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(i)
NOTATIONS

n-dimensional Euclidean space.

set of all matrices with n rows and n colums, having real entries
For a siwbset S of a linear space,

emnallest subspace in which the whole of § can be etbedded.

For a linear space ¥V,

dimension of V.

For a matrix A in R* "
rank of A,

fax ¢ stm}, the colum span of A,

fy eR™ « Ay = 0}, the null space of A.

For a positive definite matrix N in an,

A(A'NA) A, the orthogonal proiection operator onto
M,(A) when the inher product in R is induced by N

(A'NA)” being a generalized inverse (g-inverse) of A'NA,

PA 13 I being the identity matrix.
]

For generalized inverses of matrices, the notations of Rao and Mitra [ 331

will be adopted. '“Y:OM will denote an optimal inverse of a matrix as

defined by Mitra [23],



CHAPTER 1

INTRODUCTION

Cur interest will be centred around the Gauss Markov model (Y,XB,020),
where Y is a random variable assuming values in R" with expectation and

dispersion matrix giveuv by

X8 (1.1)

1t

E(Y)

it

ny) a2h (1.2)

X in RV and A in the subset of nonnepgative definite (n.n.d.) matrices

of Rnxn

are known. Unless specified to the contrary, A will be assumed
to be positive definite (p.d.). The unknown parameter vector B varies

in ., a subset of R" and o? in f,- Qo will always be the positive half

8
of the real line, unless otherwise specified, and likewise QB satisfies
the minimum requirement dim Jﬁ»(ﬂa) = m.

‘Historically, the first contribution towards estimating linear
functionals of B was by Gauss [16] who in 1821 showed that the method
of least squares provides the BLUE (best linear unbiased estimator) of 8,
whan R(X) = m and A = I. Markov [22] in 1912 and Pavid and Neyman [12]
in 1938 gave a systematic presentation of the theory under the same
conditions. In 1934 Aitken [1] considered the -setup where R(X) = m,
but A could be any positive definite matrix. Bose [6] in 1944 was the
first to consider deficiencies in R(X). In his model R{X) = r < m and

A = I, while Rao [28] in 1945 generalized this to any positive definite

A. In all of thesze QB wasg Rm.



Bose [6]) defined a linear parametric funetional p'f as beling
estimab .o if it posesses an urnliased ostimatsrwhich isg lincar in Y. Any
parametric functional without this property was nonestimable., IF
dim:ﬁjfﬂg) = m, then it is not difficult to see that p'f is (lincarly)
estimable if and only if there exists a b ¢ Rn, such that p = X'h,

b'Y being an unbiased estimabrof p'B in such cases, Clearly nonestimablo
functionals are precisely those for which p ﬁ‘}{(X'). For simultaneous
estimation of several lincar paramctric functionals, PR (P being a matrix)
is estimable if VNL(P') Q;wh{(X'), violation of which will make it
nonestimable. If R{X) < m, then, in particular £ is monestimable.

While estimable functionals have been studied in depth, vory few
theoretical investigations are concerned with nenestimable lincar
parametric functionals. However, sxyperimenters usinp a fractional replicate
of a factorial design are often reguirzd to estimate impertant factorial
effects which arc nonestimable on account of incomplete replication. Twen
1f one stapts with a full rank design matrix (¥), or at least one which allows
for unbiasod estimation of all the poramatric functionals of interest, dus
to factors beyond one's control, data might only be available for a
subset of the cxperimental points at the end of the experiment, to rendep
important parametric functionals nonestimahle. This is the well known
preblem of missing observations. Since it is penerally impossible to
repeat the experiment(with the hope of hetter outcomes), it is of great
importance to device ways to infer ahout nonestimable functionals. This
work will be directed towards this goal. But, before launching upon the
tagk, let us examine the difficulties which may arise, and how we might

he atle to overcome them.
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Let j;% o2 denote the probability distribution of Y. The paramectric
3
functirnal p'f is said to be identifiable by distribution if for distinct

parameter points (B,,di) and (Bz.qg),

PR -
= = T =.
. M}J , 2P B, =-p'8,

2
1’9 Bye?s

Consider now the case where f;% 52 depends on B only through X8. This
»
would be the situation, for example when Y n MD(XB,GEA). If p'f is

(linearly) estimable, then there exists a b e Rn, such that p = X'b,

(D ::ﬂ =3 = = ' = ' a i f
Hence Bl'of JB?,Ug > XBl XBQ > n Bl D 62. Conversely if

X, = X82 => p'Bl = p'B?, then surely p s.}4jX'). More generally, ifF there
is a funetion of ¥, f(Y) say, for which F{f(Y)/ f;% rJ2) = p'g for all
: i " £
f e @, then ! 2 = 5) o => BCE(YY/ j) 5} = R(£(Y)/ ) e 2} =>
8 5%1’01 B,s05 8,907 Boye05

p'Bl = p'SQ. Thus we arrive at the following theorem, duc to Bunke and

Bunke [81:

Theorem 1.1  If the probability distribution of a random variahle Y
depends on a parametcr R only through X8, then the following are eguivalent:
(1) p'f is linearly estimable, i.,e. p e SA(X')

(2) p'B is identifiable by distribution

i > ¥ . .
A3) p'8 has an unbiased estimstor, not necessarily linecar.

Theorem 1.1 strengthens Bose's definition of nonestimabhility, since
if ¢ txﬁt(X‘), 4'8 is not the expectation of any function of the
observations Y, linear or otherwime. On the other hand, the fact that
such functionals are nonidentifiable bv distribution 1s alarming, since
it implies that even when we have complete knowledge of j%,oz , We are
not sure of the value assumed by & nonestimable q'R, Fvidently, the

worst would happen when the probarllitv distribution of the estimator we
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propose for q'B is insensative to the value assumed by g'B, and this could
happen ‘mless one has some pricr information on the parameters to supplement
the information contained in the obhservations Y. This prior information
could either be in the form of an assumed prior distribution for the
parameters or at least as bounds on values the parameters could assume,
The latter assumption sometimes arises quite naturally, like in the linear
consumption model E{y) = o+Bx, where x ls the income, y the consumption,

a the threshold consumption and 8 the marginal propensity to consume,

- which necessarily varies in the interval [0,1]. Even otherwise, the
asgumption of a bounded parameter gpace is usually guite realistic and
indeed in several applications the experimenter on the basis of past
experience would be able to place appropriate bounds on the parameters
that are universally acceptable, We shall consider only one kind of
bounded region for # - the ellipsoid in R'. If some othepr region seems
more apprepriate, then one can obtain approximate inferences on the
parameters by enclosing the region in the smallest ellipsoid and then
using tne methods which we shall develop. Thus in a major part of this

work we shall assume that

Qg = {8 : B'HB < 82} (1.3)

If the actual centre of the ellipsoid is at a known point a{# 0) ¢ Rm,
the model can be transformed to (Y-Xua, XB,0%A) with R ¢ A, as defined in
(1.3). Hence choosing a = 0 involves no loss of generality.

Let us examine the nonidentifiability of a nonestimable q'R in this
new context. To keep our discussions simple we shall restrict ourselves
to the case where the matrix H in (1.3) is p.d. Writing q = X'b + s,
we notice that the part p'B = b'X8 of g'B being estimable is identifiable

by distribution, while, by Cauchy Schwarz inequality, s'R can vary in
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-4 fé'ths, 3 JE'Hﬂlﬁ J. This interval of uncertainity of =s'f i=

-1 971, (say) and 5 = (I-P _l)q = 5

shortest when one choosas p = 1
rLH

X', H
and' accordingly one could propose & v séHﬁlsO as a meaaure of nonidentifi-
abllity of a nonestimable q'R. In fact one can do even better noting that
a measvre of nonidentifiability should indicate the eutent to which 1'f is
indeterminable given ‘ﬁé,cz‘ Thus given XR = p, & € Qs and writing

G = H-lx'{XH_lR'}" = X;(H) it is easy to see from the known propertics of

minimum Henorm peneralized inverses that
q'R = q'Gp + q'(I-GX)z, where z'H(I-GX)}z <

82 - W'G'HGN. Since GX = P' ., q'(I-%K)z = sz

X u
‘,/ 2_q,m -l vl
< VI{E2-u'GMHGW)s'H s T < &/ g'M g
— o o — o o
Moreover, if one considers the extreme situation
X8 = (8§/Ve'Ht)E (1.4)

where £ ¢ R” and t = X;(H)f’ then the minimum Henorm solution of (1,u)
lies on the surface of Qg and thus thore is a unique B satisfying (1.4) and
(1.3). Thus hera q'B is unique and is as identifiable nc any estimable
parametric functional. In problems of infercnce if one considsra an
estimable p'B in place of the noncstimable q'B, then one a2t lcast has an
féea of the (finite) maximum error (6/s'H 's) that one can commit ir the
process of this approximation.

The situation is more revealing when one considers the testing
problem, Let Y n Nn(XB,UZA) and QS = R". The following theorem is
well known to all students of Mitra, since he has been teaching it

for the last twenty years, and possibly te many others also. However,

the author has not secen it anywhere in print.
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Theorem 1,2 Any test for Ho : q'R = ¢, where q t,hl(Y'), has a constant
power Tnction,

Proof Under Ho one has to solve

X8 = v
(a)
q'8 = ¢
and under an alternative q'R = dfec,
XB = u
(b)
g'8 = 4d

If Sa and Sb are the solution sets for B for (2) and (b) respectively,

{xe : Bes.}=1Ix8:8c¢ Syl s {1.5)

since values assumed by nonestimable functionals do not affect the range
of variation of estimable functienals. Under normality zssumption, the
power of a test depends on B through XB only, and hence the power at each

point is a, the preassigned size of the test,

q.2.d.

Thus here the hypothesis and the alternatives are indistinpguishable
on the basis of obgervations on ¥. On the other hand if HB is bounded
as in (1.3), then (1.5) need no longer hold, and using an approximation
to 'R by an estimable p'B (details of which will be considercd in Chapter 4)

- it is pogsible to construct a test function ¢ such that

Sup Ed = a , and for 4 £ ¢ ,
B:q'B = ¢
Sup E¢ > a, In fact for d sufficiently
B:q'8 = d
removed from ¢, even Inf Ed > n, The only exception to this, for
B:q'p=d

the class of test functions we consider in chapter 4, is possibly when

HPXt H_lqll is zero or very close to it.,
’



We shall close our dircusaion of thr problem with a ronsideration of
the admissible class of linear astimatore for g'B for tounded and unhounded
ft,. Our criterion will be the mesn square orror, or in other words, if

B
g'Y is an estimator of q'@ then the risk function isg

R(g'Y,q'8) = Elg'¥-q"8)° = o2g'he + [(X'g-q)i817 (1.6)

An estimater g'Y will be said to be admissible for 'R if thore does not

axigt arother estimator h'Y stch that

R(h'Y,q'8) < R(~'Y,q'B) for All f ¢ it (1,7)

with inequality striet for at least one 8 in QB. Firstlv note that

e e (p “l)'g satisfies (1,7) mince h'Ah € g'Ap
X, X, A

and X'h = X'g, The only exception to thiz rule 1z when Ag E,poX). Here

for any g, h = Ate

L]
h = (T _l)g = g, Disregarding such cstimators g'7v, we shall henceiorth
X A

consider estimators only from the class

T::: - {g’Y _3 Ag £ M,(Y)} (1.8)

whidth discussing admissibility.

H
Let'gﬁg ? he the clags of admissible linear estimators for q'f
B

in the Gauss-Markov model (Y,XB,0°A) whon 8 assumes values in o

?
Rao [31] characterized ¢§qmﬂ for estimable parametric functionals.
R

Part (i) of theorem 1.3 is a special case of his Theorem 6.6 whon only a
single parametric functional is considered instead of several of thom,
while part (ii) {s compatible with a remark he makes, viz. if q'd is

nonidentifiable then there is a risk that overy function might he admissible,
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Theorem 1.3 (1) If q e M.(X') then

. i
qu & {g' e{5: g'Ag < g'Ab)
&

where b is any verctor satisfying X'b = q.
(11) 1f q £ M(x') then
q's g
A - B

Rm

Proof Observe that g'Ab is invariant under choice bf b satisfying X'k = q
and hence ﬂ;;a in (1) is well defined. To prove (ii) observe that
for any g'Y ¢l , and h satisfying (1.7),
[(X'h-q)'81° < [(X'g-q)'8]° vg e K" (1.9)
and
h'Ah < g'Ag (1.10)
From (1.9) we have Xth « q = e{X'g-g), ¢ el-1,1}. Since q ¢ M(X'),
surely ¢ = 1, Hahce h = g+a, where a is some vector such that X'a = 0.
From (1.10), we find that h'Ab = g'Ag + a'Ao + 2g'Aa < g'Ag., But g'he = 0,
since g‘Y ¢®. Thus a'Aa < 0, which is impossible unless Aa = 0.
Hence (1.7) is an {dentity, with strict inequality nowhere in Qg. Infact
h=g if A is p.d., ahd h'Y = g'Y almost everywhere even otherwise, Thus
ne estimator in I3 can be inadmisaible.
For Qg = R" the class of admissible estimators for a nonestimable
q'8 is the whole of lo , leaving no scope for uniformly irﬁpmving on any
estimator, however had it might be from other considerations, On the

other hand, if 93 is of the form as in (1.3) then

Max R(R'Y,q'B) = oZh'Ah+ 52(X*h-g)'H H(X'h-q)
Sena

and any g'Y such that
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o2gtAg > oZh' Ah # 82(X"h-q) 'L (X'h-q)
is irnzfriissible since

R{h'Y,q'8) < Max R(h'Y,q'8) < Min R(g'Y,a'8) < R(g'Y,q'8)

BEQB Beﬂs

for all B in ﬂB. In fact a necessary condition for g'Y to be admissible is

oZg'hg < ozgihgl + az(x*glmq)'ﬁ'l(x'gl-q) (1.11)

where giY is the minimax estimator (i.e. it minimizes Max R(h'Y,q'B)
feQ
B

among all h € R™), which we shall discuss in chapter 2.

Possibly the first attempt towards estimation of nonestimable functionals
was by Chipman [11] in 1964, His approach, and the subsequent ones will be
elaborated upon in Chapter 2, In this chapter we shall also develop
several estimators for the bounded parameter case. These cstimators will
be compared on the basis of their biases and mean square errors. WNumerical
comparison based on simulation will be resorted to whenever theoretical
expressions are difficult to obtain.

Optimal estimators for q'B, when 8 has an assumed prior distribution
will be studied in chapter 3, along with comparisons among some such
sntimators., This chapter ali¥ Invludes some results on admnissible linear
gstimators, especislly in the 6lase of the Bayes estimators considered.

Tests for hypotheses specifying the value of a nonestimable q'8,

when N, satisfies (1.3) will be developed In chapter 4, along the lines

B
hinted eariier,

We have already observed that data with many missing observations
are liable to give rise to nonestimable functionals in the model.

Malysis of some such data, more precisely those arising from classification



models with arbitrary patterns will be considered in chapter 5.
A simp.e algorithm without rounding off errors, #pplicabls to any
classification model data will be developed in this chapter,

Each chapter will have an introduction of itz own,

We shall not be citing specific references for thae well known
results in generalized inverses and matrix algebra which will he used.

These may be obtained from Rao [29] and Rao and Mitra [331].



CHAPTER 2
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ESTIMATING NONESTIMABLE FUNCTIONALS

In section 1 we consider scme appreaches to estimating nonestimahle
functionals., These have been studied by various authors, may be not
in the same form or to a similar depth as we £hall consider them. These
approaches either assume QB = R" or make no specific assumption in this
regard. In section 2 we consider various methods of ostimation when QR

is bounded as in (1.3). A study of their relative merits and demerits will

be taken up in section 3.

1. Some approaches to estimating nonestimable functionals

(1) Best Linear Minimum Bias Fstimator (BLIMBL)

This approach has been studied by Chipman [11}, DPrygas {131,
Rao and Mitra f33,p.139), Schonfeld [257 and several other authors. We
note that a nonestimable linear parametric functional q'B has no linear
unbiased estimator and that the actual biss (%'h-q) 'R of the estimator
b'Y iz a function of unknown parameters. A sensible way of controlling
bias szems to be to choose b such that the coefficient vector X'b-q of
the cxpression determining bias is as close to the null vector as possitle
in some acceptable sensm, With the norm |[X'b-q|| of the vector as

induced by a p.d. M e Rmvm’ that is

[|%'b-q]| = YTXTH=q) WX b-q) (2.1.1)

an optimal choice of b is given by b = (X');(M)q. The corresponding
estimator may be called a minimum bin-= estimator. Cince V(b'Y) = o?b'Ab,
the micimem - 0 onee einfeuws bias olcsiator uses e coelflicient vector

a least squares solution with the least seminorm, The BLIMBE is
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accordingly given by
4 - ¥ t + "
bry q' LX), T (2.1.2)

which simplifies to q'K+_l -1 ¥ when A is invertible.
A
? - ] 1y - g i -
We note that the vector X'h = X'(X )!L(M] q PX,’M q is unique for
‘every least square golution b, This implies in partiecular that every

‘minimum hias estimator has precisely the same bias, The BLIMBT in thus

sutomatically the minimum mean square error minimum bias estimator,

(ii) Conditionally Unhiased Fstimators.
Consider the normal equations

-1

xtr Ixg = xra~t

Y (2.1.3)

associated with the model (Y,XB8,02A), Tt is well known that equations
(2.1.3) have 2 multiplicity of solutions when R(X) = r < m. One could
however get a unique solution requiring for example that the solution
B of (2.1.3) belongs to J'((K), A given subspace of R", and that

R(XK) = R(X) = r which willguermtee this uniqueness. If Kl‘e T s

matrix of rank m-r such that K+K = 0 (the null matrix), then kkg = o

in addition to (2.1.3) and the unique solution is B=(X‘A*1?<+KL'KL‘)-1X'A"lY.

Alternatively B = K(K'X'A™1xK)7K'x'A" 1y = KX (4157 It is not
difficult to sec that E(8) = B if
Ly = Mo (2.1.4)

In this sense é may be called a conditionally unbiased estimator of B.
In choosing this solution one is thus playing safe in that if p'R is
estimable then p'g is still the BLUE of p'8. If q'B is nonestimable q'é
is conditionally the BLUE of q'B if (2.1.%) holds. This ohservation is

due to Plackett [27] (see also Scheffe [3u, p.191).
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In general one may enquire if it is possible *p Find a matrix O such
that GY is conditionally an wnbilased estimator of £ given that (2.1.4)

holds, This is equivalent to requiring that G satisfics the equation
GXK = K (2.1.5)
for consistency of which we demand that
R(XK) = R(K) < R(X} (2.1,6)
Defining G = K(XK)~ = K(XK)+-II’ it is easv to =ntablish the following:
A

2(a™ 1
Theorem 2,1.1 G satisfies (2.1.5). Moreover for anvy G satisfving (2.1.5),

D(GY) - D(GY) is nonnegative definite (h,n.d,)
Proof of the first statement is inmdiate. To prove the second

part observe that
D(EY) = D(GY) = IEM * D(GY-0Y) +7Cov(GY~-AY,CY).

The covariance term vanishes since (G-GA G' = 0 as ,Mh(rt‘,') ':JI'/[{A"lxK)
Henee the theorem,

In the sense of theorem 2.1.1 é = 6Y may be called the optimal
conditionally wnbiased ¢stimator of 8.

¥hen one is sufficiently convinced about the validity of (2.1.4) orn
could actually reformulate the model as (Y,¥Ky,02A) noting that 8 = Ky
for some v, IF Fuither (2.).6) holds B = Ky is indeed estimable and

Ky = K(XK)~ -1 Y = oY = é is conditionally tha BLUL of 7 1f (2.1.4)
2{A )

holds. If equality holds a1l through in (2.1.8), Ky is infact the
mique solution 8 of (2.1.3) to which a reference was made earlier in
this section. In general if R K) = R(XK) < r, then Fl may not cven

satisfy (2.1,3).
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Dhegerve that E(p'é) = p'R can hold for all B in R" if and enlv if
'X'A-lYK(K'X'A~1XK)_K'p = p, which is equivalent to saying that

p EJWIX'A"lXK). The same condition is also necessary and sufficient
'A“l/?h

- A~ -
for p'f = p'2, the RIUT oFf p'R, though in general 1F p = ¥'h = X 17

then V(p'&) = a?b'MAG'L = o2b!P h, < g?h! P . hy o= V(pta),
_ ] A—l/QXK 1 1 A-l/xw 1
Since AAIX'A_lXK)QLHJ4,(X'), with equality if and only iF R{X) = R(¥K} = R(X),
M‘f -1 )

any estimable functional p'f with » outsi @VLIX'A TXK) would he estimated
with a bias unless {(2.1.4) holds, For such a p, the usme of p'g8, which is
not globally unbiased would be justified on the grounds of a leower
variance if the a pricri evidence about the truth of (2,1.4) is sufficicntly
strong.

In other cases in addition to (2.1.5), one may hring in plobal

unhiasedness of astimahle Ffunctionals as an additional condition and note

that the latter condition is equivalent to requiring
XGX = X (2.1.7)

A gencral solution to (2.1.7) is (=ee Rao and Mitra [33,p.267)

0= Xy V(I )+ (0N,
AT AT B0

W and V being arbitrary. If additionally G satisfies (2,1.,5), then

(x| = (1" 0K,
\-

T AT

so thit a general sclution to (2.1.5) and (2.1.7) is

+
6= X' e v )+ T ko’

e AT A"l A"l
+ +
+ (1-x" | 02T-xea0” ) (2.1.8)
AT AT

with V and ? arbitrary. Observe that if G satisfies (2.1.5) and (2.1.7),
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then so does GP . Moreover E(GY) = E(GP ¥) and D{CY)-D{GP Y)
-1 -1 -1
X, A X, A X, A

te n,n,d. This shows that in arriving at an optimal cholce of G in the
class (2.1.8), one may with no loss of gencrality restrict oneself to the

subclass

+ + +
g KIKE) ™, #(X-XT ) 07 (T-XKORKD ) )P

¢ = X, + (1-x"_
1 [ AT AT ATITX,A

A'l

(7.1.9)
Let

G. = X 1 *

G, = (1-X'_, 30K(x)"_
AT AT

+
¥
pmir ?

L]

(I"t

+ + -
Gq i1 X372 (IvXK(XK)A_l P _qe Oy = Oy + Gy

I I X,A 1
and let 5; denote the entire class of matrices determined hy (2.1.9)

through an arbitrary choice of the matrix Z. Then we have the following:

Theorem 2,1.2

tr (G Y) < tr D(GY) ¥ G e E;, (2.1.10)

with eguality if and only if G = G-

i —

Proof : The theorem follows once it is noticed that 83 A G; = 0 and GiG = 0.
A

Since for an arhitrary g-inverse G of ¥, GP -1 is a refiexive teast
X, A
square generalized inverse of X and every reflexive least square g-inverse
X of X can he s0 determined, the class é? eonsists precisely of
-1
(A7) .
such Inverses X -1
A )

J‘{(K)CM(X- R =ﬂ{{(x’ 30 (2.1.11)
Lr(A )

) A

which in addition satisfy (2.1.8) or squivalently

Go*is the unique member of this class for which

tr D(GY) = tr GAG' = tr AGG! (2.1.12)

is a minimum,

-1
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“m . xn mxm

For a matrix X ¢ R " and p.d. matrices ¥ ¢ " s, Me R 7, the
+ . . .

Moore Penrose inverse X“M is tle unique N least square inverse of X

such that 1f G is any other such inverse then

GTMG - (Xf,)" WX (2.1.13)
is n.n.d, The uniqueness achieved above is through a different princircle

that incorporates the principle of conditional unbiasedness due to Plackett
and Scheffe, Accordingly we propose to call GOY the optimal Plackett-Sheffe

estimator and Go the Plackett-Scheffe inverse of X.

Observe that

= + +
G =G+ X [I-XK(XK) ] (2,1.1u)
° Al Al
and
ME YY) -~ D(EY) = pExT |, (r-xx(xx)t . vl (2.1.15)
° Al A"l

is n.n.4., the right hand side of (2.1.15) vanishing if and only if
R{XK} = R(X) when 6, = G. This gives us an idea about the loss of
accuracy that results, when on account of lack of conviction on the truth
of {2.1.4) omne insists on global unbiasedness of estimable functionals
as an additional condition to be fulfilled in addition to conditicnal
unbisedness as enunciated in (2.1.5).

(1ii) Hyperestimators.

Consider the expectational relation

X8 = u (=E(Y)) (2.1.16)
in the Gauss-Markov model (Y,XB,09A). When R(X)=r< m,B doecs not have an
inbiased estimator.We may, neverthaless look for an unbiased estimator
of the set of points (2.1.16). Thus we try ta estimate the entire
hyperplane (2.1.16) rather than the single point {the true parameter point)

which belongs to thim hyperplane. This approach is due to Bunke and Bunke [8],



Bierhammar [4, Chapter 101, [5] and Sijoberg [363. The nams hypersstimator
was suggested by DBjerhammar.
The general sclution to equation (2,1.16) is given by

B =Xy + (I-N"¥)z (2.1.17)

- ] » . m ., .
where ¥ is an arbitrary but fixed g-inverse of X and z € R is arhitreary,
R ™ . .
As 2z varies over R , (2.1.17) pives the set of points we propose to

estimate, - Since {I-X ¥)2z i< parameter frac the problem thus reduces to

estimating a single point X u.

Xy is estimable, and its BLUE is given by X XX 1 ¥ with dispersion
LA™
matrix 02D, Obgerve that X XX 1. € {x 1 } and that
LA ™) er{A™ ™)
X owE X (2.1.18)
W )

Without any loss of generality we can assume that the single peoint X u
that we shall be estimating is defined in *erms of a refloxive least Squares
inverse of X, By theorem 3.2.2 of Rao and Mitra [33], such a g-inverse

always has the representation

(K'A‘IX}‘ XAt (2.1.19)

for gsome g-inverse (X’A-]’X)— of (X'A-lx} and the problem reducen to

choosing a g~inverse (x'471%)" of (x'A” 1) suitably. Noting that
- 1 1,4~ ] -1 t =L,y '
D= (XTA %) xrATRO(x'A XY ) {2.1.20)

we establish the following theorem:

Theorem 2,1,3  tr A D with A p.d, in R ie minimized when (X'A“l'»()-

) ~1yy-
]
in (2.1.20) is chosen as {(X'A X)m(!s)'



Proof Let T be a nonsingular matrix such that A = T'T and

] -1 1 A 0 . mxr ] -
| 4F W S i § )T , where A 2 R is diagonal p.d. Any g-inverss of
| o0 o
- ta~lyy o ol , 1yl 3 Y
¥ can be expressod as {X'A "X} = T 7 ( J (T') © for arbitrary
3 G
+ tr F AT i3 minimized when T = 0, and hence tha

A—l
g

U

E,F,6. tr A D= tr at

optimal choice of x'a o s T-l( E Wty o= (X'hwlx};(ﬁ)'

‘Observe that the same choice is also optimal in the sense of minimizing
" tr DYAD.
Thus the optimal hyperestimator is

(x'A“lX)' a7 ly 4 0 = it Y + (2.1,71)
m{a)

. where @ is an arbitrary vector in \ﬂ((x).

2. A bounded parameter space for B

In this section we shall consider the case where the parameter spacoe

nB of # is given by

2, = (8 e R : BUiB < 82) (2.2.1)

In this setup the "LIMBE we introduced in section 2 haz a more natural

interpretation,
{i) BLIMBE revigited.

1f H is positive semidefinite, we note that an estimator b'Y of

p'$ has a finite maximum bias over 0, if and only if

g
xb - p e Mo (2.2.2)
Thus the parametric functional p'B will admit an ectimator with a

finite maximum blas over Q, if and only if

R
p e Moxom (2.2.2)
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Further if p = X'h + Ha, the moximum hias nf the estimater b'Y on Qﬂ’ is
piven by §/3 THa. Hence determining a minimax bias estimator for p'f

requiresz finding a minimum Hp seminorm solution of the conzistent equation

{X*':H) .(’; ) =p (7.2.4)

where H, = diag (0,H). The following thcorem establishes the nature of

the sclutions b in terms of minimum He sominorm solutions of (2.2.4),

G
1
TR ' E ot r T
Theorem 2,2.1 . is (X 'H)m(Hp) if and only if 0y is Xm(H}'
G 2 )
1
- T. - S
Proof (% 'H)m(H y is equivalent to
G e
2/
t ' . Y . '
X GlX + JGQX X
(2.2.9)
t r -
X GlL + HG?” = H
and
Gy {o 0
", (XV:H) = is symmetric
i r: ot ¢
c, \H.?x HG 4

(2,2.5)

From (2,2.6) HG, X! = 0 and HG2H is symmatric, and henes from (2.2.5)

t ' - 1 1 . 1 Y - oy
X Glx X' and X GlH is symmetric, Thus Gl Xm(H)'

Conversely if G = y» then choosing 6, = H—(I-X'Gl), it is

Xm(H ?

easily seen that G G, satisfies (2.2,.5) and (2.2.6) and hence

1!
#

%

G

s - ey
is one choice of (X':H) (HQ).
?

* t » a2 - 3 1 - - to={ ] 3
Hence if b'Y is a minimax bias estimator of p'R, b (Xm(H)) p=(X )Q(Hﬂlf
when H is p.d. In this particulsr case the minimum variancc minimax bias

estimator is given by b'Y whare
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which indeed leads to BLIMBE as introducaed in section 2, 1f H-1 iz used
insteac of M,
When H is singular it was shown in Rac and Mitra [32] that if M

denotes a n.n.d. g-inverse of H + X'Y¥, then

RCM)

{(x") | B {{xm(u)}'} (2.2.8)

Nonnegative definiteness of M is not essential but will nevertheless ho
preferred to avoid conceptual difficultics that may otherwise arisc in
using ¥ to define a seminorm. denerally +he set incluecion in (2.2,8) will
be a 'proper’ one. So the class of minimax bias estimators ohtained

through arbitrary choice of a M semileast squares invorse of X' cannot

be expented to exhaust all minimax bias estimators. Hence the estimator

+
MA

of minimax bias estimators. In the present case however, since the gencral

p'[{X"),,,]'Y will bave the minimum variance property in a gmaller suhclass
solution to a minimum seminorm g-inverse X;(q) of X is given by (se¢e Rao

and Mitra [32]),

G+ WI-XC) + (I-0GX)V (2.72.9)

where G iz Any particular X;(H)’ W is arbitrary, and v is an avbitrary

solution of H{I-GX)V = 0, it is scen that for p ¢ ﬁ{{k‘:H),

{[X;(H)]'p} = XYy

)p} (2.2.10)

+ . . - R s .
Hence P'[(X'}MA]'Y is the minimum variance minimax bias estimator of p'd.
#  Finally, let us determine tho class of modelsg which allow for a
finite maximum bias (over QB) estimator of the type p'GY for v'f whatever

m . s
p e R, Defining
+
K = I-HH (2.2.11)

it is secn that for p'CY to estimate p'8 with a finite maximum bias,

K{(X'C'p~p) = 2, and since this should held for all p in Rm,



GXK = K (2.2.12)

which is the same as (2.1.%). Thus we =rrive at the interesting fact that
* “ [ . ]
for p'GY to have finite maximum hias for p's for all p ¢ R the model must

satisfy the condition
R{XK) = R(K) (2.2.13)

and thus in such situations the estimator p'GY is conditionallv unbismscd For
p'8, Since V(p'GY) = o?p'GAG'p by theorem 2.1,1 the minimum variance
estimator of finite maximum bias is p'aY, while the minimum cr D{CY)Y finite
maximum bias estimator, which In addition estimates osxtimable functionals

~without bias is an optimal Plackett-Scheffe nstimator.

{i1) Minimax estimator

Let us assume that the parameter space for (f,07) is RE¥, = O, whore

fi, is defined in (2.2.1) and Qn ig a suhnet of the positive half of the

B

real line with a known finito maximal clement Uﬁ. The cntimator béY of

v'B is called a minimax (lincar) ecstimator (Rao [317) if

ey B(hIY-p'®)’ = din oy DOLYept)’ (2.2.14)
R,a2eD - ben Ry
As in tha earlier section we observe that p'f will admit an cstimator with
a finite maximum mean souare error if and only if p ¢ j{(Y':H), and that
ifp=X'v + Ha ,
Max E(b'Y—p'B)Q = Ui h'Ab + 87a'Ha = 42(8?h'Ab + a'HA)
A,oen (2.2.15)
whora

p? = 03 / &2 (2.2.186)
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G
Hence if 1 is a minimum diag (8%A,H) seminorm g-inverse

G,

£ (X1}, bc':Y = p‘G;Y is a minimax estimator of p'S.

Let us denctn

—— — — —

F F 82 + XX! yH
u 12 (2,2.17)

F F HX? H+H 2

— -

bag)
L]
]

ence using formuls (3.1.8) of Rac and Mitra [33], one cheice of Gy is

- ¥ ] ™
Gl"(Fllx + FlEH)[X Fllx + ¥ F12H + HFle + HFQQH] {2.2.18)

If ¥ is chosen tc be n.n.d., then Gl is one chelce of (Az)' as defined
by Mitra [23], where L = [diag (I:H)] Fldiag(I:H)]. It is easily seen

that when A is p.d, one may use formula (32,1.,7) of Ruo and Mitra [33]

1 L

Y = p'X -1 Y.
AT g8%H

to obtain bIY = p'GIY = p XA & 02H)” XA

When H is also p.d. (X'A'lx + 02H)" may be replaced by

(X,'A'lx + 82H)"1  to obtain the expression for the minimax
estimator given by Rao [31], If K denotes a g-inverse of the

H, the maximum mean square

T L] 1 "
matrix X'F..¥ + X Pl H + HT21X + HF

2 22

11

arvor for the minimay astimator (the L.H.S, of (2,2.18)) is

given by

§2p'[K-1Tp (2.2.19)
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Chezerve that %év is nlsa minimax in the wider class of estimators of
the type b'Y + ¢. Since p E-A((X':H), if p = ¥'b + Ha, the square of the

bias of L'Y + c is

(a'HB)%4c~2c(a'HB) < (a'ug)? + 2 + 2[c| |atHg]
< (&/a"Ha + |c|)2 .

Thus the optimal choice for c¢ is 0 and hence béY is minimox in the wider
class of nonhomogencous linear estimators. This remark obviously applles
to the minimum variance minimex bias estimator (BLIMBL) also.

We noted in Chapter 1 that there is no loss of generalitv in
considering ellipsoids of the form (1.3) with centre at the origin. If
our actual model is (Y,XB*.czﬁ) with {(8,-0)'H (B,~a) < 82, then the
only modification is that the minimax (BLIMBE) estimator of p'B8, is
p'é + n'n, wherc n'é is the minimax (BLIMBE) estimator for p's In
(Y-Xa, X8,02A) with B ¢ g as In (1.9).

For zimultaneous estimation of several parametric functionals,
say PB (P being a matrix), one defines the minimax lincar estimator {MILE)
as C, Y + dg, where

Max E(C,Y+d,~PR)'A(C,Y+d,~PR)
8,02eQ

= Hin Max E{OY+d-PB)'A(CY+d-PR) (2,2.20)
Q’d B.Uztﬂ

A being a given n.n.d. matrix. In this definition if one restricts the
class to estimators of the form €Y then one obtains the minimax

homogeneous linear estimator (MIHLE).
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8™ =t L 1 is iz of
8 “ @ A

when A = pp', as was noted by Kuks [19]. Considering the matrix loss
function (CY-B)(CY-R)}' Bunke [9] showed that 6(‘m) 15 minimax, Lauter T21]
showed that when R(X) = m and H = A = I, the shrunken least square

-egtimator

1 eyt wenly (2.2.21)

1402 e (a7t

is the MILE., But his expression for the more peneral situation cannot be
used due to the absence of a computational algorithm, However for certain
situations there is an iterative procedure for computing MILL suggested
by Kuks and Olman [207.

We shall not consider this problem here except for establishing a
gomewhat disconcerting result that in many important situations the MIHLE
ie 0, In the following theorem we shall consider (2.2.70) with d = 0,

PeTand A = I, or in other words the loss function is (oV-@Y'{cY-g),

Theorem 2.2,2 If H = I and R(X) = r < m, then the minimax homopencous

linear estimator of B iz 0.

Proof  Observe that

max E(CY-B)'(CY-g) =  Max [o? tr CACT + @'{CX-T)'(CX-T)R]
B'8<82,0%0 B'8<6%, 0%

= 03 tr CAC' + 62 o(0)

whers a(C) iz the largest eigenvalue of (CX-1)'(eX-T)

1 - t -]
M ax B{CX~I)' {CX-T)P
BeR i
BI(CX-T)'(e¥-T)R
> b =1

535,

e(C)

#

whare Bo iz a non null vector in \N(Y)ﬁ 0.
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Hence
Max E(CY-8)'(Cv-8) > o2 tr CAC' + 87 > &2 (2.2.22)
B'8<62,0%cq,

The theorem is established once it is noted that equality holds in

(?.2.22) if anéd only if C=0.

generalized at least to the situation wheve A = (I«—Px,)A(L-PX,) is n.n.d,
In this case the class of MIHLE is {C,Y: M(c*)c: M(A)} and & is one
cholce, This in particular {choosing 4 = pp') shows that the minimax
estimator for p'f where ¥p = 0 is 0. This result we shall encounter

once more in the next section.

Lat us now consider a more general risk function

E(CY-PB)'A(CY-PB) = 02 tr CAC'A + B’(CX-P)TA{CX-T)B

Wite p = E'E, F = BCX-EP, 2 = EC, L = EP,

IfF L« Rsxt, then partition,

F' = (fl’fg,olq',fs), 2'3(21,32,-.-1.25),1" = (21’2'2’...’1‘:)’

and observe that (2.2.23) can be written as

s 3 0
0 § z! A 2y } (£18) (2.2,21)
t=1 * iz *

For simpficity let us restrict ourselves to the situation where H is p.d.
By Cauchy Schwarz inequality applied to each term of the sccond =sum in

(2,2.24),
b4

]
Max E(CY-P8)'A(CY-PB) < o2 | ziAz, + 82 ]

2 £ H'lfi(2.2.25)
R,0%eq =1 g=1 *

1
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The inequality is strict except in certain special cases, so that the

R.H.8. of {2.2,25), viz.
R 5 1 o1
1 il | ] Y - JOF
o? {'Z 2jhz; ¥ = .Z (X'2-2, ) (R12,-2.)]  (2,2.26)
=] g4 i=1
gan be only an approximation to the required maximum risk over 2.

Minimizing (2.2.26) we may obtain an approximate MIHLE. By Mitra [23],

the minimum of (2,2.26) is attained when

i.e,

et = (x)] PIE!
iy
BZ
{.e.

Ble,-PL(x)] . 11 =0 (2.2.27)

—H "8 A
p2

Hence an approximate MIHLE for PB is given by (2,2.27) and one choice

is
1 + ' ar +
PL(x ) 1 1'Y. = PX .1 Y (2.2.28)
~—HT 8 A AT @8 o?H
g2
In situations where theorem 2,2.2 apply, the minimax estimator is
zero, However the approximate minimax estimator g, = xt Y could
T T ptesZy

gtill be an useful estimator for B for many purposes especially since it
gi;es the MILE for parametric functionals p'8. In the next section we
shall compare the relative performances of varfous estimators for p'f,
{rrespective of the choice of p. Writing an estimator of p'R as p"ﬁ, our

"~ eriteria shall be [E(é)-BJ'H[E(E)—njand E(é-B)'H(a-B). Obviously for
minimax, El is more appropriate. 1o Chapter 3 it will be shown that

al is alsoc an optimal Rayes estimator of f when it has a prior distribution

with E(88') = 426", When H = I, 8y is a ridge type estimator
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{Hoerl and Kennard [17], [181).

" In conclusion obhserve that when H is p.d. by Theorem 5.1 of Mitra [231]

lim p' Xt_.l Y = p'x*_] Yo

§2 5w AT e%H ATH

thus BLIMBE can be looked upon as the MILE of p'8 when 9’@ iz unbounded
{n every direction., If p EM(K'}, BLIMBF is infact the BLUE of p'8, and
does not depend on H, a conclusion which is no longer valid if p ¢ (xny,

This observation is due to Mitra [24], who uses this as a pointer to the

futility of estimating nonestimahle functionals in unbounded parameter

spaces,

({11) Restrioted least squares estimator (maximum 1likelihood estimator)

If Y v Nn(XB,GZA) and A is p.d, then the maximum likelihood estimate
ﬁr’nl minimizes
G(8) = (Y-xBY'A"Y (v-xp) (2.2.29)

subject to the condition R'HB < 82, Even without the distributional
- aggumption the same method yields a least square estimate subject to the
“quadratic constraint B'HR < &2,

This and similar optimization problems were considered by

Balakrighnan [21, Forsythe and Golub [15]. Let us write 80 = X+_l Y,
A TH

the minimum H seminorm A'l least square solution of X8 = Y,

#a 'y » -
'If B!H8_ < 82 then B is one choice of B , and infact any solution of the

normal equation

x'A‘le = xtA" Yy (2.2.30)

vhich belongs to QB could serve as the ML estimate. To avoid confusion

In such cases we shall choose and fix ﬁ =8, If B'HB > §2 the ML
mi le] o o
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estinate § . will obviously lie on the surface of the ellipsoid 2. To

3
compute émi in such cases one has to minimize G(R) subject to the conditien
'8 = ¢2, By Lagrange's method of constrained optimization, the solution

BA will satisfy the equation

Ly v ame = x'A Yy (2.2.31)

(XA~
where & 1s a root of the eguation

PO = VAN T AR T O AT ) AT Y = 82 (2.2.32)

Let W be a nonsingular matrix such that

H= W W {2.2.33)

and

KA = W W (2.2.34)
where b, = diag (dl'dz""’dk)’ D, = diag(dkﬂ’dkn""’dm)‘ It is well
known that such a matrix W exists for every pair of n.n.d. matrices

(see n.g, Rao and Mitra [33,p.122]). Assume without any loss of generality

- - = 2 -y '
that d; > d, > veo 2d >0andd = ... =d =00 Put WA =v=(y,.aesy )0
Then
F(AY = éox'n‘lx(x'n“lx + )7 HCAT Y 4 o X e
2 2
v 9y

i

) (2,2.35)
i=1 (di + A}

u . a
and F(0) = } Y? = Bc"HBO > §2, Clearly F(2) is monotonically decreasing
i=1

In (0,=) and F(A) + 0 as % + =, Thus there exists a unique positive root

Ao of the equation

r(A) = 82 (2.2.36)
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Tf al satisfies (2.2.31) with A > 0, clearly vger™ |

(Y-XB)'A° (Y-XB)+A6'HB (Y- xek}'n (Y—V51)+LB'HQ + (p-2 )‘[X‘A lX+AP](B 8y )

-~ __1 - A A
Yoy t ~Xp THEG 7.2,
> (Y=XB, ITATTHY-XE, JHARIHE, (2,2.37)

If B satisfies B'HR = 82

(r-%e) A™H(Y-X8) > (Y=X8,)'ATH(Y-xA, ) (2.2.38)

This shows that R, in fact gives the required minimum. On the other hand

A
o

1,3 " -1
if X < - 4, then writing W(B-B,) = 8 = (8,500,080 ), (A6, ) 1IX'A TXEAHI(8-8, )

u
] (d,#1)0% < 0, and hence for such a A, (¥-XB)'A™H(¥v-%8)
i1

(Y-XBA)'A'l(Y—XBA). Since F(\)is monotonically increasing in

i~

(-m,-—dl), F(wdl) > 0, and F(A)Y =~ D as % + - =, there exists a urique

ALo< - dl satisfying (2,2.36) and with this A, By gives the maximum of

G{B) on the surface of Q Othar real roots, if any, belong to the open

8-
interval (—dl, »du) and can similarly be shown to correspond te saddle

pointz of G(B} on R Note that gince F{)) » = as X + - d,, real roots

Bl
(if they exist) in ('di’ »d ) must be even in number.

Writing explicitly,

= (X' o+ 2 T aly = xT 1 y (2.2.39)

] A # 2 H
s

Y

Observe that if hoth X'h-lx and H are singular matrices then the
cheice of éa may not be unique in all situvations. In such an eventuality
some a pricr? knowledge or a secondary criterion may be used to make a
cholce, Otherwize one may, for example take the ML estimate as a minimum
norm solution of (2.2.3]1) with 3 replaced by 1 . Put wél = o= (gi H gé)‘,

O
vhere 21 £ Rk, QQ e R k, and partitiony accordingly as (1{- Y'}.
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Ohgerve that equations (2.2.31) are equivalent to (DlﬂoI)gll =Dy vy

b = 0, Thus the nommioueness will arise only in those co-ordinates

2 4
of i‘}-? which correspond to a zero diagonal entry in DQ. These could be

A

taken as zero and for this choice the resulting &y is a minimum norm

o
solution of (2,2.31).
The ML estimator is thus given by
“ . ~ ~ 2
o F’o if BOHBO <6
Bt = 4, . (2.2.40)
L4 tupa 2
Elo if SOH“O > 8

3. Comparison of rival estimators

The alternative interpretation for BLIMBE given in section 3 is based
on the well known fact that an inner product defined on a real (or complex)
vector space V induces a dual inner product on the vector space of linear
functionals V% of V. For example let V = Rm, g0 that V* is isomorphic to
B Let <« p » > s < + s » >, denote inner products in V and V#* and
H'H, H'H* denote the corresponding norms; further <x,y> = x'Hy , for
Hp.d. where % € Rmar\e +the coordinates of x in termg of a hasis
It Uys vees @ is a basis in V(=R") then define a basis Yyarera ¥y in v#

m

by the relation vi(uj) = 515’ the ¥Xronecker symbol, If x = I JLE and
j:l . B

m
f= Z £,v;» then the norm of £ is
=1

i
Hell, = sup ~J§%§%+- (2.3.1)
Xx eV

m m ™
However f(x) = _); fiYi (.Z X3 aj) = g £s X = £'x , so that (2.3.1)

i=1 j=1 i=1
hecomes -

|£'x] a1
Sup = f'H °F
) = z
« e g Y(x'Hx )

" by Cauchy Schwarz inequality, Thus
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< f,g 54 = (]|Frellf - 1E-nll2/m = v ly (2.3.2)

Hence For such a cholee of the bacis in V& the dual inner product is
{nduced hy H"l, if ¥ inducos the inner preduct in V{ ="y,

Consider now the vesolution of the vector space of linear parametric
functionals into the vector subspace of estimable functionals and its
erthogonal complement under the dual inner oproduct. A parametric functional
in the orthogonal complement may be called totally nonestimable. Ve have
geen that p'fR is estimahle if p E:,M.(X'). The ahove rasclution

torresponds to the following resolution of p

where p = P pand p__ = (I-P )P, Thus p'P is the estimable
€ X', H 17 ne YR 1 e
part of p'8 and p;}ee is its totally nonestimable part. The ahove

resclution alsc corresponds to the following resolution of R

where B = P! A and B = (I-P! )8, and this indecd is an
€ wr =l ne P
X UH X', H

orthogonal resolution under the original irmer product i.e. F‘-;)HBnp = 0.

1

Clearly cach rco-ordinate of Re iz estimable. HMener R may be called the
gstimable part of 8, We may call B the totally nonesgtimable part of £;
the justification is seen from the fact that if B8 iz totallv nonestimable,

fe. 8= (1I-P! l}a,then every linear functional in Y has identically
X', H

a zero expectation. The name tetally neonestimable givon to pt'mG = p'h

‘Is therefore like a transferred epithet which scems to be guite appropriate.
The interesting fact to note is that a totally nonestimable

parametric functional is estimated by zero by the BLIMBE, MLE or the

minimax estimator as given In zection 2, Equivalently the rosult could

be stated thus:
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Theorem 2,3.1  Write Bo for X' Y which provides RLIMBE for p'R,Rl for

1

ATTH
X* Y which rrovides the minimax sstimater for p'¢ and let #, donnte
e o2y ?
the MLL ag defined in (2.2,40). Then
(£ -P' =0 1:0,1,2 (2.3.2)
X"H

Proof  From the representation of the minimum norm least square inverse

[ e

given in (3.2.11) of Rao and Mitra [33] and from Theorem 3.2 (V) of

Mitra [23] it follows that B; € ((H_lx’). Theorem 2.3.1 is an immediate

consequence sinee (I-P’ ) H ikt = o,
X*,H

We now proceed to compara éo’ §l and 82 on the basis of their hiases

T ahd mean square errors at B e Qﬁ. Our criterion will be norm (induced

-1

by H) of the bias vector and trace HA where A is the mean square and

product e¢rror (m.s.p.e.)} matrix. Put

B,
i

cE(éi> - 81 HIR(E,) - 8] (2.3.4)

¢!

. B.-B) H(B, ~ 2 2.3.5
i E(Bl B) (Bl 2} { )
Theorem 2,3,2 gsives cortaln inequalities among the Bi's and Mi's that

-~

hold when 02 is known (82:g2/8? in the ewpression for 8.

Theorem 2,3,2

{a) B ) {(2.3.6)

e

A

min (Bl . 132

(b} My o< M) (2.3.7)

Proo? Let R denote an estimator which is such that

pt L B=8 (2.3.9)
X', H

then
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)}{E(é)— 8]

(E(R)- 83" H[P' .+ (I-P'
X, H X', H

(E(B) - R]' HLE(R) ~ 8] N

t

[E(P'  _R)-p_J* HIE(P' . 0)-A _J+0' Hp
X‘,H“’l e X‘,Hl a” me ne

[E(8) - ﬂe]‘H[E(B) - 361 + a;g HA

ne
> RY HR (2.3.9)
— "ne "ne
using known properties of such projaections, viz. P _lH{I—P‘ _l] = 0
YL H X1 LH

{see e.g. Theorem 5.2.1 of Rso and Mitra [33}) and the facts

-~

P B(R) = E(P 8) = E(R), (I-P' _OR(R) = £{(I-®' _)B) = 0.

1t xt 0t X" H X' H
Since Bi satisfies (2.3.8) we have from (2.3.9),
B, 2 8 HB,
ne

However, for i = 0, equality holds sinco

BB = X', ¥e= [xt(x)' e =Rt =8 (2.3.10)
° ATTH WA X', HT :
This establishes (2.3.8).
To prove (b) it can similarly.be seen that
- a - t o - '
M, = E(Bi B)' H(By B, + Bl R o (2.3.11)

By (2.3.10}, M_ = tr HD(B ) + Ble HPre

1

let T be a nonsingular matrix such that X'A" "X = T'DT and H = T'T, where

De diag(dl,...,dp,o,...,o). Let T be partitioned as T' = (Tl’:Té) where

Tl t Rr?gn’ 'I'2 £ R{m-r)xm’ and 7l s g = (Si : Sé) where §, € Rrxm,
g, ¢ APTPM o w = T+ T, M = Moeaho = Moo,
7 11 2°2 1

= T - = T! !z o = ot = S = n,
l"‘ .1 Tlsl’ I-P el '!['2 S;‘g' Tlsl i, T?.Q I, Tlo’? 0, T2‘§l \
£'H X1, H
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DEY = DEr L R) o= o2 aThOTR
Xt H X', H X',
2 Sl
- ' f.otyT 1
a SlTl(Sl.S?)D 52 Tlsl
5
= o2(s! : 0)p” ( l) = 2 T-InYer 1y
1
0
. where D' = diag (dil, ey d;l, Of «ruy 0.
L |
Hence M = 02 Z em + BY H A
o . d, ne ne
i=1 i
i = p 8 - ' ) R - - R! '
Similarly Ml tr HD(Bl) + [R(sl) ee] H[F(Bl) 563 + Hne HE..
Observe that E(BI) = xful XA = XT-—i Xp , ard writine
: AT 82H AT e el T
i
- - r M=
Tﬁe'_‘l'("r),where neR, N £ R ,‘1_1?=T,:HQ=T?P' R
Ha Xt H
! =
TQSlrlae 0. Hence |
-~ EN 'L 9 r n%
[E(8, )-8 1'HIE(8,)-6.] = n'[(D+021) 7 0-71"n = 0% | ——t—s
e 1" "e - —_ Wb 2.2
i=1 (a,+ n9)
Thus !
1 -l r n?
M, = o tr (D+021)° D(D+621) ™" + o% § S+ B OHR
i1 (di+02)2 ‘ '
r
2
= g2} —1 ., + )+ g He
1=1 (dj + 82)2 1 A 1 ne no
Sines -
R'HA BGHBe t Bl HBne’
2 .
BTHA < 52 = BéHBp 152 <z > D.]'_ -]ll ::_ 52 = n]‘" ..<_ (52, i=1,...,r
Henca

1

M, < 02 ] e (d,402) + B! H 8
e N«

SI = (a,+62)2 . >
T
= 02 )‘ ———-—].:—n-—- + A' HAR
=1 (di+82) @ e
2 501 2
1 : A
< g 151 a—i-+ Bn Hfine M_ since 8~ > 0,
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Since the MLE is nonlinear it is difficult to carry out a similar
exercise on Jé?. Simulatinn was thorefore resorted to for a compariszon of
these estimators, For simplicity, ﬂg was taken to be a sphere rather than
an ellipsoid, and the dispersion matrix of Y was taken to be ¢TI, Also
gince the nonestimable part affects Bi and Mi values of all the three
estimators in the same way (see equations (2.3.9) and (2.3.11)) we shall
compare them only on a full rank model (i.e. R{X) = m). Further,

keeping in view the possibility of a singular value decompostion of X,
X = 0 ( 3 ) v,

“where A = di.ag(al,...,am), U and V are orthogonal matricez, and noting
that a parameter transformation R + t = VB replaces a sphere in 8 by a
gphere in 1 of equal radius and an orthogonal transformation of the
observations Y + Z = UY keeps the dispersion matrix (o?I) invariant,
one could without any loss of generality restrict oneself to a simpler
model that holds for 7, (Z,( 3 )t,0%1), and even omit the last n-m

2

observations as they contrihute only to the estimation of o2, For the

similation the follewing canonical model was considered

E(yi) = o, B,

(2.3.12)
Cov(yi,yj) = c?‘éij
m
a, given positive numbers, Z B% < 62, ﬁi‘i the Kronecker symbol,
i=1 ‘

i,3 = 1s2y000,m.

In the computations m was chosen to be 4, Tour different design
matrices were chosen., One had large oy values, one moderate hut P > ]
- the third had as £ 1 and the last one had @, on either side of 1. Tor
sach deelgn matrix, three points in QB’ one near the circumference, one

well ingide and the third near the origin were chosen. The entire

- experiment was done with three values of v,0 = 1,2,3. Cince o was varied,



82 was kept fixed at 17, their ratio only matters, Random normal
deviates were obtained from Herman Wold's Random Normal Deviates:

- Tracts for Computers No, YXV, Cambridge Uriversitv Press, 1954,

Tables 1,2 and 3 give the Bi and Mi values for 1 = 0,1,2 and ¢ = 1,2

and 3. (Bi is called blas and M, mean square error), Tach tahle

i
correspondzs te one particular value of o. DRosides these the frequency of
cases where A = 0 and X > 0 are alse tabulated, where to avoid suffixing
ve denote Ao of section 2 by A, VNote that vhen 2 = 0, MLE is same as
BLIMBE, For BLIMBE and the minimax cstimator, theoretical exoressions for
Bi and Hi arc available, Theoretical values computed from these expressiom
gre shown in parenthesis in additicon to values estimated hy simulation.
A comparison of these two entries will indicate the accuracv attainad
by simulation.

Table 4 gives a ranking of these preoundures Jrom the point of view
of bias and alsc from the point of view of mean square error. Blaswise
BLIMBE appear to be distinetly superior to the other twe methods, The
second place 1s shared by minimax and MLE about equally fraquently.
However, interestingly enough one that does battsr on ias fares poorly
on m,s.¢. In the whole table there are only four exceptions to this rule,
. We have already noted that when A = 0, MLE is same as BLIMBE. Hence in
those cases where A = 0 has a large freguency it was to be expactad that
minimax would have a lower m.s.e. compared to MLE, However there ara
cases where minimax has a lower m.s.e. compared to MLE ever when the
frequency at A = 0 is small.

These happen to be cases where the medel itself does not allow
for a precise estimation of parameters either on account of small singular

values of the design matrix or large values of o or both. Mne could,

1 . .
=— ) as a measure of this characterestic

for example, take MO(= o?
1 as

i

133

e ra



(utusn.62=17,a=1)

s1 s/IR BLIMBE MINIMAX wLE Frequency of A at
 Xo. BIAS . ¥SE BIAS WSE BIAS ¥SE 0 »0

1 2 2. 2 2 015 L1383 L0280 .1359 .0020 .1185 YEL: 262
8 5 7 10 {0) (.1329) (.o%32)  (.1323)

2 1 2 1 2 0% .1352 0318 L] 0% L1352 1000 0
8 5 7 10 (0) (.1329) (,o%3e) (.1322)

3 1 -1 -1 1 .ot ,1337 .0%76 331 Jo'eg .1337 1000 0
8 5 7 10 (9) (.1328) (.0%21) (.1322)

& 2 2 2 2 L0017  1,2522 0023 1.161% L1118 L8ag9 559 sl
1.0 3.0 1.5 5.0 (0} €1.2327)  (.0128) {1.13%9)

s 1 2 1 2 0325  1,2882 L0031 1.1559 L0%3  1.1867 aso 50
1.0 3.0 3.5 5.0 (o) (1.2227) (.0033) (1,1256)

8 ) 3 -1 -1 L0011 1,2757 »0076 1.1671 0012 1.272% 395 5
1.0 3.0 3.5 £.0 {0) (1.2327) {,00%2) (1.1255)

7 2 2 2 2 L0082  23.k8an 1,1%05  10.6809 1.9740 8.8110 207 733
0.25 0,50 0,75 1,00 (0) (22,777 (1.1338) (10.3501)

8 1 2 1 2 L0391 22,7810 L2656 9,5188 L5959 8.2915 282 718
0.25  0.50 0.75 1.00 (o) (22,77  (.8015) (9.8180)

9 1 -1 -1 1 L0080 23,1857 .2908 9,5572 L2618 15,7166 uss 555
0.25 0,50 0.75 1.00 (0 (22,77177) (.2834) - (9.8999)

10 2 2 2 2 .0258  19.1109 1.1617 g.2224  1,8065 §,7288 250 750
0.25 0.75 1.%0 5.00 (9) (18.8177) (.2885) {7.6235)

11 1 2 1 2 0087 19,3796 .2719 7.1008 L3333 8.6350 389 611
0,25 0.75 1,00 5,00 (0) (18.8177) (.27%0) (85.9090)
0.25 0.75 1.00 5,00 (0) {18,8177) {.m71) (5.8821)

¥ote Theoretical values are shown in parentheais, Other valves are based on simulationusing a sampla of 1000
froem ¥{X8,0%1). The first column with the headiag 8/DR has two entriea in sach cell. The upper sntries
are the valges of 81. 52, 83 and GB. The lowar entpies zre the singular values of the X matrix.
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(n-‘#h,ﬁz"—*l?,ﬂf‘- -3 3

BLIMBE NINTMAX MLE uency of i
 Sl. 8/DR

No. BIAS MSE BIAS MSE BIAS MSE 0 >0

1 2 2 2 2 .05;;- 971 .6311 L4872 0182 3877 572 428
3 5 7 10 (o) (.5318) (.,0012) (.5218)

2 b 2 1 2 .o’as <5808 +0012 .5299 0338 .5378 994 6
5 5 7 10 {0) (.5316) (.0%0) (.5211)

3 1 -1 -1 1 018 5348 .n:ss 5240 .09 .5388 1000 0
8 5 7 10 (o) (.5316) (.0V3%) (.5208)

'Y 2 2 2 2 L0069 5,0090 +203S 3,788 «5756 3,0010 832 568
1.0 3.0 a,s 5.0 . (0) (#.,9310)  (.1%95) (3.6643)

5 1 2 1 2 L0010 5., 0688 L0387 3,6519 03267 3.%338 726 280
1.0 3.0 3.5 $.0 (o) (8.9310) (,0396) (3.5543)
1.0 3.0 3.5 5.0 (0) (8,9210) (,03™w) {(2,5521)

7 2 2 2 2 0327 93,3208 8.0281 17,783 8,7617 15,4960 48 952
0,25 0.50 0.75 1,00 (0} {91.1109) (3.9305) €(17.1521)

8 1 2 1 2 <1518 90,9601 1.8377  18.8us3 1.9268 1%.2518 73 927
0.25 0.50 0.75 1,00 . {0) (91.1109) {(1.7967) {(15.0183)

9 1 -1 =1 1 L0161 32,5692 1,0389 18,2610 <9946 15,5000 112 898
0.25 0.50 0.75 1,00 (0 (91.1109) (,9828) (1s,2042)

10 2 2 2 2 L1031 76.W459 3.2608 12,.62)s 23,7257  12.2599 108 896
0.25 0,75 1.00 5,00 (0) (75.2709) (2.9906) (12.1231)

11 1 2 1 2 0189 77,519 1.068% 10,8787 1.1729 10,9519 136 864
0.25 0.75 1,00 5,00 (0 (75.2709) (1,0089) (10,1814)

12 1 -1 -1 1 0709 77,8561 <8565 10,0552 27832 13.75uM 18§ 815

0.25 0.75 1.00 5.00 {(0) (75,2709) (.7a76) (9,8802)

Nots : Theoretical values are shown in parenthesis. Other walues are based on simulation using a sawple of 1000
from N(X8,0°I). The first column with the heading 8/DR has two entries in each cell. The upper ertries are
the wmliuves of 81. 32, ’3 and ﬂ‘.f The lower entries are the singular values of the X matrix,




fn = m = 8_ &

= 17, o = 3}

e

Si. 8/DR BLINFE MINTNMAX — Wﬂm
Mo, _BIAS MSE __ BIAS MSE BIAS MSE o 200
1 2 2 2 2 0%  1.1185 .0038  2.0706  .0uES .8297 508 492
8 5 7 10 (0) 1.1962 JO0ta {1.1875)
2 1 2 1 2 0%1 1.2162  .0045 1.1635  .0013  1.1723 94l se
® 5 7 10 (9) (1.1962) (.0030) (1.13w1)
s 1 -1 -1 1 .09 1.2023 0022 1,1485 .0n0 1.2023 1000 [
s 5 7 ‘10 (0) (1.1962) (.0018) (1.1%27)
« 2 2 2 2 L0155 11.2687 .6173 6.4763 1,198 5,8038 133 667
1.0 3.0 3.5 5.0 (o) (11.0907) (.5002) (6.2601)
5 1 2 1 2 .0052 11,3087 .1193 §.0982 1863 5.7310 %y s06
1.0 3.0 3.5 5.0 (0} (11.09%7) (,1356) (5.8955)
e -1 -1 0102 11,397 1767 6.0578 «1139 7.5504 702 298
1.0 3.0 3.5 5.0 +£0) (11.0947) (.12%51) (5.7850)
7 2 ? 2 2 0736 211.3267 6.6153 20,0562 6.,3253 20.8978 15 285
du28 &S50 0.75 1.00 (0) (20%,9998) (6.8650) (19.0380)
s 1 2 1 2 L3808  208,6011 2,91M0 15,5596  3,2267 17.5061 24 976
0,25 0.% 0,75 ie00 (6) (208.9996) (3.3598) (16.7529)
g 1 -3 - 1 0361 208,975 1.7295 15,1542 1.6268 17.372s 53 957
0.25 0.50 0.79 1.00 (0) (208.3996) (1.6162) (15.0193)
10 2 2 2 2 22218 171,973  %,9235 15,2238  5.258%6  15.7306 8, 953
5,25 0,75 1.00 5.00 (4 (169.3596) (84.6217" (18,.6357)
11 1 2 1 2 .0N26 178,3936 1.9919 12,5709 2,1188 13,5888 [T 983
0.25 0.75 1.00 5.00 {0) (159,359%6) {1.8618) (11,9263)
12 1 -1 -1 1 L1597 173,86389 1,2727 11.2667 1,17S8 15.581% 82 918
0.25 0.7 . 1.00 5.00 (0) (163,3596) (1.1553) (11,1398}
Fote ¢ Thecretical velues are shewn in parentteslsS. Other values are Dacad 43 slmulaticn WSiDE @ Sample of 1000

frem K(X8,4%1).

The first celmm with the heading B8/DR has two sntriss im each cell. The upper smtrles are the

valoes of Bl’ 82. II‘3 and l~. The lover entries are the singular values of the X matrix,



Table u Showing rankine Lv order of nasnitmde of bBlas and mean sgvare error
of BLIMBE (1), MIVIMAX (2) and YLI (1), base? on simlation results

i 3 7 b 1.6 30 1.3 3.0 L2500 .50 L7500 1.00 25 .78 1.8y £V
¥ - —
g ATAS A A

2 2 1 1 2 3 (728) 1 2 3 {559) 1 2 3 (20M) 1 2 3 {2507
2 1 2 3 (572) 1 2 3 (432) 1 2 3 (48 ) 1 2 3 {104)
3 1 2 3 {508) 1 2 3 (333) 1 2 1 (15 ) 1 2 3 { s
1 2 1 1 3 2 (1000) 1 3 2 (950) 1 2 3 (282) 1 2 3 (3o}
2 1 3 2 {994) 1 3 2 (720) 1 2 3 (73) 1 2 3 (136}
3 1 3 2 {941) 1 2 3 (u9u) 1 2 3 {24 ) 1 2 3 (s )
-1 1 1 1 3 2 (1000) 1 3 2 (995) 1 3 2 (uss) 1 3 2 (547)
2 T 3 2 (1000) 1 3 2 (894) 1 3 2 (112} 1 3 2 (185)
3 1 3 2 {(1000) 1 3 2 (7102) 1 3 2 (u3) 1 3 2 (821

p — WSE__ yod e -
2 2 1 3 2 1 (738) 3 2 1 {559) 3 2 1 (207) 3 ? 1 {250}
2 3 2 1 (572) 3 2 1 {432} 3 2 1 (s ) 3 2 1 {104}
3 3 2 1 {508) 3 2 1 {333) 2 a 1 {15 ) 2 3 1 {s1 )}
1 2 1 2 3 1 (1900) 2 3 1 {9s50) 3 2 1 (282) 3 2 1 (389}
2 2 3 1 (9%4) 3 2 1 (70) 3 2 1 (73} 2 3 1 {138}
3 2 3 1 {(s41) 3 2 1 (u9m) 2 3 1 (28 ) 2 3 1 (5w )
-1 1 1 2 3 1 (1500} 2 3 1 {995} 2 3 1 (445) 2 3 1 (5a87)
2 2 3 1 (1000) 2 3 1 (894) 2 3 1 (112) 2 3 1 (185)
3 2 3 1 (1000} 2 3 1 (702} 2 3 1 (u3) 2 3 1 (82 )

L rw r i _i

Figures in parenthesia indicate the frequency of A at 0, pu. of 3 total frequency of 1000,



Table 5 : Showing a possible analvsis of a lower mean square erwror
(2 indicates MINIMAX and 3 MLL}

Ho 2133 ,532 1,196 1,233 4,931 11.095 18.818 22,778 75.771 91.111 169,360 205,00

f
0

015 2
024 2
41 2
QU3 7
R 3
054 2
RiVk] 3
,082 2
104 3
112 2
126 2
185 2
207 3
250 3
+282 3
.333 3
389 3
.432 3
A5 ?
JL9u 3
508 3
SU7 2
V559 3
572 3
J02 2
120 3
T8 13
L8Oy 2
W4l 2
+950 2
994 ! 2

i 4995 i

1000 jz,z > 2

?‘“tﬁ :fo denotes the relative frequency of A at zero.
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of the model. Subject to this reservation for parameter values near the
surface of the sphere the MLE seems to have a lower mean square error
compa. ed to minimax while for parameter values closer to the centre of
the sphere minimax is better on this score. These facts are further
Brought out in Table 5.

Another fact worth recording is that BLIMBE has the largest m.s.e.
of all three methods. That M1 5-Mo was proved in theorem 2.3.2. It

would be nice if one could similarly show that M, <M. A special case

where a; = @5 = ..o =a =0, is established in the following theorem:

Theorem 2.3.3 For tne model (Y, o3, c?1},8 € nB = {” ¢ RM:B'8 5_52}, M2§M .

Proof Clearly

é if é e N
. o o B
82 = ,
B= (=B, if B¢ né(} R™ .
a+)

where A > 0 is such that

By B8, = 82 (2.3.13)

1% P(Bo) denotes the distribution function of B

M) = 1 (B -B)' (B -B)P(R) + (B,-8)" (3,-BIaP(B,)

2
g QZﬂRm‘

To show M2 :-Mo it is sufficient to show that

(8,-8)1(3,-8) < (8_-8)"(5,-8) (2.3.14)
for all B ¢€ QB’ when
8" 8 > 82 (2.3.15)

let S = {cBozceR} and PS the orthogonal projection operatdr onto S under

inner product induced by I . If B8 ¢ QB’ so does P.B and hence

3



t W3
(B,-PsBY (By- PB) € (B ~PB)'(B -P.0) (2.3.18)

using (2.3.13), (2.3.1%) and the fact that R, e S. Adding B'(I-Pq)ﬂ to

A
both sides of (2.3.16) we obtain (2.3.14) and hence the theorm.
In the setup of theorem 2.3.3, If additionally Y follows a multivariate

normal distribution, then it is easily seen that

A = al gx__. al (2.3.17)

where xz is a noncentral chisquare variate. In the peneral situation
however the distribution of ) is likely to be very complicated., To
study this distribution we tabulated X in intervals of width 0.1, but
we shall not report on our findings since we suspect that definite
conclusions, {f any, can only be obtained through a much more detailoed

study.



CHAPTER 3

S LI maph S e 3 meme

BHLE AND ALL

If the parameter R in (Y,XR,0ZA) has a known prior distribtution,
then one way to obtain optimal linear estimators for parametric
functionals is to minimize the expected mean square error., These
.estimators are known as Bayes homogeneous linear estimators (BHLE).

In section 1 we state explicit expressions fur 3HLE’s, and also present
numerical comparisons in a class of such estimators. 1In section 2 we
egtablish some properties of the class of admissible linecar estimators
(ALE) in bounded parameter spaces under the quadratic loss function
defined in Chapter 1. In particular, we examine the admissibility

of the linear estimators we have studied.

In this chapter, the parameter space Qo for o? in the model
{Y,X8,0%A) will be the entire positrive nalf of the real line. While

considering bounded B-spaces of the form I = {ne Rm:B'HB 5_62} we

A
shall assume a knowledge of 82 = 02/82, This type of bounds have been

considered by Rao [31]., Thus, for example, when hoth H and A are p.d.,

the minimax estimator for p'f is p'(X'A”1x + o2m)~Ix'a~ly,

1. BHLE

L

Consider a specific prior distribution for R over @y, and denote

£(g}, D(B) and E(AB') by a, v?4 and o2FE respectively, Clearly
02E = 02p + aa' {(3.1.1)

If b'Y is an estimator of p'B, then the expected mean square error is
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E(b'Y-p*B)° = o2[b'Ab + (X'bep)'E(X'b-p)] (3.1.2)
The BHLE blY ig defined as

b b, +(X'h,=p) E(X'by=p) = Min  [b'Ab+(X’b=p}'E(X'b-p)]
m
beR (3.1.2)

Study of such estimators is essentially due to Chipman {11}, Rao [311.
By Hitra [23]), b, stated in terms of an optimal inverse of the design

matrix is

+
S ' 3.1.u
b’h (x )EGAP (3,1.4)

Thus the BHLE is biY = p'{(X’);QA]'Y  pr A ) Iy (3L
when both A and ¥ are p.d. The expected bias of biY is

4 1' L &
P [{(x')genl X-IJa (3.1.6}

and, by corollary 4,1(b) of Mitra [23], the expected mean square error is

.*.

BoA]p (3.1.7)

o?p fE-EXH{(X")
The Bayes linear estimator (BLE), blY + c, similarly minimizes

E(b'T+e-p'8)° = 02[b'Ab+(X"h-p)*A(X'b-p)] +
[{X'b=p)fatc} L{X'b-p)tarc] (3,1,8)
and is given by the choice

by = (X by €y = p'LI-I(X")], 1'XT0 (3.1.9)

The expected bias of the BLE {s the null vector, while the expected mean
square error is

)f

ﬂ,hlp (3.1.10)

olp'lA-ax* (X'

Since E-A ie nn,d so s E® A ~ A & A, Corollary 4.1(b) of Mitra {23}

therefore implies that
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re-pr (x0) 1 - ca-axrxn® 1 (3.1.11)
EeA ABA o
{5 n.n.d., as is to be even otherwise expected. {3.1.11) is a null matrix
when a = 0, in which case the BLE 1s the same as the BHLE.

For simultaneous estimation of several parametric functionals, the

BHLE L,Y for P8 minimizes

E(LY-PB)'A(LY-PB) = o +r[L'ALA + (LX-P)'A(LX-P)E] (3.1.12)
where A is n.n.d. The problem of mimimizing this expression was solved
in chapter 2, section 2, while obtaining the approximate minimax estimator.

Thus

Ly = PLCXY ] T (3.1.13)

leads to one choice of BHLE., The entire class of BHLE's for PR is given
'

by LaY+ZY, where Z is any matrix such thatxﬁqu)C:.}i(n). When A anl B

are p.d., the BHLE for 3 is

p -1

By = (XA + D a7ty (3.1.18)

Observe that this establishes the assertion made in chapter 2, viz, the

approximate minimax estimator over Qg = {A:B'HA < 62} is a BHLE with

E = G“EH—l On the same lines as in theorem 2.3.1 one can show

.‘.

(I—Pﬁ"g)é* = 0. Also, defining B* = (E(é*)_ﬁ)'F:-l(]::(g*)_ﬁ),ﬁo = X _

- -1 - .
Bo = (E(BO)-ﬁ)'E (E(Bo)-B). we have B_ < B,, which corresponds to

theorem 2.3.2 (a). However, it will be seen through numerical examples that
-

a result corresponding to theorem 2,3.2 {b) need not always hold. One

1345 02}, when 5* is

. situation where this ig valid is when QB = {EeRT:R'E”
the approximate minimax estimator.
Let us now study the relative pcerformances of BHLE's with different

prior distributions in the model (Y,X8,02I), If B is uniform over

QB = {BERm:B'Bﬁﬁz} thena =0, A =€ = [fm+2)92}“11. Keeping this QB in
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mind, another class of priors on R™ could be those with a = 0, and with

a density which is constant on spheres arcund ¢, but decreasing in
magnitude as cne moves away from the origin. Thus one expresses maximum
faith in the origin, and this faith: diminishes as ||g|| = VETE  increases;
however, there is no preference for any particular direction. If one
assumes normality of the underlying A-distribution, then it is not difficult
to see that, E = A = [ABZ}—II, for some A > 0, Here the BHLE assumes the

form

~

R, = (X'X 4+ A621) " txry (3.1.15)

Ubserve that A= 1 gives the minimax estimator, and A= m+?2 the BHLE with

A

uniform prior; R, - Bo, the BLIMBE, as A + 0 (@2 is not to be confused

A
with the MLE (52) of chapter 2, section 3).
We shall compare Bx's for various A's on the basis of their biases

and mean square errors., O(bserve that these priors are invariant under

an orthogonal transformation of the variables. Hence, as in chapter 2,

section 3, we can take, without loss of generality, X = ( 3 g Y,
where A = diag(ul,...,ar). Defining di = u? .
FS A r Gi m
B, = (E(8,)-8)"(E(B)-B) = A20% ] ——mm ¢ } 82
i=1 (di+182)2 i=r+l
o . , E a, '
M, = E(B,-B)'(8,-8) = ¢ + B (3.1,186)
A A A =1 (4, + 2022}
(AL mMﬁ

Clearly BA increases with A for all R. MA decreascs with{l at = 0,

and hence we may expect such a behaviour in a neighbourhood of the origin.

L

Hence, if 9, = R, then for A, # X, the inequality M, < M. cannot be

A 1 2 Al—- R?
valid for all . However, if 98 is a bounded set containing the origin,
then one expects HA < M for a nondegenerate subset of QB if A L

1 2
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and as one maves towards the boundary of @, it mav happen that Ml > Hl .

R? 1 5

These observations were mostlv confirmed by the pumerical examples
studied. We consider the examples of chapter 2, section 3, with a few

additional points in 2, for each of the 12 comhinations of a design matrix

A
and a2 o¢. Rerall that the model is

y
Y
B(yi) = a8y, COV(yi,yj) = ozcsij, Q, = {RerR:} Bi <17} (3.1.17)

for 1,3 = 1,2,3,4. Clearly (see equations(3,1.16)), it is sufficient to
compare-MA's on full rank models of this type. Howevsr, if A is a Function
of m, then one will have to consider different 81'5 for full and nonfull

rank models, Thus for the full rank model {m = 4), the BHLE with uniform

sl

prior is 65 while for the model with m=5, r=u it is 37. In the naxt

section it will be seen that p'él is admissible for p'( whenever X > 1.
Moreover, if p is an eigenvactor of X'X corresponding to a positive
eigenvalue then p*ﬁk is inadmissible for p'R, whenever X < 1; even otherwise
this result holds at least for A in a neighbourhoed of the origin except
pessibly when p'PX,p is smzll with respect to p'p. Hence we compare Mis

for » > 1 only. In fact we consider Ml, P
m,s,2. of éo = (X’X)+X'Y, which gives the BLIMBE for the model (3.1.17).

M “as M7 and also MO, the

Ranking of these M.'s in inoreasing order of magnitude is shown in table &.

A
From the tables it is seen that the natural ranking at

B=0die. My <M If A > 1,) is also prevelant in a neighbourhood

1 ?
of.the origin. It tends to be disrupted as one moves towards the surface
of the sphere, In this region, this phenomenon is more noticable if the
nmerically larger coordinates of % correspond to smaller sinpular values
of the design matrix. {Note that the singular values ay Are arranged in an

increasing order i.e. @y <o, <oy < au). This is especially true when
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Table 6; Showing ranking by incréasing order of magnitude of mean
square arror of BH{JB'S

(i= 1,2,3,4,5,6,7).

to lcast a.s.&. and so on,

0 denotes BLIMBE,

The first entry corresponds

! M .133 532 1.196 1.233 4,931 11,095
1
e Do D D. .2 D.,3 D1 D2 D_,a
B Dyt 1°” 1’ 2° 2° 2°
0 0O 0 0 o0 76543210 765423210 76543210 76543210 76543210 76543210
l 1 0 0 0O 76543210 76543210 76543210 76543210 76543210 76543210
0 1 0 O 76543210 76543210 76543210 76543210 76543210 7654 3210
0O 0 1 0O 76543210 76543210 76543210 76543210 76543210 76543210
0O 0 0 1 76543210 76543210 76543210 7654 3210 76543210 76543210
4 11 -1 -1 1} 6543210 76543210 76543210 76543210 76543210 76543210
7 2 1 65743210 65743210 6754 3210 45367210 54673210 67543210
1 1 1 76543210 76543210 76543210 76543210 76543210 76543210
1012 1 2 1 56473210 56473210 65743210 45367210 5u637210 56473210
1 1 2 76543210 76543210 76543210 76543210 76543210 76543210
1213 1 1 PRIS067 3I2M15067 32415607 21340567 23145670 23415670
1 1 3 76543210 76543210 76543210 76543210 76543210 76543210
4413 2 1 0 23140567 23145067 32u15067 21340567 23145670 23'415670‘
0 1 3 76543210 76543210 76543210 76543210 76543210 7654 3210
1513 1 1 2 32415067 32415067 32415607 21340567 23185670 23415670
1612 2 2 2 45362710 45362710 45362710 45367210 45367210 45637210
4 0 0 O 21304567 21304567 21304567 120 34567 12034567 12345607
0O 4 0 0 43526170 43526170 43526170 76543210 76543210 56743210
6 0 4 0 76543210 76543210 76543210 76543210 76543210 76543210
0O .0 0 4 76543210 76543210 76543210 76543210 76543210 7654 3210
- Note 1, Dl dnotes the design matrix with singular values 4,5,7,10;
D, with 1.0, 3.0, 3.5, 5.0; Dy with .25,.50,7.75, 1.00 and
D, with .25, .75, 1.00, 5.00, In Di,i, o assumes the valwe 1,
Note 2. In each cell i denotes BHLE with prior dispersion matrix (82/i)1
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%is small, or in other words, the model does allow precise estimation
¢of the parameters. When the _arper cocordinates of B correspond to
targer a4 the natural order tends to be disrupted for larger HO, though
wt as frequently, (compare, for example, the two rows under f'% = 7),
fwever, there are some cxceptions to this . For example, a study of
the column under MO = 169.360 shows that even for laree “é,-the'nétural
order need not be disturbed very much even near the surface of QH if the
large f-coordinates correspond to ai's which are sufficiently large in
wmparison to the other singular values,

éo is generally the worst estimator with respect to the m.s.e.
However its relative performance improves near the surface of Q. . In fact,

on the lines of theorem 2.3.7(b) one can show that

Thus if A < 1, M1 E‘Mo for all B in QB. On the other hand, if X > 1,

%E < 52 and it is not surpr’sing if M, exceeds M_ nmear the surface of
the sphere QB.

In conclusion, we recommend the usc of BA with the largest ) attainable
under a priori contraints, especially if the true parameter point is not
very close to the surface of the sphere. Otherwise, if B8'R is close to
§2, and one has reasons tn believe that the larger R-coordinates correspond
to the smaller o4y and additionally M, is not vary large, then one can

*

safely opt for a smaller X, Use of éo ig discouraged unless reduction of

bias is &f prime importance.
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™ this section we study some properties of the class of admissible
linear estimators for parametric functionals in the Gauass Markov model

(Y,%,02A) with 3 e R, = {B ¢ R g Y < 82}, where A and H are p.d.

8
thserve that g'Y is admissible for q'3 if and only if Fl 1 is admissible

for qlgl in the model (Y Xlﬂl,azl). QB = {Ble R" :Bi Bli.G'}' where
1 .

Az F'P, H =TT, Y, = (FD)7TY, X = Y hert, s, = TRy = Tgs q1=('r')‘lq.

1 1

Thus it is sufficient to consider the model {Y,XR,0%1), R ¢ 2, and

o g a, = (0,=), whera
f, = {8 c R ¢ B'G < 82) (3.2.1)
Let us recall the relevant definitions of chapter 1. If g'Y estimates

4’8, then the risk is

R(g'Y,q'8) = E(g'Y-q B) olpty + [(X'g-q)‘ﬁ]2 {3.2.2)
~g'Y is said to be inadmissible for q'y if there exists a W'Y with the

property

R(h'Y, q'R) < R{g'¥, q'B) (3.2.3)
for all B ¢ 2qs with strict inequality somewhere in Qﬁ. Otherwise g'Y

{s admissible for q'f. If

9 = (o't : g e Mo (3.2,4)
' 1
ggg B < {all admissible linear estimators for a'fl in

(Y,XR,0%1), when B ¢ Q} (3.2.5)

then it was shown in chapter 1 that

gﬂrq ° < & (3.2.5)

Also denote p = Px,q and & = q-p .
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. t
fome characterestics of ﬁg ® are established in the following theor--.

i 1 . 1
e 3.2.1 (1) fg o ‘g i N
B |

I

Lp'e q'f
(11) P O H,
B B

'8

q
of: (1) If g'Y rfgﬂﬂ , then (3,2,3) is satisfied with some h, for
2

§in Qz. Inequality in {3.2.3) is strict somewhore in Q,, since

ferwise the conditiens imply h'h = g'g, (X'h-q) = + (X'geq),

!

L] ) '
iﬁ'g 8 . (11)Y If g'v #ﬂg 8 , then considering (3.2.3) and
1 g

fting B:BJBI where 8 = Py 8 ¢ QB’ we obtain

a’h'h + [(X‘h-po)‘ﬁo]? < olgilg 4+ [(X'g-po)'ﬁof

¢<=> gZh'h + [(X'h—po)'BJQ < olg'g + I:()'f'fz«—;::(_))"ﬁ]2

ixce fX'h-po)'Bl =0 = (X‘g—po)'ﬁl. It is now easily seen that

p'8
g’ # ﬁ Q:

Considering specific estimators, we examine the admissibility of some

_fportant ones in theorem 3.2.2.

]
feoren 3.2,2 (i) © q[?% B whenever @ containg the origin.

fit)

if 0 ¢ Qlc__ 9, and Jdiml -ﬁ(.@l)] = m,

Hence

t q'B = M, gt 2
The minimax estimator le € .ﬁn » whenever Q={8eR":B'HA<Si%}, H p.d.

* q.B
{li{}- The BHLE g,Y ¢ j}n s whenever the maximum eigenvalue of
8

E(BB') = o?E does not exceed 62,

| ]
(fv} If p'B 1is estimable, then its BLUE g(‘)‘f f(jﬂ,g 8 , whenever p # 0,
B

froof (i) IfFg'vy =0 ;‘5&3 8 , then. there exists a h'Y satisfying (3.2.3)

for

all A in Q. Since 0 ¢ © it is easy to see that h'h < g'g = 0.

Henee K'Y = O,
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(11) Suppose, to the contrary, that thers exists a h'Y satisfying
(3,2.37) for all B in f. Furtier, let R(h'Y,q’'B) be maximized at

8= ﬁm in ©. Clearly
?
Max R(h'Y,q'R) = ah'h + [(X‘h—q)’Bm]2 j_ozgigl + [(X'gl-q)'ﬁm}
e 2

< Max R(giY, q'B) .
B e

This contradicts the fact that gi? is minimax for g'B over 0.

(ii1) Since the BHLE glY minimizes olg'y +¢?X‘g~q)'ﬂ(x'g-q), it is

-2.~1
minimax for q'f over ¥ = {8 ¢ R B THR 5‘63}, where H = & °F

. Hence
T
by (i1) giY e sﬂ% ﬂ, If the maximum eigenvalue of ¢?F is no greater than

82, then R'H8 > B'B, whatever #. Thus ¥ - R, and an appeal to theorem

A
3.2,1(1i) establishes (iii).

{iv) If giY is minimax for p'R over QB,then

R(giY,p'B) < Max R(giY,p'ﬂ) < Max R(géY, p*'a) = azgégo

BcQB Baﬂe

= R(g;Y, p'al,
whatever [ in ﬁs,since X'g, = p- Hence (3.2.3) is satisfied with
§7p, h=g, and B=E» for all B in Qg-
Hote 3.213 Theorems 3.2,1 and 3,2.2 (ii), (i13i) remain valid in the
mde] (f:XB,Uzﬂ), where A is positive semidefdmite (n.=,d,) while

theorems 3.2.2(i) and 2.2.2 {(iv) need some modificationsz., Ohserve that the

risk Function %s R(h'Y,q'8) = o?HAh + [(X'b—q)'ﬂ]z. Hence if
R(h'Y,q'8) < R(0,q'8) for all R in 9, then the conditicns of theopen.d.n.2(i)
imply h'Ah = 0, or in other words h'Y = h'XB almost surely. Thus

UX'h*Q)'B}Q < (9'8)2 for all & in 2. Under the additional assumption

1§

amf (] = m, ope obtains X*h-q = cgq, for some ¢ in [-1,1]. If

~1, X*h = 0 and hencae W'Y = 0,

i

- ¢'8 is nonestimable, then surely ¢
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- fB .
almost surely, Thus, in this situation 0 ¢ qug "o Howewer if o'f = p'8
is estimable, it may honmon that there cexists a 'h' with the propertics

th = 0, X'h = p, In such cases 0 will not be admissible., Therefore in

3 q'R ‘ péB .
general, 0 may be in Sl% - iﬂ o ( the sct theoretic Aifforonec).

- It is not difficult to sce that the PLUE h'Y will bs adnissible for np'l
when a 'h' as specified above oxists. In a3ll other situntions it will
be inadniszsible,

Congider now, the class of BHLE's {q’[‘i)‘, A > 0} for q'R in the model
(7,%8,021), Ry = (6eR™B'R < 62}, where él 5 (X' + 207D IRy, W oheerwed
in section 1 that this class arises from a matural choier of nrior
distributions For £, and in particular includes the nininnx cstimator.
¥Yorcover, the BLIMBE iz obtained as a linit when X + 0, Lot vz ~xanine
the adaiseibility of q'él for cach X in (0,=). If g'p i totnlly

~ L2
nonestimable, then using theorem 3.2.2(1), a'f.= 0 e A g , Whatower A,

X "QR

In general by theorem 3,2.2 (iii), Q’B)\ {8 adaissibl: vhomewver X 2 1.
The c=se A < 1 Is considered in thaor:ms 3.2.3, To prove thias th-or-n
w. naed the following 1-rma,

At 4 1 4 + ‘r':..,nm ﬁ»"-‘.
L(,,:m-la 3.2.1 Max (_3 XJ(b X) - bt ! h
n

x'x 2
#eK

(a'x)(b'x) _ x'"(ab' + ba')x

y its maxinmun is the naxinun

1

Proof Since

®xt 2xtx
ab' * ba'
elgenvalue of ~——p——— = C (say). Obssrve that C can have at rost two

2

nonzero eigenvalues gince R(C) < 2. The lenan now follows once it is
verified that

ol

I-E_)z-;-(b'aj_fa'av"ﬁ'h‘)(a + by .
va'n VN Jaa H

Consider the spectral decomposition, X'X = P'DP, vhers P is

orthogonal and D = dlag{dl,...,de. If R(¥) = r<m, dopy = o™ --e=d = 0.

f I PR = y= (Yl,...,*fml‘, and nots that

D : P = = aw ol
enote Pq = £ (fl,. I

m
Blp < 8% <> ]yl < 8? (3.2.7)
1=1



1 8%

- 1
Theorem 3,2.3 q't f d;q g , whenover
—— by QR
2 2 .2 P
m f m d, f; ™ 4, 5
?l{ ): i }1/2 i E i3 }.1/?< (2-0)1 } i 1 }
=1 (dg + 26232 =1 (4, + A02)H 121 (dj+A02)3
(1.2.8)
_ X ; i
boof  R(q'8,.q'0) = o2t (X'R4A82T) TXIK(KIX + A82T) 1
+ [q*{(x'x+xezl)“lx'x_1}23?
2
m d, £ m f, ¥
= g2 E i1 — + ab[ z j o1 ]2
i=} (di + 26%) i=1 Tl'+ 62y
= Gq(?\,-y), say.
36 (A,y) m di f? m fi T, m difiT'
~ = - 20262 § = + 20" [} OSSN |y -
=1 (d, + A82)3 =1 (d; + Ae?) izl(diﬂez)2
_ 3G (A, v)
lenoting Gq(l) = Max e » and using lemsa 3.7.1 and
»
Y:X 'Yf < a2
i=1
the relation 8%82 = ¢%02 , one obscrves
™ d.fi ™ d, £
6, (1) = - 20202 ] 2 + o202 J —— +
- =1 (4, + 262)3 i=1 (4 + »a2)3
2 2 2
m f m 4, T
i=1 (4, + x82)2 i1 (4, + rg2yh

< 0, by (3.2,8),

tince Gq(?\) is eontinuous in x € [0,®)}, there exists n 0 such that

Gé1+ n} < 0 whenever 0 < n < - Hence, by the Mean Value Theorom,



s (x,%)
G - = —eii F o«
\70(}”“1,7’) Gq(}-y'f) a)\ 'IA’}L{, M, 0 < - Ty
< G (A+E)n
- Q
< o,

vhatever y satisfying

1

it t~3

v% < 82, Thus

R(q"B,. » 9'7) < R{q'8,,q'f),

A+n

for all B in QG and some n » 0, whenever X satisfies (3.2.8). This

establishes the theorem,

¥ote 3.2,2 The inequality {3.2.8) is violated whenever X > 1.

Defining hq = Inf{x ;: Gq(k) > 0}, this may be aquivalently stated as

Note 3.2.3 Inequality (3.2.R) may be written as

T 22 f? m f? 1/2 r d? f? 1/2 r d, F?
(] - = ) =0 Lt} (0e) 1] )
=1 (d; + 202)2  fsr+1 oY =1 (d, + a02)H i=1 (d 208
(3.0,9)
since dr+l = ... = dm = 0. Hence Gq(G) < 0, if and only If |
m by f2
(Y Y2 o2 g3 —%~}1/2 (3.2.10)
izr+l i=1 d7
1
In this case Kq > 0. When q =p, fr+l = wev ® f 7 03 hence, in partiecnlar

A > 0. ,Moreover by (3.2.9), X

< A In fact if X satisfies (3.2.8),
P -p

0

- 1
f.e. q'BA 3 _¢}g B s, then } satisfies (3.2.8) with g replaced by

q

) PR s - .
pi i.e. q'G, # 5£} ¢ (note that q'8, = p'f., whatever 2 > 0}, This
0 b QB A o A

ls compatibld with thecrem 3.2,1(i1).



Supposge q = P, is an eipenvector of X'X corresponding to the
eigenvalue do > 0, If k is the multiplicity of this eigenvalue, then one
may assume, with nn loss of generzlity, d; = d,/.,‘—‘ TEEL I T Thus,

fi = 0 whenever i » k, so that (3.2.R) simplifies to

} o< 1 (3.2.11)
. - ]
or|lq = 1, Hence, in this situation q'Bl ¢ gﬂg 6 whenever A < 1, In

general, however, there could exist a A in (0,1) which viclates (3.2.8),
The author feels that in such situations q'Gl will be admiassible for a'f.
However, attemps to prove or disprove this have been unsuccessful so

far.

fote 3.2.4  Since G (1) is continuous at A = 0, the ALIMAT qtixtytxry
is inadmissible whenever (3,2,10) holds. This generalizes theorem

3.2.2(iv) . However, if (3,2.10) is vielated, the BLIMBE could

o ph
be zdmissible for q'f, or in other words it could be in _rﬂ% ¥ - QO .
n \

R

We conclude this chapter with an [llustration of such a situation.

Consider a single dbservation y with E{y) = fys viy) =1,

) 2
HB = {f e R

. Consider the problem of estimating q'8 = B, t cfy, where

: 82+ 82 <1}, Thusn=r=1,m=2, o =821, ¥ = (1,0).

c > 2 {(3.2.12)

(hserve that for such a choice of ¢, (3.2.10) is violated. The BLIMBE is

y. If there exists an estimator hy with the property
R(hy, q'8) < R{y,q'R)

e

W2 2,2 :
h* + (h-1) By = 2c(h-1)e,R, < 1 . (2.2.13)
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B1
for all B = in Q,, then surely
h2 « 1 (3.2.14)

* » 2 L *
The inequality (3.2.14) is strict, since if k" = 1, then considering

{3.2.13) with 8) =1, B, = 0 it is easy to sea that h = 1; thus in this

2
cage (3,2,13) 1Is an identity. Morcover, straightforward computations
show that when (3,2.13) 1s satisfied with R, = &, - 2- ,
1 2 /5
2
he L1, 2;”1 ] (3.2.15)

a nondegenerate interval by virtue of {3,2,12). Since (3.2.15)

- contradicts (3.2.14%), the BLIMBE is admissible for By +eb,e
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e

TESTING NONTESTABLE FUNCTIONALS

Consider the problem of testing Hotq'ﬁ = ¢ in the Gauss-Markov model
(Y,XB,0%A), where ¥ follows a multivariate normal distribution, It was
seen in theorem 1.2 that if q'B is nonestimable and the parameter snace is
wnbounded, then Ho cannot possess any nontrivial test. In this sense
nonestimable parametric functionals are nontestable, If the parameter
8pace is only partially bownded, for example, QB = {8 ¢ Rm:B’He < 82),
with H p.s.d., then the theorem remains valid for parametric functionals
with coefficient vectors outside .)‘ﬂ_(X'=H). For all other functionals, i.e.
q'8 with g ¢ jvi(X':H) it is possible to develon a procedure to test
Hozq'ﬂtc by approximating q'B with suitable estimable parametric Ffumetionals.

For simplicity we shall restrict ourselves to the situation where H is
p.d., when all parametric functionals can be tested. For such models, we
develop a test for Ho in section 1, by replacing the hypothesis by one
stated in terms of a (fixed) estimable parametric functional. In sections
2 and 3 we search the 'best' approximating estimable functional, or the one
that, in some sense, maximizes the power at alternmatives.

In this chapter it will be aszsumed that the inderlying distribution of
Y is multivariate normal. Moreover, the parameter space for (f,02) will

be 0, % 90, the Cartesan product of the parameter spaces of f and o2,

B



1. The gest
The testing preblem in (Y Xf,0%A), fef, = {2eRT: gt HA < 82}, A an?
H p.d., can be reduced to an equivalert proh:lem in (Y. X021}, fen, =

m . . . .
{feR Q'8 < 52} by nenmsinpular transforrations similar to those discussed

in chapter 3, section ?. Writing exnlicitly, the model is,

E(Y) = ¥r (4,1,1)
D(Y) = 21 (4,1.2)
BERB = {BeRm:B'R 362} (y,1.3)

Our problem iz to test the hypothesis

H ¢t g'g8 = WLt
o q' = ¢ ( +)

]
Equation (4,1.%) will have a solution in i if and only if ¢ < 52(q'n);
if this is vicolated then Ho can he reiected without carryinyg out any

statistical test. Thus, we shall only be concerned with situations whor

2
A% = 8% L S 5 (4.1.5)

Observe that q'8 = ¢, #'8 < 62 implies

L]
Bz St (I - )z (4.1.6)
q°a q9°q

m

where z £ R is arbitrary excent for

t
zwx;$%u5a2 (8,1.7)
Thus, for'any p € Rm,

. oo'la qaq!
' = em——— (I -
p'A pt( n'a)z

'ﬂ ]

where » satisfles (u,1,7). DBy Cauchy Schwarz Inequality



61 1
SR A/t (I- Zan) < pre < L9 4 p/pr1(1- L)y
a’a ‘ ata 0 =P " = q'q pape
Friting
2
A2 = p'(I - %%é-)p TN AL D (4.1,8)

a'a

Fe have thus arrived =t the following theorem .,

Theorem 4.1.1 If ('@ < 82, q'B = ¢ =

' 1
.g%&_g__ AN ip'ﬁ f_aq?:;g-'!‘ AX (4.1.9}

When a'f is nonestimaghile Ho cannot be tested directly by conventional
mthods, Howewer, if there is a testable hypothesis H(‘) with the property
% =» Hé. then considering Hg instead of H  one stays on the safer side
since rejection of Hé will surely imply the falsity of Ho' As methods
for testing hypothesis involving estimable functionals are well ¥nown,
theorem 4,1,1 with p a.)A(X'), gives a plausible choice for Hé. Accordingly,

ve shall test the hypothesis

H! p'f € [(p'ﬁ)l, (p'ﬂ??] (4,.1.17)
where

T
(ptr), = <B4 _ 4y §.1.11)
p'R), 3'a (

¥
(prg), = =2 + m 4.1.12)
p'Bl, - (4.1

Since p € M(X'), we shall always use tlie representation

p = X' (4,1.13)

tor some b g R, ArR = 82

(n'a),

SERDSRNES L VU B ~ = (pre),

Figure u,1.1



- The replacement of Ho by H; is brought out clearly in figure u.1.1,
Instead of testing for trte plane a'f = ¢, w» shall test for the ntrip
between n'B = (p'ﬁ)l and n'R = (p'ﬁ)g. Observe that if A% = D, a'f
is a tangent plane to the sphere R'E = §2. In this case H0 ig eaquivalent
to Bt ¢ g = Sk

a'q

1
To obtain a test for Hé we use the BLUL of p'f to test n'f = 5@:2

o

with the critical value so determined that the test is of size a, i.e,
the maximum power of the test under Hé iz a, If R is a solution of the

normal equations

Xr¥g = X'Y {(u,1.14)

then the BLUE of p'8 is p’é. In case ¢” = cg is known, the test is

3 nf 'ﬁ - ' !
M}Qﬂtl T = UOV > TE
or RN EREE L TF (4.1.15)

where

v\ = ptX™) o = b'Eb (4.1.1F)
t is normal with

T ' r
E(r) = R& :"QJC‘ S, V(1) = 1 (u.1,17)
%
L}

Hence the power function of the test (2,1,15) is symmetric about f:—qﬂ

L ]
and is monotonically increasing as one moves away frnnxi%%fl— in either
direction, Thus if one chooses T, So that the power at (p'ﬂ}2 is o then
the power at (n'B)I is also @, and the vesultant test is size o for HY,

S8ince £(1) = B uhen p's = (D‘B)? . T, is determined from

o v ,
O
AX ANy
1 - @(rs- p v) + §(- T~ E;;) = (h.1.18)

where ¢(-) is the distribution function of a N(n,}l) variate. VYriting K

for the test function of this test, note that this meang 8up E(5) = a ,
Riq'fi=c¢



1 B3
so that the test is size o For Ho'

Lauations (8.1.15) and (4.1.18) describe the teet procedurc for =
fived cholce of the asppromimeting functional p'B. Sinec p can be any
veetor in ,?*':JX") {equivalently, by equation (4.1.13), b can be anv
vector in R") onec has to obtain an ontiral test proecadure, OChviowsiv
the test which has maximuth power at alternatives will be best in an

gecapteble sense, If

Hl bt q'd = cl v,1.19)}

denotrs an altermative of interest, thenby theorem b,1.1, the corresvonding

hynothesis stated in terms of p'8 is

i L 4
Hitp! La . 2.3 4 1 _ n
yeptoel ey el SN R (u,1.20)
where "
2 2 ‘1 ( )
A 2 A% s u,1."71
1 q'q

Clearly, one hes to consider only those altematives for which A$ > 0,

since ~therwlse Hl is ret a plausible alterhative.

e
If A2 = 4, the alternative H, is equivalent to 8 = 5%g~q. Hepn

1 1

{4.1.2C) collapses to the point v.:! g*-,-g' « 30 that the nower of the test

’ L4
at the alternative Hl Is the power at p'R = ¢y ﬁ-,g- « Houever, in penevral

Hl is not cauivalent to 2 single £ - point, and hence {(1.1.,720) will he
a nondegenerate Interval, To compare powers of various tests, f.e.
for gifferent p e Mexe ), ohe has thus to define a measvre for the

power of a test wnder H Une such easure can be the maximum nawver

1
attained by the test wnder Hl’ where it achieves maximur discrimination
between Ho and Hl' Note that this is the maximur power attained by the

test (4,1.15) in the interval (4.1.20). Observe that the maximum power



7 Bk

: + i ' : I3 7 ' - A
is attained at 4 mq_'o b2 if o Mﬂ,q > Cuq'q ,» and at o qug _1A,

otherwise, Hence the maximum nower in (4.1.70) is

QL= c,—C
- - — -d'!'-——~ t - + - _h—'}-m- ? -
gl(p’cl) 1 ¢(TE o p'a Al,\) h{ T .ﬂw‘,m p'a Al'\)
(u,1,27)

To ohtain the best test one has to maximize (¥,1.272) subject to the
restriction (4.1.18) among all p € }4(X'), i.e. b e R, A test which is
ortimal in this sense will be called the 'best test of type I' for the
alternative ey

A point to note is that there can he situastions where the maximum
power of a test in (4.1.20) is less than the size a. Py eauations

{(#.1.18) and {4.1,22) this happens when

!Cl"C!
—aTa Inral + AL < 4 (4,1,23)

Clearly this can hold only when 4, < A,i.e. ¢, ¥ (~fcl , fel). In this

1l
situation, (8.1.23) holds for all p's.ﬂﬁ(X'), if and only if
Z
11
XX - | ~ * = Mqq"™ is p.d. (4,1.24)
st 9'4
2
ley=cl
where ay = —;Ta~—— and a, = & - bl. When (4,1.74) holds there exists

no test of the form p'f which discriminates between H6 and H In

l'
particular, this would be the case when Xg = 0, i.e. q'B is totally

nonastimable, Writing p = p_ = Px,q, 8,70 - D, in {8.1.23) one ohtains

[+ O
a, 'p’ . Yq'q
58, 7 182 (4.1.25)
)

Thus if ¢y ¢ (u[c', lcl) and q'f is totally nonestimsble, or close to
being totally nonestimable {in the sense of small pépol, then our test
procedures may not be able to discriminate bhetween HO and Hl. However

in all other situstions, one expects the maximum power in (4,1.20) for
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some p'é to execerd a,  In this sense, there axists some test function
which discriminates hetweeon Ho and Hl’ Lven the. minimum powar of '
in (4,1,20) can excecd a if 1cl—c] is larpe.

Another approach to finding a bast test could he to maximiza powsr
wmder the alternative 3 2'2%3 q, which is +the winimym norm solwtion of
(u,1,19). Thus, hore there is a commen basis for comparing power of
tests conatructed from n'&, p varving in_lﬁ(%'). Cbserve that this
corresponds to maximizing power of tasta(n,lel5ht p's = Cl %;% , which
is the central plane of {(4,1.20), The hest test obtained by this method

will be called the 'best test of type II' for the alternative g It is=

casy to see that such a test is obtained by maximizing

=€ e
- - - Secv— f + - - e Ty Y 1] [
gg(p’cl) 1 ¢(1€ oo P q) * -1 G vaTq n'al (u,1,72F)
O

subfect to (4,1,18),
When 0f is wnknown, one can use the BLUL of n'2 and ronatruct
tewt , _ nxm .
a t-statistic to test Hl' Let X ¢ R he of rank r, Denoting
v = n-r, Rg = (Y-XP)'IY-XR), the test is

¢ = BeB o cpla/a’a
v/ (K2/v)

>t

Rejeet if .

or . < -t (n.1,27)

t follows a noncentral t distribution with v deprecs of freadom and

noncentralitv parameter {n.c.p.)

. ) - t '
u(ptr) = B B = cplala’q (n.1.7F)
av

Observe that the power of & t-test increases with |u(p'®)| and the power
function is sywmetric about w'g/q'a. To obtain a size a test for !

one has to determine te such that



1

Sup : (3-FCt_/ v, p(p'R)) + T(-t_/ v,u{n'fY)} =«
p'fe Interval (4.1.70) €
4

o e §
o
vhere F(«/v,u(p'd)) denotes the distribution function of & noreentral
t-variate. If’ﬁg = [Gé ,o) then thig epuation cen br written as

AX

g v
4]

AA _ «
1- F(tE/ v, ;;;) + F(-?E /v, = (4,1.29)

Clearly, the resulting test is also size o for HO. Obzsarve that this
procedure falls if aé =0, If QU = (Gi, =) with og > 0, then (8,1.77)
. assures only a lewvel of significance a, while the size of the test rav
be less than a. Also note that, this test can be wed only when a

knowledge of og is available, possibly from past experience.

The best test of type I for an altemative ¢, maximizes the

1
maximum power wnder Hl’ i.e, it maximizes
(cl-c)p'a | 442 (c_-clp'a Alx
= - + + (. +
flfp,cl) 1 F(t€ /vy frms eyt Bl LIS SAH —r —=
o o o o
(u.1,2)

subject to (4.1.29), The best test of type I1I for ap altomoatrive ¢y may

be defined as the test which maximizes the maximum power under the
c
alternative B = aﬁa-q, i.e. it maximizes

(c.-cdptq (c,~clp'q
- - L + Y
fzfp,cl) 1 F(ttfv, oovq'q )+ F( te/u. Rar )

(u.1.31)

subject to (4,1,29).



The process of obtaining best tests involve difficult optinization
problams and it is mnot easy to arrive at analytic solutions. In section
2 we obtain the best tests when q satisfies som conditions. Som
imortant charactercstics of the best tests for arbitrars q and <ow
conveniant aprroxinations will be discusaed in section 3, For conwinience

we shall denots

g

i (cl-c}p'q X

AL % 1
P, = S, F e I lu | F (l;.:]"{’})
1 a.v 2 g,v a'a 2 2 o,V

Though A, v, T, t_, s Voo % are a1l functions of p, for notational

€ 2

simlicity, we avold suffixes,

2. The best test for certain hypotheses

Let uws fix a = # c, and consider the problem of obtaining the best
test of type II for the alternative leq’ﬁ : e If o= o is known,
then it 1s easily seen from eguation (8.1.18) that Te is an increasing
finction of A2/v?, One arrives at a sizilar conclusion ewen when o is
wknovn, with a knowledge of the lower bound ug of ﬂrw only available,
This follows from equation (4.1,29), wsing the fact that the power of
a t-test Increases with the magnitude of the n.c.p. A study of gg(n,cl)

and fzip,cl) now reveals

(p'q)” 22

(i) gg(p,cl), fz(p,cl) increases as -L%— increases, —y reminire fixed.
v v
A2 (')
(ii) gz(p,c]_), fgip,cl) {ncreases as - decreases, _..._g__ remaining
v hv

fived (since then Te(tg} decreases and the critical region «xpands).

If there exists a p in J&(X‘) which simultaneously maximizes

2

1 2 -

SE-—%L-— and minimizes % » then clearly p'f will giwe the bast test of
v v

type II, irrespective of whather a is the valuas azsumed by o or the

lower bound of QG. Let w determine the necessary and sufficient

conditions for the existence of such a test.



Firstly, we define certain wseful notations, Lot
= P
DO qu
s, = a-p, = (-,

Note that Py = X'b_s whare

+
- X '
bo (X )'q
Morcover a4 = p_* 5 and
o o
to - ' + gl
q q DODO SO [
Alsn define
b* = Xq = )(po

(6,2.1)

(u,2.2)

{u,2.3)

(u,7.u)

The positive eipenvalues of XX'(same as the positive eifenvalues of %X'X)

will be denoted by 8 L8, Leen A Write
' pp'
A= X(I- T = (1o —==2)x!
a-a a'a

z X! - =3 (ip )(Xp )
qq'q [s) I's)

s!'s p'p pp!
s Pl X 4 e X (I- 2y
n'a n'q PN,

Ubgerve that _}f’{_(ﬂ) = }‘/{(X } when o ¢ <M_(X‘).
can be written as

p =X

(u.7.5)

(4,2.6)

{u,2,7)

Since any p in !{, (X3

{(4.1.12)

for some b In Rn, the optimization problew can be expressed as one with

. n . .
the entive R as its domain.

In other words, mme has to fctermine

Obviously

. oh e A2 b'ap ..
a ' in R which simultaneously minimizes - = '---—-—b,P n and raximizes
o <
2 2 _ 2
(p'q)” _ (b'Xq) _ _ K A _ bh'XY'b
Ry N If p_ = 0 then Xa = Xp_ = 0, 5 “gTi;g

the best test of type 1l would he given by 'hiXé, where hl is 4%

eigenvector of XX' corresponding to the «rcipenvalue d

1

Bowtever, in this



situation 82(Pacl)g fQ{p,cl) js less than . a. . at all alternatives.
On th. other hand if a'7 5 cotimable, then surelv a*P will pive the

best test. Having settled these two extrome ¢ases, hanceforth we shall

he interested only in situations where Dépp 7o, sgso 70,
. ; -
(b 'hal ' . . S .
Observe that T h S q"™"™g = blb,, with couality if and cnly if
) - : 2
b1y

b = ab, for some nonzero 'a2'. Thus the best approximating cstimoble

functional, If it exists, must he a wultiple of W'h.. fSoreover

22  b'Ab e s . . . . A
“5'= ;ﬁgrq; is minirized if and only iF b 18 2 proper cisenveetor of & with
v hIE

roespeot to Px, corresponding to its smallcst propar eirenvaluve (5,
for example, Rao and titra [ 33, o 1207 for a definition of sroney
ecipenvectores and eigenvelues), Since MA%IA) :,ﬂ{fﬁ), (A-APX)“ = 0o
(Avllexb = 03 f.e. b is 2 proper ecifenvector of A with paaprct to tw
if and only if Fxb is an sigenvector of A, Hengo. one hes to ohta’s the

necessary md sufficient conditions under vhich ab, = a fyb, s an

aigonvector of A corresponding to its minimum pogitive eisenvaluc,

Lemma u.2.1 (i) by is an cigenvectbr of A if and only if it is =n
eironvector of XX!',
(11) b is an aigenvector of A if »nd only if it is an eironveactor of XX'.
(iii) by = d_b_for some 4> 0 if and only if b, (or b ) is an

o o o o

eiponvector of XX,

Proof (i)} Ab, = Ab, for som: A
ba’: b-.':
=  XN'b,= (At q'q]b* from (4.,2.8)
Conversely, X 'hy= dh, for soms ¢

b-‘: b:‘:

z> A})* = ( d - )bn':

n'a

(ii)} follows similarly From (4,7,7).

= = nt = k
(114) by, Xp, XXth o= od b



: 0t

if and only 1if bo is ‘an eipgenvectors of XX' corresponding +o the
eigenvalue do' The lemma is established once it is noted that b{J is an
eigenvector of XX*' if &nd ohly if b, is an elgenvector of XX', Note
that 4 > 0, whenever pc')po £ 0.

An interesting fact to note from equations (4.1.1R), (4.1.26) and
(#4.1,29), (4,1,31) is that best tests of type II are invariant wnder
scalar multipiication of p by nonzero scalars. For the problem under
consideration, lemma 4,2.1 shows that b,,',xé or any nonzero multiple of
it will give the best test if and only if béXB is the best test. béxazpéﬂ
is our familiar estimator BLIMBE, In the following theorem we find
conditions for bo to minimize 12/v2, or in other words, some conditions for

ELIMBE to be the best test of type II,

Theorem 4,2.1 bo minimizes A2/v2 if and only if it is an eigenvector

a9,
1° 575 4,3

of XX' corresponding to an eigenvalue doc[d
o

Proof MNecessity : Let b, minimize ;\2/v2. Then b, = beo is an

eigenvector of A and hence of XX' (by lemma 4.2.1) corresponding to the

BIXX'b p'p, 2 Sls
eipgenvalue 2 = B'?S"" = d_ of XX', When bszh , “e = =Sl g |
o o o o o] Q'a ©
from (4,2,7). Tor any other b in Rn,
2
V2 bvpxj) q'q(b'pxﬁs —_ a'q o
]
bIXX ! 500
=>57p—\b—b-ia-?-;9do,forallbian’
X 4
t
_ . p'xxb | 5%
=> dl- Hinn m;s—:_m— do
B eR
= <M I
> 2d s 8.8, 9 -



Sufficiency ¢ Let bc be an eigenvector of XX' corresponding to the

] . y 1] .
eigenvalue do € [61, -3-;% »_‘-1]. By lemma 4.2,1, bo is also an eipenvector
oo

of A correspanding to the eigenvalwe

s's
2L 4 < g (u,2.8)
a'q o -~ 1

Suppose b_ doés not minimize 22/v?, but b does, Then B5 is an eipenvector

of A corresponding to the elpenvalue

2 2 s's
. A A 0.0

= e 2 i (] N

n Min by < oA PR 4 (4,2,7)
b e R
Note that when b = b,

X bY(X 'h
3 Z _-'~= n (u,72,10)
v b‘be

~i ¥ - bt = . ':
from (8.2.5), since HMX bﬁ = db beo 0, because F b and b
are aigenvectors of A corresponding to distinct eifenvalues. Trorm

(4,2,8) and (8,2.9), n < dl’ vhich is » contradiction siner From (u.2,10)

we have
JSBIRID . BT
TR 2 R
] k4
b be b e RD h

Thus b minimizes 22747,
Note U,2,.1 The condition of the theorem can be stated equivalentlv

as "po is an eigenvector of X' corresponding to an eigenvalue
?
3 € L8y, r= o T
)
To carry out a simdlar exercise for the best test of type I for an
‘alternative & # c, observe that (sec equations (1.1.19), (4,1,2?)
and (4,1,29), (4,1.3)), one hag to cbtain a 'b' in R™ which

simultaneously mitiimizes XQIVQ md maximizes



ho_y . leg-el

Hote that best tests of type I are also invarisnt wnder scalar

multiplication by nonzero scalars. If b_ is the solution, then

3

Lo]
(a3

clearly b _has to be a wultiple of by. herwise db, {(d # 0), which

l>»
]

¥
maximizes lE;QL (and also has a larger ) will lead to a larger value

]

v
for h/v, When b = dby minimizes A%/v?, it has to be an eigenvoctor

b'h
Q O

of A, and hence (by lemma 4.2.1) of X', In such a case d = S
oo

L2

clearly leads to the choice b0 for bm. Thus a bm which simultenecously
minimizes Agfvg and maximizes h/v, if it exists, has to be a mutiple
of bo‘ The conditions of theorem 4.2.1 are obviously necessary since
they guarantes that bO minimizes A?/vz. However, they may not he
sufficient to ensure that bo maxirizes h/v also. To cobtain comlete
necessary and sufficient conditions, one has to determine when b,
maximizes h/v, given that bO is an eigenvector of XX' rorresponding

to an cigenvalwe 4 in [dl’ Séso dl].

Let t = bofﬁsébo, t s 1, be a set of orthonormal

?,o--,tr, tr"‘l’ L

eigenvectors of A, corresponding to- the eigenvalues IETEERL I vhere

0 <n, « < < and n

15Ny S e S ptp T ot TN =0 (the smallest positiwe

‘A
eipenvalue corresponds to t. sinece b minimizes 27~2'). From (4.2.7), .
1 o b be

S PPe | i )
Ny, = = ; = =24 <d (12,12
1 a'qg bobo q'c o 1
and from (4,2.6)
n, = d, (4,2.13)
i i

for i = 2,...,r, VWriting T = (tl,...,tn),g = diag (nl,...,nn), ohsarve
that A has the spectral decomposition

A = TGT! (u,2.14)



Transforming b to T'b = x = (xl,...,xﬁ)' note that since

T
J{ (A) = M_ (xX) v2 = b'P,b = bbb = z x?
’ ¥ A i
i=1
Moreover
r
h 1 .?
iy = Ay + 4 ‘1 l&,?, 5
- v[aixll Ay J§ ny ¥ ] ( 1)
IC]_'CI C2
where a = wwm—awe d V1) b > 0, AZ = §2 - -}- >0, b_maximizes h/v if
q'g 0 oo . 1 n'g — o
and only if |x1| = 1, Xy = eee T X T 0 mavximizes h wder the restriction
r r
2 . ', . 2_4_0?
Z X = 1. Fixing the value of ]xl, at ¢ ¢ [0,1], i.e. lel-a, ) X, =1-6%,
i=1 ’ i=?
. . . - - 2 _ 1. a2
one observes that h is maximized when Xg T oewe T X 0T 0 and ¥, = 1~ 05,

Hence it is enough to determine the nccessary and susficient conditions
for 8 = 1 to maximize

_ 2
h(a) = a9 + 8, anle

a2
+ nr(la N
- 2
= a0t 4 J{nr + (nl-nr}ﬁ } (4,7.18)

when 0 varies in £0,1), Differentiating h(g)

A, (n,-n_)6
(o) = L&) o oy lolr e (4.2.17)
! ® C{n_ *+ (n- n Y6237
ol 1 r
» 2
) h(a) i Al(nl- nr) L\l(nl—nr) ]
hg(e) = o7 = : ;?": )92}1/2 - (n* (n.-n )02}3/2
M r"1 nr' Ny "
(4,72,18)
Let n2 = et > 1, h (8) &and h_(8) are well defined in
o nr— nl 1 2

(-no, no)::)[o,].], and in this interval hg(e) < 0. Hence h(n) is strictly
concave in (—no,no). Thwe h(1) > h(8), for all 0 in [0,1] if and only
if b(8) is increasing in a necighbourhood of 8 = 1, or attains ft3

maximum at this point. An equivalent way of stating this is



hl(l) > 0
= - x
<=5 Al(np nl) < & an
' s d le,~al {c's Mp'p )
. g "0 o' 1 J o o 0
te€. &l(dr o'q do} - q'ta { a'n

(u.72.19)

which is the required eondition.

Summarizing thene results we state the main theorem of this section,

Theorem 4,2,2 The BDLIMBE péﬂ gives the hest test of type 11 for the

hypothesis Ho:q'ﬂ = ¢ when
(1) Py, is an eigenvector of X'X corresponding to an eigenvalwe

1
d0 £ {dl, 9:£L_. dlj’ dl :_dz A :*dr being the nositive eipenvalues

a's
oo

of %'X, Py = P .0 and 8,74~ D,

X
The BLIMEE giwves tho best test of 4vpe I for Ho for an altzmative

when in addition to (i) the follewing holds

€1
s' s la el (s' 8 )p! p )
e 0 0 1 0 O = Ie)
(ii) Al(dr - do) < e d, v { e }.

Note 4,2,2 Under the conditions of the theorer DAR is the best test
of type 11 for HO whatever ¢y Hemee it is uniformly best, However,
this is not true for the best test of type 1.

Before concluding this section, we cstablish a result, whick thongh
we do not have #m occasion to uwse, descrves attention due to its own

merit, Theorem 4,2,3 is complementary to theorem 4,2.1; it investigates

the situation when bc maximizes lzfvg, piven pépa £ 0.



Theorem 4.2,3 If d_ is of multiplicity one as an - lgenvalwe of XK1
n»

then bo maximizes Azlv? if and only 1if 1t is an eipenvector of XY7

s!' s
s o O . . s oop
corresponding to dr' and arul < —37;~ dv' Howover, iFf ﬂr im of

~
rultipliecity greater than one, then bO cannot maximize A'/v?,

L ]

Pronf dr is of multiplieity ome

‘ vz 7,2 ey = .
Necegsity 1f bO maximizas X" /v, then it is an sipenvector of A and

hence of XX' corresponding to the eigenvalue do (zav)., Horeaver

b'Ab a's
o o0 _ oo B X th P T
EZ?;E;' * 979 do' From {(u.2.7}, -%7?;F-i da’ vhatsver b £ U7, 50

that do = dr' Lot bl he an eigenvector of YX' corrosponding to the
i s 51 > ht m L PAW = ! =
cipgenvalue dr-l' ince b1Xq mlmé ‘o drplbo 0,
Yyt A '
4 ) blxx b1 i bl bl . saso .
- 3 - tp — ’ - .
-1 bl bl bl Kbl a'n T

Sufficiency ! Under conditions of the theorem if b, and not br,

. 2.2 . .
i 1 e - h k! = K'F 1 = (0
maximizes A" /v, then beg is an rigenvcctor of A with boh? mEyba 0,

It is not diffieult to sec that this implics

b! An XY ' a's b AL

2 2 "2 2 < a PR <1 BN

th T oLt — — ¥ T RIP +
hg be h2 Xb? =1 —qg'q r hﬂ vPa

since dp is of multiplicity an:., Thig is a contradiction,

dr is of multiplicity strictly preater than ono

Let ba be an eigenvector of ¥{' corrcsponding tn the eiprnvalue dr'

Further let bgbO = 0, Clearly,

4 L ] r"‘S’ 4 VA’
bSAbB =4 » Dopo . oo popo _ ho bo
bIP. b T Ve Btk T ain Rk T ORYE b ?
3IX 3 oo o oo o X o

3 Tyt = el = 1 -
singe pOX b3 bOXX b3 dr'bobﬁ 0.
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3. The beat test.

In general, if an analytic expression for T in terms of b is
‘avallable, then an equationsatisfied by the best test of type 1l may be
obtained by setting the derivatives of g, (p,cl) with vespect to b,

equal to zero, Using the notation defined by equation (4,1.%) this

eguation i»

-2 1t u dr -2 T _u, du
[1te © 21 =& 2f1-e 73t (4,3.1)
where
du ¥ u
m-ug- - -—2‘- - --2
- P Xq 5 Pob {4.3.2)

Unfortumately, the desired analytic expression is difficult to obtain
from equation (%.1.18). However, several approximations sre available

in literature, and wing these one may arrive at an approximate best test
of type II for m altemstive ¢,. By Patnaik's [267 (see alzo Zelen and
Severo [39], formula 26.4,31) normal approximation to the noncentral

chisquare distribution,

r. /142u2 + Jieayl ¢ 2Y
TN 2 L L IR (#,2,3)

E
v 2(1 + ui)

where T 1¢ the upper a % point of the standard normal distributfon and

¥y is defined by equation (4.1,32;. Hence

T l*?u2 T

dr 2
& ] " _'k + £ I -'g-n-u. A-uiz ﬁ)xb

.77 -
& * L * 2
Vzv)l'!'ug ./_'L.'i-zui /Il-mui‘l'?u;* 2(1’*;1?) %

(&, 3.u)

A being the matrix defined by equation (4.2.5),



Observe that a best tect of type I For an alternative oy is also

ohtained by maxirizing

- ; - 1Y e A -yt 4,35
1 QJ(rE vy ) 5 ( To- vy ) (4 3

subiject to (4,1.18), where

c,~¢ A
P = L_L'._.'. Ryl 2 (u,3,0)
2 9,92 . Oy v
This is due to the fact that if the maximur of (#,2.5) is attained

at p.= p then swrely ﬁ‘q_ > 0 and hence {v maximiz = gvl(p,cl) (me comwmtieon
(1,1.27)) swbject to (8.1,18). Thus an snuation determining an ~nnreoximate

best test of type I would be given by (0.3.1) with y  replaced by % and

dUZ
s renlaced by
dut e -cl & 2
CHNRS B p bt [A L - 2P 1
d  aao'qv Xo - S= Bpd r Sp A b - S By
o v o v

(b,2.7)

bnuation (4.3,1) is guite complicated in structure ond computations
reguired for obtaining a sclution would he laboriowm. Vi de not atternt
a similar excrcise for the situation when o is unknown since the
corresponding equation is likely to be even more enmplicated, nothor
imortant cbservation is that the bhest tost apparontlv denends on the
value assumed by the altermative oy A tost which is not uniformly
best will have limited wse in practice, since an experimonter is penersllvy
intercasted in testing a hypothesis Ho against all ovaszible altermatives,
In such a casc, the best that onc can hone to obhtain ig possibly » trst
which is independent of the alternative ond is close to the hest test,

in some sense, whatever Cye
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To get =some idea about the nature of the best tests we shall
study 2 numerical ~xamrle, OUne of the principal aims is to determine
whether the best test for an alternative Cys is wmiformly best or not.
Reecall that, even when conditions of thcorem #,7.2 hold, the host tps;
of type I, unlike the best test of type 1I, need not be uniformly
besgt.

Using thesingalar value decomposition of the design matriy, in a
manner demnstrated in chapter 2, section 3, ohserve that it is sufficient

to congsider models of the type

E(Yi} = ey By, 1=,
E(Yi) = 0 s f=rti....,n

Y. ) = g%4 _
Cov(Yi, j) o 6ij (4.3,9)

m
vhere E p2 < 82, m> r, and §,, 18 the Kronecker symbel, i,9=1,...,n.
T -

The hypothesis to be tested is

it Dy}

M, By = e (u.2.9)
gz 104

We comsider an example where r = 2, dl = ai =1, d? = a% =2,

it

v 2 nersb, q, =q, =1, ig qi 3 and &2 = 9, For the case of known o,
we teke o? = ag = 1. Whe; a is wmknown, we takns og = 1 ag the lower
bound of the parameter space QU for o2, We test Ho at the 5% lewvel
of significance, i.e. a = ,05,

To find the best test we firet obtain the test péB which maxinizen

’
power sibject to the constraint EER = d, for each 4 in [dl’d?] and
v >

then choose the one with largest power in the class {péﬁ=d€[dl,d?]},

Lf pgé is the best test, and vﬁ = pl (X'X) p,, then



P Mt

DADy,
dk :M..z (“-3-10)

V*

will denote the 'optiral' d, Writing p' = (2. b, . b 0,...,0),

17170 0t
? 6.dl 7. P ,
el i per I 1-{:1, it iz =asy to sce that twe selutions to
271 i
B+ 4
. ! - dl'l 27 -
¢ = 55 = S (n, 7,11}
v b]‘ th,
are
(a) bl = el, b? = f‘?
(b) hy = e b, = -o, (u.2,171

A1l other solutions are nonzoro multiples of (a) or (b), Thus i+ is

enough to consider enly these two alternatives at cach ¢ In [d),a, 1
?
L4
In fact for tests of type II, in this example, (a) has the hirhest —(ﬂ-f-!* .
v

¥
and hence maximizes power subiect to the constrzint ET‘.)P‘ = 4, Moreovar,
v

it turned out that, in 211 the cases considered, (a) lead to the maximum
power far tests of type 1 also., Clearly, it is impossible to exhawmt

81l points 4 in {dl’d73 =[1,2]. Ktonece 4 = 1{0.1)2 only werc considored,
except for some additional points whenever necessary., The powers of

Q' 'XE ana p!f (BLINEE) were also computed. The valucs of py = ah

11

-and p, = b, computed according to (a) of (4.3,12) Ffor all the

®2 P2
estimable funmctionals considered are displayed in each table. Th> eritical
values T_ and t, were computad by iterative procedures. They are shown

in the tables along with the exact size sttained, which are very clese

toa = .05, While interrreting the regults of the computations, we shall
sssume that the power of the test p&é is a concave function of d. This seeds

quite reasonable - though, wmfortmately, we couvld not establish it

theore tically.
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Tables 7 and 8 relate to the situation where ¢ is known. Tahle 7
gives the best test of type II (colums wider 'Power') and tyre 1
(colums under 'Max., Power') for the hypothesis ¢ = - 1.0 against tho
alternatives ¢, = 2.0, 3.0 and 5,0, More explicitly, 'Fower' denotes
power of the test at clp'q/q'q and 'Max, Power' denotes the maximum
. power in the interwval (u.1.20}. For ey = 7.0 the hest test of type 11
has an optimal d between 1.30 and 1,33, i.e, 4y ¢ (1.39,1.33), Howaver
for ¢, = 3.0, d,e(1.30, 1.40) and for ¢ = 5.0, dye (1,32, 1.50)
indiceting thereby the dependance of the hest test on the altemative c,.
Hote that though the power at clp'q,’q'n is often less that .05 {(the size),
nowhere does the maximum power under Hi fall below 05, Thus all the
tests are able to discriminate between the hypothesis and the alternatives
considered. Not surprisingly, the dependence of the best test of
type 1 for the altemative ¢, seems more pronounced. For exarple d, > 1.5

1

when ey = 2.0 and 4, < 1.5 when ¢y = 5.9, Ar interesting fact ohserved

from table 7 is that the best test of tvype II may net have the highest

pover under the alternative Hi. Thus the two criteria I and II, can lead

to entirely different tests, Another fact to note is that the maximum
pewer of a test can actuzlly decrease even when lcll increases. This is
because the langth of the interval (4.1.70) decreases as ]c1| increases,
In table 8 we study the best test of type II for two more hypotheses
c=* -3,0 and ¢ = - 5,0, Observe that in table 7, ¢ = - 1.0 which means
that A% was close to 42. (Note that 0 < A2 < §2), For c = -5.0, A2 is
close to 0, while for e = - 3,0, A? lies hetwcen these two extremes,

¥hen ¢ = - 3,0, dy < 1,33 for = - 2,0, 4, ¢ (1,33, 1.50) for

%
= 2.0, d, € (1,80, 1.60) for ey = 5.0, When ¢ = =5,0, d, < 1.40

for ¢, * - 4.0, & ¢ (1.40, 1,60) for ¢, = 0 and d € (1.50, 1.67)

1
5.0, Thus the best test of type Il need not be uniformlv best

3
)
e
it



Table 7: Showing best tests of

types I and II £

AN

or the hypothesis c==1.0 (¢ known)

g ' - cy = 2.0 ¢y = 3.0 ¢y =5.0
! P2 Te . DOWER  IIAX POWER POWER MAX POWER POWER MAX POWER
1.00 1.0C00 0 4.0488  ,0499 L0011 2153 .0033 . 2370 ,0202 .0835
1.10 .9487 4472 3.6206  .0499  .0131 .3572 .0315 .4149 . 2035 .3894
1.20 .89a4  .6325 %.5593  .0499 .02R0 .4083 .0638 5275 .3064 .5100
1.30 .8367  .T146 %.5856  .0499 .0242 .4408 .0754 .5706 .3583 .5695
1.40 L7746  .8944 3.6660 ,0499  .0229 .4618 .0749 .5952 .3715 .59281
1.50 ,7071 11,0000 z.7850  .0499 ,0189 LAT41 L0656 . 6068 .3553 .5882
1.60 .6325 1,0954 3.9339  .0499 ,0137 L4789 0516 ,6083 .3163 .5624
1.70 .5477 1.183% 4.,1098  .0499 .0087 L4757 .0359 .5983 ., 2585 .5l44
1.80 .4472 1.2649 4,3150 .0499% .0046 L4638 0211 .5749 .1865 .4404
1.90 .3162 1,3416 42,5649 .0499 .0018 .4361 .0093 .5299 ,1058 .3303
2.00 0 1.4142 5.0441  .0499 .0002 .3325 .0008 .3707 .0134 .1015
1.33 1 1 3,6073  .0499 .0242 .4491 L0764 .5804 .3662 .5804
(BLIMBE) \ .
1.67 - 2 4,0488  .0499 .0103 AT .0420 .6029 L2796 5327
(p = X'Xq)
Yote : 'pOWER' denotes power of the test at clp‘q/q‘q, “waX POWER' denotes the maximum DOWer

under the alternative,

: IQ



Tojsl4 91 Shoiing the best test of type II for the hypotheses ¢ = - 3,0 and ¢ = ~ 5.0 (o known)
4 {9 ke
¢ =-3.0" c = 5.0
POWER AT -
d Py Po T SIZR Al ¢ POYER AT ¢

« T SIZE =™ —
cl=siﬁ001=2.0 cl=5,o € cl=-4.0 cl=0,0 cl=5.0

1.00 1.0000 0 3.6448 ,0499 0005 .0240 ,1641 12,3300 .0495 ,0268 ,2533 .8421
1.10 L9487 4472 3.2889 .0499 0025 .1680 .6679 2.2200 .0491 .0433  .5426 9925

1.20 .8944 .6325 13,2376 .0499 .0033: L2442 7979 2.2100 .0496 .0477 .6312 .9980
1.30 .8367 7746 3.2596 .0499 0033  .2830 .8501 2.2200 .0492 .0491 .6794 .9992
1,40 , 7746 .8944 33,3267 ,0499 ,0029 .2929 L8697 2,2400 .0491 .0487 .7061 ,9996

1.50  .7071 L0000 3.4257 .0499 ,0022 .2806 .8699 2,2600 .0500 .0477 .7207 .9997
1.60  .632510954 3.5497 .0499 0015 ,2514 .8550 2.3000 .0496 .0444 .7190 .9997%
1,70 .5477 11832 3.6961 .0499 ,0009 .2087 .8212 2.3400 .0501 .0407 .7091 .9997~
1.80  .447212649 3.8668 .0499 0005 .1555 .7577 2.4000 .0494 .0352 .6751 .9995
1.90  .3162L13416. 4.0744 .0499 ,0002 .0949 ,6353 £.4600 .0500 .0296 .6198 .9989

2.00 0 L4142 4.4732 .0499 o 0 0712 .R413 2.5900 .0499 .0182 .4079 .9832
%,53 : L 1 3.£77€ .043% 0032 .2891 .8593 2.2250 ,0492 .0492 .6904 ,9994
BLIMBE :
1.67 : 1 & 3.6448 .0499 0011 .2242 .8350 2.3300 .0495 .0416 .7112 .9997
(p = X'Xq .

Note : Superscript (+) denotes rounding off from above and (=) rounding off from below,



Table 9: Showing the best test of type II for the hypothesis c=-5.0 (¢ unknown)

DOVER AT O

d Py Po t_ SIZE ¢y==3.0 ©¢;==1.0 ¢1=3.0 ©¢;=5.0
1.00 1.0000 0 2.924 .0498 .0498 L1277 . 4630 .6623
1.10 .9487  .4472  2.790 .0495 .0849 .2636 .7954 L9377
1.20 8944  .6325  2.770  .0495  .0981  .%157  .8667  .9703
1.30 8367 .7746  2.778  .0495  ,1051  .3460  .8990  .9816
1.40 7746  .8944 2,408  ,04%32  .1057 .3620 .9146 .9863
1.49 7141 .9899  2.838  .049a  .1073°% .3670  .9206  .9880
1.50 L7071 1.0000 2.842 .0494 L1072 L3671 .9209 .osel
1.55 6708 1.0488  2.864  ,0495  ,1059  .3663 .9216  .9883
1.60 .6325 1.0952 2,889 .0496  .1040 3631 .9207 .9882
1.70 .5477 1.1832  2.942 .0499  ,0987 .3505 . 9143 . 0866
1.80 472 1.2649  3.022  .0496  .0892  .3238  .8960  .9816
1.90 .3162 1.3416 %.115 . 0495 .0769 .2822 .8584 .9692
2.00 0 1.4142 3.300 .0495 .0495 L1751 L8759 . 8703
1.33 1 1 2,785 .0495 .1064 3527 .9055 . 9836
(BLIMBE)

1.67 1 2 2,924 .0498 .1006 .3557 .9171 .9873

(p= X'Xq)

“8



pable 10; Showing the best test of type I for the hypothesis c=-=5.0 (¢ unknown)

MAX  POWER AT

d Py Pg  wcy=-3.0  c3=-1.0 cl=3c,=5 TC,=5.0
1,00 - 1.0000 0 .4629 7658 .9224 .8821
1,10 . 9487 .4472 .4731 8196 .9809 .9743
1.20 .8944  .6325 .4904 8456 .9897 .9888
1.30 . 8367 . 7746 .5125 . 8681 .9937 .9936
1.40 . T746 .8944 5377 °  .88T7 L9957 .9956
1.50 7071 1.0000 ,5647 .9047 .9969 .9965
1,60 6325  1.0954 .5924 .9191 .9975 .9968
1.70 5477 1.1832 .6206 .9311 .9979" . 9966
1.80 .4472  1.2649 .6427 . 9386 99797 .9956
1.90 .3162 1.3416 .6638 . 9436 .9975 L9927
2.00 0 1,4142 L6759 .9368 .9925 .9630
1.33 -k 1 .5207 .8749 .9945 .9945
(BLIMBE) S .

1.67 -1 1 ,6111 .9273 .9978 .9967

(p:X' Kq)

R 72 B



in pereral. In Fact, 4, secms to he nondscreasing in ‘clwr}, for ench ¢,
Wien o iz unknown cxect computatiens are time consuming - oven iF
m electronic computing svstem is available, licnce only one hypothesis

{c = - 5.0) was considered, Te&hle 9 gives the hent tost of tvpe II for

the altermatives ¢y = - 5.0, -1.0, &0 md 5.0, while table 10 gives the

maximur power at these alternatives. Tho conelusicns here are similar
to those for the case when o was known., [or eramnle, in tehle 9,

d, < 1.50 when o, = -3.0, but for all cther alfternatives &, > 1."03

1
while in table 19, 4, > 1.8 when ¢ = - 1.0 and dy < 1.7 when ¢, = 5.0,
Fere 2lso the two criteria I and II do not always coincide. Moreover
the maximur power decreases when cy increases fror 2,0 to k.0,

It may be observed from these examnles that hoth q'X'Xa Ao

A
T

(ELIMEE) generally have powars close tr that of the hest test of
tvpe 11,

Observe that (see equations (4.1,18),(4,2,26) and (1, 1,29), (4,1.21))
a neeessary condition for p,::é to rive the best test of tvpa I1 §5 that

A2 {nty )?
( and -m.u-l——- ’ >
i3] 7 P

: . fa AP
thore does not exist » functicnal p'f with =1, <=
v ‘ v VR v

2
1
"":R"g")"- L{}* . In genersl {(whatover the model and the hiviethesig) there
v ‘

will be no sufficient condition independ:qat of Ok 3inen ip sueh & eage

4
a uniformly beat test must ecxist. A p ¢ f*\;(}s" }, which masimizon

satisfies this necessary condition, and it is not ALf{ficult to 50 that
the reouired maximur is atteined at p = g {or any nonrero multinle of it+),
then conditions of thecrem v,2.2 heold,the nocussary conditien is 2lso
sufficient, and the ELIMEE pc'}@ in fact gives the miformly best test of
type 1I, Even otherwise, one can expect ELIMEL to have soms nice
propertics ~ eapecisallv a fairly high power at alternativea,  Alan neto

that In situations where séso = 0, pc',ﬁ is the best test, Henes Af nts
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is small compared to q'e BLIMEE would be exmected to give 2 very rpood

test.

On the other hand, if &2 = 0 then surely q'N'%4 gives the bost test

of type II, wnd hence it would perform very well for A? in somc neirhbour-
hood of zere also, Mormeaver 1f X'Xg hés a smell AZ/V? value then alzo
q‘X‘Xé will have a hiyh power, since only those » in,ﬁﬁﬁﬂ') with o
shaller 12/v2 can possible lead to a berter test. Sinec the best tost
should have a falrly large (p'G)Q;’v? and amall Aglv?, X'a which maximizns
(p‘q)?.i'v'2 cannot have a very poor performance in most situations.
Apparently, it is difficult to obtain similar approximations to the
best test of type I. The nonmonotonicity of gl(p,cl) and flfn,cl) is also
disturbing. Thus, on the whole, one may prefer criterion I to I. By
our present state of knowledge we recommend the use of pc'\é or 1'% N,
In fact, since it satisfles a necessary condition to be the best test
of type II, péé may be preferred over q'X'Xﬁ, nless situations, where
the latter {s kunown to perform very well, prevail,
vhen o is unknovm, determination of the critical value t. of the
test (4,1.27), from equation (4,1.29), usuallvy through itcrations is a
time consuming process. If one does not have access +to an electronic
computer this would almost be an impossible task., In such situations,
one can use an approximation to the exact detribution of the test statistic
to obtain an approximate critical value, For example by Patnaik's {261

dentral F approximation to the noncentral F variate,

2 2
" +
t, 2 @ r I, (4,3.13)
where F, is the upper o % point of Iy, a central F with
1+ ui)z
Vg 7 Sme——tee and v degrees of freedom. When v, is a fraction one

1+t 2u1
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. has to interpolate from the Feratio tahles to obtain Fy,.
fefore concluding, we note that a likelihood ratio test rav Mo
- ponstructed using the maximum likelihood estimator develeped in
chapter 2, sectim 2. Consider the feneral situation where o? is inmknown

md 0 = (0,2}, The likelihood ratio is

- A - n/?
- ) (Y-KRQ)T (Y-XBQ)

{ N
1 (Y-XR 2)'£Y-xeq )

(b, a3, 3u)

3 A
where ﬂg and 802 denote the unconditional and condirional {subdect to IEOJ

maximum likelihood estimators of £ respectively. Observe that, hv

equation (4.1.6),

L]

B =29 4 ¢t .83 )
fo q'g b n'c}z? (4,3,1%)
4
where 32 is the MLE of z in the model (Y- %q?q ¥, X{I- %%!-}2’ o21) when

1
7 {I- ﬁ%)z < 8%, In larpe samples, HD can be testcd by using the

chisquare amproximation to ~ 7 Ing L, vhenever A2 > 0,



CHAPTER §

ANALYSING DATA FROM CLASSIFICATION MODELS WITH ARBITRARY PATTERNS

In classification models when there are no missing cbservations,
the data can be analysed in a straightforward manner by the usual Analysis
of Variance techniques. However, if there are missing observations, all
the contrasts within each factor might still be estimable, in which case
the design matrix is said to be of maximal rank. In the event that enough
observations are missing sc that. the design matrix is not of maximal rank,
some parametric functiconals of interest could become nonestimable. Such
models may become so complicated in structure, that it could be difficult
even to identify the estimable functicnals and the confounded effects.
Clearly, analysis of such data will not be easy, However, if one has
access to a least square generalized inverse of the design matrix, then
one can obtain PLUE's for the estimahle functionals and vunbiased estimates
of their variances. Additiounally, this inverse could be used to identify
the estimable functionals since p'S8 is estimable if and only if p'X X = p',
and one may use the X, for X .

Computational aspects of generalized inverses have not heen deall
with very extensively in literature (see e.g. Rao and Mitra [33], Chapter 11 ,
for a brief description of some available methods), and at any event it
seems to us that such computations are subject to rounding off errors,
which might even lead to erronecus conclusions. In this chapter we shall
give an algorithm for finding a least square generalized inverse for the
dezign matrix of a data set following 2 multiple way classification model

with completely arbitrary pattern. The algorithm gives the g-inverse



withov* any rounding off eyror-, and can be programmed easily for
electronic computers,.

Different approaches to analysing a data set following an arbitrary
pattern have been congidered by many authors. Pose [7] introduced the
notion of connectedness in additive two way classification models and
gave a necessary and sufficient condition for thae design matrix to be
of maximal rank, Weeks and Williams [38], Srivastava aond Arderson [377,
Eccleston and Hedayat [141 discussed concepts of cormectedness in
additive multiple way classification models.

Calinski [10] gave an iterative formula for analysing data from
two-way classification models possessing any arbitrary pattern. But
it =appears that one 13 unacertain about the number of steps needed Tor
the required accuracy,

Bickes, Dodge and Seely [3] nresented complete results for estimability
in classification models. They introduced the B-process which determine
what cell expectations aro eztimable and also an algorithm for finding
a basis for each effaect in an additive two way classification model.

Our algorithm will make use of the F-process and some theorems on
generalized inverses of partitioned matrices established by Mitra and
Bhimasankarais {25]. We state these in section 1, wherec we alsc write
the model explicitly. In the second section we give the algorithm for
additive two way classification models. This is extended to the most
general classification models in section 3. Everywhere examples will

illustrate the algorithm.



1. Preliminaries.

Let Yi5% wh he a collection of independant random variables

with a common unknown variance a2 and each having expectation of the form

) = a, + E-+%J...+nw+(aﬂij+.uﬁaﬁ“.ﬂ

E(Ygsx. . .wh i 140w

(5.1.1)
where 1 = 1,2,...,25 § = 1,25.405b3ueuiw = 1,2,...,t. The index h is an
inteser between 1 and n,, . If n., = 0 then no randem variable
Iikes.w ijk...w
with subscripts ijk...w occurs in the collection. Thus we are working

with a fixed effect multiple way classification model with arbitrary

pattern. If X is the design matrix then it may be partitioned as

X = (A:B: ... T:¥%X) (5.1.2)

where A,B,...,T are the submatrices associated with the a-, y-,...,n-effects

respectively, and X, corresponds to the interactions., Thus if Y is the

1

vactor of observations then

E{Y) = X8 (5.1.3)

Wher’e B' = (ul’.‘-’ua’Tl"..’Yb,"’ ﬂl,...,nt . ((]‘Y) (qy ...ﬂ) .

112 ah. ..t

For completness we state the R-process of Birkes Dodge and Seely [31,
and theorems on least square g-inverses due to Mitra and Bhimasankaram [25]
(see also pp 64-66 of Rao and Mitra [337), as we shall use them extensively

later on,
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R-procc s Let N be the incidence matrix of a two way classification
model data. ‘Then the R-process is appliad on N to obtaln the final

matrix M as follows:

1} Set m,, equal to zerc or one according as n s is zero or

ij
non-zero.

2} Change any zern mij to one if there exists k and ¢ such that
Myg = Mg ™ My = 1. (Pictorially, add the fourth cornor whenaver three
corners of a rectangle appear in the matrix).

3) Continue step 2, using both the original and the new nonzero

mij,s.as corners of new rectangles, until no new entries can he changed.

Theorems on least square g-inverses

Theorem Al : Let (G:b) be the least square p-inverse of (i.),

where a,b are column vectors and 4,6 are matrices of appropriate dimensions.

*
Further let a e\J{(A') and b'a # 1, Then ¥ = (I + E%ET;JG iz a least

aquare g-inverse of A.

Theorem A2 : Let G be a least square g-inverse of A, and let a bec A

G-
columh vector such that a EJ((A'). et @d = G'a and b = E;%g—%ET% + Then
X = {G~bd':b) is a least square g-inverse of (:,).
Theorem A3 : Let G be a least square g-inverse of A, and let a
rdy !
be a column vector such that a €J~((A)- Let 4 = Ga. Then X = {Gb?b Vs

with b arbitrary is a least square pg-inverse of (A : a).
Theorem A4 : Let G be a least square g-inverse of A and let 2

be a columnt vector such that a ¢A((A). Let d = Ga, ¢ = (I-AQ)a and

G-db"’

b= ecfc' a. Then X = { b

) is a least square g-inverse of (A : ).



“heorem A5 : Lot G be o least aquare g-inverse of A and let A
be a column vector such that a g,k((A'). et d = G'a, o = (I-NAX(I-GA)}' ;
and b = ¢fc’" a. Then X = (G-bd' : b) is a least square g-inverse

A
of (a.).

2. Least square generalized inverses for additive two way models.

In additive modals interaction terms are absant and hence here the

model is

- 5.2.1
E(yijh) oyt vy {5 )

The design matrix is X = (A:B) and the incidence matrix N = {nij) = A'D,

¥e assume that,

0 for

e
i

nij = 1,2,.0.,5
(5.2.2)

nij 0 Ffor J = 1,2,...,b

(TN s R L |

i.e. there is at least one cbservation in each row and column.

(i) The algorithm,
The alporithm for finding a least square generalized inverse for

such models consists of the following steps,

Step 1 : Apply the R-process to the incidence matrix N in order

to obtain a final matrix M as introduced by Birkes, Dodge and Seely [3].
Step 2 : Construct the design matrix X* corresponding to M.

Note that X% differs from the original design matrix X in having some
extra rows corresponding to those cells which were filled hy the R-process
and with no vrow being repested. We can partition the .Final matrix M
intc 8 sets of commected portions as defined by Bose [7]1, such that the

final matrix will be of the following form :



M 0 - W rJ
1
M= 0 Mposn 0
0 0 M
- S-

This induces a corresponding partition on X%,

v
Kl 0 vca O]
= [ IS ] O
X* 0 X*E
€t
I_O 0 s XS_

where Xg = (Ag : B?} is the design matrix associated with

(s , : i
M, = (mjh (i =1,2,...,8)., Let M, use rows 31,...,]Si and columns

kl,...,kt of N, Then define Ni = (n€i)) as the submatrix using these

1 ]h

rows and columms of N. Also define

T, = {(5.0) | ngg’ = k2 2)
sp = (G gl < el 01, 512,000

If there are di clements in T1 then ¢ = 1’2”"'di' For cach connected

portion (i.e. for each i, i = 1,2,...,58), execute steps 3 through B.

« Y ' - ' - 1 -
Step 3 : In Xg replace 0's by -1 and 1's by Qai 1 for ni and
2bi - 1 for BE' where as is the numher of levels of the a-effects in

Mi and bi the number of levels of y-effects in M,. Multiply the

resultant matrix by the scalar ( 2a1 s ) te obtain 751 A justification
i1 ‘
that Z,, is a (Xg); is given in theorem 5.2,1.

In the cells For which njh = k > 2 in the original incidence matrix,

they correspond to k repetitions of the same row in the design matrix.
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Step 4 : Choose (jl, hl) from T,. Let aj = F1X*. ba the row
of X; corresponding to (il,hl) where fl is a vector of 0's except for one

1 suitably placed, Set f = f ., k = k-1, a = s U= Zil’ and compute

1? 1

1

g = 0f, d= U'a, o =
) 14 ke'a

Step § : Compute the least square g-inverse
v = (I-k ckgd' NS TR ckg)

where the column ¢, ¢ is repeated k times. (In fact one column of

U-k ckgd' will slso be ckg).

Step 6 1 Choose (jQ’hQ) from Ti' Set k = k2-l, a = a2(=f; Y?).

£=1f,,U=VY and compute steps 4 and 5. Continue till T, is exhaustad,

29

Call final V as 2.,
i2

Remark 5.2.1 The above steps 4,5 and 6 have been obtained by arplying

Theorem A2 repeatedly. To arrive at this form one has to use the Ffact
that the U's will be reflexive g-inverses. This follows from the propevty

that Zi is reflexive, a fact which is proved in corellary 5.2.1.

1
Now suppose there are £ clements in Sj. Let the rows of X?
corresponding to these be ai, aly eee aé and the colums of Zi? be

gl' ggs Y gﬂ .

Let X%
i

L}
=~
-

o
.
-
@
nd

1

and zi? [ : Fp s see s Hl]

Note that aj c.ﬁ((ﬁi) for each §, § = 1,2,....8. By repeated
application of Theorem A}l we gpet the least square generalized {nverse

of Ai in the following two steps.



by @i
. = P ST S . h, = ..
Computr C, I+ ihT e, . i-1* % il
iz 2,3, ...
Continur till C is obtajined.

241

SteE 8 : Computa Y = C a,

Remark 5.7,2 : In case one ig willing to sacrifice some accuracy of this

procedurc one can substitute steps 7 and 8 by the Following:
A
Let ¥% = ( l), whora A correstonds to the missire cells o7 V.
i A7 2 1

Qq}'IA?Q1

Corresponding to this let %,, = (Q; : 9,). Then ¥ = Q, + Q (T4,

12 1 2

is a least souare generalized inverse of Al (gee theorem 5,0,7), This

involves the inversion of a matrix whoso Aimenzior is the nurhor nf
miszsing observations in Ni.
Step 9 ¢ If the resultant matrices at step 8 were Gi(i = 1,7, 00,8}

then Form tha natrix

F'Gl it creans G

- -

The least squars p-Iinverse X; of ¥ iz obtained From G by suitshly porrcuting

rows and columns.

Remark 5,2.3 In manv situstions espacially IF the numboer of missing oolls

in ary connacted portion iz greater than the number of occupird aclls it

might be easicr to adont a different atratesy.



Consider an 8 x 8 design with U8 missing crlls having tho

following pattern

S} Yy \E o Ve, Tg Vg Yo
- - - I e o
o 1
1 - i o
a2 1l 1
T 1 1 1
e R B R S R D
au i 1 1
., ; - —_— — , ; — RO
aG 1 1
et s i P PO [ — DU e s et et e} e ot e
a7 1 1 4
) ggwm.‘w”qu i - e R
8 i | b

Firsf find the least square g—ichrses for the desipgn matrices
corresponding to boxes 1,2,3 and &, where HoX 1 consists of crlls
k(2,?), (2,3), (3,2), (3,3)}, box 2 of {(u,u), (u,5), (5,1) (5,9}
box 3 of {(6,6), (6,7), (7,6), (7,7)} and finally box uw {(1,1), (1,8,
(8,1), (8,8)1, by steps 1 through &, for cach box scparately. Connect

these g-inverses by step 9. Add the rows corresnonding to cells (3,4)

s
(5,6), (7,8) to the design matrix for the hoves and find the leaot
saquare g-inverse bv Theorem AS, einer thesce additional rows do not
belong to the row span of the existing design matrix, wer n, t

ren oorycosponding to o ced (3,°) now helongs to the row  Aar S,

this row and find the g-inverse by Theorem A?. At anv stage if the

R process applied to the ineidance matrix of the existing dcsign

matrix can fill a c¢=11 then the corresponding row is in the row span

of the existing d-sign matrix, othersize rot,
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We now prove the assertions made in the algorithm,

Theorem 5.2.1 Let N = (n

ij) denote the incidence matrizx of an a x b

additive 2 way classification model, with Dy = 1 for all i #nd 1,
Let X = (A:B) denotc the corresponding desipgn matrix. Then a least
equare generalized inverse of X is obtained from (1/2ab)X' by replacin

all O's by ~1's and 1's by {2a-1) in A' and (2b-1) in B',

- ab —
Proof Let X = [xl""’xa‘xa+1""’xa+b]’ where X, € R™, R, = xiY.

Cj = x;+jY, 1=1,,..,235 =1,...,b, and

i} 107
o
b

a
T = Z Ri =
i=1 j=l

The mnormal equations are

bui + Yy Yty o® Ri « 1=1, ..., 2
(5.7.¢
@+ . ¥va 4 avj = Cﬁ s T 21, viay b
b
Solving theme under the restriction ] Yy T T/2a,
S
8, = == [(2a-DR, = (T-R)7T, 22 1,...,2
i Zab ' i it prreat
Y, ® 1 f(ob-1)C, -~ (T-C,)), 4 =1,...,b
Yot T ) PLo3 L
(5.2.4

S5ines these are leasnt sovaye solutions, the theoren follows,

Now we establish a property of the g-inverse ohtained in theorom

5.2.1.

Corollary 5,2,1 The g-inverse G obtained in theorem $5.2.1 is reflexive
Proof Let € = (Ga : Gy), where 6, and GY correspond to a- and y-

effects respectively. Obkerve that R(G) > R(X} = atbel. However If & i
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a vector of unities, bG e = aGye. T™us R(G) = atb-1 and hence by
Lemma 2.5.1 of Rao and Mitra [337, 6 is reflexive.
The following is a generali. ition ! th.orem Al of Mitra and

Bhimasankaram [257:

A .
Theorem 5.2.2 Let A = ( Al ) be such that _MN(Aé)C. A{(Ai). Further
2
suppose G = (Ql:Qz) is a Aj. Then Y

-1 .
Q1+QQ(I-A2Q?) Ale is =

least square g-inverse of Al’

’
Proof Since G is A;, we have

= a5
AlQlAl + A102A2 Al (5.7.5)
AQQlAl + AngA2 = A2 (5.2.8)
and
tAt 1 At
AlQl AlQQ QlAl Ql AQ
; = (5.2.7)
At T AN
A4 AL QA R
Observe that (I-A2Q2)x = 0
= = = = - frorn p I
> X = AQ,% = AQ,A Q. = (A -AQ,A)Q,x Fror (5.2.€)
= AMBx =0
2> Alqu = 0 from (5.2.7)
= = = il "(AY) — M
> X A2Q2x 0 since ,ﬁ4ﬁA2)._ }dﬂAl).
Thus (I-AQQQ) is nonsingular., From eouation (5.2.6) one obtains’
. -1
A, = (I-AQQQ) 4,04 (5.2.9)

Substituting (5.2.8) in (5.2.5) or= obtains AlYAl = A Moreover,

1
. . -1 . , v e
using (5.2.7) AlY = AlQl + AlQQ(IwAzQQ) A2Ql is symmetric; hence Y ie¢ a

least square g-inverse of Al.



In step 7 of the algorithm, where thecorem Al is being repeatedly
appli~d, we have to check at -~ach stage that biai £ 1. This is
equivalent to saying that |I-AQQQI # 0, a proof of which has just he n
given,

Working of the algorithm will be clear from a rumerical illustration
given below:

(11) An example.

We consider an example in which some "ty > 2 and there are many
missing observations. Here we also demonstrate the advantage of finding
least square g-inverses for different connected portions and then
connecting the disconnected parts. Suppose we have an additive 4 x 5

classification model with the following pattern :

Y1 ¥y ¥a Yy Y5
a .
a 9] 0 0
, f2 1
% 1o 0 0 1 9
N =
oy |1 0 1 0 0
uu LO 1 $ 0 n

I o o o 1t 0o 0o © o0
1 o o 0o ©o 1 0 0 0O
o 1 0 o o o6 o0 1 0
o 1 & B ¢ 0o o 0 2
e 0o 1 8§ © © ¢ o 0o 1
o o 1 0.1 0 0 0 0
0o o 1 8 0o 0o 1 0o 0|
lo o 1 0 1: 9 o0 oJ_
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We hriefly sketch the working of the algorithm as follows:

~Steps (1) and (2)  Avcplying the R-process to N, the final matrix

Mlafter a permutation of rows) comes out as,

Y Yy Y4 T, A
o, 1 1 1 0 0 -
M
" 0 |
i 1 1 ] a
M o= -
1 1 i 0 n ,
i 0 1,
a, ﬁﬁ 0 o 1 1
Thus there are two connected portions. Here
T, = #(the null set) T, = {{1,7)}
5, = 1,3, (2,23, (3,13, (3,)} 8, = ¢
% 0 7
Xl
The corresponding partition X* = can he easily rerformed,
24
0 X |
5 5 5§ =1 -1 i «1 -1 ol
-1 -1 - 5 . 5 - - -
1 5 3 1 1 1 1 Y
- - - - - - «
le: ;}; i 1 1 1 1 i 5 5 5 zel 1 . .
S TS NS, S S R S S S | PLo
-1 A
-1 5 -1 1 § 1 -1 5 .1
-1 -1 5 -1 ~1 = -1 =1 &

Steps (4), (5), {(8) : Here le ramaing unaltered since T, = ¢, There is

1
only one element in T?, and 221 necomes
yi 1 1
= Xt
Z?.z = 5 6 -3, -1
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Stops (7), (8) For the first connected nortion, 8, has four elements,

f.6, & =0, le bhenomes

3 2 -7 1 -1
-3 2 4 1 !
3 -4 -2 1 5

-
i1
7| bt

3 2 2 =1 1

-3 4 2 -1 1

- - %
i 3 2 i 1
Tt can be verified that the same rosult is obtained by doing steps (7)
and {8) by the methods pronosed in Remark 5.2,2 or Remark 5.72.3. In

Remark 5.2.3,

1 2 3

1 1 1 0

N1 z 2 1 0 1
3 0 1 0

Take Box 1 = {(1,1), (1,2), (3,1, {(3,2)} and Box 2 = {(2,3)},

After computing the least square p-inverses for the two boxes and
connecting them one has to add the oW corresponding to the cell {2,1) of
Nl by using Theorem A5, Note that while finding the g-inverse for Box 1
one has to apply Theorem Al only once, This method is thus very quick,

222 remains unaltersd here since S2 = ¢,

S5tep (9)  The matyix 6 is

)
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The least souare g-inverse of X is obtained frem N hy anpronriot:

per-alations of rows and eolumnsn, Thus,

12 8 0 n n -R 4 T
0 ) 6 3 3 0 0 0
-12 8 0 0 0 16 m -
12 -16 0 0 0 -f m 20
o= i 12 -8 0 0 0 8 -l y
[ td
-12 16 0 0 0 8 -l 4
17 -8 0 0 0 ~16 20 4
n 6 18 - -3 0 0 n
0 0 -8 9 9 0 0 A

3. Least square generalized inverses for L-way classification models
(1) Additive L-way models,

Consider an L-way classification model of the form (0.1.1) without
interactions i.e, X = (A:B: ,.. :T), Uithout loss of senerality assumo

that I nijk. - F 0, 17 I,00es80003 L m FO,w = 1,...,%.

. I3k ea.w
LR ;]

13k
When the design is suech that all contracts within cach factor ar
estimable, i.e. the design matrix is of maximal rank, we find the least
aquare g-inverse for the design matrix by using theorem 5.3.1, The

situation when the design matrix is not of maximal ranl, will he troated

as a separate case.

Case I : The design matrix is of maximal rank, Here the rows

corresponding to the missing obscrvations are in the row snace of the
rows corresponding to the available observatisns. Thesven 5.0, oo
be proved exactly on the same lines as theorem 5.2.1, and T now

omit the proof.
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Theorem 5,3.1 Let X be the design matrix for an additive L-wav

classification model with no missing observations, and no repeated
ocbservations. Then a least squars generalized Inverse of X is

obtained from i;%a————- X by replacing 0's by -{L-1}, and 1's by

. o t
La-{L-1) in A', Lb~(L~1) in B',,..,Lt-(L~1) in T'.
After obtaining the least square p~inverse for the complete desipr
matrix we drop the rows corresgponding to the missing observations and

find the g-inverse by applying theorem Al, If any row is repeated ip

X then we apply theorem A2 to find the least square generalized inverse,

Corollary 5,3.1 For a complete fractional design, say %-of a qL desipn

the least square g-inverse of X is obtainad from ~3E-X' by replacing
Lq

0's by-{L-1) and 1's by Lg~(L-1),

This corollary can be verv useful for latin saquares with no missisw
chservations, Consider, for example a 3x3 latin square desipn, This Is 2
1/3 replicate of a 33 factorial design, If its desgign matrix is X, then

X; is obtained from ~%§ X' by replacing 0's by - 2 and 1's by 7,

Casc 11 :  The desipn matrix is not of maximal rank., In this case sore

effects of one factor sre confounded with the effects of some other
Factor(s).

In such situstions when there are confounded effects the methad
of case I cannot be applied directly., However, the least square gereralized
inverse can be obtalned by modifying bur technioue. Consider a 3 way
classification model with design matrix X = (A : B : C). Suppose some of
the a-effects are confounded with some y and 8-effects. Then we first
find the least square generallzed inverse 6, for X, = (B : C) by

considering it as a two way classification model, IF this is & ~ooo o
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total confounding i.e. all a~effects are confounded with y and O-effocts
then Jvi(A)C:uN{(XO); Here the least sauare generalized inverne of X

is obtained by adding 'a' null rows to G, (zsce Theorem A2}, Howcver,

if the a-effects are only partially confounded with the y md 8-efFects
then some colurms of A will not be in JbL(YO). Hope~ Aalso we first

compute the least square g-inverse of Xo. Fhon we add a colum of

A to X,» we find the corresponding g-inverse by the formula in Theorem Al,
If this column is not in the cnlum <nan then this formuls will po through,
Otherwise ¢ = 0, In this c¢ase put b = 0, This conforms with Theorem A7,
In this way we add the colums of A to X successively and find the lenst
square g-inverse of X,

Since in some desipgns with arbitrary patterns it is difficult to
find its nature (for example, whether the design matrix iz of maximal
rank or not), the algorithm is such that one can aveid such complications,
Thus, we first compute the least square r~inverse for XO by the two-way
techniques and then add the columms of A one hv one and find the
corresponding least square g-inverses by Theorem AU, putting b = 0 whenever
c =0,

The L-way classifiéation model can bhe treated similarly. Thus,
in general if X = (A:B:C: v+ :T), one can abtain (Xo);, whera ¥ = (A:D)
and then add the remaining columns of X in a marner we have just now
demonstrated.

Our methode will be clear from the following examples:

Example 5,3.1 Consider the following 2x2x?2 desipgn where the g-effacts

are totally confounded with the y-effects.



01 G?
" ¥ 1 Y,
ul 1 8 al 1 0
a, 1o 1 o, ¢ ll

The desicn matrix is

1 n 1 0 1 0
0 1 0 1 1 0
X = = (A : M (g
1 0 1 n 0 1
0 1 0 1 0 1|

Obgerve that B=A. 5o we find the least souvare p-inverse for XO = (A:0)
by the usual techniqueg for 2?2 way and add 2 null rows ag oroposed in

Theorem A3, Thus we obtain

.
Pa -1 a -1]
-1 3 -1 3
-1 0 0 0 n
X =%
0 0 0 0
3 3 -1 -1
51 -1 3 3 )

Cxample 5,3.2 Consider the following Latin Square desien with twe

mizsing obaervations :

=12 1°]
? 3 i 1

St SRR S
3 L

!
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,
1 0 0 0 1 0 n 1 n
1 0 0 0 0 1 0 n 1
0 i n 1 0 o 0 1 n
X
0 1 a 0 1 0 D 0 1
0 1 B 0 ) 1 1 0 0
0 0 1 1 0 o D n 1
O 0 1 0 1 0 1 n 0 |
[

Wrive X = (A : B :C), where A corresponds to rows, B to columns and C

to treatment effects. The least square g-inverse for X = (A : B) i=

(£ T S N T A T
{
< -3 9 8 8 -3 -?i
. 1 -6 1 -3 u -6 11 18
(x )1 = 2
4 1 -3 6 11 -€
8 -3 3 “2 A3 -3 aj
g 11 -3 % B 1 y

Then we add the columms of C one by one to XG and find the least
#guare g-inverses by Theorem A#, Tor the first columm ¢ # @ (hence it is
ot in }V( (XD)). But for the next two, ¢ = 0 and thus these columns
gre in the colum span of the exating deaim matrices, For both of these
we take b = 0,

. The final least square g-inverse comes out as



oy 1 -3 n 2 -1 0 |
-1 0 3 1 1 0 ~1 %
-3 o k! -1 -4 y 1g
7 -1 -3 n N 1 n
¥ o= X 1 0 A -1 -1 n 1
2 8
-2 4 3 1 -3 2 -1
3 -2 - 3 2 -3 1
) 0 n 0 0 0 0
0 n 0 n 0 n 0

{(1i) The most gencral clessification modrls.
Consider the model (%.1.1) in its utmost generality., Fewrite
(5.1.,2) as

. . RIS
X (XO Xl)

where Xo = {A1B: .,. ! T) is the desipn matrix under the assumption of
additivity, and Xl corregponds *o the interactions which we helievr
might be present.

To get X; we firat find (Xo); by metheds already discussed. Then
we append the columns of Xl, one by one, to X, and find the least square
g~inverses by Theorem AU, putting b = 0 whenever ¢ =0 (this conforms
with Theorem A3),

If s ig the total number of observations, then ¢ c&n he non pull
at most {5~R(X0)1 times, When ¢ = 0, we only 2dd a null row to the
existing g-inverse and the "AG" of Theorem A4 remains unchanped. Thus
the procedure is expected to he wery fast., The algorithm can be
programmed for electronic computers without much difficulty. Even without
access to such a system computations are not much lsborious and are

quite spendy,
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Cbgerve that though the algorithm gives the BLUE for estinable
fnctionals, the estimator need not be BLIMBE. " In fact X; of theoren
5.2.1 will be a Moore Penrose inverss if an only if a = b, If ¥ = (A:})
is the desipgn matrix of theorem 5.2.1, then it can be verified in a2 straight-
forward manner that the Moore Penrose inverse of X is obtained fronm t{"%ﬁ X!
by replacing 0's by - {1/b) and 1's by (ath-1}/b in A' and 0's by ~(1/a)
and 1's by (atb-1)/a in B'. Note that if G 1s a least squire g-inverse
of X with (I-X+X}G = 0 then G = X*. Henece an alternative way of obtaining
the result we stated just now is to solwve the normal equations (5.2.3%)
wmndey the restriction that the totaliy nonestimsble finctionals vanish, or
in other words, i‘ X, - x Yj =0,

1

To obtain BLIMBE one mgy start with x and work on the same lines
as in our algorithm wing theorems giving Moore Penrose inverses fron
Mitra and Bhimasankaram [251, instead of theorems giving some choices of
least square g-inverses as we have done. However, much of the inherent

simplicity and speed of the algorithm we described is likely to be lost

in the process.
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