross any standard sphere, the tree τ associated to A is a standard vertex corre-

sponding to the standard sphere representing A.

A normal sphere S in M̃ has connected intersection with each set P̃k. The set S ∩ P̃k (which we call a

piece) is a disc D, an annulus (which we call a tube) A or a thrice punctured 2-sphere Y (which we call a
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Y -piece or pant piece) according as the number of edges in τ(S) adjoining v corresponding to P̃k is 1, 2 or

3. We first make some observations about these cases.

Firstly, suppose v is a vertex of τ adjacent to a single edge e0 ∈ τ , i.e., a terminal vertex of τ . Let v0 ∈ τ

be the other end vertex of e0 and Σ0 be the standard sphere in M̃ corresponding to v0. Then, A crosses

Σ0. Let the other edges adjacent to v in T be e1 and e2 with other end vertices v1 and v2, respectively.

Consider the standard spheres Σ̃i = Σ̃(vi) corresponding to vertices vi, with orientations chosen so that

for i = 1, 2, the set E+(Σ̃i) is the set of ends of the component of M̃ − Σ̃i that does not contain Σ̃0. We

can orient Σ̃0 so that E+(Σ̃0) = E+(Σ̃1) ∪ E+(Σ̃2).

Lemma 5.1.8. For some sign ε, Eε(A) ⊃ E+(Σ̃1) and E ε̄(A) ⊃ E+(Σ̃2).

Proof. First note that we cannot have E+(Σ̃i) ⊃ Eη(A), for i = 1, 2, as this would imply that E+(Σ̃0) ⊃
Eη(A), contradicting the hypothesis that A crosses [Σ̃0]. Hence, as A does not cross the spheres Σ̃i, for

appropriate signs εi, Eεi(A) ⊃ E+(Σ̃i) for i = 1, 2. Finally, if ε1 = ε2 = ε, then Eε(A) ⊃ E+(Σ̃0) as

E+(Σ̃0) = E+(Σ̃1) ∪ E+(Σ̃2), contradicting the hypothesis that A crosses Σ̃0.

Thus, one of the spheres Σ̃1 and Σ̃2 is on the positive side of A and the other on the negative side. In

the case of a vertex v of valence 2 of τ , either it is a bivalent vertex (standard vertex) of T or there is an

edge ev of T adjacent to v which is not in τ . The standard sphere Σ̃(ev) corresponding to the other end

vertex of the edge ev is either on the positive side of A or on the negative side.

We shall see that τ is a tree and the partition A is determined by τ together with data of the above

form at terminal and non-standard bivalent vertices of τ . The standard bivalent vertices of τ are standard

(bivalent) vertices of T . We begin by showing that τ is a tree. As this is a subgraph of a tree T , it suffices

to show that τ is connected.

Lemma 5.1.9. The subgraph τ ⊂ T is connected, hence a tree.

Proof. Suppose τ is not connected. As τ is a subgraph of T , there is a standard vertex v /∈ τ such that

both components X1 and X2 of T − v intersect τ . Let τi = τ ∩Xi, for i = 1, 2. Let Σ̃0 = Σ̃(v).

As v /∈ τ , A does not cross Σ̃. Hence, we can orient Σ̃0 so that for some sign ε, E+(Σ̃0) ⊂ Eε(A).

Without loss of generality, E+(Σ̃0) is the set of ends of X1.

Let τ ′ be the convex hull of the vertex v and τ1. As τ is a finite graph, τ ′ is a finite tree. Let w be

a terminal vertex of τ ′ distinct from v. Then, w is a vertex of τ by Lemma 5.1.8, there is an adjacent

edge e′ /∈ τ with its other end vertex v′ such that E+(Σ̃(v′)) ⊂ E ε̄(A), with the orientation chosen so that

E+(Σ̃(v′)) is the set of ends of the component of M̃ − Σ̃(v′) that does not intersect τ . It follows that

E+(Σ̃(v′)) ⊂ E+(Σ̃0), and hence, E+(Σ̃0) ∩ E ε̄(A) 6= φ, a contradiction.

We next see that τ is a finite tree.

Lemma 5.1.10. The tree τ is compact, hence finite.
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Proof. If τ is not compact, then some end P ∈ E(M̃) = E(T ) is an end of τ . Without loss of generality

P ∈ E+(A). As E+(A) is open in the space of ends of T , there is a finite connected tree κ ⊂ T and a

component V of T − κ so that P ∈ E(V ) ⊂ E+(A). We shall show that no edge of V is contained in τ ,

contradicting the assumption that P is an end of τ .

Let e be an edge of T contained in V = T − κ. Then, as κ is connected, some component W of T − e

is disjoint from κ, and hence contained in V . Suppose v is the end vertex of e such that v is a standard

bivalent vertex in T . Let Σ(v) be the standard sphere corresponding to v, then it follows that for some

sign ε, Eε(Σ(v)) ⊂ E(V ) ⊂ E+(A), and hence, Σ(v) does not cross A. This implies v is not in τ . It follows

that e is not in τ . Thus, no edge of V is in τ , as required.

Thus, we have a finite tree τ associated to the partition A. Note that the terminal vertices of τ are

trivalent vertices in T . We shall next show that the partition A is determined by the tree together with

additional data for vertices adjoining the tree.

Let N(τ) be the subgraph of T consisting of points with distance at most 1 from τ . Then, N(τ) is a

tree, which is the union of τ with the following two kinds of edges:

1. For each terminal vertex v of τ , we have a pair of edges e1(v) /∈ τ and e2(v) /∈ τ with v as an

end-vertex. Let v1 and v2 be the other end vertices of e1 and e2, respectively.

2. For each non-standard bivalent vertex w of τ , we have an edge e(w) /∈ τ with w as an end-vertex.

Let w1 be its other end vertex.

By Lemma 5.1.8, for a terminal vertex v, the sphere corresponding to one of v1 and v2 is on the positive

side of τ (positive side of A). The vertices v1 and v2 are end vertices of e1 and e2 respectively. So, we can

assign positive or negative signs to these edges accordingly. We denote this by e+(v) and denote the other

edge (which is on the negative side) by e−(v). We denote the standard spheres corresponding to v1 and

v2 by Σ̃(v1) = Σ̃(e1) and Σ̃(v2) = Σ̃(e2), respectively. For a non-standard bivalent vertex w of τ , we can

associate a sign ε(w) so that Σ̃(w1) = Σ̃(e(w)) is on the ε(w)-side of A.

We show that the tree τ together with the additional data determines a partition of the ends, which

coincides with the given partition.

Lemma 5.1.11. The partition A is determined by τ together with the functions e+(v) and ε(w), where v′s

is univalent vertices of τ and w′s is non-standard bivalent vertices of τ .

Proof. We show that the partition of the ends of M̃ into E±(A) is determined by the given data. The

spheres Σ̃(e±(v)) for terminal vertices of τ together with Σ̃(e(w)) for non-standard bivalent vertices of τ

separate M̃ into a compact component corresponding to τ and one non-compact component for each such

sphere Σ̃. We can orient the spheres Σ̃ so that A is on the negative side of Σ̃. Then, the set of ends of the

non-compact component is E+(Σ̃). Hence, we have a partition

E(M̃) = ∪v(E+(Σ̃(e+(v))) ∪ E+(Σ̃(e−(v)))) ∪w E+(Σ̃(e(w)))
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By construction, E+(Σ̃(e+(v))) ⊂ E+(A) and E+(Σ̃(e−(v))) ∩ E+(A) = φ, for each terminal vertex v

of τ . For each non-standard bivalent vertex w of τ , E+(Σ̃(e(w))) ⊂ E+(A) if ε(w) = + and E−(Σ̃(e(w)))∩
E+(A) = φ otherwise. Hence,

E(A) = ∪vE+(Σ̃(e+(v))) ∪{w:ε(w)=+} E+(Σ̃(e(w)))

This is determined by the given data. Hence, the partition A is determined by the given data.

It is now easy to construct a normal sphere S in M̃ representing the same the partition A. Note that

a normal sphere S represents the partition A if and only if E±(S) = E±(A).

We can associate to an oriented normal sphere S data very similar to that associated to the partition

A. Firstly, the sphere S has a support which is a subtree τ . A terminal vertex v of τ corresponds to a disc

pieces in a thrice-punctured 3-sphere P (v), which separates the two other boundary components of P (v).

Exactly one of these lies on the positive side. Thus, as the boundary components correspond to vertices

of T adjacent to v, we get a pair of edges e±(v). A non-standard bivalent vertex w of τ corresponds to an

annulus piece (cylinder piece) in P (w). The boundary component of P (w) not intersecting the annulus is

on either the positive or the negative side of S, giving a sign ε(w). A trivalent vertex w′ corresponds to a

pant piece in the 3-punctured 3-sphere P (w′).

Lemma 5.1.12. Given a finite tree τ , associated data e+(v) and ε(w), and a oriented circle on the sphere

Σ̃(V ′) for each non-terminal vertex v′ of τ , there is an oriented normal sphere S with corresponding data τ ,

e+ and ε and whose restriction to each thrice-punctured 3-sphere has boundary the corresponding oriented

circles. Further, the partition corresponding to S is the one corresponding to the data τ , e+ and ε.

Proof. To each standard bivalent vertex of the tree τ , we associate a circle in the corresponding standard

sphere which we co-orient according to the given partition. For each trivalent vertex v of τ , we associate

a pants piece with boundary the circles in the standard sphere that have been constructed.

Next, if v is a non-standard bivalent vertex of τ , the two adjacent standard vertices correspond to

circles on two standard spheres. We join them by an annulus so that the other standard sphere bounding

the 3-holed sphere corresponding to v is on the side of the annulus given by ε(v). Similarly, for a terminal

vertex of τ we consider a disc so that the standard spheres corresponding to adjacent vertices e+(v) of T

that is not in τ is on the positive side of the disc and the one corresponding to the other adjacent vertex

is on the negative side.

5.2 Embedding classes, normal spheres and graphs of trees

In this section, we give proofs of theorems of [11] using normal forms.

We give a constructive proof of the following result from [11] giving a criterion for a class A ∈ π2(M) =

H2(M̃) to be representable by an embedded sphere in M .
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As H1(M̃) = 0, a homology class A is determined by the intersection numbers c · A, where c : R→ M̃

is a proper path. The first result of [11] characterizes which classes in H2(M̃) can be represented by

embedded spheres in M̃ .

Theorem 5.2.1. The class A ∈ H2(M̃) can be represented by an embedded sphere in M̃ if and only if, for

each proper map c : R→ M̃ , c ·A ∈ {0, 1,−1}.

It is easy to see (for proofs see [11]) that if S is an embedded sphere in M̃ , then S partitions M̃ into

two components with closure of each component non- compact. Hence, the ends of M̃ are partitioned into

components E±(S), so that if c : R→ M̃ is a proper path, then

• If c− ∈ E−(S) and c+ ∈ E+(S), then c · S = 1

• If c− ∈ E+(S) and c+ ∈ E−(S), then c · S = −1

• If c− ∈ E−(S) and c+ ∈ E−(S), then c · S = 0

• If c− ∈ E+(S) and c+ ∈ E+(S), then c · S = 0

In particular, c · S ∈ {0, 1,−1}.
Conversely, let A be a homology class satisfying the hypothesis of the theorem. We shall construct a

normal sphere in M̃ that represents A.

The first step is the following Lemma whose proof is in [11].

Lemma 5.2.2. There is a partition E±(A) of the set E(M̃) of ends M̃ so that

• If c− ∈ E−(A) and c+ ∈ E+(A), then c ·A = 1

• If c− ∈ E+(A) and c+ ∈ E−(A), then c ·A = −1

• If c− ∈ E−(A) and c+ ∈ E−(A), then c ·A = 0

• If c− ∈ E+(A) and c+ ∈ E+(A), then c ·A = 0

Thus, we have a partition of the ends just as in the case of embedded spheres. By Theorem 5.1.1, this

corresponds to the partition given by a normal sphere S in M̃ . As homology classes are determined by

their associated partitions, the sphere S represents the homology class A ∈ H2(M̃) and the result follows.

We now turn to the question of when a class in π2(M) can be represented by an embedded sphere in

M .

Theorem 5.2.3. The class A ∈ π2(M) can be represented by an embedded sphere in M if and only if A

can be represented by an embedded sphere in M̃ and for all deck transformations g ∈ π1(M), A and gA do

not cross.
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If A can be represented by an embedded sphere S in M , then one can easily see that its lift S̃ and all

of its translates in M̃ are disjoint. Therefore, A and gA can be represented by disjoint embedded spheres

in M̃ , for all g ∈ π1(M), which implies A and gA do not cross, for all deck transformations g ∈ π1(M).

Now, we give the constructive proof of the converse. This is based on graph of trees associated to normal

spheres.

We recall from [8] that, a graph T consists of two sets E(T) and V (T), called the edges and vertices

of T, a mapping from E(T) to E(T), with e 7→ ē, for which e 6= ē and ¯̄e = e, and a mapping from E(T)

to V (T) × V (T), e 7→ (o(e), t(e)) such that ē 7→ (t(e), o(e)) for every e ∈ E(T). An edge path in T is a

sequence e1, e2, . . . , en of edges, such that t(ej) = o(ei+1), ei 6= ei+1, for i = 1, 2, ..., n − 1. If e, f ∈ E(T),

we write e ≤ f if there is an edge path e1, e2, . . . , en for which e1 = e and en = f . If T is a tree, then ≤
determines a partial ordering on on E(T). In addition the following conditions are satisfied:

1. if e ≤ f , then f̄ ≤ ē;

2. if e ≤ f , there are only finitely many g for which e ≤ g ≤ f ;

3. for any pair e, f , at least one of e ≤ f , e ≤ f̄ , ē ≤ f , ē ≤ f̄ holds;

4. for no pair e, f is e ≤ f and e ≤ f̄ ;

5. for no pair e, f is e ≤ f and ē ≤ f .

Theorem 5.2.4 (Dunwoody). Let (E,≤) be a partially ordered set with a mapping E → E, e → ē, for

which e = ¯̄e, and suppose above conditions (1)−(5)are satisfied. Then, there exists a tree T with E = E(T),

where E(T) is the set of edges of T and the order relation on E is precisely that determined by edge paths

in T as above.

Our first step is to understand data specifying a normal sphere in M (up to homotopy).

Suppose we are given an oriented (hence, co-oriented) normal sphere S in M . Let S̃ be a lift of S in M̃ .

Then, S induces an orientation (hence, co-orientation) on S̃ and on each of its translates gS̃, g ∈ π1(M).

The orientation on S̃ (respectively, on gS̃) determines the positive and negative complementary components

of S̃ (respectively, of gS̃) in M̃ . The sets E+(S̃) and E−(S̃) (respectively, E+(gS̃) and E−(gS̃)) correspond

to the sets of ends of positive and negative complementary components of S̃ (respectively, of gS̃) in M̃

respectively. As S is in normal form with respect to the maximal system of 2-spheres Σ = ∪iΣi, S̃ and

its translates gS̃ are in normal form with respect to the inverse image Σ̃ of Σ. The sphere S̃ and all of its

translates in M̃ are disjoint from each other. If we consider the homology classes of any two translates,

say g1S̃ and g2S̃ of S̃, then they do not cross. So, the class [g1S̃] is either on the positive side or on the

negative side of [g2S̃]. Then accordingly, the sphere g1S̃ is either in the positive or negative complementary

component of g2S̃ in M̃ . The positive and negative complementary components of a translate gS̃ of S̃ in M̃

determines positive and negative complementary components of a piece inside a P̃k. If both the translates

g1S̃ and g2S̃ intersect some P̃k, the piece of g1S̃ lies either on the positive side or negative side of the piece
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of g2S̃ in P̃k, according to the sphere g1S̃ lies on the positive or negative side of g2S̃. Similarly, orientation

on the translate gS̃ determine the positive and negative side of the circle of intersection of gS̃ ∩ Σ̃i in

Σ̃i, where Σ̃i is the boundary sphere of P̃k. Thus, orientation on S, (hence, co-orientation) determines

co-orientation of each circle of intersection of S ∩Σi, for each i. The same is true for each piece of S inside

Pk.

We associate to S a graph of trees structure as follows: The standard spheres Σi decompose M into

components Pk. We have an associated graph Γ with vertices Pk and edges Σi. The graph of trees we

consider is analogous to a graph of groups, with trees associated to edges and vertices and appropriate

inclusion maps of the trees.

First, let Σi be a standard sphere. Then, S ∩ Σi is a collection of disjoint circles. Consider the graph

t(Σi) whose edges e correspond to the circles of intersection and vertices v complementary components,

with v a vertex of e if the boundary of the component corresponding to v contains the circle corresponding

to e. The co-orientation of S induces co-orientations for each of the circles of intersection, hence for the

edges of the graph t(Σi).

Lemma 5.2.5. The graph t(Σi) is a finite tree. Further, given a finite tree t, there is a collection of circles

in Σi with corresponding tree t.

Proof. Firstly, we shall prove that the graph t(Σi) is a tree. We prove this by induction on number of

circles of intersection of S ∩ Σi in Σi. If there is exactly one circle c1 of intersection, then as it separates

the 2-sphere Σi into two components with closure of each component is a disc with boundary c1. Then,

the corresponding graph contains exactly two vertices and an edge joining them which is clearly a tree.

Now, suppose the result is true for any n circles of intersections of S ∩ Σi in Σi. A tree with n edges

contains n + 1 vertices. So, these n circles of intersections separates Σi into n + 1 components. Note that

the terminal vertices of the tree t(Σi) corresponds to disc components of the complements of these circles

in Σi.

Now, suppose that there are n + 1 circles of intersections in Σi, say c1, c2, . . . , cn, cn+1. For circles

c2, c3, . . . , cn, cn+1, we have the associated graph t′(Σi) is a tree with edges e2, e3, . . . , en, en+1 and with

vertices v2, v3, . . . , vn+1, vn+2. These vertices corresponds to the components of Σ\(c2∪c3∪· · ·∪cn∪cn+1).

We denote these components also by v2, v3, . . . , vn+1, vn+2 . Now, c1 is disjoint from all c2, c3, . . . , cn, cn+1.

So, it lies completely in exactly one component, say vk. It separates Σi in two components such that the

closure of each component is a disc with c1 as boundary. Suppose these components are D1 and D2. The

circle c1 separates vk into components v′k = vk∩D1 and v′′k = vk∩D2. So now, Σi\((c1∪c2∪· · ·∪cn∪cn+1)

has components v2, v3, . . . , vk−1, v
′
k, v′′k , . . . , vn+1, vn+2. So, the associated graph t(Σi) can be obtained from

t′(Σi) by replacing the vertex vk by an edge e joining v′k and v′′k . Now, each edge in incidenting on vk in

t′(Σi) either incident at v′k or at v′′k . The tree t′(Σi) can be obtained from t(Σi) by collapsing the edge e to

vertex vk. Then, one can easily see that t(Σi) is tree as, if it contains any loop or circuit, then collapsing

the edge e to a vertex vk gives a circuit in t′(Σi) which is impossible. Hence, the proof.

Now, we shall show that given a finite tree t, there is a collection of circles in Σi with the corresponding
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tree t. We again prove this by induction on number of edges in the tree t. Suppose t contains exactly one

edge e with end vertices v1 and v2. If we consider any circle c on Σi, then it separates Σi in two boundary

components such that closure of each component is a disc with boundary c. Then, one can easily see the

corresponding graph is t. Suppose the result is true for any tree t containing n edges. Now, consider a tree

t with n + 1 edges. Let v be a terminal vertex of t. Let e be the edge in t containing v as its end vertex.

Let the other end vertex be v′. By deleting the edge e from t, we get a tree t′ with n edges. By induction

hypothesis, we get disjointly embedded circles c1, c2, . . . , cn in Σi with corresponding graph t′. Now, if we

consider a circle c1 which completely lies in the interior of the component v′ corresponding to the vertex v′

of t′ such that c1 bounds a disc in v′. Then, one can easily see that the associated graph is t in this case.

Thus, for any tree t, we get a collection of disjoint circles in Σi with corresponding tree t.

If the edges of t are oriented, the circles can be co-oriented accordingly.

Let Σ̃i be a lift of Σi in M̃ . We can associate the same oriented tree t(Σi) to the sphere Σ̃i, where

each edge corresponds to the circle of intersection of Σ̃i with a translate gS̃ of S̃. Let g1, . . . , gn, where

gi ∈ π1(M), for 1 ≤ i ≤ n, such that giS̃ intersects Σ̃i. Let Bi = [giS̃], for 1 ≤ i ≤ n, be the homology

class in H2(M̃). Note that each Bi crosses the class [Σ̃i]. As any pair of translates Bi and Bj of B = [S̃] do

not cross, Bj is either on the positive or the negative side of Bi. Similarly, if Bi, Bj and Bk are translates

of B, we can determine whether Bi is between Bj and Bk.

Given a tree τ , we have a notion of when an edge e1 of τ is between two other edges e2 and e3 of τ . If

τ is oriented, then we can speak of edges being on the positive side of τ .

Using Theorem 5.2.4, the following lemma is an easy consequence.

Lemma 5.2.6. Let B1, . . . , Bn be translates of B. Then, there is an associated oriented tree with edges ei

corresponding to classes Bi so that ej is on the positive side of ei if and only if E+(Bj) ⊂ E+(Bi)

Proof. We choose set E as {B1, . . . , Bn, B̄1, . . . B̄n}, where if Bi is represented by oriented sphere giS̃, then

B̄i is a homology class of gS̃, sphere gS̃ with opposite orientation. We define Bi ≤ Bj if E+(Bj) ⊂ E+(Bi).

We can easily check “≤” turns out be a partial order relation satisfying the hypothesis of theorem 5.2.4.

Hence, the result.

Note that the oriented tree in the above lemma 5.2.6 associated to B1, . . . , Bn is the tree t(Σi).

We can similarly associate an oriented tree t(Pk) to a component Pk (and to a lift P̃k), with edges as

the pieces of S in Pk and vertices as their complementary components. If Σi is a boundary sphere of Pk,

there is a natural simplicial inclusion map from t(Σi) to t(Pk) which respects orientations. Each edge in

the tree t(Pk) associated to P̃k corresponds to a piece of a translate of S̃. There is at the most one piece

of any translate of S̃ in P̃k. If we consider the homology classes of the translates of S̃ intersecting at least

one boundary sphere of P̃k, then the oriented tree in the lemma 5.2.6 associated to these homology classes

is the oriented tree t(Pk). Given an oriented edge e, it has an initial vertex and a ending vertex. We

can make the convention that initial and ending vertices of the edge e correspond to negative and positive

complementary components of the pieces of S corresponding to e inside Pk, respectively.
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Each vertex V of the graph Γ is trivalent. We associate oriented trees to the vertices and edges of

Γ by taking the oriented trees associated to the corresponding component Pk’s and standard spheres

Σi respectively. If E1, E2 and E3 are three adjoining edges to V , we have simplicial inclusion maps

ij : t(Ej) → t(V ) respecting the orientation. It is easy to see that the union of the images ij(t(Ej)) is all of

t(V ). If e is an edge in t(V ), then e corresponds to a pants piece in Pk corresponding to V if and only if it

has non-empty inverse image under all three inclusion maps ij ’s. If e has non-empty inverse image under

exactly two inclusion maps, say ij1 and ij2 , then e corresponds to a tube piece in Pk joining the standard

spheres corresponding to the t(Ej1) and t(Ej2). Conversely, if e corresponds to a tube piece in Pk, then

e has non-empty inverse image under exactly two inclusion maps ij ’s. If e has non-empty inverse image

under exactly one inclusion map ij , then e corresponds to a disc piece with boundary on the standard

sphere corresponding to t(Ej) and, conversely.

To the edges in t(V ) = t(Pk), we associate the following data: If an edge e in t(V ) corresponds to a

tube piece in Pk joining the boundary spheres, say Σj1 and Σj2 . Then, the third boundary sphere Σj3 lies

either in positive or in negative complementary component of the tube in Pk. If the sphere Σj3 lies in the

positive component, then we assign this sphere to the ending vertex of the edge e, otherwise to the initial

vertex. If an edge e in t(V ) corresponds to a disc piece in Pk with boundary circle on Σj1 , then it separates

the other two boundary spheres Σj2 and Σj3 . The sphere which lies in the positive component, we assign

it to the ending vertex of e and the other boundary sphere to the initial vertex of e. If an edge corresponds

to a pants piece in Pk, then we do not associate any data to this edge. This is the graph of oriented trees

structure associated to S.

Our goal is to associate a graph of oriented trees to a class A satisfying the hypothesis of Theorem 5.2.3

and construct a corresponding normal sphere S. The class A can be represented by an embedded sphere in

M̃ , say S′. Fix an orientation of S′. Then, S′ determines the the set E+(A) and E−(A). The orientation

on S′ induces an orientation on each translate gS′ of S′. It will then determine the sets E+(gA) and

E−(gA) for each g ∈ π1(M).

Consider (Ã, Σ̃i), where Ã is a lift of A and Σ̃i is a lift of Σi such that Ã crosses Σ̃i. We define (Ã, Σ̃i)

is equivalent to (gÃ, gΣ̃i) for all g ∈ π1(M). Note that this is an equivalence relation. Given any lift Σ̃0
i

of Σi and an equivalence class [(Ã, Σ̃i)], there is a unique representative (Ã0, Σ̃i

0
) equivalent to (Ã, Σ̃i),

where Σ̃0
i = gΣ̃i and Ã0 = gÃ. We define the partial order ” ≤ ” as [(Ã, Σ̃i)] ≤ [(Ã′, Σ̃i)] if and only if

E+(Ã′) ⊂ E+(Ã). One can easily see that this is well defined.

Similarly, we can consider pairs (Ã, P̃k), where Ã is a lift of A and P̃k is a lift of Pk such that Ã crosses

at least one boundary sphere of P̃k. We define (Ã, P̃k) is equivalent to (gÃ, gP̃k) for all g ∈ π1(M). Note

that this is an equivalence relation. Given any lift P̃k

0
of Pk and an equivalence class [(Ã, P̃k)], there is

a unique representative (Ã0, P̃k

0
) equivalent to (Ã, P̃k), where P̃k

0
= gP̃k and Ã0 = gÃ. We define the

partial order ” ≤ ” as [(Ã, P̃k)] ≤ [(Ã′, P̃k)] if and only if E+(Ã′) ⊂ E+(Ã). One can easily see that this is

well defined.

Let Σi be a standard sphere and let Σ̃i be a lift to M̃ . Then, as A has compact support, at most
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finitely many translates of A cross Σ̃i. Denote these translates A1, . . . , An, Ā1, . . . , Ān. By Lemma 5.2.6,

we can associate an oriented tree t(Σi) to the collection {[(A1, Σ̃i)], . . . , [(An, Σ̃i)], [(Ā1, Σ̃i)], . . . , [(Ān, Σ̃i)]}
respecting the relation ”≤”. We associate this oriented tree to the edge in Γ corresponding to Σi. Next,

consider a component Pk and let P̃k be a lift to M̃ . We consider the translates of A that cross at least one

of the boundary spheres of P̃k. Suppose these translates are B1, . . . , Br, B̄1, . . . , B̄r. Once more, we can

associate an oriented tree t(Pk) to collection {[(B1, P̃k)], . . . , [(Br, P̃k)], [(B̄1, P̃k)], . . . , [(B̄r, P̃k)]} respecting

the the relation ”≤”. To each edge e of t(Pk) we associate the following data: Suppose that e corresponds

to a translate Bi of A and Bi does not cross some boundary sphere Σ̃i of P̃k. Then, the sphere Σ̃i is either

on the positive or negative side of Bi. If Σ̃i is on the positive side of Bi, we associate the sphere Σi (image

of Σ̃i) to the ending vertex of e, otherwise to initial vertex of e. We associate this oriented tree to the

vertex in Γ corresponding to Pk. If Bi crosses all the boundary spheres of Pk, then we do not associate

any data to the edge e.

Lemma 5.2.7. Let Ai, Aj and Ak be translates of A such that Ai ≤ Aj ≤ Ak. If Ai and Ak cross the

homology class of the boundary sphere Σ̃i of P̃k, so does Aj.

Proof. As Aj ≤ Ak , E+(Ak) ⊂ E+(Aj). As Ak crosses the homology class [Σ̃i] of the boundary sphere

Σ̃i, we have E±([Σi]) ∩ E+(Ak) 6= φ. This implies E±([Σi]) ∩ E+(Aj) 6= φ.

As Ai ≤ Aj , E+(Aj) ⊂ E+(Ai) and hence, E−(Ai) ⊂ E−(Aj). As Ai crosses the homology class [Σ̃i]

of the boundary sphere Σ̃i, we have E±([Σi]) ∩ E−(Ai) 6= φ. This implies E±([Σi]) ∩ E−(Aj) 6= φ.

Thus, all the four intersections E±([Σi]) ∩ E±(Aj) are non-empty. Hence, Aj crosses the homology

class of the boundary sphere Σ̃i of P̃k.

We shall define a map on vertices of t(Σi) to vertices of t(Pk), where Σi is a boundary sphere of Pk, as

follows: Let v be vertex in t(Σi), Consider an edge e with v as its ending vertex. This edge e corresponds

to an equivalence class [(Ai, Σ̃i)]. As Ai crosses Σ̃i, Ai crosses P̃k. So, the class [(Ai, P̃k)] corresponds to

an edge e′in t(Pk). We map v to the terminal vertex of e′. Suppose e′′ is another edge with v as a terminal

vertex. The edge ē′′ corresponds to a class [(Aj , Σ̃i)]. As the classes Ai and Aj cross Σi and the edges e

and e′′ are adjacent edges in t(Σi), by Lemma 5.2.7, the classes [(Ai, P̃k)] and [(Aj , P̃k)] correspond to the

adjacent edges e′ and e′′′ in t(Pk). Thus, the edges e′ and ē′′′ have the same terminal vertex. This shows

this map on vertices is well-defined. This map can be naturally extended on edges.

Thus, we have a natural simplicial inclusion maps from the trees associated to each boundary component

of Pk to the tree associated to Pk respecting the orientation and the image under inclusion of the tree

associated to a boundary sphere is a subtree of the tree associated to Pk. Thus, we have a graph of

oriented trees associated to A.

We are now in a position to construct the normal sphere in M representing A. By Lemma 5.2.5, we

have a collection of disjoint co-oriented circles in each standard sphere Σi corresponding to the edges in

t(Σj). We shall extend these to each component Pk using the following lemma. We use the inclusion maps

to regard the trees corresponding to the boundary spheres as subtrees of the trees corresponding to Pk.
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Lemma 5.2.8. Given an oriented tree t = t(Pk) associated to Pk and orientation preserving simplicial

inclusion maps ij of oriented trees t(Σj) associated to the boundary spheres Σj of Pk so that the union

of the images ij(t(Σj)) is all of t(Pk), there is a collection of co-oriented disjoint pieces in Pk whose

restriction to each boundary sphere Σj is the given collection of disjoint circles corresponding to edges in

t(Σj). Furthermore, using the data associated to each edge, we can choose each piece such that the boundary

sphere not intersecting that piece lies in any specified component of the complement of that piece.

Proof. We proceed by induction on the size of the tree t = t(Pk). Thus, if t′ is obtained from t(Pk) by

deleting a terminal vertex v and its adjoining edge e, there is a collection of co-oriented disjoint pieces in Pk

whose restriction to each boundary sphere is the given collection of disjoint circles except those associated

to e. Also, using the data associated to each edge, each piece is chosen such that the boundary sphere not

intersecting that piece lies in any specified component of the complement of that piece. We shall extend

this using one more piece corresponding to the edge e.

Let v′ be the vertex of e in t′. The edge e has non-empty inverse image under the inclusion maps ij

in one or two or all three oriented trees t(Σj) associated to the boundary spheres Σj of Pk. The same is

true for vertex the v. Then, e corresponds to a circle in each of those boundary components Σj of Pk for

which e has non-empty inverse image in t(Σj). Consider such boundary spheres Σj ’s of Pk. As v′ is a

vertex of the tree t(Σj), by the correspondence between circles and trees, the circle on Σj corresponding to

e is in the component corresponding to v′ in Σj and it bounds a disc corresponding to v in the component

corresponding to v′ in Σj . Note that t(Σj) is a subtree of t(Pk) and each component in Σj corresponding

to a vertex in t(Σj) is the intersection of the component of Pk corresponding to the same vertex with Σj .

So, the circles corresponding to e in Σj ’s and the discs corresponding to v in Σj ’s lie inside the component

of Pk corresponding to v′. Now, we can construct the piece as the neighborhood of a graph with terminal

vertices in the discs corresponding to the vertex v, inside the component corresponding to v′ in Pk. Further,

using the data associated to the vertex v or v′, we can construct the piece so that any boundary sphere Σi

not intersecting the piece lies inside the appropriate component of Pk − S.

Now, we shall show that the graph of trees associated to the class A ∈ π2(M) represents a normal

sphere S in M such that S represents the class A. Fix a lift Ã of A. We associate a subgraph τ of T to

Ã as follows: If Ã crosses standard sphere Σ̃i, then τ contains the bivalent vertex vi corresponding to Σ̃i

and the edges ei
1 and ei

2 containing that vertex vi. The other end vertex vi
j of each edge ei

j , j = 1, 2 is a

trivalent vertex in T which corresponds to a component of M̃ − Σ̃. Each vi
j may be a bivalent or univalent

or a trivalent vertex in τ . If Ã does not cross some standard sphere, then τ does not contain the standard

vertex corresponding this standard sphere. Hence, τ contains no edges containing this standard vertex.

By Lemmas 5.1.9, 5.1.10, τ is a finite tree. Consider a standard bivalent vertex of τ . It corresponds to a

standard sphere Σ̃i in M̃ . Consider the image Σi of Σ̃i. We associated a tree t(Σi) to Σi. As Ã crosses

Σ̃i, there is an edge e in t(Σi) which corresponds to [(Ã, Σ̃i)] and a circle in Σi. We consider lift of this

circle to Σ̃i (also to all the other translates of Σ̃i). The edge e is also in t(Pk) and it corresponds to the

class [(Ã, P̃k)], where Pk is a 3-punctured 3-sphere with Σi as a boundary sphere. If the vertex v ∈ τ



5. Embedded Spheres, normal form and Partitions of Ends 51

corresponding to P̃k of which Σ̃i is a boundary sphere, is a non-standard bivalent vertex of τ , then data

associated e in t(Pk) determines the value of the function ε on the vertex v. If v is terminal vertex of τ ,

then data associated to e determines the value of the function e+ on the vertex v. Thus, we have the triple

(τ, ε, e+) representing Ã in M̃ . We can construct pieces of a normal sphere in M̃ representing Ã as follows:

We have chosen a circle which correspond to the class [(Ã, Σ̃i)] on each Σ̃i as described above. We consider

a 3-punctured 3-sphere P̃k such that Ã crosses at least one boundary sphere of P̃k. Consider its image

Pk. Consider the images (in Pk) of the chosen circles in the boundary spheres of P̃k. For each boundary

sphere Σi of Pk, we have a circle and this circle corresponds to an edge ei in t(Σi). For each i, under the

inclusion map from t(Σi) to t(Pk), the edge ei gets mapped to the same edge e in t(Pk). Corresponding

to this edge e, there is a piece inside Pk with boundary circles of the piece coinciding with the images of

the chosen circles in the boundary spheres of P̃k, by Lemma 5.2.8. Consider the lift of this piece in P̃k

(and also to the translates of P̃k). Thus, we get a normal sphere S̃ in M̃ representing the class Ã. The

pieces of S̃ get mapped to the pieces given by the the graph Γ of trees associated to A. Similarly, we get

get normal sphere for each translate of Ã such that the normal sphere representing gÃ is a translate gS̃.

Now, any piece P given by Γ corresponds to an edge in t(V ) = t(Pk), for some k. This edge corresponds

to some class [(Ã′, P̃k)]. If gÃ′ = Ã, then the lift of this piece P to P̃k is a piece of the normal sphere gS̃

representing gÃ′. Therefore, there is a piece g−1P of S̃ which is a g−1 translate of P, is mapped to the

piece P. Thus, each piece in M given by Γ is the image of a piece of the normal sphere S̃. Hence, we get

a normal sphere in M representing the class A.



6. GEOSPHERE LAMINATIONS FOR FREE GROUPS

Geodesic laminations (and measured laminations) on surfaces have proved to be very fruitful in three-

manifold topology, Teichmüller theory and related areas. In this chapter, we construct analogously geo-

sphere laminations for free groups. They have the same relation to (disjoint unions of) embedded spheres

in the connected sum M = ]nS2 × S1 of n copies of S2 × S1 as geodesic laminations on surfaces have

to (disjoint unions of) simple closed curves on surfaces. The manifold M has fundamental group the free

group on n generators, and is a natural model for the study of free groups.

Laminations for groups (including free groups) have been constructed and studied in various contexts.

However, they are one-dimensional objects, corresponding to geodesics. We study here objects of codi-

mension one, which correspond to splittings. In the case of surfaces, dimension one and codimension one

coincide.

Our main result is a compactness theorem for the space of (non-trivial) geosphere laminations. We also

show that embedded spheres in M are geosphere laminations. Hence sequences of spheres, in particular

under iterations of an outer automorphism of the free group, have subsequences converging to geosphere

laminations. It is such limiting constructions that make geodesic laminations for surfaces a very useful

construction.

Our construction is based on the normal form for disjoint unions of spheres in M due to Hatcher. The

normal form is relative to a decomposition of M with respect to a maximal collection of spheres in M .

This is in many respects analogous to a normal form with respect to an ideal triangulation of a punctured

surface. In particular, isotopy for spheres in normal form implies normal isotopy, i.e., the normal form is

unique.

As in the case of normal curves on surfaces and normal surfaces in three-manifolds, we can associate

the number of pieces of each type to a collection of spheres in Hatcher’s normal form. However, these

numbers do not determine the (collection of) spheres up to isotopy. We instead proceed by considering

lifts of normal spheres to the universal cover M̃ of M .

In the universal cover M̃ , a normal sphere is determined by a finite subtree τ of a tree T associated to

M̃ together with some additional data. We construct geospheres in M̃ by dropping the finiteness condition.

We construct an appropriate topology on the space of geospheres and show that the space is locally compact

and totally disconnected.

The lift of a normal sphere in M to its universal cover satisfies an additional condition, namely it is

disjoint from all its translates. This can be reformulated in terms of the notion of crossing of spheres in M̃ ,
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following Scott-Swarup, which depends on the corresponding partitions of ends of M̃ . We show that there

is an appropriate notion of crossing for geospheres, which is defined in terms of the appropriate partition

of ends (into three sets in this case).

Our main technical result is that crossing is an open condition. We recall that this is the case for crossing

of geodesics in hyperbolic space, and that this plays a central role in the study of geodesic laminations.

The proof of compactness of the space of geospheres uses the result that crossing is open.

The construction based on normal forms is not intrinsic, as it depends on the maximal collection of

spheres with respect to which M is decomposed. However, we show that geospheres can be described in

terms of their associated partitions. This gives an intrinsic definition.

6.1 Geospheres

To construct geosphere laminations in M , we first need the analogue of (not necessarily closed) geodesics

in M . We first construct the analogue of geodesics in M̃ , which we call geospheres. We then consider

when two such geospheres cross, and deduce basic properties of crossing. This allows us to study the

appropriate notion of geospheres embedded in M . Our main technical lemma says that crossing is an open

condition. This allows us to construct limiting laminations and prove a compactness theorem for geosphere

laminations in M .

In Chapter 5, we have seen that a normal sphere in M̃ is determined by a triple (τ, ε, e+), with τ a

finite subtree of T with each univalent vertex of τ is a trivalent vertex of T or τ is a standard vertex, ε

an assignment of sign to each non-standard bivalent vertex of τ and e+ an assignment to each univalent

vertex v of τ an edge containing v and not contained in τ .

Geospheres are generalizations of such spheres where we drop the condition that τ is finite.

Definition 6.1.1. A geosphere σ in M̃ is a triple σ = (τ, ε, e+) with

• τ a subtree of T such that univalent (terminal) vertices of τ are trivalent vertices in T or τ is a

standard vertex of T .

• If B(τ) is the set of non-standard bivalent vertices of τ , ε is a function ε : B(τ) → {+,−}.

• If C(τ) the set of univalent vertices of τ , e+ : C(τ) → EDGE(T ) is a function to the edges of T so

that for v ∈ C(τ), e+(v) ∈ EDGE(T ) is an edge containing v and not contained in τ .

Let GS(M̃) be the set of such geospheres in M̃ . To construct a topology on GS(M̃), we consider

restrictions to compact subtrees κ ⊂ T such that each of its univalent vertex is a trivalent vertex in T . We

call a tree containing no edge as a trivial tree. We define for a non-trivial tree κ, N(κ) is the set of points

of distance at most 1 from κ. For a trivial tree κ, we define N(κ) = κ.

Henceforth, we consider only subtrees κ of T such that all univalent vertices of κ are trivalent in T or

κ is a trivial tree.
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Definition 6.1.2. If σ = (τ, ε, e+) is a geosphere, then the restriction resκ(σ) of σ to κ is the triple

σ|κ = (τ ∩N(κ), ε|B(τ)∩κ, e+|C(τ)∩κ).

Note that the valence of a vertex v of τ such that v ∈ κ is determined by τ ∩ N(κ). Further, for

univalent vertices v of τ ∩ κ, the edges e+(v) (and e−(v)) are in N(τ). Thus, we can view res|κ as a map

from GS(M̃) to the set GS(κ) defined as below:

Definition 6.1.3. For a subtree κ ⊂ T , we define GS(κ) to be the set of triples σ = (τ, ε, e+) with

• τ a subtree of N(κ) or the empty graph.

• If B(τ) is the set of vertices τ ∩ κ which are non-standard bivalent vertices in τ , ε is a function

ε : B(τ) → {+,−}.

• If C(τ) is the set of vertices of τ ∩ κ which are not standard vertices in T and univalent in τ ,

e+ : C(τ) → EDGE(T ) is a map to the edges of T so that for v ∈ C(τ), e+(v) is an edge containing

v and not contained in τ .

Note that if κ is a finite subtree of T , then the set GS(κ) is finite. We say that an element σ = (τ, ε, e+)

of GS(κ) is non-trivial if τ is non-empty.

Suppose κ′ is a subtree of T such that κ′ ⊃ κ, then we can similarly define a restriction map resκ,κ′ :

GS(κ′) → GS(κ). Further, resκ = resκ,κ′ ◦resκ′ . In particular, we can denote without ambiguity the map

resκ,κ′ as simply resκ.

We define a topology on GS(M̃) using the restriction maps. Namely, for each subtree κ of T and each

σ0 ∈ GS(κ), consider the set

U(κ, σ0) = {σ ∈ GS(M̃) : resκ(σ) = σ0}

Lemma 6.1.4. The sets U(κ, σ0) for finite subtrees κ of T form a basis for a topology on GS(M̃).

Proof. Showing that the sets U(κ, σ0) form a basis for a topology on GS(M̃) is equivalent to showing that

if U(κi, σi
0), 1 ≤ i ≤ n is a finite collection of basic open sets and σ ∈ ∩iU(κi, σi

0), then there is a basic

open set containing σ and contained in each of the sets U(κi, σi
0).

To show this, let κ be the finite subtree of T spanned by the subtrees κi, and let σ0 = σ|κ. Note that

as σ ∈ U(κi, σi
0), resκi(σ) = σi

0. Hence, if σ′ ∈ U(κ, σ|κ), as κ ⊃ κi, resκi(σ′) = resκi(σ) = σi
0. Thus,

U(κ, σ|κ) ⊂ U(κi, σi
0), for each i as required.

Henceforth, consider GS(M̃) with the topology whose basis is given by the sets U(κ, σ0) as above. By

construction, GS(M̃) is second countable. If κ = κ1 ⊂ κ2 ⊂ . . . is an exhaustion of T by finite subtrees

of T , then for each i, the collection {U(κi, σ) : σ ∈ GS(κi)} is finite. Hence, one can easily see that the

collection ∪i{U(κi, σ) : σ ∈ GS(κi)}i gives a countable basis for the topology on GS(M̃).
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If κ ⊂ T is a finite tree and σ1, σ2 are elements of GS(κ) such that σ1 6= σ2, then U(κ, σ1)∩U(κ, σ2) = φ

and GS(M̃) = qU(κ, σi), where σi ∈ GS(κ).

We see that the space GS(M̃) is Hausdorff, in fact totally disconnected.

Lemma 6.1.5. The space GS(M̃) is totally disconnected.

Proof. Let σi = (τ i, εi, ei
+), i = 1, 2, be two distinct points in GS(M̃). It is easy to see that for some finite

tree κ, resκ(σ1) 6= resκ(σ2). As GS(κ) is a finite set, it follows that we can partition GS(κ) into finite sets

S1 and S2 with resκ(σi) ∈ Si, for i = 1, 2.

Let Ui = {σ ∈ GS(M̃) : resκ(σ) ∈ Si}, i = 1, 2. Then, Ui are disjoint (finite) unions of basic open sets

with σi ∈ Ui. This shows GS(M̃) is Hausdorff.

If A is any subset of GS(M̃) containing more than one point, then we can consider two distinct points

σi = (τ i, εi, ei
+), i = 1, 2 in A. We can find open sets Ui, i = 1, 2, as above with σi ∈ Ui. Then, the sets

A ∩ U1 and A ∩ U2 gives separation of A.

In fact, we can see that if σi = (τ i, εi, ei
+), i = 1, 2, are two distinct points in GS(M̃), then we can find

disjoint open sets Ui, i = 1, 2 with σi ∈ Ui and U1 ∪ U2 = GS(M̃).

The main result we need about the topology is the following compactness theorem. This is the analogue

of the fact that the set of geodesics in hyperbolic space (more generally, in any Riemannian manifold) that

intersect a fixed compact set is compact.

Theorem 6.1.6. For a fixed finite subtree κ ⊂ T , the set of all geospheres whose restriction to κ is

non-trivial is compact.

Proof. Let A be the set of all geospheres whose restriction to κ is non-trivial. As GS(M̃) is second countable

and Hausdorff, it is metrizable. Hence, it suffices to show that every sequence in the given subspace A has

a convergent subsequence in A.

Let κ = κ1 ⊂ κ2 ⊂ . . . be an exhaustion of T by finite subtrees of T . Let σi be a sequence of geospheres

in M̃ whose restriction to κ is non-trivial. We construct a convergent subsequence of σi.

Firstly, for each i, resκ1(σi) ∈ GS(κ1) and GS(κ) finite set. Hence, on passing to a subsequence (which

we denote by σi), we can assume that resκ1(σi) is constant. Similarly, passing to a further subsequence, we

can assume that resκ2(σi) is constant. Iterating this and passing to a diagonal subsequence, we obtain a

sequence, which we also denote σi, so that the restriction of σi to each of the sets κi is eventually constant.

More concretely, we can assume that for j, k ≥ i, resκi(σj) = resκi(σk).

We claim that the subsequence σi constructed as above has a limit σ = (τ, ε, e+). Namely, to determine

whether an edge e is in τ , consider i large enough that e ∈ κi. Then, as resκi(σj) = resκi(σi) for j ≥ i

(taking k = i), either e ∈ τj for all j large enough or e /∈ τj for all j ≥ i, where τj is the tree corresponding

to σj . In the former case, we declare e ∈ τ and in the latter case e /∈ τ . We can see τ1 ⊂ τ2 ⊂ . . . is an

exhaustion of τ . We similarly can decide what vertices are in τ and also the values of the functions ε and

e+.
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As the restriction of each σi is non-empty, the limiting subgraph τ is non-empty.

One can show that τ is connected. Namely, is v and w are vertices of τ , for j sufficiently large, v and

w are contained in the tree τj , hence there is a unique reduced path λ between them. It follows that λ ⊂ τ

by the definition of τ .

Thus, σ ∈ GS(M̃). Finally, as κi is an exhaustion of T by compact subtrees, any compact subtree κ′

is contained in κj for some j. Hence, for k > j, resκ′(σk) = resκ′(σ). By the definition of the topology on

GS(M̃), we see that σi → σ.

As a corollary, we see that GS(M̃) is locally compact. In fact, every geosphere σ is contained in a

compact open subset of GS(M̃).

Proposition 6.1.7. Any geosphere σ is contained in a compact open subset U of GS(M̃).

Proof. It is easy to see that there is a finite tree κ such that resκ(σ) is non-trivial. Let

U = {σ′ ∈ GS(M̃) : resκ(σ) = resκ(σ′)}

By Theorem 6.1.6, U is compact. The set U is open by definition of the topology on GS(M̃).

In Chapter 5, we have seen that a normal sphere S in M̃ is determined by triple σ = (τ, ε, e+), with

τ is a finite subtree of T , ε is an assignment of sign to each non-standard bivalent vertex of τ and e+

an assignment to each univalent vertex of τ an edge containing v and not contained in τ . Hence, normal

spheres M̃ are geospheres.

Let S(M̃) be the set of all normal spheres in M̃ , i.e., S(M̃) is the set of all geospheres σ = (τ, ε, e+),

where τ is a finite subtree of T .

Proposition 6.1.8. The set S(M̃) is the set of isolated points of GS(M̃) and is dense in GS(M̃).

Proof. Let σ0 = (τ0, εo, e0
+) be a normal sphere in M̃ . We see that res0

τ (σ0) = σ0. Consider U(τ0, σo). If

σ′ = (τ ′, ε′, e′+) ∈ U(τ0, σ0), then res0
τ (σ′) = σ0. By definition of res,

res0
τ (σ′) = (τ ′ ∩N(τ0), ε′|B(τ ′) ∩ τ0, e′+|C(τ ′)∩τ0) = (τ0, ε0, e0

+).

As τ ′ ∩N(τ0) = τ0, we have τ ′ = τ0 and ε′ = ε0, e′+ = e0
+. Thus, σ′ = σ0. This implies U(τ0, σo) = {σ0}

and hence, σ0 is an isolated point in GS(M̃).

Let σ = (τ, ε, e+) be a geosphere in M̃ , where τ is a subtree of T with each univalent vertex of τ a

trivalent vertex in T . We call such a geosphere as a non-trivial geosphere. Let κ be subtree of T . We define

resκ(σ) to be the triple (τ ∩ κ, ε|B(τ)∩κ, e+|C(τ)∩κ). Suppose κ is a finite subtree of T such that resκ(σ)

is non-trivial in the sense that τ ∩ κ contains at least one edge. Let κ = κ1 ⊂ κ2 ⊂ . . . be an exhaustion

of T by finite subtrees of T . Let σi = resκi(σ) = (τ ∩ κi, ε|B(T )∩κi
, e+|C(T )∩κi

). To each univalent vertex

v /∈ C(τ) of τ ∩ κi, we assign an edge e′+(v) containing v and contained in τ \ κi. Note that a univalent
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vertex of τ ∩ κi is a trivalent vertex in T . Thus, we have a function e′+ : C(τ ∩ κi) → EDGE(T ) from

univalent vertices of τ ∩ κi to edge set of T whose restriction on C(τ) ∩ κi ie equal to e+|C(τ)∩κ. Let

σ′i = (τ ∩ κi, ε|B(T )∩κi
, e′+|C(T )∩κi

). Then, for each i, σ′i ∈ S(M̃) ⊂ GS(M̃) and resκi
(σ′i) = resκi

(σ).

Therefore, σ′ ∈ U(κi, resκi(σ)), for each i.

Now, we claim that the sequence σi converge to σ in GS(M̃). Let κ′ be subtree of T . Consider the

basic neighborhood U(κ′, resκ′(σ)) of σ in GS(M̃). For large enough i, κ′ ⊂ κi. Then, U(κj , resκj (σ)) ⊂
U(κ′, resκ′(σ)) for all j ≥ i. This implies σ′j ∈ U(κ′, resκ′(σ)) for all j ≥ i. Hence, the sequence σi converge

to σ in GS(M̃). This implies every geosphere σ /∈ S(M̃), is the limit of a sequence of points of S(M̃) and

hence, it is not an isolated point in GS(M̃). This shows that the set S(M̃) is the set of isolated points of

GS(M̃) and is dense in GS(M̃).

6.2 Crossing of geospheres

As in the case of spheres, we can associate to a geosphere a partition of the ends of M̃ , which can be

identified with the set of ends E(T ). However, in the case of a geosphere σ = (τ, ε, e+), we get a partition

into three sets

E(T ) = E∞(σ)q E+(σ)q E−(σ)

with E∞(σ) closed and E±(σ) open.

The set E∞(σ) is defined to be the set of ends of τ . It is easy to see that, as τ is a subtree of T , τ is

closed. Hence, E∞(σ) is closed in E(T ). Observe that E∞(σ) can also be interpreted as the set of ends of

N(τ).

The complement V (σ) = T −N(τ) of N(τ) is an open set. We shall partition the components of V (σ)

into sets V +(σ) and V −(σ) using the data for σ, in analogy with the case of spheres. We shall define

E±(σ) as the set of ends of V ±(σ).

Let V0 be a component of T −N(τ). Then, as τ is a tree, the closure of V0 contains exactly one vertex

w of N(τ), which in turn is a distance 1 from a unique vertex v of τ which is either bivalent or univalent.

If v is bivalent, we say that V0 is positive (and w is on the positive side of v) if ε(v) = + and say that V0

is negative otherwise. If v is univalent, we say that V0 is positive (and w is on the positive side of v) if the

edge e+(v) joins v to w and say that V0 is negative otherwise.

By the above rule, each component of V (σ) is assigned a sign. We define V +(σ) to be the union of the

positive components and V −(σ) the union of negative components. We define E±(σ) as the set of ends of

V ±(σ).

Given two geospheres σ1 and σ2, we can define when they cross.

Definition 6.2.1. The geospheres σi = (τ i, εi, ei
+), i = 1, 2 cross if either each of the four sets

E±(σ1) ∩ (E±(σ2) ∪ E∞(σ2))
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is non-empty or if each of the four sets

E±(σ2) ∩ (E±(σ1) ∪ E∞(σ1))

is non-empty.

We remark that it is necessary to consider both the above collections of four sets separately.

The above definition is motivated by the observation that if, for instance, σ2 is on the positive side of

σ1, then all ends (in fact points) on either the negative side of σ2 or the positive side of σ2 (the side away

from σ1) are on the positive side of σ1. Hence, one of the intersections E−(σ1) ∩ (E±(σ2) ∪ E∞(σ2)) is

empty.

Lemma 6.2.2. Let σi = (τ i, εi, ei
+), i = 1, 2 be geospheres. If τ1 ∩ τ2 = φ, then σ1 and σ2 do not cross.

Proof. As τ1 and τ2 are subtrees of T and τ1∩τ2 = φ, for some component V 1
0 of T−N(τ1), τ2 is contained

in V 1
0 . Let v1 be the point in τ1 that is unit distance from V 1

0 . Without loss of generality assume V 1
0 is

positive.

As τ2 is contained in the closure of V 1
0 , E∞(σ2) is contained in the ends of V 1

0 , and hence is contained in

E+(σ1). Further, as τ1 is a tree, τ1 is contained in a component V 2
0 of T −N(τ2) and all other components

of T − N(τ2) are contained in V 1
0 . Hence, if V 2

0 is positive, then E−(σ2) is contained in the ends of V 1
0 ,

and hence is contained in E+(σ1).

Thus, as V 1
0 and V 2

0 are positive, the intersection E−(σ1) ∩ (E−(σ2) ∪E∞(σ2)) is empty. Considering

other cases similarly, we see that in each case, at least one of the intersections E±(σ1)∩(E±(σ2)∪E∞(σ2))

is empty.

Reversing the roles of τ1 and τ2, we see that one of the four intersections E±(σ2)∩ (E±(σ1)∪E∞(σ1))

is also empty. Thus, σ1 and σ2 do not cross.

Our main technical result is that crossing is an open condition.

Lemma 6.2.3. Suppose σi = (τ i, εi, ei
+), i = 1, 2 cross, then there are open sets U i, i = 1, 2, with σi ∈ U i

so that if si ∈ U i for i = 1, 2, then s1 crosses s2.

Proof. Without loss of generality, we assume that each of the four intersections

E±(σ1) ∩ (E±(σ2) ∪ E∞(σ2))

is non-empty. We shall construct open sets U i containing σi so that for si ∈ U i,

E+(s1) ∩ (E+(s2) ∪ E∞(s2)) 6= φ

We can similarly construct open sets for which each of the other three intersections is non-empty. The

intersections of the four pairs of open sets thus constructed give the required neighborhoods of σi.
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We first make some observations. Suppose ξ ∈ E+(σ1) is an end. Then, there is a component V0 of

T −N(τ1) so that ξ ∈ E(V0). The intersection of the closure of V with N(τ1) is a vertex w, which is unit

distance from a unique vertex v of τ1. Further, the vertex is bivalent or univalent, with w on the positive

side of v.

Let κ be a finite tree containing v. Then, if (τ0, ε0, e0
+) is another geosphere with resκ(σ0) = resκ(σ1),

then as N(κ)∩ τ0 = N(κ)∩ τ1, w is a vertex of N(τ0)− τ0, v is in τ0. As ε0 = ε1 and e0
+ = e+

1 , w is on the

positive side of v with respect to σ0. It follows, as τ0 is connected, that V0 is a component of T −N(τ0)

which is positive.

Suppose now that ξ is an end in E+(σ1) ∩ (E+(σ2) ∪ E∞(σ2)). We consider two cases. Firstly, if

ξ ∈ E+(σ1) ∩ E+(σ2), then as above we have positive components V i
0 of T − N(τ i) containing ξ and

corresponding vertices vi and wi. Let κ be a finite tree containing v1 and v2 and let U i = U(κ, resκ(σi)).

Suppose si = (ti, εi, ei
+) ∈ U i, i = 1, 2, then, as above, V i

0 is a component of T −N(ti) and is positive.

Hence, ξ ∈ E+(si) for i = 1, 2, i.e., ξ ∈ E+(s1) ∩ E+(s2) ⊂ E+(s1) ∩ (E+(s2) ∪ E∞(s2)).

Next, consider the case when ξ ∈ E+(σ1) ∩ E∞(σ2). Let V0 be the component of T −N(σ1) that has

ξ as an end and let v and w be as above. As ξ ∈ E∞(σ2), the intersection τ2 ∩ V0 is infinite.

Note that as σ1 and σ2 cross, we cannot have τ1 ∩ τ2 = φ, as this would imply that one of the

intersections E−(σ1) ∩ (E±(σ2) ∪ E∞(σ2)) is empty. As τ2 is connected and τ1 ∩ τ2 6= φ 6= V0 ∩ τ2, it

follows that v and w are vertices of τ2.

Let κ be a finite tree containing v and w and let U i = U(κ, resκ(σi)) and si be as before. As in the

first case, if s1 ∈ U1, then V0 is a positive component of T −N(t1). To complete the proof, we show that

if s2 ∈ U2, then the set of ends of V0 contains either a point of E∞(s2) or a point of E+(s2).

To see this, observe that as τ2 ∩ V0 is infinite and t2 ∩N(κ) = τ2 ∩N(κ), with κ a tree containing w,

t2 ∩V0 is non-empty. Suppose t2 ∩V0 is infinite, then an end of t2 ∩V0 lies in V0 ∩E∞(s2), as claimed. On

the other hand, if t2 ∩ V0 is finite, it has a terminal vertex. By Lemma 5.1.8, a component of T −N(t2) is

positive and contained in V 0. An end of this component gives an element E+(s2) which is an end of V0,

hence in E+(s1).

Thus, we have shown that in all cases E+(s1) ∩ (E+(s2) ∪ E∞(s2)) is non-empty for si ∈ U i.

6.2.1 Geosphere laminations in M

We are now in a position to define geosphere laminations in M , which are the analogues of embedded

geodesic laminations in a surface. Recall that the group π1(M) acts on M̃ by deck transformations.

Geosphere laminations are the natural completion of the inverse image in M̃ of a sphere (or a collection of

spheres) in M .

Definition 6.2.4. A subset X ⊂ GS(M̃) is said to be embedded in M if for σ1, σ2 ∈ X, σ1 does not cross

σ2.
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Definition 6.2.5. A geosphere lamination in M is a subset Γ ⊂ GS(M̃) such that

1. Γ is closed in GS(M̃).

2. Γ is invariant under the action of π1(M).

3. Γ is embedded in M .

We denote the set of geosphere laminations in M by L(M). We shall see that this contains all collections

of disjoint, non-parallel spheres in M , and that the space of non-trivial geosphere laminations is compact.

This allows us to consider limits of spheres in M .

We first observe that the condition that Γ is closed is easy to achieve.

Lemma 6.2.6. Suppose X ⊂ GS(M̃) is embedded in M , then so is its closure X̄.

Proof. Suppose σ1 and σ2 are geospheres in X̄ that cross. By Lemma 6.2.3, there are open sets Ui with

σi ∈ Ui so that if si ∈ Ui, i = 1, 2, then s1 and s2 cross. As σi ∈ X̄, there are elements si ∈ X ∩ Ui,

which thus cross. But, this contradicts the hypothesis that X is embedded in M . Thus, X̄ is embedded in

M .

It is clear that the closure of a π1(M)-invariant set in GS(M̃) is π1(M)-invariant. Thus, if X is not

closed but satisfies the other two conditions for being a geosphere lamination, then its closure is a geosphere

lamination.

6.2.2 Topology on L(M)

We shall make the set L(M) of sphere laminations in M into a topological space by defining a topology on

L(M). To do this, we first define a topology on the set of closed subsets of GS(M̃), which we denote by

C(M̃).

The topology we construct is analogous to the Hausdorff topology. Namely, if Γ ⊂ GS(M̃) is closed

and κ is a finite subtree of T , consider the image resκ(Γ) of Γ under the restriction map. For S ⊂ GS(κ),

consider the set

U(κ, S) = {Γ ∈ C(M̃) : resκ(Γ) = S}.

Lemma 6.2.7. The sets U(κ, S) for finite subtrees κ of T form a basis for a topology on C(M̃).

Proof. Showing that the sets U(κ, S) form a basis for a topology on C(M̃) is equivalent to showing that if

U(κi, Si), 1 ≤ i ≤ n is a finite collection of basic open sets and Γ ∈ ∩iU(κi, Si), then there is a basic open

set containing Γ and contained in each of the sets U(κi, Si).

To show this, let κ be the finite subtree of T spanned by the subtrees κi, and let S0 = resκ(Γ). Note

that as Γ ∈ U(κi, Si), resκi(Γ) = Si. Hence, if Γ′ ∈ U(κ, S0), as κ ⊃ κi, resκi(Γ′) = resκi(Γ) = Si, for

each i. Thus, U(κ, S0) ⊂ U(κi, σi
0), for each i as required.
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Thus, the sets U(κ, S) form the basis for a topology, which we take to be the topology on C(M̃). Note

that as GS(κ) is finite, so is the collection of subsets of GS(κ).

If κ ∈ T is a finite tree and S1 and S2 are subsets of GS(κ) such that S1 6= S2, then U(κ, S1)∩U(κ, S2) =

φ and C(M̃) = q U(κ, Si), where Si is a subset of GS(κ).

We can easily see that C(M̃) is second countable. We see that the topology is Hausdorff, in fact totally

disconnected. This is based on the following lemma.

Lemma 6.2.8. If Γ1,Γ2 ⊂ GS(M̃) are closed sets with Γ1 6= Γ2, then for some finite subtree κ of T ,

resκ(Γ1) 6= resκ(Γ2).

Proof. As Γ1 6= Γ2, without loss of generality, there is a point σ ∈ Γ1 \ Γ2. As Γ2 is closed subset of

GS(M̃), there is a basic open set U = U(κ, σ0) with σ ∈ U but U ∩ Γ2 = φ. But this means that

resκ(σ) ∈ resκ(Γ1) \ resκ(Γ2). Hence, resκ(Γ1) 6= resκ(Γ2).

It is easy to deduce that the topology on C(M̃) is totally disconnected. The proof is analogous to

Lemma 6.1.5.

Lemma 6.2.9. Given Γ1,Γ2 ∈ C(M̃), there are disjoint open sets U1,U2 ⊂ C(M̃) with Γi ⊂ Ui so that

U1 ∪ U2 = C(M̃).

We can consider S(M̃) as a subset of C(M̃). If σ = (τ, ε, e+) ∈ S(M̃), then {σ} ∈ C(M̃) and

resτ (σ) = σ ∈ GS(τ). One can easily see that U(τ, {σ}) = {{σ}}. For, any geosphere whose restriction to

τ is σ is equal to σ only. Thus, every point of S(M̃) is an isolated point of C(M̃).

The topology on C(M̃) restricts to one on L(M). To study the restriction, the following lemma is

useful.

Lemma 6.2.10. The subspace L(M) ⊂ C(M̃) is closed.

Proof. As the topology on C(M̃) is second countable and Hausdorff, it suffices to show that if Γ0 is the

limit of a sequence Γi ∈ L(M), then Γ0 ∈ L(M). Firstly, as C(M̃) is Hausdorff, limits are well-defined.

Hence, if g ∈ π1(M), as gΓi = Γi and gΓi → gΓ0 (as the deck transformation g is a homeomorphism),

gΓ0 = Γ0. Thus, Γ0 is π1(M)-invariant. Further, Γ0 is closed as it is an element of C(M̃). Thus, to

complete the proof it suffices to show that Γ0 is embedded in M .

Suppose Γ0 is not embedded in M , then there are elements σ1, σ2 in Γ0 that cross. By Lemma 6.2.3,

there are open sets Ui with σi ∈ Ui so that if si ∈ Ui, then s1 and s2 cross. By the definition of the topology

on GS(M̃), for some finite tree κ, Ui contains the open set U(κ, resκ(σi)). As Γi → Γ0, for i sufficiently

large, resκ(Γi) = resκ(Γ0), in particular, there are elements si ∈ Γi with si ∈ Ui. It follows that s1 and s2

cross, contradicting the hypothesis that Γi ∈ L(M).
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6.3 Constructing Geosphere laminations

In this section, we first see that (collections of) spheres in M have associated geosphere laminations. We

then see how limits of spheres give rise to geosphere laminations.

Suppose first that Σ′ is a collection of disjoint, non-parallel spheres in M which are in normal form

with respect to Σ. Let Σ̃′ be the collection of lifts of the spheres in Σ′, i.e., the inverse image of Σ′ under

the covering map M̃ → M . Each element of Σ̃′ is a sphere, and hence, gives a geosphere. Thus, Σ̃′ can be

viewed as a subset of GS(M̃).

It is immediate that the set Σ̃′ is π1(M)-invariant. The set Σ̃′ is embedded in M as it is a union of

disjoint spheres. To see that Σ̃′ gives an element in L(M)), it only remains to show that the set Σ̃′ is a

closed subset of GS(M̃).

Lemma 6.3.1. The set Σ̃′ is closed in GS(M̃).

Proof. The tree τ corresponding to each element σ ∈ Σ̃′ is finite, with diameter determined by the corre-

sponding sphere in M . Hence, there is an integer D > 0 such that the trees τ corresponding to elements

σ ∈ Σ̃′ have diameter at most D.

Suppose now σ0 is in the closure of Σ̃′, with τ0 the tree corresponding to σ0. Let v be a vertex of τ0

and let κ be the tree consisting of all points of distance at most D from v.

As σ0 is in the closure of Σ̃′, resκ(σ0) = resκ(σ) for some σ ∈ Σ̃′. If τ is the tree corresponding to σ,

then v ∈ τ and τ has diameter at most D. It follows that τ ⊂ κ, and hence, τ = τ ∩N(κ) and is contained

in the interior of N(κ). As τ0 ∩N(κ) = τ ∩N(κ), τ0 ∩N(κ) is contained in the interior of N(κ). Hence,

as τ0 is connected, τ0 = τ0 ∩N(κ) = τ ∩N(κ) = τ . As resκ(σ0) = resκ(σ), it follows that σ0 = σ, hence

σ0 ∈ Σ̃. Thus, any element of the closure of Σ̃′ is in Σ̃′, showing that Σ̃′ is closed.

Thus, given any embedded sphere S in normal form with respect to Σ in M , we have a geosphere

lamination associated to it, namely, the inverse image of S in M̃ under the covering map. So, we can

regard S as a geosphere lamination in M . Let S0(M) be the set of isotopy classes spheres in M . Then,

S0(M) can be considered as subset of L(M).

Definition 6.3.2. Let Γ be geosphere lamination in M . A geosphere σ ∈ Γ is called a leaf of Γ.

Definition 6.3.3. A subset Γ′ of a geosphere lamination Γ is said to be sublamination of Γ if Γ′ itself is

a geosphere lamination.

Definition 6.3.4. A geosphere lamination Γ is said to be maximal if Γ is not a proper sublamination of

any geosphere lamination in M .

Definition 6.3.5. A geosphere lamination Γ is said to be minimal if no proper subset of Γ sublamination

of Γ.
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6.3.1 Example of a geosphere lamination as the limit of a sequence of spheres

Consider M = ]2S
2 × S1. Then, π1(M) = G, which is a free group of rank 2. Fix a basis {α1, α2} of G.

Then, there exists a collection Σ′ = {A,B} of disjoint, embedded 2-spheres in M , related to this basis:

Each sphere A and B has two sides, denoted by A+ and A− for A and B+ and B− for B. The element α1

is represented by a closed path γ1 starting from the base point x0 of M which does not belong to A and

B, going to A− piercing A, and returning to the base point from A+. We can choose γ1 such that it does

not intersect B. Similarly, the element α2 is represented by a closed path γ2 starting from the base point

x0 of M , going to B− piercing B, and returning to the base point from B+. Again, we can choose γ2 such

that γ2 does not intersect A and γ1.

Extend the collection Σ′ to a maximal collection Σ = {A, B,C} of disjointly embedded 2- spheres in M .

The sphere C has two sides, denoted by C+ and C−. Cutting M along Σ, then produces two 3-punctured

3-spheres, say P1 and P2. Suppose we have chosen sphere C such that P1 has boundary spheres A+, B+, C+

and P2 has boundary spheres A−, B−, C−.

6.3.2 The universal cover M̃ and the related tree T

Let Σ̃ be the inverse image of Σ in M̃ . To the pair (M̃, Σ̃), we have the tree T associated. For a lift P̃1 of

P1, we have Y -shaped subtree of T such that the end vertices of this subtree correspond to lifts of A+, B+

and C+. We denote these end vertices again by A+, B+ and C+. We call such subtrees as YP1 type of

subtree of T . Similarly, For a lift P̃2 of P2, we have Y -shaped subtree of T such that the end vertices of

this subtree correspond to lifts of A−, B− and C−. We denote these end vertices again by A−, B− and

C−. We call such trees as YP2 type of subtrees of T .

Consider spheres Sn in M as follows (see figure 6.1): We construct Sn by taking a copy of A+ in P1

and a copy of A− in P2. We join them by a tube which represents αn
2α1. We get two disc pieces of Sn,

one in P1 with boundary on C+ and one disc piece in P2 with boundary on C−. Sn has n tube pieces

in P1 joining B+ to C+ and n tube pieces joining C− to B−. We give an orientation to each Sn such

that if we consider the triple (τn, εn, en
+) associated to a lift S̃n has the following form : The tree τn is a

finite subtree of T and the terminal vertices of the tree τn are trivalent vertices in T . The tree τn has two

terminal vertices: one terminal vertex v1 in a YP1 type of subtree of T such that the edge in τn containing

v1 joins the vertex v1 to the vertex C+ of YP1 and the other terminal vertex v2 in a YP2 type of subtree of

T such that the edge in τn containing v2 joins the vertex v2 to the vertex C− of YP2 . For all the other YP1

type of subtrees with which τn has non-empty intersection with YP1 , τn ∩YP1 contains an edge joining the

vertex C+ to the trivalent vertex of YP1 and an edge joining the trivalent vertex of YP1 to the vertex B+ of

YP1 . Similarly, for all the other YP2 type of subtrees with which τn has non-empty intersection, τn ∩ YP2

contains an edge joining the vertex C− to the trivalent vertex of YP1 and an edge joining the trivalent

vertex of YP2 to the vertex B− of YP2 .

For every non-standard bivalent vertex v of τn, εn(v) is positive. For terminal vertices v1 ∈ aYP1 and

v2 ∈ aYP2 of τn, en
+(v1) is the edge joining the vertex B+ and en

+(v2) is the joining the vertex B−.
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Fig. 6.1: The spheres Sn

6.3.3 The geosphere lamination Γ

Consider the set Γ which consists of the followings geospheres:

1. A geosphere σ = (τ, ε, e+), where τ has exactly one terminal vertex v in a YP1 type of subtree of

T with e+(v) is the edge joining v and the vertex B+ of that YP1 . The edge in τ containing the

terminal vertex v joins the vertex v to the vertex C+ of YP1 . For all the other YP1 type of subtrees

of T with which τ has non-empty intersection, τ ∩ YP1 consists of two edges, one edge joining the

vertex B+ and the trivalent vertex of YP1 and the other edge joining the the trivalent vertex to C+.

For all the YP2 type of subtrees of T with which τ has non-empty intersection, τ ∩ YP2 consists of

two edges, one edge joining the vertex C− and the trivalent vertex of YP2 and the other edge joining

the the trivalent vertex to B−. For each non-standard bivalent vertex v′ of τ , ε(v′) is positive. The

set Γ contains all the translates of σ.

2. A geosphere σ′ = (τ ′, ε′, e′+), where τ ′ has exactly one terminal vertex v′ in a YP2 type of subtree of

T with e′+(v′) is the edge joining v0 and the vertex B− of the YP2 . The edge in τ ′ containing the

terminal vertex v′ joins the vertex v′ to the vertex C− of YP2 . For all the other YP2 type of subtrees

of T with which τ ′ has non-empty intersection, τ ∩ YP2 consists of two edges, one edge joining the

vertex C− and the trivalent vertex of YP2 and the other edge joining the the trivalent vertex to B−

of YP2 . For all the YP1 type of subtrees of T with which τ ′ has non-empty intersection, τ ′ ∩ YP1

consists of two edges, one edge joining the vertex B+ and the trivalent vertex of YP1 and the other

edge joining the the trivalent vertex to C+. For each non-standard bivalent vertex v′ of τ ′, ε′(v′) is

positive. The set Γ contains all the translates of σ′.
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3. A geosphere σ′′ = (τ ′′, ε′′, e′′+), where τ ′′ has no terminal vertex. For all the YP1 type of subtrees of

T with which τ ′′ has non-empty intersection, τ ′′ ∩ YP1 consists of two edges, one edge joining the

vertex B+ and the trivalent vertex of YP1 and the other edge joining the the trivalent vertex to C+.

For all the YP2 type of subtrees of T with which τ ′′ has non-empty intersection, τ ′′ ∩ YP2 consists of

two edges, one edge joining the vertex C− and the trivalent vertex of YP2 and the other edge joining

the the trivalent vertex to B−. For each the non-standard bivalent vertex v′ of τ ′′, ε(v′) is positive.

The set Γ contains all the translates of σ′′.

Note that for any geosphere β = (τβ , εβ , eβ
+) ∈ Γ, the tree τβ does not contain any vertex of type A+

and A−. Therefore, β does not cross sphere Ã and its translates, where Ã is a lift of the sphere A. Now,

clearly Γ is π1-invariant.

Lemma 6.3.6. The set Γ is embedded in M .

Proof. We can easily see that given a type (1) geosphere σ = (τ, ε, e+), it is the limit of the sequence of

geospheres S̃n = (τn, εn, en
+), where S̃n is a lift of Sn such that each τn has a terminal vertex in the same

subtree YP1 of T where τ has its terminal vertex, see Proposition 6.1.8. As crossing of geospheres is an open

condition (Lemma 6.2.3), we can see that σ and its translate gσ do not cross, for any g ∈ π1(M). Similarly,

we can show that for a type (2) geosphere σ′, σ′ and gσ′ do not cross, for any g ∈ π1(M). Consider a

type (1) geosphere σ = (τ, ε, e+) and a type (2) geosphere σ′ = (τ ′, ε′, e′+). Then, there exists a sequence

S̃n = (τn, εn, en
+), where S̃n is a lift of Sn such that each τn has a terminal vertex in the same subtree

YP1 of T where τ has its terminal vertex and the spheres S̃n converges to σ in GS(M̃). Similarly, there

exists a sequence S̃′n = (τ ′n, ε′n, e′n+ ), where S̃′n is a lift of Sn such that each τ ′n has a terminal vertex in

the same subtree YP2 of T where τ ′ has its terminal vertex and the spheres S̃′n converges to σ′ in GS(M̃).

Again, using the fact that crossing is an open condition, we see that σ and σ′ do not cross. For type (3)

geosphere σ′′, the set E−(σ′′) = φ. Given any translate gσ′′, (E±(σ′′) ∪ E∞(σ′′)) ∩ E−(gσ′′) = φ and

(E±(gσ′′) ∪ E∞(gσ′′)) ∩ E−(σ′′) = φ. Hence, σ′′ and gσ′′ do not cross, for any g ∈ π1(M). By similar

argument, any geosphere of type (1) and type (3) do not cross, for i = 1, 2. Thus, the set Γ is embedded

in M .

Lemma 6.3.7. The set Γ is a closed subset of GS(M̃) and is the set of accumulation points of the set

Σ̃′′ = ∪n { inverse image of Sn in M̃}.

Proof. Suppose σ0 = (τ0, ε0, e0
+) is a geosphere in M̃ such that σ0 /∈ Γ. As σ0 is not in Γ, we have the

following possibilities:

1. The geosphere σ0 crosses some lift Ã of A in M̃ : If σ0 crosses A (i.e., τ0 contains a vertex of the

type A+ or A−), then by Lemma 6.2.3, there are open sets U i, i = 1, 2, with σ0 ∈ U1 and A ∈ U2

so that if si ∈ U i for i = 1, 2, then s1 crosses s2. If σ0 is a limit point of Γ, there exists a sequence

of geosphere βn ∈ Γ converging to σ0. Therefore, there exists βn ∈ U1 for large n. But, then this
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will imply that βn crosses A which is absurd. Hence, U1 is a neighborhood σ0 in GS(M̃) which is

disjoint from Γ. So, in this case σ0 can not be limit point of Γ.

2. The geosphere does not cross A (i.e., τ0 does not contain any A+ or A− vertex) and τ0 has a

terminal vertex v in some subtree YP1 of T such that the edge e ∈ τ0 containing v, joins v

and the vertex B+ of YP1 : Consider a subtree κ of T containing this YP1 , then resκ(σo) is the

triple (τ0 ∩ N(κ), ε0|B(τ0)∩κ, e0
+|C(τ0)∩κ). Then, τ0 ∩ N(κ) contains the edge e and v as a ter-

minal vertex of τ0 ∩ N(κ). For any geosphere β = (τβ , εβ , eβ
+) ∈ Γ, if we consider resκ(β) =

(τβ ∩N(κ), εβ |B(τβ)∩κ, eβ
+|C(τβ)∩κ), then τβ ∩N(κ) does not contain edge e with v as terminal vertex

of τβ ∩ N(κ). So, we have β /∈ U(κ, resκ(σ0)), for any β ∈ Γ. So, we get a neighborhood of σ0 in

GS(M̃) disjoint from Γ.

3. The geosphere does not cross A (i.e., τ0 does not contain any A+ or A− vertex) and τ0 has a

terminal vertex v in some subtree YP2 of T such that the edge e ∈ τ0 containing v, joins v

and the vertex B− of YP2 : Consider a subtree κ of T containing this YP2 , then resκ(σo) is the

triple (τ0 ∩ N(κ), ε0|B(τ0)∩κ, e0
+|C(τ0)∩κ). Then, τ0 ∩ N(κ) contains the edge e and v as a ter-

minal vertex of τ0 ∩ N(κ). For any geosphere β = (τβ , εβ , eβ
+) ∈ Γ, if we consider resκ(β) =

(τβ ∩N(κ), εβ |B(τβ)∩κ, eβ
+|C(τβ)∩κ), then τβ ∩N(κ) does not contain edge e with v as terminal vertex

of τβ ∩ N(κ). So, we have β /∈ U(κ, resκ(σ0)), for any β ∈ Γ. So, we get a neighborhood of σ0 in

GS(M̃) disjoint from Γ.

4. The geosphere does not cross A (i.e., τ0 does not contain any A+ or A− vertex) and τ0 has a terminal

vertex v in some subtree YP1 of T such that the edge e ∈ τ0 containing v, joins v and the vertex B+

of YP1 and e0
+(v) is the edge joining v and the vertex A+ of YP1 : Consider a subtree κ of T containing

this YP1 , then resκ(σo) is the triple (τ0 ∩N(κ), ε0|B(τ0)∩κ, e0
+|C(τ0)∩κ). Then, τ0 ∩N(κ) contains the

edge e and v as a terminal vertex of τ0∩N(κ) and e0
+(v) is the edge joining v and the vertex A+ of YP1 .

For any geosphere β = (τβ , εβ , eβ
+) ∈ Γ, if we consider resκ(β) = (τβ ∩N(κ), εβ |B(τβ)∩κ, eβ

+|C(τβ)∩κ),

then τβ ∩N(κ) does not contain edge e with v as terminal vertex of τβ ∩N(κ) and eβ
+(v) is the edge

joining v and the vertex A+ of YP1 . So, we have β /∈ U(κ, resκ(σ0)), for any β ∈ Γ. So, we get a

neighborhood of σ0 in GS(M̃) disjoint from Γ.

5. The geosphere does not cross A (i.e., τ0 does not contain any A+ or A− vertex) and τ0 has a terminal

vertex v in some subtree YP2 of T such that the edge e ∈ τ0 containing v, joins v and the vertex B+

of YP2 and e0
+(v) is the edge joining v and the vertex A− of YP2 : Consider a subtree κ of T containing

this YP2 , then resκ(σo) is the triple (τ0 ∩N(κ), ε0|B(τ0)∩κ, e0
+|C(τ0)∩κ). Then, τ0 ∩N(κ) contains the

edge e and v as a terminal vertex of τ0∩N(κ) and e0
+(v) is the edge joining v and the vertex A− of YP2 .

For any geosphere β = (τβ , εβ , eβ
+) ∈ Γ, if we consider resκ(β) = (τβ ∩N(κ), εβ |B(τβ)∩κ, eβ

+|C(τβ)∩κ),

then τβ ∩N(κ) does not contain edge e with v as terminal vertex of τβ ∩N(κ) and eβ
+(v) is the edge

joining v and the vertex A− of YP2 . So, we have β /∈ U(κ, resκ(σ0)), for any β ∈ Γ. So, we get a

neighborhood of σ0 in GS(M̃) disjoint from Γ.
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6. The tree τ0 is finite: In this case Σ0 is a an isolated point. Hence, σo can not be a limit point of Γ.

Thus, for any geosphere σ0 /∈ Γ, we get a neighborhood of σ0 in GS(M̃) disjoint from Γ. This shows

that Γ is a closed subset of GS(M̃). Similar, arguments will show that any geosphere σo /∈ Γ is not an

accumulation point of the set Σ̃′′. Hence, Γ is the set of accumulation points of the set Σ̃′′.

6.3.4 The set resκ(Γ)

Suppose κ is a finite nontrivial tree. The set resκ(Γ) consists of empty graph together with the following

types of elements (τ, ε, e+) ∈ GS(κ):

1. A subtree τ of N(κ) having a terminal vertex v which is a trivalent vertex in T with e+(v) is the

edge joining v to a vertex B+. There is an edge in τ joining the vertex v and a vertex C+. All the

other edges in τ are edges joining a vertex C− to B− or a vertex B+ to C+. For each non-standard

bivalent vertex v′ ∈ B(τ), ε(v′) is positive. Note that τ has exactly one terminal vertex.

2. A subtree τ of N(κ) having a terminal vertex v which is a trivalent vertex in T with e+(v) is the

edge joining v to a vertex B−. There is an edge in τ joining the vertex v and a vertex C−. All the

other edges in τ are edges joining a vertex C− to B− or a vertex B+ to C+. For each non-standard

bivalent vertex v′ ∈ B(τ), ε(v′) is positive. note that τ has exactly one terminal vertex.

3. A subtree τ of N(κ) with all the edges are edges joining a vertex C− to B− and a vertex B+ to

C+. For each non-standard bivalent vertex v′ ∈ B(τ), ε(v′) is positive. Note that τ has two terminal

vertices.

Proposition 6.3.8. The sequence Sn of geosphere laminations in L(M) converges to the the set Γ in

C(M̃).

Proof. Let κ be any subtree of T such that each terminal vertex κ is a trivalent vertex of T . If κ is

trivial, then κ is a vertex v of T which is trivalent T . For such κ, we have N(κ) = κ. Then, the set

resκ(Γ) = {κ, φ} = {{v}, φ}. Then, for any geosphere lamination Sn, we have a lift S̃n = (τn, εn, en
+) such

that v is a terminal vertex of τn. So, the set resκ(Sn) = {{v}, φ} and hence, Sn ∈ U(κ, resκ(Γ)), for all n.

Now, for a non-trivial finite subtree κ of T , N(κ) contains both YP1 and YP2 type of subtrees of T . If

diameter of N(κ) is D, then we consider all n ≥ 2D + 4.

Let β = (τβ , εβ , eβ
+) be an element of type (1) in resκ(Γ). We choose a lift S̃n = (τn, εn, en

+) of Sn such

that τn has a terminal vertex (which is a trivalent vertex) in a YP1 type of subtree of N(κ) where τβ has

its terminal vertex. Then, as diameter of τn ≥ 2D + 4, the other terminal vertex of τn does not lie inside

N(κ) and resκ(S̃n) = β. Similarly, given an element β = (τβ , εβ , eβ
+) of type (2) in resκ(Γ), if we choose a

lift S̃n = (τn, εn, en
+) of Sn such that τn has a terminal vertex (which is a trivalent vertex) in a YP2 type

of subtree of N(κ) where τβ has its terminal vertex, then resκ(S̃n) = β.
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Let β = (τβ , εβ , eβ
+) be an element of type (3) in resκ(Γ). Let v be terminal vertex of τβ . Note that

v is a standard bivalent vertex of T and also a terminal vertex of N(κ). If v is a terminal vertex of a

YP1 type of subtree contained inside N(κ), then v is either a B+ or a C+ vertex in N(κ) ∩ YP1 . If v is a

C+ vertex, then consider the YP2 type subtree P ′ of T containing v. Note that P ′ is such a unique YP2

type of subtree. If we consider a lift S̃n such that τn has a terminal vertex (which is a trivalent vertex)

in P ′, then as diameter of τn ≥ 2D + 4, the other terminal vertex of τn also does not lie inside N(κ) and

resκ(S̃n) = β. Now, Suppose v is a B+ vertex. Let P ′′ be a YP2 type of subtree of T containing v and

let P ′′′ be a YP1 type of subtree of T such that P ′′ and P ′′′ share a vertex v′ which corresponds to a C−

vertex in P ′′ and C+ vertex in P ′′′. If we choose a lift S̃n such that τn has a terminal vertex (which is a

trivalent vertex) in P ′′′, then as diameter of τn ≥ 2D + 4, the other terminal vertex of τn also does not lie

inside N(κ) and resκ(S̃n) = β.

Similarly, we consider the cases where v corresponds to B− and C− type of vertices of some YP2

contained in N(K). As for a lift S̃n = (τn, εn, en
+) of Sn only finitely many translates of τn intersects N(κ,

empty graph is also an element of resκ(S̃n). Thus, for any n ≥ 2D + 4, resκ(S̃n) = resκ(Γ). This implies

Sn ∈ U(κ, resκ(Γ)), for all n ≥ 4D + 4. Hence, the sequence Sn of geosphere converges to Γ in C(M̃) .

In the above example, the geosphere lamination Γ is not minimal as it contains a sublamination Γ′

which consists of all the geospheres of type (3). It is not maximal as it is a sublamination of the geosphere

lamination Γ ∪A.

6.3.5 Example of a geosphere lamination not in the closure of S0(M)

Now, consider a subset Γ0 = {σo}, where σo = (τ0, ε0, eo+) is geosphere such that τ0 = T . Then, τ0 has

no terminal as well as non-standard bivalent vertices. The set Γ0 is clearly a geosphere lamination and it

is minimal. For σo, E∞(σ0) = E(T ) and E+(σ0) = φ = E−(σ0). For any type (3) geosphere σ′′, E∞(σ′′)

contains only two elements. The set E+(σ′′) is non-empty and E−(σ′′) = φ. Then, we have

E±(σ0) ∩ (E±(σ) ∪ E∞(σ2)) = φ

and

E−(σ′′) ∩ (E±(σ0) ∪ E∞(σ0)) = φ.

This implies σ0 and any geosphere of type (3) do not cross. Thus, the geosphere lamination Γ0 not maximal

as the it is a sublamination of the geosphere lamination Γo ∪ Γ′.

For any subtree κ of T , τ0 ∩ N(κ) = N(κ). The set resκ(Γo) contains exactly one element which is

not an empty graph of GS(κ). But for any normal sphere S in M , the set resκ(S), restriction of the

geosphere lamination S to κ, contains the element empty graph of GS(κ). Thus, for any subtree κ of T ,

U(κ, resκ(Γ0)) does not contain any geosphere lamination given by a sphere in M . Hence, Γ0 can not be

limit of a sequence of geosphere laminations in S0(M) ⊂ L(M).
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6.4 Compactness for geosphere laminations

Our main result concerning geosphere laminations is the following compactness theorem.

Theorem 6.4.1. The spaces L(M) and C(M̃) are compact.

Proof. First observe that as L(M) is a closed subset of C(M̃), it suffices to show that C(M̃) is compact.

Further, as C(M̃) is second countable and Hausdorff, it suffices to show that any sequence Γi ∈ C(M̃) has

a convergent subsequence.

As in the proof of Theorem 6.1.6, let κi be an exhaustion of T by finite subtrees. Observe that

resκ1(Γi) ∈ GS(κi) is contained in a finite set, namely the set of subsets of GS(κi). Hence, passing to

a subsequence, we can assume that this is constant. Similarly, passing to a further subsequence, we can

assume that resκj (Γi) is constant for each successive integer j. Iterating this and passing to a diagonal

subsequence, we obtain a sequence, which we also denote Γi, so that the restriction of Γi to each of the sets κi

is eventually constant. More concretely, we can assume that for j, k ≥ i, resκi
(Γj) = resκi

(Γk) = resκi
(Γi).

We claim that the subsequence Γi constructed as above has a limit Γ0. Let Xi = {σ ∈ GS(M̃) :

resκi(σ) ∈ resκi(Γi)}. It is immediate that Γi ⊂ Xi. We let Γ0 = ∩iXi.

We claim that Γi → Γ0. As the finite trees κi form an exhaustion, it suffices to show that for j

sufficiently large, resκi(Γj) = resκi(Γ0). We show this for j ≥ i.

Observe that for j ≥ i, Xj ⊂ Xi. This is because if σ ∈ Xj , by definition there is a geosphere

σ′ ∈ Γj with resκj (σ) = resκj (σ
′). As κi ⊂ κj , it follows that resκi(σ) = resκi(σ

′) and hence resκi(σ) ∈
resκi(Γj) = resκi(Γi), hence σ ∈ Xi. As σ ∈ Xj was arbitrary, Xj ⊂ Xi.

Next, note that resκi(Γj) = resκi(Γi) for j ≥ i. Hence, we are reduced to showing that resκi(Γj) =

resκi(Γ0). Firstly, as Γ0 ⊂ Xi and for σ ∈ Xi, resκi(σ) ∈ resκi(Γi), we have resκi(Γ0) ⊂ resκi(Γi).

Conversely, suppose σ0 ∈ resκi(Γi), and without loss of generality, σ0 is not trivial. Then, as resκi(Γj) =

resκi(Γi) for j ≥ i and Γj ⊂ Xj , σ0 ∈ resκi(Xj). Hence, for j ≥ i, there is an element σj ∈ Xj with

resκi(σj) = σ0.

By the compactness theorem, Theorem 6.1.6, there is a subsequence σnj that converges to a geosphere

σ. By construction resκi(σ) = σ0. We finish the proof by showing that σ ∈ Γ0, hence σ0 ∈ resκi(Γ0).

Assume without loss of generality that nj ≥ j for all j. Hence, if j ≥ i is fixed, for k ≥ j, σnk
∈

Xnk
⊂ Xj . As Xj is closed and σnk

→ σ, σ ∈ Xj . As j ≥ i was arbitrary, σ ∈ ∩jXj = Γ0. Thus,

σ0 = resκi(σ) ∈ resκi(Γ0).

Thus, we can extract limits of geosphere laminations, in particular those of collections of spheres. For

this construction to be useful, one would like the limit to be non-trivial. This turns out to be automatic

for geosphere laminations in M .

Proposition 6.4.2. The empty subset φ ∈ L(M) is an isolated point.
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Proof. As π1(M) acts cocompactly on T , there is a finite tree κ such that the translates of κ cover T .

Let U be the open set in C(M̃) given by U = {Γ ∈ C(M̃) : resκ(σ) = φ}. Clearly, φ ∈ U for the empty

lamination φ. We shall show that if Γ ∈ L(M) and Γ 6= φ, then Γ /∈ U .

Suppose Γ ∈ L(M) is non-trivial, and let σ ∈ Γ be a geosphere. Let v be a vertex in the tree τ

corresponding to σ. Then, as the translates of κ cover T , v ∈ gκ for some g ∈ π1(M). Hence, g−1v ∈ κ,

which implies that g−1τ ∩ κ 6= φ.

It follows that resκ(g−1Γ) 6= φ. But, as Γ ∈ L(M), g−1Γ = Γ and hence, resκ(Γ) 6= φ, i.e., Γ /∈ U as

claimed.

6.5 Geospheres and partitions

The definition of geospheres a priori depends on the choice of standard spheres for M . However, we show

that geospheres can be defined intrinsically by showing that they are determined by the partition of the

space of ends.

As we have seen that every geosphere σ = (τ, ε, e+) corresponds to a partition of the set of E(M̃) of

ends of M̃ in to three sets E+(σ), E−(σ) and E∞(σ). If τ is a finite tree, then E∞(σ) = φ. If τ = T , then

E∞ = E(M̃) and E+(σ) = E−(σ) = φ. In general, we get a partition with E±(Σ) open sets and E∞(Σ)

a closed set.

We show that any such partition corresponds to a geosphere.

Theorem 6.5.1. Given a partition E(M̃) = E+ ∪ E− ∪ E∞ of the ends of M (hence of T ) into disjoint

sets so that E± are open (and hence E∞ is closed) so that either E∞ has at least two points or both E+

and E− are non-empty, there is a geosphere σ = (τ, ε, e+) so that E±(Σ) = E± and E∞(Σ) = E∞

The proof is a slight extension of the proof of Theorem 5.1.1. We denote this partition of E(M̃) by

A = (E+, E−, E∞) = (E+(A), E−(A), E∞(A)). We note that it makes sense to talk of partitions crossing

(as in the Definition 6.2.1).

Firstly, we associate a subgraph τ of T to A as in the Section 5.1 as follows: If A crosses standard sphere

Σ̃i, then τ contains the bivalent vertex vi corresponding to Σ̃i and the edges ei
1 and ei

2 containing that

vertex vi. The other end vertex vi
j of each edge ei

j , j = 1, 2, is a trivalent vertex in T which corresponds to

a component of M̃ − Σ̃. Each vi
j may be a bivalent or univalent or a trivalent vertex in τ . If A does not

cross some standard sphere in M̃ , then τ does not contain the standard vertex corresponding this standard

sphere and hence, it does not contain the edges containing this standard vertex.

Lemma 6.5.2. If the partition A does not cross any standard sphere in M̃ , then E∞(A) = φ and there

exists a standard sphere Σ0 such that E± = E±(Σ0).

Proof. Firstly we shall show that E∞(A) = φ. Suppose E∞(A) 6= φ. Let P ∈ E∞. Suppose E∞ has

another point Q, we consider the geodesic γ ⊂ T from P to Q. Given any edge e of γ, if Σ(e) is the
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standard sphere corresponding to the standard vertex of e oriented appropriately, then P ∈ E−(Σ(e)) and

Q ∈ E+(Σ(e)). Hence, Σ(e) crosses the given partition A. This contradiction to the hypothesis as A does

not cross any standard sphere.

On the other hand, if P is the only point in E∞(A), then there are points Q± ∈ E±(A). Let α be the

geodesic from Q− to Q+ and let γ be the unique geodesic ray from a point of α to P with the property

that its interior is disjoint from α. Given any edge e of γ, if Σ(e) is the standard sphere corresponding

to the standard vertex of e oriented appropriately, then P ∈ E−(Σ(e)) and Q± ∈ E+(Σ(e)). Hence, Σ(e)

crosses the given partition A. This is contradiction to hypothesis. Therefore, E∞(A) = φ.

Now, by hypothesis, if v is a standard bivalent vertex of T , the standard sphere Σ(v) corresponding

to v does not cross A. Hence, after choosing orientations appropriately, either E+(Σ(v)) ⊂ E+(A) or

E−(Σ(V )) ⊂ E−(A). If Σ(v) = Σ0 satisfies both the conditions, then E±(A) = E±(Σ0).

Suppose no Σ(v) satisfies both the above conditions, we get a partition of bivalent vertices of T as

V + = {v : E+(Σ(v)) ⊂ E+(A)}

and

V − = {v : E−(Σ(v)) ⊂ E−(A)}.

Let X± is the union of all the edges e in T such that the bivalent vertex of e lies in V ±. Then, X±

are closed and T = X+ ∪ X−. Hence, X+ ∩ X− 6= φ. By construction, X+ ∩ X− consists of trivalent

vertices of T . Let w ∈ X+∩X− and let v1, v2 and v3 be bivalent vertices adjacent to w. Note that at least

one vi ∈ X+ and at least one vj ∈ X−. Without loss of generality, suppose v1, v2 ∈ X+ and v3 ∈ X−.

Let N(w) denote the set of all the points in T distance at most 1 from w. Then, T − N(w) has three

components V1, V2 and V3 whose closures contain the vertices v1, v2 and v3, respectively. It is easy to see

that E(V1) ⊂ E+, E(V2) ⊂ E+ and E(V3) ⊂ E−. It follows that E+(Σ(v3)) = E+(Σ(v1)) ∪ E+(Σ(v2)).

This implies E+(Σ(v3)) ⊂ E+. As v3 ∈ X−, E−(Σ(v3)) ⊂ E−. But then, v3 ∈ V + ∩ V −. This is

a contradiction as V + and V − are disjoint. Hence, there must exist a standard sphere Σ0 such that

E±(A) = E±(Σ0).

If A does not cross any standard sphere, the tree τ associated to A is a standard vertex corresponding

to the standard sphere representing A. Note that any edge e in T has a unique end vertex which is a

standard bivalent vertex in T .

We make the following observations :

If the partition A = (E+, E−, E∞) of E(M̃) crosses a sphere S = (E+(S), E−(S)) in M̃ , where

(E+(S), E−(S)) is a partition of E(M̃) given by S, then all the four intersections E±(S)∩ (E± ∪E∞) are

non-empty. For, if Eε(S)∩ (Eη(A)∪E∞(A)) = φ, for some sign ε and η, then Eη(A) ⊂ E ε̄(S) and hence,

Eη(A) ∩ Eε(S) = φ. This is a contradiction to the fact the partition A crosses S.

Lemma 6.5.3. The graph τ is connected and hence, a subtree of T .
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Proof. Suppose S, S′ and S′′ are standard spheres in M̃ such that the standard bivalent vertex v′ in T

corresponding to S′ lies on the reduced path in T joining the standard bivalent vertices v and v′′ in T

corresponding to S and S′′, respectively. By giving appropriate orientations to S, S′ and S′′, we can assume

that E+(S′′) ⊂ E+(S′) ⊂ E+(S) and E−(S) ⊂ E−(S′) ⊂ E−(S′′). Now, if A crosses S and S′′, then we

can easily see that A crosses S′. This shows that the reduced path in T joining v and v′′ in T is completely

contained in τ . From this, one easily see that τ is connected and hence a subtree of T .

Note that the terminal vertices of τ are trivalent vertices in T .

If A does not cross a sphere S = (E+(S), E−(S)) in M̃ , where (E+(S), E−(S)) is a partition of E(M̃)

given by S, then Eε(S)∩ (Eη(A)∪E∞(A)) = φ, for some sign ε and η obtained by choosing signs ε and η

in {+,−}. Then, Eε(S) ⊂ Eη̄(A) and (Eη(A) ∪ E∞(A)) ⊂ E ε̄(S). In this case, we say S is on the η̄-side

of A and A is on ε̄-side of S.

Note that the tree τ may or may not have terminal vertices. Suppose v is a vertex of τ adjacent to a

single edge e0 ∈ τ , i.e., a terminal vertex of τ . Let v0 ∈ τ be the other end vertex of e0 and Σ0 be the

standard sphere in M̃ corresponding to v0. Then, A crosses Σ0. Let the other edges adjacent to v in T

be e1 and e2 with other end vertices v1 and v2, respectively. Consider the standard spheres Σ̃i = Σ̃(vi)

corresponding to vertices vi, with orientations chosen so that for i = 1, 2, the set E+(Σ̃i) is the set of ends of

the component of M̃−Σ̃i that does not contain Σ̃0. We can orient Σ̃0 so that E+(Σ̃0) = E+(Σ̃1)∪E+(Σ̃2).

Lemma 6.5.4. For some sign ε, Eε(A) ⊃ E+(Σ̃1) and E ε̄(A) ⊃ E+(Σ̃2).

Proof. First note that for each i, i = 1, 2, E+(Σ̃i) ∩ E∞(A) = φ. For, if E+(Σ̃i) ∩ E∞(A) 6= φ, then

E+(Σ̃i) ∩ (E±(A) ∪ E∞(A)) 6= φ. As E−(Σ̃0) ⊂ E−(Σ̃i) and A crosses Σ̃0, we have E−(Σ̃i) ∩ (E±(A) ∪
E∞(A)) 6= φ. This implies that A crosses Σ̃i, which is a contradiction. Thus, E+(Σ̃0) ∩ E∞(A) = φ.

As A does not cross the spheres Σ̃i, for appropriate signs εi, (Eεi(A) ∪ E∞(A)) ∩ E+(Σ̃i) = φ. Then,

we have E+(Σ̃i) ⊂ E ε̄i(A), for i = 1, 2. Finally, if ε1 = ε2 = ε, then E ε̄(A) ⊃ E+(Σ̃0) as E+(Σ̃0) =

E+(Σ̃1) ∪ E+(Σ̃2). As E∞(A) ∩ E(Σ̃0) = φ, we get E+(Σ̃0) ∩ (Eε(A) ∪ E∞(A)) = φ, contradicting the

hypothesis that A crosses Σ̃0. Therefore, ε1 6= ε2. Hence the result.

Thus, one of the spheres Σ̃1 and Σ̃2 is on the positive side of A and the other on the negative side. In

the case of a vertex v of valence 2 of τ , either it is a bivalent vertex (standard vertex) of T or there is an

edge ev of T adjacent to v which is not in τ . The standard sphere Σ̃(ev) corresponding to the other end

vertex of the edge ev is either on the positive side of A or on the negative side.

Let N(τ) be the subgraph of T consisting of points with distance at most 1 from τ . Then, N(τ) is a

tree, which is the union of τ with the following two kinds of edges:

1. For each terminal vertex v of τ , we have a pair of edges e1(v) /∈ τ and e2(v) /∈ τ with v as an

end-vertex. Let v1 and v2 be the other end vertices of e1 and e2, respectively.

2. For each non-standard bivalent vertex w of τ , we have an edge e(w) /∈ τ with w as an end-vertex.

Let w1 be its other end vertex.
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By Lemma 6.5.4, for a terminal vertex v, the sphere corresponding to one of v1 and v2 is on the positive

side of τ (positive side of A). The vertices v1 and v2 are end vertices of e1 and e2 respectively. So, we

can assign positive or negative signs to these edges accordingly. We denote this by e+(v) and denote the

other edge (which is on the negative side) by e−(v). We denote the standard spheres corresponding to

v1 and v2 by Σ̃(v1) = Σ̃(e1) and Σ̃(v2) = Σ̃(e2), respectively. For a non-standard bivalent vertex w of τ ,

we can associate a sign ε(w) so that Σ̃(w1) = Σ̃(e(w)) is on the ε(w)-side of A. Thus, we have a triple

σ = (τ, ε, e+) which is geosphere in M̃ .

Now we shall show that σ gives the partition A of E(M̃).

Lemma 6.5.5. The partition (E+(σ), E−(σ), E∞(σ)) of E(M̃) given by the geosphere σ is the same as

the partition A of E(M̃).

Proof. Let P ∈ E+(A). As E+(A) is open in the space of ends of T , there is a finite connected tree κ ⊂ T

and a component V of T − κ so that P ∈ E(V ) ⊂ E+(A). We shall show that no edge of V is contained

in τ . Let e be an edge of T contained in V = T − κ. Then, as κ is connected, some component W of T − e

is disjoint from κ, and hence contained in V . Suppose v is the end vertex of e such that v is a standard

bivalent vertex in T . Let Σ(v) be the standard sphere corresponding to v, then it follows that for some

sign ε, Eε(Σ(v)) ⊂ E(V ) ⊂ E+(A), and hence, Σ(v) does not cross A. This implies v is not in τ . It follows

that e is not in τ . Thus, no edge of V is in τ , as required.

Let W0 be the component of T − τ that contains V . Then, the closure of W0 intersects τ in a single

vertex, which is either a terminal vertex or a non-standard bivalent vertex. In either case, E(W0) ⊂ E+(σ)

by construction of the partition associated to a geosphere. Then, as P ∈ E(V ) ⊂ E(W0), P ∈ E+(σ).

Thus, E± ⊂ E±(σ).

We next show that E∞(A) ⊂ E∞(σ). Let P ∈ E∞(A). Suppose E∞(A) has another point Q,

we consider the geodesic γ ⊂ T from P to Q. Given any edge e of γ, if Σ(e) is the standard sphere

corresponding to the standard vertex of e oriented appropriately, then P ∈ E−(Σ(e)) and Q ∈ E+(Σ(e)).

Hence, Σ(e) crosses the given partition A, so v ∈ τ and hence, e ∈ τ . Thus, γ ⊂ τ and hence P ∈ E∞(τ).

On the other hand, if P is the only point in E∞(A), then there are points Q± ∈ E±(A). Let α be the

geodesic from Q− to Q+ and let γ be the unique geodesic ray from a point of α to P with the property

that its interior is disjoint from α. Given any edge e of γ, if Σ(e) is the standard sphere corresponding

to the standard vertex of e oriented appropriately, then P ∈ E−(Σ(e)) and Q± ∈ E+(Σ(e)). Hence, Σ(e)

crosses the given partition A, so e ∈ τ . Thus, γ ⊂ τ and hence, P ∈ E∞(τ).

This shows that E∞(A) ⊂ E∞(σ). Thus, as (E+(σ), E−(σ), E∞(σ)) and A form partitions of E(M̃),

both are the same.

From this, Theorem 6.5.1 follows.
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In this chapter, we see our further plans of work.

The geometric intersection number of curves on surfaces has been used to study Thurston compact-

ification of Teichmüller space of a surface and the boundary of Teichmüller space, namely the space of

projectivised measured laminations. Geodesic laminations (and measured laminations) on surfaces have

proved to be very fruitful in three-manifold topology, Teichmüller theory and related areas and mapping

class group of a surface. By Dehn-Nielsen-Baer theorem, the mapping class group of a surface S of positive

genus is isomorphic to the group of outer automorphisms of π1(S).

Culler and Vogtmann [7], introduced a space Xn on which the group Out(Fn) acts with finite point

stabilizers, and proved that Xn is contractible. Peter Shalen later invented the name “ Outer space” for

Xn. Outer space with the action of Out(Fn) can be thought of as free group analogous to the Teichmüller

space of a surface with the action of the mapping class group of the surface. Culler and Morgan have

constructed a compactification of Outer space much like Thurston compactification of Teichmüller space

[6].

We are trying to develop techniques to study sphere complex, Out(Fn), Outer space of a free group

analogous to simple closed curves on a surface, intersection numbers, geodesic laminations, measured

laminations, curve complex used to study mapping class group of a surface.

We can ask the following questions:

(1) What are the isolated points of the space L(M) of geosphere laminations of M? Given a space X,

we can define Xw to be the set of accumulation points of X. This inductively gives sequences X ⊃ Xw ⊃
(Xw)w ⊃ · · · . What is this for L(M) and for the space GS(M̃) of geospheres in M̃?

(2) Given any embedded sphere S in normal form with respect to Σ in M , we have a geosphere

lamination associated to it, namely, the inverse image of S in M̃ under the covering map. So, we can

regard S as a geosphere lamination in M . Let S0(M) be the set of isotopy classes spheres in M . Then,

S0(M) can be considered as subset of L(M). What is the closure of S0(M) in L(M)?

(3) Geosphere can be defined as a partition of the set of ends of M̃ . Put appropriate topology on the

set of such partitions and show that the topology on the geosphere defined earlier and this topology are

the same. Define notion of geosphere laminations independent of the maximal sphere system in M . Study

geosphere laminations in this set up.

(4) Define intersection number for geospheres and geosphere laminations and study this intersection
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number.

(5) Introduce concept of measured geosphere laminations and study its connection with the boundary

of Outer space of a free group.

(6) Use geosphere laminations and measured geosphere laminations to study Out(Fn) and try to connect

this with the work of Bestivina and Handle, [1], [3], [2], [4].

(7) Embedded sphere in M corresponds to splittings of free group. What are geosphere in algebraic

setting?

(8) The geometric intersection number of curves on a surface has been used to give constructions like

the space of measured laminations whose projectivization is the boundary of Teichmüller space, [35], as

well as to study geometric properties, including hyperbolicity of the curve complex in [5], [36]. One may

hope that the geometric intersection number of embedded spheres in M might be useful to give such

constructions in case of the sphere complex and Outer space.

Study Scott-Swarup intersection number of spheres in more details.

(9) Define multiplicative structure of spheres and study it.

(10) Study hyperbolicity of sphere complex. See whether sphere complex is δ-hyperbolic in the sense

of Gromov or not.

(11) Define the analogue of geodesic currents so that the geosphere laminations are geodesic currents

with self intersection number zero. Is there an analogue of Teichmüller space? (12) What is the structure

of a geosphere lamination, in particular in terms of its sublaminations?

(13) Given φ ∈ Out(π1(M)), relate limits of φn(Σ), where Σ is sphere in M , with the structure of outer

automorphism.
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