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Chapter 1

An introduction to heavy tailed

distributions

1.1 Introduction

In this thesis, we shall be focusing on some problems in probability theory involving

regularly varying functions. The theory of regular variations has played an important

role in probability theory, harmonic analysis, number theory, complex analysis and many

more areas of mathematics. For an encyclopedic treatment of the subject, we refer

to Bingham et al. (1987). In probability theory, the limiting behavior of the sums of

independent and identically distributed (i.i.d.) random variables is closely related to

regular variation. The books by Feller (1971) and Gnedenko and Kolmogorov (1968) give

characterizations of random variables in the domains of attraction of stable distributions

in terms of regularly varying functions. The study of extreme value theory was first

initiated by Fisher and Tippett (1928), Gnedenko (1943). The use of regular variation

in extreme value theory is now very well known due to the works of de Haan (1970,

1971). The Tauberian theorems involving regularly varying functions play a very crucial

role in different disciplines. Bingham et al. (1987) gives a very good account of the

Tauberian theorems for Laplace and Mellin transforms. The use of regularly varying

functions is also very popular in insurance and risk theory. For a comprehensive study

of different applications, we refer to the book by Embrechts et al. (1997). The study

1



2 Chapter 1: An introduction to heavy tailed distributions

of record values and record times also uses various properties of extreme value theory

and regularly varying functions (Resnick, 1987, Chapter 4). The theory of multivariate

regular variation is useful in modelling various telecommunication systems and Internet

traffic (Heath et al., 1999, Maulik et al., 2002, Mikosch et al., 2002). The study of certain

environmental issues is also facilitated when one considers the theory of multivariate

regular variations. See de Haan and de Ronde (1998), Heffernan and Tawn (2004) for

some recent applications in this area.

The theory of regular variations has also found an important place in free probability.

Free probability was introduced by Voiculescu (1986). While free probability has an

important application in the study of random matrices, its connection with various

topics like the study of the free groups and the factor theory have made it a subject of

its own interest. Bercovici and Pata (1999, 2000b) studied the domain of attraction of

free stable laws and showed that the regularly varying functions play a very crucial role

like they do in the classical setup. In the final chapter of this thesis, we show another

application of regular variation in free probability theory.

In Section 1.2 we give the definitions of regularly varying functions, distribution

functions and measures with regularly varying tails and some of their properties. In

Subsections 1.2.1 and 1.2.2 we state some well known results on the regularly varying

functions which we shall use in the later chapters. In Section 1.3 we recall the definitions

of subexponential and long tailed distributions and some of their properties. In Section 1.4

we give a brief introduction to one dimensional extreme value theory and also point out

its connections with regularly varying functions. In Section 1.5 we give a brief overview

of the results in the later chapters.

1.1.1 Notations

The space of natural numbers, integers, real numbers and complex numbers will be

denoted by N, Z, R and C respectively. By R+ we shall mean the space of non-negative

reals, that is, [0,∞). For a complex number z, <z and =z will denote its real and

imaginary parts respectively. We shall denote the upper and the lower halves of the

complex plane respectively by C+ and C− , namely, C+ = {z ∈ C : =z > 0} and

C− = −C+.
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For a real valued functions f and g, we shall write f(x) ≈ g(x), f(x) = o(g(x))

and f(x) = O(g(x)) as x → ∞ to mean that f(x)/g(x) converges to a non-zero limit,

f(x)/g(x) → 0 and f(x)/g(x) stays bounded as x → ∞ respectively. If the non-zero

limit is 1 in the first case, we write f(x) ∼ g(x) as x→∞. For complex valued functions

the notations are explained in Section 4.3.1 of Chapter 4.

By x+ and x− we shall mean max{0, x} and max{0,−x} respectively. For a distribu-

tion function F the tail of the distribution function will be denote by F (x) = 1− F (x).

If S is a topological space with S being its Borel σ-field, then for non-negative Radon

measures µt, for t > 0, and µ on (S,S), we say µt converges vaguely to µ and denote

it by µt
v→ µ, if for all relatively compact sets C, which are also µ-continuity sets of µ,

that is, µ(∂C) = 0, we have µt(C) → µ(C), as t → ∞. By M+(S) we shall mean the

space of all Radon measures on S endowed with the topology of vague convergence.

1.2 Regularly varying functions and random variables

Regularly varying functions are an integral part in the study of heavy tailed distributions.

A regularly varying function asymptotically looks like a power function. The use

of regularly varying functions is extensive in literature. They are heavily used in

characterizing the domains of attraction, stable laws, modeling long range dependence

and extreme value theory. In this section we collect some basic properties of the regularly

varying functions, which we shall use throughout this thesis. Most of the proofs are

very common and are well available in literature. For more detailed theory of regular

variations and related classes, we refer the readers to Bingham et al. (1987). We now

recall the definition of a regularly varying function.

Definition 1.2.1. A measurable function f : R+ → R+ is called regularly varying (at

infinity) with index α, if for t > 0,

lim
x→∞

f(tx)

f(x)
= tα. (1.2.1)

If α = 0, f is said to be slowly varying.

The space of regularly varying functions (at infinity) with index α will be denoted
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by RVα.

In analogy to regular variation at infinity one can talk about regular variation at zero

with an obvious change in the above definition. A function f(x) is said to be regularly

varying at zero if and only if f(x−1) is regularly varying at infinity. In the subsequent

chapters, regular variation will always mean the behavior at infinity unless otherwise

specified.

From the above definition it is clear that one can always represent a regularly varying

function with index α as xαL(x) for some slowly varying function L.

Example 1.2.1. xα, xα ln(1+x), xα ln(ln(e+x)) are some examples of regularly varying

function at infinity with index α.

1.2.1 Some well known results about regular variations

This subsection provides some basic properties of regularly varying functions, which

shall be useful in later chapters of this thesis. The proofs of these results are available in

Chapter 1 of Bingham et al. (1987).

(i) A positive function L on [x0,∞) is slowly varying if and only if it can be written

in the form

L(x) = c(x) exp

(∫ x

x0

ε(y)

y
dy

)
, (1.2.2)

where c(·) is a measurable nonnegative function such that limx→∞ c(x) = c0 ∈

(0,∞) and ε(x)→ 0 as x→∞.

This is known as Karamata’s Representation for slowly varying functions and we

refer to Corollary of Theorem 0.6 of Resnick (1987).

(ii) For a regularly varying f with index α 6= 0, as x→∞,

f(x)→


∞ if α > 0

0 if α < 0.

Moreover, if L is slowly varying then for every ε > 0, x−εL(x)→ 0 and xεL(x)→∞,

as x→∞.
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(iii) If f is regularly varying with index α (if α > 0, we also assume f is bounded on

each interval (0, x], x > 0) then for 0 < a ≤ b < ∞, the equation (1.2.1) holds

uniformly in t

(a) on each [a, b] if α = 0,

(b) on each (0, b] if α > 0,

(c) on each [a,∞) if α < 0.

Theorem 1.2.1 (Karamata’s Theorem, Resnick, 1987, Theorem 0.6). Let L be a slowly

varying function and locally bounded in [x0,∞) for some x0 ≥ 0.

(i) If α > −1, then ∫ x

x0

tαL(t)dt ∼ xα+1L(x)

α+ 1
, as x→∞.

(ii) If α < −1, then

∫ ∞
x

tαL(t)dt ∼ −x
α+1L(x)

α+ 1
, as x→∞.

(iii) If α = −1, then
1

L(x)

∫ x

x0

L(t)

t
dt→∞ as x→∞

and
∫ x
x0

L(t)
t dt is slowly varying.

(iv) If α = −1 and
∫∞
x0

L(t)
t dt <∞, then

1

L(x)

∫ ∞
x

L(t)

t
dt→∞ as x→∞

and
∫∞
x

L(t)
t dt is slowly varying.

Theorem 1.2.2 (Potter’s bound, Resnick, 1987, Proposition 0.8). Suppose f ∈ RVρ,

ρ ∈ R. Take ε > 0. Then there exists t0 such that for x ≥ 1, and t ≥ t0, we have

(1− ε)xρ−ε < f(tx)

f(t)
< (1 + ε)xρ+ε. (1.2.3)
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We now state Karamata’s Tauberian theorem for Laplace-Stieltjes and Stieltjes

transforms.

Definition 1.2.2. For a non-decreasing right continuous function U on [0,∞) define

its Laplace-Stieltjes transform

Û(s) :=

∫ ∞
0

e−sxdU(x).

Theorem 1.2.3 (Karamata’s Tauberian theorem, Bingham et al. (1987), Theorem

1.7.1). Let U be a nondecreasing, right continuous function defined on [0,∞). If L is

slowly varying, c ≥ 0, α ≥ 0, then the following are equivalent:

(i) U(x) ∼ cxαL(x)
Γ(1+α) , as x→∞

(ii) Û(s) ∼ cs−αL(1/s), as s ↓ 0.

If c > 0 then any one of the above implies U(x) ∼ Û(1/x)/Γ(1 + α).

A similar Tauberian result for the Stieltjes transform of order ρ can be derived using

the above result on Laplace-Stieltjes transform.

Definition 1.2.3. If U is non-decreasing function on [0,∞) and ρ > 0, let Sρ(U ; ·), the

Stieltjes transform of order ρ be defined as,

Sρ(U ;x) :=

∫ ∞
0

(x+ y)−ρdU(y), x > 0.

The following result will be useful in Chapter 4.

Theorem 1.2.4 (Bingham et al., 1987, Theorem 1.7.4). Suppose 0 < σ ≤ ρ, c ≥ 0 and

L is slowly varying,

U(x) ∼ cΓ(ρ)

Γ(ρ)Γ(ρ− σ + 1)
xρ−σL(x) as x→∞

if and only if

Sρ(U, x) ∼ x−σL(x) as x→∞.
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1.2.2 Sums and products of regularly varying random variables

In this subsection, we define random variables with regularly varying tails and discuss

some of the well known results on sums and product of such random variables. For a

nice detailed overview of the properties of sum and products of random variables with

regularly varying tails, we refer to Jessen and Mikosch (2006).

Definition 1.2.4. (a) We say a nonnegative (real) random variable X with distri-

bution function F has a regularly varying tail of index −α, if the tail of the

distribution function 1− F (·) := F (·) = P[X > ·] ∈ RV−α.

(b) A finite measure µ on R+ is said to have regularly varying tail of index −α, if

µ(·,∞) ∈ RV−α.

Remark 1.2.1. (i) It is implicit in the definition that we require F (x) and µ(x,∞) to

be positive for all x ∈ R+ to make sense of the definition.

(ii) It is clear from (ii) of Subsection 1.2.1 that, if F or µ has regularly varying tail of

index −α, then we necessarily have α ≥ 0.

(iii) If X is nonnegative random variable having regularly varying tail of index −α

with α > 0, then E[Xβ] <∞ for β < α and E[Xβ] =∞ for β > α.

(iv) By Theorem 3.6 of Resnick (2007), Definition 1.2.4(a) is equivalent to the existence

of a positive function a(·) ∈ RV1/α, such that tP[X/a(t) ∈ ·] has a vague limit

in M+((0,∞]), where the limit is a nondegenerate Radon measure. The limiting

measure necessarily takes values cx−α on set (x,∞], for some constant c > 0.

The definition for regular variation of not necessarily positive random variable extends

in a very natural way to accommodate both the tails of random variable.

Definition 1.2.5. A random variable X (not necessarily positive) has a regularly varying

tail of index −α with α ≥ 0 if |X| > ·] ∈ RV−α and

P[X > x]

P[|X| > x]
→ p and

P[X < −x]

P[|X| > x]
→ q as x→∞, (1.2.4)

with 0 < p < 1 and p+ q = 1. We shall often call (1.2.4) as the tail balance condition.
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Now we state some properties of random variables with regularly varying tails which

shall be useful later. The next result is a reformulation of Karamata’s Theorem 1.2.1 in

terms of the distribution functions.

Theorem 1.2.5 (Bingham et al., 1987, Theorems 1.6.4, 1.6.5 and 1.7.2).

(i) Suppose F has regularly varying tail of index −α with α > 0 and β ≥ α. Then

lim
x→∞

xβF (x)∫ x
0 y

βF (dy)
=
β − α
α

. (1.2.5)

Conversely, if β > α and (1.2.5) holds then F has a regularly varying tail of index

−α. If β = α then F (x) = o(x−αL(x)) for some slowly varying function L.

(ii) Suppose F has regularly varying tail of index −α with α > 0 and β < α. Then

lim
x→∞

xβF (x)∫∞
x yβF (dy)

=
β − α
α

. (1.2.6)

Conversely, if β < α and (1.2.6) holds, then F has a regularly varying tail of

index −α.

(iii) The function x 7→
∫ x

0 y
γF (dy) is slowly varying if and only if F (x) =

o
(
x−γ

∫ x
0 y

γF (dy)
)

for some γ > 0.

The following result is a reformulation of the Potter’s bound described in Theo-

rem 1.2.2 in terms of distribution functions and random variables.

Theorem 1.2.6 (Resnick and Willekens, 1991, Lemma 2.2). Let Z be a nonnegative

random variable with distribution function F which has regularly varying tail of index

−α with α > 0. Given ε > 0, there exists x0 = x0(ε), K = K(ε) > 0 such that, for any

c > 0:

F (x/c)

F (x)
≤


(1 + ε)cα+ε if c ≥ 1, x/c ≥ x0

(1 + ε)cα−ε if c < 1, x ≥ x0.

(1.2.7)
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and

E[(cZ ∧ x)α+ε] ≤


(1 + ε)cα+εxα+εF (x) if c ≥ 1, x/c ≥ x0

(1 + ε)cα−εxα+εF (x) if c < 1, x ≥ x0.

(1.2.8)

We now state an important result about sums of i.i.d. random variables with regularly

varying tails, which is extended to the free probability setup in Chapter 4.

Lemma 1.2.1 (Embrechts et al., 1997, Lemma 1.3.1). If {Xi} are i.i.d. nonnegative

random variables with regularly varying tails of index −α with α ≥ 0, then for each

n ∈ N,

P

[
n∑
i=1

Xi > x

]
∼ nP[X1 > x] as x→∞. (1.2.9)

This property is often referred to as the principle of one large jump, since (1.2.9)

implies P[Sn > x] ∼ P[Mn > x] where Sn =
∑n

i=1Xi and Mn = max{X1, · · · , Xn}.

Proof. We now briefly indicate the proof of the above result for n = 2. As {X1 +X2 >

x} ⊃ {X1 > x} ∪ {X2 > x} we get,

P [X1 +X2 > x] ≥ P [X1 > x] + P [X2 > x] (1 + o(1)).

For the upper bound choose δ ∈ (0, 1) and observe,

P[X1 +X2 > x] ≤ P[X1 > (1− δ)x] + P[X2 > (1− δ)x] + P[X1 > δx] P[X2 > δx].

= P[X1 > (1− δ)x] + P[X2 > (1− δ)x](1 + o(1)),

and the result now follows by taking δ ↓ 0.

Remark 1.2.2. Note that the above proof also shows that is X and Y are nonnegative

random variables with regularly varying tails of index −α and −β, α > 0 and β > 0

with α < β then

P[X + Y > x] ∼ P[X > x] as x→∞.

So the random variable with heavier tail dominates the sum.

The following result considers weighted sum of i.i.d. (not necessarily nonnegative)

random variables with regularly varying tails.
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Lemma 1.2.2 (Embrechts et al., 1997, Lemma A3.26). Let {Zi} be an i.i.d. sequence

of random variables having regularly varying tails of index −α with α ≥ 0, where they

satisfy the tail balance condition (1.2.4). Then for any sequence of real constants {ψi}

and m ≥ 1,

P[ψ1Z1 + · · ·+ ψmZm > x] ∼ P[|Z1| > x]
m∑
i=1

[
p(ψ+

i )α + q(ψ−i )α
]
,

The above result can be extended to infinite weighted series of i.i.d. random variables

with regularly varying tails. The following result considers X =
∑∞

j=1 ψjZj for an i.i.d.

sequence {Zi} of random variables with regularly varying tails of index −α. This kind

of infinite series appears in the study of the extreme value properties of linear processes

and autoregressive processes. Before proceeding with the tail behavior of this series, one

needs to consider the almost sure finiteness of the series, which follows from Three Series

Theorem. The almost sure finiteness and tail behavior of X were considered by Cline

(1983). See also Theorem 2.2 of Kokoszka and Taqqu (1996).

Theorem 1.2.7. Let {Zi} be an i.i.d. sequence of random variables with regularly

varying tails of index −α with α > 0, which satisfy the tail balance condition (1.2.4).

Let {ψi} be a sequence of real valued weights. Assume that one of the following condition

holds:

(i) α > 2, E[Z1] = 0 and
∑∞

i=1 ψ
2
i <∞;

(ii) α ∈ (1, 2], E[Z1] = 0 and
∑∞

i=1 |ψi|α−ε <∞ for some ε > 0;

(iii) α ∈ (0, 1],
∑∞

i=1 |ψi|α−ε <∞, for some ε > 0.

Then X =
∑∞

j=1 ψjZj converges almost surely and

P[X > x] ∼ P[|Z1| > x]

∞∑
i=1

(
p(ψ+

i )α + q(ψ−i )α
)
.

The product behavior of the random variables with regularly varying tails is as

important as the sum of such random variables. The product behavior is a bit more

delicate than the sums. For a review of the results on product of random variables we

refer to Section 4 of Jessen and Mikosch (2006).
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Theorem 1.2.8 (Jessen and Mikosch, 2006, Lemma 4.2). Let X1, X2 · · · , Xn be i.i.d.

random variables, with P[X1 > x] ∼ cαx−α for some c > 0. Then

P[X1X2 · · ·Xn > x] ∼ αn−1cnα

(n− 1)!
x−α logn−1 x. (1.2.10)

Theorem 1.2.9. Suppose X and Θ are independent nonnegative random variables and

X has regularly varying tail of index −α with α > 0.

(i) If Θ has regularly varying tail of index −α with α > 0, then ΘX also has regularly

varying tail of index −α.

(ii) If there exists an ε > 0, such that E[Θα+ε] <∞, then

P[ΘX > x] ∼ E[Θα] P[X > x]. (1.2.11)

(iii) Under the assumptions of part (ii),

sup
x≥y

∣∣∣∣P[ΘX > x]

P[X > x]
− E[Θα]

∣∣∣∣→ 0 as y →∞.

(iv) If P[X > x] = x−α for x ≥ 1 and E[Θα] <∞, then (1.2.11) holds.

Proof of part (i) can be found on page 245 of Embrechts and Goldie (1980). The

proof of part (iii) is indicated in Lemma 4.2 of Jessen and Mikosch (2006). In the

subsequent chapters we come across the results of part (ii) and part (iv). Part (ii) is also

known as Breiman’s Theorem and was derived in Breiman (1965). Part (iv) was used in

various places but an explicit proof appears in Lemma 5.1 of Maulik and Zwart (2006).

1.3 Class of heavy tailed distributions and its subclasses

In Lemma 1.2.1 we saw that the sum of random variables with regularly varying tails

satisfy the principle of one large jump. This property is in general exhibited by a

larger class. The random variables which satisfy the principle of one large jump are

known as the subexponential random variables. We now give a formal definition of the

subexponential distribution functions and look into some of their properties. Throughout
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this section we assume that the distribution functions has support unbounded above,

that is, F (x) > 0 for all x.

Definition 1.3.1. A distribution function F on (0,∞) is called subexponential if for all

n ≥ 2,

F ∗n(x) ∼ nF (x) as x→∞. (1.3.1)

Here F ∗n denotes the n-fold convolution power of F . The class of subexponential

distribution functions is denoted by S.

By Lemma 1.2.1 any distribution function with regularly varying tail satisfies the

above equation (1.3.1) and hence they form a subclass of the subexponential distributions.

Some other examples are

(i) Lognormal: P[X > x] = P[eµ+σN > x], µ ∈ R, σ > 0 with N as standard normal

random variable.

(ii) Weibull: P[X > x] = e−ax
α
, a > 0 and 0 < α < 1.

As stated above one of the most important features of the subexponential distributions

is the principle of single large jump, which can be briefly summarized as follows: if

X1, . . . , Xn are i.i.d. random variables with subexponential distribution functions, then

the probability that their sum will be large is of the same order as that their maximum

will be large. We formalize this in the following proposition.

Proposition 1.3.1 (Principle of one large jump). If X1, . . . , Xn are i.i.d. random

variables with subexponential distribution functions, then as x→∞,

P[X1 + . . .+Xn > x] ∼ P[X1 ∨ . . . ∨Xn > x].

Proof. Observe that, by the subexponential property, we have, as x→∞,

P[X1 + · · ·+Xn > x] = F ∗n(x) ∼ nF (x) ∼ 1− (F (x))n = P[X1 + · · ·+Xn > x].
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The principle of one large jump is very important in modeling ruins under catastrophic

events. While in the usual scenarios, individually small shocks build up to create a large

aggregate shock, in catastrophic models, one single large shock is the cause of ruin. Such

a property makes the subexponential distributions an ideal choice for modelling ruin

and insurance problem and has caused wide interest in the probability literature (cf.

Embrechts et al., 1997, Rolski et al., 1999). Historically, this class was first studied by

Čistjakov (1964) where he showed an application to branching processes. The connection

with branching process was later elaborately studied by Chover et al. (1973a,b).

The above definition is also closely related to two other concepts originating in

reliability theory, namely hazard function and hazard rate.

Definition 1.3.2. For a distribution function F , we define the hazard function

R(x) = − logF (x).

If, further, the distribution function is absolutely continuous with density function f , we

define the hazard rate r as the derivative of R. In particular, we have

r(x) =
f(x)

F (x)
.

Since we assume that the distribution function F has support unbounded above, the

hazard function is well defined.

As shown in the subexponentiality of random variables with regularly varying tails,

the lower bound is almost trivial and does not require the regularly varying property.

The next Lemma provides a sufficient condition on subexponentiality. The proof of the

next result appears as Lemma 1.3.4 of Embrechts et al. (1997).

Lemma 1.3.1. If

lim sup
x→∞

F ∗2(x)

F (x)
≤ 2,

then F is subexponential.

Pitman (1980) provided a necessary and sufficient condition for identifying subexpo-

nential distribution functions.
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Theorem 1.3.1. Let F be an absolutely continuous distribution function supported on

the nonnegative real line with hazard rate function r, which is eventually non-increasing

and goes to 0. Then F is a subexponential distribution function if and only if

lim
x→∞

∫ x

0
eyr(x) F (dy) = 1.

If R denotes the hazard function, then a sufficient condition for the subexponentiality of

F is the integrability of exp(xr(x)−R(x))r(x) over the nonnegative real line.

An application of the sufficient part of the theorem shows that Weibull distribution

with shape parameter α < 1 is subexponential. Since the definition of subexponential

property does not depend on the scale factor a, we assume a = 1. Then F (x) = exp(−xα)

for x > 0 giving R(x) = xα and r(x) = αxα−1. Since α < 1, the hazard function decreases

to 0. So exp(xr(x)−R(x))r(x) = αxα−1 exp(−(1− α)xα), which is integrable over the

positive real line, as 0 < α < 1.

Although the definition of subexponential distributions require the equation (1.3.1)

to hold for all n (or, for n = 2 in Lemma 1.3.1), but was shown in Embrechts and Goldie

(1980) that it is enough to check for some n ≥ 2.

Proposition 1.3.2 (Embrechts et al., 1997, Lemma A3.14). Let F be a distribution

function supported on the nonnegative real line, such that, for some n ∈ N, we have,

lim sup
x→∞

F ∗n(x)

F (x)
≤ n.

Then F is a subexponential distribution function.

Čistjakov (1964) showed that the subexponential distributions form a part of larger

class of distributions which are called heavy tailed distributions. We now define heavy

tailed distributions and analogously light tailed distributions.

Definition 1.3.3. We say a random variable X is heavy tailed if, for all λ > 0, E[eλX ] =

∞, or equivalently, if for all λ > 0, eλx P[X > x]→∞ as x→∞.

Also we give a definition for light tailed distribution in view of the above definition.
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Definition 1.3.4. A random variable X is called light tailed if E[eλX ] < ∞ for some

λ > 0.

For light tailed distributions on [0,∞) we have all moments finite.

Clearly, Definition 1.3.3 requires that F (x) > 0 for all x ∈ R, which is the standing

assumption. The definition requires that the tail of the distribution function decays

slower than any exponential function. This is the reason that sometimes such distribution

functions are also called subexponential distribution functions. However, as per the

convention introduced by the seminal work of Teugels (1975), we have reserved that

terminology for the class defined in Definition 1.3.1. The heavy-tailed property, the

hazard function and the decay of the tail are related in the following theorem:

Theorem 1.3.2 (Foss et al., 2009, Theorem 2.6). For a distribution function F with

support unbounded above, the following statements are equivalent:

(i) F is a heavy-tailed distribution.

(ii) lim infx→∞R(x)/x = 0.

(iii) For all λ > 0, lim supx→∞ eλx F (x) =∞.

Definition 1.3.1 defines subexponential distribution functions, when they are sup-

ported on the nonnegative real line only. If we allow the distribution function to be

supported on the entire real line, (1.3.1) may hold even for light-tailed distribution. See

Example 3.3 of Foss et al. (2009) for one such distribution function. One easy way to

extend the notion to all distribution functions is to restrict the distribution function to

the nonnegative real line by considering

F+(x) =


F (x), if x ≥ 0,

0, otherwise

and requiring (1.3.1) to hold for F+.

The class of subexponential distributions satisfies the important property of being

long tailed and long tailed distributions in turn have the property of being heavy tailed.
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Definition 1.3.5. A distribution function F on R is called long tailed, if F (x) > 0 for

all x and, for any real number y,

F (x− y) ∼ F (x) as x→∞. (1.3.2)

The class of long-tailed distributions is denoted by L.

Since the function F is monotone, it can be easily checked that the convergence is

uniform in y on every compact interval.

Remark 1.3.1. It is important to note that the long tailed distributions are related to

the slowly varying functions in the following manner

F ∈ L if and only if F (ln(·)) ∈ RV0. (1.3.3)

Čistjakov (1964) introduced the classes of subexponential, heavy tailed and long

tailed distributions and showed the following containment.

Proposition 1.3.3 (Čistjakov, 1964, Lemma 2 and Theorem 2). Any long-tailed distri-

bution function is heavy-tailed. Any subexponential distribution function (supported on

the nonnegative real line) is long-tailed.

The class of subexponential distributions has found wide application in different

branches of probability theory other than branching process, for which it was originally

introduced by Čistjakov (1964). The following result shows that if two distribution

functions have tails of comparable order and one of them is subexponential, then the

other is also subexponential.

Definition 1.3.6. We say that two distribution functions F and G are tail equivalent,

if there exists a number c ∈ (0,∞), such that G(x) ∼ cF (x).

The proof of the following result can be found as Lemma A3.15 of Embrechts et al.

(1997).

Proposition 1.3.4. If F is a subexponential distribution function and G is tail equivalent

to F , then G is also subexponential.
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Remark 1.3.2. We can take F and G to be supported even on the entire real line. The

subexponentiality will depend on the corresponding distribution functions F+ and G+,

which will also be tail equivalent.

Proposition 1.3.4 and Theorem 1.3.1 together can be used to show that lognormal

distribution is subexponential. While the tail of the lognormal distribution is not easy

to understand, Mill’s ratio can be used to easily approximate it by a nice nonincreasing

continuous function. So we first consider a distribution function which has this tail and

hence is tail equivalent to the lognormal distribution. The corresponding hazard rate

and hazard function do not satisfy the sufficient integrability condition of Theorem 1.3.1

around 0. However, we can still alter the distribution function in a neighborhood of 0

to make things integrable, yet maintain tail equivalence, which is a behavior around

infinity. Thus the new distribution function will be subexponential and hence, by

Proposition 1.3.4, the lognormal distribution will also be subexponential.

Proposition 1.3.4 shows that the class of subexponential distribution functions is

closed under tail equivalence. Closure of the class of long-tailed and heavy-tailed

distribution functions under tail equivalence is trivial. Similar questions are of general

interest in this area of probability theory. One of such operations for the question of

closure is convolution. Clearly if F and G are heavy-tailed, then so is F ∗G. Similar

result is true for long-tailed distributions as well; see Section 2.7 of Foss et al. (2009). In

fact, it is also proved there that if F is long-tailed and G(x) = o(F (x)), then F ∗G is

also long-tailed. However, in general, the class of subexponential distributions is not

closed under convolution; see Leslie (1989) for a counterexample. Other interesting

operations include finite mixture and product. In particular, if F and G are heavy-tailed

(long-tailed respectively) distribution functions, then for any p ∈ (0, 1), the mixture

distribution function pF + (1− p)G and FG (the distribution function of the maximum

of two independent random variables with distributions F and G) are also heavy-tailed

(long-tailed respectively). However, such closures fail for the class of subexponential

distributions. The failures are not coincidental, but they are closely related. To state

the corresponding result, we need to introduce the following notion from Embrechts and

Goldie (1980).
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Definition 1.3.7. Two distribution functions F and G are called max-sum equivalent

and is denoted by F ∼M G, if F ∗G(x) ∼ F (x) +G(x).

Note that, if X and Y are two independent random variables with distribution

functions F and G respectively, where F ∼M G, then P[X + Y > x] = F ∗G(x) ∼

F (x)+G(x) ∼ F (x)+G(x)−F (x)G(x) = P[X∨Y > x], which suggests the terminology.

Also, if F ∼M F , then F is subexponential.

The following theorem relates the closure of the class of subexponential distribution

functions under convolution, finite mixture and product with max-sum equivalence.

Theorem 1.3.3 (Embrechts and Goldie, 1980, Theorem 2). Let F and G be two

subexponential distribution functions. Then the following statements are equivalent:

(i) F ∗G is subexponential.

(ii) pF + (1− p)G is subexponential for all p ∈ [0, 1].

(iii) pF + (1− p)G is subexponential for some p ∈ (0, 1).

(iv) F ∼M G.

(v) FG is subexponential.

Thus, the counterexample from Leslie (1989) for closure under convolution will also

work for finite mixture and product.

The product of independent random variables with regularly varying tails were

studied by Breiman (1965). Further details are given in Theorem 1.2.9. The product of

independent random variables with subexponential distribution functions is not as well

behaved as the class of random variables with regularly varying tails. It was extensively

studied in Cline and Samorodnitsky (1994). We now state two results from Cline and

Samorodnitsky (1994) without proofs.

Proposition 1.3.5 (Cline and Samorodnitsky, 1994, Theorem 2.1). Assume X and Y to

be independent positive random variables with distribution functions F and G respectively

and let the distribution of XY be denoted by H. Suppose F is subexponential.

(i) Suppose there exists a function a : (0,∞)→ (0,∞) satisfying:



1.3 Class of heavy tailed distributions and its subclasses 19

(a) a(t) ↑ ∞ as t→∞;

(b) t
a(t) →∞ as t→∞;

(c) F (t− a(t)) ∼ F (t) as t→∞;

(d) G(a(t)) = o(H(t)) as t→∞.

Then H is subexponential.

(ii) If Y is bounded random variable, then H is subexponential.

1.3.1 Some other useful classes of distributions

The light tailed counterparts of subexponential and long tailed classes are the classes

S(γ) and L(γ) respectively, which we describe now. They will be useful in dealing with

the weighted sums of random variables with regularly varying tail in the Chapter 2. In

Remark 1.3.1 we saw the relationship between the random variables with slowly varying

tails and random variables with long tailed distribution functions. In general the class

of distribution having regularly varying tails of index −γ with γ ≥ 0 can be related to a

class L(γ).

Definition 1.3.8. A distribution function F on (0,∞) belongs to the class L(γ) with

γ ≥ 0, if for all real u,

lim
x→∞

F (x− u)

F (x)
= eγu. (1.3.4)

Alternatively, one can say F (ln(·)) ∈ RV−γ if and only if F ∈ L(γ).

The analogous counterpart of the subexponential class is the class S(γ).

Definition 1.3.9. A distribution function F on (0,∞) belongs to the class S(γ) with

γ ≥ 0, if F ∈ L(γ) and

lim
x→∞

F ∗ F (x)

F (x)
= 2

∫ ∞
0

eγyF (dy). (1.3.5)

When γ = 0 we get back the long tailed and subexponential classes. Note that when

γ = 0 in Definition 1.3.9, the condition that F ∈ L(γ) is automatically satisfied due to

Proposition 1.3.3. These classes were initially introduced by Chover et al. (1973a,b) in
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the theory of branching process and they were further studied by Klüppelberg (1988,

1989) . Klüppelberg (1988, 1989) also studied the densities of the class S(γ). To describe

them we now introduce two more classes Sd(γ) and S∗.

Definition 1.3.10. A function f : R → R+ such that f(x) > 0 on [A,∞) for some

A ∈ R+ belongs to the class Sd(γ) with γ ≥ 0 if

(i) lim
x→∞

∫ x

0

f(x− y)

f(x)
f(y)dy = 2

∫ ∞
0

f(u)du <∞;

(ii) lim
x→∞

f(x− y)

f(x)
= eγy for all y ∈ R.

Definition 1.3.11. A distribution function F belongs to the class S∗ if it has finite

expectation µ and

lim
x→∞

∫ x

0

F (x− y)

F (x)
F (y)dy = 2µ. (1.3.6)

The classes Sd(γ) and S(γ) can be linked in the following way. For f ∈ Sd(γ) define

a distribution concentrated on (0,∞) by

F (x) =

∫ x
0 f(y)dy∫∞
0 f(y)dy

.

Then F ∈ S(γ) (see Klüppelberg, 1989, Theorem 1.1). It was also shown in Theorem 3.2

of Klüppelberg (1988) that S∗ is a proper subclass of the subexponential distributions.

Example 1.3.1 (Generalized inverse Gaussian distribution (GIGD), Klüppelberg, 1989).

For a > 0, b ≥ 0 and c < 0, the density of GIGD is given by

f(x) =

(
b

a

)c/2 (
2Kc(

√
ab)
)−1

xc−1 exp

(
−1

2
(ax−1 + bx)

)
, x ∈ R+

where Kc is the modified Bessel function of third kind with index c. Then f ∈ Sd(b/2)

and hence the distribution function F ∈ S(b/2).

In the next theorem we summarize the relationship between the classes described

before. To describe the containment we need to define another class of distribution

functions first.

Definition 1.3.12. A distribution function on [0,∞) belongs to the class D of dominated
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variations if

lim sup
x→∞

F (x)

F (2x)
<∞. (1.3.7)

Theorem 1.3.4 (Embrechts and Omey, 1984, Goldie, 1978, Klüppelberg, 1988).

(1) The class of distribution functions RV−α, D, L, S satisfy

RV−α ⊂ D ∩ L ⊂ S ⊂ L

and all the classes are contained in the class of heavy tailed distribution functions.

(2) If F has finite expectation and F ∈ D ∩ L, then F ∈ S∗ ⊂ S.

1.4 Extreme value theory and regular variations

The regularly varying functions also play an important role in the theory of extreme

values. In this section we briefly point out the role of regularly varying functions in the

extreme value theory.

Let X1, X2, · · · , Xn be i.i.d. random variables with a nondegenerate distribution

function F on R. The study of Mn = max(X1, X2, · · · , Xn) is often known as the

extreme value theory. It is easy to see that if we denote xF as the right end point of

F , that is, xF := sup{x : F (x) < 1}, then Mn → xF in probability and since Mn is

increasing, we also have Mn → xF almost surely. Since one does not arrive at anything

deeply interesting in terms of almost sure convergence or convergence in probability so

it is of major importance to study the distributional convergence of Mn.

Definition 1.4.1. A distribution function F , belongs to the maximum domain of

attraction of G, if G is nondegenerate and there exists an > 0 and bn ∈ R such that

P

[
Mn − bn

an
≤ x

]
= Fn(anx+ bn)→ G(x). (1.4.1)

If this happens then we write F ∈ D(G).

Now a major challenge is to classify the possible distributions G that can arise in

the above limit. The distribution function G can be classified into three types, namely

Fréchet, Weibull and Gumbel. The initial study was carried out by Fisher and Tippett
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(1928) and Gnedenko (1943) and later elaborated by Balkema and de Haan (1972),

de Haan (1970, 1971). A nice treatment of this can be found in the monographs by

Beirlant et al. (2004), de Haan and Ferreira (2006), Embrechts et al. (1997), Galambos

(1978), Resnick (1987). The major tool used in the proof of the above result is the

convergence of types. Since we shall use the result, we state it for future use.

Theorem 1.4.1 (Convergence of types). Suppose U(x) and V (x) are two nondegenerate

distribution functions. Suppose for n ≥ 1, there exists distribution function Fn, scaling

constants αn, an > 0 and centering constants βn, bn ∈ R such that

Fn(anx+ bn)→ U(x) and Fn(αnx+ βn)→ V (x).

Then as n→∞,

αn
an
→ A > 0,

βn − bn
an

→ B ∈ R and V (x) = U(Ax+B).

Definition 1.4.2. A nondegenerate distribution function F is called max-stable if for

all n ∈ N, there exists an > 0, bn ∈ R such that F (x)n = F (anx+ bn).

The next theorem characterizes the class of extreme value distributions. This result

was proved by Fisher and Tippett (1928) and Gnedenko (1943).

Theorem 1.4.2. Suppose there exists an > 0, bn ∈ R, n ≥ 1 such that

P

[
Mn − bn

an
≤ x

]
= Fn(anx+ bn)→ G(x)

where G is nondegenerate, then G can be suitable scaled and centered to be one of the

following forms:

(i) Fréchet : Φα(x) =


0, if x < 0,

exp(−x−α), if x > 0;

(ii) Weibull : Ψα(x) =


exp(−(−x)α, if x < 0,

1, if x > 0;
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(iii) Gumbel : Λ(x) = exp(−e−x), x ∈ R.

These three types of distributions are known as the extreme value distributions. It is

well known that the class of extreme value distributions is same as the class of max-stable

distributions. A different choice of centering gives another parametrization of the above

limits called Generalized Extreme Value distributions.

Definition 1.4.3 (Generalized Extreme Value Distributions). For any γ ∈ R, define

the generalized extreme value distribution function Gγ as follows:

Gγ(x) =


exp

(
−(1 + γx)

− 1
γ

)
, for γ 6= 0 and 1 + γx > 0,

exp (− e−x) , for γ = 0.

Note that for γ = 0, we have G0(x) = Λ(x). For γ > 0, 1 + γx > 0 implies x > −1/γ

and after a shift it is of the same type as Φα with α = 1/γ. When γ < 0, 1− |γ|x > 0

implies x < 1/|γ| and again after a shift, this of the same type as Ψα with α = 1/|γ|.

We often use this parametrization of the limits and write F ∈ D(Gγ).

Note that as 1 − Λ(x) ∼ e−x, it has all moments finite and hence it is not heavy

tailed. Now as 1 − Φα(x) ∼ x−α, this is heavy tailed. For Ψα we have the right end

point xF to be finite. At this stage we want to point out the relation between extreme

value theory and regular variation. The next result not only gives the relation, but also

gives the properties of the centering and scaling needed in (1.4.1). For stating the result,

we need to introduce the notation for left continuous inverse of a nondecreasing function.

Definition 1.4.4. Suppose f is a nondecreasing function on R. The (left continuous)

inverse of f is defined as

f←(y) = inf{s : f(s) ≥ y }.

Suppose f(∞) =∞ and f ∈ RVα with 0 < α <∞, then it is known (Resnick, 1987,

Proposition 0.8) that f← ∈ RV1/α.

Theorem 1.4.3. A distribution function F ∈ D(Gγ) if and only if
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(i) (γ > 0): xF =∞ and F ∈ RV− 1
γ

. In this case

Fn(anx+ bn)→ Φ 1
γ
(x) with an =

(
1

F

)←
(n), bn = 0.

(ii) (γ < 0): xF <∞ and F
(
xF − 1

x

)
∈ RV 1

γ
. In this case

Fn(anx+ bn)→ Ψ− 1
γ
(x) with an = xF −

(
1

F

)←
(n), bn = xF .

(iii) (γ = 0): xF ≤ ∞ and

lim
t↑xF

F (t+ xf(t))

F (t)
= e−x, x ∈ R (1.4.2)

for some positive function f . If (1.4.2) holds for some positive function f , then∫ xF
t F (s)ds <∞ for t < xF and

f(t) =

∫ xF
t F (s)ds

F (t)
, t < xF .

In this case,

Fn(anx+ bn)→ Λ(x) with bn =

(
1

F

)←
(n) and an = f(bn).

1.5 Summary of the thesis

This thesis considers three problems where regularly varying functions play an important

role. The problems are from classical as well as free probability theory. The first two

problems described in Subsections 1.5.1 and 1.5.2 involve the tail behavior of randomly

weighted sums and the tail behavior of products of random variables from conditional

extreme value model. The third problem described in Subsection 1.5.3 provides the

extension of the notion of subexponentiality to the free probability theory. It shows that

the probability distribution functions with regularly varying tails play as important a

role in free probability theory as in classical probability.

(i) Suppose {Xt}t≥1 is a sequence i.i.d. random variables having regularly varying
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tails of index −α with α > 0 and {Θt}t≥1 is a sequence of positive random

variables independent of {Xt}t≥1. We obtain sufficient conditions, which ensure

that X(∞) =
∑∞

t=1 ΘtXt has regularly varying tails, under reduced conditions

involving the summability of only α-th moments of {Θt}t≥1. Motivated by Denisov

and Zwart (2007), we reduce the moment conditions required in determining the

series behavior. For a converse result to the problem above, we suppose that

X(∞) =
∑∞

t=1 ΘtXt converges with probability 1 and has regularly varying tail

of index −α, where α > 0. Also assume {Θt}t≥1 are positive random variables

independent of the positive i.i.d. sequence {Xt}t≥1. We obtain sufficient moment

conditions on {Θt}, so that the regularly varying tail of X(∞) guarantees the same

for X1.

(ii) In much of the probability literature on the product of random variables with

regularly varying tails, the random variables are taken to be independent. We

extend the results to a suitable dependence structure. The conditional extreme

value models were introduced by Heffernan and Tawn (2004) and later elaborated

upon by Heffernan and Resnick (2007) to model the multivariate regular variation

and accommodate the notions of asymptotic independence and dependence. We

explore the behavior of XY , when (X,Y ) follow the conditional extreme value

model.

(iii) Free probability theory is a fast emerging area of interest and it is worthwhile to look

into the role of regularly varying functions in the free probability theory. It is already

known that they play a very crucial role in determining the behavior of domains of

attraction of stable laws (Bercovici and Pata, 1999, 2000a). In classical probability

theory, the subexponential random variables play an important role in the class of

heavy-tailed random variables. We extend the notion of subexponentiality to the

free probability setup. We show the class is nonempty. In fact, we show that it

contains all random variables with regularly varying tails. In the process, we prove

results giving the relation between the error terms in Laurent series expansions of

Voiculescu and Cauchy transforms, which can be of independent interest.
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1.5.1 Tail behavior of randomly weighted sums

We consider a problem about the tail behavior of the randomly weighted sum and its

converse. The details of this problem is available in Chapter 2 and is based on Hazra

and Maulik (2010b).

If {ct}t≥1 is a sequence of positive real numbers satisfying suitable summability

conditions and {Xt} are i.i.d. random variables with regularly varying tails of index −α

with α > 0, then
∑∞

t=1 ctXt has regularly varying tails with same index (see Resnick,

1987, Section 4.5, for details). One may replace the constant coefficients by a sequence of

positive random variables {Θt}t≥1 independent of {Xt}t≥1 to consider the tail behavior

of X(∞) =
∑∞

t=1 ΘtXt. Observe that the tail behavior of the product in one particular

term can be controlled by the moment conditions on Θt according to Breiman’s theorem.

Recall from Theorem 1.2.9 (ii) that Breiman’s result gives: if E[Θα+ε] < ∞ for some

ε > 0 and X has regularly varying tail with index −α where α > 0 then ΘX also has

regularly varying tail of index −α. In fact in this case, P[ΘX > x] ∼ E[Θα] P[X > x]

holds. When one considers the series X(∞), then both the small and the large values of

Θ need to be managed. The large values are controlled by Breiman’s result. Resnick

and Willekens (1991) assumed the following moment conditions on {Θt}t≥1:

(i) When 0 < α < 1, then for some ε > 0,

∞∑
t=1

(
E[Θα−ε

t + Θα+ε
t ]

)
<∞. (1.5.1)

(ii) When α ≥ 1, then for some ε > 0,

∞∑
t=1

(
E[Θα−ε

t ]
1

α+ε + E[Θα+ε
t ]

1
α+ε

)
<∞. (1.5.2)

Then they showed that X(∞) has regularly varying tail of index −α. Note that the

conditions (1.5.1) and (1.5.2) also hold for α ≥ 1 and 0 < α < 1 respectively. Zhang

et al. (2009) extended the result to random variables with extended regularly varying

tails. Further review of the existing literature in the topic is available in Chapter 2. It

can be easily verified that the series converges almost surely under the above moment
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conditions (see Jessen and Mikosch, 2006, Mikosch and Samorodnitsky, 2000).

In many cases, the existence of moments of Θ of order strictly greater that α becomes

too strong an assumption in Breiman’s result. In fact, the condition
∑∞

t=1E[Θα+ε
t ] <∞

can become too restrictive for regularly varying tail property of X(∞). For example, if we

take a sequence of random variables such that
∑∞

t=1 E[Θα+ε
t ] =∞, but

∑∞
t=1 E[Θt

α] <∞

and {Xt} to be standard Pareto with parameter −α where 0 < α < 1, then it can be

shown that X(∞) still has regularly varying tail of index −α. Denisov and Zwart (2007)

relaxed the moment condition in Breiman’s result by assuming the finiteness of α-th

moment of Θ alone. They also assumed the natural condition that Θ has lighter tail

than X, that is, P[Θ > x] = o(P[X > x]) as x → ∞. They replaced the requirement

of the existence of higher moments by some further sufficient conditions on the slowly

varying part in P[X > x]. We exhibit that these conditions have a natural extension

when we consider the randomly weighted sums and series.

We consider a sequence of identically distributed random variables {Xt}t≥1 with

regularly varying tails of index −α, where α > 0. We reduce the independence assumption

to that of pairwise asymptotically independence, that is,

P[Xt > x,Xs > x]

P[Xs > x]
→ 0 as x→∞ for s 6= t. (1.5.3)

The nonnegativity of the summands can also be replaced by the weaker condition of the

negligibility of the left tail compared to the right tail, that is, P[X < −x] = o(P[X > x])

as x→∞. We also consider another sequence of non-negative random variables {Θt}t≥1

independent of {Xt} such that P[Θt > x] = o(P[X1 > x]) for all t ≥ 1 and satisfying :

(i) When 0 < α < 1,
∞∑
t=1

E[Θt
α] <∞. (1.5.4)

(ii) When 1 ≤ α <∞,

∞∑
t=1

(E[Θt
α])

1
α+ε <∞ for some ε > 0. (1.5.5)

Note again that the conditions (1.5.4) and (1.5.5) also hold for α ≥ 1 and 0 < α < 1
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respectively. In Chapter 2, we show that under the natural uniform extensions of the

conditions on {Xt,Θt}t≥1 given in Denisov and Zwart (2007), we have

P

[
max

1≤k<∞

k∑
t=1

ΘtXt > x

]
∼ P[X(∞) > x] ∼ P[X1 > x]

∞∑
t=1

E[Θα
t ]. (1.5.6)

It should be noted above that in conditions (1.5.4) and (1.5.5) we reduce the assumption

of existence of moments of Θ of order strictly greater than α as well as the extra

summability conditions of the moments.

Till now, we have discussed how the regular variation of the tail of X1 forces

the same for X(∞) under various weights and dependence structure. Jacobsen et al.

(2009) discussed a converse problem. They considered a sequence of i.i.d. positive

random variables {Xt}t≥1 and a non-random sequence {ct} satisfying some summability

assumptions, so that
∑∞

t=1 ctXt < ∞ almost surely and has regularly varying tail of

index −α with α > 0. Then they showed under suitable assumptions that X1 has

regularly varying tail with same index. Motivated by this converse problem, we obtain

sufficient conditions, which guarantee a regularly varying tail of X1, whenever X(∞)

has one. We show in Theorem 2.4.2, if {Xt, t ≥ 1} is a sequence of positive, identically

distributed and pairwise asymptotically independent random variables, {Θt, t ≥ 1} is a

sequence of positive random variables independent of {Xt, t ≥ 1} satisfying the moment

condition (1.5.1) or (1.5.2) such that X(∞) =
∑∞

t=1 ΘtXt is finite almost surely and has

regularly varying tail of index −α with α > 0, and

∞∑
t=1

E[Θα+iφ
t ] 6= 0 for all φ ∈ R, (1.5.7)

then X1 has regularly varying tail of index −α.

The condition (1.5.7) is necessary for the above theorem. In fact, in Theorem 2.4.3,

we show that whenever there exists a sequence of positive random variables {Θt, t ≥ 1}

which for some α > 0, satisfies the appropriate moment condition (1.5.1) or (1.5.2), but

the condition (1.5.7) fails, that is,
∑∞

t=1 E[Θα+iφ0
t ] = 0 for some φ0, then there exists a

sequence of i.i.d. random variables {Xt}, whose common marginal distribution function

does not have regularly varying tail, yet the series X(∞) =
∑∞

t=1 ΘtXt converges almost
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surely and X(∞) has regularly varying tail of index −α.

1.5.2 Products in the Conditional Extreme Value model

The joint distribution of two random variables is said to be asymptotically independent,

if the suitably centered and scaled coordinatewise maximum of n i.i.d. observations from

the distribution has a non-degenerate limit, which is a product measure. It follows form

Proposition 5.27 of Resnick (1987) that this is equivalent to the pairwise asymptotic

independence between the two marginals as described in (1.5.3). However, this concept

is too weak to conclude anything useful about the product of random variables, which is

the main issue in this problem. So this concept was replaced by a stronger condition in

Maulik et al. (2002). They assumed that

tP

[(
X

b(t)
, Y

)
∈ ·
]

v→ (ν ×G)(·) on (0,∞]× [0,∞], (1.5.8)

where X and Y are strictly positive random variables and b(t) = inf{x : P[X > x] ≤ 1/t},

ν is a Radon measure on (0,∞] and G is a probability measure with G(0,∞) = 1. Note

that this implies that X has regularly varying tail of index −α, for some α > 0,

ν(x,∞) = cx−α for some c ∈ (0,∞) and (X,Y ) are asymptotically independent in the

sense defined above. It was shown in Maulik et al. (2002) that if (X,Y ) has the above

dependence structure (1.5.8), then, under some moment conditions, the product has

regularly varying tail, whose behavior is similar to that of the heavier of the two factors.

Suppose that (X,Y ) are multivariate regularly varying in the sense that there exists

regularly varying functions b(·) and a(·) and a Radon measure µ(·) such that

tP

[(
X

b(t)
,
Y

a(t)

)
∈ ·
]

v→ µ(·) on [0,∞]2 \ {(0, 0)}.

If the limit measure µ satisfies µ((0,∞]2) > 0, (X,Y ) are said to be asymptotically

dependent. Maulik et al. (2002) showed that, for asymptotically dependent (X,Y ), the

random variables X, Y and XY have regularly varying tails of indices −α, −β and

−αβ/(α + β), for some α, β > 0. Thus, the product behavior for jointly multivariate

regularly varying random variables is in contrast to the case when (X,Y ) follow (1.5.8).
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This causes an interest about the behavior of the product of multivariate regularly

varying random variables, which have other types of joint distribution.

The conditional extreme value model (CEVM) provides a rich source of dependence

structure for multivariate regularly varying random variables. The model extends (1.5.8)

to include the limit measures which are not in product form. This model was introduced

as the usual ones in multivariate extreme value theory suffer a lot either from the presence

of asymptotic independence or the absence of one or more components in domain of

attraction of an univariate extreme value. The model was first proposed by Heffernan

and Tawn (2004) and then further formalized and analyzed by Heffernan and Resnick

(2007). We now briefly describe the model.

Let (X,Y ) be a two-dimensional real-valued random vector and let F denote the

marginal distribution function of Y . (X,Y ) is said to be from a conditional extreme

value model if the following conditions hold:

(i) The marginal distribution function F is in the domain of attraction of an extreme

value distribution Gγ , for some γ ∈ R as in Definition 1.4.1.

(ii) There exists a positive valued function α and a real valued function β and a

non-null Radon measure µ on Borel subsets of [−∞,∞]× E
(γ)

, where E
(γ)

= {y ∈

R : 1 + γy ≥ 0}, such that

(a)

tP

[(
X − β(t)

α(t)
,
Y − b(t)
a(t)

)
∈ ·
]

v→ µ(·)

on [−∞,∞]× E
(γ)

, and

(b) for each y ∈ E(γ), µ((−∞, x]×(y,∞)) is a non-degenerate distribution function

in x.

(iii) The function H(x) = µ((−∞, x]× (0,∞)) is a probability distribution.

The above conditions imply that if (x, 0) is a continuity point of µ(·), then

P

[
X − β(t)

α(t)
≤ x | Y > b(t)

]
→ H(x), as t→∞,
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which suggests the name of this class of distribution functions. Heffernan and Resnick

(2007) showed that for a conditional extreme value model, there exists functions ψ1(·),

ψ2(·) such that,

lim
t→∞

α(tx)

α(t)
= ψ1(x) and lim

t→∞

β(tx)− β(t)

α(t)
= ψ2(x)

hold uniformly on compact subsets of (0,∞). We must also necessarily have, for some

ρ ∈ R, ψ1(x) = xρ, x > 0 and either ψ2 is 0 or, for some k ∈ R, on x > 0,

ψ2(x) =


k
ρ (xρ − 1), when ρ 6= 0,

k log x, when ρ = 0.

In Chapter 3, we study the tail behavior of the product XY , when (X,Y ) belongs

to the conditional extreme value model. The discussion in Chapter 3 is based on Hazra

and Maulik (2011). Throughout this thesis we assume (ψ1(x), ψ2(x)) 6= (1, 0). More

precisely, we considered the following cases:

(i) When γ > 0 and ρ > 0, then under some tail conditions XY has regularly varying

tail of index −1/(γ + ρ). This situation was similar to the case when (X,Y ) satisfy

multivariate regular variation with asymptotic dependence.

(ii) When γ < 0 and ρ < 0, the situation is more complicated. Here b(t)→ b(∞) <∞,

and β(t)→ β(∞) <∞ as t→∞, and the regularly varying property of Y occurs

at β(∞). We further divided this into following subcases:

(a) Suppose γ ≤ ρ, β(∞) > 0 and b(∞) > 0 and also assume X and Y are strictly

positive. Then under some moment conditions on X, we have (b(∞)β(∞)−

XY )−1 has regularly varying tail of index −1/|ρ|.

(b) If β(∞) = 0 = b(∞) and X and Y , then (XY )−1 has regularly varying tail

of index −1/(|γ|+ |ρ|).

(c) Suppose the β(∞) = 0 and b(∞) = 1 with Y > 0. Then −(XY )−1 has

regularly varying tail of index −1/|ρ|.
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(d) If both β(∞) and b(∞) are strictly less than zero, then (XY − β(∞)b(∞))−1

has regularly varying tail of index −1/|ρ|.

(iii) Let ρ > 0 and γ < 0 and assume that b(∞) > 0 and Y > 0. The product XY has

regularly varying tail of index −1/|γ|, provided some moment conditions on X

gets satisfied.

(iv) If ρ < 0 and γ > 0 then XY has a regularly varying tail of index −1/γ.

1.5.3 Sums of free random variables with regularly varying tails

Free probability theory is the non-commutative analogue of the classical probability

theory. In free probability theory, the notion of independent random variables is replaced

by freely independent operators on some suitable Hilbert space. A non-commutative

probability space is a pair (A, τ), where A is a unital complex algebra and τ is a linear

functional on A satisfying τ(1) = 1. A non-commutative analogue of independence,

based on free products, was introduced by Voiculescu (1986). A family of unital

subalgebras {Ai}i∈I ⊂ A is called a family of free algebras, if τ(a1 · · · an) = 0, whenever

τ(aj) = 0, aj ∈ Aij and ij 6= ij+1 for all j. The above setup is suitable for dealing

with bounded random variables. In order to deal with unbounded random variables

we need to consider a tracial W ∗-probability space (A, τ), where A is a von Neumann

algebra and τ is a normal faithful tracial state. A self-adjoint operator X is said to

be affiliated to A, if u(X) ∈ A for any bounded Borel function u on the real line

R. A self-adjoint operator affiliated to A will also be called a random variable. The

notion of freeness was extended to this context by Bercovici and Voiculescu (1993).

The self-adjoint operators {Xi}1≤i≤k affiliated with a von Neumann algebra A are

called freely independent, or simply free, if and only if the algebras generated by the

operators, {f(Xi) : f bounded measurable}1≤i≤p are free. Given a self-adjoint operator

X affiliated with A, the law of X is the unique probability measure µX on R satisfying

τ(u(X)) =

∫ ∞
−∞

u(t)dµX(t)
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for every bounded Borel function u on R. If eA denote the projection valued spectral

measure associated with X evaluated at the set A, then it is easy to see that µX(−∞, x] =

τ(e(−∞,x](X)). The distribution function of X, denoted by FX , is given by FX(x) =

µX(−∞, x].

The measure µ ∗ ν is the classical convolution of the measures µ and ν, which also

corresponds to the probability law of random variable X + Y where X and Y are

independent and have laws µ and ν respectively. Now it is well known that given two

measures µ and ν, there exists a tracial W ∗-probability space (A, τ) and free random

variables X and Y affiliated to A such that µ and ν are the laws of X and Y respectively.

Now µ� ν denotes the law of X + Y . This is well defined as the law of X + Y does not

depend on the particular choices of X and Y , except for the fact that X and Y have

laws µ and ν respectively and they are free. The free convolution was first introduced in

Voiculescu (1986) for compactly supported measures, extended by Maassen (1992) to

measures with finite variance and by Bercovici and Voiculescu (1993) to measures with

unbounded support.

The relationship between ∗ and � convolution is very striking. There are many

similarities, for example, in characterizations of infinitely divisible and stable laws

(Bercovici and Pata, 1999, 2000a), weak law of large numbers (Bercovici and Pata, 1996)

and central limit theorem (Maassen, 1992, Pata, 1996, Voiculescu, 1985). Analogues of

many other classical theories have also been derived. In recent times, links with extreme

value theory (Ben Arous and Kargin, 2010, Ben Arous and Voiculescu, 2006) and de

Finetti type theorems (Banica et al., 2010) are of major interest. However, there are

differences as well. Cramer’s theorem (Bercovici and Voiculescu, 1995) and Raikov’s

theorem (Benaych-Georges, 2006) fail to extend to the non-commutative setup. Further

details about free probability and free convolution is provided in Chapter 4.

In Chapter 4, we study some heavy tailed properties of the distributions under

non-commutative setup. Hazra and Maulik (2010a) extended the definition of subexpo-

nentiality given in Definition 1.3.1 to the free setup.

Definition 1.5.1. A probability measure µ on (0,∞) is said to be free subexponential
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if for all n,

µ�n(x,∞) = (µ� · · ·� µ)︸ ︷︷ ︸
n−times

(x,∞) ∼ nµ(x,∞), as x→∞. (1.5.9)

In Theorem 4.2.2, we show that if µ has regularly varying tail of index −α with

α > 0, then µ is free subexponential. Thus probability measures with regularly varying

tails not only form a subclass of the classical subexponential probability measures, but

they also form a subclass of the free subexponential. Theorem 4.2.2 and the related

results in Chapter 4 are based on Hazra and Maulik (2010a).

The above definition can be rewritten in terms of distribution functions as well. A

distribution function F is called free subexponetial if for all n ∈ N, F�n(x) ∼ nF (x) as

x→∞. A random element X affiliated to a tracial W ∗-probability space is called free

subexponential, if its distribution is so.

Due to the lack of coordinate systems and expressions for joint distributions in terms

of measures, the proofs of the above results deviates from the classical ones. When dealing

with convolutions in the free setup, the best way is to go via Cauchy and Voiculescu

transforms. The proof of the above theorem involves obtaining a relationship between

Cauchy and Voiculescu transforms. Since, probability distribution function with regularly

varying tails do not have all moments finite, their Cauchy and Voiculescu transforms will

have Laurent series expansions of only finite order. We obtain a relationship between

the remainder terms in two expansions, which is new in literature and is an extension

of (4.3.4) proved in Bercovici and Pata (1999), where only one term expansion was

considered. In Theorems 4.3.1–4.3.4 we obtain sharper results by considering higher

order expansions of Cauchy and Voiculescu transforms of distribution functions with

regularly varying tails. This relation can be of independent interest in free probability

theory.

To study the relationship between the remainder terms in the expansion of Cauchy

and Voiculescu transforms, we derive two interesting results from complex analysis. We

consider Taylor series expansion of finite order of an analytic function, as well as the

remainder term, which is assumed to have suitable regularly varying properties besides

other regularity conditions. We show in Theorems 4.6.1 and 4.6.2 that such properties
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are inherited by the remainder terms of of the reciprocals and inverses of the analytic

functions respectively. We also use Karamata’s Tauberian theorems and other results

to relate the remainder term in the expansion of Cauchy transform and the regularly

varying tail of the distribution function.
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Chapter 2

Tail behavior of randomly

weighted sums

2.1 Introduction

Let {Xt, t ≥ 1} be a sequence of identically distributed, pairwise asymptotically inde-

pendent, cf. (2.2.1), random variables and {Θt, t ≥ 1} be a sequence of positive random

variables independent of the sequence {Xt, t ≥ 1}. We shall discuss the tail probabilities

and almost sure convergence of X(∞) =
∑∞

t=1 ΘtX
+
t (recall that X+ = max{0, X}) and

max1≤k<∞
∑k

t=1 ΘtXt, in particular, when Xt’s belong to the class of random variables

with regularly varying tail and {Θt, t ≥ 1} satisfies some moment conditions. In recent

times, there have been quite a few articles devoted to the asymptotic tail behavior of

randomly weighted sums and their maxima. See, for example,Chen et al. (2005), Hult

and Samorodnitsky (2008), Resnick and Willekens (1991), Wang and Tang (2006), Zhang

et al. (2009).

The question about the tail behavior of the infinite series X(∞) with non-random Θt

and i.i.d. Xt having regularly varying tails has been studied well in the literature, as it

arises in the context of the linear processes, including ARMA and FARIMA processes.

We refer to Jessen and Mikosch (2006) for a review of the results. The case, when Θt’s

are random, arises in various areas, especially in actuarial and economic situations and

stochastic recurrence equation. For various applications, see Hult and Samorodnitsky

37
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(2008), Zhang et al. (2009).

Resnick and Willekens (1991) showed that if {Xt} is a sequence of i.i.d. nonnegative

random variables with regularly varying tail of index −α, where α > 0 and {Θt} is

another sequence of positive random variables independent of {Xt}, the series X(∞)

has regularly varying tail under the following conditions, which we shall call the RW

conditions:

(RW1) If 0 < α < 1, then for some ε ∈ (0, α),
∑∞

t=1 E[Θα+ε
t + Θα−ε

t ] <∞.

(RW2) If 1 ≤ α <∞, then for some ε ∈ (0, α),
∑∞

t=1(E[Θα+ε
t + Θα−ε

t ])
1

α+ε <∞.

In this case, we have P[X(∞) > x] ∼
∑∞

t=1 E[Θα
t ] P[X1 > x] as x→∞.

Remark 2.1.1. Each of the RW conditions implies the other for the respective ranges of

α. In particular, if 0 < α < 1, choose ε′ < ε such that α+ ε′ < 1. Note that

∞∑
t=1

E[Θα+ε′

t + Θα−ε′
t ] ≤ 2

∞∑
t=1

E[Θα+ε′

t 1[Θt≥1] + Θα−ε′
t 1[Θt<1]]

≤ 2
∞∑
t=1

E[Θα+ε
t 1[Θt≥1] + Θα−ε

t 1[Θt<1]] ≤ 2
∞∑
t=1

E[Θα+ε
t + Θα−ε

t ] <∞.

Further, since α + ε′ < 1, we also have
∑∞

t=1(E[Θα+ε′

t + Θα−ε′
t ])

1
α+ε′ < ∞. On the

other hand, if α ≥ 1 and ε > 0, then α + ε > 1 and the condition (RW2) implies∑∞
t=1 E[Θα+ε

t + Θα−ε
t ] <∞.

Zhang et al. (2009) considered the tails of
∑n

t=1 ΘtXt and the tails of their maxima,

when {Xt} are pairwise asymptotically independent and have extended regularly varying

and negligible left tail and {Θt} are positive random variables independent of {Xt}. The

sufficient conditions for the tails to be regularly varying are almost similar.

While the tail behavior of X(∞) requires only the α-th moments of Θt’s, we require

existence and summability of some extra moments in the RW conditions. Note that

Θα+ε
t acts as a dominator for [Θt ≥ 1] and Θα−ε

t acts as a dominator for [Θt ≤ 1]. In

some cases, the assumption of existence and summability of extra moments can become

restrictive. We now consider such an example.

Example 2.1.1. Consider {Θt} such that
∑∞

t=1 E[Θα+ε
t ] = ∞ for all ε > 0 but∑∞

t=1 E[Θα
t ] < ∞. (A particular choice of such {Θt}, for α < 1 is as follows: Θt
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takes values 2t/t2/α and 0 with probability 2−tα and 1 − 2−tα respectively.) Also let

{Xt} be i.i.d. Pareto with parameter α < 1, independent of {Θt}. Then it turns out,

after some easy calculations, that
∑∞

t=1 ΘtXt is finite almost surely and has regularly

varying tail of index −α.

This leads to the question whether we can reduce the moment conditions on Θt to

obtain the regular variation of the tail for X(∞).

The situation becomes clearer when we consider a general term of the series. It

involves the product ΘtXt. Using Breiman’s theorem, see Theorem 1.2.9 (ii), the tail

behavior of the product depends on the moments of Θt. Recall that Breiman’s theorem

states, if X is a random variable with regularly varying tail of index −α for some α > 0

and is independent of a positive random variable Θ satisfying E[Θα+ε] < ∞ for some

ε > 0, then,

lim
x→∞

P[ΘX > x] ∼ E[Θα] P[X > x]. (2.1.1)

Note that, in this case, we work with a probability measure P[Θt ∈ ·], unlike in the

problem of the weighted sum, where a σ-finite measure
∑∞

t=1 P[Θ ∈ ·] is considered. In

this case, we can consider the dominator as 1 on [Θ ≤ 1] instead of Θα−ε, since 1 is

integrable with respect to a probability measure.

Denisov and Zwart (2007) relaxed the existence of (α + ε) moments in Breiman’s

theorem to E[Θα] < ∞. They also made the further natural assumption that P[Θ >

x] = o(P[X > x]). However, to obtain (2.1.1), the weaker moment assumption needed

to be compensated. They obtained some sufficient conditions for (2.1.1) to hold. In

Sections 2.2 and 2.3, we find conditions similar to those obtained by Denisov and Zwart

(2007), which will guarantee the regular variation of X(∞).

In the above discussion, we considered the effect of the tail of X1 in determining the

tail of X(∞). However, the converse question is also equally interesting. More specifically,

let {Xt} be a sequence of identically distributed, asymptotically independent, positive

random variables, independent of another sequence of positive random variables {Θt}.

As before, we define X(∞) =
∑∞

t=1 ΘtXt. Assume that X(∞) converges with probability

one and has regularly varying tail of index −α with α > 0. In Section 2.4 we obtain

sufficient conditions which will ensure that X1 has a regularly varying tail of index −α
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as well.

Similar converse questions regarding Breiman’s theorem (2.1.1) have recently been

considered in the literature. Suppose X and Y are positive random variables with

E[Y α+ε] <∞ and the product XY has regularly varying tail of index −α, α > 0. Then

it was shown in Jacobsen et al. (2009) that X has regularly varying tail of same index

and hence (2.1.1) holds. They have also obtained similar results for the weighted series,

when the weights {Θt} are nonrandom. We shall extend this result for product to the

case of randomly weighted series under appropriate conditions.

In Section 2.2 we describe the conditions imposed by Denisov and Zwart (2007) and

study the tail behavior when finite weighted sums are considered. In Section 2.3 we

describe the tail behavior of the series of randomly weighted sums. In Section 2.4 we

consider the converse problem described above. We prove the converse result is true

under the RW conditions and the extra assumption of nonvanishing Mellin transform.

We also show the necessity of this extra assumption.

2.2 Some preliminary results

We call two random variables X1 and X2 to be asymptotically independent if

lim
x→∞

P[X1 > x,X2 > x]

P[Xt > x]
= 0, for t = 1, 2. (2.2.1)

Remark 2.2.1. It is should be noted that the above notion of asymptotic independence is

useful when X1 and X2 have similar tail behavior, that is, limx→∞ P[X1 > x]/P[X2 > x]

exists and is positive. In fact we use it for such cases only.

See Ledford and Tawn (1996, 1997) or Chapter 6.5 of Resnick (2007) for discussions

on asymptotic independence. Note that, we require F t(x) > 0 for all x > 0 and t = 1, 2.

Observe that ifX1 andX2 are independent, then they are also asymptotically independent.

Thus the results under pairwise asymptotic independence condition continue to hold in

the independent setup.

A random variable X is said to have negligible left tail with respect to the right one,
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if

lim
x→∞

P[X < −x]

P[X > x]
= 0. (2.2.2)

Note that we require P[X > x] > 0 for all x > 0.

Now, we gather a few results important for the present chapter. Our next Lemma

states that by Karamata’s representation, a slowly varying function L can be one of the

following form.

Lemma 2.2.1 (Denisov and Zwart, 2007, Lemma 2.1). Let L be slowly varying. Then

L admits precisely one of the following four representations:

(i) L(x) = c(x),

(ii) L(x) = c(x)/P[V > log x],

(iii) L(x) = c(x) P[U > log x],

(iv) L(x) = c(x) P[U > log x]/P[V > log x].

In the above representations, c(x) is a function converging to c ∈ (0,∞), and U and V

are two independent long-tailed random variables with hazard rates converging to 0.

We shall refer to a slowly varying function L as of type 1, type 2, type 3 or type 4,

according to the above representations.

Denisov and Zwart (2007) introduced the following sufficient conditions on the slowly

varying part L of the regularly varying tail of index −α of a random variable X with

distribution function F (x) = x−αL(x) for Breiman’s theorem (2.1.1) to hold:

(DZ1) Assume limx→∞ supy∈[1,x] L(y)/L(x) := D1 <∞.

(DZ2) Assume L is of type 3 or type 4 and L(ex) ∈ Sd.

(DZ3) Assume L is of type 3 or type 4, U ∈ S∗ and P[Θ > x] = o(x−α P[U > log x]).

(DZ4) When E[U ] = ∞ or equivalently E[Xα] = ∞, define m(x) =
∫ x

0 v
αF (dv) →

∞. Assume lim supx→∞ sup√x≤y≤x L(y)/L(x) := D2 < ∞ and P[Θ > x] =

o(P[X > x]/m(x)).
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We shall refer to these conditions as the DZ conditions. A short discussion on several

classes of distribution functions involved in the statements of the DZ conditions are

available in Section 1.3. For further discussions on the DZ conditions, we refer to Denisov

and Zwart (2007). Denisov and Zwart proved the following lemma:

Lemma 2.2.2 (Denisov and Zwart, 2007, Section 2). Let X be a nonnegative random

variable with regularly varying tail of index −α, α ≥ 0 and Θ be a positive random

variable independent of X such that E[Θα] <∞ and P[Θ > x] = o(P[X > x]). If X and

Θ satisfy any one of the DZ conditions, then (2.1.1) holds.

The next result shows that asymptotic independence is preserved under multiplication,

when the DZ conditions are assumed.

Lemma 2.2.3. Let X1, X2 be two positive, asymptotically independent, identically

distributed random variables with common regularly varying tail of index −α, where

α > 0. Let Θ1 and Θ2 be two other positive random variables independent of the pair

(X1, X2) satisfying E[Θα
t ] < ∞, t = 1, 2. Also suppose that P[Θt > x] = o(P[X1 > x])

for t = 1, 2 and the pairs (Θ1, X1) and (Θ2, X2) satisfy any one of the DZ conditions.

Then Θ1X1 and Θ2X2 are asymptotically independent.

Proof. Here and later G will denote the joint distribution function of (Θ1,Θ2) and Gt

will denote the marginal distribution functions of Θt.

P[Θ1X1 > x,Θ2X2 > x]

P[X1 > x]
=

∫∫
u≤v

+

∫∫
u>v

P[X1 > x/u,X2 > x/v]

P[X1 > x]
G(du, dv)

≤
∫ ∞

0

P[X1 > x/v,X2 > x/v]

P[X1 > x/v]

P[X1 > x/v]

P[X1 > x]
(G1 +G2)(dv).

The integrand converges to 0. Also, the first factor of the integrand is bounded by 1 and

hence the integrand is bounded by the second factor, which converges to vα. Further,

using Lemma 2.2.2, we have

∫ ∞
0

P[X1 > x/v]

P[X1 > x]
(G1 +G2)(dv) =

P[Θ1X1 > x] + P[Θ2X1 > x]

P[X1 > x]

→ E [Θα
1 ] + E [Θα

2 ] =

∫ ∞
0

vα(G1 +G2)(dv).



2.2 Some preliminary results 43

Then the result follows using Pratt’s lemma, cf. Pratt (1960).

The next lemma shows that if the left tail of X is negligible when compared to the

right tail then the product has also such a behavior.

Lemma 2.2.4. Let X have regularly varying tail of index −α, for some α > 0 satisfy-

ing (2.2.2) and Θ be independent of X satisfying E[Θα] <∞ and P[Θ > x] = o(P[X >

x]). Also suppose that (Θ, X) satisfy one of the DZ conditions. Then, for any u > 0,

lim
x→∞

P[ΘX < −ux]

P[ΘX > x]
= 0.

The proof is exactly similar to that of Lemma 2.2.3, except for the fact that the first

factor in the integrand is bounded, as, using (2.2.2), P[X < −x]/P[X > x] is bounded.

We skip the proof.

The following result from Davis and Resnick (1996) considers a simple case of the

tail of sum of finitely many random variables.

Lemma 2.2.5 (Davis and Resnick, 1996, Lemma 2.1). Suppose Y1, Y2, . . . , Yk are non-

negative, pairwise asymptotically independent (but not necessarily identically distributed)

random variables with regularly varying tails of common index −α, where α > 0. If, for

t = 1, 2, . . . , k, P[Yt > x]/P[Y1 > x]→ ct, then

P[
∑k

t=1 Yt > x]

P[Y1 > x]
→ c1 + c2 + · · ·+ ck.

We have the following corollary by applying Lemma 2.2.5 with Yt = ΘtX
+
t and the

modified Breiman’s theorem in Lemma 2.2.2 under the DZ conditions.

Corollary 2.2.1. Let {Xt} be a sequence of pairwise asymptotically independent, iden-

tically distributed random variables with common regularly varying tail of index −α,

where α > 0, which is independent of another sequence of positive random variables {Θt}

satisfying E[Θα
t ] <∞, for all t. Also assume that, for all t, P[Θt > x] = o(P[X1 > x])

and the pairs (Θt, Xt) satisfy one of the DZ conditions. Then we have

P

[
k∑
t=1

ΘtX
+
t > x

]
∼ P[X1 > x]

k∑
t=1

E[Θα
t ].
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Using Lemmas 2.2.2–2.2.5 and Corollary 2.2.1, we obtain the following result, which

is an extension of Theorem 3.1(a) of Zhang et al. (2009). (Note that the proof of

Theorem 3.1(a) of Zhang et al. (2009) require only the results obtained in Lemmas 2.2.2–

2.2.5 and Corollary 2.2.1.)

Proposition 2.2.1. Let {Xt} be a sequence of pairwise asymptotically independent,

identically distributed random variables with common regularly varying tail of index −α,

for some α > 0 satisfying (2.2.2), which is independent of another sequence of positive

random variables {Θt}. Further assume that, for all t, P[Θt > x] = o(P[X1 > x]) and

E[Θα
t ] <∞. Also assume that the pairs (Θt, Xt) satisfy one of the DZ conditions. Then,

P

[
max

1≤k≤n

k∑
t=1

ΘtXt > x

]
∼ P

[
n∑
t=1

ΘtX
+
t > x

]
∼ P[X1 > x]

n∑
t=1

E[Θα
t ].

Proof of Propositon 2.2.1. The proof is similar to that of Theorem 3.1(a) of Zhang et al.

(2009). We provide a sketch for the completeness. Since {Θt}t≥1 are positive, we have

n∑
t=1

ΘtXt ≤ max
1≤k≤n

n∑
t=1

ΘtXt ≤
n∑
t=1

ΘtX
+
t , n ≥ 1.

Thus it suffices to show for n ≥ 1,

P

[
n∑
t=1

ΘtX
+
t > x

]
∼ P[X1 > x]

n∑
t=1

E[Θα
t ], as x→∞ (2.2.3)

lim sup
x→∞

P [
∑n

t=1 ΘtXt > x]

P[X1 > x]
≥

n∑
t=1

E[Θα
t ]. (2.2.4)

Note that (2.2.3) immediately follows from Corollary 2.2.1. Also note that (2.2.4)

holds for n = 1 by the modified Breiman’s theorem given in Lemma 2.2.2. Suppose

n ≥ 2. Let v > 1 be a constant and set y = (v − 1)/(n− 1). Clearly y > 0.

P

[
n∑
t=1

ΘtXt > x

]
≥ P

[
n∑
t=1

ΘtXt > x, max
1≤s≤n

ΘsXs > vx

]
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≥
n∑
s=1

P

[
n∑
t=1

ΘtXt > x,ΘsXs > vx

]

−
∑

1≤k 6=l≤n
P

[
n∑
t=1

ΘtXt > x,ΘkXk > vx,ΘlXl > vx

]

:= ∆1 −∆2. (2.2.5)

For ∆1 in (2.2.5), we have

P

[
n∑
t=1

ΘtXt > x,ΘsXs > vx

]

≥ P

[
n∑
t=1

ΘtXt > x,ΘsXs > vx,ΘjXj > −yx, 1 ≤ j ≤ n, j 6= s

]

≥ P [ΘsXs > vx,ΘjXj > −yx, 1 ≤ j ≤ n, j 6= s]

≥ 1−

P [ΘsXs ≤ vx] +
n∑
j=1
j 6=s

P [ΘjXj ≤ −yx]


It follows from Lemma 2.2.4,

lim
x→∞

P [ΘjXj ≤ −yx]

P [ΘjXj > x]
= 0 for 1 ≤ j ≤ n.

Therefore we have,

lim sup
x→∞

∆1

P[X1 > x]
≥ lim sup

x→∞

n∑
s=1

P [ΘsXs > vx]

P[X1 > x]
= v−α

n∑
s=1

E[Θα
t ]. (2.2.6)

For ∆2 in (2.2.5) by Lemma 2.2.3 we have for 1 ≤ k 6= l ≤ n,

lim
x→∞

P [
∑n

t=1 ΘtXt > x,ΘkXk > vx,ΘlXl > vx]

P[ΘlXl > x]

≤ v−α lim
x→∞

P [ΘkXk > vx,ΘlXl > vx]

P[ΘlXl > vx]
= 0.

So this implies, by Lemma 2.2.2, ∆2 = o(P[X1 > x]). Now letting v → 1 in (2.2.6),

we get the result.



46 Chapter 2: Tail behavior of randomly weighted sums

2.3 The tail of the weighted sum under the DZ conditions

In Proposition 2.2.1, we saw that the conditions on the slowly varying function helps us

to reduce the moment conditions on {Θt} for the finite sum. However we need some

additional hypotheses to handle the infinite series. To study the almost sure convergence

of X(∞) =
∑∞

t=1 ΘtX
+
t , observe that the partial sums Sn =

∑n
t=1 ΘtX

+
t increase to

X(∞). We shall show in the following results that P[X(∞) > x] ∼ P[X1 > x]
∑∞

t=1 E[Θα
t ]

under suitable conditions. Thus if
∑∞

t=1 E[Θα
t ] <∞, then limx→∞ P[X(∞) > x] = 0 and

X(∞) is finite almost surely.

To obtain the required tail behavior, we shall assume the following conditions, which

weaken the moment requirements of {Θt} assumed in the conditions (RW1) and (RW2)

given in Resnick and Willekens (1991):

(RW1′) For 0 < α < 1,
∑∞

t=1 E[Θα
t ] <∞.

(RW2′) For 1 ≤ α <∞, for some ε > 0,
∑∞

t=1(E[Θα
t ])

1
α+ε <∞.

We shall call these conditions modified RW moment conditions.

Remark 2.3.1. As observed in Remark 2.1.1, for α ≥ 1 and ε > 0, the finiteness of the

sum in (RW2′) implies
∑∞

t=1(E[Θα
t ]) <∞. Thus to check the almost sure finiteness of

X(∞), it is enough to check the tail asymptotics condition:

P[X(∞) > x] ∼ P[X1 > x]

∞∑
t=1

E[Θα
t ].

We shall prove it under the above model together with the assumption that P[Θt >

x] = o(P[X1 > x]) and one of the DZ conditions. We need to assume an extra summability

condition for uniform convergence, when the conditions (DZ2), (DZ3) or (DZ4) hold.

Further note that Θ1X1 ≤ max1≤n<∞
∑n

t=1 ΘtXt ≤ X(∞) and hence the almost sure

finiteness of X(∞) guarantees that max1≤n<∞
∑n

t=1 ΘtXt is a valid random variable.

Theorem 2.3.1. Suppose that {Xt} is a sequence of pairwise asymptotically independent,

identically distributed random variables with common regularly varying tail of index −α,
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where α > 0, satisfying (2.2.2), which is independent of another sequence of positive

random variables {Θt}. Also assume that P[Θt > x] = o(P[X1 > x]), the pairs (Θt, Xt)

satisfy one of the four DZ conditions (DZ1)–(DZ4) and, depending on the value of α, the

modified RW moment conditions (RW1′) or (RW2′) holds. If the pairs (Θt, Xt) satisfy

DZ condition (DZ2), (DZ3) or (DZ4), define

Ct =



supx
P[Θt>x]
P[X1>x] , when (DZ2) holds,

supx
P[Θt>x]

x−α P[U>log x]
, when (DZ3) holds,

supx
P[Θt>x]
P[X1>x]m(x), when (DZ4) holds,

(2.3.1)

and further assume that

∞∑
t=1

Ct <∞, when α < 1, (2.3.2)

∞∑
t=1

C
1

α+ε

t <∞, when α ≥ 1. (2.3.3)

Then

P

[
max

1≤n<∞

n∑
t=1

ΘtXt > x

]
∼ P[X(∞) > x] ∼ P[X1 > x]

∞∑
t=1

E[Θα
t ]

and X(∞) is almost surely finite.

Proof. For any m ≥ 1, we have, by Proposition 2.2.1,

P

[
max

1≤n<∞

n∑
t=1

ΘtXt > x

]
≥ P

[
max

1≤n≤m

n∑
t=1

ΘtXt > x

]
∼ P[X1 > x]

m∑
t=1

E[Θα
t ]

leading to

lim inf
x→∞

P[max1≤n<∞
∑n

t=1 ΘtXt > x]

P[X1 > x]
≥
∞∑
t=1

E[Θα
t ].

Similarly, comparing with the partial sums and using Proposition 2.2.1, we also get

lim inf
x→∞

P[X(∞) > x]

P[X1 > x]
≥
∞∑
t=1

E[Θα
t ].
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For the other inequality, observe that for any natural number m, 0 < δ < 1 and

x ≥ 0,

P

[
max

1≤n<∞

n∑
t=1

ΘtXt > x

]

≤ P

[
max

1≤n≤m

n∑
t=1

ΘtXt > (1− δ)x

]
+ P

[ ∞∑
t=m+1

ΘtX
+
t > δx

]
.

For the first term, by Proposition 2.2.1 and the regular variation of the tail of X1, we

have,

lim
x→∞

P [max1≤n≤m
∑n

t=1 ΘtXt > (1− δ)x]

P[X1 > x]

= (1− δ)−α
m∑
t=1

E[Θα
t ] ≤ (1− δ)−α

∞∑
t=1

E[Θα
t ].

Also, for X(∞), we have,

P
[
X(∞) > x

]
≤ P

[
m∑
t=1

ΘtX
+
t > (1− δ)x

]
+ P

[ ∞∑
t=m+1

ΘtX
+
t > δx

]

and a similar result holds for the first term.

Then, as X1 is a random variable with regularly varying tail, to complete the proof,

it is enough to show that,

lim
m→∞

lim sup
x→∞

P[
∑∞

t=m+1 ΘtX
+
t > x]

P[X1 > x]
= 0. (2.3.4)

Now,

P

[ ∞∑
t=m+1

ΘtXt
+ > x

]

≤P

[ ∞∨
t=m+1

ΘtX
+
t > x

]
+ P

[ ∞∑
t=m+1

ΘtX
+
t > x,

∞∨
t=m+1

ΘtX
+
t ≤ x

]

≤
∞∑

t=m+1

P[ΘtXt > x] + P

[ ∞∑
t=m+1

ΘtX
+
t 1[ΘtX

+
t ≤x] > x

]
. (2.3.5)
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We bound the final term of (2.3.5) separately in the cases α < 1 and α ≥ 1. In the

rest of the proof, for α ≥ 1, we shall choose ε > 0, so that the condition (RW2′) holds.

We first consider the case α < 1. By Markov inequality, the final term of (2.3.5) gets

bounded above by

∞∑
t=m+1

1

x
E
[
ΘtX

+
t 1[ΘtX

+
t ≤x]

]
=

∞∑
t=m+1

∫ ∞
0

1

x/v
E
[
X+
t 1[X+

t ≤x/v]

]
Gt(dv) (2.3.6)

=
∞∑

t=m+1

∫ ∞
0

E[X+
t 1[X+

t ≤x/v]]

x/vP[X+
t > x/v]

P[Xt > x/v]Gt(dv).

Now, using Karamata’s theorem (see Theorem 1.2.1), we have

lim
x→∞

E
[
X+
t 1[X+

t ≤x/v]

]
xP[X+

t > x]
=

α

1− α

and, for x < 1, we have E[X+
t 1[X+

t ≤x/v]]/(xP[X+
t > x]) ≤ 1/P[X+

t > 1]. Thus,

E[X+
t 1[X+

t ≤x/v]]/(xP[X+
t > x]) is bounded on (0,∞). So the final term of (2.3.5)

becomes bounded by a multiple of
∑∞

t=m+1 P[ΘtXt > x].

When α ≥ 1, using Markov inequality on the final term of (2.3.5), we get a bound

for it as

1

xα+ε
E

[( ∞∑
t=m+1

ΘtX
+
t 1[ΘtX

+
t ≤x]

)α+ε]
,

and then using Minkowski’s inequality, this gets further bounded by

{ ∞∑
t=m+1

(
E

[
1

xα+ε

(
ΘtX

+
t

)α+ε
1[ΘtX

+
t ≤x]

]) 1
α+ε

}α+ε

=

{ ∞∑
t=m+1

[∫ ∞
0

(x/v)−(α+ε)E
[(
X+
t

)α+ε
1[X+

t ≤x/v]

]
Gt(dv)

] 1
α+ε

}α+ε

(2.3.7)

=


∞∑

t=m+1

∫ ∞
0

E
[(
X+
t

)α+ε
1[X+

t ≤x/v]

]
(x/v)α+ε P[X+

t > x/v]
P[Xt > x/v]Gt(dv)


1

α+ε


α+ε

.

Then, again using Karamata’s theorem, the first factor of the integrand converges to α/ε
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and, arguing as in the case α < 1, is bounded. Thus the final term of (2.3.5) is bounded

by a multiple of [
∑∞

t=m+1(P[ΘtXt > x])1/(α+ε)]α+ε.

Combining the two cases for α, we get, for some L1 > 0,

P[
∑∞

t=m+1 ΘtX
+
t > x]

P[X1 > x]
≤



L1
∑∞

t=m+1
P[ΘtXt>x]
P[X1>x] , when α < 1,

∑∞
t=m+1

P[ΘtXt>x]
P[X1>x]

+L1

[∑∞
t=m+1

(
P[ΘtXt>x]
P[X1>x]

) 1
α+ε

]α+ε

, when α ≥ 1.

To prove (2.3.4), we shall show

P[ΘtXt > x]

P[X1 > x]
≤ Bt (2.3.8)

for all large values of x, where

∞∑
t=1

Bt <∞, for α < 1,

∞∑
t=1

B
1

α+ε

t <∞, for α ≥ 1.

(2.3.9)

As mentioned in Remark 2.3.1, for α ≥ 1 and ε > 0,
∑∞

t=1B
1/α+ε
t <∞ will also imply∑∞

t=1Bt <∞. Thus, for both the cases of α < 1 and α ≥ 1, the sums involved will be

bounded by the tail sum of a convergent series and hence (2.3.4) will hold.

First observe that

P[ΘtXt > x]

P[X1 > x]
=

∫ ∞
0

P[X1 > x/v]

P[X1 > x]
Gt(dv). (2.3.10)

We break the range of integration into three intervals (0, 1], (1, x] and (x,∞), where we

choose a suitably large x greater than 1.

Since F is regularly varying of index −α with α > 0, P[X1 > x/v]/P[X1 > x]

converges uniformly to vα for v ∈ (0, 1) or equivalently 1/v ∈ (1,∞). Hence the integral
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in (2.3.10) over the first interval can be bounded, for all large enough x, as

∫ 1

0

P[X1 > x/v]

P[X1 > x]
Gt(dv) ≤ 2 E[Θα

t ]. (2.3.11)

For the integral in (2.3.10) over the third interval, we have, for all large enough x,

by (2.3.1) (for the conditions (DZ2), (DZ3) and (DZ4) only),

∫ ∞
x

P[X1 > x/v]

P[X1 > x]
Gt(dv) ≤ P [Θt > x]

P[X1 > x]

≤



E[Θαt ]
L(x) ≤ 2D1

E[Θαt ]
L(1) , by Markov’s inequality, when (DZ1) holds,

Ct, when (DZ2) holds,

P[Θt>x]
c(x)x−α P[U>log x]

≤ 2
cCt, when (DZ3) holds,

Ct, as m(x)→∞, when (DZ4) holds.

(2.3.12)

Note that, when the condition (DZ3) holds and L is of type 4, we can ignore the factor

P[V > log x], as it is bounded by 1.

Finally, we consider the integral in (2.3.10) over the second interval separately for

each of the DZ conditions. We begin with the condition (DZ1). In this case, we have,

for all large enough x,

∫ x

1

P[X1 > x/v]

P[X1 > x]
Gt(dv) ≤

∫ x

1
vα
L(x/v)

L(x)
Gt(dv)

≤ sup
y∈[1,x]

L(y)

L(x)
E [Θα

t ] ≤ 2D1 E [Θα
t ] . (2.3.13)

Next we consider the condition (DZ2). Integrating by parts, we have

∫ x

1

P [X1 > x/v]

P[X1 > x]
Gt(dv) ≤ P[Θt > 1] +

∫ x

1

P[Θt > v]

P[X1 > x]
dv P [X1 > x/v] .

Using Markov’s inequality and (2.3.1) respectively in each of the terms, we have

∫ x

1

P [X1 > x/v]

P[X1 > x]
Gt(dv) ≤ E[Θα

t ] + Ct

∫ x

1

P[X1 > v]

P[X1 > x]
dv P [X1 > x/v] .
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Substituting u = log v, the second term becomes, for all large x,

Ct

∫ log x

0

P[logX1 > u]

P[logX1 > log x]
du P [logX1 > log x− u]

≤ 2Ct E[exp(α(logX1)+)] ≤ 2Ct E[Xα
1 ],

where the inequalities follow, since L(ex) ∈ Sd implies (logX1)+ ∈ S(α), cf. Klüppelberg

(1989). Thus, ∫ x

1

P[X1 > x/v]

P[X1 > x]
Gt(dv) ≤ E[Θα

t ] + 2Ct E[Xα
1 ]. (2.3.14)

Next we consider the condition (DZ3). In this case, we have

∫ x

1

P[X1 > x/v]

P[X1 > x]
Gt(dv) =

∫ x

1

L(x/v)

L(x)
vαGt(dv)

≤ sup
v∈[1,x]

c(x/v)

c(x)

∫ x

1

P[U > log x− log v]

P[U > log x]
vαGt(dv).

If L is of type 4, the ratio L(x/v)/L(x) has an extra factor P[V > log x]/P[V >

log x− log v], which is bounded by 1. Thus the above estimate works if L is either of

type 3 or of type 4. Since c(x)→ c ∈ (0,∞), we have supv∈[N,x) c(x/v)/c(x) := L2 <∞.

Integrating by parts, the integral becomes

∫ x

1

P[U > log x− log v]

P[U > log x]
vαGt(dv)

≤ P[Θt > 1] +

∫ x

1

P[U > log x− log v] P[Θt > v]

P[U > log x]
αvα−1dv

+

∫ x

1

P[Θt > v]vα

P[U > log x]
dv P[U > log x− log v].

The first term is bounded by E[Θα
1 ] by Markov’s inequality. By (2.3.1), the second term

gets bounded by, for all large enough x,

αCt

∫ x

1

P[U > log x− log v] P[U > log v]

P[U > log x]
d(log v) ≤ 2αCt E[U ],

as U belongs to S∗. Again, by (2.3.1), the third term gets bounded by, for all large
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enough x,

Ct

∫ x

1

P[U > log v]dv P[U > log x− log v]

P[U > log x]
≤ 4Ct,

as U belongs to S∗ and hence is subexponential, cf. Klüppelberg (1988). Combining the

bounds for the three terms, we get

∫ x

1

P[X1 > x/v]

P[X1 > x]
Gt(dv) ≤ L2{E[Θα

t ] + 2(αE[U ] + 2)Ct}. (2.3.15)

Finally we consider the condition (DZ4). In this case, we split the interval (1, x] into

two subintervals (1,
√
x] and (

√
x, x] and bound the integrals on each of the subintervals

separately. We begin with the integral on the subinterval (1,
√
x].

∫ √x
1

L(x/v)

L(x)
vαGt(dv) ≤ sup

v∈(1,
√
x]

L(x/v)

L(x)

∫ √x
1

vαGt(dv) ≤ D2 E[Θα
t ].

For the integral over (
√
x, x], we integrate by parts to obtain

∫ x

√
x

L(x/v)

L(x)
vαGt(dv) ≤ P[Θt >

√
x]xα/2

L(
√
x)

L(x)
+

∫ x

√
x

P[Θt > v]

L(x)
dv(v

αL(x/v)).

By Markov’s inequality, the first term is bounded by D2 E[Θα
t ]. The second term becomes,

using (2.3.1),

∫ x

√
x

P[Θt > v]

L(x)
xαdv(P[X1 ≤ x/v]) ≤ Ct

∫ x

√
x

P[X1 > v]

L(x)m(v)
xαdv(P[X1 ≤ x/v])

≤ Ct
m(
√
x)

∫ x

√
x

L(v)

L(x)

(x
v

)α
dv(P[X1 ≤ x/v])

≤ D2Ct
m(
√
x)

∫ √x
1

yαdy(P[X1 ≤ y]) ≤ D2Ct.

Combining the bounds for the integrals over each subinterval, we get

∫ x

1

P[X1 > x/v]

P[X1 > x]
Gt(dv) ≤ D2(2 E[Θα

t ] + Ct). (2.3.16)

Combining all the bounds in (2.3.11)–(2.3.16), for some constant B, we can choose
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the bound in (2.3.8) as

Bt =


B E[Θα

t ], when the condition (DZ1) holds,

B(E[Θα
t ] + Ct), when the conditions (DZ2), (DZ3) or (DZ4) hold.

Then, for α < 1, the summability condition (2.3.9) follows from the condition (RW1′)

alone under the condition (DZ1) and from the condition (RW1′) together with (2.3.2)

under the conditions (DZ2), (DZ3) or (DZ4). For α ≥ 1, under the condition (DZ1), the

summability condition (2.3.9) follows from the condition (RW2′). Finally, to check the

summability condition (2.3.9) for α ≥ 1, under the condition (DZ2), (DZ3) or (DZ4),

observe that as α ≥ 1 and ε > 0, we have

(E[Θα
t ] + Ct)

1
α+ε ≤ (E[Θα

t ])
1

α+ε + C
1

α+ε

t

and we get the desired condition from the condition (RW2′), together with (2.3.3).

2.4 The tails of the summands from the tail of the sum

In this section, we address the converse problem of studying the tail behavior of X1

based on the tail behavior of X(∞). For the converse problem, we restrict ourselves to

the setup where the sequence {Xt} is positive and pairwise asymptotically independent

and the other sequence {Θt} is positive and independent of the sequence {Xt}, such that

X(∞) is finite with probability one and has regularly varying tail of index −α. Depending

on the value of α, we assume the usual RW moment conditions (RW1) or (RW2) for the

sequence {Θt}, instead of the modified ones. Then, under a further assumption of the

non-vanishing Mellin transform along the vertical line of the complex plane with the

real part α, we shall show that X1 also has regularly varying tail of index −α.

We use the extension of the notion of product of two independent positive random

variables to the product convolution of two measures on (0,∞), which we allow to be

σ-finite. For two σ-finite measures ν and ρ on (0,∞), we define the product convolution

as

ν ~ ρ(B) =

∫ ∞
0

ν(x−1B)ρ(dx),
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for any Borel subset B of (0,∞). We shall need the following result from Jacobsen et al.

(2009).

Theorem 2.4.1 (Jacobsen et al., 2009, Theorem 2.3). Let a non-zero σ-finite measure

ρ on (0,∞) satisfies, for some α > 0, ε ∈ (0, α) and all β ∈ R,

∫ ∞
0

(
yα−ε ∨ yα+ε

)
ρ(dy) <∞ (2.4.1)

and

∫ ∞
0

yα+iβρ(dy) 6= 0. (2.4.2)

Suppose, for another σ-finite measure ν on (0,∞), the product convolution measure

ν ~ ρ has a regularly varying tail of index −α and

lim
b→0

lim sup
x→∞

∫ b
0 ρ(x/y,∞)ν(dy)

(ν ~ ρ)(x,∞)
= 0. (2.4.3)

Then the measure ν has a regularly varying tail of index −α as well and

lim
x→∞

ν ~ ρ(x,∞)

ν(x,∞)
=

∫ ∞
0

yαρ(dy).

Conversely, if (2.4.1) holds but (2.4.2) fails for the measure ρ, then there exists a

σ-finite measure ν without regularly varying tail, such that ν ~ ρ has regularly varying

tail of index −α and (2.4.3) holds.

Remark 2.4.1. Jacobsen et al. (2009) gave an explicit construction of the σ-finite measure

ν in Theorem 2.4.1 above. In fact, if (2.4.2) fails for β = β0, then, for any real number a

and b satisfying 0 < a2 + b2 ≤ 1, we can define g(x) = 1 + a cos(β0 log x) + b sin(β0 log x)

and dν = gdνα will qualify for the measure in the converse part, where να is the σ-finite

measure given by να(x,∞) = x−α for any x > 0.

It is easy to check that 0 ≤ g(x) ≤ 2 for all x > 0 and hence

ν(x,∞) ≤ 2x−α. (2.4.4)
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Also, it is known from Theorem 2.1 of Jacobsen et al. (2009) that

ν ~ ρ = ‖ρ‖ανα, (2.4.5)

where ‖ρ‖α =
∫∞

0 yαρ(dy) <∞, by (2.4.1).

We are now ready to state the main result of this section.

Theorem 2.4.2. Let {Xt, t ≥ 1} be a sequence of identically distributed, pairwise

asymptotically independent positive random variables and {Θt, t ≥ 1} be a sequence of

positive random variables independent of {Xt}, such that X(∞) =
∑∞

t=1 ΘtXt is finite

with probability one and has regularly varying tail of index −α, where α > 0. Let

{Θt, t ≥ 1} satisfy the appropriate RW condition (RW1) or (RW2), depending on the

value of α. If we further have, for all β ∈ R,

∞∑
t=1

E[Θα+iβ
t ] 6= 0, (2.4.6)

then X1 has regularly varying tail of index −α and, as x→∞,

P[X(∞) > x] ∼ P[X1 > x]
∞∑
t=1

E[Θα
t ] as x→∞.

We shall prove Theorem 2.4.2 in several steps. We collect the preliminary steps,

which will also be useful for a converse to Theorem 2.4.2, into three separate lemmas.

The first lemma controls the tail of the sum X(∞).

Lemma 2.4.1. Let {Xt} be a sequence of identically distributed positive random variables

and {Θt} be a sequence of positive random variables independent of {Xt}. Suppose that

the tail of X1 is dominated by a bounded regularly varying function R of index −α, where

α > 0, that is, for all x > 0,

P[X1 > x] ≤ R(x). (2.4.7)

Also assume that {Θt} satisfies the appropriate RW condition depending on the value of

α. Then,

lim
m→∞

lim sup
x→∞

P[
∑∞

t=m+1 ΘtXt > x]

R(x)
= 0



2.4 The tails of the summands from the tail of the sum 57

and

lim
m→∞

lim sup
x→∞

∞∑
t=m+1

P[ΘtXt > x]

R(x)
= 0.

Proof. From (2.3.5), we have

P

[ ∞∑
t=m+1

ΘtXt > x

]
≤

∞∑
t=m+1

P [ΘtXt > x] + P

[ ∞∑
t=m+1

ΘtXt1[ΘtXt≤x] > x

]
. (2.4.8)

Using (2.4.7), the summands of the first term on the right side of (2.4.8) can be bounded

as

P[ΘtXt > x] =

∫ ∞
0

P[Xt > x/u]Gt(du) ≤
∫ ∞

0
R(x/u)Gt(du). (2.4.9)

Before analyzing the second term on the right side of (2.4.8), observe that, for γ > α,

we have, using Fubini’s theorem, (2.4.7) and Karamata’s theorem successively

E
[
Xγ
t 1[Xt≤x]

]
≤ γ

∫ x

0
uγ−1 P[Xt > u]du ≤ γ

∫ x

0
uγ−1R(u)du ∼ γ

γ − α
xγR(x).

Thus, there exists constant M ≡M(γ), such that, for all x > 0,

x−γ E
[
Xγ
t 1[Xt≤x]

]
≤MR(x). (2.4.10)

We bound the second term on the right side of (2.4.8), using (2.4.10), separately for

the cases α < 1 and α ≥ 1. For α < 1, we use (2.3.6) and (2.4.10) with γ = 1, to get

P

[ ∞∑
t=m+1

ΘtXt1[ΘtXt≤x] > x

]
≤M(1)

∞∑
t=m+1

∫ ∞
0

R(x/u)Gt(du). (2.4.11)

For α ≥ 1, we use (2.3.7) and (2.4.10) with γ = α+ ε, to get

P

[ ∞∑
t=m+1

ΘtXt1[ΘtXt≤x] > x

]
≤M(α+ ε)

[ ∞∑
t=m+1

(∫ ∞
0

R(x/u)Gt(du)

) 1
α+ε

]α+ε

.

(2.4.12)

Combining (2.4.9), (2.4.11) and (2.4.12) with the bound in (2.4.8), the proof will be
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complete if we show

lim
m→∞

lim sup
x→∞

∞∑
t=m+1

∫ ∞
0

R(x/u)

R(x)
Gt(du) = 0, for α < 1,

and lim
m→∞

lim sup
x→∞

∞∑
t=m+1

(∫ ∞
0

R(x/u)

R(x)
Gt(du)

) 1
α+ε

= 0, for α ≥ 1.

(2.4.13)

Note that, for α ≥ 1, as in Remark 2.1.1, the second limit above gives the first one as

well.

We bound the integrand using a variant of Potter’s bound (see (1.2.7)) . Let ε > 0

be as in the RW conditions. Then there exists a x0 and a constant M > 0 such that, for

x > x0, we have

R(x/u)

R(x)
≤


Muα−ε, if u < 1,

Muα+ε, if 1 ≤ u ≤ x/x0.

(2.4.14)

We split the range of integration in (2.4.13) into three intervals, namely (0, 1],

(1, x/x0] and (x/x0,∞). For x > x0, we bound the integrand over the first two integrals

using (2.4.14) and hence the integrals get bounded by a multiple of E[Θα−ε
t ] and E[Θα+ε

t ]

respectively. As R is bounded, by Markov’s inequality, the third integral gets bounded

by a multiple of xα+ε
0 E[Θα+ε

t ]/{xα+εR(x)}. Putting all the bounds together, we have

∫ ∞
0

R(x/u)

R(x)
Gt(du) ≤M

(
E[Θα−ε

t ] + E[Θα+ε
t ] +

xα+ε
0 E[Θα+ε

t ]

xα+εR(x)

)
.

Then, (2.4.13) holds for α < 1 using the condition (RW1) and the fact that R is regularly

varying of index −α. For α ≥ 1, we need to further observe that, as α+ ε > 1, we have

(∫ ∞
0

R(x/u)

R(x)
Gt(du)

) 1
α+ε

≤M
1

α+ε

[(
E[Θα−ε

t ] + E[Θα+ε
t ]

)
+
xα+ε

0 E[Θα+ε
t ]

xα+εR(x)

] 1
α+ε

≤M
1

α+ε
(
E[Θα−ε

t ] + E[Θα+ε
t ]

) 1
α+ε +

x0

(
E[Θα+ε

t ]
) 1
α+ε

xR(x)
1

α+ε

and (2.4.13) holds using the condition (RW2) and the fact that R is regularly varying of

index −α.

The next lemma considers the joint distribution of (Θ1X1,Θ2X2) and shows they are
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“somewhat” asymptotically independent, if (X1, X2) are asymptotically independent.

Lemma 2.4.2. Let (X1, X2) and (Θ1,Θ2) be two independent random vectors, such

that each coordinate of either vector is positive. We assume that X1 and X2 have same

distribution with their common tail dominated by a regularly varying function R of index

−α with α > 0, as in (2.4.7). We also assume that R stays bounded away from 0 on

any bounded interval. We further assume that both Θ1 and Θ2 have (α+ ε)-th moments

finite. Then

lim
x→∞

P[Θ1X1 > x,Θ2X2 > x]

R(x)
= 0.

Proof. By asymptotic independence and (2.4.7), we have

P[X1 > x,X2 > x] = o(R(x)). (2.4.15)

Further, since R is bounded away from 0 on any bounded interval, P[X1 > x,X2 > x] is

bounded by a multiple of R(x). Then,

P[Θ1X1 > x,Θ2X2 > x]

R(x)
=

∞∫
0

∞∫
0

P[X1 > x/u,X2 > x/v]

R(x)
G(du, dv)

=

∫∫
u>v

+

∫∫
u≤v

P[X1 > x/u,X2 > x/v]

R(x)
G(du, dv)

≤
∫ ∞

0

P[X1 > x/u,X2 > x/u]

R(x)
(G1 +G2)(du)

=

∫ ∞
0

P[X1 > x/u,X2 > x/u]

R(x)
1[0,x/x0](u)(G1 +G2)(du)

+
xα+ε

0

(
E[Θα+ε

1 ] + E[Θα+ε
1 ]

)
xα+εR(x)

,

for any x0 > 0. The integrand in the first term goes to 0, using (2.4.15) and the regular

variation of R. Further choose x0 as in Potter’s bound (2.4.14). Then, the integrand of

the first term is bounded by a multiple of 1 + uα+ε, which is integrable with respect to

G1 +G2. So, by Dominated Convergence Theorem, the first term goes to 0. For this

choice of x0, the second term also goes to 0, as R is regularly varying of index −α.

The next lemma compares
∑m

t=1 P[ΘtXt > x] and P [
∑m

t=1 ΘtXt > x].
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Lemma 2.4.3. Let {Xt} and {Θt} be two sequences of positive random variables. Then,

we have, for any 1
2 < δ < 1 and m ≥ 2,

P

[
m∑
t=1

ΘtXt > x

]
≥

m∑
t=1

P[ΘtXt > x]−
∑∑

1≤s6=t≤m
P[ΘsXs > x,ΘtXt > x] (2.4.16)

and

P

[
m∑
t=1

ΘtXt > x

]
≤

m∑
t=1

P[ΘtXt > x]

+
∑∑

1≤s 6=t≤m
P

[
ΘsXs >

1− δ
m− 1

x,ΘtXt >
1− δ
m− 1

x

]
. (2.4.17)

Proof. The first inequality (2.4.16) follows from the fact that

[
m∑
t=1

ΘtXt > x

]
⊆

m⋃
t=1

[ΘtXt > x]

and Bonferroni’s inequality.

For the second inequality (2.4.17), observe that

P

[
m∑
t=1

ΘtXt > x

]
≤

m∑
t=1

P[ΘtXt > δx] + P

[
k∑
t=1

ΘtXt > x,
m∨
t=1

ΘtXt ≤ δx

]
.

Next we estimate the second term as

P

[
m∑
t=1

ΘtXt > x,
m∨
t=1

ΘtXt ≤ δx

]

= P

[
m∑
t=1

ΘtXt > x,
m∨
t=1

ΘtXt ≤ δx,
m∨
t=1

ΘtXt >
x

m

]

≤
m∑
s=1

P

[
m∑
t=1

ΘtXt > x,
m∨
t=1

ΘtXt ≤ δx,ΘsXs >
x

m

]

≤
m∑
s=1

P

[
m∑
t=1

ΘtXt > x,ΘsXs ≤ δx,ΘsXs >
x

m

]

≤
m∑
s=1

P

 k∑
t=1
t6=s

ΘtXt > (1− δ)x,ΘsXs >
x

m


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≤
∑∑

1≤s 6=t≤m
P

[
ΘtXt >

1− δ
m− 1

x,ΘsXs >
x

m

]

≤
∑∑

1≤s 6=t≤m
P

[
ΘtXt >

1− δ
m− 1

x,ΘsXs >
1− δ
m− 1

x

]
,

since δ > 1/2 and m ≥ 2 imply (1− δ)/(m− 1) < 1/m.

With the above three lemmas, we are now ready to show the tail equivalence of the

distribution of X(∞) and
∑∞

t=1 P[ΘtXt ∈ ·].

Proposition 2.4.1. Let {Xt, t ≥ 1} be a sequence of identically distributed, pairwise

asymptotically independent positive random variables and {Θt, t ≥ 1} be a sequence of

positive random variables independent of {Xt}, such that X(∞) =
∑∞

t=1 ΘtXt is finite

with probability one and has regularly varying tail of index −α, where α > 0. Let

{Θt, t ≥ 1} satisfy the appropriate RW condition (RW1) or (RW2), depending on the

value of α. Then, as x→∞,

∞∑
t=1

P[ΘtXt > x] ∼ P[X(∞) > x].

Proof. We first show that the tail of X1 can be dominated by a multiple of the tail of

X(∞), so that Lemmas 2.4.1 and 2.4.2 apply. Note that the tail of X(∞) is bounded

and stays bounded away from 0 on any bounded interval. As Θ1 is a positive random

variable, choose η > 0 such that P[Θ1 > η] > 0. Then, for all x > 0,

P[X(∞) > ηx] ≥ P[Θ1X1 > ηx,Θ1 > η] ≥ P[X1 > x] P[Θ1 > η].

Further, using the regular variation of the tail of X(∞), X1 satisfies (2.4.7) with R as a

multiple of P[X(∞) > ·]. Thus, from Lemmas 2.4.1 and 2.4.2, we have,

lim
m→∞

lim sup
x→∞

P[
∑∞

t=m+1 ΘtXt > x]

P[X(∞) > x]
= 0, (2.4.18)

lim
m→∞

lim sup
x→∞

∞∑
t=m+1

P[ΘtXt > x]

P[X(∞) > x]
= 0, (2.4.19)
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and, for any s 6= t,

lim
x→∞

P[ΘsXs > x,ΘtXt > x]

P[X(∞) > x]
= 0. (2.4.20)

Choose any δ > 0. Then

P
[
X(∞) > (1 + δ)x

]
≤ P

[
m∑
t=1

ΘtXt > x

]
+ P

[ ∞∑
t=m+1

ΘtXt > δx

]
,

and from (2.4.18) and the regular variation of the tail of X(∞), we have

lim
m→∞

lim inf
x→∞

P[
∑m

t=1 ΘtXt > x]

P[X(∞) > x]
≥ 1.

Further, using the trivial bound P[
∑m

t=1 ΘtXt > x] ≤ P[X(∞) > x], we have

1 ≤ lim
m→∞

lim inf
x→∞

P[
∑m

t=1 ΘtXt > x]

P[X(∞) > x]
≤ lim

m→∞
lim sup
x→∞

P[
∑m

t=1 ΘtXt > x]

P[X(∞) > x]
≤ 1. (2.4.21)

We next replace P[
∑m

t=1 ΘtXt > x] in the numerator by
∑m

t=1 P[ΘtXt > x]. We

obtain the upper bound first. From (2.4.16), (2.4.20) and (2.4.21), we get

lim sup
x→∞

∑m
t=1 P[ΘtXt > x]

P[X(∞) > x]
≤ 1

and letting m → ∞, we get the upper bound. The lower bound follows using exactly

similar lines, but using (2.4.17) and the regular variation of the tail of X(∞) instead

of (2.4.16). Putting together, we get

1 ≤ lim
m→∞

lim inf
x→∞

∑m
t=1 P[ΘtXt > x]

P[X(∞) > x]
≤ lim

m→∞
lim sup
x→∞

∑m
t=1 P[ΘtXt > x]

P[X(∞) > x]
≤ 1. (2.4.22)

Then the result follows combining (2.4.19) and (2.4.22).

We are now ready to prove Theorem 2.4.2.

Proof of Theorem 2.4.2. Let ν be the law of X1 and define the measure ρ(·) =∑∞
t=1 P[Θt ∈ ·]. As observed in Remark 2.1.1, under the RW conditions, for all values of

α, we have
∑∞

t=1 E[Θα+ε
t ] <∞. Thus, ρ is a σ-finite measure. Also, by Proposition 2.4.1,
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we have ν ~ ρ(x,∞) =
∑∞

t=1 P[ΘtXt > x] ∼ P[X(∞) > x]. Hence ν ~ ρ has regularly

varying tail of index −α. As ν is a probability measure, by Remark 2.4 of Jacobsen et al.

(2009), (2.4.3) holds. The RW condition implies (2.4.1). Finally, (2.4.2) holds, since,

for all β ∈ R, we have, from (2.4.6),
∫∞

0 yα+iβρ(dy) =
∑∞

t=1 E[Θα+iβ
t ] 6= 0. Hence, by

Theorem 2.4.1, X1 has regularly varying tail of index −α.

As in Theorem 2.4.1, (2.4.6) is necessary for Theorem 2.4.2 and we give its converse

below.

Theorem 2.4.3. Let {Θt, t ≥ 1} be a sequence of positive random variables satisfying

the condition (RW1) or (RW2), for some α > 0, but
∑∞

t=1 E[Θα+iβ0
t ] = 0 for some

β0 ∈ R. Then there exists a sequence of i.i.d. positive random variables {Xt}, such

that X1 does not have a regularly varying tail, but X(∞) is finite almost surely and has

regularly varying tail of index −α.

The proof depends on an analogue of Proposition 2.4.1.

Proposition 2.4.2. Let {Xt, t ≥ 1} be a sequence of identically distributed, pairwise

asymptotically independent positive random variables and {Θt, t ≥ 1} be a sequence of

positive random variables satisfying the condition (RW1) or (RW2) for some α > 0 and

independent of {Xt}. If
∑∞

t=1 P[ΘtXt > x] is regularly varying of index −α, then, as

x→∞,
∞∑
t=1

P[ΘtXt > x] ∼ P[X(∞) > x]

and X(∞) is finite with probability one.

Proof. We shall denote R(x) =
∑∞

t=1 P[ΘtXt > x]. As Θ1 is a positive random variable,

choose η > 0 such that P[Θ1 > η] > 0. Then, for all x > 0, we have R(x) ≥ P[Θ1X1 >

ηx,Θ1 > η] ≥ P[X1 > x] P[Θ1 > η] and using the regular variation of R, the tail of

X1 is dominated by a constant multiple of R. Also, note that, R is bounded and stays

bounded away from 0 on any bounded interval. Then, from Lemmas 2.4.1 and 2.4.2, we

have

lim
m→∞

lim sup
x→∞

P[
∑∞

t=m+1 ΘtXt > x]

R(x)
= 0, (2.4.23)
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lim
m→∞

lim sup
x→∞

∞∑
t=m+1

P[ΘtXt > x]

R(x)
= 0, (2.4.24)

and, for any s 6= t,

lim
x→∞

P[ΘsXs > x,ΘtXt > x]

R(x)
= 0. (2.4.25)

Using (2.4.24), we have

1 ≤ lim
m→∞

lim inf
x→∞

∑m
t=1 P[ΘtXt > x]

R(x)
≤ lim

m→∞
lim sup
x→∞

∑m
t=1 P[ΘtXt > x]

R(x)
≤ 1.

As in the proof of Proposition 2.4.1, using (2.4.16), (2.4.17) and (2.4.25), the above

inequalities reduce to

1 ≤ lim
m→∞

lim inf
x→∞

P[
∑m

t=1 ΘtXt > x]

R(x)
≤ lim

m→∞
lim sup
x→∞

P[
∑m

t=1 ΘtXt > x]

R(x)
≤ 1

and the tail equivalence follows using (2.4.23) and the regular variation of R. Since

R(x)→ 0, the tail equivalence also shows the almost sure finiteness of X(∞).

Next, we prove Theorem 2.4.3 using the converse part of Theorem 2.4.1.

Proof of Theorem 2.4.3. Define the measure ρ(·) =
∑∞

t=1 P[Θt ∈ ·]. By the RW moment

condition, the measure ρ is σ-finite. Further, we have,
∫∞

0 yα+iβ0ρ(dy) = 0. Now by

converse part of Theorem 2.4.1, there exists a σ-finite measure ν, whose tail is not

regularly varying, but ν~ρ has regularly varying tail. Next, define a probability measure

µ using the σ-finite measure ν as in Theorem 3.1 of Jacobsen et al. (2009). Choose b > 1,

such that ν(b,∞) ≤ 1 and define a probability measure on (0,∞) by

µ(B) = ν(B ∩ (b,∞)) + (1− ν(b,∞))1B(1), where B is Borel subset of (0,∞).
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First observe that

µ(y,∞) =


ν(y,∞), for y > b,

ν(b,∞), for 1 < y ≤ b,

1, for y ≤ 1.

Thus, µ does not have a regularly varying tail and

µ~ ρ(x,∞) =

∫ ∞
0

µ(x/u,∞)ρ(du)

=

∫ x/b

0
ν(x/u,∞)ρ(du) + ν(b,∞)ρ[x/b, x) + ρ[x,∞)

=ν ~ ρ(x,∞)− 2x−α
∫ ∞
x/b

uαρ(du)

+ ν(b,∞)ρ[x/b, x) + ρ[x,∞).

Now, using the bound from (2.4.4) and (2.4.5), the second term is bounded by, for x > b,

2
ν ~ ρ(x,∞)

‖ρ‖α

∫ ∞
x/b

uα+ερ(du) = o(ν ~ ρ(x,∞))

as x → ∞, since
∫∞

0 uα+ερ(du) < ∞ by the RW conditions. The sum of the last two

terms can be bounded by

1 + ν(b,∞)bα+ε

xα+ε

∫ ∞
0

uα+ερ(du) = o(ν ~ ρ(x,∞)),

as x → ∞, since ν ~ ρ(x,∞) is regularly varying of index −α. Thus, µ ~ ρ(x,∞) ∼

ν ~ ρ(x,∞) as x→∞ and hence is regularly varying of index −α.

Let Xt be an i.i.d. sequence with common law µ. Then, X1 does not have regularly

varying tail. Further, by Proposition 2.4.2, X(∞) is finite with probability one and

P[X(∞) > x] ∼ µ~ ρ(x,∞) is regularly varying of index −α.
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Chapter 3

Products in CEVM

3.1 Introduction

The classical multivariate extreme value theory tries to capture the extremal dependence

between the components under a multivariate domain of attraction condition and it

requires each of the components to be in domain of attraction of a univariate extreme

value distribution. The multivariate extreme value theory has a rich theory but has

some limitations as it fails to capture the dependence structure. The concept of tail

dependence is an alternative way of detecting this dependence. The concept was first

proposed by Ledford and Tawn (1996, 1997) and then elaborated upon by Maulik and

Resnick (2004), Resnick (2002). A different approach towards modeling multivariate

extreme value distributions was given by Heffernan and Tawn (2004) by conditioning on

one of the components to be extreme. Further properties of this conditional model were

subsequently studied by Das and Resnick (2011), Heffernan and Resnick (2007).

An important dependence structure in multivariate extreme value theory is that of

asymptotic independence. Recall from Section 1.5.2 that the joint distribution of two

random variable is asymptotically independent if the the nondegenerate limit of suitably

centered and scaled coordinate wise partial maximums is a product measure. One of

the limitations of the asymptotic independence model is that it is too large a class to

conclude anything interesting, for example, about product of two random variables. In

another approach, a smaller class was considered by Maulik et al. (2002). They assumed

67
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that (X,Y ) satisfy the following vague convergence:

tP

[(
X

a(t)
, Y

)
∈ ·
]

v→ (ν ×H)(·) on M+((0,∞]× [0,∞]), (3.1.1)

where M+((0,∞]× [0,∞]) denotes the space of nonnegative Radon measures on (0,∞]×

[0,∞] and ν(x,∞] = x−α, for some α > 0 and H is a probability distribution supported

on (0,∞). The tail behavior of the product XY under the assumption (3.1.1) and

some further moment conditions was obtained by Maulik et al. (2002). The conditional

model can be viewed as an extension of the above model. Under the conditional model,

the limit of the vague convergence need not be a product measure and it happens in

the space M+

(
[−∞,∞]× E

(γ)
)

with γ ∈ R, where E
(γ)

is the right closure of the set

{x ∈ R : 1 + γx > 0}. (See Section 3.2 for details.) In this thesis we mainly focus on

the product behavior when the limiting measure in the conditional model is not of the

product form.

Products of random variables and their domains of attraction are important theo-

retical issues which have a lot of applications ranging from Internet traffic to insurance

models. We study the product of two random variables whose joint distribution satisfies

the conditional extreme value model. In particular we try to see the role of regular

variation in determining the behavior of the product. When γ > 0, then it is easy to

describe the behavior of the product under certain conditions. However, when γ < 0,

some complications arise due to the presence of finite upper end point. We remark that

we do not deal with the other case of γ = 0 in this thesis. Like in the case of Gumbel

domain of attraction for maximum of i.i.d. observations, the case γ = 0 will require more

careful and detailed analysis.

In Section 3.2 we briefly describe the conditional extreme value model and state some

properties and nomenclatures, which we use throughout this Chapter. In Section 3.3

we provide an overview of our results, which are presented in the later sections. In

Section 3.4 we reduce the conditional extreme value model defined in Section 3.2 to

simpler forms for special cases. In Section 3.5 we describe the behavior of the product of

random variables following conditional model under some appropriate conditions. In

Section 3.6 we make some remarks on the assumptions used in the results. In the final
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Section 3.7 we present an example of a conditional model where the assumptions of the

Theorems in Section 3.5 do not hold, yet we look at the product behavior.

3.2 Conditional extreme value model

In this section, we provide the notations used in this Chapter and the basic model. Some

of the definitions and notations have already been introduced in Chapter 1, but we recall

them again together with the new ones to put all the relevant definitions at one place

for quick reference.

Let E(γ) be the interval {x ∈ R : 1 + γx > 0} and E
(γ)

be its right closure in the

extended real line [−∞,∞]. Thus, we have

E(γ) =


(−1/γ,∞), if γ > 0,

(−∞,∞), if γ = 0,

(−∞,−1/γ), if γ < 0,

and E
(γ)

=


(−1/γ,∞], if γ > 0,

(−∞,∞], if γ = 0,

(−∞,−1/γ], if γ < 0.

For any γ ∈ R, recall from Definition 1.4.3, the generalized extreme value distribution

is denoted by Gγ . It is supported on E(γ) and is given by, for x ∈ E(γ),

Gγ(x) =


exp

(
−(1 + γx)

− 1
γ

)
, for γ 6= 0,

exp (− e−x) , for γ = 0.

Definition 3.2.1 (Conditional extreme value model). The real valued random vector

(X,Y ) satisfies conditional extreme value model (CEVM) if

(1) The marginal distribution of Y is in the domain of attraction of an extreme value

distribution Gγ , that is, there exists a positive valued function a and a real valued

function b such that (1.4.1) holds on E(γ), with G = Gγ .

(2) There exists a positive valued function α and a real valued function β and a

non-null Radon measure µ on Borel subsets of (−∞,∞)× E(γ) such that

(2A) tP
[(

X−β(t)
α(t) , Y−b(t)a(t)

)
∈ ·
]

v→ µ(·) on [−∞,∞]× E
(γ)

, as t→∞.
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(2B) for each y ∈ E(γ), µ((−∞, x]×(y,∞)) is a nondegenerate distribution function

in x.

The function α is regularly varying of index ρ ∈ R and for the function β,

limt→∞
β(tx)−β(t)

α(t) exists for all x > 0 and is called ψ(x), say, (cf. Heffernan and

Resnick, 2007). We further have (cf. de Haan and Ferreira, 2006, Theorem B.2.1)

either ψ ≡ 0 or, for some real number k,

ψ(x) =


k
ρ (xρ − 1), when ρ 6= 0,

k log x, when ρ = 0.

(3) The function H(x) = µ((−∞, x]× (0,∞)) is a probability distribution.

If (X,Y ) satisfy Conditions (1)–(3), then we say (X,Y ) ∈ CEVM(α, β; a, b;µ) in

[−∞,∞]× E
(γ)

.

Note that, by Condition (2B), H is a nondegenerate probability distribution function.

Also, Condition (2A) is equivalent to the convergence

tP[X ≤ α(t)x+ β(t), Y > a(t)y + b(t)]→ µ((−∞, x]× (y,∞))

for all y ∈ E(γ) and continuity points (x, y) of the measure µ. Note that, for (X,Y ) ∈

CEVM(α, β; a, b;µ) in [−∞,∞]× E
(γ)

we have, for all x ∈ [−∞,∞], as t→∞,

P

[
X − β(t)

α(t)
≤ x

∣∣∣∣Y > b(t)

]
→ H(x),

which motivates the name of the model.

Remark 3.2.1. Occasionally, we shall also be interested in pair of random variables

(X,Y ) which satisfy Conditions (2A) and (2B), without any reference to Conditions 1

and 3. We shall then say that (X,Y ) satisfies Conditions (2A) and (2B) with parameters

(α, β; a, b;µ) on E, where α and β will denote the scaling and centering of X, a and b

will denote the scaling and centering of Y and µ will denote the nondegenerate limiting

distribution and E is the space on which the convergence takes place. In Definition 3.2.1,

we have E = [−∞,∞]× E
(γ)

.
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Definition 3.2.2. The pair of nonnegative random variables (Z1, Z2) is said to be

standard multivariate regularly varying on [0,∞]× (0,∞] if, as t→∞

tP

[(
Z1

t
,
Z2

t

)
∈ ·
]

v→ ν(·) in M+([0,∞]× (0,∞]).

In such cases we have (Z1, Z2) ∈ CEVM(t, 0; t, 0; ν) in [0,∞]× (0,∞]. The above

convergence implies that ν(·) is homogeneous of order −1, that is,

ν(cΛ) = c−1ν(Λ) for all c > 0

where Λ is a Borel subset of [0,∞]× (0,∞]. By homogeneity arguments it follows that

for r > 0,

ν{(x, y) ∈ [0,∞]× (0,∞] : x+ y > r,
x

x+ y
∈ Λ}

= r−1ν{(x, y) ∈ [0,∞]× (0,∞] : x+ y > 1,
x

x+ y
∈ Λ}

=: r−1S(Λ),

where S is a measure on {(x, y) : x + y = 1, 0 ≤ x < 1}. The measure S is called

the spectral measure corresponding to ν(·), while the measure ν is called the stan-

dardized measure. It was shown in Heffernan and Resnick (2007) that whenever

(X,Y ) ∈ CEVM(α, β; a, b;µ) in [−∞,∞] × E
(γ)

with (ρ, ψ(x)) 6= (0, 0), we have the

standardization (f1(X), f2(Y )) ∈ CEVM(t, 0; t, 0; ν) on the cone [0,∞] × (0,∞], for

some monotone transformations f1 and f2. Das and Resnick (2011) showed that this

standardized measure ν is not a product measure. Throughout this Chapter we assume

that (ρ, ψ(x)) 6= (0, 0) and consider the product of X and Y . We remark that although

the model can be standardized in this case, the standardization does not help one to

conclude about the behavior of XY .
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3.3 A brief overview of the results

In this section we give a brief description of the results. First note that if (X,Y ) ∈

CEVM(α, β; a, b;µ) on [−∞,∞]×E
(γ)

, then α ∈ RVρ and a ∈ RVγ , where α and a were

the scalings for X and Y respectively. While Y ∈ D(Gγ) necessarily holds, it need not a

priori follow that X ∈ D(Gρ). We classify the problem according to the parameters γ

and ρ. We break the problem into four cases depending on whether the parameters γ

and ρ are positive or negative. In Section 3.4 we show that, depending on the properties

of the scaling and centering parameters, we can first reduce the basic convergence in

conditional model to an equivalent convergence with the limiting measure satisfying

nondegeneracy condition in an appropriate cone. The reduction of the basic convergence

helps us to compute the convergence of the product with ease in Section 3.5.

Case I: ρ and γ positive: This is an easier case and the behavior is quiet similar

to the classical multivariate extreme theory. In Theorem 3.5.1, we show that under

appropriate tail condition on X, the product XY has regularly varying tail of index

−1/(ρ+ γ). It is not assumed that X ∈ D(Gρ), but in Section 3.6 we show that the tail

condition is satisfied when X ∈ D(Gρ). It may happen that X is in some other domain

of attraction but still the tail condition holds. We also present a situation where the tail

condition may fail.

In all the remaining cases, at least one of the indices ρ and γ will be negative. A

negative value for γ will require that the upper endpoint of Y is indeed b(∞). However,

as has been noted below, the same need not be true for ρ, X and β(∞). Yet, we shall

assume that whenever ρ < 0, the upper endpoint of the support of X is β(∞). Further,

we shall assume at least one of the factors X and Y to be nonnegative. If both the

factors take negative values, then, the product of the negative numbers being positive,

their left tails will contribute to the right tail of the product as well. In fact, it will

become important in that case to compare the relative heaviness of the two contributions.

This can be easily done by breaking each random variable into its negative and positive

parts. For the product of two negative parts, the relevant model should be built on

(−X,−Y ) and the analysis becomes same after that. While these details increase the

bookkeeping, they do not provide any new insight into the problem. So we shall refrain
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from considering the situations where both X and Y take negative values, except in

Subcases II(b) and II(d) below, where both X and Y are nonpositive and we get some

interesting result about the lower tail of the product XY easily.

Case II: ρ and γ negative: In Section 3.4, we first reduce the basic convergence

to an equivalent convergence where regular variation can play an important role. In

this case both b(t) and β(t) have finite limits b(∞) and β(∞) respectively. Since

Y ∈ D(Gγ), b(∞) is the right end point of Y . However, β(∞) need not be the right

end point of X in general, yet throughout we shall assume it to be so. In Section 3.4,

we reduce the conditional model (X,Y ) ∈ CEVM(α, β; a, b;µ) to (X̃, Ỹ ) which satisfies

Conditions (2A) and (2B) with parameters (α̃, 0; ã, 0; ν) on [0,∞]× (0,∞], where,

X̃ =
1

β(∞)−X
and Ỹ =

1

b(∞)− Y
, (3.3.1)

and α̃ and ã are some appropriate scalings and ν is a transformed measure. Regular

variation at the right end point plays a crucial role during the determination the product

behavior in this case. Depending on the right end point, we break the problem into few

subcases which are interesting.

Subcase II(a): β(∞) and b(∞) positive: If the right end points are positive,

then, without loss of generality, we assume them to be 1. In Theorem 3.5.2, we show that

if X and Y both have positive right end points, then (1−XY )−1 has regularly varying

tail of index −1/|ρ|, under some further sufficient moment conditions. In Section 3.7,

we give an example where the moment condition fails, yet the product shows the tail

behavior predicted by Theorem 3.5.2.

Subcase II(b): β(∞) and b(∞) zero: In Theorem 3.5.3 we show that if both

right end points are zero, then the product convergence is a simple consequence of the

result in Case I. In this case (XY )−1 has regularly varying tail of index −1/(|ρ|+ |γ|).

Subcase II(c): β(∞) zero and b(∞) positive: We show in Theorem 3.5.4 that

if Y is a nonnegative random variable having positive right end point, then under some

appropriate moment conditions −(XY )−1 has regularly varying tail of index −1/|ρ|.

Subcase II(d): β(∞) and b(∞) negative: When both the right end points are

negative, then, without loss of generality, we assume them to be −1. In Theorem 3.5.5,



74 Chapter 3: Products in CEVM

we show that (XY − 1)−1 has regularly varying tail of index −1/|ρ|.

There are a few more cases beyond the four subcases considered above, when both

ρ and γ are negative. For example, consider the case when Y has right end point zero

and X has positive right end point β(∞). By our discussion above, X should have the

support [0, β(∞)]. Again, the product has right end point 0 and the behavior of X

around zero becomes important. Thus, to get something interesting in this case one

must have a conditional model which gives adequate information about the behavior

of X around the left end point. So it becomes natural to model (−X,Y ), which has

already been considered in Subcase II(b). A similar situation occurs when β(∞) < 0

and b(∞) > 0. Here, again, the problem reduces to that in Subcase II(d) by modeling

(X,−Y ). We refer to Remark 3.5.3 for a discussion on this subcase.

Case III: ρ positive and γ negative: In this case we assume b(∞) > 0 and also

α(t) ∼ 1/a(t) which implies that ρ = −γ. We show in Theorem 3.5.6 that XY has

regularly varying tail of index −1/|γ|.

Case IV: ρ negative and γ positive: In Theorem 3.5.7 we show that XY has

regularly varying tail of index −1/γ.

Finally we end this section by summarizing the results in a tabular form:

Table 3.1: Behavior of products

Index of α Index of a Theorem number Nature Regular variation

ρ > 0 γ > 0 Theorem 3.5.1 XY RV−1/(γ+ρ)

ρ > 0
α ∼ 1

a γ = −ρ < 0 Theorem 3.5.6 XY RV−1/|γ|
ρ < 0 γ < ρ Theorem 3.5.2 (β(∞)b(∞)−XY )−1 RV−1/|ρ|
ρ < 0
α ∼ a γ = ρ Theorem 3.5.2 (β(∞)b(∞)−XY )−1 RV−1/|ρ|
ρ < 0 γ < 0 Theorem 3.5.3 (XY )−1 RV−1/(|γ|+|ρ|)
ρ < 0 γ < 0 Theorem 3.5.4 −(XY )−1 RV−1/|ρ|
ρ < 0 γ > 0 Theorem 3.5.7 XY RV1/γ
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3.4 Some transformations of CEVM according to param-

eters γ and ρ

In this section we reduce the basic convergence in Condition (2A) to an equivalent

convergence in some appropriate subspace of R2 to facilitate our calculations of product

of two variables following conditional extreme value model. We now discuss the four

cases considered in Section 3.3.

Case I: ρ and γ positive: In this case we assume Y is nonnegative. Let

(X,Y ) ∈ CEVM(α, β; a, b;µ) on [−∞,∞]× E
(γ)

. Now by the domain of attraction con-

dition (1.4.1) and Corollary 1.2.4 of de Haan and Ferreira (2006), we have, b(t) ∼ a(t)/γ,

as t→∞. Also, from Theorem 3.1.12 (a),(c) of Bingham et al. (1987) it follows that

lim
t→∞

β(t)

α(t)
=


0 when ψ2 = 0

1
ρ when ψ2 6= 0.

Now using the above conditions and translating X and Y coordinates we get that (X,Y )

satisfies Conditions (2A) and (2B) with parameters (α, 0; a, 0; ν) on D := [−∞,∞] ×

(0,∞], for some nondegenerate measure ν which is obtained from µ by translations

on both axes. So in Theorem 3.5.1 which deals with product XY in Case I, we

assume that (X,Y ) satisfies Conditions (2A) and (2B) with parameters (α, 0; a, 0; ν) on

D = [−∞,∞]× (0,∞] for some nondegenerate Radon measure ν.

Case II: ρ and γ negative: Recall that in this case E
(γ)

=
(
−∞, 1

|γ|

]
. Since

Y ∈ D(Gγ) with γ < 0 , it follows from Lemma 1.2.9 of de Haan and Ferreira (2006)

that limt→∞ b(t) =: b(∞) exists and is finite and as t→∞ we have,

b(∞)− b(t)
a(t)

→ 1

|γ|
.

Moreover b(∞) turns out to be the right end point of Y . Hence in this case, without

loss of generality we take a(t) = |γ|(b(∞)− b(t)) and it easily follows that, for y > 0,

lim
t→∞

tP

[
Ỹ

a(t)−1
> y

]
= y

1
γ ,
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where Ỹ is defined in (3.3.1). Now observe that (X,Y ) ∈ CEVM(α, β; a, b;µ) on

[−∞,∞]× E
(γ)

gives (X, Ỹ ) which satisfies Conditions (2A) and (2B) with parameters

(α, β; 1/a(t), 0;µ2) on D, where,

µ2([−∞, x]× (y,∞]) = µ([−∞, x]× (
1

|γ|
− 1

y
,∞]).

Now since ρ < 0, we get by Theorem B.22 of de Haan and Ferreira (2006) that

limt→∞ β(t) = β(∞) exists and is finite. It may happen that X has a different right end

point than β(∞), but we assume β(∞) to be its right end point to avoid complications.

In X coordinate we can do a similar transformation as the Y variable, to get

Kt(α(t)x+ β(t)) := P

[
X − β(t)

α(t)
≤ x

∣∣∣∣ (b(∞)− Y )−1

a(t)−1
> y

]
→ y

− 1
γ µ2([−∞, x]× (y,∞]) =: K(x).

When ψ2 6= 0, we have, as t→∞,

β(∞)− β(t)

α(t)
→ 1

|ρ|
. (3.4.1)

Now by convergence of types theorem (see Theorem 1.4.1), as t→∞, we have,

Kt(|ρ|(β(∞)− β(t))x+ β(t))→ K(x).

Define,

α̃(t) =


1

|ρ|(β(∞)−β(t)) when ψ2 6= 0

1
α(t) when ψ2 = 0

and ã(t) =
1

a(t)
. (3.4.2)

Using (3.4.2) we get, as t→∞,

tP

[
X̃

α̃(t)
≤ x, Ỹ

ã(t)
> y

]
→


µ2([−∞,− 1

x + 1
|ρ| ]× (y,∞]) for ψ2 6= 0

µ2([−∞,− 1
x ]× (y,∞]) for ψ2 = 0.

(3.4.3)

In Section 3.5, we deal with Case II by breaking it up into different subcases as
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pointed out in Section 3.3. So, in Theorems 3.5.2–3.5.5, we assume that (X̃, Ỹ ) satisfy

Conditions (2A) and (2B) with parameters (α̃, 0; ã, 0; ν) on [0,∞] × (0,∞], for some

nondegenerate Radon measure ν.

Case III: ρ positive and γ negative: Since Y ∈ D(Gγ), we can do a transforma-

tion similar to that in Case II. So in this case (X, Ỹ ) satisfies Conditions (2A) and (2B)

with parameters (α, β; ã, 0;µ3) on [−∞,∞]× (0,∞], for some nondegenerate measure

µ3.

Now since ρ > 0, we can do a translation in the first coordinate to get (X, Ỹ ) which

satisfies Conditions (2A) and (2B) with parameters (α, 0; ã, 0; ν) on [−∞,∞]× (0,∞]

for some nondegenerate measure ν. In Theorem 3.5.6 we deal with product behavior in

this case.

Case IV: ρ negative and γ positive: We assume that β(∞), the right end point

of X is positive. Now, as in Case II, we use (3.4.1) to get the following convergence for

x ≥ 0 and y > 0,

tP

[
(β(∞)−X)

α(t)
≤ x, Y

a(t)
> y

]
= tP

[
X − β(t)

α(t)
≥ −x+

β(∞)− β(t)

α(t)
,
Y

a(t)
> y

]
→ µ

(
[−x+

1

|γ|
,∞]× (y,∞]

)
as t→∞.

So in Theorem 3.5.7, which derives the product behavior in Case IV, we assume (β(∞)−

X,Y ) satisfies Conditions (2A) and (2B) with parameters (α, 0; a, 0; ν) on [0,∞]× (0,∞],

for some nondegenerate Radon measure ν.

We thus observe that if (X,Y ) ∈ CEVM(α, β; a, b;µ), then in Cases I, II, III and IV

respectively, (X,Y ), (X̃, Ỹ ), (X, Ỹ ) and (β(∞)−X,Y ) satisfy Conditions (2A) and (2B)

with some positive scaling parameters, zero centering parameters and a nondegenerate

limiting Radon measure on D = [−∞,∞]× (0,∞]. In future sections, whenever we refer

to Conditions (2A) and (2B) with respect to the transformed variables alone without

any reference to the CEVM model for the original pair (X,Y ), we shall denote, by an

abuse of notation, the limiting Radon measure for the transformed random variables as

µ as well.
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3.5 Behavior of the product under conditional model

Now we study the product behavior when (X,Y ) ∈ CEVM(α, β; a, b;µ). In all the cases

we assume Conditions (2A) and (2B) on the suitably transformed versions of (X,Y ), so

that centering is not required.

Case I: ρ and γ positive: We begin with the case where both ρ and γ are positive.

Theorem 3.5.1. Let ρ > 0, γ > 0 and Y be a nonnegative random variable. As-

sume (X,Y ) satisfies Conditions (2A) and (2B) with parameters (α, 0; a, 0;µ) on

D := [−∞,∞]× (0,∞]. Also assume

lim
ε↓0

lim sup
t→∞

tP

[
|X|
α(t)

>
z

ε

]
= 0. (3.5.1)

Then, XY has regularly varying tail of index −1/(γ + ρ) and tP [XY/(α(t)a(t)) ∈ ·]

converges vaguely to some nondegenerate Radon measure on [−∞,∞] \ {0}.

Remark 3.5.1. Please see Section 3.6 for the cases where the condition (3.5.1) holds.

Proof. For ε > 0 and z > 0 observe that the set,

Aε,z = {(x, y) ∈ D : xy > z, y > ε}

is a relatively compact set in D and µ is a Radon measure. Note that,

tP

[(
XY

α(t)a(t)
,
Y

a(t)

)
∈ Aε,z

]
≤ tP

[
XY

α(t)a(t)
> z

]
≤ tP

[(
XY

α(t)a(t)
,
Y

a(t)

)
∈ Aε,z

]
+ tP

[
XY

α(t)a(t)
> z,

Y

a(t)
≤ ε
]

(3.5.2)

First letting t→∞ and then ε ↓ 0 through a sequence such that Aε,z is a µ-continuity

set, the left side and the first term on the right side converge to µ{(x, y) ∈ D : xy > z}.

The second term on the right side is negligible by the assumed tail condition (3.5.1).

Combining all, we have the required result when z > 0. By similar arguments one can

show the above convergence on the sets of the form (−∞,−z) with z > 0, also.

Spectral form for product: For simplicity let us assume that X is nonnegative as
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well. Then the vague convergence in M+(D) can be thought of as vague convergence in

M+([0,∞]× (0,∞]). By Theorem 3.5.1 we have,

lim
t→∞

tP

[
XY

α(t)a(t)
> z

]
= µ{(x, y) ∈ [0,∞]× (0,∞] : xy > z}.

Since ρ > 0 and γ > 0, it is known that there exists α(t) ∼ α(t) and a(t) ∼ a(t) such

that they are eventually differentiable and strictly increasing. Also α(tx)
α(t) → xρ and

a(tx)
a(t) → xγ as t→∞. Hence,

tP

[
α←(X)

t
≤ x, a

←(Y )

t
> y

]
= tP

[
X

α(t)
≤ α(tx)

α(t)
,
Y

a(t)
>
a(ty)

a(t)

]
→ µ([0, xρ]× (yγ ,∞])

= µT−1
1 ([0, x]× (y,∞]),

where T1(x, y) = (x1/ρ, y1/γ). Let S be the spectral measure for the standardized pair

(α←(X), a←(Y )) corresponding to µT−1
1 . Then,

µ{(x, y) ∈ [0,∞]× (0,∞] : xy > z}

=µT−1
1 {(x, y) ∈ [0,∞]× (0,∞] : xρyγ > z}

=

∫
ω∈[0,1)

∫
rρ+γωρ(1−ω)γ>z

r−2drS(dω)

=

∫
ω∈[0,1)

∫
r> z

1
ρ+γ

(ωρ(1−ω)γ )
1

ρ+γ

r−2drS(dω)

=z
− 1
ρ+γ

∫
ω∈[0,1)

ω
ρ

ρ+γ (1− ω)
γ
ρ+γ S(dω).

So finally we have,

lim
t→∞

tP

[
XY

α(t)a(t)
> z

]
= µ{(x, y) ∈ [0,∞]× (0,∞] : xy > z}

= z
− 1
ρ+γ

∫
ω∈[0,1)

ω
ρ

ρ+γ (1− ω)
γ
ρ+γ S(dω).
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Case II: ρ and γ negative: As has been already pointed out, β(∞) need not be

the right endpoint X. However, we shall assume it to be so. The tail behavior of XY

strongly depends on the right end points of X and Y . There are several possibilities

which may arise, but it may not always be possible to predict the tail behavior of XY

in all the cases. We shall deal with few interesting cases. See Section 3.3 for a discussion

in this regard. Regarding one of the cases left out, see Remark 3.5.3. Recall that,

from (3.3.1) we have,

1

β(∞)b(∞)−XY
=

X̃Ỹ

β(∞)X̃ + b(∞)Ỹ − 1
(3.5.3)

Subcase II(a): β(∞) and b(∞) positive: After scaling X and Y suitably, without

loss of generality, we can assume that β(∞) = 1 = b(∞).

Theorem 3.5.2. Suppose X and Y are nonnegative and (X̃, Ỹ ) satisfies Conditions (2A)

and (2B) with parameters (α̃, 0; ã, 0;µ) on [0,∞] × (0,∞]. Assume E
[
X̃1/|ρ|+δ

]
< ∞

for some δ > 0 and either γ < ρ or α̃(t)/ã(t) remains bounded. Then (1 − XY )−1

has regularly varying tail of index −1/|ρ| and, as t → ∞, tP
[
(1−XY )−1/α̃(t) ∈ ·

]
converges vaguely to some nondegenerate Radon measure on (0,∞].

We start with a technical lemma.

Lemma 3.5.1. For 0 ≤ t1 ≤ t2 ≤ ∞ and z > 0, we denote the set

V[t1,t2],z = {(x, y) ∈ [0,∞]× (0,∞] : x ∈ [t1, t2], y > z}. (3.5.4)

Suppose that {(Z1t, Z2t)} is a sequence of pairs of nonnegative random variables and

there exists a Radon measure ν(·) in [0,∞]× (0,∞] such that they satisfy the following

two conditions.

Condition A: For 0 < t1 < t2 < ∞ and z > 0, whenever V[t1,t2],z is a ν-continuity set,

we have, as t→∞,

tP
[
(Z1t, Z2t) ∈ V[t1,t2],z

]
→ ν(V[t1,t2],z).
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Condition B: For any z0 ∈ (0,∞) we have as t→∞,

tP
[
(Z1t, Z2t) ∈ V[0,∞],z0

]
→ f(z0) ∈ (0,∞).

Then, as t→∞,

tP [(Z1t, Z2t) ∈ ·]
v→ ν(·)

in M+([0,∞]× (0,∞])

Proof. Fix a z0 ∈ (0,∞) and define the following probability measures on [0,∞]×(z0,∞):

Qt(·) =
tP [(Z1t, Z2t) ∈ ·]

tP
[
(Z1t, Z2t) ∈ V[0,∞],z0

] and Q(·) =
ν(·)
f(z0)

.

From condition A and B it follows that,

Qt(V[t1,t2],z)→ Q(V[t1,t2],z)

as t → ∞, whenever V[t1,t2],z is ν-continuity set. Now following the arguments in

the proof of Theorem 2.1 of Maulik et al. (2002), it follows that Qt converges weakly

to Q on [0,∞] × (z0,∞). Since a Borel set with boundary having zero Q measure

is equivalent to having measure zero with respect to the measure ν we have that

tP [(Z1t, Z2t) ∈ B]→ ν(B) for any Borel subset B of [0,∞]× (z0,∞], having boundary

with zero ν measure.

Let K be a ν-continuity set as well as a relatively compact set in [0,∞]×(0,∞]. Then

there exists z0 > 0 such that K ⊂ [0,∞]× (z0,∞]. Then K is Borel in [0,∞]× (z0,∞)

and also a ν-continuity set. Hence we have,

tP [(Z1t, Z2t) ∈ K] = tP [(Z1t, Z2t) ∈ K]→ ν(K).

This shows that tP [(Z1t, Z2t) ∈ ·] vaguely converges to ν on [0,∞]× (0,∞].

From (3.5.3), the behavior of XY will be determined by the pair (X̃Ỹ , X̃ + Ỹ − 1).

So we next prove a result about the joint convergence of product and the sum.
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Lemma 3.5.2. Let γ < 0, ρ < 0 and (X̃, Ỹ ) satisfies Conditions (2A) and (2B) with

parameters (α̃, 0; ã, 0;µ). If E
[
X̃1/|γ|+δ

]
<∞ for some δ > 0, then (X̃Ỹ , X̃+ Ỹ −1) also

satisfies Conditions (2A) and (2B) with parameters (α̃ã, 0; ã, 0;µT−1
2 ) on [0,∞]× (0,∞]

where T2(x, y) = (xy, y).

Proof. First observe that from the compactification arguments used in Lemma 3.5.1 and

the basic convergence in Condition (2A) satisfied by the pair (X̃, Ỹ ), it follows that

tP

[(
X̃Ỹ

α̃(t)ã(t)
,
Ỹ

ã(t)

)
∈ ·

]
v→ µT−1

2 (·) in M+([0,∞]× (0,∞]). (3.5.5)

Let 0 ≤ t1 ≤ t2 ≤ ∞ and z > 0. Assume that µT−1
2 (∂V[t1,t2],z) = 0, where V[t1,t2],z is

defined in (3.5.4). Since X is nonnegative, X̃ is greater than or equal to 1 and hence for

a lower bound we get,

lim inf
t→∞

tP

[(
X̃Ỹ

α̃(t)ã(t)
,
X̃ + Ỹ − 1

ã(t)

)
∈ V[t1,t2],z

]

≥ lim
t→∞

tP

[
X̃Ỹ

α̃(t)ã(t)
∈ [t1, t2],

Ỹ

ã(t)
> z

]
= µT−1

2 (V[t1,t2],z). (3.5.6)

For the upper bound, choose 0 < ε < z, such that 1/|ã(t)| < ε/2 (since ã(t) ∈ RV−γ)

and µT−1
2

(
∂V[t1,t2],z−ε

)
= 0. Then,

tP

[(
X̃Ỹ

α̃(t)ã(t)
,
X̃ + Ỹ − 1

ã(t)

)
∈ V[t1,t2],z

]

≤tP

[(
X̃Ỹ

α̃(t)ã(t)
,
X̃ + Ỹ − 1

ã(t)

)
∈ V[t1,t2],z,

X̃

ã(t)
≤ ε

2

]

+ tP

[(
X̃Ỹ

α̃(t)ã(t)
,
X̃ + Ỹ − 1

ã(t)

)
∈ V[t1,t2],z,

X̃

ã(t)
>
ε

2

]

≤tP

[
X̃Ỹ

α̃(t)ã(t)
∈ [t1, t2],

Ỹ

ã(t)
> z − ε

]
+ tP

[
X̃

ã(t)
>
ε

2

]

≤tP

[(
X̃Ỹ

α̃(t)ã(t)
,
Ỹ

ã(t)

)
∈ V[t1,t2],z−ε

]
+ 21/|γ|+δt

E
[
X̃1/|γ|+δ

]
(ã(t)ε)

1
|γ|+δ

.

The first term converges to µT−1
2 (V[t1,t2],z−ε), while the second sum converges to zero,
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since ã(t) ∈ RV−γ . Now letting ε→ 0 satisfying the defining conditions, we obtain the

upper bound, which is same as the lower bound (3.5.6). Thus we get that,

lim
t→∞

tP

[
(

X̃Ỹ

α̃(t)ã(t)
,
X̃ + Ỹ

ã(t)
) ∈ V[t1,t2],z

]
= µT−1

2 (V[t1,t2],z).

Hence Condition A of Lemma 3.5.1 is satisfied.

Now if we fix z0 ∈ (0,∞) and let ε > 0 satisfy the conditions as in the upper bound

above, then

tP

[(
X̃Ỹ

α̃(t)ã(t)
,
X̃ + Ỹ − 1

ã(t)

)
∈ V[0,∞],z0

]
= tP

[
X̃ + Ỹ − 1

ã(t)
> z0

]

≤ tP

[
Ỹ

ã(t)
> z0 − ε

]
+ tP

[
X̃

ã(t)
>
ε

2

]
→ (z0 − ε)

1
γ .

Hence the upper bound for the required limit in Condition B of Lemma 3.5.1 follows by

letting ε→ 0. The lower bound easily follows from the domain of attraction condition on

Y and the fact that X̃ ≥ 1. So Condition B is also satisfied by the pair ( X̃Ỹ
α̃(t)ã(t) ,

X̃+Ỹ−1
ã(t) )

and hence the result follows from Lemma 3.5.1.

Proof of Theorem 3.5.2. Denote W ′ = X̃Ỹ , W ′′ = X̃+Ỹ −1 and note that (1−XY )−1 =

W ′/W ′′. So from previous lemma it follows that,

tP

[(
W ′

α̃(t)ã(t)
,
W ′′

ã(t)

)
∈ ·
]

v→ µT−1
2 (·) as t→∞.

Let w ∈ (0,∞) and ε > 0 and consider the set,

Bw,ε = {(x, y) ∈ [0,∞]× (0,∞] : x > yw, y > ε}. (3.5.7)

Then, for ε > 0, we have,

tP

[
W ′

W ′′
1

α̃(t)
> w

]
= tP

[(
W ′

α̃(t)ã(t)
,
W ′′

ã(t)

)
∈ Bw,ε

]
+ tP

[
W ′

W ′′
1

α̃(t)
> w,

W ′′

ã(t)
≤ ε
]
.
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Since the set is bounded away from both the axes, the first sum converges to µT−1
2 (Bw,ε)

by the vague convergence of (W ′,W ′′). Now since X̃ ≥ 0 we have X̃ + Ỹ − 1 ≥ Ỹ − 1,

and hence for large t we get,

tP

[
(1−XY )−1

α̃(t)
> w,

Ỹ − 1

ã(t)
≤ εk

]

≤tP

[
XY > 1− 1

wα̃(t)
, Y ≤ 1− 1

ã(t)εk + 1

]
≤ tP

[
X̃ >

1− 1
ã(t)εk+1

1
wα̃(t) −

1
(ã(t)εk+1)

]

≤ C(t, w, k) E
[
X̃

1
|ρ|+δ

]
,

where,

C(t, w, k) =
t

(α̃(t))
1
|ρ|+δ

(
1− 1

ã(t)εk + 1

)−( 1
|ρ|+δ)

 1

w
− 1

( ã(t)
α̃(t)εk + 1

α̃(t))

 1
|ρ|+δ

,

which goes to zero as t→∞, since α̃(t) ∈ RV−ρ and α̃(t)/ã(t) remains bounded.

Remark 3.5.2. Theorem 3.5.2 requires that (1/|ρ|+δ)-th moment of X̃ is finite. However,

this condition is not necessary. In the final section we give an example where this moment

condition is not satisfied but we still obtain the tail behavior of the product.

Subcase II(b): β(∞) = 0 and b(∞) = 0: In this case, both X and Y are

nonpositive, but the product XY is nonnegative. Thus, the right tail behavior of XY

will be controlled by the left tail behaviors of X and Y , which we cannot control much

using CEVM. However, CEVM gives some information about the left tail behavior of

XY at 0, which we summarize below.

Note that in this case, from (3.3.1) and (3.4.2), we have X̃ = −1/X, Ỹ = −1/Y and

α̃(t) = −1/(|ρ|β(t)), ã(t) = 1/a(t). From Theorem 3.5.1, the behavior of the product

XY around zero, or equivalently the behavior of the reciprocal of the product X̃Ỹ

around infinity, follows immediately.

Theorem 3.5.3. If ρ < 0, γ < 0 and (X̃, Ỹ ) satisfies Conditions (2A) and (2B) with



3.5 Behavior of the product under conditional model 85

parameters (α̃, 0; ã, 0;µ). Also suppose,

lim
ε↓0

lim sup
t→∞

tP

[
X̃

α̃(t)
>
z

ε

]
= 0

Then (XY )−1 has regularly varying tail with index −1/(|γ| + |ρ|) and as t → ∞,

tP
[
(XY )−1/(α̃(t)ã(t)) ∈ ·

]
converge to some nondegenerate Radon measure on (0,∞].

Subcase II(c): β(∞) = 0 and b(∞) = 1: Now note that from (3.5.3) we have,

− 1

XY
=

X̃Ỹ

Ỹ − 1
.

Theorem 3.5.4. Suppose Y is nonnegative and (X̃, Ỹ ) satisfies Conditions (2A)

and (2B) with parameters (α̃, 0; ã, 0;µ). If E
[
X̃1/|ρ|+δ

]
< ∞ for some δ >

0, then −(XY )−1 has regularly varying tail of index −1/|ρ| and as t → ∞,

tP
[
−(XY )−1/α̃(t) ∈ ·

]
converge vaguely to some nondegenerate measure on (0,∞].

Proof. Under the given hypothesis, and the fact that ã(t) → ∞, it can be shown

by arguments similar to Lemma 3.5.2 that, tP
[(
X̃Ỹ /(α̃(t)ã(t)), (Ỹ − 1)/α̃(t)

)
∈ ·
]

converges vaguely to some nondegenerate Radon measure in M+([0,∞]× (0,∞].

Next for z > 0 and ε > 0, so that the set Bz,ε as in (3.5.7) is a continuity set of the

limit measure. Note that

tP

[(
X̃Ỹ

α̃(t)ã(t)
,
Ỹ − 1

α̃(t)

)
∈ Bz,ε

]
≤ tP

[
−(XY )−1

α̃(t)
> z

]

≤ tP

[(
X̃Ỹ

α̃(t)ã(t)
,
Ỹ − 1

α̃(t)

)
∈ Bz,ε

]
+ tP

[
X̃Ỹ

α̃(t)(Ỹ − 1)
> z,

Ỹ − 1

ã(t)
≤ ε

]
.

The term on the left side and the first term on the right side converge as t → ∞

due to the vague convergence mentioned at the beginning of the proof. Letting ε ↓ 0

appropriately, we get the required limit. For the second term on the right side observe

that,

tP

[
X̃Ỹ

α̃(t)(Ỹ − 1)
> z,

Ỹ − 1

ã(t)
≤ ε

]
≤ tP

[
−(XY )−1

α̃(t)
> z, Ỹ ≤ ã(t)ε+ 1

]
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≤ tP

[
−(XY )−1

α̃(t)
> z, 1− Y ≥ 1

ã(t)ε+ 1

]
≤ tP

[
XY

α(t)
> −1

z
, Y ≤ 1− 1

ã(t)ε+ 1

]
≤ tP

[
−X <

α(t)/z

1− 1
ã(t)ε+1

]
= tP

[
X̃ >

1− 1
ã(t)ε+1

α(t)/z

]

≤ tE
[
X̃1/|ρ|+δ

]( α(t)/z

1− 1
ã(t)ε+1

) 1
|ρ|+δ

.

The last expression tends to zero as ã(t)→∞ and α ∈ RVρ.

Subcase II(d): β(∞) and b(∞) negative: As in Subcase II(a), after suitable

scaling, without loss of generality, we can assume that β(∞) = b(∞) = −1. Again,

from (3.5.3), we have

1

XY − 1
=

X̃Ỹ

X̃ + Ỹ + 1

and to get the behavior of the product around 1 we first need to derive the joint

convergence of (X̃Ỹ , X̃ + Ỹ + 1). Using an argument very similar to Theorem 3.5.2, we

immediately obtain the following result.

Theorem 3.5.5. Let (X̃, Ỹ ) satisfy Conditions (2A) and (2B) with parameters

(α̃, 0; ã, 0;µ) and E
[
X̃

1
|ρ|+δ

]
< ∞ for some δ > 0. If either γ < ρ or α̃(t)/ã(t) re-

mains bounded, then (XY − 1)−1 has regularly varying tail of index −1/|ρ| and as

t → ∞, tP
[
(XY − 1)−1/α̃(t) ∈ ·

]
converges vaguely to some nondegenerate Radon

measure on (0,∞].

Remark 3.5.3. The other case when β(∞) = 1 and b(∞) = 0 is not easy to derive

from the information about the conditional extreme value model. In this case the right

endpoint of the product is zero and behavior of X around zero seems to be important.

But the conditional model gives us the regular variation behavior around one and not

around zero.

Case III: ρ positive and γ negative: In this case we shall assume that X is

nonnegative and the upper endpoint of Y , b(∞) is positive. If b(∞) ≤ 0, then the

behavior of X around its lower endpoint will play a crucial role in the behavior of the

product XY , which becomes negative. However, the behavior of X around its lower
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endpoint is not controlled by the conditional model and we are unable to conclude about

the product behavior when b(∞) ≤ 0. So we only consider the case b(∞) > 0. We also

make the assumption that α(t) ∼ ã(t), which requires that ρ = |γ|.

Theorem 3.5.6. Let X be nonnegative and Y have upper endpoint b(∞) > 0. Assume

that (X, Ỹ ) satisfies Conditions (2A) and (2B) with parameters(α, 0; ã, 0;µ) with α(t) ∼

1/a(t) = ã(t) and E
[
X1/|γ|+δ] < ∞ for some δ > 0, then XY has regularly varying

tail of index −1/|γ| and as t → ∞, we have tP [XY /ã(t) ∈ ·] converges vaguely to a

nondegenerate Radon measure on (0,∞].

Proof. As α(t) ∼ ã(t), convergence of types allows us to change α(t) to ã(t) and hence

(X, Ỹ ) satisfy Conditions (2A) and (2B) with parameters (ã, 0; ã, 0;µ). Using the fact

that Ỹ = (b(∞)− Y )−1, we have

XY = X
b(∞)Ỹ − 1

Ỹ
.

Using arguments similar to Proposition 4 of Heffernan and Resnick (2007), it can be

shown that as t→∞,

tP

[(
X

Ỹ
,
b(∞)Ỹ

ã(t)

)
∈ ·

]
v→ µT−1

3 (·),

in M+([0,∞]× (0,∞]), where T3(x, y) = (x/y, b(∞)y). Since ã(t)→∞, we further have,

as t→∞,

tP

[(
X

Ỹ
,
b(∞)Ỹ − 1

ã(t)

)
∈ ·

]
v→ µT−1

3 (·).

Now applying the map T2(x, y) = (xy, y) to the above vague convergence and using

compactification arguments similar to that in the proof of Theorem 2.1 of Maulik et al.

(2002), we have,

tP

[(
X

Ỹ

b(∞)Ỹ − 1

ã(t)
,
b(∞)Ỹ − 1

ã(t)

)
∈ ·

]
v→ µT−1

3 T−1
2 (·).

Recalling the facts that XY = X(b(∞)Ỹ − 1)/Ỹ and ã(t) → ∞ and reversing the
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arguments in the second coordinate, we have,

tP

[(
XY

ã(t)
,
Ỹ

ã(t)

)
∈ ·

]
v→ µT−1

3 T−1
2 T̃−1

3 (·), (3.5.8)

where T̃3(x, y) = (x, y
b(∞)). If ε > 0 and z > 0 we have following series of inequalities,

tP

[
XY

ã(t)
> z,

Ỹ

ã(t)
≤ ε

]
= tP

[
XY

ã(t)
> z,

1

b(∞)− Y
≤ ã(t)ε

]
= tP

[
XY

ã(t)
> z, Y ≤ b(∞)− 1

ã(t)ε

]
≤ tP

[
X

ã(t)
> z

(
b(∞)− 1

ã(t)ε

)−1
]

≤ t
E
[
X

1
|γ|+δ

]
(ã(t)z)

1
|γ|+δ

(
b(∞)− 1

ã(t)ε

) 1
|γ|+δ

→ 0,

since ã ∈ RV|γ|.

Now observe that

tP

[
XY

ã(t)
> z,

Ỹ

ã(t)
> ε

]
≤ tP

[
XY

ã(t)
> z

]

≤ tP

[
XY

ã(t)
> z,

Ỹ

ã(t)
> ε

]
+ tP

[
XY

ã(t)
> z,

Ỹ

ã(t)
≤ ε

]
.

The last term on the right side is negligible by the previous argument and the left side

and the first term on the right side converge due to the vague convergence in (3.5.8).

The result then follows by letting ε→ 0.

Case IV: ρ negative and γ positive: In this case we shall assume that Y is

nonnegative, β(∞) > 0 and β(∞) is the upper endpoint of X. Arguing as in Case III,

we neglect the possibility that β(∞) ≤ 0. Thus we further assume 0 ≤ X ≤ β(∞). Since

X becomes bounded, the product of XY inherits its behavior from the tail behavior of

Y .

Theorem 3.5.7. Assume that both X and Y are nonnegative random variables with

β(∞) being the upper endpoint of X. Let (β(∞) − X,Y ) satisfies Conditions (2A)
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and (2B) with parameters (α, 0; a, 0;µ) on [0,∞] × (0,∞], for some nondegenerate

Radon measure µ. Then XY has regularly varying tail of index −1/γ and for all z > 0,

we have

tP

[
XY

a(t)
> z

]
→ z

− 1
γ β(∞)

1
γ , as t→∞.

Proof. First we prove the upper bound which, in fact, does not use the conditional

model. Observe that

tP

[
XY

a(t)
> z

]
= tP

[
XY

a(t)
> z,X < β(∞)

]
≤ tP

[
Y

a(t)
>

z

β(∞)

]
→
(

z

β(∞)

)− 1
γ

as t→∞.

To prove the lower bound we use the basic convergence in Condition (2A) for the

pair (β(∞)−X,Y ). Before we show the lower bound, first observe that by arguments

similar to the proof of Theorem 2.1 of Maulik et al. (2002) we have,

tP

[(
(β(∞)−X)Y

α(t)a(t)
,
Y

a(t)

)
∈ ·
]

v→ µT−1
2 (·) as t→∞ (3.5.9)

in M+([0,∞] × (0,∞]), where recall that T2(x, y) = (xy, y). Now to show the lower

bound, first fix a large M > 0 and ε > 0 such that α(t) < ε for large t (recall that

α ∈ RV−ρ and α(t)→ 0 in this case). Note that

tP

[
XY

a(t)
> z

]
= tP

[
(X − β(∞))Y

α(t)a(t)
α(t) +

β(∞)Y

a(t)
> z

]
≥ tP

[
(β(∞)−X)Y

α(t)a(t)
≤M,

β(∞)Y

a(t)
> z +Mα(t)

]
≥ tP

[
(β(∞)−X)Y

α(t)a(t)
≤M,

β(∞)Y

a(t)
> z +Mε

]
→ µT−1

2

(
[0,M ]×

(
z +Mε

β(∞)
,∞
])

,

using (3.5.9). First letting ε→ 0 and then letting M →∞, so that

µT−1
2 (∂ ([0,M ]× (z/β(∞),∞])) = 0,
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we get that

lim inf
t→∞

tP[
XY

a(t)
> z] ≥ µT−1

2 ([0,∞)× (z/β(∞),∞]) = z
− 1
γ β(∞)

1
γ .

3.6 Some remarks on the tail condition (3.5.1)

We have already noted that the compactification arguments in Section 3.5 require

some conditions on the tails of associated random variables. Except in Theorem 3.5.1,

they have been replaced by some moment conditions, using Markov inequality. The

tail condition (3.5.1) in Theorem 3.5.1 can also be replaced by the following moment

condition:

If for some δ > 0, we have E[|X|1/ρ+δ] <∞, then (3.5.1) holds, as α ∈ RVρ.

In general, if (X,Y ) follows CEVM model, it need not be true that X ∈ D(Gρ).

However, if X ∈ D(Gρ) with scaling and centering functions α(t) and β(t) and X ≥ 0,

then the moment condition (3.5.1). In fact,

lim sup
t→∞

tP

[
X

α(t)
>
z

ε

]

is a constant multiple of (z/ε)−1/ρ, which goes to zero as ε→ 0.

The tail condition (3.5.1) continues to hold in certain other cases as well. Suppose

that X ≥ 0 and X ∈ D(Gλ) with scaling and centering A(t) and B(t) and λ < ρ. In

this case, α ∈ RVρ and A ∈ RVλ. Thus, α(t)/A(t)→∞. Hence, for any ε > 0, we have

tP

[
X

α(t)
>
z

ε

]
= tP

[
X

A(t)
>
zα(t)

εA(t)

]

is of order of (α(t)/A(t))−1/λ, which goes to zero and (3.5.1) holds. However, it would

be interesting to see the effect of A and B as scaling and centering in CEVM model.

Since, α is of an order higher than A, the limit, as expected, becomes degenerate.

Proposition 3.6.1. Let the pair (X,Y ) ∈ CEVM(α, β; a, b;µ) with ρ > 0 and γ > 0.
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Assume X ∈ D(Gλ) with ρ > λ and centering and scaling as A(t) and B(t). If

lim
t→∞

tP

[
X −B(t)

A(t)
≤ x, Y − b(t)

a(t)
> y

]

exists for all continuity points (x, y) ∈ R×E(γ), then, for any fixed y ∈ E(γ), as x varies

in R, the limit measure assigns same values to the sets of the form [−∞, x]× (y,∞].

Proof. Observe that

A(t)

α(t)
x+

B(t)− β(t)

α(t)
=
A(t)

α(t)

(
x+

B(t)

A(t)

)
− β(t)

α(t)
→ 0× (x+

1

λ
)− 1

ρ
.

Therefore we have,

lim
t→∞

tP

[
X −B(t)

A(t)
≤ x, Y − b(t)

a(t)
> y

]
= lim

t→∞
tP

[
X − β(t)

α(t)
≤ A(t)

α(t)
x+

B(t)− β(t)

α(t)
,
Y − b(t)
a(t)

> y

]
= µ([−∞,−1

ρ
]×(y,∞]),

which is independent of x.

We would also like to consider the remaining case, namely, when X ≥ 0 and

X ∈ D(Gλ) with scaling A and λ > ρ. Clearly, we have α(t)/A(t)→ 0. Thus, for any

ε > 0, we have

tP

[
X

α(t)
>
z

ε

]
= tP

[
X

A(t)
>
zα(t)

εA(t)

]
→∞

Hence (3.5.1) cannot hold and Theorem 3.5.1 is of no use. The next result show that

in this case we have multivariate extreme value model with the limiting measure being

concentrated on the axes, which gives asymptotic independence.

Theorem 3.6.1. Let (X,Y ) ∈ CEVM(α, 0; a, 0;µ) on the cone [0,∞] × (0,∞] and

X ∈ D(Gλ) with λ > ρ and scaling A(t) ∈ RV−λ. Also assume that X ∈ D(Gλ) with

λ > ρ and A(t)/α(t)→∞. Then

tP

[(
X

A(t)
,
Y

a(t)

)
∈ ·
]

(3.6.1)

converges vaguely to a nondegenerate Radon measure on [0,∞]2 \ {(0, 0)}, which is
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concentrated on the axes.

Proof. We first show the vague convergence on [0,∞]2 \ {(0, 0)}. Let x > 0, y > 0. Then,

tP

[(
X

A(t)
,
Y

a(t)

)
∈ ([0, x]× [0, y])c

]
= tP

[
X

A(t)
> x

]
+ tP

[
Y

a(t)
> y

]
− tP

[
X

A(t)
> x,

Y

a(t)
> y

]
.

The first two terms converge due to the domain of attraction conditions on X and Y .

For the last term, by the CEVM conditions and the fact that A(t)/α(t)→∞, we have

tP

[
X

A(t)
> x,

Y

a(t)
> y

]
= tP

[
X

α(t)
> x

A(t)

α(t)
,
Y

a(t)
> y

]
→ 0. (3.6.2)

This establishes (3.6.1). However, using x = y in (3.6.2), we find that the limit measure

does not put any mass on (0,∞]2.

Remark 3.6.1. Since, we have asymptotic independence, several different behaviors for

the product are possible, as it has been illustrated in Maulik et al. (2002).

While we have established asymptotic independence on the larger cone [0,∞]2 \ {0}

in Theorem 3.6.1, CEVM gives another nondegenerate limit µ on the smaller cone

[0,∞]× (0,∞]. Thus, (X,Y ) exhibits hidden regular variation, as described in Maulik

and Resnick (2004), Resnick (2002).

3.7 Example

We now consider the moment condition in Theorem 3.5.2. We show that the condition

is not necessary by providing an example, where the condition fails, but we explicitly

calculate the tail behavior of XY .

Let X and Z be two independent random variables, where X follows Beta distribution

with parameters 1 and a and Z is supported on [0, 1] and is in D(G−1/b), for some a > 0

and b > 0. Thus, we have P[X > x] = (1− x)a and P[Z > 1− 1
x ] = x−bL(x) for some

slowly varying function L. Let G denote the distribution function of the random variable

Y = X ∧ Z. Then G(x) = (1− x)a+bL( 1
1−x) and hence Y ∈ D(G−1/(a+b)). Clearly, for
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X̃ = 1/(1−X), we have E[X̃a+b] =∞ and the moment condition in Theorem 3.5.2 fails

for ρ = −1/(a+ b).

We further define

ã(t) =
1

1−
(
1/G

)←
(t)
,

where the left-continuous inverse is defined in Definition 1.4.4. Since, Y ∈ D(G−1/(a+b)),

we have from Corollary 1.2.4 of de Haan and Ferreira (2006),

ã(t)a+b

L(ã(t))
∼ t. (3.7.1)

Then, for x > y > 0, we have,

tP

[
X̃

ã(t)
≤ x, Ỹ

ã(t)
> y

]
=tP

[
ã(t)(X − 1) ≤ −1

x
, ã(t)(Y − 1) > −1

y

]
=tP

[
1− 1

yã(t)
< X ≤ 1− 1

xã(t)
, Z > 1− 1

yã(t)

]
=

t

ã(t)a+b
[y−a − x−a]y−bL(yã(t))

∼ tL(ã(t))

ã(t)a+b
[y−a − x−a]y−b ∼ [y−a − x−a]y−b,

where we use (3.7.1) in the last step. Thus, (X̃, Ỹ ) satisfies Conditions (2A) and (2B)

with ρ = γ = −1/(a+ b).

Finally, we directly calculate the asymptotic tail behavior of the product. For

simplicity of the notations, for y > 0, let us denote c(t) = 1 − 1/(ã(t)y). Since

ã ∈ RV1/(a+b), as t→∞, we have c(t)→ 1. Also, ã(t) = 1/((1− c(t))y). Then,

tP

[
XY > 1− 1

ã(t)y

]
= a · t

1∫
√
c(t)

P

[
Z >

c(t)

s

]
(1− s)a−1ds

∼a · ã←
(

1

(1− c(t))y

) 1∫
√
c(t)

P
[
Z >

c

s

]
(1− s)a−1ds

∼a · ã←
(

1

(1− c(t))y

) 1∫
√
c(t)

(
1− c

s

)b
(1− s)a−1L

(
1

1− c(t)/s

)
ds
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substituting s = 1− z(1− c(t)),

=a(1− c(t))a+bã←
(

1

(1− c(t))y

) 1

1+
√
c(t)∫

0

(1− z)bza−1

(1− (1− c(t))z)b
L

(
1 +

c(t)

(1− c(t))(1− z)

)
dz

∼a(1− c(t))a+bã←
(

1

(1− c(t))y

)
L

(
c(t)

1− c(t)

) 1/2∫
0

(1− z)bza−1dz,

where, in the last step, we use Dominated Convergence Theorem and the facts that

c(t)→ 1 and

L

(
1 +

c(t)

(1− c(t))(1− z)

)
∼ L

(
c(t)

(1− c(t))(1− z)

)
∼ L

(
c(t)

1− c(t)

)

uniformly on bounded intervals of z. Finally, using (3.7.1), definition of c(t), to get,

tP

[
(1−XY )−1

ã(t)
> y

]
→ a · y−(a+b)

1/2∫
0

(1− z)bza−1dz.



Chapter 4

Sums of free random variables

with regularly varying tails

4.1 Introduction

In this chapter we show an application of regular variations to free probability theory.

In Lemma 1.2.1 we saw that random variables (or distribution functions) with regularly

varying tails are in the class of subexponential ones and satisfy the principle of one large

jump. In terms of probability measures on [0,∞) we can reformulate it to say, measures

with regularly varying index −α, α ≥ 0 satisfy the following property for all n ≥ 1,

µ∗n(x,∞) ∼ nµ(x,∞) as x→∞.

In Chapter 1 we saw many properties of the subexponential distributions. We shall

now show that this property of measures with regularly varying tails is not restricted

to classical convolution on the space of probability measures, but they extend to free

probability theory as introduced in Section 1.5.3. The concept of freeness allows one to

describe a convolution on the space of all probability measures which is known as the

free convolution. Free convolution between two measures µ and ν is denoted by µ� ν.

In Theorem 4.2.2 we show that a probability measure µ with regularly varying tail on

95
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[0,∞) satisfies the following property for all n ≥ 1,

µ�n(x,∞) ∼ nµ(x,∞) as x→∞.

The space of all measures which satisfy the above property will be called free

subexponential measures (see Definition 1.5.1). Section 4.2 elaborates upon Section 4.1

and provides an extended review of the useful notions and results of free probability

theory. We refer to the monographs by Nica and Speicher (2006), Voiculescu et al. (1992)

for the basic definitions of free probability. Towards the end of Section 4.2, once we

have introduced the important concepts, we introduce the main problem considered in

the rest of the chapter. In Section 4.2.2 we also provide a sketch of the chapter and an

approach to the proof of Theorem 4.2.2.

4.2 Basic setup and results

4.2.1 Free probability

The notion of freeness was first introduces by Voiculescu (1986). The definition was

motivated by his study on certain types of von Neumann algebras. The relationship of

freeness with random matrices established in Voiculescu (1991) was a major advancement

in this area. Some of the notions in this Subsection has already been in introduced in

Section 1.5.3. We define them here formally and elaborate upon them.

Definition 4.2.1. A non-commutative probability space is a pair (A, τ) where A is a

unital complex algebra and τ is a linear functional on A satisfying τ(1) = 1.

Given elements a1, a2, · · · , ak ∈ A and indices i(1), i(2), · · · , i(n) ≤ k, the numbers

τ(ai(1)ai(2) · · · ai(n)) denote a moments. In analogy to the fact from the classical proba-

bility theory, where, in certain cases, the moments determine a distribution function,

the collection of all moments involving a1, a2, · · · , ak is called the joint distribution of

a1, a2, · · · ak.

Now we give two examples of non-commutative probability spaces. The first example

indicates the motivation behind the nomenclature of a probability space.
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Example 4.2.1. (i) Let (Ω,F ,P) be a probability space in the classical sense. Let

A = L∞(Ω,P) be the set of bounded random variables and

τ(a) =

∫
a(ω)dP(w).

In this case, the random variables actually commute.

(ii) Let H be a Hilbert space and A = B(H) be the space of all bounded operators on

H. The fundamental states are of the form τ(a) = 〈η, aη〉 where η ∈ H is a vector

of norm 1.

Having defined the non-commutative probability spaces, we now give the definition

of freeness.

Definition 4.2.2. Let (A, τ) be a non-commutative probability space. A family of unital

subalgebras {Ai}i∈I ⊂ A is called free if τ(a1 · · · an) = 0 whenever τ(aj) = 0, aj ∈ Aij
and ij 6= ij+1 for all j.

Next we briefly describe some of the properties of freeness in this setup.

Freeness allows easy calculation of the mixed moments from the knowledge of

moments of the individual elements. For example, if A and B are free, then one has, for

a, a1, a2 ∈ A and b, b1, b2 ∈ B,

(i) τ(ab) = τ(a)τ(b);

(ii) τ(a1ba2) = τ(a1a2)τ(b);

(iii) τ(a1b1a2b2) = τ(a1a2)τ(b1)τ(b2) + τ(a1)τ(a2)τ(b1b2)− τ(a1)τ(b1)τ(a2)τ(b2).

In all the above examples one has to first center the elements and use the freeness

condition. If â = a− τ(a) and b̂ = b− τ(b), then τ(âb̂) = 0 by freeness. Also, by linearity

of τ , we have τ(âb̂) = τ(ab)− τ(a)τ(b) which leads to (i). Other claims can similarly be

checked.

Much of the calculations of moments using the above methods involve combinatorial

arguments. In the combinatorial theory of free probability, it turns out that calculating

moments is often difficult. In some such cases, the calculation of “free cumulants” are
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more advantageous. In order to describe the free cumulants one uses a subclass of the

partitions known as non-crossing partitions.

Definition 4.2.3. Let n be a natural number. We call π = {V1, · · · , Vr} to be a partition

of S = {1, 2, · · · , n} if and only if Vi for 1 ≤ i ≤ r are pairwise disjoint and their union

is S. V1, · · · , Vr are called the blocks of the partition π. If two elements p and q are in

the same block then one writes p ∼π q.

Definition 4.2.4. A partition π is called crossing if there exists 1 ≤ p1 < q1 < p2 <

q2 ≤ n such that p1 ∼π p2 �π q1 ∼π q2. A partition which is not crossing, is called a

non-crossing partition. The set of non-crossing partitions of S is denoted by NC(S).

Consider a collection {ln : An → C}∞n=1 of multilinear functionals on a fixed complex

algebra A. Given a non-empty set J = {i1 < i2 < · · · < im} of positive integers, define

l({ai}i∈J) = lm(ai1 , · · · aim). Further, if π ∈ NC(J), define

lπ({ai}i∈J) =
∏
V ∈π

l({ai}i∈V ).

We are now ready to introduce the free cumulants.

Definition 4.2.5. Let (A, τ) be a non-commutative probability space. The free cumu-

lants are defined as a collection of multilinear functions κn : An → C by the following

system of equations:

τ(a1a2 · · · an) =
∑

π∈NC(n)

κπ(a1, a2, · · · , an). (4.2.1)

It can be easily shown that free cumulants are well defined. The first few free

cumulants can be calculated as follows. For n = 1, we have from (4.2.1), κ1(a1) = τ(a1)

which is the mean. For n = 2, one gets the covariance, κ2(a1, a2) = τ(a1a2)− τ(a1)τ(a2).

Freeness can also be characterized in terms of cumulants. In fact, freeness is equivalent

to vanishing of mixed cumulants. More precisely, we have the following result.

Theorem 4.2.1 (Nica and Speicher, 2006, Theorem11.16). The elements {ai}i∈I of a

complex unital algebra A are free if and only if κn(ai(1), · · · , ai(n)) = 0 whenever n ≥ 2

and there exists k, l such that i(k) 6= i(l).
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Denote by κn(a) := κn(a, · · · , a) the n-th cumulant of a. When a and b are free then

from Theorem 4.2.1 one can conclude that, for all n ≥ 1,

κn(a+ b) = κn(a) + κn(b). (4.2.2)

Definition 4.2.6. For an element a, the formal power series

Ra(z) =
∑
n≥0

κn+1(a)zn

is called the R transform of a.

By (4.2.2), the R transform in free probability plays a role similar to the logarithm

of the characteristic function in classical probability. If a and b are free, we have,

Ra+b(z) = Ra(z) +Rb(z).

The relationship between the moments and cumulants in (4.2.1) can be translated to

the following relationship between the formal power series. For a proof of the following

Proposition we refer to Chapter 11 of Nica and Speicher (2006).

Proposition 4.2.1. Let (mn)n≥1 and (κn)n≥1 be two sequences of complex numbers

and consider the corresponding power series:

M(z) = 1 +
∞∑
n=1

mnz
n and C(z) = 1 +

∞∑
n=1

κnz
n.

Then the following statements are equivalent:

(i) For all n ≥ 1,

mn =
∑

π∈NC(n)

κπ =
∑

π={V1,··· ,Vr}
π∈NC(n)

κ|V1| · · ·κ|Vr|.

(ii) For all n ≥ 1, (with m0 := 1) one has,

mn =

n∑
s=1

∑
i1,··· ,is∈{0,1,··· ,n−s}
i1+···+is=n−s

κsmi1 · · ·mis .
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(iii) C(zM(z)) = M(z).

Definition 4.2.7. For an element a of (A, τ), the Cauchy transform is the formal power

series given by

Ga(z) :=
∞∑
n=0

mn(a)

zn+1
, where mn(a) = τ(an). (4.2.3)

Now from Proposition 4.2.1, the Cauchy transform and the R transform of a random

variable a is related by the following relationship:

Ga

(
Ra(z) +

1

z

)
= z.

Although the above things are done in terms of formal power series, they can be

made rigorous when the algebra is a C∗-algebra or von Neuman algebra and the element

is self-adjoint.

Definition 4.2.8. Suppose A is a von Neumann algebra. A linear functional τ : A → C

with τ(1) = 1 is called:

(i) state: if τ(a) ≥ 0 for a ≥ 0;

(ii) tracial : if τ(ab) = τ(ba);

(iii) faithful: if τ(aa∗) = 0 implies a = 0;

(iv) normal : if for any net {aβ} of nonnegative elements of A monotonically decreasing

to zero, we have infβ τ(aβ) = 0.

A self-adjoint element of a C∗-algebra is often called a random variable or a random

element. Consider a self-adjoint element or a random variable X of a C∗-algebra A

equipped with a state τ . Then there exists a compactly supported measure µX on R,

such that, for all n ∈ N

τ(Xn) =

∫
R
tnµX(dt).

We further have that GX is an analytic function and

GX(z) = τ
(
(z −X)−1

)
=

∫
R

1

z − t
µX(dt), for z ∈ C+.
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In general, the above definition works for any measure µ on R. We denote the Cauchy

transform of a measure µ by Gµ. Some further properties of the Cauchy transform for

general measures is dealt in Section 4.3.

4.2.2 Main results

The basic notions in free probability theory described in Subsection 4.2.1 are well suited

for bounded random variables which correspond to compactly supported measures.

However, our interest is in probability measures with regularly varying tails which have

unbounded support and hence one has to consider unbounded random variables. In order

to deal with unbounded random variables we need to consider a tracial W ∗-probability

space (A, τ) with a von Neumann algebra A and a normal faithful tracial state τ . See

Definition 4.2.8 for the related concepts. By unbounded random variables, we shall

mean self-adjoint operators affiliated to a von Neumann algebra A. For definition of

affiliated random variables and freeness for unbounded random variables, please see

Subsection 1.5.3 of Chapter 1.

Recall that, given two measures µ and ν, there exists a unique measure µ� ν, called

the free convolution of µ and ν, such that whenever X and Y are two free random

elements on a tracial W ∗ probability space (A, τ), the random element X + Y has the

law µ� ν. The definition of subexponential distributions can be easily extended to the

non-commutative setup by replacing the classical convolution powers by free convolution

ones and this leads to Definition 1.5.1 of free subexponential probability measures. A

probability measure µ on [0,∞) is said to be free subexponential if µ(x,∞) > 0 for all

x ≥ 0 and for all n,

µ�n(x,∞) = (µ� · · ·� µ)︸ ︷︷ ︸
n times

(x,∞) ∼ nµ(x,∞) as x→∞.

The above definition can be rewritten in terms of distribution functions as well. A

distribution function F is called free subexponetial if for all n ∈ N, F�n(x) ∼ nF (x) as

x→∞. A random element X affiliated to a tracial W ∗-probability space is called free

subexponential, if its distribution is so. One immediate consequence of the definition of

free subexponentiality is the principle of one large jump.
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Ben Arous and Voiculescu (2006) showed that for two distribution functions F and G,

there exists a unique measure F ∨G, such that whenever X and Y are two free random

elements on a tracial W ∗-probability space, F ∨G will become the distribution of X ∨ Y .

Here X ∨ Y is the maximum of two self-adjoint operators defined using the spectral

calculus via the projection-valued operators, see Ben Arous and Voiculescu (2006) for

details. Ben Arous and Voiculescu (2006) showed that F ∨G(x) = max((F+G−1)(x), 0),

and hence F ∨n(x) = max((nF − (n− 1))(x), 0). Then, we have, for each n, F ∨n(x) ∼

nF (x) as x→∞. Thus, by definition of free subexponentiality, we have

Proposition 4.2.2 (Free one large jump principle). Free subexponential distributions

satisfy the principle of one large jump, namely, if F is free subexponential, then, for

every n,

F�n(x) ∼ F ∨n(x) as x→∞.

The distributions with regularly varying tails of index −α, with α ≥ 0, form an

important class of examples of subexponential distributions in the classical setup. We

show in Theorem 4.2.2 that the distributions with regularly varying tails of index −α,

α ≥ 0 also form a subclass of the free subexponential distributions.

Theorem 4.2.2. If F has regularly varying tail of index −α with α ≥ 0, then F is free

subexponential.

While it need not be assumed that the measure is concentrated on [0,∞), both

the notions of free subexponentiality and regular variation are defined in terms of the

measure restricted to [0,∞). Thus we shall assume the measure to be supported on [0,∞)

except for the definitions of the relevant transforms in the initial part of Subsection 4.3.2

and in the statement and the proof of Theorem 4.2.2.

Due to the lack of coordinate systems and expressions for joint distributions of

non-commutative random elements in terms of probability measures, the proofs of the

above results deviate from the classical ones. In absence of the higher moments of

the distributions with regularly varying tails, we cannot use the usual moment-based

approach used in free probability theory. Instead, Cauchy and Voiculescu transforms

become the natural tools to deal with the free convolution of measures. While Cauchy
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transform has already been introduced, we define Voiculescu transform in Section 4.3. We

then discuss the relationship between the remainder terms of Laurent series expansions

of Cauchy and Voiculescu transforms of measures with regularly varying tail of index

−α. We need to consider four cases separately depending on the maximum number

p of integer moments that the measure µ may have. For a nonnegative integer p, let

us denote the class of all probability measures µ on [0,∞) with
∫∞

0 tpdµ(t) < ∞, but∫∞
0 tp+1dµ(t) =∞, by Mp. We shall also denote the class of all probability measures µ

in Mp with regularly varying tail of index −α by Mp,α. Note that, we necessarily have

α ∈ [p, p+ 1]. Theorems 4.3.1–4.3.4 summarize the relationships among the remainder

terms for various choices of α and p. These theorems are the key tools of this Chapter.

Section 4.3 is concluded with two Abel-Tauber type results for Stieltjes transform of

measures with regularly varying tail. We then prove Theorem 4.2.2 in Section 4.4 using

Theorems 4.3.1–4.3.4. We use the final two sections to prove Theorems 4.3.1–4.3.4.

In Section 4.5, we collect some results about the remainder term in Laurent series

expansion of Cauchy transform of measures with regularly varying tails. In Section 4.6,

we study the relationship between the remainder terms in Laurent expansions of Cauchy

and Voiculescu transforms through a general analysis of the remainder terms of Taylor

expansions of a suitable class of functions and their inverses or reciprocals. Combining,

the results of Sections 4.5 and 4.6, we prove Theorems 4.3.1–4.3.4.

4.3 Some transforms and their related properties

In this section, we collect some notations, definitions and results to be used later

in this Chapter. In Subsection 4.3.1, we define the concept of non-tangential limits.

Various transforms in non-commutative probability theory, like Cauchy, Voiculescu

and R transforms are introduced in Subsection 4.3.2. Theorems 4.3.1–4.3.4 regarding

the relationship between the remainder terms of Laurent expansions of Cauchy and

Voiculescu transforms are given in this subsection as well. Finally, in Subsection 4.3.3,

two results about measures with regularly varying tails are given.
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4.3.1 Non-tangential limits and notations

Recall that, the complex plane is denoted by C and for a complex number z, <z and

=z denotes the real and imaginary parts respectively. We say z goes to infinity (zero

respectively) non-tangentially to R (n.t.), if z goes to infinity (zero respectively), while

<z/=z stays bounded. We can then define that a function f converges or stays bounded

as z goes to infinity (or zero) n.t. To elaborate upon the notion, given positive numbers

η, δ and M , let us define the following cones:

(i) Γη = {z ∈ C+ : |<z| < η=z} and Γη,M = {z ∈ Γη : |z| > M},

(ii) ∆η = {z ∈ C− : |<z| < −η=z} and ∆η,δ = {z ∈ ∆η : |z| < δ},

where C+ and C− are the upper and the lower halves of the complex plane respectively,

namely, C+ = {z ∈ C : =z > 0} and C− = −C+. Then we shall say that f(z) → l as

z goes to ∞ n.t., if for any ε > 0 and η > 0, there exists M ≡ M(η, ε) > 0, such that

|f(z)− l| < ε, whenever z ∈ Γη,M . The boundedness can be defined analogously.

We shall write f(z) ≈ g(z), f(z) = o(g(z)) and f(z) = O(g(z)) as z → ∞ n.t. to

mean that f(z)/g(z) converges to a non-zero limit, f(z)/g(z)→ 0 and f(z)/g(z) stays

bounded as z →∞ n.t. respectively. If the non-zero limit is 1 in the first case, we write

f(z) ∼ g(z) as z → ∞ n.t. For f(z) = o(g(z)) as z → ∞ n.t., we shall also use the

notations f(z)� g(z) and g(z)� f(z) as z →∞ n.t.

The map z 7→ 1/z maps the set Γη,1/δ onto ∆η,δ for each positive η and δ. Thus the

analogous concepts can be defined for z → 0 n.t. using ∆η,δ.

4.3.2 Cauchy and Voiculescu Transform

Recall that for a probability measure µ, its Cauchy transform is defined as

Gµ(z) =

∫ ∞
−∞

1

z − t
dµ(t), z ∈ C+.

Note that Gµ maps C+ to C−. Set Fµ = 1/Gµ, which maps C+ to C+. We shall be also

interested in the function Hµ(z) = Gµ(1/z) which maps C− to C−.

By Proposition 5.4 and Corollary 5.5 of Bercovici and Voiculescu (1993), for all η > 0

and for all ε ∈ (0, η ∧ 1), there exists δ ≡ δ(η) small enough, such that Hµ is a conformal
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bijection from ∆η,δ onto an open set Dη,δ, where the range sets satisfy

∆η−ε,(1−ε)δ ⊂ Dη,δ ⊂ ∆η+ε,(1+ε)δ.

If we define D = ∪η>0Dη,δ(η), then we can obtain an analytic function Lµ with

domain D by patching up the inverses of Hµ on Dη,δ(η) for each η > 0. In this case Lµ

becomes the right inverse of Hµ on D. Also it was shown that the sets of type ∆η,δ were

contained in the unique connected component of the set H−1
µ (D). It follows that Hµ is

the right inverse of Lµ on ∆η,δ and hence on the whole connected component by analytic

continuation.

We then define R and Voiculescu transforms of the probability measure µ respectively

as:

Rµ(z) =
1

Lµ(z)
− 1

z
and φµ(z) = Rµ(1/z). (4.3.1)

Also, if X is a (self-adjoint) random element in a W ∗-algebra A with an associated

measure µ, then Rµ coincides with the formal definition given in Definition 4.2.6. Arguing

as in the case of Gµ(1/z), it can be shown that Fµ has a left inverse, denoted by F−1
µ on

a suitable domain and, in that case, we have

φµ(z) = F−1
µ (z)− z.

Bercovici and Voiculescu (1993) established the following relation between free

convolution and Voiculescu and R transforms. For probability measures µ and ν,

φµ�ν = φµ + φν and Rµ�ν = Rµ +Rν ,

wherever all the functions involved are defined.

We shall also need to analyze the power and Taylor series expansions of the above

transforms. For Taylor series expansion of a function, we need to define the remainder

term appropriately, so that it becomes amenable to the later calculations. In fact, for a
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function A with Taylor series expansion of order p, we define the remainder term as

rA(z) = z−p

(
A(z)−

p∑
i=0

aiz
i

)
. (4.3.2)

Note that, we divide by zp after subtracting the polynomial part.

For compactly supported measure µ, Speicher (1994) showed that, in an appropriate

neighborhood of zero, Rµ(z) =
∑∞

j=0 κj+1(µ)zj , where {κj(µ)} denotes the free cumulant

sequence of the probability measure µ. For probability measures µ with finite p moments,

Taylor expansions of Rµ and Hµ are given by Theorems 1.3 and 1.5 of Benaych-Georges

(2005):

Rµ(z) =

p−1∑
j=0

κj+1(µ)zj+zp−1rRµ(z), and Hµ(z) =

p+1∑
j=1

mj−1(µ)zj+zp+1rHµ(z), (4.3.3)

where the remainder terms rRµ(z) ≡ rR(z) = o(1) and rHµ(z) ≡ rH(z) = o(1) as z → 0

n.t. are defined along the lines of (4.3.2), {κj(µ) : j ≤ p} denotes the free cumulant

sequence of µ as before and {mj(µ) : j ≤ p} denotes the moment sequence of the

probability measure µ. When there is no possibility of confusion, we shall sometimes

suppress the measure involved in the notation for the moment and the cumulant sequences,

as well as the remainder terms. In the study of stable laws and the infinitely divisible laws,

the following relationship between Cauchy and Voiculescu transforms of a probability

measure µ, obtained in Proposition 2.5 of Bercovici and Pata (1999), played a crucial

role:

φµ(z) ∼ z2

[
Gµ(z)− 1

z

]
as z →∞ n.t. (4.3.4)

Depending on the number of moments that the probability measure µ may have, its

Cauchy and Voiculescu transforms can have Laurent series expansions of higher order.

Motivated by this fact, for probability measures µ ∈ Mp (that is, when µ has only p

integral moments), we introduce the remainder terms in Laurent series expansion of

Cauchy and Voiculescu transforms (in analogy to the remainder terms in Taylor series
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expansion):

rGµ(z) ≡ rG(z) = zp+1

Gµ(z)−
p+1∑
j=1

mj−1(µ)z−j

 (4.3.5)

and

rφµ(z) ≡ rφ(z) = zp−1

φµ(z)−
p−1∑
j=0

κj+1(µ)z−j

 , (4.3.6)

where we shall again suppress the measure µ in the notation if there is no possibility of

confusion. In (4.3.6), we interpret the sum on the right side as zero, when p = 0. Using

the remainder terms defined in (4.3.5) and (4.3.6) we provide extensions of (4.3.4) in

Theorems 4.3.1–4.3.4 for different choices of α and p. We split the statements into four

cases as follows: (i) p is a positive integer and α ∈ (p, p+ 1), (ii) p is a positive integer

and α = p, (iii) p = 0 and α ∈ [0, 1) and (iv) p is a nonnegative integer and α = p+ 1

giving rise to Theorems 4.3.1–4.3.4 respectively.

We first consider the case where p is a positive integer and α ∈ (p, p+ 1).

Theorem 4.3.1. Let µ be a probability measure in the class Mp and α ∈ (p, p+ 1). The

following statements are equivalent:

(i) µ(y,∞) is regularly varying of index −α.

(ii) =rG(iy) is regularly varying of index −(α− p).

(iii) =rφ(iy) is regularly varying of index −(α − p), <rφ(iy) � y−1 as y → ∞ and

rφ(z)� z−1 as z →∞ n.t.

If any of the above statements holds, we also have, as z →∞ n.t.,

rG(z) ∼ rφ(z)� z−1; (4.3.7)

as y →∞,

=rφ(iy) ∼ =rG(iy) ∼ −
π(p+1−α)

2

cos π(α−p)
2

ypµ(y,∞)� 1

y
(4.3.8)
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and

<rφ(iy) ∼ <rG(iy) ∼ −
π(p+2−α)

2

sin π(α−p)
2

ypµ(y,∞)� 1

y
. (4.3.9)

Next we consider the case where p is a positive integer and α = p.

Theorem 4.3.2. Let µ be a probability measure in the class Mp. The following state-

ments are equivalent:

(i) µ(y,∞) is regularly varying of index −p.

(ii) =rG(iy) is slowly varying.

(iii) =rφ(iy) is slowly varying, <rφ(iy)� y−1 as y →∞ and rφ(z)� z−1 as z →∞

n.t.

If any of the above statements holds, we also have, as z →∞ n.t.,

rG(z) ∼ rφ(z)� z−1; (4.3.10)

as y →∞,

=rφ(iy) ∼ =rG(iy) ∼ −π
2
ypµ(y,∞)� 1

y
(4.3.11)

and

<rφ(iy) ∼ <rG(iy)� 1

y
. (4.3.12)

In the third case, we consider α ∈ [0, 1).

Theorem 4.3.3. Let µ be a probability measure in the class M0 and α ∈ [0, 1). The

following statements are equivalent:

(i) µ(y,∞) is regularly varying of index −α.

(ii) =rG(iy) is regularly varying of index −α.

(iii) =rφ(iy) is regularly varying of index −α, <rφ(iy) ≈ =rφ(iy) as y → ∞ and

rφ(z)� z−1 as z →∞ n.t.

If any of the above statements holds, we also have, as z →∞ n.t.,

rG(z) ∼ rφ(z)� z−1; (4.3.13)
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as y →∞,

=rφ(iy) ∼ =rG(iy) ∼ −
π(1−α)

2

cos πα2
µ(y,∞)� 1

y
(4.3.14)

and

<rφ(iy) ∼ <rG(iy) ∼ −dαµ(y,∞)� 1

y
., (4.3.15)

where

dα =


π(2−α)

2
sin πα

2
, when α > 0,

1, when α = 0.

Finally, we consider the case where p is a nonnegative integer and α = p+ 1.

Theorem 4.3.4. Let µ be a probability measure in the class Mp and β ∈ (0, 1/2). The

following statements are equivalent:

(i) µ(y,∞) is regularly varying of index −(p+ 1).

(ii) <rG(iy) is regularly varying of index −1.

(iii) <rφ(iy) is regularly varying of index −1, y−1 � =rφ(iy)� y−(1−β/2) as y →∞

and z−1 � rφ(z)� z−β as z →∞ n.t.

If any of the above statements holds, we also have, as z →∞ n.t.,

z−1 � rG(z) ∼ rφ(z)� z−β; (4.3.16)

as y →∞,

y−(1+β/2) � <rφ(iy) ∼ <rG(iy) ∼ −π
2
ypµ(y,∞)� y−(1−β/2) (4.3.17)

and

y−1 � =rφ(iy) ∼ =rG(iy)� y−(1−β/2). (4.3.18)

It is easy to obtain the equivalent statements for Hµ and Rµ through the simple

observation that Gµ(z) = Hµ(1/z) and φµ(z) = Rµ(1/z). For p = 0, Theorems 4.3.3

and 4.3.4 together give a special case of (4.3.4) for the probability measures with

regularly varying tail and infinite mean. However, Theorems 4.3.1–4.3.4 give more
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detailed asymptotic behavior of the real and imaginary parts separately, which is

required for our analysis.

4.3.3 Karamata type results

We provide here two results for regularly varying functions, which we shall be using in

the proofs of our results. They are variants of Karamata’s Abel-Tauber theorem for

Stieltjes transform (see, Theorem 1.2.4) which explains the regular variation of Cauchy

transform of measures with regularly varying tails.

The first result is quoted from Bercovici and Pata (1999).

Proposition 4.3.1 (Bercovici and Pata, 1999, Corollary 5.4). Let ρ be a positive Borel

measure on [0,∞) and fix α ∈ [0, 2). Then the following statements are equivalent:

(i) y 7→ ρ[0, y] is regularly varying of index α.

(ii) y 7→
∫∞

0
1

t2+y2
dρ(t) is regularly varying of index −(2− α).

If either of the above conditions is satisfied, then

∫ ∞
0

1

t2 + y2
dρ(t) ∼

πα
2

sin πα
2

ρ[0, y]

y2
as y →∞.

The constant pre-factor on the right side is interpreted as 1 when α = 0.

The second result uses a different integrand.

Proposition 4.3.2. Let ρ be a finite positive Borel measure on [0,∞) and fix α ∈ [0, 2).

Then the following statements are equivalent:

(i) y 7→ ρ(y,∞) is regularly varying of index −α.

(ii) y 7→
∫∞

0
t2

t2+y2
dρ(t) is regularly varying of index −α.

If either of the above conditions is satisfied, then

∫ ∞
0

t2

t2 + y2
dρ(t) ∼

πα
2

sin πα
2

ρ(y,∞) as y →∞.

The constant pre-factor on the right side is interpreted as 1 when α = 0.
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Proof. Define dρ̃(y) = ρ(
√
s,∞)ds. By a variant of Karamata’s theorem given in

Theorem 1.2.1, as α < 2, we have

ρ̃[0, y] ∼ 1

1− α
2

yρ(
√
y,∞) (4.3.19)

is regularly varying of index 1− α/2. Then, we have,

∫ ∞
0

t2

t2 + y2
dρ(t) = y2

∫ ∞
0

∫ t

0

2sds

(s2 + y2)2
dρ(t)

= y2

∫ ∞
0

2sρ(s,∞)

(s2 + y2)2
ds = y2

∫ ∞
0

dρ̃(s)

(s+ y2)2
.

Now, first applying Theorem 1.2.4, as ρ̃[0, y] is regularly varying of index 1−α/2 ∈ (0, 2]

and then (4.3.19), we have

∫ ∞
0

t2

t2 + y2
dρ(t) ∼

(
1− α

2

)
πα
2

sin πα
2

y2 ρ̃[0, y2]

y4
∼

πα
2

sin πα
2

ρ(y,∞).

4.4 Free subexponentiality of measures with regularly

varying tails

We now use Theorems 4.3.1–4.3.4 to prove Theorem 4.2.2. We shall first look at the tail

behavior of the free convolution of two probability measures with regularly varying tails

and which are tail balanced. Theorem 4.2.2 will be proved by suitable choices of the two

measures.

Lemma 4.4.1. Suppose µ and ν are two probability measures on [0,∞) with regularly

varying tails, which are tail balanced, that is, for some c > 0, we have ν(y,∞) ∼ c µ(y,∞).

Then

µ� ν(y,∞) ∼ (1 + c)µ(y,∞).

Proof. We shall now indicate the associated probability measures in the remainder terms,

moments and the cumulants to avoid any confusion. Since µ and ν are tail balanced and

have regularly varying tails, for some nonnegative integer p and α ∈ [p, p+ 1], we have
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both µ and ν in the same class Mp,α. When α ∈ [p, p+ 1), depending on the choice of p

and α, we apply one of Theorems 4.3.1, 4.3.2 and 4.3.3 on the imaginary parts of the

remainder terms in Laurent expansion of Voiculescu transforms. On the other hand, for

α = p+ 1, we apply Theorem 4.3.4 on the real parts of the corresponding objects. We

work out only the case α ∈ [p, p+ 1) in details, while the other case α = p+ 1 is similar.

For α ∈ [p, p+ 1), by Theorems 4.3.1–4.3.3, we have

rφµ(z)� z−1 and rφν (z)� z−1 (4.4.1)

<rφµ(−iy)� y−1 and <rφν (−iy)� y−1 (4.4.2)

=rφµ(iy) ∼ −
π(p+1−α)

2

cos π(α−p)
2

ypµ(y,∞) and =rφν (iy) ∼ −
π(p+1−α)

2

cos π(α−p)
2

ypν(y,∞). (4.4.3)

For p = 0 and α ∈ [0, 1), we further have

=rφµ(iy) ≈ <rφµ(iy) ≈ µ(y,∞) and =rφν (iy) ≈ <rφν (iy) ≈ ν(y,∞). (4.4.4)

We also know that, both Voiculescu transforms and cumulants add up in case of free

convolution. Hence,

rφµ�ν (z) = rφµ(z) + rφν (z). (4.4.5)

Further, we shall have κp(µ � ν) < ∞, but κp+1(µ � ν) = ∞ and similar results hold

for the moments of µ� ν as well. Then Theorems 4.3.1–4.3.3 will also apply for µ� ν.

Thus, applying (4.4.5) and its real and imaginary parts evaluated at z = iy, together

with (4.4.1)–(4.4.4) respectively, we get,

rφµ�ν (z)� z−1 as z →∞ n.t.,

<rφµ�ν (iy)� y−1 as y →∞

and

=rφµ�ν (iy) ∼ −(1 + c)
π(p+1−α)

2

cos π(α−p)
2

ypµ(y,∞) as y →∞, (4.4.6)
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which is regularly varying of index −(α− p). Further, for p = 0 and α ∈ [0, 1), we have

=rφµ�ν (iy) ≈ <rφµ�ν (iy).

In the last two steps, we also use the hypothesis that ν(y,∞) ∼ cµ(y,∞) as y → ∞.

Thus, again using Theorems 4.3.1–4.3.3, we have

−
π(p+1−α)

2

cos π(α−p)
2

ypµ� ν(y,∞) ∼ =rφµ�ν (iy). (4.4.7)

Combining (4.4.6) and (4.4.7), the result follows.

We are now ready to prove the subexponentiality of a distribution with regularly

varying tail.

Proof of Theorem 4.2.2. Let µ be the probability measure on [0,∞) associated with the

distribution function F+. Then µ also has regularly varying tail of index −α. We prove

that

µ�n(y,∞) ∼ nµ(y,∞), as y →∞ (4.4.8)

by induction on n. To prove (4.4.8), for n = 2, apply Lemma 4.4.1 with both the

probability measures as µ and the constant c = 1. Next assume (4.4.8) holds for n = m.

To prove (4.4.8), for n = m+ 1, apply Lemma 4.4.1 again with the probability measures

µ and µ�m and the constant c = m.

4.5 Cauchy transform of measures with regularly varying

tail

As a first step towards proving Theorems 4.3.1–4.3.4, we now collect some results about

rG(z), when the probability measure µ has regularly varying tails. These results will be

be useful in showing equivalence between the tail of µ and rG(iy). It is easy to see by

induction that
1

z − t
−

p∑
j=0

tj

zj+1
=

(
t

z

)p+1 1

z − t
.
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Integrating and multiplying by zp+1, we get

rG(z) =

∫ ∞
0

tp+1

z − t
dµ(t). (4.5.1)

We use (4.5.1) to obtain asymptotic upper and lower bounds for rG(z) as z → ∞ n.t.

Similar results about rH can be obtained easily from the fact that rG(z) = rH(1/z), but

will not be stated separately. We consider the lower bound first.

Proposition 4.5.1. Suppose µ ∈Mp for some nonnegative integer p, then

z−1 � rG(z) as z →∞ n.t.

Proof. We need to show that, for any η > 0, as |z| → ∞ with z in the cone Γη, we

have |zrG(z)| → ∞. Note that, for z = x + iy ∈ Γη, we have |x| < ηy. Now, as

|z − t|2 = (z − t)(z̄ − t) and z(z̄ − t) = |z|2 − zt, using (4.5.1), we have,

zrG(z) = z

∫ ∞
0

tp+1

z − t
dµ(t) = |z|2

∫ ∞
0

tp+1

|z − t|2
dµ(t)− z

∫ ∞
0

tp+2

|z − t|2
dµ(t),

which gives

<(zrG(z)) = |z|2
∫ ∞

0

tp+1

|z − t|2
dµ(t)−<z

∫ ∞
0

tp+2

|z − t|2
dµ(t) (4.5.2)

and

=(zrG(z)) = =z
∫ ∞

0

tp+2

|z − t|2
dµ(t). (4.5.3)

On Γη and for t ∈ [0, ηy], |t− x| ≤ t+ |x| ≤ 2ηy. Thus, we have,

∫ ∞
0

|z|2tp+1

|z − t|2
dµ(t) ≥

∫ ηy

0

y2tp+1

(t− x)2 + y2
dµ(t) ≥ 1

1 + 4η2

∫ ηy

0
tp+1dµ(t)→∞, (4.5.4)

since µ ∈Mp.

Now fix η > 0, and consider a sequence {zn = xn + iyn} in Γη, such that |zn| → ∞,

that is, |xn| ≤ uyn and yn → ∞. If possible, suppose that {|znrG(zn)|} is a bounded
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sequence, then both the real and the imaginary parts of the sequence will be bounded.

However, then the boundedness of the real part and (4.5.2) and (4.5.4) give

∣∣∣∣<zn ∫ ∞
0

tp+2

|zn − t|2
dµ(t)

∣∣∣∣→∞.
Then, using (4.5.3) and the fact that |<z| ≤ η=z on Γη, we have

=(znrG(zn)) ≥ 1

η

∣∣∣∣<zn ∫ ∞
0

tp+2

|zn − t|2
dµ(t)

∣∣∣∣→∞,
which contradicts the fact that the imaginary part of the sequence {znrG(zn)} is bounded

and completes the proof.

We now consider the upper bound for rG(z). The result and the proof of the following

proposition are inspired by Lemma 5.2(iii) of Bercovici and Pata (2000b).

Proposition 4.5.2. Let µ be a probability measure in the class Mp,α for some nonneg-

ative integer p and α ∈ (p, p+ 1]. Then, for any β ∈ [0, (α− p)/(α− p+ 1)), we have

rG(z) = o(z−β) as z →∞ n.t. (4.5.5)

Remark 4.5.1. We consider the consider principal branch of logarithm of a complex

number with positive imaginary part, while defining the fractional powers in (4.5.5)

above and elsewhere.

Remark 4.5.2. Note that (4.5.5) holds also for p = α with β = 0, which can be readily

seen from Theorem 1.5 of Benaych-Georges (2005).

Proof of Proposition 4.5.2. Define a measure ρ0 as dρ0(t) = tpdµ(t). Since µ ∈Mp, ρ0

is a finite measure. Further, since p < α, using Theorem 1.2.5 (ii), we have ρ0(y,∞) ∼

− α
α−py

pµ(y,∞), which is regularly varying of index −(α− p).

Now fix η > 0. It is easy to check that for t ≥ 0 and z ∈ Γη, t/|z − t| <
√

1 + η2.

For z = x+ iy, we have |z − t| > y and hence for t ∈ [0, y1/(α−p+1)], we have t/|z − t| <

y−(α−p)/(α−p+1). Then, using (4.5.1) and the definition of ρ0,

|rG(z)| ≤
∫ y1/(α−p+1)

0

∣∣∣∣ t

z − t

∣∣∣∣ dρ0(t) +
√

1 + η2ρ0

(
y1/(α−p+1),∞

)
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≤ y−(α−p)/(α−p+1)

∫ ∞
0

tpdµ(t) +
√

1 + η2ρ0

(
y1/(α−p+1),∞

)
= o(y−β),

for any β ∈ [0, (α − p)/(α − p + 1)), as the second term is regularly varying of index

−(α− p)/(α− p+ 1). Further, for z = x+ iy ∈ Γη, we have |z| =
√
x2 + y2 ≤ y

√
1 + η2,

and hence we have the required result.

Next we specialize to the asymptotic behavior of rG(iy), as y →∞. Observe that

<rG(iy) = −
∫ ∞

0

tp+2

t2 + y2
dµ(t) and =rG(iy) = −y

∫ ∞
0

tp+1

t2 + y2
dµ(t). (4.5.6)

Proposition 4.5.3. Let µ be a probability measure in the class Mp.

If α ∈ (p, p+ 1), then the following statements are equivalent:

(i) µ has regularly varying tail of index −α.

(ii) <rG(iy) is regularly varying of index −(α− p).

(iii) =rG(iy) is regularly varying of index −(α− p).

If any of the above statements holds, then

sin π(α−p)
2

π(p+2−α)
2

<rG(iy) ∼
cos π(α−p)

2
π(p+1−α)

2

=rG(iy) ∼ −ypµ(y,∞) as y →∞.

Further, <rG(iy)� y−1 and =rG(iy)� y−1 as y →∞.

If α = p, then the statements (i) and (iii) above are equivalent. Also, if either of the

statements holds, then

=rG(iy) ∼ −π
2
ypµ(y,∞) as y →∞. (4.5.7)

Further, =rG(iy)� y−1 as y →∞.

If α = p+ 1, then the statements (i) and (ii) above are equivalent. Also, if either of

the statements holds, then

<rG(iy) ∼ −π
2
ypµ(y,∞) as y →∞. (4.5.8)
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Further, for any ε > 0, <rG(iy)� y−(1+ε) as y →∞.

Remark 4.5.3. Note that, for α = p+ 1, <rG(iy) is regularly varying of index −1 and

the asymptotic lower bound <rG(iy)� y−1 need not hold. This causes some difficulty

in the proofs of Propositions 4.6.1 and 4.6.2. The lack of the asymptotic lower bound

has to be compensated for by the stronger upper bound obtained in Proposition 4.5.2,

which holds for α = p + 1. This is reflected in the condition (R4′′) for the class

Rp,β with β > 0, defined in Section 4.6. Further note that, the situation reverses for

α = p, as Proposition 4.5.2 need not hold. The case, where α ∈ (p, p + 1) is not an

integer, is simple, as the asymptotic lower bounds hold for both the real and imaginary

parts of rG(iy) (Proposition 4.5.3), as well as, the stronger asymptotic upper bound

works (Proposition 4.5.2). However, the case of non-integer α ∈ (p, p + 1) is treated

simultaneously with the case α = p as the class Rp,0 (cf. Section 4.6) in Propositions 4.6.1

and 4.6.2.

Proof of Proposition 4.5.3. The asymptotic lower bounds for the real and the imaginary

parts of rG(iy) are immediate from (ii) and (iii) respectively. So, we only need to

show (4.5.8) and the equivalence between (i) and (ii) when α ∈ (p, p+ 1] and (4.5.7) and

the equivalence between (i) and (iii) when α ∈ [p, p+ 1).

Let dρj(t) = tp+jdµ(t), for j = 1, 2. Then, by Theorem 1.2.5 (i), we have, for

α ∈ [p, p+ 1), ρ1[0, y] ∼ α/(p+ 1− α)yp+1µ(y,∞), which is regularly varying of index

p+ 1− α ∈ (0, 1], and, for α ∈ (p, p+ 1], ρ2[0, y] ∼ α/(p+ 2− α)yp+2µ(y,∞), which is

regularly varying of index p+ 2− α ∈ [1, 2). Further, from (4.5.6), we get

<rG(iy) = −
∫ ∞

0

1

t2 + y2
dρ2(t) and =rG(iy) = −y

∫ ∞
0

1

t2 + y2
dρ1(t).

Then the results follow immediately from Proposition 4.3.1.

While asymptotic equivalences between <rG(iy) and tail of µ for α = p and =rG(iy)

and tail of µ for α = p+ 1 are not true in general, we obtain the relevant asymptotic

bounds in these cases. We also obtain the exact asymptotic orders when p = 0.

Proposition 4.5.4. Consider a probability measure µ in the class Mp.
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If µ has regularly varying tail of index −p, then, for any ε > 0, <rG(iy)� y−ε as

y →∞. Further, if p = 0, then <rG(iy) ∼ −µ(y,∞) as y →∞.

If µ has regularly varying tail of index −(p+ 1), then =rG(iy) is regularly varying of

index −1 and y−1 � =rG(iy)� y−(1−ε) as y →∞, for any ε > 0.

Remark 4.5.4. Note that, in the case α = p+ 1, the lower bound for =rG(iy) is sharper

than <rG(iy) and is same as that of =rG(iy) for the case α ∈ [p, p+ 1).

Proof of Proposition 4.5.4. First consider the case where µ has regularly varying tail of

index −p. Recall from the proof of Proposition 4.5.2 that dρ0(t) = tpdµ(t). However,

in the current situation Theorem 1.2.5 (i) will not apply. If p = 0, then ρ0 = µ and

ρ0(y,∞) is slowly varying. If p > 0, observe that, as
∫
tpdµ(t) <∞, we have

ρ0(y,∞) = ypµ(y,∞) + p

∫ y

0
sp−1µ(s,∞)ds ∼ p

∫ y

0
sp−1µ(s,∞)ds,

which is again slowly varying, where we use Theorem 1.2.1. Thus, in either case,

ρ0(y,∞) is slowly varying and converges to zero as y → ∞. Now, from (4.5.6) and

Proposition 4.3.2, we also have

<rG(iy) = −
∫ ∞

0

t2

t2 + y2
dρ0(t) ∼ −ρ0(y,∞)

as y →∞. Since ρ0(y,∞) is slowly varying, thus, for any ε > 0, we have |yε<rG(iy)| → ∞

as y →∞. Also, for p = 0, we have <rG(iy) ∼ −ρ0(y,∞) = −µ(y,∞).

Next consider the case, where µ ∈Mp has regularly varying tail of index −(p+ 1).

Define again dρ1(t) = tp+1dµ(t). Then,

ρ1[0, y] = (p+ 1)

∫ y

0
spµ(s,∞)ds− yp+1µ(y,∞) ∼ (p+ 1)

∫ y

0
spµ(s,∞)ds

is slowly varying, again by Theorem 1.2.1. Then, by (4.5.6) and Proposition 4.3.1, we

have

=rG(iy) = y

∫ ∞
0

dρ1(t)

t2 + y2
∼ 1

y
ρ1[0, y]

is regularly varying of index −1. Further, ρ1[0, y]→
∫∞

0 tp+1dµ(t) =∞ as y →∞. Then

the asymptotic upper and lower bounds follow immediately.
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4.6 Relationship between Cauchy and Voiculescu trans-

form

The results of the last section relate the tail of a regularly varying probability measure and

the behavior of the remainder term in Laurent series expansion of its Cauchy transform.

In this section, we shall relate the remainder terms in Laurent series expansion of Cauchy

and Voiculescu transforms. Finally, we collect the results from Sections 4.5 and 4.6 to

prove Theorems 4.3.1–4.3.4.

To study the relation between the remainder terms in Laurent series expansion of

Cauchy and Voiculescu transforms, we consider a class of functions, which include the

functions Hµ for the probability measures µ with regularly varying tails. We then show

that when the inverse and the reciprocal of the functions in the class appropriately

defined, the inverse and the reciprocal are also in the same class.

Let H denote the set of analytic functions A having a domain DA such that for all

positive η, there exists δ > 0 with ∆η,δ ⊂ DA.

For a nonnegative integer p and β ∈ [0, 1/2), let Rp,β denote the set of all functions

A ∈ H which satisfy the following conditions:

(R1) A has Taylor series expansion with real coefficients of the form

A(z) = z +

p∑
j=1

ajz
j+1 + zp+1rA(z),

where a1, . . . , ap are real numbers. For p = 0, we interpret the sum in the middle

term as absent.

(R2) z � rA(z)� zβ as z → 0 n.t.

(R3) <rA(−iy)� y1+β/2 and =rA(−iy)� y as y → 0+.

For p = 0 = β, we further require that

(R4′) <rA(−iy) ≈ =rA(−iy) as y → 0+.

For β ∈ (0, 1/2), we further require that,
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(R4′′) <rA(−iy)� y1−β/2 and =rA(−iy)� y1−β/2 as y → 0+.

Note that the functions in Rp,β satisfy (R1)–(R3) for p ≥ 1. For p = 0 = β, the

functions in Rp,β satisfy (R1)–(R3) as well as (R4′). Finally, for nonnegative integers p

and β ∈ (0, 1/2), the functions in Rp,β satify (R1)–(R3) and (R4′′).

The classes Rp,β as p varies nonnegative integers and β varies over [0, 1/2], include

the functions Hµ where µ ∈Mp,α with p varying over nonnegative integers and α varying

over [p, p+ 1].

Case I: p positive integer and α ∈ [p, p + 1): By Proposition 4.5.1 and 4.5.3, we

have Hµ ∈ Rp,0.

Case II: p = 0, α ∈ [0, 1): By Proposition 4.5.1, 4.5.3 and 4.5.4, Hµ ∈ R0,0.

Proposition 4.5.4 is required to prove (R4′) for p = α = 0 only.

Case III: p nonnegative integer, α = p+ 1: By Proposition 4.5.2 and 4.5.4, Hµ will

be in Rp,β for any β ∈ (0, 1/2).

We do not impose the condition <rA(−iy) ≈ =rA(−iy) for p > 0, as it may fail for

some measures in Mp,p.

The first result deals with the reciprocals. Note that U(z) and zU(z) have the same

remainder functions and if one belongs to the class H, so does the other.

Proposition 4.6.1. Suppose zU(z) ∈ H be a function belonging to Rp,β for some

nonnegative integer p and 0 ≤ β < 1/2, such that U does not vanish in a neighborhood

of zero. Further assume that V = 1/U also belongs to H. Then zV (z) is also in Rp,β.

Furthermore, we have,

(F1) rV (z) ∼ −rU (z), as z → 0 n.t.,

(F2) <rV (−iy) ∼ −<rU (−iy), as y → 0+, and

(F3) =rV (−iy) ∼ −=rU (−iy), as y → 0+.

The second result shows that for each of the above classes, when we consider a

bijective function from the class, its inverse is also in the same class.

Proposition 4.6.2. Suppose U ∈ H be a bijective function with the inverse in H as

well and U ∈ Rp,β for some nonnegative integer p and 0 ≤ β < 1/2. Then the inverse

V is also in Rp,β. Furthermore, we have,
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(I1) rV (z) ∼ −rU (z), as z → 0 n.t.,

(I2) <rV (−iy) ∼ −<rU (−iy), as y → 0+, and

(I3) =rV (−iy) ∼ −=rU (−iy), as y → 0+.

Next we prove Propositions 4.6.1 and 4.6.2. In both the proofs, all the limits will

be taken as z → 0 n.t. or y → 0+, unless otherwise mentioned and these conventions

will not be stated repeatedly. We shall also use that, for any nonnegative integer p and

β ∈ [0, 1/2), with U ∈ Rp,β, we have

|<rU (−iy)| ≤ |rU (−iy)| � 1 and |=rU (−iy)| ≤ |rU (−iy)| � 1. (4.6.1)

The proofs of Propositions 4.6.1 and 4.6.2 will be broken down into cases p = 0 and

p ≥ 1. Each of these cases will be further split into subcases β = 0 and β ∈ (0, 1/2). The

case p ≥ 1 is more invloved compared to the case p = 0. However, the proofs, specially

that of Proposition 4.6.2, has substantial part in common.

We first prove the result regarding the reciprocal.

Proof of Proposition 4.6.1. Observe that if we verify (F1)–(F3), then zV (z) is automat-

ically in Rp,β as well, since V (z) and zV (z) have same remainder functions. We shall

prove (F1)–(F3) using the fact that V (z) = 1/U(z) and the properties of U as an element

of Rp,β.

Case I: p = 0. Let zU(z) = z + zrU (z) be a function in this class. Then V (z) =

1− rU (z) + O(|rU (z)|2). By uniqueness of Taylor expansion from Lemma A.1 of Benaych-

Georges (2005), we have

rV (z) = −rU (z) + O(|rU (z)|2). (4.6.2)

Since, by (R2), rU (z)� 1, we have rV (z) ∼ −rU (z), which checks (F1).

Further, evaluating (4.6.2) at z = −iy and equating the real and the imaginary parts,

we have

<rV (−iy) = −<rU (−iy) + O(|rU (−iy)|2)
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and

=rV (−iy) = −=rU (−iy) + O(|rU (−iy)|2).

Thus, to obtain the equivalences (F2) and (F3), it is enough to show that |rU (−iy)|2 =

|<rU (−iy)|2 + |=rU (−iy)|2 is negligible with respect to both the real and the imaginary

parts of rU (−iy). We prove the negligibility seperately for two subcases β = 0 and

β ∈ (0, 1/2).

Subcase Ia: p = 0, β = 0. Using (4.6.1) and <rU (−iy) ≈ =rU (−iy) from (R4′),

we have the required negligibility condition.

Subcase Ib: p = 0, β ∈ (0, 1/2). Using (R3) and (R4′′), we have

|=rU (−iy)|2

|<rU (−iy)|
=

y1+β/2

|<rU (−iy)|

(
|=rU (−iy)|
y1−β/2

)2

y1−3β/2 → 0

and

|<rU (−iy)|2

|=rU (−iy)|
=

y

|=rU (−iy)|

(
|<rU (−iy)|
y1−β/2

)2

y1−β → 0.

They, together with (4.6.1), give the required negligibility condition, thus proving (F2)

and (F3).

Case II: p ≥ 1. Let zU(z) = z +
∑p

j=1 ujz
j+1 + zp+1rU (z) be a function in this

class. Note that, as p ≥ 1 and by (R2), as z � rU (z), we have
∑p

j=1 ujz
j + zprU (z) =

u1z + O(zrU (z)). Thus, using (R2), we have,

V (z) = 1 +

p∑
j=1

(−1)j

(
p∑

m=1

umz
m + zprU (z)

)j
+ (−1)p+1up+1

1 zp+1 + O(zp+1rU (z)).

Now we expand the second term on the right side. As z � rU (z) from (R2), all

powers of z with indices greater than (p+1) can be absorbed in the last term on the right

side. Then collect the (p+ 1)-th powers of z in the second and third terms to get c1z
p+1

for some real number c1. The remaining powers of z form a polynomial P (z) of degree

at most p with real coefficients. Finally we consider the terms containing some power
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of rU (z). It will contain terms of the form zl1(zprU (z))l2 for integers l1 ≥ 0 and l2 ≥ 1,

with the leading term being −zprU (z). Since p ≥ 1 and from (R2) we have rU (z)� 1,

the remaining terms can be absorbed in the last term on the right side. Thus, we get,

V (z) = 1 + P (z)− zprU (z) + c1z
p+1 + O(zp+1rU (z)).

By uniqueness of Taylor series expansion from Lemma A.1 of Benaych-Georges (2005),

we have

rV (z) = −rU (z) + c1z + O(zrU (z)).

The form of rV immediately gives rV (z) ∼ −rU (z), since z � rU (z), by (R2). This

proves (F1).

Also, using (4.6.1), =rV (−iy) = −=rU (−iy) + O(y) and as y � =rU (−iy)

from (R3), we have =rV (−iy) ∼ −=rU (−iy). This shows (F3). Further, as c1

is real, <rV (−iy) = −<rU (−iy) + O(y|rU (−iy)|). Thus, to conclude (F2), it is

enough to show that y|rU (−iy)| � <rU (−iy), for which it is enough to show that

y=rU (−iy)� <rU (−iy). We show this seperately for two subcases.

Subcase IIa: p ≥ 1, β = 0. We have by (R3),

y=rU (−iy)

<rU (−iy)
=

y

<rU (−iy)
· =rU (−iy).

Subcase IIb: p ≥ 1, β ∈ (0, 1/2). Using the properties (R3) and (R4′′) we get,

y=rU (−iy)

<rU (−iy)
=

y1+β/2

<rU (−iy)
· =rU (−iy)

y1−β/2 · y1−β,

It is easy to see that the limit is zero in either subcase.

Before proving the result regarding the inverse, we provide a result connecting a

function in the class H and its derivative.

Lemma 4.6.1. Let v ∈ H satisfy v(z) = o(zβ) as z → 0 n.t., for some real number β.

Then v′(z) = o(zβ−1) as z → 0 n.t.

Proof. The result for β = 0 follows from the calculations in the proof of Proposition A.1(ii)

of Benaych-Georges (2005). For the general case, define w(z) = z−βv(z). Then w ∈ H
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and w(z) = o(1). So by the case β = 0, we have w′(z) = −βz−β−1v(z) + z−βv′(z) =

o(z−1). Thus, zw′(z) = −βz−βv(z) + z−(β−1)v′(z), where the left side and the first term

on the right side are o(1) and hence the second term on the right side is o(1) as well.

We are now ready to prove the result regarding the inverse.

Proof of Proposition 4.6.2. We begin with some estimates which work for all values of p

and β before breaking into cases and subcases. Since U is of the form

U(z) = z +

p∑
j=1

ujz
j+1 + zp+1rU (z)

and rU (z)� 1, by Proposition A.3 of Benaych-Georges (2005), the inverse function V

also has the same form with the remainder term rV satisfying

rV (z)� 1. (4.6.3)

Also note that V (z) ∼ z. Further, Lemma A.1 of Benaych-Georges (2005) shows that the

coefficients are determined by the limits of the derivatives of the function at 0. Hence,

the real coefficients of U guarantee that the coefficients of V are real. So we only need

to check the asymptotic equivalences of the remainder functions given in (I1)–(I3). We

shall achieve this by analyzing I(z) = rU (V (z))− rU (z), the fact that U(V (z)) = z and

the properties of U as an element in Rp,β. For that purpose, we define

I(z) = rU (V (z))− rU (z) =

∫
γz

r′U (ζ)dζ,

where γz is the closed line segment joining z and V (z). By definition of the class H,

given any η > 0, there exists δ > 0, such that ∆η,δ ⊂ DU . Since V (z) ∼ z as z → 0 n.t.,

given any η > 0, there exists δ > 0, such that both z and V (z) belong to ∆η,δ and hence

γz is contained in ∆η,δ ⊂ DU . (Note that ∆η,δ is a convex set.) Thus r′U is defined on

the entire line γz. We shall need the following estimate that

|I(z)| ≤ |γz| sup
ζ∈γz
|r′U (ζ)| = |V (z)− z| sup

ζ∈γz
|r′U (ζ)| = |V (z)− z||r′U (ζ0(z))|,



4.6 Relationship between Cauchy and Voiculescu transform 125

for some ζ0(z) ∈ γz, since γz is compact. Note that ζ0(z) = z + θ(z)(V (z) − z), for

some θ(z) ∈ [0, 1] and hence ζ0(z) ∼ z. Now, rU (z) = o(zβ) by (R2) and thus, by

Lemma 4.6.1, we have r′U (ζ0(z)) = o(ζ0(z)β−1) = o(zβ−1). Further estimates for I(z)

depend on the functions of V (z) which are separate for the cases p = 0 and p ≥ 1. Using

V (z) = z + zrV (z) for p = 0 and V (z) = z + O(z2) for p ≥ 1, we have,

|I(z)| =


o(zβrV (z)), for p = 0,

o(z1+β), for p ≥ 1.

(4.6.4)

Case I: p = 0. Then U(z) = z+ zrU (z) and V (z) = z+ zrV (z). Using U(V (z)) = z

and I(z) = rU (V (z))− rU (z), we get 0 = zrV (z) + (z + zrV (z))(rU (z) + I(z)). Further

canceling z and using (4.6.3), we have

0 = rU (z) + rV (z) + rU (z)rV (z) + O(I(z)). (4.6.5)

Using (4.6.4) for p = 0 and rU (z) � 1 from (R2), we have rV (z) ∼ −rU (z), which

proves (I1). Further, using (R2) and evaluating at z = −iy, we have, for β ∈ [0, 1/2),

|rV (−iy)| � yβ. (4.6.6)

Evaluating (4.6.5) at z = iy and equating the real and the imaginary parts, we have

0 = <rU (−iy) + <rV (−iy) + O(|rU (−iy)||rV (−iy)|) + O(|I(−iy)|) (4.6.7)

and

0 = =rU (−iy) + =rV (−iy) + O(|rU (−iy)||rV (−iy)|) + O(|I(−iy)|). (4.6.8)

We split the proofs of (I2) and (I3) for the case p = 0 into further subcases β = 0 and

β ∈ (0, 1/2).
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Subcase Ia: p = 0, β = 0. By (I1) for z = −iy and (R4′), we have,

|I(−iy)| � |rV (−iy)| ∼ |rU (−iy)| ≈ |<rU (−iy)| ≈ |=rU (−iy)|.

Thus, the last term on the right hand side of (4.6.7) and (4.6.8) are negligible with respect

to <rU (−iy) and =rU (−iy) respectively. Then, further using rU (−iy)→ 0 from (R2),

the third term on the right hand side of (4.6.7) and (4.6.8) are negligible with respect

to <rU (−iy) and =rU (−iy) respectively and hence we get <rU (−iy) ∼ −<rV (−iy) and

=rU (−iy) ∼ −=rV (−iy), which prove (I2) and (I3).

Subcase Ib: p = 0, β ∈ (0, 1/2). We have, by (R3) and (R4′′),

yβ
|=rU (−iy)|
|<rU (−iy)|

=
|=rU (−iy)|
y1−β/2

y1+β/2

|<rU (−iy)|
→ 0

and

yβ
|<rU (−iy)|
|=rU (−iy)|

=
|<rU (−iy)|
y1−β/2

y

|=rU (−iy)|
yβ/2 → 0.

They, together with (4.6.1), give yβ|rU (−iy)| is negligible with respect to both the real

and the imaginary parts of rU (−iy). Further, using (4.6.4) and (4.6.6) respectively, we

have

|I(−iy)| � yβ|rV (−iy)| ∼ yβ|rU (−iy)| and |rU (−iy)rV (−iy)| � yβ|rU (−iy)|.

Thus, both |I(−iy)| and |rU (−iy)rV (−iy)| which are the last two terms of (4.6.7)

and (4.6.8), are negligible with respect to both the real and the imaginary parts of

rU (−iy). Then, from (4.6.7) and (4.6.8), we immediately have <rU (−iy) ∼ −<rV (−iy)

and =rU (−iy) ∼ −=rV (−iy), which prove (I2) and (I3).

Case II: p ≥ 1. In this case U(z) = z +
∑p

j=1 ujz
j+1 + zp+1rU (z) and V (z) =

z +
∑p

j=1 vjz
j+1 + zp+1rV (z) = z(1 + v1z(1 + o(1))). Using z = U(V (z)) and canceling

z on both sides, we have



4.6 Relationship between Cauchy and Voiculescu transform 127

0 =

p∑
j=1

vjz
j+1 + zp+1rV (z) +

p∑
m=1

um

z +

p∑
j=1

vjz
j+1 + zp+1rV (z)

m+1

+ zp+1
(
rU (z) + I(z)

)(
1 + (p+ 1)v1z(1 + o(1))

)
. (4.6.9)

Note that all the coefficients on the right side are real. We collect the powers of z till

degree p+ 1 on the right side in the polynomial Q(z). Let c′ ∈ R be the coefficient of

zp+2 on the right side. The remaining powers of z on the right side will be O(zp+3).

We next consider the terms with rV (z) as a factor and observe that zp+1rV (z) is the

leading term and the remaining terms contribute O(zp+2rV (z)). Finally, the last term on

the right side gives zp+1rU (z) + O(zp+2rU (z)) + O(zp+1I(z)). Since z � rU (z) by (R2),

the term O(zp+3) can be absorbed in O(zp+2rU (z)). Combining the above facts and

dividing (4.6.9) by zp+1, we get,

0 = z−(p+1)Q(z)+
(
rU (z)+c′z+O(I(z))+O(zrU (z))

)
+
(
rV (z)+O(zrV (z))

)
. (4.6.10)

As I(z)� z1+β � z � rU (z) by (4.6.4) and (R2), we have rU (z) + c′z + O(I(z)) +

O(zrU (z)) = rU (z)(1 + o(1)). Also rV (z) + O(zrV (z)) = rV (z)(1 + o(1)). Thus, the

last two terms on the right hand side of (4.6.10) goes to zero. However, the first term

on the right hand side of (4.6.10), Q being a polynomial of degree at most p, becomes

unbounded unless Q ≡ 0. So we must have Q ≡ 0. Thus, (4.6.10) simplifies to

rU (z) + c′z + O(I(z)) + O(zrU (z)) = −rV (z) + O(zrV (z)). (4.6.11)

As observed earlier, the left side is rU (z)(1 + o(1)) and the right side is −rV (z)(1 + o(1))

giving rU (z) ∼ −rV (z), which proves (I1).

Further, as in the case p = 0, we have (4.6.6) from rU (z) ∼ −rV (z). Also, (4.6.11)

becomes

−rV (z) = rU (z) + c′z + O(I(z)) + O(zrU (z)). (4.6.12)

Evaluating (4.6.12) at z = −iy and equating the imaginary parts, we have, using (4.6.4),

−=rV (−iy) = =rU (−iy) + O(y).
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This gives (I3), that is, −=rV (−iy) ∼ =rU (−iy), since y � =rU (−iy) by (R3).

Evaluating (4.6.11) at z = −iy again and now equating the real parts, we have, as c′

is real,

−<rV (−iy) = <rU (−iy) + O(|I(−iy)|) + O(y|rU (−iy)|).

From (4.6.4) and (R3), we have |I(−iy)| � y1+β � <rU (−iy). Thus, to obtain (I2),

that is, −<rV (−iy) ∼ <rU (−iy), we only need to show that y|rU (−iy)| � <rU (−iy),

which follows using rU (−iy) ∼ −rV (−iy), (4.6.6) and (R3), since

y|rU (−iy)|
|<rU (−iy)|

=
y1+β/2

|<rU (−iy)|
|rU (−iy)|

yβ
yβ/2.

We wrap up the Chapter by collecting the results from Sections 4.5 and 4.6 and

proving Theorems 4.3.1–4.3.4.

Proofs of Theorems 4.3.1–4.3.4. We shall prove all the theorems together, as the proofs

are very similar.

The statements involving the tail of the probability measure µ and the remainder

term in Laurent expansion of Cauchy transform, rGµ can be obtained from the results in

Section 4.5 as follows: For all the theorems, the equivalence of the statements (i) and (ii)

about the tail of the probability measure and Cauchy transform (the imaginary part in

Theorems 4.3.1–4.3.3 and the real part in Theorem 4.3.4) are given in Proposition 4.5.3.

The asymptotic equivalences between the tail of the measure and (the real and the imagi-

nary parts of) the remainder term in Laurent series expansion of Cauchy transform, given

in (4.3.8), (4.3.9), (4.3.11), (4.3.14) and (4.3.17) are also given in Proposition 4.5.3. The

similar asymptotic equivalence in (4.3.15) follows from Propositions 4.5.3 and 4.5.4 for

the cases α ∈ (0, 1) and α = 1 respectively. We consider the asymptotic upper and lower

bounds next. The asymptotic lower bounds in (4.3.7), (4.3.10), (4.3.13) and (4.3.16)

follow from Proposition 4.5.1. The asymptotic upper bound in (4.3.16) follows from

Proposition 4.5.2. The asymptotic lower bounds in (4.3.8), (4.3.9), (4.3.11), (4.3.14)

and (4.3.17) follow from Proposition 4.5.3. The asymptotic upper bound in (4.3.17)

follows from the fact that ypµ(y,∞) is a regularly varying function of index −1. The
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asymptotic lower bound in (4.3.12) follows from Proposition 4.5.4, while the asymp-

totic lower bound in (4.3.15) follows as the tail of the measure is regularly varying of

index −α with α ∈ [0, 1). Finally both the asymptotic bounds in (4.3.18) follow from

Proposition 4.5.4.

To complete the proofs of Theorems 4.3.1– 4.3.4, we need to check the equivalence

of the statements (ii) and (iii) involving the remainder terms in Laurent expansion of

Cauchy and Voiculescu transforms for all the theorems and the asymptotic equivalences

between the remainder terms in Laurent series expansion of Cauchy and Voiculescu

transforms and their real and imaginary parts given in (4.3.7)–(4.3.18). Note that all

these claims about Cauchy and Voiculescu transforms of µ have analogues about Hµ

and Rµ due to the facts that rG(z) = rH(1/z) and rφ(z) = rR(1/z). We shall actually

deal with the functions Hµ and Rµ.

For any probability measure µ ∈Mp, the function H ≡ Hµ is invertible, belongs to

the class H and the leading term of its Taylor expansion is z. Further, by Proposition A.3

of Benaych-Georges (2005), the above statement about H is equivalent to the same

statement about its inverse, denoted by L ≡ Lµ. Since the leading term of Taylor

expansion of L has leading term z, the leading term of Taylor expansion of L(z)/z is 1

and it is also in H. Define K(z) = z/L(z). Then K is also in H and its Taylor expansion

has leading term 1. We shall also use the following facts obtained from (4.3.1):

zRµ(z) = (K(z)− 1) and zK(z) = z(1 + zRµ(z)). (4.6.13)

Hence Taylor expansion of K will also lead to a Taylor expansion of R of degree one less

than that of K. However, due to the definition of the remainder term of Taylor expansion

given in (4.3.2), the corresponding remainder terms will be related by rK ≡ rR. Thus,

we can move from the function rH to rK(≡ rR) through inverse and reciprocal and vice

versa as follows:

H(z)
L(z)=H−1(z)←−−−−−−−−−→

Proposition 4.6.2
L(z) = z · L(z)

z

K(z)= z
L(z)←−−−−−−−−−→

Proposition 4.6.1
zK(z)

R(z)=
K(z)−1

z←−−−−−−−→
rK=rR

R(z).

(4.6.14)

These observations set up the stage for Propositions 4.6.1 and 4.6.2. We shall use
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the class Rp,0 for Theorems 4.3.1–4.3.3 and the class Rp,β with any β ∈ (0, 1/2) for

Theorem 4.3.4.

Suppose µ ∈Mp with α ∈ [p, p+ 1). This condition holds for Theorems 4.3.1–4.3.3

and we prove these three theorems first. In these cases, Hµ(z) and zK(z) = z(1+zRµ(z))

necessarily have Taylor expansions of the form given in the hypothesis (R1) for the class

Rp,0 with rH(z)� 1 and rR(z)� 1 as z →∞.

For all three theorems, first assume the statement (ii) that =rG(iy) is regularly

varying of index −(α − p). Then, from the already proven lower bounds in (4.3.7)–

(4.3.15), we have the asymptotic lower bounds for rG(z), <rG(iy) and =rG(iy) under

the setup of each of the three theorems. They translate to the asymptotic lower bounds

for the function Hµ, as required by the hypotheses (R2) and (R3). The asymptotic

upper bound in (R2) holds, as the remainder term in Taylor series expansion of H

satisfies rH � 1. For Theorem 4.3.3, we have p = 0 and we need to check the extra

condition (R4′), which follows from the already proven asymptotic equivalences (4.3.14)

and (4.3.15). Thus, for each of Theorems 4.3.1–4.3.3, Hµ belongs to Rp,0.

We now refer to the schematic diagram given in (4.6.14). As Hµ is also invertible

with L = H−1 ∈ H, by Proposition 4.6.2, we also have L ∈ Rp,0 and rH(z) ∼ −rL(z),

<rH(−iy) ∼ −<rL(−iy) and =rH(−iy) ∼ −=rL(−iy). Clearly, then Proposition 4.6.1

applies to the function L(z)/z, which has reciprocal K ∈ H. Thus, rK and rL satisfy

the relevant asymptotic equivalences. Furthermore, since, rR ≡ rK , combining, we

have rH(z) ∼ rR(z), <rH(−iy) ∼ <rR(−iy) and =rH(−iy) ∼ =rR(−iy). Further, for

Theorem 4.3.3, we have p = 0 and H ∈ Rp,0 satisfies (R4′). Hence, we also have

<rR(−iy) ≈ =rR(−iy). Then Rµ inherits the appropriate properties from Hµ and passes

them on to φµ, which gives us the statement (iii) about the remainder term in Laurent

expansion of Voiculescu transform in each of Theorems 4.3.1–4.3.3.

Conversely, assume the statement (iii). Then the assumptions on rφ imply the

analogous properties for rR ≡ rK . Further, as µ is in Mp, zK(z) = z(1 + zRµ(z))

satisfies the hypothesis (R1) for the class Rp,0. Also, the remainder term of Taylor

series expansion of zK(z) is also given by rR ≡ rK � 1. The lower bound for the

imaginary part of the remainder term in the hypothesis (R3) follows from its regular

variation and the fact that α ∈ [p, p + 1). The lower bound in the hypothesis (R2)
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is part of the statement (iii). The lower bound for the real part of the remainder

term in the hypothesis (R3) is also a part of the statement (iii) for Theorems 4.3.1

and 4.3.2, while it follows from the statement (iii) for Theorem 4.3.3, as both the real

and imaginary parts become asymptotically equivalent and regularly varying of index α

with α ∈ [0, 1). Finally, the asymptotic equivalence in (R4′) for Theorem 4.3.3 is a part

of the statement (iii). Thus, again for each of Theorems 4.3.1–4.3.3, zK(z) belongs to

Rp,0. Then apply Proposition 4.6.1 on K and then Proposition 4.6.2 on z/K(z) = L(z)

to obtain Hµ(z). Arguing, by checking the asymptotic equivalences as in the direct case,

we obtain the required conclusions about rH and hence rG given in the statement (ii)

for each of Theorems 4.3.1–4.3.3.

The argument is same in the case α = p+1, which applies to Theorem 4.3.4, with the

observation that the stronger bounds required in the hypotheses (R2), (R3) and (R4′′)

with β > 0 is assumed for rφ and hence for rR and is proved for rG and hence for rH in

Proposition 4.5.2 and 4.5.4.
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