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INTRODUCT ION

The study of spectra occupies a central place in the theory of
linear operators. One part of this study consists of obtaining a
detailed and complete knowledge of the spectrum of a given linecar operator.
The other part - perturbation theory - consists of using this knowledge
to obtain information about the spectra of nearby operators.

Apart from the intrinsic mathematical interest it has, perturbation
theory is of great importance in the study of several physical problems.
In fact, the thecry came into existence with the work of Rayleigh on sound
waves and that of Schrodinger on quantum mechanics. Later, their results
were put on a firm mathematical ground by Rellich and developed further by
him and several other mathematicians. A detailed account of thesz results
may be found in Kate [12],

When the underlying linear space is finite-dimensiconal the spectrum
of an operator consists of its eighevalues. Though the finite - dimensional
theory is simpler it is not trivial. (See the books by Kato [12], Rellich
£17] and Baumgartel [1]). The main problems of the subject can be classifie

into three types of questions which have bearings upon each other, These are

1. If z -~ A(z) is a holomorphic operator - valued map based on a
complex demain, are the eigenvalues, eigenprojections and eigernilpotents
holomorphic function of z ? This question has been discussed in detail

in the three books mentioned above.
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2, ¥What are the power series cxpansions for the objeets in
Question 1 ? What are the radil of convergence of these series and
what are the error - estimates when only a finite number of terms of
these series are taken into account ? This question has also been

considered in detail in the books refered to above,

3.  If the operators A and B are close to each other how close are

the eigenvalues and eigenvectors of A to those of B ?

This thesis is concerned primarily with the third question about
eigenvalues, We introducce some new methods for the study of this
problem and using them obtain explicit estimates for the distance

between the eigenvalues of two operators,

Apart from the viewpoint of perturbation theory this problem is
of interest and importance in computational linear algebra and in
approximation theory. Here the problems can be stated in the following
terms. If the entries of a matrix are known approximately, to what
degree of approximation are the eigenvalues known ?  If the entries of
a matrix can be ascertainad only upto a certain decimal place, to how
many places should its eigenvalues be computed ? If & sequencc An
of operators converges to A, how fast do the eigenvalues of An
converge to those of A ?

These questions have been analysed by several authors, Ve give
pelow a brief summary of the prominent results germane to our study.
These are given not in the chronological order in which they were

obtained but in the ascending order of generality to which they pertain,



™ distance between cperators can be measured using several
norms, For several reasons the most important ones are the Banach
norm H-HB and the Frobenius norm {1-I|F Aefined respectively

as

sup  |iax]| .

Hallg T LA

/2

(trace A*A)l

Hallz

The distance between eigenvalues can alsc be meusured in several ways.
We use two such distances, Let FEig A = {al, vee an} and
Eig B = {Bl, sas g ﬁn} denote the eigenvalues of A and DB respectively

each counted as many times as its algebraic multiplicity. Define

d(Eig &, Eig B) = m;n mix ,“i B Bc(i)l '

8(Eig A, Eig B) = min ( Z_Iai - ﬂa(.)lz)”2
o i .

where o runs over all permutations of the n indices,
With these notations we can state the important results on this

problem :

(A} Results for Hermitian Operators

1. Weyl's Itegualities : Let A and B be Hermitian with eigenvalues

% L8, Leee 2o and B <8, < eas X B, vrespectively. Then from

the minmax inequalities which can be traced back to H.,Weyl [19] we have



b
(= lee, - A, | < Hs‘lw“l
Le]=n 1 1 'a
I particualar, tols implics
clidg 4, tig my = {[a-B][, (G.1)

4. Lidskii's Theorom {(Lidslkii [iu]d. Let A8 be Eepndtisn

aocratops with olpenvelues & = Ay 2 oaws % ﬁ‘:n i Byt ﬁl X Ei £ oeen 8 ﬂ

reapectively,  Let the eigonwalucs of B=A  Dbe Tys tyr waa Tﬁa Than
et : o ..~ i ] T 5 X . + ™ oY -

the weator (&, By v oves s By woddn M lies In the cmvex hull
penarated by the vestors t‘b{l) Boves Yd{n}}, whiare o YUNS oorep
112 peractations of b indices. Nete that tlii= thaorom puts a beund

an ths magnitude of ﬂﬂl ~ Hyaoeee s B, - apl In terms of <he mapnitude

af le LN I ‘i]'?‘

b
A penvralization of this theorom for poWwor series with Hermivian

aperd ey cocfPicients iz o lvon In Pasthasapathy [16],

[

3. The work of Davis and Kshan (Davis [&]. [0], Davia omd Zahan

(61, Kahan [1:1}, In {&] Devic studicd the following problem:  hew
mich showid the slpenvestors of a Pernitiss operater A be rotatwd
to cbtain the ejpenvectors of a pelghbouring REermitian spevator BOP
Fi ebtained & lower bowsd for tho ohange of eigenvalues in this
aage ag one af his results, Further peaults on this problen were
obtained by him and Kahan in [6]. In [11) Kahan obtaincd & nather
cur flous foequality atated helow. Lot A be a Horitian operator and

B nny other operatér un an A-dimensioonal spagus Then

d(Edg. A, Dig B) < (lop, n + 2,038) |[|a=B|[4,



(B} Results fur ndrmal opérdtors

1, The Hoffuan - Wielandt Ineduality (Hoffman and Wielandt [101).

It A anu b are norpal operators on a finite~dimensional vector space

then thiz inequality can be stated as

§(Eig 4, Elg B) < !IA-B||? (0.2}

Note the similarity and the differences between {0,1) and (0,27},
Attempts to establish {0.1) when A and B are normal have not been

successful, However for unitary operators we have the following:

2. Parthasarathy's Inequality (Parthasarathy [16]}. Let U,V be

unitary operators and let K be a2 Hermitian operator such that

L = exp (iK). Then
d(Eig U, tig V) < |[Klly

{C) General Res :lts

1, Datrowski's Bound ({Ostprowski [13]). Let A = {{aij}} and

B = {(bij}} be two n ¥ n matrices. Then

d(Eig A, Eig B) < (nt2) K 67/° |

where

w
!

max ([ags| 5 [og, 1)

R la.. - b
5§ = . ¥ |aij hij|

i,
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2. Henriells Poune {(Hanriced F491). This bound invalves & measure

of pnot-normality of wmatrices and is a bit involwved to state, See
Section 7 of Chaptrr I in this thesis for the statement of this result,

Cne of the aain results cbtained in this thesis can be stated as:

Theorem Lot AVB be any two linesr operators on an n~dimensional

spacu. Then

d{Eig A, Eig D)

< (3 K200 or [fBea | 0FT TR B VR
k=1 ' '
where
n = minClially , |{3]1p)
Moo= max(]lajly . sl

This result hag soimc throoretical tund practical advantages over
thuse of Outpowski and Henrici which we discuss in Section 7 of Chapter I
We pive two mumerical examples to show that this bound compares favorably
with the other twe bounds, During our snalysis we also obtain an
estimate Jor the distance between the characteristic polynomials of two
opuerators which iIs of Independent interest. The method we develop
© gan be adapted to give more special results In special cases some of
which are investigated.

An important feature of the bounds for d{(Eig A, Eig B) in the
general case iz the exponent 1/n. This makus the general result rather

weak, in the semse that when |]A-B]| is small the boun: for
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d(Eig A, Eig B} is large in comparison. There ave examplez to show
that in gemeral, this order iz best poszible. Howewver, in some
special cases ix can e improwved. We identify some of these cases.
We show that when A& and B lie in the Lie algebra of complex
skew-symmetric matrices or in the eymplectic Lic algobra then
d(Eig A%, Eig 8%) is of order | | &=l r” ¥ whara v is the rank of
these Lie algebras.

Finally, using a characterisation of similarity orbits and their
tangent spaces, we introduce a geometric method by which it might
become possible to obtain better inequalities, We show how such
ingqualities may be ohtained in some special cases.

The organisation of the thesis is as follows., In Chapter I,
after a few preliminary sections, we introduce our appreach to the
prablem, We look upon the map A + Eig {A) as a map from the space of
linear operators into the space :m of unordaered n-tuples of complex
murbers. There is & homeomorphism § ¢ Q:zym‘+@19 which takes the
{(urordered} roots of a polynomial to the (ordered) n-tuple of the
coefficients of the polynomial, The composite map 5 o Eig is then a
holomorphic map from the Banach space of linear operators to the Banach
8pace (i:tl. In Section 5 we obtain estimates for the deriwative of this |
map. Using these estimates and the mean value theorem for calculus
in Banach spaces we can thed estimate the distance between the coafficiants
of the characteristic polypomials of two linear operators. In Ssction ¥
we combine these results with a theorem of Ostrowski on roots of
polynomisls to obtain estimates for the distance between the sigenvalues

of two operators. Chapter II is divided inte two independent parts.
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In Fart A4 w2 show how the order of these estiwates can be improved in

some Special cases, In Part B we show how to connect two operators

by a suitable path so that a "bad part" of spcctral varletion may be

isplated. Some topics arising cut of these considerations are dealt

with In two appendices,



CHAPTER I

THE RATE OF CHANGE OF SPECTRA

In this chapter, our principal aim is, first, to put the study
of spectral variation in its proper conceptual setting and then, using
the general results obtained, to derive an estimate of the distance
between the eigenvalues of two operators. We analyse first the
following problem in a general setting : if ft is a continuously
varying family of endomorphisms of a finite-dimensional vector space,
how does the spectrum - the set of eigenvalues ~ of ft change with
t ? In most of the work on this problem a recurring feature has bzen
the problem of coherently ordering the eigenvalues of ft zs t varies.,
Since no globally coherent ordering exists in general, a lot of difficulties
arise. Here, we regard the set of eigenvalues of an endomorphism as

an upordered n-tuple i,e., as a point in the nth symmetric power of C .

This simplifies matters considerably and using some elementary methods

of multilinear algebra and calculus in Banach spaces we can obtain

an estimate for the rate of change of eigenvalues of ft' We then use
these estimates to obtain a bound for the distance between the eilgenvalues

of any two given operators,

1. The spaces E;(V)"and"M(n)

Let V be an n-dimensional complex vector space. We denote

the associated Euclidean norm on V. The set of all linear operators

by < .,+ > the usual Euclidean inner product on V and by
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on V (i.c, the set of all endomorphisms of V) will be denoted by
f;(f). The zet cof all n*n complex matrices will be deneted by
M(n,ﬂ:) or simply by M(n), When a basis has been chosen for ¥
every element A of 1L(V2 has a unique viement of M{n) associated
with it, viz., the matrix of A in this basis, We denote this
matrix also by A and we denote the entrics of this matrix by

(a,.)

%4371 < i, j <’
The spaces'ié(v) and M(n) are complex vector spaces of
dimension nz. Among the several nhorms that can be defined on

these spaces, particularly significant are those that are unitary

invariant.

Definition 1,1. A morm ||.]] on ¥ (V) or M(n) is called

wiitary invariant if for all A we have

Hoau™ [t = |{a]l ,

for every unitary operator (matrix) U,

For auch a norm the matrix representation of an operator

4 in every orthonormal basis forr ¥V has the same norm.

Twe most Ffrequently used umitary invariant norms are the

ones defined below.

(1) The Banach norm or the spectral norm of A, which we shall

denote as |IAI|B, is defined as
[1allg = sup (lax|] = x e v, [x]{ = 2} .

Let A% denote the adjeint of A, Then A*A is 3 positive
operator., The norm fihlfB can alsc be characterised as the positive

square root of the maximum eigonvalue of AFA,



{(2) The Frobenius aorm or the Hilbert-Schmidt norm of A, which

we shall denote by []4] !F y is defined as

Hall, = teasay??

where +tr A denotes the trace of A,

If A is the matrix {a,.) then we have

ij71<i,izn

Hallp = ¢ T lag0Y2
1]

The relaticn between these twe norms is given by the Inequalities

ally = dlally < =2 {lall, (L.2)

We ghall use these norms in our analysis, switching from one to

the other when convenient,

2, The maps & ‘and Eig

We denote by Z(A) the spectrum of an element A& of ﬁ{?}, i.e.
the subset of the complex plane (.C, whose elements are cigenvalues of A.
The cardinality of I{A) is at most the dimension n of ¥, In particular,
E{A) is a closed subset of (C.

Let ll,.... ln be the n eigenvalues of A, each counted as many
times as Its multiplicity. {(By multiplicity we shall aluwaysz sean the

algebraic multiplicity. We denote by Eipg(A) the wordered ri-tuple

{}\l,iiij:‘\n}t




Let T denote the group of permutations on n mymbols, The
. 5! . s -
groyp 0 acts naturally on the space § , sgiving visc to a guoticnt
Teli n i vk e o e sy S 4 I ! 1 - Y
space ﬂ: ]Ln which we Jdenotse ukllpﬂym. An unordured n=tuple
e whiavi from int 4 n T
lxj5000sx )} of complex nusbers Iu o point in - It iz tha
. . n .
cyuivalence claus of the n~tuple {xl,..a.xh} in ﬁg + Whers tvwo polnts are
reparded as equivalent if they con be obtained from each other by a
permatation of their ccordinatoes.
Thus I and Eip are maps fron ]5;(?} into the space of closed
subcets of (C and the space ﬁ: t s regpectively, Both these spaces
- sym '

are metric spaces with the metricgs defined below,

Let X,Y be closed subsots of {0 . Let
WYY gup  dist{x,Y)
= sup  inf s~y

Let

suplv{¥,¥), v(¥,X)) ,

hix, Y}

Thiz 1s called the Hausdorff distsnce betweon X and Y and it

dafines a metric on the class of all closed subsets of {z_.

O ﬂ sym we cdan define two natural metries d and § zz follows.
For any two elements {xl"“‘xn} and {yl,....,yn} of sz let
dt{:";l;ﬂ‘-a"ﬂn}, {Ylliltlyn}}

inf { sup xv¥easlt
ol 1=i<n ieli)
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k'{{xl:iifsk,n} L] {Flsﬁlnj}r‘n}']

_ . g \ _ 2. 1/2
= dnf O F ey 970

g e I 1=i<n
n —

The relation between these tws metrics is given by the inequalities

d < i < a d

The relation between the Hauvsdoerf? distance and thess metrics is

given by the following propositicn.

Proposition 2.1 Let {xl,”.,xn} and {yl,...,yn} be two peints

i n L = 211 S - H 2 o e ® "
in ﬁ:sm « Let XY be subsets of & consisting ruspectively of the

distinet vloments from these n-tuples, Then

h(J{,YJ i d{{?ﬂl,. .-,Kn} 3 {Fliiiijyn}} (2;2}

froef With the notaticns used above in defining h, we have

f1

v (X,Y) sup inf [xi-yﬁl

1sisn  Lgjen

sup inf {x,=y o
1<i<n ooe T[_t i7eli)
e — )

Hote that fur all 1 = 1,2,v.e,nn and o £ 1‘1n we have



inf |%.-% .. | x =, =¥ .. i
se T i alil i o{i)
n
< aup \x.-:.f x|
1< j al§)
50y
SUp inf K, = ¥ ool
1< ocen + oot
e n
£ Inf sUp Ixj - yu(j)i'

% E Hn 1<i<n

In othey words,
U{HQY} id{ {xlgliuix-n} k-3 {yljiiu‘yn})
The right hand side of this incquality is symmetric in X and Y. So,

it dominates v{Y¥,X} as well, Hence it dominates hiX,Y). 1

The following example shows that strict inequality may hold
in (7.2), (I should thank Professor Chandler Davis for clavifying
this point to me}.

Exampie 2,2. Let

{2, -1, iva} ,

{xl,._x?, xa}

{yys Yo yg} {1, -2,,~i ¥3} .
Then

2

1¥

h{X,¥)
df {XJ_’KE’HE} 3 {,Yl;fgsys}.]:’f?
Beparl, 2,3. Proposition 2.1 shows, in particular, that for
A, B ¢ 2i {V) we have

h{ (A}, ZI(E)) =< d( Eig(a}, Eig(B)}. {2.3)



d, The symmetriser map

In the preceding section we defined the map Lig @ &{V} > :}rm'
We wish to study the qualitative and quantitative behaviour of this map.
The spane @‘_ sy is not easy toe work with. Mowever, it is howmeomorphic
to (E:n as the following well known proposition shows. In the proof
of the proposition we construct this homeomorphism explicitly. The key

to our approach lies in exploiting this homeomorphism,

Proposition 3,1  The spaces C ?ym and {n are homeomorphic.

Proof Forr i % 1,2454..,0 let si(xl,u..xn) be the ith elementary

gymmetric function of the n  wvariables Rysseas® s defined as

Ei(xl;-r.‘,){n} = E xr X .u.-xr.

Let ;1'_“ * a:n ve the map defined as

S{H‘lggi.'}{n) = (Slﬁxlpu,xn),u.,s (Klgruugxn}}
P _ . b T n n
The map is continuous and thus Iinduces a continuocus map G - -»e

guch that the diagram

commutes. . Note that s (xl,...,xn}, ses 3 5 {xl,...,xn_} are the coefficient:
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(upto a sign) of the monic polynomial of degree n  of which XyveneoX
are the roote., So the map £  is bijective. The map s being a
gquotient map for the action of a finite group, is open, The map & ,
being a monconstant holemarphic map, is open too. Henece S is an

open map,

Remark 3,2 This identification between @:-zym and @:n, via the
symetriser map S, allows us to lock upon ﬁ:izyw as a complex manifold

and a vector space,

Remark 3,3  If the characteristic polynomial of an alement & of EW}

in written as

" - ¢1(ﬂ}t“fl +eee (D7 ¢ (R)

and, if
Elg{a) = {Algclotin}

then,

BlApseeend 1) = (4080500008, (A))

Remark 3.4 FProposition 3.1 can he generalised. If W is any finite
group generated by reflections in (I:n then the spaces ﬁ:nfﬁ and Qn
are homeomorphic. In Appendix L we display these homeomorphisms

axplicitly for some groups of this type.
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#o lhemap ¢ .

We can now outline our approach te the problem, Let X be any
interval on the real line {or any connscted subset of a Danach spacel,
Lot £ i x-+‘E;(V} be a ©f - man, We wish to otady the behaviour of the
compasitie map Eig o £ from X inteo ﬁ::ym‘ sime 5 15 u homeomerphism
frﬂmtj::m into En, we can, equivalently, study the behaviour of the
map S ¢ Eig ¢ £, Denote the compositfe map & o Eip by ¢, Then the study
of the variation of the spectrum of an operator~valued differentiable map
splits up naturally inte two parts, [Dirst we study the map + :‘E;(V}-+G:n
and theh the pap il -+ E’W}. This separation of the problem inte its
"universal™ and "particular' parts aljows great flexibility whizh «ild
bacome apparsnt in later sectiens. The following diagram explains the

sityation.

Fellewing this approach we chtain estimates for the map . As remarked
earlier, ®{A) has as its compononts the coefficients of the characteristis
polynomial of A, Our estimates can then be converted inte estimates for

the map Eig using the results of Ostrowski on roots of polynomials.



;18

5, Estimetes for the derivative of b

We shall use sowe elomsrtury properties of exterior products {Grassman
products) of vector spaces. {See, e.g., Lang (13]}). Seome of these
properties are briefly rucalled below.

L V¥ iz a vector space of dimension o then its kth exterior power
is a4 vector space of dimensien ( E }. This wector apace is dencted as
Akv, 1 <k £n. The exterior product of k vectors Vl""'vk in ¥ is m
element of ﬁkv denoted an vy A v, Ayauh Vo This product is lipear in
vach of its varlables and is alterncting {.¢. it vanishes in cose v, vj

for some 1 # 3. If EEEERPLR i a basis for V  then the seot

{e, A g berebe, 3l dy = n}
11 2 "

is o basis for nkv. If ¥ has an inner product < =»« > then an

inner product on ﬂkv com b defined Az follews., Tor two k-vectors

k . .
. . . L I | ea , - o :i .
v il v, Fi ) and Wy A W, LI | W ain AV cefire the dinner product

between them az

{{vlﬂi,,ﬁvk),{wlﬂ,,.ﬁwk}? = det fﬁvi,uﬁrll < i,§ <k

where dst denotes the determinsnt., This defines an inner oroduct on
. . k Y s
all basis vectora in AV  and cun be extended bilinsarly to ali of

hkv. If B ye..,8_ i35 an crthonormal basig for ¥ then {e, A ... i & s
1 n i ik

1 ﬁ_ili aas < ik j_n] is an orthonormal basis For ﬁkv with thiz irnner

product, We denote the space zmkv} as (Ek(v]}. For Af a{v]

and vl,;..,kai ¥  dofine



A

LY - ; _
.i!'i ﬂ{"-fl ﬂu.-lu)ll. Vk) - .FW ]I.I.lllﬁ Avk ]

and extond ﬁkﬂ “to all of ﬁk ¥ linearly. Thiz defines hkA as an
alemont of (&k{‘-"}}. Tha map ﬁ.k f&f\l’} + {&k[v}} has the following
two properties which we ghall use,

A eam) Hokem For all A,BE& Em,

i}

1t

(AR Ay W (ady for all A& gw}.

Bow, let AE aw} and let

- Lh TR L 430
(t) = t - ¢ (At # omve 2 (<1)7 ¢ (A)

be the characteristic polynomial of A, It is well known that chk(ﬁ} can
be characterised as the trace of the operator P and also as the sum
of all k %%k principal minors in a matrix representation of 4., In

othsr words,

o () = e

E det a, rwrss 4d
R ‘ cane 1 < i.i i.4
Lgiy <iy <eeci <n 1h 19%

*« B & & ® n & K @ W

By ¢+ % ¢ = A
4y Ly

fﬁl‘ k=l'2| sna g Ula
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Remark 5.1, From this expression it is clear that the map ¢ is
kelomorphiz, Henmce the map Eig is also holomorphic, The inequality

{2.3) then Inplies that the wap I is continuous,

Let D #(A) denote the derivative of $ at A, This is 2 linear
. . T
mp from the Banach space ‘éi‘f} into the PBanach apace (E « Il the
next few paragraphs we estimate the norm of this linear map.
Lesmwa 5,2, Let A H{n} *C be the map which takes an nxn matrix
to 1tz determinant, The derivative of this mep at 2 point 4 of Min)

is given by the linear map A& 3 M(n} +C definad as

- n
ax) = § .o x
g1 B

whare ﬁij iz the cofactor of the eloment aij of A and xij are the

glements of the matrix X.

2
Praof: Identifying M{n) with Cn and computing the Jacobian leads

immediately %o the statement.

o T e g P — 3 2] 2 i ; TR ]
Remapi 5,3, If the aperator HFL EUJ has the matrix (aij}lil,jin in
the orthonorma) basis 2ys Hprenes8 of ¥ then the operator !Lnilfﬂ} has

the matrix {ﬁi_j }l <i,i<n

in the orthonormal basis {ei A sl l e
. i
1 =1

124; <eewr<i | <n) for 1Y), Thus the Frobenius narm of
[ an(éj - the derdvative of 'ﬁn at A « is the same as the Frobenius

norm of A"Y(A}, This is not true for the Banach norm. In Appendix 2
we show how the Banach nerm of D nk may be computed. The incquality

we get is rather wezk but is of independent interest and could perhaps

be strengthened . This is why we usze the Frobenius norm for our estimate

of D%,
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Lemma 5,4, Let Fyseers¥y be n oonnegative real variables sub:ject

to the constraint

Then the Ffunction £ defined as

f(}r srevsy :' = E ¥s was ¥.
1 R S IR S A W 'k

attains a maximom value given by

ke
_ h M
fmax " {k} Tkt
n
g{}rl!l .--.Yn} - I }ril,‘.“, Yi

where the summation mms over all permutations of k distinct indices

i,

1 j‘?""’ik chosen from 1,7,.css0ls  Then

1
f{ylsl'-iyn} = H gcyliifslyn}i
4 si.ple ealenlation uaing Lagrange's method of undetermined multipliers

shows that g attains 2 maximmm value given by
k

- n? M
Epax -~ (=KX ﬁE
Thiz proves the lemma,

Proposition 5.5, If ¥ is a vector space of dimension n, then Ffor

every A € FQW} we have
k
ko112 .1 2
|1#7a ] |5 7 G Lallg

Proof., By the properties of the function !Lk mentioned in the heginning

of this section we have



anﬂ”;: = tr(a 2% (AF )
Keoa
tr A{adaY |
Let A% have eigenvalues CIELTRTREPRL S Notice that these are

nonnegative real numbers. The =igenvalues of :’Lk {A%A) are

1 gi < *ss< i «<n, 5o, we have

a, 4 rex B ¥ L £
ij.i:? ik 1 k
mn
lHalle = 1 a
F L%
2
Ii!lkﬂr! = E ai Haw ai
F h<ocersiin 2 K

Az application of Lemma 5.4 cowpletes the proof.

In view of Femark 5.3 we have

Carollary 5.6 For cvery A & E‘-:{v}‘. where ¥ has dimension n,

we L ove

nt 2l g

oe_ )] ], <

Dy erucial eatimate Fallows from this.

Theorem 5.7 : Let 4 & ‘-'é(v}, where V¥ has dimension n, and let

6 (8) = to(A* A). Then

oo dll <« & X2 ¢y Jall¥™r,

for k= 1,2, «uu 5 0.
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frocf Denote the span of a set of vectors VysraesV, by [v‘l,....vr_].
Let ILLITTLN he an opthonormel hasis for ¥. Let

a P : [E- PR < ] + v
ll” llk 1l lk

and

P, s el 1V - [E. PEE AN j
iyttt i, ik

denote the inclusicn map and the erthogonal projection map respectively.

Let

¢ (A} = P
il"'ik

and

¢ a fﬂ) = A, o - a
illn-'l‘]-_k &k .1 ii

for 1 iil < 1, € esn %i <on, Then

3 (&) i I O3

liilf “un cjkf;_n

Qk ¢i “'i (ﬁ} *

1__-!_:__114: sars j_kﬁj 1 k

By the chain rule of differentiation we have

(h) = nak(¢il,i,ikiali D¢i1_,_ikial .
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(A = Da (o, ... (A)y De, o, (A) .
I 1 i, iI ik

Du; I
4oy 1

Cinee ¢  is a linear map we bave
i sanl
1 k

D )y = o, for all A G &, (V)

17 17y
(5.1)
Note that ¢, . (A) 1sa k xkx submatrix of the n » o patrix 4,
1 k

Hence

”@i’ln-ikmu [ = 1alf; (5.2)

For i, = 1,2,s0e,n let Eij be the matrix whose (ij)th entry is 1

ard the rest of whose entries are all zero. Such matrices Fform an

erthonormal basis for M(n)., In this basis ¢; ,,.. has K entries 1
17"
and ths remaining entrics o So,
N k (5.3)
1y iy, 13

Using {5.1) - (5.3} and Corollary 5.5 we obtain

2=k/2 -
”Nil-"ik{m”f‘ < KK Flﬂil*;l

The theorem Ffollows,
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Remark : Since wl"“’“:n) we have

W =yt

~k -
oot < T W2 Ry el ket

k=]

-For later uze it is more convenient to have thess catinates In a

slightly different form,

Proposition 5,6 With notations as in Theorem 5.7, we have

. 1-kf2 i k=1
[osastl, < ®77°C0 {lallp
froof We have
e, o Hy o= e, o 1
il'._lk B llinnj_kjﬂ

Hence,

e, . Hp = 1.
ils--lk B

Using (1.1} and Corcllary (5.6) we have, therefore,

| {Dy, Ll < | Ipa, (s, {4)) _
| Wl < 1Pagsy L @l g Ty

1. dwme]
i3

< ||pa, (4 (||
k il"l‘l"ik E
< | |pa, {8, (A1)
- k 1}_"iik 1'1:‘
1-k/2 k-1
< k ||, . ()|
- 1, v%=] T
1 k

The statement follows from this inequality.
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Using this we can now obtain the distance between @(A) and  $(8}
woany two elements A oned B oof \TE_{\F}. For this we use the mean

fue theorem, {See, c.z., Uiendonnel[7]3.

gi2 Hean Value Theorem Let X = [a,b] be any interval on the rcal

ling and let E be a Banach space. Let fiX + E be any differcntiable
mip, Then we have
’ .y
| lf(xzi-f{xl}l I < fx,zﬂxl xssz | {DF(x) ] IE

_ ¥
for 5ll afxl<x?<‘-b .

; :
Now consider any differentiable map f:X + aiv}. Let 1K ©

be the composite map

Fk(x) = ;kff{x}} k= 1,2,,..40

Then by the chain rule »f differentiation and the mean value theorem

* have
lfk(xg}»—lz"k(x.l]l < E;-:E*-xll sup “UF},;{“H EB
x&E X
< Ixgmmg |l osup [pe, (FGO T DEGO T,
XE X
{5.4)
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O Thic, together with the rosults oltmined above, can be used to

Btain results for any special cases one may be interested in. Yor

guample, we hawve:

Thedoen 5,9 Let 5,B be any two eloments of E, (¥) where ¥ 1s an

t=dimensional unitary space, Thun

A-k/2 k-1

|8, a3, ()] < (3 e le-aflp [{Beail,

{5.5)

for all kK= 1,2,...,0, where

m = minC][aliz, [J2]1p) .

Proof Consider the map f:R + E(v} defined az

3]

e -+ x(B-A) ,

£(0) = &, £(1) = B

and

(DF(x) ) (y) = y(B8+4) for all x,vE& R .

S0, we have, using {5.4) and Proposition 5.8,

L-kf2 oy sup H&m(ﬂ-ﬂ}”?jl‘ He-all,

4. (B)=¢. (1)) < k
%% k o<xel

b
k

| A

GG (allg + [ lB-af )" [1B-all

Interchanging 4 and B this leads to (5.5}, D



Remark 5,10  lNotice that the last factor, |[B-a||. , on the right hand
side of (5,5) can be replaced by the potentially smaller gquantity

“Bwﬁ”a, as staps in tho proof show,

fince ¢ is made up of components ) » We have,

[ |2¢a)-0¢{B}| |

kl_kIQ k-1

1

%

k

T} =

Gl B-a] 1) | [e-all,

where,

n o= min(fallp 118l

6, Ostrowski's Thedroms

Results in this section are quoted from Ostrowski [157. They glve
gsti~ates for the distance between the roots of two complex polynomials

in terms of the coefficients of the polynomials,
Theorem 6.1 Let

f{Z} i3] n‘l

£}
]
-+
4]
2]
+

L}

L ]
+
1]
-

2 b2 s el b b
1 n

3]

iz}

be two monic polynomials with complex coefficients and with roots

SELLTTLN and Bl' - Bn respectively. Let



b, = max  Jo. |,

1 1<k =n K

W, = max |8 |

2 lsk=n k

W= max {”1‘”2] .
T .

o = () Ibea |y" kyL/n
k=1

Then the roots B and E;k can be arranged in such a way that

o8, [ < (2n=1)8
fﬂ" ali k = llzi".’n'

Kemarks The cxpression 8 invelwves the roots oo Ek‘ We com
mepiace w by an oxpression involving the coefficients as follows. Lot
17k,
I = mx {|uk|uk, By | My
1<k<n

Then

g < 2T

Thus we have, for a suitable arrangement of the roots,

n
-t ) < 2 (ome1) (] b -a [P (6.1}

k=l k

for all k = 1,2,440,0 .



We have secn parlier that there is a homeomorphism
= 40 o _ . e .
5’@5;@1 * Gj . Imeguality {(6.1) gives an cstimate for the distance
; " ) e - * T >
between two points {ul,....,an} and {El,...,r?rn} in stm in terms
of the distance betwesn their images in @n under thiz map.

#nother theorem which gives "relative ervror bounds" is quoted below.

Theorem 6.2 Let

A,z + saa + 32

[E]
223
+

£{z)

I¥
o

glz) = + blz t aws + B

be two monje polynomials with complex ccefficients. Suppose a ¥ 0,

d.e.; the n roots Bygavers B of F{z) are sll nonzerc, Suppose

there exists o constant R such that

D o< kR < )

|b, —a <« Rla ] forall 1 <k <n.
— k . o

"

Then the n roots Byssess B of g{z} can be ordered In such a way

that we have for all k = 1,2,...,%

Ek Fi !

—— = 1

k

2 Ban
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¥. Distance between the ¢igenwilués c¢f two opérators

Qur results in “eotion %, topether with Ostrowskits thecorams,
yleld some estimates of the distance betwsen the eigenvalues of two
operators.,

Hate that If & has sigsuvalues By peres S then we have

< 1lally = Hallg (7.1)

mx o | < <

K

Using this fact, Theorem 5.9 and Theorem 6,1, w: obtain

Theorem 7.1 For any two operators A and B on an n=dimensional

unitary space, we have
d{Eig{a}, Eig(B})

n i Y _— .
< @ne) {3 K e [pa] 1 PTRP P a1

k=1
(7.2}
whers
m o= mind[]allp o, HBlE) ,
M= max(llatly o 1Bl

Remarks In (7.2) we have used the Frobenius norm for all operators,
This inequality can be strengthened slightly. First note that because

of {7.1) and the definitleon of u, and in Theorem &,1 we can

1 b2
replace M in (7.2) by #, = max(lial}B, [iBllg).  Because of

1
1/0
P

Remark 5,10 we can also replace the last factor ||B-aAl] on the right

hand side of (7.2) by |[B-a| ly“. Thus we have



n |- 2 Y 3 ] - 7
< (-1 E k™ K [;](m+1|E-AtIF}k 1 H; k}lfn le*ﬂIléﬁh '
k=1

{7.3)
Hwhers

4 max{ | [A] |5 » [[B{]}).

Sacrificing some strength in favour of clegance we can write

ayarything in terms of the Banach norm:

d{Eig(a), Eig(R))

nooo _
< -1y ) KER2 () n
k=1

_ G k=1 o=k
oy +)15-a ] |30 W27

{k=-1}/2 l/n_

< a3 ()

where,

=l
e

minC[falt, o [1BY] 5),

=
ti

N [ A T

The above inequalities give basis-free estimates for 4{Eig(A},
Eig(B)) for any two linear operators A and B, These estimates
conpare favourably with the results of Ostrowski ({15] pp. 282-283)

and of Henrici [9]. We state their results below,
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Datrowski's Bound

For an n * 0 makrix N4 = Eaﬁ} def ine

P gl

lii;jj_fi

5]

Hlatl

A fe

This gives a norm on M{n)., Let A = (aij) and 0 = (hﬁ} he two

elements of M{n}. Let

K o= e X (la, .} » |b,.l )
123,95 13 =
Then
dltig(A),Eig(B)) =< zn(mz}lf:l“”“ikiﬂ-ﬂ]Hl"’” {7.5)

Henrici's Bound

Henrici's results depend on a certain measure of nonnormality which

he defines as follows, Let AE Ej(v} and 1ot T be a Schur
teiangular form of A, i.2, T iz an upper triapgular mateix such that for

some unitary matrix U wWe have
T = Oaus

In general, zuch 2= T is not unigue. Write
T = D+ ¥

where D and N are, respectively, the diagonal and the nilpotent

parts of T, If v is any matrix norm, define the v-departure from

normality of A by



LI
where the infimum is taken with respect to all N chat appear in the
wariLes Schur trispyulap reoucticns for A, Note that ﬁv“’) = 0 if and

orly if 4 is pormal.

1

For ooy resl number y > O let g = gly) be the unique nonnerpative
solution of the equation

Bttt =y

" Perrini's pesult can he stuted as follows, Let A be a4 nonnormel matrix

amd let -2 # 0, Let v be any neorm that majorises the Banach norm. Lat

aufﬂ}
¥y = ui E-}'Ls
Then
d{Eig(A),Eig{R)) < {2n-1) E%;T'viﬂ-ﬁ}» (7.6)

¥hen v is the Frobesive rorwm, Henricl gives »u opper bound Iop ""‘E"

viz.
nlen 174 1/2
A(RY €« (=) || afer-nax]] . (7.7}
r - - r

iz upper bound forr y nnd a lower bound for z{y) may then be substituted

in {7.8). Por that we have to use the relations

J (_,I,__ = n, for {}-:}r-\_:n,
elyd =gty - =

for v >n . {7.8)

V. _¥ <
v e A
gly? tn 1}?}1&1

(See Henrici {91, p.232).

The bounds {7.2), (7.5) and (7.6) are of the same opder. Note that
in (7.6) the order % enters through g{y). As the following axample

shows this order cannot, in general, be Improved.



ek Tl Lat
] 1 Q a 1 {3
& o 0 1 E = Do 1
0] 0 Q E 0 0
Then
HE'B”F = f"i 3

d{Lig(a}, Eig(B)) =

“The same phenomerion can be displaved for matrices of any opder by
erturbing an upper Joprdan matrix by © in the southwest ocorner,
Ostrowskl's bound uwsesn a norm which is dependenmt on the cholce of a
particular basis - the norm he uses Is pet a upitary invariant one.
enrini’s bound has the drawback that the departure from nopmality is not
easily amenable to computation. The use of {(7.7) and {7.8) considerably
weakens (7.6}, Fupther, {7,8) can be used to study rates of convergence
tnly when A 1s fixed and B-A  is Lounded away from zero (because of
the definition of y), Our bound dees not have these drawbacks. It glves
basiz - free estimate valid for 0il linear cperators A and B, A
eowparison of the nuwerical performance of these bounds is given by the

following two examples.

Example 7.3 Let




: X8

In this case,

() = 107 ljo-nf], = 207
y = 10?2 Sly) = .G09902 ,
R I BRIt
=
[laif, = /7moogor , |[pl|, = v2.61000 .

With this detsz, @n uppor bound for dA(Rip (£), Eig (8)}) given by Ostrowski
{8 4842546, that given by Henrici is 0.302969 and the one given by our

bound (7.2) is 1.978685,

Bxample 7.4 Let

/ -
o, 107 ,
i " i t 'Fi' ¢
A= ] o= -
1 1 107°

It this case,

Hallp = 7 , |ls{], - /70001 ,

-
—

- . 10
laell, = 102, laeal]] = B
K = 2 .

The quantity th{M is not koown as casily 2s it was in the preceding

éxample. Using (7.7) we have



v < /3 10
< /3 10?

67

Peing this data, Ustrowski's bound for d(Eig (A), Eig (B)) is 1.9027,
Bt of Benricl is 5.1962, whereas our hound (7.2) gives 00,3457 as an upper
Bapd for this quantity,

‘Thus, In both of the examples considered above we get a smaller
Mper bound for d(Eig(a), Eig{B))} than that obtained from Ostrouuki'’s
Wtinete, In the first example where 4.(A) is explieitly known Henrici's
Bourd is lower than ours. In the second example where 4.(A) is not
Bieam Henrici's bound is higher than ours.

In more special cases, cur method can be adapted to glve special
Psu s, We give oue suth ceanple below, Hote that both the Banach norm
md the Frobenjus norm arc not only unitary invariant but also have the

fallowing property which we shall call biunitary invariance

fusvl] = 1la for all unitary operators U,V ,
z

Let U,V be two unitary operators on an n-dimensional

paee and let K be a skew - Hermitian operator such that pot s exp K.

d(Eig U, Eig V) < 2(2n-1) o*/?" HKiI%‘irn
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Mroof Let

Tix) {exp xKJU , X & R .

Then

£Ho) U, £{1} v .
{Df(x))y) = yK(exp xK)U , for all x,yeR

%o, the biunitary invariance of the Banach norm implies

lIpeoolfy = Hxllg for all  x € |K.
Now that the Frobeniue norm of the unitary cperator f£(x) is /n.
Thus we have, from Froposition 5.8,

1-k/2 , 1 . n(k—l)fz

e, (G ], < & (%)

j A

1/2 ., n
n { X )

|~

for k= 1,2,...,0 and for all xg& fR .

So, by (5.8) we get

609 - ¢ (@] =< nt2 ( ;: ) kg

Since the eigenvalues of a unitary operator are bounded by 1 we have,

weing Theorem 6,1,

n i i i Fv
a(Eig U, Blg V) 2 (20-1) ( § 02 ( Dy )i
k=1

<o) o2 (k[0

a



Bemark  Of course, this estimate Is weaker than that of Parthasarathy
(18], =r the one thot would follow from the Hoffman-Wielandt Insquality
[i0], Howsver, that is but to be expected as their estimates were derived
for specizl cases using more special properties,

We now uvne Oztrowski's sccond theecrcom {Theorom 6,.2) in conjunction

with Theorem %.9 to econclude

Thecrer 7.6 Let A be an invertible operator on AR n-difensicnal space V.

let B be any cother operator on V. GSuppose there exists a constant R such

that
o < un rRM% <1
fer which we have
k- R
lally + Haeall %Y sl < e
' ¥ ( K )
(7.9)

for k= 1,2, ses 4 M.

Then the eigenvalues {u‘:l,...-,a:en} of A and {B),.ss, 8.} of B can be

arranged in such a way that

TTr
et
e
=}

kK

B

= 1 = 8 nR

for all k = 1,2,4.4, D.



Jime W Since
_— k_l-k;fﬂ .
Lek<n
=
fon
max { E ] =
1<k<n I{n/2)

wiere I denotes the integrzl part, we can replace (7.9) by th: stronger

tut more elegant condition

n=1 _
(all, + [s-afly Al <

I(n/2}!
;
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CHAPTER  flea

THE WULST FOR A BETTER ORDER

Ho lave derdved in Chapter I an estimate for d(Eig (A), Eig (B))} for
@y téo Linear operdtors 4 and B em an n—~dimensional vector space,
ihMe estimate shows that when |[A-B|| dis small the distance between the
sigenvaluss of A  and these of B is comparatively large, being of the

order |}a-Bf| /"

. Exampls 7,2 in Chapter I shows that this is the best
rossible order, in general, It might, however turn cut that when A and
ire regtricted to opecizl elasses of opetators this ord=r is better.

Lome examples of such ineguilities are the ones given by the estimatus
‘of keyl, Hoffman-Wielandt, Parthasapathy, Kahan. We koow of ne other
results of thig type cowvering larse and Interesting special classes of
DRePUtOrs.,

L. this chapter wo idumtify some more classes of cperators for which
the ordir can be improved, We show that when A and B 1is in the
Liv algebea E{n,ﬁ:} of complex ckew symmetric matrices of order
T .r or 2r+l or when they lic in the symplectis Lie alpebra
&Ezﬂ,ei then the distance botween the squares of their eigenvalues 1s
of crder |jA-B| }lk'. It will brcome clear during the course of our
dizcussion why it is more natural to consider sguares of eigenvalues In
thes - cases, When they all lien cutaide a cirele around the grigin, the
¢istante betwesn the eigenvalues themselves is of this order.

These restlts are .deduced from some very simple chservations
‘tonbined with our earlier results, This shows the advantages of

formalating the problem the way we have done.



1. Carrollian metuples .

dcfinition 1.1 We shall call an n~tuple {:-:l,...,xn] of complex numbers

a Carrollisn m-tuple if it satisfies the following conditlon ¢ a complex

tunber x 18 & member of this n-tuple if and only if -x is alsoc {ts

serber with the same multiplicity as that of x.

Remark 1.2 Hote that when 10 is @dd o Carrollian n-tuple must contain

0 with an odd multiplicity. A Carrellian n-tuple can be arranged as

{xl,...,xr‘ RSERLET #xr) when n = 2r

and as

(0, FpseensXoy “Xiseess -xr} whem nos Zrsl o

(Here, some of the x § may be zero too). We will think of a Carrollian
n-tuple as having been thus arranged,

. . 11 T!I-l & L)
Wt flz) =z o+ 2 + .«s + a  be a monic polynomial of degree

nowith complex coefficients, Let n = 2r or 2r+4). If Gypemea®y

are the n roots of f(z) then we know that

H

Elk {*l}k Sk(al,--osun} 2 lik in

where,

Wow suppose the roots Byseney B form a Carrollian n-tuple. Then we

mast have
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. - 3 s 2 PR
dzj = (=1} gj(ul cres 3 1<i=r .
T = o < <
254 0 ° -3 =
(Fer Remark 1.2},
3 . 2 2 ; e 1 k|
Thie, U aress @ avo the v rproots of the polynomial
F(z) = 25 4+ 2 S a2 L ra
-2 ' 24 2

of degree  ©.

This observation leads fmmediately to the following corpllary of
Ontrowski's Theorem (Theorem 6.1 in Chapter I).

Theorem 1,3 Lot f£(z) = 2 + aizﬂ'l toaea b gl{z) = 2"+ blznﬁld-...mn

Le two polyponials of degree n = 2r or Zr+l. Suppuse the respective

TSALE wyaeaes 0 and Byavess B of f{z} aznd g{g) are both

Carrellian n-tuples, Let

max (!ak{? . 'Hk[E} .

1{:
1<k<n
bl
- -k, 1/
6= { ) (b o-a,| ¥
1 2% T %ok

Thon the poots can be arranged in such 2 way that

la2 - 82| < (2r-1)@ (1.1}

for all k = l,zgn!tgns



Ah dpequality for the roots themsclves can be obtained using the

fol lowliig lemma,

wree 3.4 Lot #ys %, be Two complex numbers each of modulus not less

than ¢,  Thon eithe - s +3 > oo,
(ot elither lxl xz! o orp lxl al Z

i?l 19,
Frucf Lot oy = o » Xy T 05 y wherg c,,c, 2 c. Suppose
e »x-x,| = Je,-c e1(¢2-¢1}l
172 172
Theg,
g, =)
) 27 "1
¥ tw, = e, ve, e {
iCe =4.)
|2¢, =~ €e, —e, e 2 1]
1 "1 2
i(9,-¢,)
- TRy
2 ]201- Jc:l-rcEe !]

) U

Corollsry 1,5 Let the motations be as in Theorem 1.3. Suppose the

recks e LRRREL and ﬁl,...,ﬁn are either all located outside the

cirele of radius ¢ around the oriein or they contain zero with the

sime multiplicity and the nongzerc ones are located outside this circls.

iten they can be arranged so that :

o= 8, |« L g (1.2)



Prowy I+ i cnoipth to cousider tho cose whon 1 ls even and none of
. L

the roote 18 zerw.  Suppose the rootd hove beon arranged so as to
satisfy (1.1). By Lemme 1.4 we have for every k, aither Eﬂk'ﬂkl e

op Exk+ﬁki > 2. Auswme the latter. Then

(2r - ljﬁl{ {2r~1)6"'

kl ~
Netien that the left hand side iz the distance betwoon the rocts Oy
and ﬁk and alsc that batween the rootz - ak and *Bk‘ Anzsume the
former. Then

{2r~1)6"

Fﬂk+ﬁkl - &

The lufe hand side is now the distance betwoen the roots o, and =By
and zloc that between the roots - o and Ek' This pives an arvangement

of all the v roocks, t]

2. Operators with Carroliilan Spectra

4n operater A will be szid to have a Carrollian spectrum if Big(s)
iz a Carrollian n-tuple,
Using Theorem 5,9 of Chapter I, Theorem 1.3 a2nd Corcllary 1.5 we

have

Theorem 2.1 Let ABE E;{V}, where dim ¥ = n = 2n cr 2r+l.

Suppose both A and B bhave Carrollian spectra. Then we have




Poug

B ), Eig(B2))

loe-1) ? 2t Gl ieenh) yPR=L 2 (r-kd ) 1ir ]ﬂmﬁ)\;f”
k=1
(2.1)
there
n = minc|[all, 11811
w = wax(l]al|, . 18]{)

If AB have 0 as one of their eigenvalues with the same wiltiplizity

ad if the rest of their eigenvelues lic outside a circle of radius o

sround th: oripgin then we have

N =)

d{Eig (A}, Eig(B)} =<

viere R denotes the righthand side of (2,1). D

femarks 1. Incquality (2.1) mey be strongthened slightly in the same
vty as we cbtalned (7.3} in Chapter I.
N . - . . * n .
2, The left hand side of {2.1) iz the distance in 0:1 _ between
. 5Ym

the aquarcs of the oigenvalues of 4 and the squares of the eigenvalues of
8. This may be larger than tho distanca between their eigenvalues in many
tases .,

3. Entries of a Carrollisn n-tuple are determined essentially upto

their squares, 5o, it is natural to consider the distance between their

AUETEE «



iﬂ;‘e‘_‘_‘;‘it"‘& Importont exancdes of classcs of uperateors whose spectra are
Carrollian are provided by throc of the four classica) Lie szlgebras.
{tee e,g. Helpagon [81). We define them below,

Let Al dimote the transpese of the matrix A, Woe call symmetric
ir - oa and skew-symmetric if At oA, Let I dencte the noxon

identity matrix and let J denote & {2r) = (2r) matrix with 2 bleck

diconposition
A
0 1
r
J =
1 Q
1‘}
Lot
ﬂ{n,(‘j} = n *¥n complex skew symmetric matrdices
splr, ). = (A ¢ A% = - garly .

It is easy to see that A€ EE(T’Q Y if A bas a block decomposition

wherg Al, ;‘ag, 'ﬂ‘:a are 1 x y matrices and ﬁng, As are symmetric.
Since

Eig(a) = Eig{dad™}

Eig(A%)

andg

il

Eig(-a) ~Eig(h)

matrices in _EEE{I‘.I,E] and E;E.':r!@} have Carrollian spectra,



Remarks The four complex zlomeiczl Lic alpebras are enumerated as

3, * ﬁ(rﬁ-l,@? .
b, = ﬂ(h‘-fl,@} ,
e, = spn ),
o = solor, ).

The Lic algebra 3E(ﬁ.(£j} consists of n X n complex matrices

of trace 0. Since every matrix A can be reduced to a matrix with

tr A

trace 0 by subtracting from it the scalar matrixz ( = JI, the case of

%&(n,EjJ iz equivalent to considering the case of all matriees, This wes
dome in Chapter I, To the other three Lic algebras the more special
result derived above applies, The subseript r» in this clasaification

iz the rank of the Lie algebra, This iz alse the exponent which occurs

in our estimate (2,1). If wo lock at thc spaces GSTWHi-where ¥ are the
Weyl proups  op Erg 2 and ﬁT we £ind that natura] metrics on them

are defined using spguarcs of the coordinates, (See Appendix 1}. This

coohection could be more than fortuitous.



CHAPTER [IT-DB

THL, QUEST FOR A BETTER PATH

We now turn our attenticn in a differ-nt dircection. Our main
result in Chaptur 1 was obtained by linking two matrices A and 1 by
the linear path A+t(Ej§), ¢ <t <1, This path may be wasteful from
the point of wview :f ustimating spectral variation, We introduce a
geometric approach to the problem and using this obtain somc old results.
It is likely that using these ideas significant Improvements for the
case of arbitrary matrices might be obtained. An approach along these

lines 2nd the attendant difficulties are indicated.

Je Orbits and thelr tanpgent spaces

Let M{n)  be the space of 211 n ¥ n complex motrices, Let GLn)
denote the multiplicative group of ~11 invertible matrices and U{n) that
of 211 unitary matrices, (4 matrix shall, henceforth, mean an n % n
complex matrix).

We know that GL{n} iz a lie group with Lie algebra M{n). The

naturel adicint action of GLi{n) on M(n) is defined as the map

A+ g‘ﬁg“l . A€ Mln}, g& GLin),

The subset ﬂﬁ of M{n} defined asz

0, = {gﬂg"l : g€ Ghin})

iz called the orbit of A under this action. In other words lillnl cons ists



of all matrices similar 4o 4,
It iz will known that ﬁf is a smocth submanifold of the manifold
*
M{n)., JI{Lee, e.p., Holgason 2], The tangent space to Dﬁ at the point

A will be denoted by T.0

A% Thie is = linesy subspace of the tangent

apace tu Mlnl) a2t A - which iz H{n) itself.
The spaece MIn) has also got o Hilbert space structure defined by

the inner product

<A, B> = tr AR#

The norm arising from this inner preduct is the Frobenius norm, We
denote by & the orthagonal complement of a subspace 5 of M(n). Our
next proposition identifics the subspaces .0, ond (Tﬂﬂﬂ)jwof #(n),

fis usual we denote by [TA R the Lin bracket AB-84, The centraliser

of A in M{n) iz defined as the set

z{ay = (Mg Min) {i,X] = O}

Proposition 2.1 For cvery A€ M{n) we have

Tﬂ @ﬁ = Gpan { [a,X) 3 X £¥n)} .

(Tﬂaﬁji”: Z{AR)
F &Y o

Proocf  Every differentiable curve in 0O assing through A con he

a F

vritten locally, ss:
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Zla%y = Z(a) if and only if 4 is pormal.
5o, we have
Mi{n) = Tﬂﬂf & Z2(4Y, 4 normal . £3.2)
O

Whet A is pot normal we canh write a three-componont decomposition

Wn) = T,0, @ (200 N z(a%)) 8 Y(A), {3.3)
where
i
YW = {10, & 21 20)) (3.3)

The reasen for writing these decompositions shall become clear

in a momant.

4. applicaticu to spectral varpiation

. * . h s
In this secticn we use the metric § on ﬁ: sym" {Se¢ Sucticn 2,
5
in Chagter I). The norm in thic seoticn is olways the Frobenius norm.

So we drop the subseript F  from |- JF

Since similar matricus have idonticel cigenvalues, wo hawe

8(Eig{a), Eip(B)) = 0 when Eg O . (1,1}

If [A,B} = 0, there exists s unitary matrix U such that os~ Y and
UBU-l are upper triangular. Since the Frobenius norm is unltory

invariant, this Implies

§(Eig(A), Eig(8)) < |[a-B|| , when BE.Z(a).

(4.2}



The relations (3.2%, (U.1) and {4.2) sugmest that ko vordatior
ol the speutrar of o nermel netris om be cstimated coppondntwisce in
two orthegonsl direcricns, To nake this precise, we use the felliowing

lemms.

Lemma 4.1 Let H  bBe a Hilbert space {(or 2 Riemannian monifeld}. Let
Ti - ' . . . . . 1
pz H **\iik P o Cl Function and {0,111 + B oa plecewise

curva. Suppose the following conditions are satisficd

(i) wa) = X, s (1) = ox,
q(xu) = 0
(ii) For all 0 <t <1 the tangent space to Mt y(t: =olier
as a direct sum
T (e B = 1t e 1P
in such a way that
v[l)¢ = G for all v{l} &« Til)
v(E); < c[iww}lf for all v{?}(f-j Ti?]

{1) (2}

(llere + 7%  and v °'¢ denote the dircotional derivattves
of ¢ in these twe directiocns),

Let P:::'L} s P

(23
t

ante these twoe subspaces of T?{t) H

denote, respectively, the orthoponal projocctions



Then
sty < o ot HI—'F_E} yt{z)]|ldt
1t o=t t
where v {t) denctes the turivative of vy at  t.

Proof  We bzve

sx) = 0P (@at
* Q
= A e g @ s el e
L+ 0
£ 0 + ¢ r 'IPEQ} ¥t |ax
I e,
by vendition {(ii). il

Rumark  The statement of the lemma remains valid {F the functien 3

i - ¥
is U7 on a dense open subset O of H and v is 2 curwve which intey-
sects the complemetit of G at only a4 finite numbor of points. la such

.y . . 1
a4 vcase Wi will say that I penerically ©° and v 15 a curve

adapted to, y.

Lat (al,a.i,an} be a fixed podnt in ﬂ; " with aistinct coordinates,
Then the Function
v 1/2
S0 evanx ) = mn I agx 2™
gg I i=1 '

iz generically Cl. It i= not differentisble on the hyperplanes defined

by the fellowing conditions:



-
i
wF
i

{1) points with oot all coordinates distinet
(2] points (xl,...,xn} For which the minimak in the definition
of ¢ is attained For two differest pormutoticns o .

Juteide these hyporplancs ¢ behaves as the ordinary Euclidoan distonce
in ﬂiin.

Now let 4 be a fixed watrix vith distinct cirenvalues ~ud let
${a) = 4(Eig HD, Eig &), Then ¢ is gencrically a El funeotion on
H(ﬂ,él}. It is not aifferentiable on the set of matrices whose

eigenvalues constitute an n tuple of type (1) or (2) above. Thoss

.
1A

conditions being algebraic the sot of matrices satisfying then
nowhere dense and closed., Thus ocutside a Finite number of alpebraic
N . e .l _ . ;

surfaces, ¢ is a ¢ functicr on Win)d.

How we can prove the following theorem.

Theoren 6,2 Let Ro e A normal matriz with distinet aicenvilues,

Let & 3 [0,13 =+ M{n) Lo o plzcewise Cl curve with the following

rroperties
(i} aft) is normal for 211 0 <t <1
{ii} Al0) = A, M) = Ay s
(iii} Alt)  1is adapted to the generically Cl fenotion

+(8) = 6{Eig A, Eig A).

(2]
t

Let Pil} and F denote, respectively, the crthogonal rcroiection
operators onto the subspaces Tﬂ(t} Gﬂ{t} and Z{A(t})} of Min},

for © £t 2 1. Then



sleip &, Eig ﬂl) < Ji llPEz}A‘{t)let = Il Hare)} |t
b — 4] t __C'
{4,1)
whers A'(t) donotes the depdvative of alt),

The kast inequality in (%,3) iz strict whenever

(1)

Lit: Py AYtr # 0} > @

wheree L iz the Lebesgue measurs on [0,1].

Proof  We apply Lemma 4.1, 4and the remark following it, to the Hilbort
space M{n), the function (A} and the rurve A{t). By (2.2) the space
splits Into twoe crthocponal componetts TilJ = Tﬂ(t} ﬂﬂ{t) aitel

Tig}ﬂ 2ZCA(t)) for 211 0 <t < 1, Choose and fix a t in [0,17.
Since  #{A(t)) = ¢{BY for all B & Gﬂit}’ the derivative «f ¢ in

the direction of O iz zero, 1.e,

Alr)

(l}¢ = Q] Ior all V{l] & Til} .
Mow consiugt the rthopenal dircection Tig} fat

plAl d{Cip a{t}, Big &) ,

T

ki) glACE)Y + w(A) = &(Eig ﬂﬂi Eig A(t))

+ §(Eig Al{t), Lig LI,

Then note that

#{aft)y = hia(t))

and
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mi Ay h{&) for 211 A

in

Hence,

£ o 3
V(Q}rgl i Vk?] t ser all V[d)e T_E_?j

"(In fact this inequality will beld for the derivative o aay
so in particular for the airortion Ti?}J* But,
vl ho= vy foroall v T

since for a fixed t, J(A(t}} iz 2 constant,

By (4.2) we have

VB o 1P )] ferann WP TS:'
Say
v{2)$ < I|“(?) || for all V{?)EE Ti?)

Henee, by Lemma 4.1 we have

_ 1 2 -
a2 g HPi}ﬂ*(t}Hdt

Hote that

87w i < Harol|

where strict inequality holds whenever Pil}ﬁ'(t} 2 0.

This proves the theorem completely. [1

dlyoction,
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Femarks (1F A path satisfying the conditions of the theorem can be

constructed 28 follows. For the normal matrices o and ﬂl let

_ -1 .
Mi = Ui I}i Ui iz 1.2, .

where D, ave dizgonal and U, are unitary. Let p(t) = D, + t{Dl-DD}-
Then if DD has distinct entries then so does D{t) except at a finite
number of peints. This linecar path cuts the hyperplanes where

$(Elg Dg, Eig D) is not C; only at a finite number of points. Now let
Ult) be any el curve joining v, and Uy, Then the curve

A(t) = Ut} D(t) u(t)™? satisfies the conditions of the theorem.

(2) Since &(Eig A Eig A) is a continucus function of A an

inegquality of the type
8(Eig a_, Fig &) < F£(]|A-a][)

where £ 18 a continucus function, holds for 211 A if it holds for
a dense set., By perturbing the matrix A, if nccessary, we can therefore

asgsume that A 1lies In the dense cpen set where ¢{A) is el,

In the
next few paragraphs we will make this assumption without mentioning it.
In the same way, to aveid repetition, for a fixed matrix ﬂﬂ. "a curve
passing through AO" will mean a curve adapted to the funetion

6(Eig A_. Eig A).

We deduce two corollaries.

Corellary 4.3 Let AQ, Al be Hermitian matrices. Then

s(eig (a), Eigla)) < |la-all (4.4)

The inequality is strict whenever {ﬂo’ﬁl] ¥ 0.
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Proof  The curve A{t) = A4+ t[ﬂl-ﬁa} satisfivs the conditions of

the thoorem., We have

l!Pi?} s = flaredf] = liﬂl_ﬂct1

So, (L.4) Follows from (4.3).

Further, PL AY(E) # 0 if and omly if
[hlaﬂo, At t(ﬁlaAQ]] 70
which, in turn, holds if and only if Eﬂu,ﬂl} £0, I]

Corvllary 4.4 . Let Uu’ Ui be unitary motrices and let K be a

skew-Hermitian matrix such that O USl exp.K. Then

1
6(Liz U, Eig U}) < [ w!} (4.5}

The inequality is strict whemever (U, Ull F 0

Proof  The curve U{t) = {oxp t R}Uc joints U and U, and satiafies

the conditions of the theorem. We hdwve .

Ur{t) = Kiexp t X, .

B2 ornd (] < [lureerl) = (1]

S0, {4.5) follows from (4.3).



Furthoer, the condition

(i exp (t KU, exp (£KUJ # O

iz readily seen to bo equivalent to

LK, UD] P

which, in turn, is equivalent to
[u,uvl # 0 M

Remarks Inequalities {4.4) and {t,5) fcllow alse frem the Hof fman-
Wielandt Theorem which agserts the validity of (4.4) when &ﬂ ard Hl
are normal. They prove this using the spectral theorem and Birkhoff's
characterisation of the extreme points of the convex set of doubly
stochastic matrices. AT the moment, we are unable to deduce their
inequality using this method. While normal matrices have several nice
analytic properties, their set is not endowed with & vich geometric
structure and so doos not lend itself easily to our geometric methad.
Nevertheless, the following calouwlaticn is instructive. Though it does
not lead to the Hoffman~Wielandt inequality it brings in commutators
in an interesting mannper,

Let A, A, Dbe normal matrices, Then we can write A, = UD, ﬂ;l .
i=1,2, whers Ui are unitary matrices and Di arz diagonal matrices.
- Again, let K Dbe a skew~-Hermitian matrix such that UlU;l = exp K.

Let



r 6]

u{t) = fexp t K}UO R

oty = D+ t[ﬂl-DQJ .
¢ and

a(t) =. vt} ple) Ut

Then A(t) is & path joining EQ and Al and zatisfying the conditions

of Theorem 4,l1. We have
urit) = Kbpit) ,

whrey = o tuew oo™ .ot k.

So,
AYE) = KHDD(OU™ + Ul (D,-D Yot
- UCODIOU(E) ™ K
i = EKA(E)Y + U(E)(D,-D JU(e) ™}

The firat term on the right hand side belongs to Tﬁ{t) Dﬁ(t}' Ba, we hava

HPEQJ s < {jutedop o pule) [ = |{p-p ]l .

Hence, by Theorem 4.

s(Eigls ), Eigla))) < iinﬂmmlll .

Of course, this ineguality follows from the very definition of the metric §.
S0 we do not get anything new., However, It is interesting to note how the
expregsion for A'(t) involves two terms, one of which lies entirely in

the component Tﬁ{t} DA(t} N
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For nonnermal matrices the zitustion is more invelved. We new
have the third compenent in decomposition (3.3) to take care of. Usiug
relations {2.1) and (7.2) of Chapter I, we can write an inequality

of the type
§(Eig A, Eig A) j_f{M,||ﬂD-AlfI} {4,6)

valid for all matrices A, and A, where H = max({|[A_|[.[[a,]])

and f is a contivuous monotonically increasing function of each of its
variables determined explicitly by our earlier analysis. A4z we pointed
out, the inequality (4.6} is rather weak. Decomposition (3.3) now
suggests how this "bad part" can be isolated, Indeed, l=t 4:{0,11 + M{n}

be any differentiable curve such that A(0)} = A, and A(l) = Al

il) , Piz}

the three subspaces gcocuring in the decomposition (3.3) of Min)

Let P and Piﬁ} be the reapective projection operators onto

correzsponding to the matrix A(t), Let

w, = sup ({|acey[],||avCe)| .
Oxt<l

Then, we have with these notatlons

Theorem 4,4

. - Lyiel2) s aeantd 1 (2),,
§(Eig Ay, Eig &) < f !]Pi ) aret)| |at + [0 £y, By Yarie)]]ax .

A suitable choice of the math A(t) would thus give a better inequality
than (4,8). As the examples piven above indicate this chelce would

depend onh the nature of b, and A, .



ihiu analysis zives rise to an interesting question in
aptroninatian thoore md an eqoivalent guestion in retrix eguations.
¥What are the projections onto the subspaces occuring in {3.3)7

The answel depetds on the zoluticn to elther of the following problems.

Problom I tiven two metrices A and B, find a3 metrix X such that

Ho-fa,x3]| is minimal,

Froblem 2 Given &,B find an X such that

[a%, B = [4,X11 = © {4.7)

Such an X iz not unique, However [4A,X] i3 unique.

The cquivalones of these problems is readily seen using the
characterisation of T, Ug ad (T, Oﬁlﬂkh given by FPropesition 3,1,

When A is in the Jordan form, Z{4) is characterised zs
Mriongelarly striped” matrices, (see [12]), where the position snd the
length of atripec depend op the Jordan structure of A, In this case
{4.7) can be solved explicitly. However, for our problem that is of
little usc since the Jordan form is obtained by a similarity opcration

and the norm is invariant only under unitary uperations.
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HEEendix 1

: n
In Chapter I we made use of s homeomerphism botweon the spaces (E_

n . . ,
and AN whepe it Ly the group of permutationsg on » synbals,
a group I .

1
It is 2 consuguence of a theorem of Chowalloy that if € isn & {inite proup
_ . . f ST, . .
generated by roflections then (€ and  #' /G are howeomorphbic.  Here,
we construct these homeomorphisms explicitly for some groups of this type.

Let ¥ be 4 finite«dimensional vector space. An element of g of

GL{V) is called a reflection if gg =1 and g leaves & hyporplane ino

V pointwiso fixed, A group G of linear transformations on ¥ is called

A finite preflection group If it is a finite greup gencerated by reflections,

Let 5 be the symmetrie alpebra of V. The operations of ¢ uoxtend to

automorphisms of 5 as follows, For g & G, PE S apd xg vV define

=1

{gP}(x) = PF{g x).

An element P of 5§ sSuch that gP = P is called an Invariant of G,

The theorem of Chevalley [3] saysz that If & is a finite
refloction proup in an n-dimensional vector space ¥V {over a field of
charactoristic 0} then the algebra of invariants of G 1s generated by
n algebraically independent homogenecus clements,

The algebra of invoriants of G can be rogarded as the polynemial
algebra over ¥/G. Since the polynomial algebra over Vo also has n
algebraically independent homopeneous penerators viz,, the n elementary
symmetric functions, thas means that the pelyromial algebras over V
and V|G are isomorphic, Hence the varijeties V and V|G arc isomorphic.

Finite weflection groups have been enumerated completely by Coxeter.
We consider the actions on (E'n of finite reflection groups which are

the Weyl proups of the claszical Lie algebras, {See, e.g. Bourbaki [2]).



. n n
Let G be one of these groups. Wo will construct a map S +Gj
. . , o . ,
such thot the induced map 3 :@ g {ﬂn is a homoomorphism. We

£

will alco give 2 natwral metrdic on the space @@

1. Let G ﬂTrn be the permatation group. (Hote that this group is
generated by transpositions. The transposition of coerdinatses Xy
and %y iz & reflection keeping the hyperplanc Ky=Hy = 0 in ,ﬁ': n

fixed). This casc was considered in Section 3 of Chapter I.

2, Let G bo the semi-direct product of n and (Z:"?}Z}n. The
group G acts on G by poermutations and sign changes of the
coordinates.  Let {x,,...,x } be the image of the point Ot,...,
(xl,...,xn}ffﬂn in the quotient space (ﬁnfG. Then
{xl,...,xn'} = {3"1"""yn} if and enly if there is an element ¢ of

Hn such that Xy = —tya{i} for 1 = 1,2,+eey0. Let

. : , 2
b((xl’..‘,xn}) = {Sliﬁ;,i-i,xi]‘o--,ﬁn(xlgait,xg})

where B¢s i= 1,7,0..,0 are the elementary symmetric functions.

Thiz defines a map 8: {:n * @n. Ly an obwious modification of

the argument given in Proposition 3.1 the induced map S from @jnfG

to {’ ® is a homeomcrphism, Let

. 2 2
Gl{x, genesx } 5 Iy 3.0,y }) = min max  |x: -y o]
1 f 1 n Ueﬂn 1<i<n i a(i)

Then d gives a metric on @n;’G»

3. Let G be the semi-direct product of 1 and (Z’!EZ}MI The

group G acts on C n by permutations and an evan rumber of sign
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changes of coordinates. Thus two points = ,...,xn} and {Yl"*"yn}
are ldertified with cach other in.ﬁjIIIG if and only if there iz an

clement o of Hn such that X, = i_yg(i} for 1 02 1,2,.¢.,0 and the
product  x.x

CeeR is egual to the prodoct YiFoeee¥, . In this case,

1z

let

S{{xl,xz,...,xn)}
- 2 2 2 2
- {sl(xl’ningﬂn], L Bn-l{xl""!xn), Enixl,..;,xn}}

where 84 the c¢lementary symmetric functions. This defines a map
-} @in +ﬂ:}n and the induvced map §:$:n,fﬁ. +©n is a homeomorphism.

A metric on the space @j nfG is given by
d{{xl,---,xn} » {yl.n-ﬂn”

= max ( min N e ! [%, canX =¥ wuuy |)
. i Tgli}t ? 1 o1 't
g Hn 1=i=n

Remar..s The group O in cace 1 is the Weyl group of the Lic algebra
3. in casc 2 that of the Lie algebran Eﬂ and [ and in case 3 it is
the Weyl proup of the Lie algebra gﬁ.

In each of these cases an Ostrowskl type theorem comparing the
metric in € "/6 defined above with the metric in € " way be cbtained
by a small modification of the original Ostrowskit's theorem.

Besides the four classical Lie algebras named above, there are five
exceptional ones. For the simplest one g, we can do the analysis easily.
In this case the group G 1s the dihedral group of order 12. This group
is defined abstractly as follows., It has two generators Rl and RE

which satiefy the relations

> 9
Ry = R
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2 . .
If we lot G act on the space G: » then the asction of those penerators

has to ba

Hl : [“1’“2} + (x?.‘xl}

. =1
RE H (xl’xi} + (uw x2,=wx1]

where w Is the primitive sixth root of unity. Sa({j?fﬁ consists of
equivalence classes {:v:l,.:-;2 } of points [xl,xgi 1n(\1 whers twWe
peints (xl,xz) and (yl,y?} are identified if {xl,xgl iz a permutation

of (wiyl, w“lxz) for gsome i = 1,2,...,6. In this case let

' & 6
5((Hl,x2}} = (xl + oy s Xy ng} .

= 42
Then the map S: ({ 2 . @ ? induces a homeomorphism 5: €.° -+ @za’ﬂ.

A natural metric fm(: nf G iz defined as

dl{x,,%,1 {ylgy,‘,}}

. . & & .
= max{ man  max % =~ ¥ ..v] . IRHemv¥oLl).
UEHE i=1,2 * (i) 1272
For the other exceptional Lie algebras a corresponding anzalysis
does not ceem to be as sasy, primarily becausc the description of their

Weyl groups is very complicated and indirect. (see, e.g. [21).
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ﬂEEendix 2

We find an estimate for the Banach norm of the derivative of
the k-th exterior power map, (In this appendix the nm,“-“ , of a
lincay operator will mean the Banach norm).

To represent the action of the multilinear operators under
congideration we shall use the Following form of the polar decomposition
theorem. We give a proof which is differemt from the standard proof

that uses extraction of square roots of positive operators.

Proposition 1 Let & be a lingar operator con an n-dimensicnal

unitary space V. Then there cxist orthonormal bases {el'ez""’en}

and {fl,f?,;.d,fn} such that

£ gy = Gifi SR I S
wher:
Hall € 20,2 n € 20
Proof  We have [|Al] = sup{{lax{| : [{x]] = 2 } . Since the

milt ball in V  1is compact, therc exists a unit vector &, for which

Let Vl be the orthogonal complement of Gy and let ﬁl be the
restriction of A to V,. By the same argument, there exists a unit

yector ey for which
Hay el = dlagll = €, , say.

Continue this process to get an orthonormal basls Sysrevay for V.
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If c, 0, deline the vectors fi as

FETES.

- i 1 = 5
fi - c 1n 1,2,«*4,‘3 -

Im

1f Cy > & but Ek+l =0 forsome 1 <k <u, then A& has rank k,

In this case choose the first k vectors fl"'*’fk as above and

+1""‘fn to be orthonormal vectors in the orthogonal

complement of the range of A.

choosa fk

We claim that {fi, i=1,2,,..,n} 1is an orthonormal basis for V.
We only have to show that they are mutually orthogonal. By our construction,

the function
_ Y 2
Wx,y) = [ (Arey + ye,) ]|

of two complex variables x and ¥ subject to the constraint

lxiz + iyiz = 1 attains a maximum when |x| = 1. Let
A X *iK, , ¥ = vyt iy,
< fl‘ fz E u + iv

be the respective decompositions into real and imaginary parts. Then

the above statement means that the function
T 2, 2 2 2,2 2
Wy {xl’xE’yl’YE} = Cl(xl+x2) + CE{yl+Y2}
+ 2u{x1y1+x2y2} + Ev(xlyz-xgyl]

of the four real variables ®yaKos¥ )Yy subject to the constraint

x> + x°

2 -
1 PXtyy ty, =1

attains a maximum when ¥y 2 ¥, = O
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Intraducing a Logrange multiplier A,

wae must have

we see that at an extramum

2 =
lel + uy, vy, Axl = g
x4 - vy, + Ax, =T 0
1%z o Y1 %2 ’
CEy +oux, - v, + Ay = 4]
271 1 i 1 ’
CE + X + 3 + A = 0
2¥p 2 %1 Y2 :
Eliminating & we got
. o 2.2 .
u(l.rl)r2 - xlx?} + v[y? xl) 0
u{j.r2 ~ x9) + vy y., + xx,) = O
1 1 172 1T ?
. 2 2
U(ylyz ~ xlx?] - v{yl - EE} 0 .
L 2 L2 . .
u(yg &2) v{ylyz + % x2] = 0
Thege equaticns, In turn, lead to
2 .2 2 2.
ulx; + #x, - ¥y - ?2) = 0
5 2 2. .
v(xl Xy <y - y2] = 0 .

2

2 2

e mi .‘2
Using the comstraint x; + x, +y; + ¥,

extremum we must have

U[Exf + 232 - 1)

2

v{?xi + ng ~ 1}

i
=
]

n
=
[

1, we sce athat at an

But, we know that xz + xg = 1 is an extremum point. So

1 2
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Thus fl'fg are orthogonal, The same argument shows that fl""’fn

are mutuslly orthogonal, [1

Consider now the map A -+ ﬁk(a} from ?z (¥) te Ei?(ﬂk V). Then
D.‘tkfﬁ} is 2 linear map from ZW} to é ( A% V). Our next theorem gives

a bound for tha norm of this linear map.

Theorem 2 Let A& E{V}, where dim ¥ = n. Then

o il < e Al
where,
Cn,k = 1 For k=1
= 2k-1)M? . W2 for k=2,..0.0
Proof We have,
A%} = swp |12 A% @) ]
u&a{"«‘}
[Taf] = 1
K, ,
= sur sup, | (DA (A (a) d(2) ]|}
u%giv) z € ikv
fef=2”  T)2li=2

{1}
Choose Ei’fi’ci’ i=1,2,...,n as given by Proposition 1, If = Gﬁﬂk?

has norm 1, we can write

] = b " a8 M e A e,
14y <een< 450 ittt Ty "
where
2 .
It ;o= {2}
i < wees ien LT Tk



2T

Let
‘.l
ac, = hgl 2, f 2 1,2,004,0,
If |{a]] = 1, we nust Lave
B 5
hzl !ﬂih, < 1 12 1,0,004,02 {3)

For convenlence we adoyt the following notation

Ti
* LA ) 1 1 N ) X ot g -]
kzl XpvesBy g Yy ¥l L will denote the sum of terms obtained

trom ®.X

ILOTETL by successively replacing Xy by ¥y k= 1,200y

2

d K
Ir A {ArEn)

t=o

since  (DAF(A))(a)

L s
and A 18 multilinesr, we have

(0A¥(A) (a) }(2)
k
#*
= E ti i E Aei AR ,-\uel A e A de,
l{i LY i T l:" k Pi:l l P T
et ].;.,
_ kg R
= z ti a.ii { E I Ci --'Ci ;ﬂ-i Ci ‘ﬁici
1{11 cesne}l € p 1 k p=1 h=l ~L p-1 “_h Tp+l T
CEANE N R AL, o NE D
i ip—l h Ine1 ik
(%)

Denote this expression by X for brevity. Te find a bound for (1) it
suffices to Find the supremun of |JX|| subject to conditions (2) and (3).

We have,
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We have,
Hx1* = ) o T
L3S A e S TS B
lfjlﬁ.*;fjkfp
{ Eﬂ z {g_ s, W, YO, ...a_ vl }ai ,a.
- N i
Py lyuunsk ho=lyaes,n 11 ‘e ik 11 Iq Ik P ]Q
< £, AevcR F, Ressh £, 4, E, A ccsA . Aesap F,o» ) {5)
ll h ik i m jk

where the bar dencotes complex conjuration, the circumflex denctes that the
index under it hag been omitted and where in the inner product on the right

hand side fh and fm have bueen inserted in place of fi and f_ . respectively.
P q

Since fi form an orthonormal hasis, most of the terms on the right hand
side vanisk. In fact, the inner product in (5) is nonvanishing only when

the following three conditions are fulfilled:

(i} +the indices ilgii.,h,,_.,ik are distinct: (ii) the indices
jl’t!igfn:,i#i,jk darea diﬁtinf:‘t: {_T_ii.:l the two sets of indices {il’!-i'hgaiigik}

a!'.ld {jlgll-t‘m,-.-fjk} are iﬁEnticalq

Denote the expression inside the braces on the right hand side of (5) by S,

Then 5 is nonvanishing only in the following situations:

fase a : {il,.ui,ik} = {jl""'jk} + h = myp = g,p takes all walues
between 1 and k,h  takes all walues hetween 1 and n except
ll""’lp*l’lp+1""’ik' If the value of § in thls case is Sa we have

1s,] < Hall?™ Y 1 (e, 12
h p



p 7 g
where h and p  vary as indicated above. 3o, by (3) we have

5,1 < wl{a] et

Case b ¢ the sot {il""'ik} doots not contaln procisely onc indax jt
from the set {jl,...,ik} and the latter does not eontain the Index is
from the former. Then the terms in the sum 5  are nonvaniphing only in

the following subcases:

(i) p=s,qg=1, h=m, h varies from 1 to u avoidiag the values
il""’is-l' i3+1""’ik* If the value of 5 in this case is denoted

as Eh{i} wa have, uaing (3) and the Schwar: inegquality,

< a2t

oy

{(iiYp=s,qg#t, h = jt' m= jq. In this case

lpag) = HMPPRY T ey A
b{ll; q;l,...,k isjt ]qjq
qft

(iii) p# s, q=¢t, m=1_, h=1 . Agaln, in this case

5" P
!Sh{iii}! = (k=1) ”ﬁ”iﬁ{k-l} .
(iv) P F Sy 4 # ty D = g, h = jt' m s ig- In this case

Iﬂb{iv}I < ¢ (k-2) ][ﬁf!gik“li )



Adding =11 these, we see thet the value Eb wfF 5 dn case b 1s
bounded as
_ - 2k
5, < sae-1)]|al 2D
Case ¢ Two indices ip, iﬂ do net coecur in the set {jl,...,jk} and two
indices Jpo ju do not cccur among {il"“’ik}‘ Then the tdrms in the

sum % are nonvanishipg only In the following four cases

(i) psr, h-= jt .9 =u, m=s ig
{ii}) p=r, h= ju s 43t W=
{iii) p=s, h = jt s g =0, m= i
{iv) p=s, hs= ju , Gt me= .

So we have for the walue Sc of 8 In Casze o,

5] < wifaly?ty)

For all other cheices of indices the inmer product on the right
hand side of (5) vanishes. BSo,

st < Hall?% 1 max (x,¢3x-1),41

e

s-1) (A 120C8 0 ks a3

|~

Hence,

1P < «3y I

The theorem follows. El



Fomars The cungtants ﬁn ¥ oeouring in the statement of the theoren
L]

could perhaps be improved. Tt Is not clear tu us how to do that.
In particular, the inegu2lity derived above shows that when
B is close to 4 we hawe

[a%p-a%a] |

¢y [AIFT le-all + ocltp-ali®
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