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Chapter 1
Introduction

In this dissertation, we consider the following combinatorial problems: some character-
ization, enumeration, construction and optimization problems in both VLSI linear and
VLSI two-dimensional arrays; and construction of two combinatorial designs as used by
statisticians: nearly strongly balanced uniform repeated measurements designs {NSBUR-
MDs) and balanced near uniform repeated measurements designs (BNURMDs). We give

helow, chapter-wise, the problems considered and a brief outline of the solutions.

1.1 Enumerating Catastrophic Fault Patterns in VLSI
Linear Arrays with Bidirectional or Unidirectional
Links

Systolic systems consist of a large number of identical and elementazy processing elements
Weally connected in a regular fashion. Each element receives data from its neighbors,

computes and then sends the results again to its neighbors. Few particular elements
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located at the extremes of the systems (these extremes depend on the particular system)
are allowed ¢0 communicate with the external world.

The simplest systolic model is the VLS hinear array. In such a system the processing
elements {PEs) are connected in a linear fashion: processing elements are arranged in
linear order and each element is connected with the previous and the following element.

Figure 1.1 shows a linear array of processing elements.

Figure 1.1: VLSI linear array.

Despite their simplicity, VLSI linear arrays have been used to solve several problems. It
is well-known how to use a VLSI linear array for the matrix-vector multiplication; several
other numerical problems ( e.g. convolutions, triangular linear systems) have been solved
using VLSI linear arrays (see, for example [85]). The use of VLSI linear arrays is not
limited to numerical problems. For example, varicus algorithms that solve the longest
common subsequence problem on a VLSI array have been devised [57].

Fault tolerant techniques are very important to systolic systems. Here we assume that
only processors can fail. Indeed, since the number of processing elements is very large, the
probability that a set of processing elements becomes faulty is not small. In a linear array
of N processing elements, ane faulty element is sufficient to stop the flow of information
from one side to the other. Without the provision of fault-tolerance (:ap@bilities, the
vield of VLSI chips for such an architecture would be so poor that the chip would be
unacceptable. Thus, fault-tolerant mechanisms must be provided in order to avoid faulty
processing elements taking part in the computation. A widely used technique to achieve

reconfigurability consists of providing redundancy to the desired architecture {6, 14, 52|.
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In VLSI linear arrays the redundancy consists of additional processing elements, called
spares, and atlditional connections, called bypass links. Bypass links are links that connect
each processor with another processor at a fixed distance greater than 1. The redundant
processing elements are used to replace any faulty processing element; the redundant links
are used to bypass the faulty processing elements and reach others.

The effectiveness of using redundancy to increase fault tolerance clearly depends on
both the amount, of redundancy and the reconfiguration capability of the system. It does
however depend also on the distribution of faults in the system. There are sets of faulty
processing elements for which no reconfiguration strategy is possible. Such sets are called
catastrophic fault patterns. From a network perspective, such fault patterns can cause

network disconnection.

We now recall the relevant definitions and concepts from the literature. The basic
components of a linear array are the processing elements, or simply processors, and the
links. There are two kind of links: regular and bypa.ss_. Regular links connect neighboring
processors, - while the bypass links connect non-neighbors. The bypass links are used
only for reconfiguration purposes when faulty processors are detected, otherwise they are
considered to be the redundant links.

More precisely, let A = {p1, p2,..., py} denote a linear array of identical processing

elements connected by regular links (p;, p;1), 1 < i< N.

)
Definition 1.1.1 Let G = {g1, g2, ..., 9x} be an ordered set of integers such that
2< gy < g2 < ... < gp. We say that A has link redundancy or link configuration G if,

the bypass links are (p;, Pigg ) for 1l <i < N —-gand 1 <t <k

Note that the set G does not contain the regular links even though they exist. We de-
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note by g the length of the longest bypass link, i1.e., g = g.

At the extremities of the array two special processors, called I (for input) and O
(for output), are responsible for the J/0O function of the system. We assume that T is
conneeted to py, Py, ., Py while O is connected to py_gr1, DN—gi2, , Pw 80 that

bottlenecks at the borders of the array are avoided.

Example 1.1.1 Figure 1.2 shows a linear array of 15 processors with redundancy G =

{4}.

"

I

Figure 1.2: A linear array of processors

We refer to this structure as a redundont linear array or as a redundant array. A redundant
array is called bidirectional or unidirectional according to the nature of its links. We

sometimes refer to a processor p; as processor i.

Definition 1.1.2 A fault pattern F = {f}, fa, . fm} for A is the set of faulty pro-

cessors which can be any non-empty subset of A.

Definition 1.1.3 The width wyp of a fault pattern F is defined to be t‘he number of

processors between and including the first and the last fault in F. That is, if F =

{(fi, foo . fm}thenwp = fiu — fi + 1.

Definition 1.1.4 A fault pattern F' is catestrophic for an array A with link redundancy

(7 if I and O are not connected in the presence of such an assignment of faults.
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on

In other words, given a redundant linear array A, a fault pattern F' is catastrophic for 4 if
and only if po path exists between I and O, once the fanlty processors, and their incident
links are removed. For example, in a linear array of processing elements with no link
redundancy, a single PE fault in any location is sufficient to stop the flow of information

from one side to the other.

Example 1.1.2 Consider the following two fault patterns Fy = {4, 5, 7} and F; =
{3, 5, 7} for a linear array with link redundancy G = {3}. We see from Figure 1.3, that the
input processor £ and the cutput processor O are connected by apath {7, 1, 2, 3, 6, 9, O].
Hence Fy is not a catastrophic fault pattern by Definition 1.1.4. It is easy to check that,

F; is catastrophic.

Figure 1.4: Fault Pattern F, = {3, 5, 7}.

We denote a fault pattern by FP and a catastrophic fault pattern by CFP. If we
have to reconfigure a systemn when a fault pattern oceurs, it is necessar# to konow if the
fanlt pattern is catastrophic or not. Therefore it is important to study the properties of
catastrophic fault patterns. A Characterization of catastrophic fault patterns was given
in [70, 71, 74]. Nayak, Santoro, and Tan {71] proved that the number of faulty processing

elements in any catastrophic fanlt pattern is greater than or equal to the length of the
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longest bypass link. That is, F' is catastrophic with respect to G = {g1,92,-... 6}
implies that*the cardinality of F, ||F|| > gx. Suppose to the contrary that ||[F|| < g.
Then partition the linear array of processing elements into blocks of g, elements and list
the blocks as consecutive rows of a “matrix”. In Figure 1.5, we show the matrix for the

array given in Figure 1.2.

Figure 1.5: Matrix for the array given in Figare 1.2

Observe that in this matrix, going down a column corresponds to using the bypass link
;- Since the number of faulty elements is less than the size of the block, there must be a
column with no fanlty element, regardless of the distribution of the fault pattern. Thus ¥
cannot be catastrophic since we can repeatedly use the bypass links of length g to avoid
any of the faulty PEs.

As done in {74, 76], we consider only fault patterns of cardinality gx, so, in general,
F=A{f, foe....[5} Also, the width of a fault pattern must fall within precise bounds
for the pattern to be catastrophic; these bounds were established on the width wp of the

fault pattern for different link configurations. Let ¥ = {fi, fs,. ., f;, } be a fault patrern

for a linear array A with link redundancy G = {g1, 92, ..., gx}. Necessary condition for F
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to be catastrophic is
Gk R
geSwr < ([T Dge 1] 41

in the case of bidirectional links and
g <we < g~ D41,

in the case of unidirectional links [74].

Nayak, Santoro and Tan [74] give an algorithm for constructing a catastrophic fault
pattern with maximum width. Nayak, Pagli and Santoro [73] and De Prisco, Monti and
Pagli [21] give algorithms for testing whether a faunlt pattern is catastrophic or not.

From now on, by catastrophic fault pattern we mean a catastrophic fault pattern
having minimum number of faulty processing elements, i.e., with size equal to the length
of the longest bypass link. Given a linear array with a set of hypass links, an important
problem is to count the number of catastrophic fault patterns. The knowledge of this

number enables us to estimate the probability that the system operates correctly.

Example 1.1.3 Figure 1.6 shows all catastrophic fault patterns for a linear array with
bidirectional link redundancy ¢ = {4}. Links are not drawn in Figure 1.6. Figure 1.7
shows the only fault pattern F' = {4, 7, 10, 13} which is not catastrophic for bidirectional

links but is catastrophic for unidirectional link redundancy & = {4}. Hence, the number

Enumeration of catastrophic fault patterns for link redundancy G = {g} has been done

)
in [22] for unidirectional case. In Chapter 2, we extend fhis to the case of link redundancy
G=1{2,3,..., k g}, 2 <k < g—1. Seealso [63, 64]. We characterize catastrophic fault
patterns for both unidirectional and bidirectional cases and, using random walk as a tool,

enumerate them. It is easy to check that, the run {or cluster) of g faulty processors is the

only catastrophic fault pattern for & = {2,3,4,...¢9 — 1, g}.
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010J0] 10201 JOX 1 2CIC

F={ 4,7,9,10}

020401 1 101 JOJO] JCIO,

F={4, 57,10}

01016201 101 1 JOI JOIO,

F={5,7.8,10}

0102010301 1 1 1 1CION€

F={6,7,8,9]}

Figure 1.6: Catastrophic Fault Patterns for bidirectional link redundancy ' = {4}.
YofoY Yo%ol Yolof

F=1{4,7,10,13}

Figure 1.7: Catastrophic Fault Pattern £ for unidirectional link redundancy G = {4}.

We use the following mairiz representation [72] for fault patterns based on Boolean
matrices. Consider an arbitrary fault pattern F = {f, fa. fa }s consisting of g,
faults for an arbitrary link configuration G = {g(, o, ..., gx}. Without loss of generality,
assume that f; = 1. The links can be either unidirectional or bidirectional. We represent

Fhy awi x g Boolean matrix W defined as follows:

o (1 if (ige+j+1)€F
Wi, ) = { |
0 Otherwise

Here wj = [“ET. Notice that W(0,0) = 1 which indicates the location of the first fault.

Exampie 1.1.4 Consider the fault pattern F = {1, 5, 8, 12, 14, 15, 18, 19} with 8 faults
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and with wp = 19 for an array of PEs with link confignration ¢ = {8} as shown in Figure

1.8. The Boolean matrix representation of / is shown in Figure 1.9.

L JGISIS 1e1el Jeieiel 1ol 1 1ol I 1o
| 1._ %,

ty fs f3 Yq Fa fg « Iy

Figure 1.8: A fault pattern F for & = {8}

f, f, f,

0 { 0 i 0 1 1 0

Figure 1.9 The matrix representation for F'in Figure 1.5

Observe that in the matrix W each regular link corresponds either to two consecu-
tive elements in the same row or to the last element in a row and the first element in
the following row, whereas the highest bypass link {gy) corresponds to two consecutive
elements in the same column. Let W be the matrix representation of a minimal lanlt
pattern F'. Notice that any minimal catastrophic fault patiern satidfies the necessary
condition that for each 4, there is only one ¢ for which W{i, j) = 1. Indeed, if there is a
column of W with two 1's, then there would be a column of W with anly zero entries,
as F' has cardinality g, Using the longest bypass links (g:) of that column we can pass

over the fault zone, contradicting the hypothesis that F' is catastrophic. Therefore, we are
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only interested in fault patterns whose corresponding matrix W has exactly one non-zero
entry in every column. A CFP can be represented by the set of row indices corresponding
to the entry 1 in columns. Formally, the row represenioation of a CFP F is the g,-tuple
(ro,T1,. .., Tg.-1), Where each r; is the unique integer such that Wr,,¢) = 1. Another
convenient way to represent a CFD is the cotastrophic sequence {76). Here a catastrophic
fault pattern is represented as a sequence of g, — 1 integer moves (my, g, ..., My, 1),

where m; = r;_; — 1y

Example 1.1.5 Let ¢ = {8} and F = {1, 5, 8, 12, 14, 15, 18, 19}. Its row representation
is (0,2,2,1,0,1,1, 0) and its catastrophic sequence is (-2, 0, 1, 1, —1, 0, 1).

For given link configuration &G = {2, 3,.  k, ¢}, 2 <k < g—1, we characterize min-
imal CFPs in terms of the catastrophic sequence. We prove that, catastrophic sequence
of CFP with respect to bidirectional {resp., unidirectional) link configuration is same as
symmetric (resp., asymmetric) random walk. Finally using random walk as a tool, we
enumerate catastrophic fault patterns for both unidirectional and bidirectional cases and

obtain the following results.

Theorem 1.1.1 The number of CFPs for a linear array with hidirectional bypass links of
length 2, 3, , k and g (i.e., with link redundancy G = {2, 3 , kg, k<g—1)

i§

FP23. k )___H_HEHZ”: n—1 2m n—1\{n-1 g—k—2(n-ri{k—1)
AR = =1 r—2 r 2n

Theorem 1.1.2 The number of CFPs for a linear array with unidifectional bypass links

of length 2, 3, , k and g (1.e., with link redundarcy G = {2, ,3 ..., k, g}, k<g—-1)

i85

L5

T S ol [ I (R G | | (el
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1.2 Identification of Maximal Link Redundancy for
which a Given Fault Pattern is Catastrophic in

VLSI linear Arrays

Consider a linear array A of processing elements. For a given link configuration G, there
exist many fault patterns which are catastrophic for the linear array. Similarly, a given
fault pattern can be catastrophic for different link configurations. In Chapter 3, we
consider the problem of finding maximal link configuration for which a given fault pattern
is catastrophic. See also [65]. We consider maximality with respect to two parameters:
the length g of the longest bypass link in G and the number |G| of bypass links in ¢
The problem of minimization of the parameters is trivial since any F is catastrophic when
G=0.

This is important because, for example, if a maximal (with respect to g) link config-
uration for a given fault pattern F' has g-value 5, this shows that using bypass links of
length 6, one can bypass all the faulty PEs of F'. Similarly, if a maximal {with respect to
|G}} link configuration for a given fault pattern F' has |G]-value 4, this shows that using
any five distinct bypass links, one can bypass all the faulty PEs of F.

A fault pattern for A is the set of faulty processors which can be any non-empty subset

of A. However, we define it below in terms of runs of faulty processors.

Definition 1.2.1 For a redundant linear array A, a foult pattern ¥ is an ordered set, of
pairs of positive integers F = {(f1,41), (f2,f2), ..., ([u.€n)}, where f; + & < fiqy for
liign—lalldfn+€n—1§N

The pair (f;, ¢;) identifies the i-th Tun of faulty processors py, Prt1y ooy Dfittiot-

Hence, a processor p, is faulty if and only if f, < 2z < f; + £ for some 3, 1 < ¢ < n.
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Non-faulty processors are working processors. A path from a working processor ¢ {0 a
processar j is'a sequence of distinct processors ¢ =i, 4y, ..., &s fs41 = j such that, for
each r = 0,1,..., s, processor i. is a working processor connected by a link to processor
t.11. Lhe length of the path is s + 1. An escape path with respect to F is a path from [
to 0.

Definition 1.2.2 Given a redundant array A, a fault pattern ! is catostrophic for A if

and only if no escape path exists with respect to F.

Given a fault pattern F' = {(fi,61), (f2,€), ..., (fa,¥n)} for a redundant array
A, we focus our attention on the part of A beginning at processor ps _,.1 and ending at
ProCessor Py, 44, +9—2. wve call this part of the array the fowll zone. Since all the processors
are indistinguishable, we will assume without loss of generality that the fault zone begins
at processor p), i.e., fi = g. We denote by ¢ the length of the longest bypass link, i.e.,
4= Gk-

By a run of working (respectively faulty) processors we mean a set of consecutive work-
ing (respectively faulty) processors which is not contained in any larger set of consecutive

working (respectively faulty) processors. A run of working processors in the fault zone

will be called a chunk. More formally, we give the following definition:

Definition 1.2.3 Let F' = {{f1,£1), (f2. %), ..., (fn,£2)} bea fault pattern for A. Then

for 1 <1 £ n—1, chunk; is the run of working processors pr.s,, Pi+e+1, s Plia-1
Y

between processor f; + £ — 1 and processor fi,,. We also define chunkg to be the run

of working processors py, _g+1, Pf-gs2, ..., Pp-1 and chunk, to be the run of working

PrOCEsSOrS P opbys Plu+la+ly o Pfatdnt+g-2-

Example 1.2.1 Consider the fault pattern F = {(4, 1), (7, 3}} for a bidirectional

linear array of 14 processors with link redundancy &G = {4}. Then the fault zone begins
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at processor p; and ends at processor pp;. There are three chunks: chunkg begins at
processor p) and ends at processor py; chunk, begins at processor ps and ends at processor

vg; chunk, begins at processor pyy and ends at processor pi2. See Figure 1.10.

____________________________________________________________

' chunk0 ; ; chunkl :— chunk2 _ I:

Figure 1.10: A fault pattern and the chunks

Let A be an array of N processors with bidirectional link redundancy & = {g1, ¢2,-. . g},
and let F' be a set of m faults grouped into n < m runs of faulty processors. Then a
graph H = (V, F') was defined in [21] as follows:

Let Oy, €1, .., Cp be the chunks of ¥. Then V = {Cy, Cy, ..., Cp} and (C}, C;) € Eif
and ouly if there are two processors, p; € C; and p, € C; such that ly—z| € {g1, g0, ., S},
that is, if and only if some processor in C; and some processor in C; are connected in A
by a bypass link.

We call the graph H the derived graph of the fault pattern F. By definition of derived
graph it follows that a fault pattern F is not catastrophic for an array A, if and only if
Cy is connected with C, in the derived graph. We use the concept of derived graph to
solve our problems and get the following:

Suppose we are given a fault pattern of m faulty processors grauped into n < m runs
of faulty processors. Then we prove that the maximum value of g can be found in Ofmn)
time. We also show that the problem of finding max |G| can be reduced to a graph
prablem, which looks somewhat similar to a min-cut problem, as follows:

Let H be the derived graph for the given fault pattern F and link redundancy G = {u},

u < |F|. Suppose Cy and ), are not connected in H. Let Sy, Sy,..., Sy (h > 1) be the
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components of H where Cy € 5y, C,; € 5;,. We then form a graph H* = (V*, E*) thus:
V= {S, St ,,Sh} For0<i#j<hletly={e¢ 1<a<u—-1land a=
|z - y| for some PE z € S; and some PE y € 5;}. Then (S;, S;) € £* if and only
if L; # ¢. We call L;; the label set of edge (S5;,5;). Then we show that the problem
of finding max |G} is equivalent to finding a partition of V* into V* and V' such that
SoeVr, SpeVyand| U Lyl is minimum.

T ARTI

1.3 Catastrophic Faults in Reconfigurable VLSI Two-
dimensional Array

In Chapter 4, we will focus on  two-dimensional networks. See also [61]. The basic
components of such a network are the processing elements(PEs) indicated by circles in
Figure 1.11. The links are bidirectional. There are two kinds of links : regular and bypass.
Regular links connect neighboring (either horizontal or vertical) PEs while bypass links
connect non-neighbors. We have used broken lines to denote vertical links in the figure.
The bypass links are used strictly for reconfiguration purposes when a fault is detected,

otherwise they are considered to be the redundant links.

Figure 1.11: Two-dimensional network of PEs
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We now introduce the following definitions:

Definition 1.3.1 A two-dimensional network A consists of a set V' of PEs and a set E
of links {where a link joins a pair of distinct PEs) satisfying the conditions listed below.

V is the union of three disjoint sets: the set ICUL = {ICUL,, ICULy,. |, ICULy,}
of left interface control units, the set JCUR = {ICUR,, ICUR,,..., ICURy,} of right
interface control units and a two-dimensional array A = {p;; : 1 <i< N, 1 €7 <N}
of PEs. We sometimes refer to the processing element p;; as (4, j).

F.consists of the links cbtained as follows. Fixintegers 1 =g, < g2 < ... < g < Np—1
and 1l =v; < vy < ... <wy < Ny —1. Join py; to ppy by a link if and only if (i) i = ¢ and
li — 4| is one of g1, g2,. , g or {ii} =7 and |i — | is one of vy, va,..., . Also join
ICUL; to pa, Pisy-. ., Pig and join P; ny—g, +1: PiNeget2---» Piny t0 TCUR; by links,
fore=1, 2,. , Ny

We assume that Np >> g and N, > .

Definition 1.3.2 We call g1, go,..., gy the horizonial link redundencies of N and
W, U, ..., Uy the vertical link redundanciesof . Wereferto G = (g1, ¢5,..., g1 | V1. 12,..

as the link redundancy of AV.

Figure 1.11 shows a two-dimensional network with Ny = 4, Ny, = 11 and G =
(1, 4] 1, 2). A link joining two PEs of the type p;; and p; ;1 is called a horizontal
direct link and a link joining two PEs of the type p; and pyyy; i c.a}lled a vertical direct
tink. Direct links are also called regular links. Links joining p;; and» Pij+g With g > 1 are
called horizontal bypass links and links joining p;; and py, s with v > 1 are called wvertical
bypass links. The horizontal and vertical bypass links are shown in red and red broken

lines respectively in Figure 1.11.

'y ’Ug)



1.3 CATASTROPHIC FAULTS IN VLSI TWO-DIMENSIONAL ARRAY 16

The length of the horizontal bypass link joining p;; to p, ;44 is g and the length of the
vertical bypass link joining p;; to piy; is v.
Note that no links exist in the network A except the ones specified by & as in Definition

13.1.

Definition 1.3.3 Given a two-dimensional array A, a fault pattern {FP) for A is simply
a non-empty subset £ of the set of processing elements in A. An assignment of a fault
pattern F' to A means that every processing element belonging to # is faulty (and the

others operate correctly).

Given a fault pattern F, define m = min{j : {3, j) € F}and M = max{j : (i, j) €
F}. We will focus our attention on the part of A beginning at the m-th column and
ending at the M-th column, assuming that there are more than g; columns before the
m-th column and after the A{-th column. It is assumed that JCUL and ICUR always

operate correctly and we are considering information flow from ICUL to ICUR.

Definition 1.3.4 The window Wp of a fault pattern F is the sub-array of A4 consisting

of {py : 1 <1< Ny, m < j< M} By the width wp of F we mean M —m + 1.,

Definition 1.8.5 The part of A beginning at {m — g + 1)-th column and ending at
{M 4 g — 1)-th column is called fauit zone of the array A.

Example 1.3.1 Consider the fault pattern F = {(1,5), (1,86), (1,8), (1,11}, (2,3}, (2,8),
(2,10, (2,11), (3,6), (3.8), (3,9), (3,11), (4,7), (4,8), (4,10), (4,13}} with link redun-
dancy G = (1, 4 | 1) as shown in Figure 1.12. Then, the fault zone begins at 2-nd
column and ends at 16-th column. Links are not drawn in the figure. I has width

wp=13-5+1=9
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Figure 1.12: Fault Pattern /' with link redundancy G = (1, 4| 1).

Definition 1.3.6 A fault pattern is calastrophic for the network N if JCUL and ICUR
are not connected [(i.e. there is no path connecting any JCUL; to any ICU R, which does

not involve a faulty PE) when the fault pattern F is assigned to A.

Example 1.3.2 Consider the fault pattern F of Example 1.3.1. We see from Figure 1.13,
that the removal of the processing elements belonging to F' along with their incident links
disconnects [CUL and ICUR. Hence F' is catastrophic. Tt is easy to check that F' is not

catastrophic with respect to link redundancy G = (1,4 | 1,2).

Figure 1.13: Network A after the removal of F and their incident links.

Definition 1.3.7 Let ¥ be a fault pattern in a two-dimensional network A" with link
redundancy G = (1, ga, ..., gx | 1, va, ..., ). I we remove all faulty PEs, their

adjacent links and all bypass links from A then a component in the fault zone of A
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will be called a chunk. Let Cp, €, , Uy be the chunks of F where Uy starts at
(m — gy -+ 1)-th columa, C, ends at{M + g — 1)-th column and other C}’s are labeled

arbitrarily.

Example 1.3.3 Consider the fault pattern F of Example 1.3.1. There are six chunks:
G = {(1,2), (1.3), (1,4), (2,2}, (2,3), (2,4}, (3,2), (3,3), (3,4), (3,5}, (4,2), (4,3),
(44), (4,8). (4,6}, €, = {(1.7), (2,6), (2,7), (3,7)}, (2 = {(1.9}, (1,10), 2,9}, G5 =
(4,9, Cy = {(3,10)} and Cs = {{1,12), (1,13}, (1,14), (1,15), (1,16), (2,12), (2,13},
(2,14), (2, 15), (2, 16), (3,12), {3,13), (3,14), (3,15), (3,16), (4, 11), (4, 12), (4, 14), {4,15),
(4,16)}. Chunks are shown in Figure 1.14.

Figure 1.14: Chunks of the fault pattern F

Our main contribution here is a complete characterization of catastrophic fault pat-
terns for two-dimensional arrays. Let A be a two-dimensional netwark with link redun-

dancy G = (g1, 92,.- » 9 | ¥1, ¥2,..., ¥), and let F be a fault pattern. Then

1. We prove that, F is catastrophic with respect to A implies that the cardinality of
F,|F| 2 Nig.

2. We outline an algorithm for the construction of a CFP with the maximum width

for a given link redundancy G.
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3. We give necessary and sufficient conditions for a fault pattern F 1o be catastrophic

with respect to link redundancy G = (g;, g2,..., g& | 1, V2, .., w).

4. We provide an algorithm to test whether a given F is catastrophic with respect to

link redundancy G = (g1, ¢2,-- , g& | v1. vo,..., w).

For the above, we introduced a cuboid representation of A and the height matrix of

F. We now describe these briefly.

Suppose we are given a fault pattern F in a two-dimensional array with link redun-
dancy G = (g1, gas---, Gk | v1, Vo, , v7). Without loss of generality we will assume
that the first column of A contains ‘a fault. We partition the two-dimensional array A of
PEs into blocks of g columns as A = {4, : 45 : : A} where ¢ = r%rf} and place the
hlocks as consecutive floors to form a cuboid. In Fignre 1.15, we show the cuboid for the
array given in Figure 1.11 (vertical bypass links are not drawn in the cuboid). Observe
that, in this cuboid representation, each horizontal regular link joins two consecutive el-
ements in the same row of a floor or the last element of a row of a floor with the first
element of the corresponding row of the floor just above it whereas each vertical regular
link joins two consecutive elements in the same column of a floor. On the other hand each
horizontal bypass link of the maximum length joins two consecutive elements in the same
pillar. So, in this cuboid, going down a pillar corresponds to using the longest horizontal
bypass links. Suppose the number of faulty elements |F| is less than the size of a block
which is also the number of pillars (V,g;). Then there must be a pillar with no faulty
element, regardless of the distribution of the fault pattern. Since the bottom andstop of
- each pillar are linked to ICUL and ICUR respectively, F' eannot be catastrophic since we

can use the horizontal bypass links of length g, to avoid the faulty PEs. This shows that,
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Figure 1.15: Cuboid representation of a 4 x 11 array with link redundancy G = (1, 4] 1).

F is catastrophic with respect to A implies that the cardinality of F, |F| > Nig.

We label the V; rows in any floor of the cuboid with 0, 1, ..., Ny —1 and g, columns
in any floor with 0, 1, ..., gx — 1. The floors are labeled using 0, 1, 2, .... With every
PE (i, j) we can uniquely associate the triple (z, y, z) where z, y and z are the row
label, column label and floor label of the position (i, j) occupies in the cuboid. (Note
that # = 4 — 1, ¥ is the remainder obtained when j — 1 is divided by g; and z is L%J}
We then write _ |
1 if (i, j)eF

Wie, 3. )= | ,
0 otherwise.
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Suppose now F' is a fault pattern such that for any (z, y), there is exactly one z for
which W{z, y, z)} = 1, i.c., there is exactly one faulty PE in each pillar (note that every

minimal CFP has this property). We then denote this z by Ag, and call the matrix

hoo hor - hgg
hao A1 e higea
H= _ ‘
h’Nl*l,C’ h’Nl—].,]_ e hNE'“'LQk'“‘]

the height matrix of F.

Example 1.3.4 Consider the CFP F = {(1,5), (1,6), (1,8), (1,11), (2,4), (2,5), (2,6),
(2,7), (3,8), (3,7), {(3,8), (3,10), (4,1}, (4,4), (4,6), (4,7)} with 16 faulis for a two-
dimensional array A with link redundancy G = (1, 4 | 1) which has wr = 11 as shown in

Figure 1.16.
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Figure 1.16: A fault Pattern

The height matrix for this CFP is

We characterize minimal CFPs in term of the height matrix.
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1.4 Construction of Nearly Strongly Balanced Uni-
form Repeated Measurements Designs

An experiment in which an experimental unit is exposed repeatedly to a sequence of
treatments is called a repeated measurements design(RMD). If there are p periods, v
treatments and n experimental units then a repeated measurements design is an n x p
array, say D) = ((d;)}, where d;; denotes the treatment assigned to ¢-th unit in the j-th
period. Generally in statistical literature, the transpose of the matrix D, D7 is defined
as RMD(v, n, p); however, we will use I and not D7 in Chapter 5 and Chapter 6. For
convenience, a repeated measurements design with v treatments, n units and p periods is

abbreviated as RMD(v, n, p).

Example 1.4.1 Figure 1.17 shows an arrangement D of the treatments 1, 2 and 3 in a
12 x 3 array. If we take rows (resp., columns) of I as experimental units (resp., periods)

then D is an RMIX(3, 12, 3).

The applications of these designs are not limited to any single field of study but
are gaining importance over such diverse fields as agriculture, medicine, pharmacology,
industry, social sciences, animal husbandry and psychology. The designs have proved to
be attractive because of their economic use of experimental units and because of the more
sensitive treatment comparisons that result from elimination of inter-unit variation. The
use of RMDs rather than the classical designs can be justified in many setting such as
wher:

(i) One of the objectives of the experiment is to determine the effect of different

sequences of treatment applications as in drug, nutrition or learning experiments. #
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Periods
D= 1 3 2
2 1 3
3 2 1
2 3 1
3 | 2
1 2 3
| 3 2 Units

2 | 3
3 2 1
2 3 1
3 1 2
1 2 3

Figure 1.17: RMD (3,12, 3)

(ii) The experimenters might be interested in discovering whether or not a trend can be
traced among the responses obtained by successive applications of several treatments on
asingle experimental unit. For example, if one wants to measure the degree of adaptation
to darkness over time, the most efficient use of subjects requires that each subject be
tested at all times of interest.

(iii) Experimental units are scarce and have to be used repeatedly. This is often the
case in small clinics or in the development of large military systems, such as aerospace
vehicles, airplanes, radar, computers, etc.

(iv) The nature of the experiments is such that it calls for special training over a
long period of time. Therefore, to minimize cost and time, the experimenter should take
advantage of the trained experimental units for repeated measurements. .
For details of models, practical applicability and examples, one may refer to Hedayat and

Afsarinejad [36],-Afsarinejad [3], Patterson [79], Patterson and Lucas [82], Davis and Hall
(201,
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The application of a sequence of treatments to the same unit in RMDs, however, has
the potential of producing residual or carryover treatment effects in the periods following
the application of the treatment. A residual effect which persists in the i-th period after
its application is called a residual effect of the i-th order. In most of the work done, till
date, it has been assumed that second- and higher-order residual effects are negligible.
Consequently, most of the desighs developed so far, permit only the estimation of first
order residual effects along with the treatment effects. In this discourse also, we restrict
our attention to the first order residual effects.

Before proceeding to a survey of the literature on the subject, we recall the relevant

defmitions and concepts from the literature.

Definition 1.4.1 An RMD is said to be uniform on periods if in each period the same

number of units is assigned to each treatment.

Definition 1.4.2 An BMD is said to be uniform on units if on each unit each treatment

appears in the same pumber of periods.

Definition 1.4.3 An RMD is said to be uniform if it is uniform on periods and uniform

on units simultaneously.

We see that in Figure 1.17, in each unit, each treatment occurs once and in each period,
each treatment occurs four times. Hence 7 is both uniform on periods and uniform on

units, i.e., the design D is uniform.

Definition 1.4.4 The underlying statistical model is called ctreular if in each unit the

residual in the initial period is incurred from the last period.

Definition 1.4.5 The underlyving statistical model is said to be linear or non-circular or

without pre-periods if in each unit there is no residual effect in the initial peried.
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Only the linear case is being considered here.

Definition 1.4.6 Under linear model an RMD(#, n, p) is called balanced if the collection
of erdered pairs (dij, dij41), 1 < i< mn, 1< j < p—1contains each ordered pair of distinct
treatments the same number of times, say A, and does not contain the pairs of identical

treatments at all.

Definition 1.4.7 Under linear model an RMD{(v, n, p) is called sirongly balanced if the
collection of ordered pairs {d;;, dij1), 1 <i<n 1< j<p~—1 contains each ordered

pair of treatrents, distinct or identical, the same number of times.

We see from Figure 1.17, that each ordered pair of distinct treatments occurs four times.
For example, the four occurrences of pair (1, 3) are shown in Figure 1.17 by underlining.
Hence, D is a balanced uniform RMD. But I} is not strongly balanced as it does not
contain ordered pairs of identical treatments.

Cheng and Wu [15] showed that in the class of RMD (v, n, p), the strongly balanced
designs are universally optimal for the estimation of direct as well as residual effects. They
also showed that the necessary conditions for the existence of such a design are that ©%|n
and p > 2v. So even a minimal design in this class of designs needs 2v® observations to
be collected. As a result, when the number of treatments is large, the design becomes
impraciical. So, attempts were made to cut down the size of the experiment by relaxing
some of the requirements of such designs.. Kunert [49] has considered relaxation of the
mimber of units keeping number of periods fixed. He considered the situations where
p=sv, s> 2and v | n but v? fn. He assumed n = Av* + Bv, A> 0, 1 < B <wv - 1.

Usually for practical purposes A is taken to be zero.

Definition 1.4.8 A square matrix C is said to be completely symmetric if all the diagonal
b

- elements of € are equal and all the off-diagonal elements of C' are equal.
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For any RMD, let mz;; be the number of appearances of treatment i immediately
- preceded by treatment j on the same unit and M = ((my;)), 1< i,7 < v. For example,

in D, my = 4 as seen above,

Definition 1.4.9 {Kunert [49]) For given (v, n,p), an RMD{#, n, p) is called nearly strongly

badanced (NSB) if MM? is completely symmetric and m,,’s assume values

[Ml or [E(L}_)]H, 1<y <o

12 v?

where [x] denotes the largest integer < x and M7 is transpose of the matrix M,

Example 1.4.2 f v = 3, n = p = 6, then A = 0 and B = 2 and a nearly strongly
balanced uniform RMD(3, 6, 6) is shown in Figure 1.18,

Periods
’—1 2 3 3 2 T

1 2 2 1 3] Units
1 1 2 3 3 2
2 2 3 1 1 3

Figure 1.18: NSBURMIX(3, 6, 6}

3 3 4 34 33 33
- Here the matrix M is |4 3 3|. Note that, MM7 = |33 34 33
3 4 3] 33 33 34
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Kunert [49] showed that a nearly strongly balanced uniform RMD is universally op-
ltimal under both fixed- and mixed-effects models for the estimation of direct treatment
?eifect;s ameng all competing designs which are uniforin on units and on the last period.
EBufa he did not consider the construction of such designs. In Chapter 5, we provide
1 method of construction for a class of nearly strongly balanced uniform RMDs using
suitable SBIBIYs (symmetric balanced incomplete block designs) constructed through
difference technique. See also [60]. For construction of nearly strongly balanced uniform
RMDs, an adaptation of R. C. Bose's method of “symmetrically repeated differences”
1] has been used. Consider a group G with v elements and operation “4-”. If there is a
ptuple B = (ay, ai, Gz,-..,0, ) with clements belonging to & then the p — 1 elements
—a; fori =0, 1, , p—2 are said to be the backward differences arising from the p-
tuple B. B will be referred to as a difference vector and C = {a,—~ac1 : i =0,1,...p—2}
as the set of backward differences in B.

Given any p-tuple B = (aq,ay,...,4,-1) with elements belonging to G, the set of p-
tuples B+ 8 = (ag + 8, a; + 8, , g1+ ) obtained as & runs over the elements of G,

is said to be the set of p-tuples obtained by developing B.

Example 1.4.3 Consider the group Z7 = {0, 1, 2,..., 6} with operation “+ 7 (i.e,
addition modulo 7). Consider the triple B = {1, 2, 4}. Then the backward differences
arising from the triple are 1 —2 = 6, 2 —4 = 5. The set of triples obtained by developing
B=(1, 2, 4) are

(1, 2, 4), (2, 3,5), (3,4, 6), (4,5 0}, {5 6,1), (6,0,2), (0,1, 3).
We now introduce the following definition:

Definition 1.4.10 Counsider the group Z, = {0, 1, 2, .., v — 1} with operation “+7”

fie. addition modulo v). Then for i = 0, 1, 2 ..., v — 1 and ¢ > 2, D" denotes
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an sv-tuple of elements from Z, such that each element of Z, appears s times in it and
among the backward differences in it each element of Z, occurs s times except ¢ which

oceurs (s — 1) times.

For example, D27 = (0, 6, 1, 5, 2, 4, 3, 3, 4, 2, 5, 1, 6, 0).

In Chapter 5, we prove that, for odd v, D" can be constructed for all 5 > 2 and for
all { € Z,. We then prove the existence of a nearly strongly balanced uniform RMD for
any 7 of the type Av? + (v —~ k)v, A > 0 and p = sv, 5 > 2, assuming the existence of
SBIBD(wv, k, A} constructed through difference technique as indicated below.

Given an SBIBD (v, k, A) constructed through difference technique, let us consider any
block, say, the j-th block. We will construct an su-tuple, D}, for each treatment &
which is not present in the j-th block. Since any block of SBIBD(v, k, A) contains k
treatments, we have to construct (v — k) sv-tuples. Let #y,%s3,...ty—4 be the treatments
not occurring in the j-th block of SBIBD(w, &, A}, We write the (v — k) su-tuples, i.e.,

I 2 N & v

", a8 the rows of an array and write the developed su-tuples under
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them as shown below . -
Dy,

D +1

Dif+u—1
DY
D +1

Df;” +u—-1

i

e

+1

LR
Lok

| DY +v—1]
where the elements of D" + 0 are obtained by adding # to the elements of D{". Then

the v{v — k) x sv array D, is a nearly strongly balanced uniform RMD with parameters

v, n=v(v—k} and p = sv.

1.5 Construction of Balanced Near Uniform Repeated

Measurements Designs

Cheng and Wu [15] showed that in the class of RMD (v, n,p), the strongly balanced
designs are universally optimal for the estimation of direct as well as residual effects.

They also showed that the necessary conditions for the existence of such a design are that

+*/n and p > 2v. So even a minimal design in this class of designs needs 2v% ohservations
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to be collected. As a result, when the number of treatments is large, the design becomes
impractical. So, attempts were made to cut down the size of the experiment by relaxing

~ some of the requirements of such designs.

It is observed in the literature that Kunert [49] has proposed designs, which cut down
the size of experimental units. Firstly, Kunert relaxed the condition of strong balance
for RMDs and used the concept of nearly strongly balanced, viz., a design where the
frequencies of ordered pairs of treatments, distinet or identical, in the design instead of
being equal, differ by at most one. He considered designs where vin and p > 2», studied
optimality and characterized these designs in terms of optimality. Tt may be noted that
n is small but p is large for such designs. Dey, Gupta and Singh [24] considered p < v
to be a realistic situation. They studied the universal optimality in a restricted class of
designs and found that universally optimal designs are necessarily balanced. It is easy to
check that, p is small but n still continues to be large for such designs. In an effort to
make RMDs realistic and cost effective, we propose to reduce both n and p in the class

of balanced designs. We now introduce the following definitions:

Definition 1.5.1 An RMD which is uniform on periods and for which frequencies of
administration of different treatments on experimental units do not differ by more than

one is called a near uniform RMD.

Definition 1.5.2 In case » does not divide p, we call an RMD balanced near uniform if it
is uniform on periods, frequencies of administration of diflerent treatments on an exper-
imental unit do not differ by more than one, and balanced for first order residual under
a linear model, i.e., the collection of ordered pairs (di;, dij+1), 1 <i<n, 1< j<p—1,
contains each ordered pair of distinct treatments the same number of times, say A times.

4 balanced near uniform RMD(u, n, p} will be abbreviated as BNURMD(v, n, p).
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Example 1.5.1 Figure 1.19 shows a balanced near uniform RMD with parameters v =

5 n =10 and p = 3. We see in Figure 1.19 that,

Periods
D=[ 0 4 I
1 0 2
2 1 3
3 2 4
430 Units
I 2 @
2 3 1
3 4 2
4 0 3
0 1 4]

Figure 1.18: BNURMD(3,10,3)

» in each period each treatment appears the same number of times, i.e., the design is

uniform on periods.

e each ordered pair of distinct treatments occurs once whereas no ordered pair of
identical treatments occurs at all. That is,

(01 1 1 1y

o111

M=|11011

1 1101

\1 1 1 1 0/
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¢ in each unit, each treatment cccurs at most once.

In Chapter 6, we prove that, p — 1 divides A(v — 1) is a necessary condition for the
existence of a BNURMD with the parameters v, p and A. When this happens, the number
of units n is an integer multiple of v, the mumber of treatments. See also [62]. We then
give a procedure for construction of balanced near uniform RMDs when every ordered
pair of distinct treatments appears exactly once or twice (i.e., A = 1 or 2), except for the
case v an odd integer and p = v. This exceptional case is equivalent, to a row complete
Latin square of odd order.

For construction of these designs, an adaptation of R. C. Bose’s method of “symmetri-
cally repeated differences” [11] has been used. Let the treatments in an RMD correspond
to the elements of a group & with size v and with operation “+ 7. Suppose there exist m
tuples {called initial units) B,, B, , By, such that (i) for any B;, the frequencies
of the different elements of &7 in B; differ by at most 1 and (i{) among the m{p — 1)
backward differences obtained from By, Bs, , Bp, each of the v — 1 non-zero elements
of 7 occurs exactly A times. Then by developing the initial units B,, Bs, , B, we

obtain a BNURMD with parameters v, n = mv, p.

1.6 Literature Survey

Fault tolerance is the survival attribute of computer systems. A common approach for
achieving fault tolerance in VLSI-based systolic architectures is through the incorporation
of redundancy. The popularity of this approach rests on the fact that, with modern tech-
nelogy, it is now possible to incorporate a large degree of redundant processing elements
(PEs) and additional circuitry into a single chip. The redundant PEs are used to replace

ary faulty PE(s); the redundant links are used to bypass the faulty PEs and reach others.
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Most of the decisions made at design time with regard to fanlt tolerance are therefore
focused on two particular aspects: amount of redundancy and reconfiguration technique.

In the following, the VLSI design will be used as the leading example.

Intuitively, a system incorporating a large number of redundant PEs and “long” re-
dundant links should be able to tolerate a large number of PE failures. A long redundant
link can bypass a large block of consecutive faulty PEs. However, long wires are not al-
ways possible in such systems due to layout constraints. A long wire will introduce larger
propagation delays which in turn might create synchronization problems and hecome the
limiting factor in the performance of the system. Furthermore, note that to increase the
mimber of redundant PEs in a chip requires an extra overhead of interconnections and
switching circuitry which implies a higher likelihood of failure. Provided that these tech-
nical difficulties can be snccessfully overcome, it still seems natural to assume that a very
high degree of tolerance can be achieved by simply providing a sufficiently large number
of spare PEs with a large number of long connections.

The effectiveness of the approach of using structural redundancy to increase fault-
tolerance clearly does not depend solely on the amount of redundancy. In fact, the
availability of a large number of redundant PEs is useless if these PEs cannot he suc-
cessfully employed to replace the faulty ones. Thus, a main measure of fault-tolerance in
such redundant arrays is the reconfiguration capability (or reconfiguration effectiveness);
that is, the ability to map faulty elements to spares (using bypass links) while preserving
the high degree of regularity and locality of reference required by the system to perform
correctly.

It is therefore not surprising that a large amount of research has been devoted to the
design of reconfiguration algorithms for redundant arrays as well as proposing redundant

architectures which facilitate the reconfiguration process (8, 33, 38, 46, 45, 53, 56, 58, 75,
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87,91, 93, 94]. Related work has focused on the study of low yield problem [105], i.e., on
improving spare utilization.

A computer architecture (or network) can be characterized by its topological proper-
ties, It is called regular if the underlying graph is regular; that is, it is conpected and every
node has the same degree. The focus of this thesis will be on the regular architectures.

The effectiveness of using redundancy to increase fault tolerance in a regular architec-
wire clearly depends on both the amount of redundancy and the reconfiguration capability
of the system. It does however depend also on the distribution of the faults in the sys-
tem, In fact, faults occurring at strategic locations in a regular architecture may have
catastrophic effect on the entire structure and this cannot be overcome by any amount
of clever design. If we have to reconfigure a system when a fault pattern occurs, it is
necessary to know if the fault pattern is catastrophic or not. Therefore it is important
to study the properties of catastrophic fault patterns. A characterization of catastrophic
fault patterns was given in (70, 71, 74| for VLSI linear array. Nayak, Santoro and Tan
[74] proved that a catastrophic fault pattern must contain a number of faulty processing
elements which is greater than or equal to the length of the longest bypass link. They give
an algorithm for constructing a catastrophic fault pattern with maximum width, Nayak,
Pagli and Santoro [73] and De Prisco, Monti and Pagli [21] give algorithms for testing
whether a fault pattern is catastrophic or not.

Given a linear array with a set of bypass links, an important problem is to count
the number of catastrophic fault patterns. The knowledge of this number enables us to
estimate the probability that the system operates correctly. Pagli and Pucei [76] obtained
tight upper and lower hounds for the number F#(g) of catastrophic fault patterns of
size g for a linear array with one bidirectional bypass link of length ¢. Enumeration of

catastrophic fault patterns for link redundancy G = {g} has been done in De Prisco and
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Santis [22] for unidirectional case. Maity, Roy and Nayak [63, 64] extend this to the case
of G={2, 3,..., k, g}, 2 <k < g— 1. They characterize catastrophic fault patterns for
both unidirectional and bidirectional cases and, using random walk as a tool, enumerate
them.

For a given link configuration (7, there exist many fault patterns which are catastrophic
for the linear array. Similarly, a given fault pattern can be catastrophic for different link
configurations. Maity, Roy and Nayak [65] consider the problem of finding optimal link
configuration for which a given fault pattern is catastrophic. Optimality is considered
with respect to two parameters: the length g of the longest bypass link in G and the
nmumber |G| of bypass links in ¢. Optimization here means maximizing the parameters;
the problem of minimization of the parameters is trivial since any F is catastrophic when
G=0.

Maity and Roy [61] completely characterize catastrophic fault patterns for
two-dimensional arrays. They prove that the minimum number of faults in a catastrophic
fault pattern is a function of the length of the longest horizontal hypass link and the
mumber of rows in the two-dimensional array. From a practical viewpoint, this result
provides some answers to the question about the guaranteed level of fault tolerance of a
design. Guaranteed fault tolerance refers to an affirmative answer to the question: will
the system withstand upte s faults always repardless of how and where they occur? They
analyze catastrophic sets having the minimal number of faults and give an algorithm
for constructing a catastrophic fault pattern with maximum width. They also give an
algorithm for testing whether a set of faults is catastrophic or not.

The results for arrays apply to a large variety of commercially available array proces-
sors such as Geometric Arithmetic Parallel Processor (GAPP) [16] of NCR, Distributed
Array Processor {DAP) [88] of ICL, England, NASA’s Massively Parallel Processor (MPP)
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7], and Connection Machines [109] of Thinking Machines Corporation. The results pre-
sented in this paper also apply to a large number of WSI-based and VLSI-based processor
arrays which include the Systolic Arrays [50], Reconfigurable Array of Processors ELSA
{European Large STMD Array) [95], and a variety of special-purpose VLSI and exper-
imental WSI devices for applications such as signal processing, image processing, and
pumerical computations. Furthermore, the results are equally applicable to the memory
chips. Memory chips are the most obvious candidates since the underlying architecture
is highly regular and has a large number of identical cells.

We now turn to a survey of the literature on the construction of the combinatorial
designs as used by statisticians which are considered in this thesis. A number of papers
in the statistical literature in recent years have considered the structure of designs with
certain desirable statistical properties. As we consider only construction of RMDs in this
thesis, we present a survey of literature on construetion of RMDs followed by a summary
of important work done.

Different authors have used various methods of construction, like, cyclic arrangements
of the treatments when the number of periods is less than that of treatments, construction
based on finite fields and sequenceable non-abelian groups for generating uniform and
halanced designs. Cochran, Autrey and Cannon [17] were probably the first to point out
that the classical designs are not suitable for estimation of direct and residual effects in
their dairy cattle feeding experiment. Williams [113] introduced and constructed balanced
mimimal repeated measurements designs when the number of periods iz equal to the
number of treatments whenever the number of treatments is even. Houston [39] showed
that it is impossible to construct a balanced minimal repeated measurements design based
on a cyclic gronp when the number of treatments is odd. It is known that no balanced

minimal repeated measurements design exists if the number of treatments is three, five
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or seven. Mendelsohn [68] constructed a balanced repeated measurements design for 21
treatments based on a noncyclic group. Balanced minimal repeated measurements designs
for 9 and 15 treatments were given by Hedayat and Afsarinejad [37], who attributed them
to K. B. Mertz and E. Sonnemann respectively. Denes and Keedwell [23] reported that
Wang has constructed balanced minimal repeated measurements design for 21 treatments
based on a noncyclic group.

A major shortcoming with the above-mentioned designs is that each experimental
unit is used for v tests. That is, each experimental unit must receive all the treatments.
This may not be possible in many experiments, such as drug testing or other medical
experiments. In many other experiments this limitation is undesirable,

Patterson [79] considered the case in which the number of periods is less than the num-
ber of treatments and constructed a series of balanced minimal repeated measurements
designs. Patterson and Lucas [82] gave a catalogue of repeated measurements designs in
which the number of periods is equal to or less than the number of treatments. Atkin-
son [5], Davis and Hall [20], Hedayat and Afsarinejad [36] and Constantine and Hedayat
(19} have also constructed families of balanced minimnal repeated measurements designs.
Afsarinejad [2] has constructed, by an easily remembered method, balanced minimal re-
peated measurements designs when p, the number of periods, is less than v, the number
of treatments.

Another useful subset of RMDs, viz., strongly balanced uniform repeated measure-
ments designs, were first discussed in Berenblut [9]. Afsarinejad [2] has constructed
strongly balanced RMDs when p < v. If ¢ divides n and ? is an even integer then
Cheng and Wu [15] showed that the necessary conditions for the existence of a strongly
balanced uniform RMD are that »?|n and p > 2v and gave a method to construct such

designs. Berenblut [9], Patterson [80, 81] and Kok and Patterson [44] have constructed
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similar designs. Sen and Mukherjee [96] have given a method of construction of such
designs when v* divides n and £ is an odd integer, using MOLS of order u. Clearly
the method fails for v = 6. However, they listed a different method of construction for
the same design which works for v = 6. But these latter designs lack some properties
compared to the ones based on MOLS. It may be noted that even a minimal design in
this class of strongly balanced uniform RMDs needs 2¢° observations to be collected. As
a result, when the number of treatments is large, the design becomes impractical. So,
attempts were made to cut down the size of the experiment by relaxing some of the re-
quirements of such designs. It is observed in the literature that Kunert [49] has proposed
designs, which ent down the size of experimental units. He relaxed the condition of strong
balance for RMDs and used the concept of nearly strongly balanced, viz., a design where
the frequencies of ordered pairs of treatments, distinct or identical, in the design, instead
of being equal, differ by at most one. Maity and Roy [60] have given a method of con-
struction for a class of nearly strongly balanced uniform RMDs using suitable SBIBD’s
(symmetric balanced incomplete block designs) constructed through difference technique.
In an effort to make RMDs realistic and cost effective, Maity, Dutta and Roy [62] have
proposed to reduce both n and p in the class of balanced designs. They introduced and
characterized balanced near uniform RMDs and gave a method to construct such designs.

Sonnemann, quoted in Kunert [48), gives a method of construction for circular balanced
uniform RMDs with a minimum number of experimental units whenever v > 2 is an even
integer. Afsarinejad [3], using disjoint directed Hamiltonian cyeles, constructs circular
balanced uniform RMDs with minimum number of experimental units whenever v is
an odd number. Roy [32] and Dutta and Roy [27] have constructed circular balanced
uniform RMDs, using a different method, when v divides n, £ is an odd integer and

v=10, 1, 3 {mod 4). Sharma [102] constructs circular strongly balanced uniform RMDs

perprere
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whenever n = v and £ is an even integer.

In situat{ijns with correlated errors, the optimal designs usually prove to be variants
of the designs constructed by Williams [113] (called Williams designs by Kunert [48]).
For v = 2 (mod 4), Street [106] gives a method of construction of Williams design with
a cireular structure. Matthews [67] obtains optimal designs under a linear fixed effects
model with auto-correlated errors for three- and four-period designs.

An extreme form of an RMD is the one in which the entire experiment is planned on
a single experimental unit. Details on this can be found in Williams [115). For a general
survey of RMDs one can refer to Hedayat and Afsarinejad [36], Bishop and Jones [10],
Hedayat [36], Street [106].



Chapter 2

Enumerating Catastrophic Fault
Patterns in VLSI Linear Arrays with

Bidirectional or Unidirectional Links

2.1 Introduction

Given a linear array A with a set of bypass links, an important problem is to count
the number of catastrophic fault patterns. The knowledge of this number enables us to
estimate the probability that the system operates correctly. Pagli and Pucci [76] obtained
tight upper and lower bounds for the number FP(g) of catastrophic fault patterns of
size g for a linear array with one bidirectional bypass link of length g. Enumeration
of catastrophie fanlt patterns for link redundancy &' = {g} has been done in [22] for
unidirectional case. In this chapter, we extend this to the case of link redundancy & =
2, 3,..., k, g}, 2 <k < g— 1. Seealso [63, 64]. We characterize catastrophic fault

patterns for both unidirectional and bidirectional cases and, using random walk as a tool,

40
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enumerate them.

2.2 Characterization of Catastrophic Fault Patterns

- We use the following matriz representation [72] for fault patterns based on Boolean ma-
trices. Consider an arbitrary fault pattern F' = {f,, fa, , fg.}, consisting of g, faults
for an arbitrary link configuration G = {g1, ¢s, , gry. Without loss of generality,
assume that f, = 1. The links can be either unidirectional or bidirectional. We represent
F by a wi x g Boolean matrix W defined as follows:
Wi ) = { 1L if{igr+7+1)eF
(0 otherwise

Here wi = [?;f] We will sometimes refer to (¢, ) as the location of the PE (igg + 7+ 1).

We now recall the following definitions from the literature,

Definition 2.2.1 Let F be a minimal CFP. Let (x,y) be the location of faulty PE f.
Then the PE of A corresponding to the lacation {i,y) is said to be interior, border or

exterior with respect to f according as¢ <z, i =z ori > 2.

The definition of interior, border, and exterior can now be extended from element to

regions as follows:

Definition 2.2.2 For a given fault pattern F, the interior I(F) of F' is the set of all
interior elements, the border B(F') of F is the set of all border elements, and the exterior

E(F) of F is the set of all exterior elements.

Example 2.2.1 Consider the fault pattern F = {1, 5, 8, 12, 14, 15, 18, 19} with 8 faults
in an array with link redundancy G = {3,8}. The interior, border, and exterior elements

are shown in Figure 2.1,
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Interior

1 Border

. Exterior

Figure 2.1: Interior, exterior and border of the fanlt pattern F.

Lemma 2.2.1 (Nayak et al. [73]) A fault pattern is catastrophic for an array A with
bidirectional link redundancy G iff it is not possible to reach any exterior element {resp.

interior element) from any interior element (resp. exterior element) using the links in G.

Proof. It is easy to see that all interior elements are reachable from [ and all exterior

elements are reachable from ). The lemma [ollows from Definition 1.1.4

Lemma 2.2.2 {Nayak et al. [73]) A fault pattern is catastrophic for an array A with
uridirectional link redundancy & iff it is not possible to reach any exterior element from

any interior element using the links in G.

Example 2.2.2 Figure 2.2 shows the matrix representation of the fault pattern F = {1,
2,5, 6, 10, 15} with 6 faults for G = {6}. Its row representation is (0, 0, 2, 1, 0, 0) and
its catastrophic sequence is (0, —2, 1, 1, §). Note that, the exterior PE § is connected to
interior PE 9 by a regular link. An escape path |0, 14, 8, 9, 3, T] is shown in the figure.
Hence F is not catastrophic for bidirectional link redundancy G = {6} by Lemma 2.2.1.
[t is easy to check that, F' is catastrophic for unidirectional link redundancy G = {6} by
Lemma 2.2.2.
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Border line of the fault pattern

o

e
o O o
g . Faulty PE
. . . . Exterior PE

Interior PE

Figure 2.2: A fault Pattern F' which is not catastrophic for bidirectional G = {6}.

2.3 Some Results on Random Walk

Definition 2.3.1 (Feller [28]). A random walk is a sequence w = (g1,89,23,. &n)
where each &; = +1 or — 1. Such a sequence can be represented by the polygonal line
(0,0}, {1,21), (2,21+€2), «... (R, 5], usnally called a path. We will denote Y5, ¢;
by Si.

For example, the random walk (1, -1, 1,1, —1, —1) is represented by the path joining
(0,0} to {6,—2) with (1,1), (2,0), (3,—1), (4,0}, (5, —1) as the intermediate vertices.

See Figure 2.3.

Definition 2.3.2 A subsequence {£,,1,8532,-.-,855¢) Of (£1,22,...,6,). v > 1 is called a

run of length r if e, #F e, =0 = ... = Es4r F Esipar.

Let g, and p_; dencte the numbers of runs whose elements are 1 and —1 respectively

and I = py -+ p_,. Note that R is the number of runs.
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(1,1}

Z\Z,O) (4.0)

(0,01

Figure 2.3: Random walk w = {1,-1,-1,1, -1, -1}

Ve use the following notations from Vellore [110].
Notations: We assume m > (.
E.m : A path from (0,0) to (n,m).
EE : An E, ., path with R runs.
EX : An EF_ path starting with a positive step.
EF. : An EF  path starting with a negative step.
Eftt: An EF path crossing the line y = ¢, ¢ > 0 at least once.
ER.t: An EXE path crossing the line y = ¢, ¢ > 0 at least once.

N{A) ; The number of all A paths. e.g., N(Eppn) = (1" ).
2

Theorem 2.3.1 (Feller [28]}. Among the (2;’) paths joining the origin to the point (2n, 0}
there are ezactly Tﬁfi«“‘i’(zn) paths such that 51 <0, 5 <0, , Sop 1 <0, Sop=0

n
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Theorem 2.3.2 (Vellore {110]). Let m > 0. Then for max(l,m) < t < ™2,

N (B (-—"* e 1) (—tﬂ e 1)
v - F Al §

NP Both popo J) fotm ]
ez (7)(7 )

Theorem 2.3.3 The number of paths from the origin to the point (2n,0) such that 5, <

B, 52 €0, ..., 8nu-1 <0, Sop =0 and there are exactly 2r runs, is
n—1 2_ n—1y{fn—-1
\r —1 r—2 ro )

Proof: The required number of paths equals
N(EZ ) — N(Eag® ™) (2.1)

Where Er_?;}}‘o " is an Ej:!_ﬂ path crossing the line y = 0 at least once. It is known that

2
NEED) = ("] (2.2)
2. r—1

see Wald and Wolfowitz [111]). To find N(E5 5" ), let P be an E5 " * path, ie., a
nath from (0, 0) to (2n, () with the first step negative, with 2r runs and crossing y = 0 at
least once. Then dropping the first step and taking (1,—1) as the new origin we have an
Ean-11 path &. Note that @ crosses the line y = 1 {w.r.t. the new origin) and has 2r — 1
runs if it starts with a positive step and 2r runs if it starts with a negative step. Moreover,

any path @ with these properties arises from a unique E%;l},’ﬂ * path P as above. Thus

MERT®) = NBy) + NE
= ('r — 2) ( T ) B (f,- - 2) (’r _ 1) [Using Theorem 2.3.2]
n—1y{r—1
- (T'-z)( r ) (2.3)

The theorem follows from 2.1, 2.2 and 2.3.
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2.4 The Case of Bidirectional Links

We start with a characterization of CFPs in terms of the catastrophic sequence.

Praposition 2.4.1 (Pagli et al. [76]). Necessary and sufficient conditions for
(1, T7ig, . . ., Mg} tO be the catastrophic sequence of a minimal CFP for a bidirectional

limear array with link redundancy G = {g} are:
Lmy=—-1,00r], for 1 <i<{g—1,
2 5 =%% mi<Ofork=12,...¢g~2,

3. 81 =3 m =0

i=1
We shall illustrate Proposition 2.4.1 by an example.

Example 2.4.1 Consider the faunlt pattern F' = {1, 2, 5, 9, 13} in a linear array A with
link redundancy G = {5}. Note that in the matrix representation for F' there is exactly

ane faulty PE in each column. See Figure 2.4.

%‘%@ Interior PE
. Faulty PE
. Exterior PE

Figure 2.4: Interior, exterior and border of the fault pattern F.

The row representation for this fault pattern is {0, 0, 2, 1, 0} and the catastrophic

sequence is (my, mg, Ma, my) = (0, —2, +1, +1). Note that, rny = —2 which violates
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condition (1) of Proposition 2.4.1. We see from Figure 2.4, that the interior processor
at location (1,2} and the exterior processor at location (1, 1) are connected by a regular
link. Hence F' is not a catastrophic fault pattern by Lemma 2.2.1. However, it can easily
be verified that F satisfies conditions (2) and (3) of Proposition 2.4.1 even though £ is

not catastrophic.

Theorem 2.4.1 For G = {g}, the number of CFPs for bidirectional links is given by

-]

FP(g) = 2 ﬂil(?:) (gz—nl)

Proof. The number of CFPs is equal to the number of catastrophic sequences

(mi,ma, . .., My} satisfying the conditions of Proposition 2.4.1. Any such sequence with
n —1shasn —+1'sand g~1—2n (s and can be obtained by starting with a path
from {0,0) to (2n,0) such that S; < 0, S < 0, . Sap1 = 0, 5, = 0 and plugging
ing—1—2n 0’ in the (2n + 1) distinct places for each such path (i.e., 2n — 1 inter-

mediate places and two more places before and after the sequence). Clearly the number

of such paths is n%(ﬂ‘) and for each path, the number of ways of plugging in the (s is
((Q"I*Eﬁ)ﬂgﬁ”'l) = (92;1) Hence the theorem follows.
Praposition 2.4.2 Necessary and sufficient conditions for {m,,ms,...,my-1) to be the

catastrophic sequence of 2 minimal CFP for a bidirectional linear array with link redun-

dancy G'= {2, g} are:

L. mgq =0

2mi= —1,0, +1forj=1,2 3,..., g-2
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LYhmy <0fork=1,223..., g-3

4 ¥Iim; =0,

Emi+mi=-1,0 +1fori=1, 2, 3, ;. g—3
That is, two or more consecutive -+1 or —1 is not allowed.

We shall illustrate Proposition 2.4.2 by an example.

Example 2.4.2 Consider the fault pattern F' = {1, 6, 8, 10, 11, 15} in a linear array
* Awith link redundancy G = {2, 6}. Note that in the matrix representation for F there

is exactly one faulty PE in each column.

(1,0) " Interior PE

Figure 2.5: Interior, exterior and border of the fault pattern F.

The row representation for this fault pattern is (0, 1, 2, 1, 1, 0) and the catastrophic
sequence is (my, my, Mg, my, Mms) = (-1, —1, +1, 0,+1).-Note that, ms = +1 which
violates condition (1) of Proposition 2.4.2. We see from Figure 2.5, that the interior
processor at location (0,4) and the exterior processor at location (1,0) are connected
by a bypass link of length 2. Hence F' is not a catastrophic fault pattern by Lemma
22.1. Similarly, condition (5) of Proposition 2.4.2 is violated since iy, + mq = —2. Note

that, locations (1,0} and (1,2) contain an intetior processor and an exterior processor
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- respectively which are connected by a bypass link of length 2. However, it can easily be
verified that F satisfies conditions (2), (3) and {(4) of Proposition 2.4.2 even though F is

not catastrophic.
In general we have the following characterization.

Proposition 2.4.3 Necessary and sufficient conditions for {m,, m,, , Mg_1) to be
© the catastrophic sequence of a minimal CFP for a bidirectional linear array with link

redundancy G = {2, 3, kg k< g—1 are:
Lmy_y= Mgp= ...= My_gy1= 0
2.my= -1,0,+1ferj=1, 2, 3 , g—k
3.5k m<0fork=1,23 .,g k-1
4. Tj=imy =0,
5omg+mg . Fmie, ==-1,0,+1fora=1,2,3,... k-1, for¢t=1,2,...,0—k—s.

The characterizations deseribed in Proposition 2.4.2 and 2.4.3 are easy to visualize and

hence the proofs are omitted.

Theorem 2.4.2 The number of CFPs for a linear array with bidirectional bypass links

of lengths 2 and g (i.e., with link redundancy G = {2, g} is

FP(2,9) =1+ n: %[(?::)2 _ (?:;) (n;l)J (Q—Q(HQ; T)~2).



24 THE CASE OF BIDIRECTIONAL LINKS 30

Proof. The number of CFPs is equal to the number of catastrophic sequences

(Mg, Ma, ..., My_g) satisfying the conditions (2)-(5) of Propesition 2.4.2. Any such
sequence withn ~ 1'shasn +1'sand ¢ — 2 — 2n 0’s and can be obtained by starting
with a path from (0, 0) to (2n,0) such that 5, <0, 8, <0, ..., Sapq <0, Sz, = 0 and
having exactly 2r runs. The number of such paths is (:‘:i)z - (“:1) (::é) by Theorem
23.3. R(run)= 1+ number of changes of the type (—1,+1) or (+1, —1). All these paths
have {n — r) identical pairs of the type (+1,-+1) and (n — r) identical pairs of the type
(~1,-1). Now to satisfy condition (5) of Proposition 2.4.2 we have to plug in a 0 between
every two consecutive +1's and every two consecutive —1's. So the number of ('s plugged
mis 2(n — r). The remaining g — 2 — 2n — 2{n — r) = g — 4n + 2r — 2 places are also
to be filled up with 0’s. There are (2n + 1} distinct places for each such path in which

{g—4n+-2r—2)+(2r+1)—] ) — (ng(n——r)*E

(¢ —4n + 2r — 2) s can be plugged in ( o dni2r 2 o ) ways, Since

n can vary from 1 to |42 ], the total number of such paths is

—2
t%‘fi. nwlg_ n—WNf -1\ fg—-2n—r)~2
= A1 r—2 T 2n '
Note that these paths do not include the trivial path corresponding to the sequence

(0,0,0,...,0). Hence the theorem follows.

Theorem 2.4.3 The number of CIFPs for a linear array with bidirectional bypass links of
length 2, 3, .., k and g fi.e., with link redundancy G = {2, 3 .., k, gL, k<g—1)

15

FR2,3. .k g) = 1+L*j§kJ 3 [(:': 1)2 _ (fj;) (n . 1)] (y ~ k- 2(7;: r)(k - 1))

=i r=1
Proof. The number of CFPs is equal to the number of catastrophic sequences

(), Mo, . .., Mgy ) satisfying conditions (2) — (5) of Propasition 2.4.3. The proof of the
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present theorem is similar to that of Theorem 2.4.2. Here to satisfy condition (5) of
Proposition 2.4.3, we have to plug in (k — 1) 0's between every two consecutive +1's and

between every two consecutive —1's,

2.5 The Case of Unidirectional Links

Proposition 2.5.1 (Pagli et af. [76]). Necessary and sufficient conditions for
(M1, 72, ..., Mg.1) to be the catastrophic sequence of a minimal CFP for a unidirectional

linear array with link redundancy G = {g} are:

Lmy<l for 3=1,2, ..., g-1
2. ij:lmjiﬂ for k=1, 2 , g—2
3. Y9 m; =0

We shall illustrate Proposition 2.5.1 by an example.

Example 2.5.1 Consider the fault pattern F = {1, 4, 11, 12, 14, 15} in a linear array
A with link redundancy G = {6}. Note that in the matrix representation for F there is
exactly one faulty PE in each column. See Figure 2.6.

Its row representation is (0, 2, 2, 0, 1, 1) and its catastrophic sequence is (m,, ma, Mg, M,
) = (—2, 0, 42, -1, 0). Note that, ms = +2 which violates condition 1 of Proposition
251. We see from Figure 2.6, that the interior processor at location (1,2) and the
axterior processor at location (1,3) are connected by a regular link. Hence F 15 not a
~ catastrophic fault pattern by Lemma 2.2.1. Similarly condition 3 of Proposition 2.5.1 is
violated since Z"j;]l m; = ~1. Note that, locations (0,5) and {1,0) contain an interior

* and an exterior processor respectively which are connected by a regular link. However, it
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(1,0}

Figure 2.6: Interior, exterior and border of the fault pattern F.

can easily be verified that F satisfies condition {3) of Proposition 2.5.1 even though F' is

not catastrophic.

In general, we have the following characterization for k > 1.

~ Proposition 2.5.2 Necessary and sufficient conditions for (my, ma,...,m, 1) to be the
catastrophic sequence of a minimal CFP for a unidirectional linear array with link redun-

dancy G = {2, 3, ..., k, g}, k< g—1 are:

Lmg 1= Mg o= ...= my 311 = 0
2my<1 for §=1,2 ..., g~k

3. m; <0 for p=1,2,3 ...,g k-1
4. Y fmy=0

5 omy+ i+ ... +my <1l if 1<j—i<k-1
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Theorem 2.5.1 {De Prisco [22] ). The number of CFPs for a linear arvay with unidi-

reciional bypass links of length g fi.e., with link redundancy G = {g}) is
29 — 2
FYg) = 5( ! )

glg—1
Proof: The proof given here is little different from that of De Prisco [22] and is rel-
evant to the proof of theorems to follow. The theorem is proved by establishing a bi-
jective mapping between the set of all sequences (my, ma,...my_y) satisfying the con-
ditions of Proposition 2.5.1 and the set of all paths from (0,0) to (2¢g — 2,0} such that
5. €0, S5 <0, , S2g-3 £ 0, Sz4—2 = 0 since the number of such paths is 9(2{?%}2)
Let F be a CFP and (my, ms, ... m,_;) its catastrophic sequence. Let s(m;) be the string
-1,-1,...,—=1,+1 of length 2 — m,. To the CFP F associate the string s(F') obtained
by concatenating s(sm,), 5{ms), ..., s(my—1). From Proposition 2.5.1, it is clear that s(F)

corresponds to a path from (0,0) to (2g — 2,0) with the properties stated abhove.

Theorem 2.5.2 The number of CFPs for a linear array with unidirectional bypass links

of lengths 2 and g fi.e., with link redundancy G = {2, g}/ is

04 L 1 f2n\{g—2
Fo(2,9) = .
(2:9) Zn+1(n)(2n)

==l

Proof: The number of CFPs is equal to the number of catastrophic sequences
(M1, Ma, ..., My,-2) satisfying conditions (2]-(5) of Praposition 2.5.2 with & = 2. Given
such a catastrophic sequence, by using the above mapping we get s(F) = (z1, 22, ..., Tor5-2)

with the following properties:

(Da;=—1or +1fori=1, 2, ..., 2{g—2)

(2) 3k 2, <0fork=1,2, ..., 2(g—2)~1 ()
(3) £z =0 ‘
(4) Zg+ 2ty i < lfori=1,2, ..., 2(g—2)-2
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Given any sequence {z1,Ig,...,T-2)) satisfying (A), let y; be the number of +1's

between the 4-th —1 and the (i+1)-th ~1 and 2z =y, — 1. Then (4), (2) and (3} of

(A) give
(n) zz=-100r +1fori=1,2 ..., g—3
() mm+m+... +2<0fork=1,2, ..., g—-4 (B)
{¢)nnt+zm+...+2z3=00r =1
respectively. It is also clear that any sequence (zy, 2, , Zg-3) satisfying (B) arises
from a unique sequence (¥1,Ts,...,Ta,-9)) satisfying (4). So the number of CFPs is
equal to the number of sequences (z, 22, ..., 24-3) satisfying (B). Now the number of
such sequences is equal to the number of sequences (21, za, . . ., Zp-2) satisfying the follow-

ing conditions (where z,..; is taken to be U or 1 according as 21422 ...+ 2, 3is 0 or —1):

(@) zi=—1, 0or +1fori=1, 2 , g—2

() zl+z2+.‘.+zk§0forkm1, 2, ..., g3

() X5 {2 =
Any such sequence withn — I'shasn + 1'sand ¢ ~2 — 2n (0's and can be obtained
by starting with a path from (0,0} to (2n,0) such that Sy < 0, S, <0, ..., Sy <

0, Sap = 0 and plugging in g — 2 — 2n 0's in the (2n + 1) distinct places (2n — 1

iniermediate places and two more places before and after the sequence). Clearly the

mimber of such paths is n%(ff) and for each path, the mumber of ways of plugging in
the 0's is ((9*2*2“);;1(2““3’1) = (9;12). Hence the theorem follows.

Theorem 2.5.3 The number of CFPs for a linear array with vnidirectional bypass links

of lengths 2, 8 and g (ie., with link redundancy G = {2, 3, g}) is

T I ) et
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‘Proof: The number of CFPs is equal to the number of catastrophic sequences
[y, g, . . ., ,—3) satisfying conditions (2)-(5) of Proposition 2.5.2 with & = 3. Given a
rtastrophic sequence, by using the mapping given in the proof of Theorem 2.5.1, we get

f{F) = (r1, 29, ..,Ty-3) with the following properties:

(1) z;=—1or +1fori=1,2,3,...,2(g — 3)

2y %z <0fork=1,2,...,2(g—3) -1

) S0 g (©
D) x4+ 1+ <llori=12,. .,2(g— 3)— 2 and

42) xi+ 2 + T F L T T < lfori=1,2,...,2(g - 3) — 4.

Given any sequence (T, Zz,. ..Tz,-3)) satislying (C), let y; be the number of +1's
between the ¢-th —1 and the (¢+1)-th -1 and z; = 3 — 1. Then (4.1}, (4.2}, (2} and
3) of {C) give

(@1} z; = =1,00r +1fori=1,2,...,9~4

(.2) - 2< 5+ <1lfori=1,2,...,4-5

(D)
)z +2z+.. .+ <0fork=12. g-5
(C) it o+ zgg =~1ord
respectively. It is also clear that any sequence (21, 22, .. ., 24—4) satistving (D) arises from

a unique sequence (&1, Ig,...,Ta,-y) satisfying {€). So the number of CFPs is equal
to the number of sequences (z, 2s, ..., z,-4) satisfying (D). Now the number of such
sequences is equal to the number of sequences (21, 20, ..., z,-3) satisfying the following

conditions (where z,_3 is taken to be 0 or 1 according as 2; + 22 + ...+ zg—s is 0 or —~1}:

al) zz=—1,00r +1fori=1,2,...,9—3

{

(@.2) —8<z+z<1fori=12,...,9—4
By z1+ 2+ .+ <0fork=12...9g—4
L

€) TIS 5 =0
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Any such sequence withn —1shasn +1sand g — 3~ 2n (’s and can be obtained
by starting with a path from (0,0) to (2n,0) such that 5, <0, S; < 0, , Sype1 <
I, Sop = 0 and having exactly 27 runs. The number of such paths is ('::]1_)2 — (“:1) (;‘fé)
by Theorem 2.3.3. R(run}= 1+ number of changes of the type [—1,+1) or {+1, -1}, All
these paths have (n ~ r} identical pairs of the type (+1, +1) and {n — r} identical pairs of
the type (—1, —~1). Now to satisfy condition (a.2} of (F] we have to plug in a 0 between
" every two consecutive +1's. So the number of 0°s plugged in is (n — r). The remaining
§-3-2n— (n —r) = g—3n+r = 3 places are also to be filled up with 0’s. There are
" {In + 1} distinct places for each such path in which ¢ — 3n + r — 3 0's can be plugged in

(9“3_251“”’“)) ways. Since n can vary from 1 to |#z2], the total number of such paths is

p3 o1l Gt I [ o i)

Note that these paths do not include the trivial path corresponding the seqience (0,0,. .,0).

Hence the theorem follows.

Theorem 2.5.4 The number of CFPs for a linear array with unidirectional bypass links

. oflength 2, 3 , k and g (i.e., with link redundancy G = {1,2,... .k, g}, k<g—1)is
L = [ rn -1y 1 1 k—(n—r)(k—2
Fi2,3,.. .k, g) =1 n-y_n=fy - Dy g -k =k -2
e "1V I e [ | G

Proof: The number of CFPs is equal to the number of catastrophic sequences
(my,ma, ..., Mg k) satisfying conditions (2) ~ (5) of Proposition 2.5.2. By using the same

argument as in the proof of Theorem 2.5.3, the number of such sequences is equal to the

R
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- mumber of the sequences {21, 2o, ..., 2, &) satisfving the following conditions

(@.1) z; =1, 00r +1fori=1,2, ..., g—k
(a.2) -2 <+ <lfori=1 2, ..., g—k-1
(F)

(ak—1) ~ (kD)< +ap...Faip-e<lfori=12,. .,9-2k+2

B zt+zmt...+z<0forp=1,2,...,9g-k—1

(¢) Tz =0
Counting the number of such sequences is done as in Theorem 2.5.3 except that instead
of plugging in one 0 we have to plug in (k¥ — 2) 0's between any two consecutive +1’s to

- satisfy conditions (2.2) — {(a.k — 1} of (F). Hence the theorem follows.



Chapter 3

Identification of Maximal Link
Redundancy for which a Given Fault
Pattern is Catastrophic in VLSI

Linear Arrays

3.1 Introduction

~ In this chapter, we consider the problem of finding the maximal link configuration for
which a given fault pattern F is catastrophic. See also {65], We consider maximality with
respect to two parameters: the length g of the longest bypass link in ¢ and the number
|G| of bypass links in G. The preblem of minimization of the parameters is trivial since

any F'is catastrophic when G = (.
In reality, the problem of finding a minimal link configuration G for which a given

fault pattern F is not catastrophic is more important. Since the designer can adopt G to

58
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msure that F cannot disrupt the flow of information from I to ©. Depending on designer
choice, minimality can be with respect to various parameters like: the length g of the
lngest bypass link, the number |G| of bypass links in 7 or the sum T, g; of the lengths
of bypass links in {&. The problem of finding the minimum value of the length g of the
longest bypass link in & for which a given fault pattern F is not catastrophic is easy. Since
we will now show that if F = {{fi,41), (f2,€),. .,{fa: €a)} then the minimum value of g
is {+1 where £ = max(¥#;, £,, ..., £,). We first show that F' is not catastrophic with respect
to link configuration Gy = {2, 3,...,f+1}. Let H = (V, E) be the derived graph for link
redundancy Gy, Let Cy, Ch,...,C, be the chunks of F. Then V = {Cy, Cy,....C,} and

(C;,Ciza) € Eforalli=10,1,. .,n—1. Hence Cy and C;, are connected in H and so F'is
not catastrophic with respect to Gy, If possible, suppose F' is also not catastrophic with
respect to some (¢ with the length g of the longest bypass link < £ W.lg we assume
= {,. Then in the derived graph H = (V| E) for link redundancy G, (Cy, C;) ¢ E for all
i=1.2,...,n. S0 Cy and C, are not connected in H and F' is catastrophic with respect
to (7, a contradiction. This proves that min ¢ = £ + 1. However, studying minimality
with respect to the other two parameters, i.e., |G| and %, g;, seems to be difficult.
The maximization problem we consider gives a partial solution to the minimization
roblem thus: If max g and max |G} for the maximization problem are gy and s then
F is not catastrophic with respect to any G with the length of the longest bypass link
> go + 1, as well as with respect to any G with (7| > s + 1. For example, for the fault
pattern F given in Example 3.3.1, max g= 8, the corresponding maximal G being {8}
and max |G| = 3, the corresponding maximal G being {4, 5,8}. Thusif g > 9 or |G| > 4
then the fault pattern is not catastrophic with respect to G. Hence one can use {9} or
{2,3,4,5} as a link redundancy. However, these are not optimal (i.e. minimal) since

the given fault pattern is not catastrophic with respect to each of {6} and {2,4}. Thus
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- the solution to the maximization problem we consider gives a reasonably good feasible
- selution, which may not be optimal, for the minimization problem.

Given a fault pattern of m faults grouped into n < m runs of faulty processors, we
- show that the maximum value of ¢ can be found in O{mn) time and that the problem
of finding max |G| is equivalent to a graph problem, which looks somewhat similar to a
min-cut problem.

Since the concept of derived graph is the main tool used in this chapter, we recall
its definition. Let A be a bidirectional array of N processors with link redundancy
G={g, ¢2,- ., gx}, and let F be a set of m faults grouped into n < m runs of
- fanlty processors. Then a graph H = (V, E) was defined in [21] as f(}l}ows:-

Let Oy, €, , Cqp be the chunks of F'. Then V = {C,, Cy, ..., Cp}and ((F;, ;) € Eif
and only if there are two processors, py € Cy and p, € C; such that {y—z| € {g1, g2,..., %},
that is, if and only if some processor in Cj and some processor in C; are connected in A
by a bypass link.

We call the graph H the derived graph of the fault pattern F'. By definition of derived
graph it follows that a fault pattern F is not catastrophic for an array A, if and only if
(q is connected with ', in the derived graph.

Figure 3.1 shows an algorithm, called GRAPH, which constructs the derived graph.
Inputs to GRAPH are the fault pattern ¥ and the link redundaney . The output is
he derived graph represented by its adjaceney lists. The following may be noted: L(C;)
denotes the adjacency list of node C; at any stage, for 7 = 0, 1, , . The first and

last processors of chunk C; are denoted by x; and y; respectively.
Lemma 3.1.1 [21] Algorithm GRAPH constructs the derived graph.

Lemma 3.1.2 [21] Algorithm GRAPH requires OQ(kn) time.



42 ALGORITHM TO FIND A G WITH MAXIMUM LENGTH OF g

GRAPH(F, {g1, g2, -.., @}, H)
fori=0ton—1do
L{C;) = ¢ (null set)
endfor
fort=1to0k do
=1
fori=0ton—-1do
while x; + g1 > y; do
j=i+1
endwhile
while  <mand z; <y + g do
L{C;) = LICY) U G
LiC)) = LICH UGy

J=3+1
endwhile
oy > +gethen j=5—1
endfor
endfor
Hisgiven by L{C)) for i =0,1,...n
return {H)

Figure 3.1: Algorithm GRAPH

61

3.2 Algorithm to find a ¢, with maximum length of

the longest bypass link, for which a given fault

pattern is catastrophic

We now give an algorithm to find a link counfiguration G, with maximum length of the

longest bypass link, with respect to which a given faunlt pattern is catastrophic.

Algorithm 1 Input: A fault pattern F' of m faults grouped into n < m runs of faulty

PIOCESSOTS.

Output: A link configuration G, with the maximum length of the longest bypass link,
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with respect to which F' is catastrophic.
Step 1: Set u = m.
Step 2: Construct GRAPH(F, {u}, H)
if Cy and C,, are connected in H, decrease u by 1 and go to step 2.

else return ({u}).

Lemma 3.2.1 Algorithm 1 generates a link configuration G, with maximum length of

the longest bypass link, for which a given fault pattern F' is catastrophic.

Proof. Let [ be the maximum length of a longest bypass link in a link configuration with
respect to which F is catastrophic. Let G = {g1, g2, ..., gx = !} be a link configuration
with respect to which F' is catastrophic. It is known that [ < m. By the definition of [, it
is clear that for any u with [ + 1 < u < m, F' is not catastrophic with respect to the link
redundancy {u}. Also F is catastrophic with respect to the link redundancy {I} since
{I} € G. Hence it follows that the algorithm starts with u = m and goes on reducing u

by 1 until u attains the value [ and then stops. Thus the algorithm returns the value . m

Lemma 3.2.2 Algorithm 1 requires O(mn) time.

Proof. Note that, GRAPH(F, {u}, H) requires O(n) time [ Lemma 3.1.2 ]. Since, Step

2 can repeat atmost m times hence Algorithm 1 requires O(mn) time. [
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3.3 Alg?rithm to find a ¢ with maximum number
of bypass links, for which a given fault pattern is
catastrophic

We next give an algorithm to find a link configuration &, with maximum number of by-
‘pass links, for which a given fault pattern is catastrophic.

Algorithm 2:

Input: A fault pattern F of m faults grouped into n < m runs of faulty processors.
Output: A link configuration &G, with maximum number of bypass links, with respect to
which I is catastrophic.

Step 1: Set u = m, and & = ¢.

Step 2: If u < |G|+ 1, go to Step 5. Otherwise go to Step 3.

Step 3: Construct GRAPH(F, {u}, H). If Cy and C,, are connected in H then decrease

uby 1 and go to step 2. If Cy and O, are not connected in H, go to Step 4.

Step 4: Let Sy, S1,..., Si (k > 1) be the components of H where Oy € Sy, Cp, € Sy, Now
construct a new graph H* = (V*, E*} thus: V* = {5, 81, .., Sp} For0<i# 5 <k,
et Ly; = {o : 1 <a<u—land a=|z—y| for some PE z € 5, and some PE y € S;}.
Then (8, 5;) € £* if and only if L;; # ¢. We call L;; the label set of edge (5;, S;). If
X C V* is such that Sp € X and Sy € X := V* — X, we say that (X, X)is a cut and
define Lx = W{L; Si€ X and §; € X}. Find a cut {Xy, Xo) for which |Lx| is

minmimum and let G* = {2, 3, u}l — Lx,. If |G*] > |G| then set G = G*. Decrease u
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by 1 and go to Step 2.
Step 5: Stop. G is a link redundancy with maximum number of bypass links with respect

to which F is catastrophic.
Example 3.3.1 Consider the fault pattern
F={{9, 1), (12, 2), {16, 1), (18, 3}, (22,2)}

of 9 faulty PEs grouped into & runs of faulty processors.

OJojOf JOIOL L JOICL JUL L L Q) L JeRoid)

- [ ——— R Fmmwmr -
1 |

M ; L o0

C3) iCs) Cs.___|

We set w =9 and G = ¢. Since u > |G|+ 1, we construct the derived graph H for link
redundancy {9}. Note that there are six chunks: Cy = {1, 2, ..., 8}, C, = {10, 11},
0y = {14, 15}, O3 = {17}, Cy = {21}, Cs = {24, 25, ..., 30}. The graph H is shown
in Figure 3.2.

Figure 3.2: Graph H.

Clearly, Cy and C5 are connected, so we decreage u to 8 Since u =8 > (G| +1 =1, we

: construct the derived graph H for link redundancy {8} which is shown in Figure 3.3.

S S S

Here Cy and C'5 are not connected, so construct the graph A* = (V*, E*) which is shown

in Figure 3.4.
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Figure 3.3: Graph H.

Ly =(2,3,6,7)

& ®

Figure 3.4: Graph H".

Note that V* = (S;, Si) where 59 = {C;, €, Co} and S = {C5, Cy, Cs}. The
PEs 150 € S; and 17 € 5, pive 2 € Lg. Note that 11 and 17 as well as 15 and
2 give 6 € Lg. It can be verified that Ly = {2, 3 6, 7}. Here there is only
one cut, viz. X = {5} and Lx, = Lx = Ly = {2, 3 6, 7}. Therefore we take
G =12, 3, 4, , 8} —1{2, 3. 6, 7} = {4, 5, 8}. It may be noted that F is catas-
trophic with respect to link redundancy G* = {4, 5, 8}, Since 3 = [G*| > |G| = 0, we
set G = {4, 5, 8}. Then we decrease u to 7. Since v = 7 > |G|+ 1 = 4, we construct the

derived graph H for link redundancy {7} which is shown in Figure 3.5.

Figure 3.5: Graph H.

Since Cy and € are connected in H, we reduce u to 6. Since u = 6 > |G|+ 1 = 4, we

construct the derived graph H for link redundancy {6} which is shown in Figure 3.6.
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Figure 3.6: Graph H.

Since Cy and C5 are connected in H, we reduce u to 5. Since u =5 > |G|+ 1 = 4, we

construct the derived graph H for link redundancy {5} which is shown in Figure 3.7.

C—=Cr—C © C—©
Figure 3.7: Graph H.

Here Cy and C5 are not connected. So we construct the graph H* = {V*, E*) which is

hown in Figure 3.8.
Lm:{:} me{‘q‘}
Figure 3.8: Graph H*.

Note that V* = (Sg, 81, S2) where Sy = {Cy, €1, C:}, 81 = {Cs} and S3 = {Cy, Cs}.
Here with X = {Sp}, we have |Ly| = [{2, 3}| = 2 and with X = {5, 5}, we have
YiLx| = |{4}] = 1. Hence we take Xy = {Sg, Si}and G* = {2, 3, 4, 5} —{4} = {2, 3, 5}.

ks

Simee |G| # |G| = 3, we do not alter G. We next decrease u to 4. Now u < |G|+ 1, so
the algorithm stops and & = {4, 5, 8} is a link redundancy with maximum number of

bypass links with respect to which the given F is catastrophic. ]
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In Lemma 3.3.1, Lemma 3.3.2 and Theorem 3.3.1, a link redundancy G is called
tatastrophic link redundancy with respect to a given fault pattern F if the given fault

pattern F' is catastrophic with respeet to the link redundancy G.

Lemma 3.3.1 In Algorithm 2, G* obtained in Step 4 is catastrophic link redundancy

and the largest element of ™ is current wu.

Proof: Suppose there is a path from I to (O using bypass links of lengths belonging to
z*. Then it is easy to see that there exist PEs 2 € X, and ¥ € Xj joined by a bypass link
of length w (say) belonging to G*. But then w € Ly, a contradiction to the definition of

G*. This proves that £ is catastrophic with respect to G*. =

Lemma 3.3.2 In Algorithin 2, ¢* has the maximum size among all catastrophic link

redundancies with the {current) u as the length of the longest bypass link.

proof: Suppose G’ is a catastrophic link redundancy with « as the length of the longest
bypass link and |G’| > |G*|. Let H be the derived graph with respect to link redundancy
{u} and let Sy, S, ..., Sy be the components of H, where Cy € Sy and C, € 5. Since
' is catastrophic link redundancy, there is a partition of {Sg, Si, ., S} into X' and
¥ with Sy € X' and 5, € X' such that ifaPE 2z € X' and aPE y € X then [z —y| £ G".
Soif o € Ly then @ ¢ G'. Hence Ly € {2, 3 .., u} — G'. Since || > |G*] and
=12, 3 , u}p— Lx,, we get |[Ly | < {(u—1) - [G' < (u—1) — |G = [Lx,], 2

contradiction to the minimality of |Lx,|. [

Theorem 3.3.1 Algorithm 2 provides a link configuration G, with mazimum number of

bypass links, for which a given faull pattern I is calastrophic.

Proof: By Lemma 3.3.1, the G, returned by the Algorithm 2 is eatastrophic link redun-

dancy. Moreover, when the algorithm terminates, the final value of u, say ug, is |G| + 1.
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Suppose now there exists a catastrophic link redundancy &' with |G¥] > |Gs|. Let v be
the length of the longest bypass link in G Then v > [G'|+1 > [Gol+1 = nup It
5 known that » < m. Hence when u equals v, the algorithm would have found a catas-
“ rophic link redundancy G* with |G*| > |G'| and since the size of G increases as the
algorithm processes, it follows that |Gy| > |G}, a contradiction. This proves that Gy is
3 link configuration, with maximum number of bypass links, with respect to which F is

catastrophic. -

3.4 Conclusion

Note that, given a fault pattern of m faults grouped into n < m runs of faulty processors
we have reduced the problem of finding a link configuration &G, with maximum number of
bypass links, to the following graph problem:

Given a graph H* = (V, ) with two specified vertices s, € V, called the “source”
and “terminus” respectively and a set L;; C {1,2,..., u} for cach edge {4, ). The problem
is to find a partition of V into V| and V; such that s € Vi, t € V3 and | _VU y L] is
mimmun. However we mention that we do not have any good algorithnzet:)lj:(lfve this

graph problem which looks somewhat similar to the min-cut problem but seems to be

more difficult.

Example 3.4.1 Figure 3.9 shows a graph H* = (V, E) with L,, = {2, 4}, Ly =
{1, 3, 6}, Lap = {5}, Ly = {4, 6} and Ly = {2, 4, 5}. Here a partition which minimizes
U Lylis Vi = {s, b}, Vo= {a, t}.

eV, JE,VQ



3.4

CONCLUSION

{1, 3 6} @ {2, 4, 5}

Figure 3.9: A graph
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Chapter 4

Catastrophic Faults in
Reconfigurable VLSI

Two-dimensional Array

4.1 Introduction

The main contribution of this chapter is complete characterization of catastrophic fault
patterns for two-dimensional arrays. See also [61]. We prove that the minimum number of
faults in a catastrophic fault pattern is a function of the length of the longest horizontal
bypass link and the number of rows in the two-dimensional array. From a practical
viewpoint, this result provides some answers to the question about the guaranteed level
of fault tolerance of a design. Guaranteed fault tolerance refers to an affirmative answer
to the question: will the system withstand upto s faults always regardless of how and
where they occur? We analyze catastrophic sets having the minimal number of faults and

give an algorithm for constructing a catastrophic fault pattern with maximum width. We

70
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also give an algorithm for testing whether a set of faults is catastrophic or not.

4.2 Characterization of Catastrophic Fault Patterns

In this section, we will characterize the catastrophic fault patterns for two-dimensional
networks and prove that the minimum number of faults in a catastrophic fault pattern is

a function of N; and the length of the longest horizontal bypass link.

DS & & o2
\491\\ Y 4,1
S\ SN N
SO
RN
L RN RN
%}\ 12s 20; <
N AN S Q
- QK J%?F ngf R J{@\Floorl
a\; ﬁ%\ Dy 5)- <)
N .. ] X
ON 4.6 A7) JZ@
NN ¢ ¢
NN N
\\\\
\\\\
21) J@\F J@\ A - @Fl r0
Column (31 % J@ﬁ Jég
Row

Figure 4.1: Cuboid representation of a 4 x 11 array with link redundancy G = (1, 4 | 1).
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Theorem 4.2.1 F is catastrophic with respect to N implies that the cardinality of F,
|F| > Nigg.

Proof: Suppose to the contrary that |F| < Nigy. Then partition the two-dimensional
array A of PEs into blocks of gy columns as A = (4; 1 Ay ¢ ... ' A.) where ¢ = [%’f]
and place the blocks as consecutive floors to form a cuboid. In Figure 4.1, we show
the cuboid for the array given in Figure 1.11 (vertical bypass links are not drawn in the
cuboid). Observe that, in this cuboid representation, each horizontal regular link joins
two consecutive elements in the same row of a floor or the last element of a row of a floor
with the first element of the corresponding row of the floor just above it whereas each
vertical regular link joins two consecutive elements in the same column of a floor. On
the other hand each horizontal bypass link of the maximum length joins two consecutive
elements in the same pillar. So, in this cuboid, going down a pillar corresponds to using
the longest bypass links. Since the number of faulty elements |F'| is less than the size of
a block which is also the number of pillars, there must be a pillar with no faulty element,
regardless of the distribution of the fault pattern. Since the bottom and top of each pillar
are linked to ICUL and ICUR respectively, F' cannot be catastrophic since we can use
the bypass links of length g; to avoid the faulty PEs, a contradiction which proves the
theorem. ]
This theorem gives us a necessary condition on the minimum number of faults required
for blocking a two-dimensional array. This also tells us that fewer than N, g faults occur-
ring in A will not be catastrophic. In the following we will restrict ourselves to the case
where there are at least Nygy faults, and we will characterize the blocking fault patterns
containing ezxactly Nygy faults.
Not all fault patterns consisting of N;g; faults are catastrophic. Some additional prop-

erties must be satisfied. Before we describe further characteristics of a catastrophic fault



42 CHARACTERIZATION OF CATASTROPHIC FAULT PATTERNS 73

pattern (CFP), we outline an algorithm for the construction of a CFP with the maximum
width for a given link redundancy G when links are bidirectional, and backtracking is
allowed (i.e. one may go from p, ,;4 to p,, where g is a horizontal bypass link) in attempts
to bypass faulty PEs.

Algorithm 1: Construction of a Catastrophic Fault Pattern for

Bidirectional Horizontal and Bidirectional Vertical Links

Input: G.

Output: A catastrophic fault pattern F' with the maximum width.

Step 1. Partition the two-dimensional array of PEs into blocks of g; columns and list
the blocks as the floors of a cuboid. Mark the first element of the N;-th row in floor 0 by
an X and set f = 1.

Step 2 If there exists an unmarked element u = (¢, 7) in floor f such that the element
v= (2, 3 — g) below u in floor f — 1 is marked, choose one such u and go to Step 4.
Otherwise go to Step 3.

Step 3 If there is an unmarked element in floor f, then increase f by 1 and go to Step
2. Otherwise, go to Step 5.

Step 4. If v is marked Y, then mark u by Y and go to Step 2.

If v is marked X, then mark u by Y and mark every unmarked element w which is of the
form (2, 5 £ g) where g € {g1, g2, ..., gx—1} or (i L v, 3) where v € {v1, va,...,ui}.
Mark w by Y if the pillar of w contains another marked element; otherwise mark w by
X. Go to Step 2.

Step 5 Stop. Note that all elements in floor f are marked. The elements marked X form
a catastrophic fault pattern F' with maximum width for link redundancy G.

Note that the algorithm assigns exactly N;g; number of X’s.
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Example 4.2.1 Figure 4.2 shows a CFP, obtained by the above algorithm, consisting

of 16 faults corresponding to G = (1, 4] 1, 2) in a 4 X 18 array A when the links are

bidirectional.

Theorem 4.2.2 Algorithm 1 generates a catastrophic fault pattern.

Proof: We make the following simple observations on the algorithm:

o] Jof 1 101010,
®@O000000
@O0000000
00000000

0000
o] 1 1@
000e
o] 1 1@

Figure 4.2: Fault Pattern for G = (1, 4| 1, 2)

e Marking takes place only in Step 4. When some PE is marked there are two cases:

(a) if the pillar has no marked PE then the current PE is marked by X and (b) if the
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pillar has at least one marked PE then all marked PEs are below the current PE and the
current PE is marked by Y.
When the algorithm terminates, we also have the following:

e There is exactly one X in each pillar, hence |F| = Njgy.

e For each pillar the X occurs below the Y’s.

e Let the final value of f be fy. If a PE p is marked Y and is adjacent to a PE ¢ then
¢ is marked (with X or Y) unless p is in floor fy and ¢ is in a floor f; + 1.

We next prove that any PE a; marked with a Y is inaccessible, i.e., there is no way to
reach this PE from ICU L without using any faulty PEs (those marked with X'). Suppose
oy is accessible, i.e., a; is connected to ICUL by a path p = [o1, aa, ..., an, ICUL]
not containing any faulty PEs (those marked X). We consider two cases.

Case 1. o; lies in a floor < fy for i =1, 2, ...,n. Then it follows that a1, ag, ...,y
are all marked Y. Now, the PE’s adjacent to ICUL all lie in the 0-th floor. But no PE
in the 0-th floor can be marked Y by the algorithm, a contradiction which proves that a;
is not accessible from ICUL.

Case 2. Atleast one q; lies in a floor > fy+1. Let o;_; be the last such PE. Then «; lies
on floor f;. Since all PEs in floor f, are marked and g does not contain any PE marked
X, it follows that o; is marked Y. Now considering the path [0y, ®jt1,..., an, ICUL],
we get a contradiction as in Case 1. This completes the proof.

Clearly when the algorithm terminates, all PEs in floor fj are either faulty or inacces-
sible from ICUL, so no PE in any floor > fy + 1 is accessible from JCUL; in particular,
ICUR is not accessible from ICUL and F is a CFP.

We prove that the algorithm terminates by showing that the number of marked ele-
ments in a floor increases strictly until it reaches N, g;. Note that all elements of the floor

f + 1, which are above marked elements in floor f, are marked. If there is an unmarked
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element in the f-th floor, note that some marked element v is adjacent to an unmarked
element z in the f-th floor. Then, by the algorithm, the element w in floor f + 1 above

2z will be marked. n

Conjecture 4.2.1 The CFP F', generated by Algorithm 1 for bidirectional horizontal and

bidirectional vertical links, has the mazimum width of the window, Wg.

We now indicate our basis for the above conjecture. Let F* be any catastrophic fault
pattern with Njg, faulty PEs. We assume that PE (N, 1) belongs to F*. We now
consider the cuboid representation of A used in the proof of Theorem 4.2.1. Note that,
since there are only N;g, faulty PEs, each pillar can contain only one faulty PE. Now
mark the faulty PEs by X’s and in each pillar mark the PEs above the faulty PE by
Y’s. A PE (i, j) marked by X and # (N;, 1) is called fair PE if no PE among the
PEs (i, j & g) where g € {g1, 92, ..., gxk—1} or (i £ v, j) where v € {vy, vo,...,u} is
marked by Y. In other words, a PE ( marked by X) is called fair PE if it is not adjacent
to any PE marked by Y (except the PE immediately above it) using the links in G. In
the given fault pattern F™, if there exists a fair PE(, j), we obtain a new fault pattern
called derived fault pattern by making the PE (i, j+ gx) faulty instead of PE (i, j). Then
PE (i, j + gx) becomes faulty whereas PE (i, j) becomes accessible from ICUL. Note
that, the derived fault pattern is still catastrophic and its width is greater than or equal
to the width of F*. If there is any fair PE (¢, 5') in the derived fault pattern then make
PE (#,j' + gi) faulty instead of PE (¢, j'). Continuing this process we get a derived
fault pattern F° with no fair PE. It is easy to check that this process terminates in finite
number of steps. Clearly wpo > wp«. Let F be the fault pattern obtained from Algorithm
1. Then we think F' will be the only catastrophic fault pattern which does not have any

fair PE, so F° = F and wr > wp«. Since F* is arbitrary, F' has the maximum width.
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This conjecture gives us the framework for achieving specific upper bounds and exact
bounds on the size of the largest window for a given link configuration. Given a link
configuration GG, we can obtain, by applying the algorithm, a catastrophic fault pattern

F which is contained in the largest window; that is, wr is the maximum value possible.

We study the effect of G on the maximum width of window of a CFP. We start by

showing that the window size decreases as the size of G increases.

Theorem 4.2.3 Let G = (G; | G2) and G' = (G} | Gb) be two link redundancies with
the same largest horizontal bypass link. If G; C G| and G2 C G and, Wr and Wg are

the corresponding widest fault windows, then wg > wpr.

In Algorithm 1, we note that there will be more X’s for G’ than for G in each floor,
so the algorithm terminates sooner.

We now present some results which give the maximum width of a window of a CFP
when there are at most two horizontal and at most two vertical link redundancies and an
upper bound for the width of a window of a CFP in the general case. These results follow

directly from Conjecture 4.2.1 and application of Algorithm 1.

Result 4.2.1 Let G = (1, g | 1). Then the mazimum width of the window of a CFP with
Mg faults is ([4]+ Ny — 2)g+ [4] + 1.

Proof: Let F' be the fault pattern obtained from Algorithm 1. Let F; C F' be the set
of faulty PEs occur only in the i-th row of A. Note that all F’s are identical and of
width ([4] — 1)g + | 2] + 1. See Nayak, Santoro and Tan [74]. Also if F; starts at j-th

column then F;_; can start atmost from PE(i — 1, + g)_. Suppose to the contrary that
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F,_, starts after PE (1 — 1, 3+ g). Then PE (2 — 1, 7 + g) will be a accessible processor
whereas PE(z, 7 + g) is inaccessible and these are connected by a vertical regular link.
Which contradict that F' is catastrophic. Since A has N; rows, clearly the width of F is
1+ M —2)g+ [§] +1.

Result 4.2.2 Let G = (1, g | 1, v). Then the mazimum undth of the window of a CFP
with N1g faults 1s gaven by given by
M+ + 1 -2+ (1§ +1) of o[ (M -1)
(1+131+ B2 =29+ (81 +1) o M—1=9|[B ] +r,r<[3] -1
M1+ 31+ 1B - De+ (1 +1) of Mi—1=v[B2]+r,r>[3]-1
In view of Theorem 4.2.3, when G = (1, go,..., gx | 1, va, ..., u;), We get an upper
bound for the width of the window of a CFP with N, g, faults by replacing g and v by gy
and v; respectively in the expression given in the preceding result. A similar statement

holds for Result 4.2.1.

4.3 Cuboid Representation for Fault Pattern

Suppose we are given a fault pattern F' with N;g; faults in a two-dimensional array A
with link redundancy G = (g1, g2,--., gk | v1, v2, ..., v;). W.Lg. we will assume that
the first column of A contains a fault. We now consider the cuboid representation of A
used in the proof of Theorem 4.2.1. However, we label the N; rows in any floor of the
cuboid with 0, 1, ..., N; — 1 instead of 1, ,2 ..., N; and the g; columns in any floor
with 0, 1, ..., gx — 1 instead of 1, 2, ..., gx. The floors are labeled using 0, 1, 2, ...
as before. With every PE (1, 7) we can uniquely associate the triple (z, y, z) where z,

y and z are the row label, column label and floor label of the position (2, j) occupies in
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the cuboid. (Note that £ = ¢ — 1, y is the remainder obtained when j — 1 is divided by
g and z is [1;];—1]) We will'write
, 1 if (s, j)€F
Wy, 9={ "7

0 otherwise.
We will sometimes refer to (z, y, z) as the location of the PE (3, 7)

Suppose now F' is a fault pattern such that for any (z, y), there is exactly one z for
which W (z, y, z) =1 (i.e., there is exactly one faulty PE in each pillar). We then denote

this z by hgy and call the matrix

hoo hor -+ hog—1
h'lO hll T hl,gk—l
H = . - .
h‘N1—l,0 h’N1—1,1 e th—l,gk—l

the height matrix of F'.

Example 4.3.1 Consider the CFP F = {(1,5),(1,6),(1,8),(1,11),(2,4), (2,5), (2,6), (2, 7),
(3,5),(3,7),(3,8),(3,10), (4,1)(4,4), (4,6), (4,7)} with 16 faults for a two-dimensional ar-

ray A with link redundancy G = (1, 4 | 1) which has wr = 11 as shown in Figure 4.3.
ONORONON N NON NONON HONORONONORO,
ONONON N N N NONOHONONOHORORONORG,

ONONORON RON N NON RONOHONORONONG)
L NONON NOX N NONONORORORONONONORG)

Figure 4.3: A fault Pattern

The height matrix for this CFP is
11 2 1

[w—y

110
2 11
0 110

—
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Note that every minimal CFP (i.e., CFP with N, g, faulty PEs) satisfies the conditions
stated at the beginning of the preceding paragraph. We now define the interior, exterior

and border elements in the cuboid representation of a minimal CFP.

Definition 4.3.1 Let F' be a minimal CFP. Then the PE of A corresponding to the
location (z, y, 2) is said to be wnterior, border or exterior with respect to F' according as
2 < hgy, 2= hgy OT 2 > hgy. The interior I(F) of F, the border B(F) of F and the
exterior E(F) of F are defined to be the set of all interior elements, the set of all border

elements and the set of all exterior elements of F', respectively.

Example 4.3.2 Consider the fault pattern F' of Example 4.3.1. The interior, border,

and exterior elements are shown in Figure 4.4.

Lemma 4.3.1 A fault pattern F 1s catastrophic for a two-dimensional network N unth
bhdirectional link redundancy G of it 1s not possible to reach any exterior element from

any wnterior element and also any wnterior element from any exterior element using the

links i N

Proof: It is easy to see that all interior elements are reachable from /CUL and all exterior

clements are reachable from JCUR. The lemma follows from Definition 1.3.6.

4.4 Counting Minimal Catastrophic Fault Patterns

We start with a characterization of minimal CFPs in terms of the height matrix
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Figure 4.4: Interior, Exterior and Border of the fault pattern given in Example 4.3.1

Proposition 4.4.1 An N; X g, matrix H = ((hg,)) with non-negative integer entries
is the height matrix of a minimal CFP for A with bidirectional link redundancy G =
(1, g | 1) iff the following conditions are satisfied:

(1) hoo — hzg-1 =0 or +1forall z such that 0 <z < Ny —1; hg = hzg—1 =0 for at
least one z.

(1) hgy — hogys1=—1, 0 or +1 whenever 0 <z < N;—land0<y<g—2and

(112) hgy — hg1y = —1, 0 or +1 whenever 0 <z < N;—2and0<y<g-1
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Clearly the number of minimal CFPs for N’ with bidirectional link redundancy G =
(1, g 1)is eqiial to the number of height matrices H which satisfy the conditions of

Proposition 4.4:1. We shall illustrate Proposition 4.4.1 by an example.

Example 4.4.1. Consider the fault pattern F = {(1, 4), (1, 5), (1, 10), (1, 11), (2, 1), (2, 2).
(2, 7), (2, 8), (3, 5), (3, 10), (3, 11), (3, 8)} in a 3 x 12 array A with link redundancy
G=(1, 4| 1). Note that in the cuboid representation for F' there is exactly one faulty

PE in each pillar.

.

¢

AN \
(I,OJ! \

. Faulty PE
@ Interior
‘ Exterior

Figure 4.5: Cuboid representation of F'
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The height matrix for this fault pattern is

hoo hor hoz  hos . 1 2 2 0
H = hm h11 h12 h13 = 0 1 1 1
hao hot hay  hos 1 2 21

Note that, hip — h13 = —1 which violates condition (z) of Proposition 4.4.1. We see from
Figure 4.5, that the exterior processor at location (1, 0, 1) and the interior processor at
location (1, 3, 0) are connected by a horizontal regular link. Hence F is not a catastrophic
fault pattern by Lemma 4.3.1. Similarly condition (i¢) of Proposition 4.4.1 is violated since
hoa — hos = 2. Note that, locations (0, 2, 1) and (0, 3, 1) contain an interior processor
and an exterior processor respectively which are connected by a horizontal regular link.
However, it can easily be verified that F' satisfies conditions (#:7) of Proposition 4.4.1 even
though F' is not catastrophic.

In the general case we have the following proposition:

Proposition 4.4.2 An N; x g matrix H = ((hs,)) with non-negative integer entries is
the height matrix of a minimal CFP for N with bidirectional link redundancy

G=1(91, 92---, 9 | v1, V2,..., v;) iff the following conditions are satisfied:

(i) hgo — hgg,—1 = 0 or +1 for all z such that 0 <z < Ny —1; hyg = hg g1 = 0 for at
least one z.

(i) hgy — hgytg = —1, Oor +1forall g;; 1 <i <k —1 whenever 0 <z < N; —1 and
0<y<gr—gi—1and

(143) hgy — hgtv,y = —1,0,+1 for all v;, 1 < v; < | whenever 0 < 2z < N; —v; — 1 and

0<y< g -1

As before, the number of minimal CFPs for N with bidirectional link redundancy

G=1(91, 92---, 9k | V1, Va,..., v;) is equal to the number of height matrices H which
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satisfy the conditions of Proposition 4.4.2.

4.5 A testing algorithm for two-dimensional array
with bidirectional links

Let NV be a bidirectional array of Ny N, processors with link redundancy

G=(g1, 92,--- gk | V1, V2,..., v;), and let F be a fault pattern with m faults. A simple
way to test if F' is catastrophic for A is to consider a graph whose set of vertices is given
by the chunks of working processors. More formally, we construct a graph H = (V, E)
as follows: The set V' of vertices is {Cy, C4, ..., C,}, where C;’s represent chunks of F
and (C;, C;) € E if and only if there are two processors, p,, € C; and py, € C; such
that y = ¢’ and |z — 2’| € {v1, v, ..., v} orz =2"and [y -] € {g1, 92,---, %},
that is, such that these two processors are connected in N by a bypass link.

Fact 1. A fault pattern F is not catastrophic for a network N, if and only if Cy and C,

are connected in the graph H.

Example 4.5.1 Consider the fault pattern F' of Example 1.3.3. Figure 4.6 shows the
graph H for the fault pattern F' and link redundancy G = (1, 4 | 1, 2). To see that
(Co, C1) € E one may use, for example, po3 and pay or pyg and pas- Note that, Cy and Cs
are connected in H. The path [Cy, C3, C3, Cs] in H gives a path [ICUL, (4, 5), (4, 9),
(2, 9), (2, 13), RICU] in N and this shows that the fault pattern F' is not catastrophic

with respect to link redundancy G = (1, 4| 1, 2).
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Chapter 5

Construction of Nearly Strongly
Balanced Uniform Repeated

Measurements Designs

5.1 Introduction

In this chapter, we provide a method of construction for a class of nearly strongly balanced
uniform RMDs using suitable symmetric balanced incomplete block designs constructed
through difference technique. See also {60]. For construction of nearly strongly balanced
uniform RMDs, an adaptation of R. C. Bose’s method of “symmetrically repeated differ-

ences” [11] has been used under the heading of “Method of differences”.
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5.2 Method of Differences

Consider a group G with v elements and operation “+”. If there is a p-tuple
B = (ao, a1, ag,...,a,—1) with elements belonging to G then the p — 1 elements a; — a;,;
fore=0, 1, ..., p—2 are said to be the backward differences arising from the p-tuple
B. B will be referred to as a difference vector and C = {a; —a;4;: i=0,1,...p—2} as
the set of backward differences in B.

Given any p-tuple B = (ao, @y, ..., @p—1) With elements belonging to G, the set of p-
tuples B+0 = (ag + 6, a1 +0, ..., a,—1 +0) obtained as 0 runs over the elements of G,

is said to be the set of p-tuples obtained by developing B.

Example 5.2.1 Consider the group Z; = {0, 1, 2,..., 6} with operation “ +” (i.e.
addition modulo 7). Consider the triple B = (1, 2, 4). Then the backward differences
arising from the triple are 1 —2 =6, 2—4 = 5. The set of triples obtained by developing
B=(1, 2, 4) are

(1, 2, 4), (2,3,5), (3,4,6), (45,0, (5 6,1), (6,0,2), (0,1, 3).

Notation: If A is any n-tuple (a3, ag, ..., a,) then A’ is the n-tuple (an, @n-1, ..., a1).
If A= (a1, ag, ..., ay) and B = (b, by, ..., by) then by AB we mean the (n + m)-tuple

(0,1, agz, ..., Qp, b17 b2, vaey bm)

Definition 5.2.1 A shift starting at a; of (ag, a1, ag,..., Gy_1) is

(@i, Giy1, -y Guo1, G0, Q15 G2y, Gin1)
We now introduce the following definition:

Definition 5.2.2 Consider the group Z, = {0, 1, 2, ..., v — 1} with operation “+"”

(i.e. addition modulo v). Then for ¢ = 0, 1, 2, ..., v — 1 and s > 2, D" denotes
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an sv-tuple of elements from Z, such that each element of Z, appears s times in it and

among the backward differences in it each element of Z, occurs s times except ¢ which

occurs (s — 1) times.

Theorem 5.2.1 If in an RMD the treatments correspond to the elements of the group

Z,=1{0, 1, 2, ..

., U — 1} with operation “+” (i.e. addition modulo v), then developing

D} we get a uniform RMD with parameters v, n =v, p = sv and

v-1

0

S

S

s-1

[

1
s

s

s-1

2
s

8

i-1 i

S

S

s-1

S

s-1 s

i+l i+2 v-1

S

s-1

N

s

Before proving the theorem we shall illustrate it by an example.

Example 5.2.2 Consider the group Z; = {0, 1, 2,

.., 6} with operation + (i.e.,

addition modulo v). We write the seven 14-tuples obtained by developing the 14-tuple

DY =(0,6,1,5,2 4,3, 3, 4,2 5 1, 6, 0) as the rows of an array as shown in

Figure 5.1.
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06152433425160
1026354453620 1
2130465564031 2
32415066051423
4352610016253 4
54630211203645
6504132231405 6]

Figure 5.1: An RMD(7,7,14)

This array is a uniform RMD with parameters v =7, n =7, p = 14, and with

[1 2 2 2 2
1 2 2 2
2
2

1

N NN

2 1
| 2 2 1]

NN NN N
NN N NN
DN NN

N NN

Proof of Theorem 5.2.1: Write the v sv-tuples obtained by developing the sv-tuple
D;*" as the rows of an array as shown below

Disyv 1
D{" +1

LD} v —1]
where the elements of D;*" + @ are obtained by adding 6 to the elements of D;*". In
the design so obtained it is clear that the first three parameters are v, n = v, p = sv.
In each unit, each treatment occurs s times and in each period, each treatment occurs
once. Consider the pair of treatments (¢, d). The difference arising from this pair is ¢ —d.

Let ¢ —d = i. Then there are exactly s — 1 pairs in D;"* which give rise to the same
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difference i. Let (a;, a,) be one such pair occurring in D;”. Then a, —ay, = c—d. If
a; + 6 = c then ay + 6 = d. Hence the pair (¢, d) occurs in the tuple D;"* + 6, where
§ = c—a; = d — a,. Thus corresponding to each of the pairs in the initial tuple, D;"",
which give rise to the difference ¢ — d, there will be one tuple of the design where the pair
(¢, d) occurs. Thus mg = s — 1. On the other hand, if ¢ — d = j (# i) then there are
exactly s pairs in D;** which give rise to the same difference j. Then mgy, = 5. Since the
pairs (3, 0), (i+1, 1), ...,(v—1, v—i—1), (0, v—14), (1, v—i+1),...,(i—1, v—1)

give rise to the difference ¢, mo; = My = ... = Myj_10-1 = My_io = My—iy11 = ... =

My—1,i—1 = 8 — 1. ]
Lemma 5.2.1 For odd v, D]"* can be constructed for all s > 2 and for all i € Z,.

Proof : Case 1: s=2,i=0.

For odd number of treatments v consider the v-tuple

A=0,v-1,1,v-2, 2, v—3, -,

as constructed by Sen and Mukerjee [96].

Note that, AA’ is a 2v-tuple such that frequency of each element of Z, in AA’ is two and
among the backward differences in AA’ each element of Z, occurs exactly twice except 0
‘which occurs once. Hence DX = AA'.

Case 2: s =3, ¢:=0.

For odd number of treatments v(= 2k + 1) consider the difference vector
DX =(0,2k 1,2 —1,.., k=1, k+1, k k, k+1, k—1,.., 2k~1, 1, 2k, 0).

Now replace one occurrence of i by the triplet (¢, 2k — 4, ) for i = 0,1,...,k — 1 and

replace one occurrence of k by the ordered pair(k, k). Consider this modification on DZ".
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Then the modified D" contains each element of Za; exactly thrice and the collection of
backward differences in modified Dg’” also contains each element of Z;;,; exactly thrice
except 0 which occurs exactly twice. Therefore, modified D3” is our required D3”. For
details see Dutta and Roy [27]. Now Dy’ can be constructed for all s > 2 juxtaposing
D2"’s and D3"’s suitably.

Let Dg" = (d1, da, ..., ds). If d, — dyy1 = 1 then D;” is the shift starting at d,,, of
Dg”. Tt is clear that the collection of backward differences in D;*” contains each element
of Z, exactly s times except ¢ which occurs (s — 1) times. So for odd v, D} can be
constructed for all s > 2 and for all 1+ € Z,,. [
Ilustration: Let v =7, k =3 and D' = (0, 6, 1, 5, 2, 4, 3, 3, 4, 2, 5, 1, 6, 0).
We then replace one 0 by (0, 6, 0), one 1 by (1, 5, 1), one 2 by (2, 4, 2) and one 3 by
(3, 3). Thus we get D" = (0, 6, 0, 6, 1, 5, 1, 5, 2, 4, 2, 4, 3, 3, 3, 4, 2, 5, 1, 6, 0).

5.3 Symmetric Balanced Incomplete Block Designs

We recall the definition and basic properties of SBIBD for later use. Suppose there are v
objects or treatments, which are to be arranged in b sets or blocks satisfying the following

conditions:
1. Each block contains & treatments.
2. Each treatment occurs in 7 blocks.
3. Every pair of treatments occurs together in »)\ blocks.

Such an arrangement, if it exists, is called a balanced incomplete block (BIB) design, with

parameters (v, b, r, k, A).
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Consider a BIB design with parameters (v, b, r, k, A). Then the v x b matrix

N = ((ny))

is called the mncidence matriz of the design if the element n,, in the :-th row and the 3-th
column is 1 or 0, according as the :-th treatment occurs or does not occur in the j-th

block.

Example 5.3.1 The following is a BIB design with parameters (7, 7, 3, 3, 1):

Block Treatments in the Block
1 (1,2,4)

(2,3,5)
(3,4,6)
4,57

2

3

4

5 5,6, 1)
6 6,7,2)
7

7,1,3)

The incidence matrix of the design is

10 0
110

[== TN o N =]
- o O O
o o O

01 01

(== e N

001011

L .

Theorem 5.3.1 (Bose and Manvel [12]) If N = (n,,) 1s the incidence matriz of a BIB

design with parameters (v, b, r, k, A), then

NNT = (r — M), + Ao
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where I, 1s the identity matrz of order v and Jy, is the v X v matriz with all elements 1.

Definition 5.3.1 A BIB design is said to be symmetric if the number of blocks is equal

to the number of treatments, that is, v =»5, r = k.

Theorem 5.3.2 Egzistence of an SBIBD (v, k, \) mples ezistence of a v X v matriz M

with elements a and a + 1, a > 0 such that MMT 1s completely symmetric.

Proof. Let N be the incidence matrix of an SBIB design with parameters (v, k, A). Note
that the elements of the matrix N + aJ,,, a > 0, are a and a + 1. Using Theorem 5.3.1,
it is easy to check that (N + aJyy)(N + aJy)T is completely symmetric. Hence N + aJyy

can be taken to be M.

5.4 Construction of Nearly Strongly Balanced Uni-
form RMDs

We now show how to construct a family of nearly strongly balanced uniform RMDs using
SBIBDs.

Suppose there exists a uniform RMD(v,n,p) whose M matrix is of the form M =
N + [ﬂ’—:};—ll] J,», where N is the incidence matrix of an SBIBD(v, k, A). It is clear that,
elements of the matrix M are [ﬂ%;—ll] and [ﬂ%ﬁ] +1, and M M7 is completely symmetric
(Theorem 5.3.2). Since in each row of N, 1 occurs & times and 0 occurs (v — k) times,
in each row of M, [ﬁ%;—ll] + 1 occurs k times and [ﬂ%;—ll] occurs (v — k) times. That
is, for a fixed treatment i there exist k treatments j such that m,, = [ﬂ%;—lz] + 1 and
(v — k) treatments 7’ such that m,y = [WZT_Q] So among the v? ordered treatment

pairs, vk pairs occur ["’1’)—(—;—12] +1 times each and the remaining (v — vk) treatment pairs
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occur [";}J’—;H] times each. Note that, in an RMD (v, n,p), the number of ordered pairs
(dy,digt1), 1 < m, 1<) <p—1isn(p—1). Hence we get the following equation
vk{([n—(—p;;—ll] + 1) + (v — vk) [@(_pv_;_l_)} =n(p —1).

Using n = Av? + Bv and p = sv we get
vk[A(sv — 1) + sB] + (v? — vk)[A(sv — 1) + sB — 1] = (Av? + Bv)(sv — 1)
and so B=v —k and n = Av? + (v — k)v. In Theorem 5.4.1 we will prove the existence
of such a uniform RMD for any n of the type Av?+ (v —k)v, A > 0 and p = sv, 5 > 2,
assuming the existence of SBIBD(v, k, A).

On the other hand, if there exists a uniform RMD for which M = aJy, + (Jy,w — N)
where N is the incidence matrix of an SBIBD(v, k, A) then from similar considerations we

can obtain B=k andson = Av>+ kv, A>0and p=sv, s > 2.

Theorem 5.4.1 FEzistence of an SBIBD(v, k, A) (constructed through difference technigue)
implies existence of a famaly of nearly strongly balanced uniform RMDs unth parameters

n=Av*+(v—k)v, A>0andp=sv, s> 2.

Proof : Given an SBIBD(wv, k, A) constructed through difference technique, let us consider
any block, say, the 7-th block. We will construct an sv-tuple, D;”, for each treatment
t which is not present in the 7-th block. Since any block of SBIBD(v,k, ) contains k
treatments, we have to construct (v — k) sv-tuples. Let t;,1s,...%,— be the treatments
not occurring in the j-th block of SBIBD(v,k,A). We write the (v — k) sv-tuples, i.e.,

Dg¥, Dy, ..., D;”, as the rows of an array and write the developed sv-tuples under
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therm as shown below v
- Df{ -

DY +1
D +v—1

D;Y
D’ +1

Dy’ 4+v—1

8,0
ty—k

DY +1

LDy, o= 1
where the elements of D"’ + 6 are obtained by adding 6 to the elements of D;*. In the
design so obtained it is clear that the first three parameters are v, n = v(v — k), p = sv.
From the definition of D;", it is clear that D is uniform on units. Note that, in each
column each treatment occurs exactly v — k times. Hence D is uniform on periods.
Consider the pair of treatments (¢, d). The backward difference arising from this pair
isc—d If (c—d) ¢ {t, ts, ..., ty—x} then there are exactly s pairs in each D" for
=1, 2, ..., v~k which give rise to the same difference (¢ — d). Let a;, a; be one such
pair occurring, say, in D;". Then a; —a; = ¢—d. If a; + 0 = ¢, then a; + 6 = d. Hence
the pair (¢, d) occurs in the block D;” +0, where 8 = ¢—a; = d—a;. Thus corresponding
to each of the pairs in Dj” which give rise to the difference ¢ — d, there will be one tuple,
obtained by developing D;;” where the pair (¢, d) occurs. Since there are exactly s pairs

in each D;" for I = 1,2, ..v—k which give rise to the same difference c—~d, mg. = s(v—k).
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On the other hand, suppose ¢ —d € {t;, ts, ..., t,—x} and without loss of generality

let (¢ —d) = t;. So there are exactly s — 1 pairs in D;’” and exactly s pairs in each
D;” for | = 2,..v — k which give rise to the same difference ¢ — d. Then from the similar
considerations we get mg4, = s(v—r)—1. Hence m;;’s assume values s(v—r) or s(v—r)—1.
Now by using Theorem 5.2.1 we get M = s(v—7)Jy, —(Jyw— )T, where N is the incidence
matrix of the given SBIBD(v, k, A). Note that M M7 is completely symmetric. ]

Example 5.4.1 Let us take the SBIBD(7,3,1) as given below:
{(124), (235), (346), (450), (561), (602), (013)}.
Without loss of generality let us consider the initial block. Since it contains the treatments
1, 2, 4, we construct D37, D>", D3 D" where
D¥=(0,6,1,5 24,3, 3 4,2 5 1, 6, 0)
D> =(5,24,3,34,2 5 1,6,0,0, 6, 1)
D¥=(4,3 34,25 1,60, 0,6, 1, 5 2
D¥=(4,2 51,60 0,6, 1, 5 2, 4, 3, 3).

It is easy to verify that, for ¢ = 0, 3, 5, 6, among the backward differences in Df’7 each
element of Z7 occurs twice except i which occurs once. Now developing Dg”, D, D§’7
and D§’7 over Z, respectively we obtain our required design as shown in Figure 5.2.

(7 8 8 7 8 7 7]

7T 7 8 87 8 7
7 77 8 8 7 8
Here the matrix Mis |8 7 7 7 8 8 7| =8Jy+ (J;z — N)T.
7 8 7 7 7 8 8
8 7 8 7T 7 7 8
8 8 7 8 77 7
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Figure 5.2: Nearly strongly balanced uniform RMD (7, 28, 14)

Note that M M7 is completely symmetric. The above design is a nearly strongly balanced

uniform RMD(7, 28, 14).

Notes

5.5

1. In Theorem 5.4.1, we construct an sv-tuple, D", for each treatment ¢ which is

present in the j-th block (instead of those which are not present in the j-th block)
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and develop such D;"’s over Z, to get nearly strongly balanced uniform RMDs with

n==kv,p=3sv,s>2.

2. 16 construct nearly strongly balanced uniform RMDs with rn = Av? + (v — £)v and

> 7 append the iwine S Lmes below the design obtained in Theorem
=S5 Y, & < 4,

541

r Ds,’l] h
0
Dy’+1

Dy +v-1
D
D3 +1

DY +v—-1

DY,
D41

LDZ’El v - 1.1



Chapter 6

Construction of Balanced Near
Uniform Repeated Measurements

Design

6.1 Introduction

In this chapter, we give a procedure for construction of balanced near uniform RMDs
when every ordered pair of distinct treatments appears exactly once or twice, except for
the case v an odd integer and p = v. See also [62]. For construction of BNURMDs, we
use an adaptation of R. C. Bose’s method of “symmetrically repeated differences” [11]
under the heading of “method of differences”. Throughout this chapter, we assume that
the underlying statistical model is linear and the second order and higher-order residual

effects are negligible.

99
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6.2 Some Observations

It is easy to show that the five parameters v, n, p, r, A of a BNURMD satisfy

v divides n (6.1)
Av(v—~1) = (p—1)n (6.2)
ur = np (6.3)

where r is the total number of times each treatment appears in the design. Note that

given v, p and A, n and r are given by:

(v -1)
_ pA(v—1)

Conversely, given v, n and p, r and A can be computed from (6.2) and (6.3). Thus we
may take either v, n and p or v, p and A as the parameters of the design. Since p and
(p — 1) are relatively prime, for r to be an integer we must have: (p — 1) divides A(v —1).
When this happens, the number of units n is automatically an integer multiple of v, the

number of treatments. Thus
p—1 divides A(v—1) (6.6)

is a necessary condition for the existence of a BNURMD with the parameters v, p and A.
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6.3 Method of Differences

Consider a group G with v elements and operation “+”. If there is a p-tuple

B = (ag, a1, a2, ..., ap—1) with elements belonging to G then the p— 1 elements a; —a; 1
fori=0, 1, ..., p— 2 are said to be the backward differences arising from the p-tuple
B. B will be referred to as a difference vector and C = {a; —a;11: ¢ =0, 1, ..., p—2}

as the set of backward differences in B.

Given any p-tuple B = (ag, @1, ..., a,—1) with elements belonging to G, the set of
p-tuples B+60 = (ag+6, a1 +6, ..., a,_1+0) obtained as § runs over the elements of G,
is said to be the set of p-tuples obtained by developing B. We present a simple theorem

which allows an easy and direct construction of BNURMD (v, n, p) for a given A.

Theorem 6.3.1 Let the treatments in an RMD correspond to the elements of a group G
with size v and with operation “+ 7. Suppose there exist m p-tuples ( called initial units)
By, By, ..., By such that (i) for any B, the frequencies of the different elements of G
in B; differ by at most 1 and (ii) among the m(p— 1) backward differences obtained from
By, By, ..., By, each of the v—1 non-zero elements of G occurs exactly A times. Then
by developing the initial units By, B,, ..., B,,, we obtain a BNURMD with parameters

v, n=muv, p.

Proof: We write the m p-tuples By, By, ..., By, as the rows of an array and write the
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developed p-tuples (or units) under them as shown below
r B, 1
Bi+1

Bl+’U'—1
By
By +1

Bg+’l)—1

B
B, +1

| By, +v—1]
where the elements of B;+ 6 are obtained by adding 8 to the elements of B;. In the design
so obtained it is clear that the parameters are v, n = mwv, p. Since the frequencies of the
elements of GG in each B; differ by at most one, it follows that the design is nearly uniform
on units. It only remains to check that each ordered pair of distinct treatments is present
in exactly A units of the design. C;nsider the pair of distinct treatments (¢, d). The
backward difference arising from this pair is ¢ — d. Note that, there are exactly A pairs in
the initial units B;, By, ..., B,, which gives rise to the same backward difference ¢ — d.
Let (a;, a;) be one such pair occurring, say, in the initial unit B,. Then a; — a; = c—d.
If a; + 8 = ¢, then a; + 0 = d. Hence the pair (¢, d) occurs in the unit B, + 6, where

0 = ¢ — a; = d — a;. Thus corresponding to each of the pairs in the initial units which

gives rise to the backward difference ¢ — d, there will be one unit of the design where
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the pair (¢, d) occurs. Hence the pair (¢, d) occurs in exactly A units of the design. By
developing the initigl units By, B, ..., B,, we shall therefore get a BNURMD with the

parameters v, n ='muv, p. ]

Lemma 6.3.1 Fo"xt ffhe BNURMD constructed in the preceding theorem,

_ AMv-1)

Remark 6.3.1 We have seen that (p — 1) divides A(v — 1) is a necessary condition for
the existence of BNURMD with parameters v, p and A. So if we can obtain a k-tuple
(a1, a2, ..., a) where k = A(v — 1) + 1 such that in any p consecutive elements of this
tuple the frequencies of the elements of G differ by at most 1 then the required initial

units can easily be generated as

B1 = (al, ag, ..., Gp)
B2 = (apa Api1, ---) a2p—1)
B, = (a(m—l)p—(m—2)a A(m—1)p—(m—-3)> ---» ak)

Alv—1

where m = =1 -

For all the constructions in this paper we use Theorem 6.3.1 and exploit the observation
made in Remark 6.3.1 to obtain the initial units, except when p = v, v an odd integer.
Before we proceed with the constructions, we define the following notations:
If A is any n-tuple (a4, as, ..., a,) then A’ is the n-tuple (an, an-1, .-, a1).
If A= (a1, as, ..., a,) and B = (by, by, ..., by,) then by AB we mean the (n + m)-tuple

(ala az, ..., Qp, b17 b2> seey bm)
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6.4 Consfruction when )\ =1

Now the necessary condition (6.6) implies that (p — 1) divides (v — 1) and from (6.7) we

know that the number of initial units, m, is %:—3.

6.4.1 Case: vodd and p< v

Let G be the group Z, = {0, 1, 2, ..., v —1} with operation “+” (i.e. addition modulo
v) and k; and k, be two odd integers such that k; + k2 =v—1and 0 < k; — k; < 2. Now

consider the following two tuples:

A = (al, as, ..., G,kl)
— k1~3 kl—l kl—']-
= (O,v—l, L, v-2, ..., 5 , U— 5 T )and
B = (a’kl-{-l, Ak +25 + -5 Aki+kgs av)
k41 k41 k43 k43 btk . kit
—(2,'0 5 z,v 2,...,’0— +1, 2 ,O).

Let D = AB. Note that the set of backward differences over D contains all non-zero
elements of Z, exactly once and all elements of D are distinct except a; and a,. So from
Theorem 6.3.1 and Remark 6.3.1 it follows that there exist m p-tuples B;, By, ..., By,
which on developing over Z, produce a BNURMD(v, n, p) with A = 1.

Example 6.4.1 Let v =11, p = 6 and A = 1. Then (6.7) gives m = 2. Note that n = 22
andk; =ky=5.S D= (0,10, 1,9,2 3,8, 4, 7, 5, 0). Then B, = (0, 10, 1, 9, 2, 3)
and B, = (3, 8, 4, 7, 5, 0). Figure 6.1 shows a BNURMD (11, 22, 6) with A = 1.

Note: This procedure does not work for p = v, since a, = a, in v-tuple D, which affects

the near uniform condition of BNURMD.
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Periods
0 10 1 9 2 3
1 0 2 10 3 4
2 1 3 0 4 5
3 2 4 1 5 6
4 3 5 2 6 7
5 4 6 3 7 8
6 5 7 4 8 9
7 6 8 5 9 10
8 7 9 6 10 O
9 8 10 7 0 1
10 9 0 8 1 2
Units
3 8 4 7 5 0
4 9 5 8 6 1
5 10 6 9 7 2
6 0 7 10 8 3
7 1 8 0 9 4
8 2 9 i 10 5
9 3 10 2 0 6
10 4 0 3 1 7
0 5 1 4 2 8
1 6 2 5 3 9
2 7 3 6 4 10
— —

Figure 6.1: BNURMD(11, 22, 6)

6.4.2 Case: vodd and p=v

A latin square with elements 1, 2, ..., v is called row complete if, for any ordered pair
of elements o, B (1 < a,8 < v, a # B), there exists a row of the latin square in which o
and § appear as adjacent elements. It is easy to see that a BNURMD(v, v, v) is basically
a row complete latin square of order v since A = 1. But there is no general result on the
existence of such squares for odd values of v. Gordon [32] has shown that the existence of
a sequencible group of order v is a sufficient condition for the existence of a row complete
Latin square of order v. Sequencible groups have been found for orders 21, 27, 39, 55

and 57 (see Denes and Keedwell [23), Mendelsohn [68] and Wang [112]), while there is no
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sequencible group of order 9 or 15. However, Archdeacon, Dinitz, Stinson and Tillson [4]
give row complete Latin squares of orders 9, 15, 21 and 27. The square of order 9 is the
smallest possible odd order row-complete latin square. So BNURMDs (v, v, v) do not
exist for v = 3, 5 or 7. Figure 6.2 shows a BNURMD (v, v, v) with v =9 (and A = 1).

Periods
1 4 7 2 6 8 5 9 3
2 5 8 3 4 9 6 7 1
3 6 9 1 5 7 4 8 2
_ 4 2 1 8 7 3 9 5 6
Units 5 3 2 9 8 1 1 6 4
6 1 3 7 9 2 8 4 5
7 8 6 5 2 4 3 1 9
8 9 4 6 3 5 1 2 7
| 9 7 5 4 1 6 2 3 8 |
Figure 6.2: BNURMD(9, 9, 9)
6.4.3 Case: v even
Let G be the group Z, as before. Consider the v-tuple
v v
D =(ay, az, ..., Gy) = (0, v—1,1, v—-2,2 v-3, ..., 5——1, 5)

D is a standard difference set for constructing row complete latin square of even order.
Note that all the elements of D are distinct and the set of v — 1 backward differences in
D contains all elements of Z, except 0. So it follows from Theorem 6.3.1 and Remark
6.3.1 that D can be decomposed in m p-tuples By, B,, ..., B, which when developed
over Z, give the necessary BNURMD (v, n, p) for A = 1. This is true for all p such that

(p — 1) divides (v — 1). This construction is basically the same as that of Afsarinejad [2]
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for A = 1. In fact the balanced uniform RMD (v, n, p) for even v as constructed by him

is the same as a BNURMD (v, n, p).

6.5 Construction when )\ =2

Now by (6.6), (p — 1) divides 2(v — 1) and from (6.7) we have m = %}_’TQ. In this section
we consider three cases: first when p = v, next when v is odd and p # v and finally when

v is even and p # v.

6.5.1 Case: p=v

Consider Z, and define two p-tuples B; and B; as

Bi=(0,v-1,1,v-22v-3 ..., [g])
and
B2=B{=([g], e, v=3,2,v-21, v-1, 0),

where [%] is the integral part of 7. Note that all the elements of Z, occur exactly once in
B; and exactly once in By. Also among the totality of 2(v — 1) backward differences in
the two v-tuples B; and B, each of the (v — 1) non-zero elements of Z, appears twice.

So the design can be obtained as in Theorem 6.3.1.

Example 6.5.1 Let v = p = 5 and A = 2. Then (6.7) gives m = 2. So B; =
0, 4, 1, 3, 2) and B, = (2, 3, 1, 4, 0) and we get the BNURMD (5, 10, 5) with
A = 2 exhibited in Figure 6.3.
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Periods
F—O 4 1 3 2
1 0 2 4 3
2 1 3 0 4
3 2 4 1 0
4 3 0 2 1

Units

_-—0 AW N
N - O bW
O B W N

W N =-= O K
IAuNo—ﬂO

Figure 6.3: BNURMD(5, 10, 5)

6.5.2 Case: v odd and p # v

Suppose first p > v. Since p — 1 divides 2(v — 1) and p — 1 > v — 1, it follows that
p = 2(v — 1) + 1. Now consider B; and B, defined in Section 6.5.1. Note that the last
element of B; and the first element of B, are the same. So we redefine B, as a (v — 1)-
tuple by deleting the first element of By and call it B;. D = B;Bj is an initial unit for
generating BNURMD (v, n, p) for A =2 when p=2v — 1.

Next let p < v. Then define tuples A and B as in Section 6.4.1. From the k;-tuple A
define a (k; — 1)-tuple C as C = (ag, a3, ..., a,). Let D = ABCB. Note that D is a
(2v — 1)-tuple, the set of backward differences in D contains each non-zero element of Z,
twice and any p consecutive elements of D are distinct. So the required m p-tuples for a
BNURMD (v, n, p) for A = 2 can be obtained from D as in Theorem 6.3.1 and Remark

6.3.1. These when developed over Z, give the required design.



6.5 CONSTRUCTION WHEN X = 2 109

6.5.3 Case: v even and p # v

The construction procedure for BNURMD (v, n, p) for A = 2 when p > v and v is an

even integer is the same as that for an odd integer v.

Example 6.5.2 Let v = 4, p = 7and A = 2. Then B; = (0, 3, 1, 2) and B, =
(2, 1, 3, 0). So B3 = (1, 3, 0) is obtained from B, by deleting 2. Now D =
(0, 3, 1, 2, 1, 3, 0) is an initial unit for BNURDM (4, 4, 7). On developing D over Z,
we get a BNURMD(4, 4, 7) as shown in Figure 6.4.

Periods
0 3 1 2 1 3 0
Units 1 0 2 3 2 0 1
2 1 3 0 3 1 2
3 2 0 1 0 2 3

Figure 6.4: BNURMD( 4, 4, 7)

Now let p < v. Consider Z, and let k; and k; be two odd integers such that k; +k; = v—2

and 0 < k; — k3 < 2. Construct two tuples A and B as

A = (ay, az, ..., ag)
ki —3 ki—1 k-1
= (0,v-1,1, v-2, ..., e )
B = (ak1+17 Qk1+2y « -y Ok1+kgs a’k1+k2+1)
_(hrl o, BA3 kt3 kS itk hth
- 2 ’ 2 9 2 ’ 2 Yy ot 2 b} 2 ’

Let C = AB. Tt can be easily seen that the set of backward differences arising from the

(v —1)-tuple C contains all the elements of Z, exactly once except for the elements 0 and
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Now consider the v-tuple D defined in Section 6.4.3. The last element of D is § while the
first element of C is 0. For the ordered pair (%,0), the backward difference is § over Z,.
Define E = DC.

Suppose first that p < v—2. Then in E, the set of backward differences contains every
non-zero element of Z, twice and any p consecutive elements of E are distinct. So E can
be decomposed into the required m blocks By, Bs, ..., By, following the steps outlined
in Remark 6.3.1 which when developed over Z, produce a BNURMD (v, n, p) for A = 2.

Next let p = v — 1. Since v is an even integer and (p — 1) divides 2(v — 1), v must be
4. In this case, we may take B; = (0, 3, 1), By = (1, 0, 2) and Bs = (0, 1, 2) as the
required three initial units for generating a BNURMD (4, 12, 3) with A = 2.

Example 6.5.3 Let v = 6, p = 3 and A\ = 2. Then we get m = 5 from (6.7).
Here D = (0, 5, 1, 4, 2, 3), A= (0, 5, 1) and B = (2, 0). So, E = DAB =
(0, 5, 1, 4, 2, 3, 0, 5, 1, 2, 0) and hence B, = (0, 5, 1), B, = (1, 4, 2), B3 =
(2, 3, 0), By=(0, 5, 1) and Bs = (1, 2, 0).

Now By +g, Bo+g, Bs+g, Bi+g, Bs+g; g € Zg give a BNURMD (6, 30, 3) with
A=2.



Chapter 7

Concluding Remarks and Open

Problems

Enumeration of catastrophic fault patterns for link redundancy G = {g} has been done in
[22] for unidirectional case. In Chapter 2, we extend this to the case of G = {2, 3,..., k, g},
2 < k < g — 1. We characterize catastrophic fault patterns for both unidirectional and
bidirectional cases and, using random walk as a tool, enumerate them. A method of
enumeration of CFPs for an arbitrary link configuration G was discussed in Sipala [104],
but no closed form solution was obtained. The number of catastrophic fault patterns for
an arbitrary link configuration G = {g;, g2, ..., gk} is still unknown. The fault model of
the problems mentioned in the present thesis assumes only PE failures. In reality, both
PEs and links can fail and can do so simultaneously. Not much is known in the case of
both PE and link failures.

In Chapter 3, we consider the problem of finding the maximal link configuration for
which a given fault pattern F' is catastrophic. We consider maximality with respect to

two parameters: the length g of the longest bypass link in G and the number |G| of

111
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bypass links in G. The problem of minimization of the parameters is trivial since any F' is
catastrophic when G = 4. In reality, the problem of finding a minimal link configuration
G for which a given fault pattern F' is not catastrophic is more important. Since the
designer can adopt G to ensure that F' cannot disrupt the flow of information from I to
O. Depending on designer choice, minimality can be with respect to various parameters
like: the length g of the longest bypass link, the number |G| of bypass links in G or the
sum Y°F | g; of the lengths of bypass links in G. The problem of finding the minimum
value of the length g of the longest bypass link in G for which a given fault pattern F is
not catastrophic is easy as was shown in Section 3.1. However, studying minimality with
respect to the other two parameters, i.e., |G| and 3F_, g;, seems to be difficult.

In Chapter 4, our main contribution is a complete characterization of catastrophic
fault patterns for two-dimensional arrays. Let N be a two-dimensional network with link
redundancy G = (g1, g2,---, gk | V1, v2,..., 1), and let F be a fault pattern. Then we
prove that, F' is catastrophic with respect to A implies that the cardinality of F, |F| >
Nigx. We outline an algorithm for the construction of a CFP with the maximum width for
a given link redundancy G. We give necessary and sufficient conditions for a fault pattern
F to be catastrophic with respect to link redundancy G = (g1, go2,.-., gk | V1, V2, ..., v}).
We provide an algorithm to test whether a given F' is catastrophic with respect to link
redundancy G = (g1, g2,---, 9k | v1, V2,..., v;). The number of catastrophic fault
patterns is not known even for the link redundancy G = (1, g | 1, v).

In Chapter 5, we provide a method of construction for a class of nearly strongly bal-
anced uniform RMDs using suitable symmetric balanced incomplete block designs con-
structed through difference technique. We do not know whether one can give a method of
construction for nearly strongly balanced uniform RMDs using any SBIBD not necessarily

constructed through difference technique or without using SBIBD.
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In Chapter 6, we give a procedure for construction of balanced near uniform RMDs
when every ordered pair of distinct treatments appears exactly once or twice (i.e., A =1
or 2), except for the case v an odd integer and p = v. This exceptional case is equivalent
to finding a row complete Latin square of odd order. We could not obtain any result for

general A and the problem remains open for A > 3.



Bibliography

[1] Abraham, J. A. and Fuchs, K., Fault and error models for VLSI. Proc. of the IEEE,
74 (5), May 1986, 639-654.

2] Afsarinejad, K., Balanced repeated measurements designs. Biomelrika, 70, 1983,

199-204.

[3] Afsarinejad, K., Repeated measurements designs - a review. Comm. Statist. Theory

Methods, 19(11), 1990, 3985-4028,

[4] Archdeacon, D. 8., Dinitz, J. H., Stinson, D. R., and Tillson, T. W., Some new
row-complete Latin squares. J. Comb. Theor., A29, 1980, 305-398.

[5] Atkinson, G. F., Design for sequences of treatments with carry-over effects. Biomel-

rics, 22, 1966, 292-309.

[6] Balasubramanian, V. and Banerjee, P., A fault tolerant massively parallel processing

architecture. J. of Parallel and Distributed Computing, 4, 1987, 363-383.

[7] Batcher, K. E., Design of a massively parallel processor. IFEE Trans. on Computers,

C-29, No. 9, Sept. 1980, 836-840.

114



BLIOGRAPHY 115

8]

[10]

i

12]

[13]

[14]

[15]

[16]

Belkhale, K. P. and Banerjee, I°., Reconfiguration strategies in VLSI processor ar-
rays. Proc. Int’l Conf. on Computer Aided Design, IEEE Computer Society Press,
1988, 418-421

Berenblut, I. I., Change-over designs with complete balance for first residual effects.

Biometrics, 20, 1964, 7T07-7T12.

Bishop, S. H. and Jones, B., A review of higher order cross-over designs. J. Appl.
Statist., 11, 1984, 29-50.

Bose, R. C., On the construction of balanced incomplete block design. Ann. Eugen-

ics, 9, 1939, 353-399.

Bose, R. C. and Manvel, B., Introduction to Combinatorial Theory. John Wiley,
1984.

Bradley, J. V., Complete counterbalancing of immediate sequential effects in a Latin

square design. J. Amer. Statist. Assoc., 53, 1958, 525-528.

Bruck, J., Cypher, R. and Ho, C. T., Fault-tolerant mesh with minimal number of
spares. Proc. of the 3rd IEEE Symposium on Parallel and Distributed Processing,
IEEE Computer Society Press, 1991, 288-295.

Cheng, C. 5. and Wu, C. F. J., Balanced repeated measurements desighs. Ann.
Statist., 8, 1980, 1272-1283.

Cloud, E. L., The geometric arithmetic parallel processor. Proc. 2nd Symp. on the

Frontiers of Massively Parollel Processing, Fairfax, VA, Oct. 1989,

[17] Cochran, W, G., Autrey, K. M. and Cannon, C. Y., A double change-over design

for dairy cattle feeding experiments. J. Dairy Sci., 24, 1941, 937-951.



BIBLIOGRAPHY 116

[18] Cole, R., Maggs, B. and Sitaraman, R., A technique for reconfiguring arrays with
faults. Proc. of the 25-th ACM Symposium on Theory of Computing, ACM Press,
1993, 561-572.

[19] Constantine, G. and Hedayat, A., A construction of repeated measurements designs

with balance for residual effects. J. Statist. Planning Infer., 6, 1982, 153- 164.

[20] Davis, A. W. and Hall, W. B., Cyclic change-over designs. Biomeirika, 56, 1969,
283-293.

[21] De Prisco R. , Monti, A. and Pagli, L., Testing and reconfiguration of VLSI linear
arrays. Theoretical Computer Science, 197, 1998, 171-188.

[22] De Prisco, R. and Santis, A. D., Catastrophic faults in reconfigurable systolic linear

arrays. Discrete Applied Math., 75(2), 1997, 105-123.

23] Denes, J. and Keedwell, A. D., Latin Squares and Their Applications. Academic
Press, New York, 1974.

(24] Dey, A., Gupta, V. K. and Singh, M., Optimal change-over design. Sankhyd, 453,
1983, 233-239.

[25] Duit, S. and Hayes, J. P., On designing and reconfiguring k-fault tolerant tree
architectures. JEEE Trans. on Computers, C-39, 1990, 37-44.

[26] Dutt, S. and Hayes, J. P., Designing fault-tolerant systems using automorphism,
Journal of Parallel and Distributed Computing, 12, 1991, 249-268.

[27] Dutta, T. K. and Roy, B. K., Construction of strongly balanced uniform repeated
measurements designs: A new approach. Sankhya, Special Volume 54, 1992, 147-

153.



BIBLIOGRAPHY 117

[28] Feller, W., An Introduction to Probebility Theory and Its Applications. Vol. 1, 2nd
ed., Wiley, New york, 1957.

[29] Finney, D. J. and Outhwaite, A. D., Serially balanced sequences. Nature, 176, 1955,
T48.

[30] Fitina, L. F., Seberry, J. and Chandhry, G. R., Back circulant Latin squares and
the influence of a set. Australes. J. Combin., 20, 1999, 163-180.

[31) Fletcher, D J, A new class of change-over designs for factorial experiments.

Biometrika, 74, 1987, 649-654.

[32] Gordon, B., Sequences in groups with distinct partial products. Pecific J. Maith.,
11, 1961, 1308-1313.

[33] Greene, J. W. and Gamal, A. E., Configuration of VLSI array in the presence of
defects. Journal of the ACM, 31 (4), 1984, 694-717.

[34] Gysin, M., Seberry, J., On new families of supplementary difference sets over rings
with short orbits. Paper in honour of Anne Penfold Street. J. Combin. Math. Com-
bin. Comput., 28, 1998, 161-186.

[35] Hedayat, A., 1981. Repeated measurements designs, IV: Recent advances. Bull. ni.
Statist. Inst., XLIX, 1981, 591-610.

[36] Hedayat, A. and Afsarinejad, K., Repeated measurements designs I. Survey of Sta-
tistical Design and Linear Models ( ). N. Srivastava, Ed.), North-Holland, Amster-
dam, 1975, 229-242,

[37] Hedayat, A. and Afsarinejad, K., Repeated measurements designs II. Ann. Statist.,
6, 1978, 619-628.



IBLIOGRAPHY 118

[38]

[43]

[44]

45]

Hosseini, S. H., On fault-tolerant structure, distributed fault-diagnosis, reconfigu-
ration, and recovery of the array processors. IEEE Trans. on Computers, C-38, No.

7, July 1989, 932-942.

Houston, T. P., Sequential counterbalancing in Latin squares. Ann. Math. Statist.

37, 1866, 741-743.

Keedwell, A. D., On the sequenceability of non-abelian groups of order pg. Discrete
Math., 37, 1981, 203-216.

Keedwell, A. D., On the sequenceability of dihedral groups. Ann. Discrete Math. |
15, 1982, 253-258.

Kiefer, J., Construction and optimality of generalized Youden designs. In 4 Survey
of Statistical Designs and Linear Models (J. N. Srivastava, Ed.), North Holland,
Amsterdam, 1975, 333-353.

Knuth, D. E., The Art of Computer Programming, Second Edition, Addison-Wesley
Publishing Company, 1877.

Kok, K. L. and Patterson, H. D., Algebraic results in the theory of serial factorial
design. Biometrika, 63, 1976, 559-565.

Koren, 1. and Pradhan, D. K., Introducing redundancy into VLSI design for yield
and performance enhancement. Proc. 15th Int’l Symp. on Foult-Tolerant Computing,

IEEE Computer Society Press, 1985, 330-335.

146) Koren, 1. and Pomeranz, 1., Distributed structuring of processor arrays in the pres-

ence of faulty processors. Proe. Int’l Conf. on Systolic Arrays, 1986, 239-248.



BIBLIOGRAPHY 118

[47] Koukouvinos, C., Kounias, S., Seberry, I., Supplementary difference sets and opti-

mal designs. Discrete Math., 88, 1991, no. 1, 49-58.

(48] Kunert, J., Optimal repeated measurements designs for correlated observations and

analysis by weighted least squares. Biometrika, T2, 1985, 375-389.

(49] Kunert, J., Optimal design and refinement of the linear model with application to

repeated measurements designs. Ann. Statist., 11, 1983, 247-257.
[60] Kung, H. T., Why systolic architecture? IEEE Computer, 15(1), Jan. 1982, 37-46.

[51] Kung, H. T. and Lam, M., Fault-tolerant VLSI systolic arrays and two-level pipelin-
ing. Journal of Parallel and Distributed Processing, Aug. 1984, 32-63.

[52] Kuo, S. and Fuchs, W. K., Efficient spare allocation for reconfigurable array. IEEE
Design and Test, 1987, 24-31.

(53] Lam, C. W. H, Li, H. F. and Jayakumar, R., A study of two approaches for
reconfiguring fault-tolerant systolic arrays. IEEFE Trans. on Computers, C-36, No.
6, June 1989, 833-844.

[54] Lawless, J. F., On the construction of Handcuffed designs. J. Comb. Theor., A 16,
1974, 76-86.

[55) Leighton, T. and Leiserson, C. E., Wafer-Scale Integration of systolic arrays. IEEE
Trans. on Computers, C-34, No. 5, May 1985, 448-461.

[56] Li, H. F., Jayakumar, R. and Lam, C., Restructuring for fault-tolerant systolic
arrays. fIEEE Trans. on Computers, C-38, No. 2, Feb. 1989, 307-311.



BIBLIOGRAPHY 120

[57] Lin, Y.-C., New systolic array for the longest common subsequence problem. Paralle!

Computing, 20, 1994, 1323- 1334.

[58] Lombardi, F., Negrini, R., Sami, M. and Stefanelli, R., Reconfiguration of VLSI
arrays: A covering approach. Proc. 17th Int’l Symp. on Fault-Tolerant Compuling,
IEEE Computer Society Press, 1987, 251-256.

[58] Magda, C. G., Circular balanced repeated measurements designs. Comm. Statist.

A—Theory Methods, 9 (18), 1980, 1901-1918.

[60] Maity, S. and Roy, B. K., Construction of some classes of optimal repeated mea-

surements designs. Cal. Statist. Assoc. Bull., b0, Nos. 197-198, 2000, 33-42.

[61] Maity, S. and Roy, B. K., Catastrophic Faults in Reconfigurable Systolic Two-
dimensional Array. VLSI destgn: An International Journal of Custom-Chip Design,

Simulation, and Testing. (to appear)

162] Maity, S., Dutta, T. K. and Roy, B. K., Construction and efficiency of some repeated

measurements designs. Journal of Indian Statist. Assoc., 39(2), 2001, 137-160.

[63] Maity, S., Roy, B. K. and Nayak, A., On enumeration of catastrophic fault patterns.
Information Processing Letters, 81(4}, 2002, 209-212.

[64] Maity, S., Roy, B. K. and Nayak, A., Enumerating catastrophic fault patterns in
VLSI linear arrays with both unidirectional and bidirectional links. INTEGRA-
TION, The VLSI Journal, 30(2), 2001, 157-168.

[65] Maity, S. Roy, B. K. and Nayak, A., Identification of optimal link redundancy for

which a given fault pattern is catastrophic in VLSI linear arrays. Proceedings of



BIBLIOGRAPHY 121

[66]

[67]

[68]

[69]

[70]

1]

[72]

the Thirty-second Southeastern International Conference on Combinatorics, Graph

Theory and Computing (Baton Rouge, LA, 2001). Congr. Numer. 151, 2001, 41-52.

Majumdar, )., Optimal repeated measurements designs for comparing test treat-

ment with a control. Comm. Statist. Theory Methods, 17 (11), 1988, 3687-3703.

Matthews, J. N. 5., Optimal crossover designs for the comparison of two treatments
in the presence of carryover effects and auto-correlated errors. Biometrika, 74, 311-

320.

Mendelsohn, N. S., Hamiltonian decomposition of the complete directed n-graph.
Theory of Graph: Proc. of The Colloguiumn Held at Tihany, Hungary, (P. Erdos and
G. Katona Eds.). North-Holland, Amsterdam, Sept. 1966, 237-241.

Moore, W. R., A review of fault-tolerant techniques for the enhancement of inte-

grated circuit yield. Proc. of the IEEE, 74, No. 5, May 1986, 684-698.

Nayak, A., On Reconfigurability of Some Regular Architectures. Ph. D. Thesis, Dept.

of Systems and Computer Engineering, Carleton University, Ottawa, Canada, 1991.

Nayak, A., Pagli, 1., and Santoro, N., Combinatorial and graph problems arising
in the analysis of catastrophic fault patterns. Proc. 23rd scutheastern Int. Conf. on

combinatorics, graph theory and computing. Cong. Numer., 88, 1992, 7-20.

Nayak, A., Pagli, L., and Santore, N., Efficient construction of catastrophic patterns
for VLSI reconfigurable arrays. INTEGRATION, The VLST Journal, 15, 1993, 133-
150.



BIBLIOGRAPHY 122

[73] Nayak, A, Pagli, L., and Santoro, N., On testing for catastrophic faults in reconfig-
urable arrays with arbitrary link redundancy. INTEGRATION, The VLSI Journal,
20, 1966, 327-342.

(74] Nayak, A., Santoro, N., and Tan, R., Fault-intolerance of reconfigurable systolic
arrays. Proc. 20th Int’l Symp. on Fault- Tolerant Computing, Newcastle upon Tyne,
IEEE Computer Society Press, 1990, 202-209.

[75] Negrini, R., Sami, M. G., and Stefanelli, R., Fault-tolerance techniques for array

structures used in supercomputing. IEEE Compuler, 19, No. 2, 1986, 78-87.

[76] Pagli, L. and Pucei, G., Counting the number of fault patterns in redundant VLSI
arrays. Information Processing Letters, 50, 1994, 337-342,

[77) Patterson, H. D., The analysis of change-over trials. J. Agri. Sci., 40, 1950, 375-380.
[78] Patterson, H. D., Change-over trials. J. Roy. Statist. Soc., B 13, 1951, 256-271.

I79] Patterson, H. D., The construction of balanced designs for experiments involving

sequences of treatments. Biometriko, 39, 1952, 32-48.

[80] Patterson, H. D., Non-additivity in change-over designs for a quantitative factor at

four levels. Biomelrika, 57, 1970, 537-549.
[81] Patterson, H. D., Quencuille’s change-over designs. Biometrika, 60, 1973, 33-45.

[82] Patterson, H. D. and Lucas, H. L., Change-over design. North Carolina Agri. Fxp.
Station Tech Bull, 1962, No. 147,

[83] Pigeon, J. G. and Raghavarao, D., Crossover designs for comparing treatments with

a control. Biomefrika, 74, 1987, 321-328.



BIBLIOGRAFHY 123

[84] Pradhan, D. K. Ed., Feult- Tolerant Computing, Theory and Technigues, Vol. 1 and
2, Englewood Chff, NJ: Prentice-Hall, 1986.

[85] Quinton, P. and Robert, Y., Systolic Algorithms and Architectures, Prentice Hall,
Hertfordshire, UK, 1991.

[86] Raghavarao, D. and Blaisdell, E. A., Efficiency bounds for partially balanced
change-over designs based on M-associate class PBIB designs. J. Roy. Statist. Sec.,

B 47, 1985, 132-135.

[87] Ramamoorthy, C. V. and Eva Ma, Y. W., Optimal reconfiguration strategies for
reconfigurable computer systems with no repair. IEEE Trans. on Computers, C-35,

Ne. 3, Mar. 1986, 278-280.

[88] Reddaway, S. F., DAP-A distributed array processor. Proc. Symp. Computer Ar-
chitecture, 1973, 61-65.

[89] Reingold, E. M., Nievergelt, J. and Deo, N., Combinatorial Algorithms: Theory and
Practice, Prentice-Hall, 1877.

[90] Robert, Y. and Tchuente, M., A systolic array for the longest common subsequence

problem. Informaiion Processing Letters, 21(4), 1985, 191-198.

[91] Rosenberg, A. L., The diogenes approach to testable fault-tolerant arrays of proces-
sors, IEEE Trans. on Computers, C-32, No. 10, Oct. 1983, 902-910.

[92] Roy, B. K., Construction of strongly balanced uniform repeated measurernents de-

signs. J. Statit. Planning and Inferences, 19, 1988, 341-348.

[93] Roychowdhury, V. P., Bruck, J. and Kailath, T., Efficient algorithms for reconfigu-
ration in VLSI/WSI array. JEEE Trans. on Cemputers, C-39, No. 4, 1990, 4180-489.



BIBLIOGRAPHY 124

[94] Sami, M. G. and Stefanelli, R., Reconfigurable architectures for VLSI processing
arrays. Proc. NCC 83, Los Angeles, May 1983, 567-577.

[95 Saucier, G., Patry, J. L. and Kouka, E. F., A reconfigurable wafer scale array for
image processing. Proc. Ini'l Conf. on Wafer Scale Integration, 1989, 277-288.

[96] Sen, M. and Mukerjee, R., Optimal repeated measurements design with interaction.

J. Statist. Planning and Inferences, 17, 1987, 81-92.

[97] Seberry, J., Bose’s method of differences applied to construct Bhaskar Rao designs.
R. C. Bose Memorial Conference (Fort Collins, CO, 1995). J. Statist. Plann. Infer-
ence, 73, No. 1-2, 1998, 215-224.

[98] Seberry, J., Yamada, M., Hadamard matrices, sequences, and block designs. Con-
temporary design theory, Wiley-Intersci. Ser. Discrete Math. Optim., Wiley, New
York, 1992, 431-560.

[99] Seberry, J., A note on orthogonal Graeco-Latin designs. Ars Combin., 8, 1979, 85-94.

[100] Seberry, J., On small defining sets for some SBIBD (4¢ — 1,2t — 1, — 1). Bull. Inst.
Combin. Appl., 4, 1992, 58-62.

[101] Seberry, J., On supplementary difference sets. Aequationes Math, 8, 1972, 242-257.
[102] Sharma, V. K., Extra-period balanced change-over designs. Senkhya, B 44, 167-173

[103} Sheehe, P. R. and Bross, D. J., Latin squares to balance immediate residual and

other effects. Biometrika, 17, 1961, 405-414.

[104] Sipala, S., Fault in linear array with multiple bypass links, Relazione di ricerca N.18,

dicembre 1993, Universita' Degli Studi Di Trieste.



BIBLIOGRAPHY 125

[105] Stapper, C. H., Armstrong, F. M. and Saji, K., Integrated circuit yield statistics.
Proc. of the IEEE, 71, No. 4, April 1983, 453-470.

[108] Street, D. J., Some repeated measurements designs. Comm. Statist. Theory Methods,
17, 1988, 87-104.

[107] Street, D. J., Combinatorial problems in repeated measurements designs. Discrete

Math., 77, 1989, 323-343.

[108] Stufken, J., Optimal cross-over designs. Handbook of Statistics, Design and Analysis
of Experiments (S. Ghosh and C. R. Rao Eds.}. North-Holland, Amsterdam, Vol-13,
1996, 63-90.

[109] Thinking Machines Corporation, Connection Machine Model CM-2 Technical Sum-

mary, Thinking Machines Corporation, Technical Report Series HA87-4, 1987.

[110] Vellore, S., Joint distribution of Kolmogorov Smirnov statistics and runs. Studia

Sei. Math. Hungar., 7, 1972, 155-165.

[111] Wald, A. and Wolfowitz, J., On a test whether two samples are from the same
population. Ann. Math. Statist., 11, 1940, 147-162.

[112] Wang, L.L., A test for the sequencing of finite groups with two generator. Notices
Amer. Math. Soc., 20, 1973, 73T-A275.

(113} Williams, E. J., Experimental designs balanced for the estimation of residual effects

of treatments. Austral. J. Sci. Res., A 2, 1949, 149-168.

[114] Williams, E. J., Experimental designs balanced for pairs of residual effects. Austral.
J. Sci. Res., A3, 1950, 351-363.



BIBLIOGRAPHY 126

[115] Williams, R M., Experimental designs for serially correlated observations.

Biometrika, 39, 1952, 151-167.

[116] Youn, H. Y. and Singh, A. D., On implementing large binary tree architectures in
VLSI and WSI. IEEE Trans. on Computers, C-38, No. 4, April 1989, 526-537.



