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Chapter 1

Introduction

An attempt to obtain conditions for certain stability properties of reflecting diffusions in
unbounded domains with boundary has been made in this thesis. For diffusions in R¢,
such stability properties like recurrence, transience and positive recurrence have been
studied extensively; see Bhattacharya (1978), Kliemann (1987), Pinsky (1987). One
might see Pinsky (1995) for an up-to-date review of known methods and results in this

case. (For corresponding recurrence classification results on Markov chains using martin-

gale ideas based on stochastic analogues of Lyapunov functions, see Meyn and Tweedie
(1993a), (1993b) and the references given therein). The main concern in this study is to
establish related results in the case of unbounded domains like the half space, the orthant

and the quadrant.

Natural definitions of recurrence, transience, and positive recurrence are used throughout

and they will be stated precisely in Chapter 2. In general, the diffusion is said to be
recurrent if it visits every neighborhood of the starting point infinitely often. It is said
to be transient if starting from any point it wanders off to infinity. A diffusion is positive

yecurrent il the hitting time of any bounded open set. hias o finite expectation. In the

case of rec

rrent (positive recurrent) diffusion, the existence of a unique o-finite (finite)

invariant measure can be shown.



In the case of a smooth bounded domain, the reflecting diffusion, being a Feller continuous

strong Markov process on a compact space, has an invariant probability measure and

hence is positive recurrent. Therefore, the problem of intercst is in unbounded domains.

In Chapter 2, reflecting diffusions in the half space are considered, where the dispersion
and drift are Lipschitz continuous functions and the reflection field is C-smooth (sce,

however, Remark 2.1.10). The existence and uni of such diffy s is well known.

A dichotomy between recurrence and trausience of such reflecting diffusions i

s proved;
(a priori such a dichotomy is not obvious). We give proofs only when it differs from

the

¢ of diffusions (in 1t ) without boundary conditions. (see case(ii) in the proof of

Lemma 2.1.2(a) and the proof of (¢) = (d) in Proposition 2.1.3). The main difference

is the following: It is not clear if an analogue of Lemma 2.3(b) of Bhattacharya (1978)
Lolds in the case of reflecting diffusions. (Of course, maximum principles under stronger
differentiability conditions are available as in Protter and Weinberger (1967)). Further,

functional characterisations of recurrence and transience are obtained which in turn lead

to verifiable sufficient criteria for recurrence/transicnce in terms of appropriate Lyapunov

functions. Using these criteria a "real variable" proof of cortain interesting results of

Rogers (1991) concerning reflecting Brownian motion in the half plane are given. Als

it i

shown that the hitting time of any open set has a finite expectation if there is one
positive recurrent point; in the course of the proof an analogue of an estimate due to
Dupuis-Williams (1994) is obtained. The problem of transicnce down a side in the case

of reflecting diffusions in the half plane is also dealt with.

The case of the orthant is considered in Chapter 3. In the pa there has been

it fow yoar

an increasing interest in the study of reflecting diffusions in the orthant. In particular,
reflecting Brownian motion in the orthant is proposed as an approximate model of open
queucing networks in heavy traffic; see Harrison and Nguyen (1993). Also the papers of
Reiman (1984) and Petersen (1991) concorning cortain limit. theorems to justify diffusion

approximations for some multicl

feedforward networks have served as great impetus

for these studics




Due to the nonsmoothness of the domain and the possible discontinuity of the reflection
field, techniques from the theory of partial differential cquations cannot be applied to get

the exi; and uni; of sol

A probabilistic method to resolve this problem involves solving the Skorohod problem ;
see Harrison and Reiman (1981), Bernard and El Kharroubi (1991), and the introduction

in Taylor and Williams (1993) for the nuances concerning Skorohod problem.

In S

ion 3.1, the deterministic Skorohod problem in the orthant is studied when the
drift and reflection field are path dependent non-anticipating functionals satisfying linear
growth and local Lipschitz conditions. (In general this would lead to non-Markovian
solutions). Also, the reflection field is assumed to satisty a "spectral radius bound" type
condition. By solving this problem, the existence of a unique solution is proved. Using
this approach a class of reflecting diffusions is obtained with constant dispersion, state

dependent drift, and reflection field as strong solutions of corresponding stochastic differ-

ential ions; these processes are Feller conti and strong Markov. In particular,
this includes the Ornstein- Ublenbeck process. In Section 3.3, using a combination of
probabilistic and analytic methods some useful propertios of such reflecting diffusions are

established. In particular, the strong Feller property of such diffusions is proved. Further,

an expression for measurable transition density is obtained. As in Chapter 2, analogous

results concerning recurrence, transience, and positive recurrence are established.

Another probabilistic method for studying reflecting diffusions in domains with corner is
the "submartingale problem" in the sense of Varadhan and Williams (1985). (It may be
noted that the reflecting diffusions considered in Chapter 3 do solve the submartingale
problem). In the case of the quadrant, because of the simpler geometry, we can get hold
of another class of reflecting ditfusions as solutions of the submartingale problem. This is
done in Chapter 4. These are diffusions that behave near the origin like reflecting Brow-
nian motion (without drift) with coustant reflection field. By a canonical conditioning
argument, these diffusions are obtained. In Chapters 2 and 3, the strong Feller prop-

erty has been very crucial in establishing results concerning recurrence and tr

ience,



in particular, dichotomy. As it is not clear if this class of diffusions in the quadrant has
strong Feller property, the difficulty is circumvented by using certain auxiliary diffusions

in half planes to study the asymptotics.

Examples are given at the end of each chapter to illustrate the usefulness and limitations

of the results.



Chapter 2

Recurrence and Transience of

Diffusions in the Half Space

In this chapter we will be dealing with reflecting diffusions in the half space. We will derive

certain criteria for recurrence and transience in terms of appropriate Lyapunov functions.

2.1 Criteria for recurrence and transience

Let H! = {z € g > 0} ,d > 2 and HE = H* U OH*. We have the coefficients a, b

defined on H? and  defined on 9H? satisfying the following conditions.

(A2.1) For each = € HY, a(x) = ((@ij(2)))1<i jea is a d x d real symmetric positive
definite matrix; there exist A, Ay > 0 such that for any = € H, any eigenvalue of

alz) € [\, M 3 ay;() are bounded and Lipschitz continuous.

(A2.2) For cach @ € HE | b(w) = (by(w), bo(w), -, bu(w)) is a vector in B ; by(-) are

bounded Lipschitz continuous.



(A2.3) For each & € 9H?, 4(x) = (1,72(2), (). - . ya(r)) is a vector in I, and each
¥ € CH(OHY).

Let the generator L and the boundary operator J be given by

d P

L) = 33 amIA) (211)
hisl =

Jf(r) = (21.2)

For notational convenience we will denote H? by H in the sequel. Let € = C([0, 00) : R?)
be endowed with the topology of uniform convergence on compacts. Let X(t) denote the
t-th coordinate map on €2, that is

X()(w) = X(t,w) := w(t); let {B} be the natural filtration. We also denote X(£) by X,

in the sequel
Let {I% : @ € H} be the (L, J) diffusion on H, that is,
(i) PAw: X(0,w) ==, X(t,w)eH Vt>0}=1
(ii) For cach f € C3(IY) with Jf > 0 on IH,
'
{f(X(t)) - jl;dX(s))Lf(X(ﬁ)rh) isa I, — submartingale.
0

(2.1.3)

Moreover there exists a continuous, nondecreasing, progressively measurable process &(t)

on §2 such that

() €)= M X())de(s)

0

(ii) For cach fe C}(RY),

LAXO) = [ XEDLAXE) s = [l X)X ()e(s))
0 0

is a I, — martingale. (2.1.4)



(A2.3) For cach = € IH, () = (1,72(), (), - - -, 7a()) is a vector in K%, and each
% € CH(om).

Let the generator L and the boundary oporator J be given by
(2.1.1)

Jf() (2.1.2)

For notational convenience we will denote 7% by  iu the sequel. Let © = ([0, 00) : It%)
be endowed with the topology of uniform convergence on compacts. Let. X(t) denote the
t-th coordinate map on §2, that is

X()(w) = X(t.w) = w(t); let {B,} be the natural filtration. We also denote X(t) by X,

in the sequel.

Let {1 : € H} be the (L, J) ditfusion on 7, that is,
(i) Po{w: X(0,w) =w, X(t,w)eH Vt>0}=1
(ii) For cach f e C3(I") with Jf > 0 on 9H,

(X)) = [udXEDLAX (s} isa P, — submartingale.
i

(2.1.3)
Moreover there exists a continuous, nondecreasing, progressively measurable process £(t)
on §2 such that
(0 €0) = [l X))
(ii) For each fe C3(IY),
LK) = (XD LAK s = [ X)X ))dts))
is a I — martingale. (2.1.4)



The (L, J) diffusion {P, : = € H} defined above

strong Markov and Feller continuous

(sce Stroock and Varadhan (1971)); or equivalently under {1} the process {X(t) : ¢ > 0}

is strong Markov and Feller conti By the oxi of a continuous transition
density under the conditions (A2.1), (A2.2), (A2.8), strong Feller property follows; (see

Ramasubramanian (1996)). We will denote by I, the expectation with respect to P,.
For any open set Vin H, define the stopping times
o= inf{t > 0: X(t) ¢ V), and oy = inf{t > 0: X(t) € V}

Note that we are not assuming V to be bounded. If V is bounded by Lemma 3 in

Ramasubramanian(1986), we have I, (ry < 00) = 1 for all = € V.

Lemma 2.1.1 : Let V be a bounded open set in H, g a bounded measurable function

such that, for =z € V
ole) = ELlg(X(r)). (2.15)
Then g is a continuous function on V.

Proof : In view of the strong Markov and strong Feller propertics of (L, J) diffusions,
Theorem 13.1 of Dynkin (1965), (see page 30), and Lemma 2.2 of Bhattacharya (1978),

it is cnough to show that
limsup P, (1X(t) — | > €) = 0, (2.1.6)
0 zek

for any K C H, K compact and € > 0. But this follows from the uniform cstimate given

in page 181 of Stroock and Varadhan (1971). o

Lemma 2.1.2 : (a): Let Uy, Uy be open sets in H such that U, is nonempty and U,nT, =
¢. Let oy = inf{t > 0 : X(t) ¢ (U)) nH}

1,2. Then @ = Py(oy < o) is a strictly

positive continuous function on (T) 1 (Th) NH.

(b) Let U be an open set in H. Then @+ Py(7y < 00) is a strictly positive continuous

function on U.



Proof: (a) Let g(z) = P.(0} < 02), and & € U;nU; be arbitrary. Let Vbe a neighborhood
"N (U2)" NH. Then we have

1

)

of @ such that # € Vc V¢ (U

9(#) = B2 [Bxa) (Lo o] = FELlg(X(10))- (2.17)

Hence by Lemma 2.1.1, g is continuous on V. It remains to show that g is strictly positive.

Case (i) = € HNU; NT,. Let L-diffusion denote the diffusion in ¢ with generator L.
Since (L,J) diffusion behaves like L-diffusion till hitting M, by the support theorem of
Stroock and Varadhan (1972), it follows that g is sl

ictly positive.

s x € JHNUNT;. Let § > 0, be such that B(w : §)NT; = ¢,i = 1,2. Then by the
strong Markov property, g(=) = ELg(X(1p))], where 7y = inf{t > 0 : X(¢) & B(= : 6)}.
Suppose g(w) = 0. Then Py(oy < 03) = 0, DX(ry) ' as. Since (L, J) diffusion does
not hit OH N B(x : §) which is a (d — 2) dimensional manifold (see Theorem 3.7 of
Ramasubramanian (1988)), it follows that I (o) < a3) = 0 for some z € H N OB(z : §).

This contradicts Case (i). Hence g is strictly positive,
(b) Follows directly from (a) by taking Uy = Int(U") N and Uy = ¢.

Definition (a) A point = € 7 is said to be a recurrent point for (L, J) diffusion if for

every € > 0,

PL(X(t) € B(x : ¢) for a sequence of £'s | oc) (2.18)
(b) A point « € H is a transient point for the (L, J) diffusion if
r, (}i}n_ IX(1)] = oo) -1 (2.1.9)

If all points = € H are recurrent (transient) then the diffusion is said to be recurrent

(tramsient).

Proposition 2.1.3 : Assume (A2.1) - (A2.3). The following statements are equivalent.
(a) mg € H is a recurrent point.

(b) P,,(X(t) € U for some ¢ > 0) = 1, for all nonempty open sets U C H.

8



(¢) There exist z € 7,0 < 7 < 7, and y € 9B(z : 1) such that (o < 00) = 1, where
o=inf{t > 0: X(t) € Bz : 10)}

(d) There exists a compact set K C H such that 1,(X(t) € K forsomet > 0) =1, = € H.
() Po(X(t) € Ufor some t > 0) = 1, for all # € H and for all nonempty open sets U C H.

(£) P(X(t) € U for a sequence of £'s | 00) = 1, for all z € H and for all nonempty open
sets U C 'H.

(g) (L,J) diffusion is recurrent.

Proof : We will prove only (a) = (b) and (¢) = (d) ; proofs of other implications are

cither trivial or analogous to the corresponding implications in Bhattacharya (1978).

(a) = (b) ¢ Let @y € H be a recurrent point. Assume w.Lg, that o @ U, Let B be a ball
such that B c U. Choose € > 0 such that, B(wq,e) N B = ¢. Let U, be a bounded open set.
such that B{mg e) U B C Uy. By Lomma 2.1.2, and as the diffusion exits out of bounded

sets in finite time, we have
inf Py(o) < 02) > 0, (2.1.10)
ye,

where o) = 7 and o) = T
The rest of the proof follows as the proof of (@) = (b) in Proposition 3.1 of Bhattacharya

(1978).

(¢) = (d) : Let K = B(z : ro); y € 9B(z : 7). By (¢) we have
Pyo <o0)=1.

Casc (i) y € M. Define
Wz) =1~ Py(o < o). (2.1.11)
By Lemma 2.1.2, Vis continuous on K¢ N7H. By strong Markov property

0=Vy) = EJMX@)). (2112)



where 7 = exit time from B(y : 6) with B(y: 8) N K = ¢, B(y : §) C M. By (2.1.12) we
have V(z) = 0, P,X(r)"" a.s. Now by the support theorem for L-diffusions (see Stroock
and Varadhan(1972)) , and continuity of V V(z) = 0, Vz € 9B(y : 6). This holds for
all sufficiently small & < (ry = ry) A d(y, 9K). If z € H N K°, then one can find points
Yo Yioe oY € H O K® such that yo =y, |y — yil < (ly; = 20| = 70) A d(y; OH) and

i1 = z By repeating the above argument we find

Vo) = Vi) =+ = Vz) = 0. (2.1.13)

Thus V=0 on K°NH. By continuity, V=0 on K¢ and hence on H.

Case (ii) y € OH. As in equation (2.1.12), we have 0 = Vy) = EJ[V(X(7)] by strong
Markov property. Hence V(z) = 0, I, X(r) " as. z Since (L, J) diffusion does not hit
OH N IB(y : ) (See Ramasubramanian (1988)) we have V(z) = 0 for some z € H N K°.
Thus, the problem is reduced to Case (i). Hence the Proposition. o
Theorem 2.1.4 : Assume (A2.1) - (A2.3).

(a) (Dichotomy) (L. J) diffusion is not recurrent € (L. J) diffusion is transicnt.

(b) (L.J) diffusion is recurrent ¢ there exist a compact set. K C H with noncmpty

interior, a point = € K°NH and a measurable real valued function u such that
(i) u(z) T oo as || T ooy (i) Ef[u(X(ox))] < u(z)

(¢) (L, J) diffusion is transient ¢ there exist a compact set F C H with nonempty interior,

y € F*'N'H and a measurable real valued function u such that
() Byl opeopu(X(em)] < ulw); (i) u(y) < infu(z)

Proof : (a) If (L, J) diffusion is transient then it trivially follows that (L, J) diffusion is
not recurrent. Now let us suppose that (L, J) diffusion is not recurrent. Let @ € H be

arbitrary and choose ro,7y such that [e] < ry < v Put & = sup P,(79 < c0) where
{iyl=r ol
o0 = inf{t > 0 : X(t) ¢ B(0:19) }. Since no point in H is recurrent by the previous

proposition, we have P (a < 00) < 1 for all y such that [y| = ri. Now as, y - Py(0y < 00)

10



is a continuous function, we have §; < 1. Hence proceeding as in the proof of Theorem

3.2(b) of Bhattacharya (1978), we get the result. o

(b) Necssity : Lot u be a function such that u(z) = i(|2]) where i is a strictly increasing
function with lim () = oo. Let K = B0 1) and choose  such that Jo| > 1. As the

diffusion is recurrent, |X(ox)| =1 a.s. I Hence we have,

Bllu(X(ox))) = (1) < u(x). (2.1.14)

Sufficiency : Suppose the diffusion is not recurrent and hence by part (a), it is transient.
Let A = {0y < oo}. By transience, we sce that P,(A%) > 0 ; and again by transience and
(i) (of (b)) note that u(X(ok)) = 0o on A°. Hence, we have EX[u(X(0k))] = oo, which is

a contradiction. o

(c) Necessity : Let F = B(0: 1). Put u(z) = Py(op < c0),x € H. Then, we have
u(w) = Bllppenyl] = BYLjpcpu(X(ar))], since u(X(o)) = 1 on {or < co}. By

transience u(x) < 1 for 2| > 1, but u(z) = 1 Vz € F. Hence (ii) is also satisfied.

Suffici Suppose the diffusion is not transient. Hence by part (a) it is recurrent.

Therefore by (i) and (i) above

u(®) 2 B lorcosu( X)) = B [u(X(on)]
> il}]l‘u(z) > u(y) (2.1.15)
zel
and hence a contradiction. Therefore the diffusion is transient. o

We now derive some corollaries which are analogues of Proposition 3.1 and 3.2 of Pinsk;
8 it Y

(1987).
Corollary 2.1.5 : If there exist 7o > 0 and v € C*(R\B(0 : %)) such that

(i) u(@) T oo as |a| T oo, (i) Lu(x) <0 . {l#] > o} NH, (iii) Ju(x) <0 ,
{J] > ro} N OH,

then (L, J) diffusion is recurrent.



Proof : By Ito’s lemma, optional sampling theorem and by conditions (ii), (iii) in the

hypothesis we have

B u(X(t A og))) < ule), (2.1.16)

where K = B{0:r). Let A = {op < oo} If P,(A%) > 0 then by dichotomy
(Theorem 2,14 (a)) the diffusion is trausient and hence Jlim [ X(t,w)| = oo, for w € A%,

Hencee as w can be taken to be nonnegative without loss of generality,

Y ELuCX( A )] 2 fmn BELu(X(e A 0)] = (2.117)
Note that (2.1.17) contradicts (2.1.16). Hence Py(A7) = 0.
Now letting ¢ — oo we have
El[u(X(0x))] < ulx). (2.1.18)
By part (b) of Theorem 2.1.4 we have that the diffusion is recurrent. o

Corollary 2.1.6 : If there exist 1, > 0 and a function u € CZ(R/\(B(0 : %)) such that

(i) Lu(w) <0, {|a| > ro} NH , (i) Ju() <0 , {Jr| > ro} NI, (ii) there is a point
u(),

@y such that |zo| > rg and u(wg) < inf _
(I ro} 71

then the diffusion is transient.

Proof : Let K = B(0 : rg). Without loss of generality let us take u > 0. By Ito’s lemma,

optional sampling theorem and by the conditions (i), (i) of the hypothesis we have

50 [w(X (¢ A 0x))] < ulwg). (2.1.19)
Now
By Wiy ooy (X (10)) = lit By L=y u( X)) ]
< lim {2 1oy u(X(on)] + B (Lo nu(X(8)]}
= lim B (X (t A ax))] < u(rg). (2.1.20)

12



Hence by part (c) of Theorem 2.1.4 we have transicnce. a

Now let us give some criteria for recurrence and transience of diffusions in terms of the

coofficients of L and J. These are analogues to the criteria in Bhattacharya (1978).
Let L, J be defined as in (2.1.1), (2.1.2).

Define

Put

N B(x) — A(x) + C(x)
Py = e ==

I

Proposition 2.1.7 : Assume (A2.1) - (A2.3).

‘| N
(a) Let u( Jexp(=I(r))dr. If u(z) — oo as |z — oo and Ju(z) < 0 for z € IH,
i

|| > 1, then the diffusion is recurrent.
Is]
(b) Let v(z) = [exp(=I(r))dr . If lim v(z) < oo, and Ju(x) > 0 for x € M, |e| > 1,
! 1)
then the diffusion is trausicnt.
Proof : Easily follows from Corollories 2.1.5 and 2.1.6 and the proof of Theorem 3.3 in
Bhattacharya (1978). o
Remark 2.1.8 Note that (L,J) diffusion can be transformed to (L,8/d,) diffusion
through a C?-diffcomorphism of H, (sce Ramasubramanian(1986)). Let @,b denote the
coefficients of L. Define A, B, C analogous to A, B, C above with a, b replaced by @, b.

Define




ii(r) = h/‘vxp ( Y/ﬂ(’;')rlu) e

| 1

Note that dii/dr, = 0 on 9H. Thus if ii(z) — oo as

- 60, we have that (L, J) diffusion

is recurrent. Similarly we can have a condition for transicnce also.

Remark 2.1.9 : The boundeduess assumptions in (A2.1),(A2.2) can be relaxed to linear
growth conditions on a, b. Under such conditions the (L,J) diffusion does not explode.

As in Lemma 2.5 of Bhattac

A(1978) the strong Fellor property can be established.

It is now clear that the analysis of this section can be carried through under the relaxed

assumptions. We omit the details.

Remark 2.1.10 : The condition (A2.3) can be relaxed to 4; being just bounded and
Lipschitz continuous. In such a case the strong Feller property can be proved as in §3.2

of Chapter 3.

2.2 RBM in the Upper half plane with variable skew

reflection

In this section we will deal with recurrence and transience of reflecting Brownian motion
(RBM for short) with variable oblique reflection in the upper half planc. Rogers (1991)
has dealt with this problem but has used complex analytic techniques to get the results.
Here we will give a real-variable proof of these results using in particular Corollaries 2.1.5

and 2.1.6 of §2.1.

In this case it is convenient to deal with the problem in polar coordinates. Therefore we

shall describe the setup in cartesian coordinates as well as in polar coordinates.
Let

H={(z,m): 2 >0,—0c <@y < oo} ={(r.0):r>0.0€ (0.7}



O H = {(w1,0) s 1 > 0} = {(r,0) : 7 > 0,0 =0}
O = ((21,0) 1 w1 <0} = {(,0) 7> 0,0 =7}
OH =9, HUQHU{(0,0)); H = HUOH
Here the generator L is the Laplacian, viz.,

=1 (* PN (> 1 [
~5(m+m)*;(m+:m*rzm)

For @ € OH, let 4(z) be the direction of reflection and let y(x) be the angle that ()
makes with the normal at , the clockwise direction being taken to be positive,

As in 2.1 we will assume that the normal component of v is bounded away from 0; hence
w.l.g, we may take normal component to be 1. So we may write A(x) = (y1(r),1) =

(tan (),1). As 7 is bounded, and bounded away from tangential direction note that

there exists 4> 0 such that
—m/2+ A< y(e) <n/2-p

Also we assume that 1(x) € C}(0H)

Now the boundary operator J can be written as

&
19f() p

Y

"f;'l - 1%% on O,H. (22.1)
-

For @ € 9, H, note that n(x) = y(|x],0) and for » € &,H, we have () = y(|z|, 7). We

= tan 1(-)

= —tan y(-)

will use this notation in the sequel.
Theorem 2.2.1 (a) If i sup, . 5(r,0) < liming, .o (), then the RBM is recurrent.
(b) Tf limind, o 9(r,0) > limsup, _ 9(r, 7), then the RBM is transicnt.
() 1€ (r,0) is nondecreasing and y(r, 7) is noninereasing and if
Tim y(r,0) = lim (r.7)
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then the RBM is recurrent.

Proof : (a) Let limsup, . 1(r,0) = =& and liminf, ., 9(r.7) = & By hypothesis —€, <
&5 hence & + & =€ > 0.Put —&, + e/4 = —8,. & — e/d = Oy and o = (8, + 6,) /7 Note
that 6; + 6, > 0 and hence o > 0. Now define the function u on the sct BAU] 1) n Hin

terms of polar coordinates as follows
u(r,0) = 1" cos(ad - 0,) (222)

Clearly Au = 0. Note that —7/2 < =6, < af — 6, < 6, < 7/2. ¥V 6 € [0,7]. Hence
{cos(af — ) : 8 € (0,7} is bounded away from 0. Thercfore u(r,6) — oo as r — oo,

since o > 0. On 9, H we have,

Ju(r,6) = ar” ' cos by tann(r,0) + ar* sin6, (2.2.3)
But since limsup, ., n(r,0) = =&, there exists s such that vr > s,
0(r,0) € —& +€/4 = —0;. Hence tann(r,0) < tan(—6;).Consequently as « > 0, by

(2.2.3), we have on O, H N {r > s;}
Ju(r,0) <0 (2.2.4)
Similarly on 8,H
Ju(r,m) = —ar” " cos O tana(r, w) + o Usin by (2.2.5)

But as liming, . n(r,7) = &, we have for some s, > 0, Vr > s, 1(r7) > & — ¢/4 = 6y,

Substituting in (2.2.5) we see that, on ,H N {r > s}
Ju(r.m) <0 (2.2.6)
Hence by (2.2.4) and (2.2.6), we have on [0 H 01 {r > s} U [9H N {r > so}]
Ju <0
where s = max{s,. s}
Now by Corollary 2.1.5 the process in recurrent. o
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(b): Let liminf, ., (r,0) = ~& and limsup, __n(r.7) = &. By hypothesis —¢, > &.
Lot & + & = —e < 0 Put —& —¢/4 = d & + €/4 = 0, . Note that —6, > 6, and
let @ = (6, + )/ < 0. Define

w(r,6) = 1 cos(al — )
Clearly Au = 0 and we have
Ju(r,0) = ar®'cosf tany(r,0) + ar* 'sing, (2.2.7)

As liminf, .o 2)(r,0) = —&, there exists s, > 0 such that Vr > s,
0(r,0) 2 =& —e/4 = —6,.

Therefore tann(r,0) > tan(~0)). Substituting this in cquation (2.2.7) we have, on

QHN{r > s}

Ju <0 (228)
Similarly for some s; > 0, on 9, H N {r > $,} ,we have

Ju <0 (2.2.9)

Combining (2.2.8) and (2.2.9), we have, on [0 0 {r > s}] U [ H O {r > s}]

where sy = max{s;, s}

Further since 0 < cos(af —6;) < 1, note that we can find 1o > sy and 6y € [0, 7] such that
u(ro,b0) = cos(afly ~ 6) < inf 1" cos(af —6;) a5 <0

Hence by Corollary 2.1.6, the RBM is transient.

(€): Lot Jimn(r,0) = ~0, and L y(n7) = 0, By assamption 9(r,0) | ~6; and
2(r,7) | 6. Note that
= (0 + B)/m =0
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Define
u(r,6) = logr + 0 tan 6,

Clearly
Lau(ro) =0
Lau@ne) =
5u
By (22.1) we have on 9, H.
tanf)
u(r,6) = muu,(, 0) + %
As Jim 7(r,0) = =0, , we have

tann(r,0) < tan(—6;)

Hence on N {r > )
Ju<0

for some s; > 0.
Similarly we have on &H 0 {r > s}
Ju <0
for some s3 > 0.
Combining we get on [0, H N {r > so}] U [0, H N {r > sp}]
Ju <0
where sy = max{s), s}
Also note that

u(r,6) — 00 as r — oo

By (2.2.10), (2.2.11), (2.2.12) applying Corollary 2.1.5 we sce

RBM is recurrent.

(2.2.10)

(22.11)

(22.12)

that

the

a



Remark 2.2.2 : Parts (a) and (b) of Theorem 2.2.1 have been proved by Rogers (1991)
nsing complex analytic methods. He assumes that () is a C' function posessing bounded
ierivative and further having linear growth. This is weaker than our assumption. But
neing onr analysis we can prove Theorem 2.2.1 undor this weaker assumption as well.
Observe that the reflecting Brownian motion can be constructed quite easily in this case,

see 2(if), page 228 of Rog

s (1991)) and it has the semimartingale property. By invoking
the necessary results from §3.2 we can prove the stroug Feller property of the RBM. Now
the above proof of Theorem 2.2.1 can be used without changes, to prove the required

result.

A particular case of part () vi

= constant, has been dealt with by Williams
(1985). In fact our choice of the function u in the above proofs was inspired by Varadhan

and Williams (1985).

Remark 2.2.3 : Rogers obtains other results as well concerning reflecting Brownian
motion with variable reflection field, using Pick functions of complex analysis; one may
sce Rogers (1990). Since 2- dimensional Brownian motion is well behaved under conformal

mappings, complex analytic approach as considered by Rogers is a natural tool to use.

Observe that Brownian motion in It

a critical case as far as recurrence/transience is
concerned; that is Brownian motion in T2 just fails to be transient! This aspect, is also
manifest in part(b) of Theorem 2.2.1, in the sense that a mild perturbation by a suitable

"reflection field" s enough to make the proc

s transiont. Our "real variable" approach

cnables us to consider also other critical ¢ ction 2.5.

ses like Example 5 of S

Proposition 2.2.4 Let 3() be the angle of reflection on the boundary O such that it

satisfies 1w

(@) + 1), that is, we consider periodic reflecting conditions. Now let

3y = int{y(en) s € [0, 1]},

sup{n(n) e € [0,1])
Then if 71 = 0 and 4, < 42, then the RBM is transient

Proof: Put u(r.6) = r

s(f — 1) — Btan s, where o = —42/2 and ) = 42/2. Then
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wong the same lines as the proof of Theorem 2.2.1(1) we have transicnce of the process.

Note: The condition in Proposition 2.2.4 above is not covered by the inequalitics in

parts (a)and (b) of Theorem 2.2.1.

Remark 2.2.5 : Consider the generator and boundary operator as follows :

Lft) =

Jf(a

where m s a positive constant, that is, we consider diffusion with generator I and
normal reflection at the boundary. By a transformation of the upper half plane as in
Ramasubramanian (1988), we sce that (L, J) diffusion is transformed to (A, J) diffusion

where

By part (¢) of Theorem 2.2.1 we sce that (A,J) diffusion is recurrent. Hence (L, J)
ditfusion is recurrent. It is interesting to note that Proposition 2.1.7 does not yield any
information concerning the recurrence of (L,J) diffusion. This is not altogether very
surprising because both Theorem 3.3 of Bhattacharya (1978), and Proposition 2.1.7 work
well when the generator and the boundary operator preserve the class of radial functions.

=)

Our proof of Theorem 2.2.1(a) and a theorem of Menshikov and Williams immediately

suggest the following result concerning passage-time moments.

Proposition 2.2.6: Suppose hypothesis of Theorem 2.2.1(a) holds. Let o be as in the
proof of Theorem 2.2.1(a). Then there exists a positive constant ¢ < 1 such that for

r >0,

()EL(o?) < 0o, forp < % |1 > 7 G)E"(o?) = 0o, for p> % |2 > re.
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where @, = inf{t > 0: |X(t)] = r}.

Proof: Let u be the function as in the proof of Theorem 2.2.1(a). Then the proposition
follows by applying Theorem 4.1 of Menshikov and Williams (1995) to the function .

As Ju < 0, the proof of Theorem 4.1 essentially goes through, with minor changes. O

Transience down a side in half plane

In this section we revert back to the notation of §2.1. Let H?

2y > 0}
Define
Lf(z) = (2.3.1)

Jf(z) = (2.3.2)

be respectively the generator and boundary operator.

Let (X;(t), Xa(t)) denote the (L,J) diffusion on H2. Suppose {X,(t)} is recurrent (that

is, for any open set U in [0, 00) and any = €
P(Xy(t) € U for a sequence of t's | 00) = 1). We give conditions for {Xa(£)} to go to
—00 a.s. Similar conditions can be given for {X,(£)} to go to 4-00. In this regard let us

prove the following proposition.

Proposition 2.3.1 : Let there be a function u ¢ C?(12) with the propertics

(i) u > 0 and () = @(ny), (i) d(ns) decreases as @y | —oco, (iii) i(wy) increases to co

as w3 T oo, (iv) Lu < 0 on ‘H? and Ju < 0 on JH.

Then the diffusion is transient and further

PuJim Xo(t) = -

Proof : Let r € I? be arbitrary but fixed. Let

21



S =inf{t20: Xo(t) =7}, Sy = {w € H 1w >} and S gy <)
Step 1 : We will show that
sup Py(r, < 00) < 1, (2.3.3)
el

or any horizontal line I € 8y, This in particular implies that the process is transient.

=0 el

Proof : Suppose not; then sup P,(7, < 0o) = 1. So given € > 0, there exis
zel

<uch that
Puo(r, < 00) > 1 ¢/2. (2.3.4)
Note that

u(@®) > Euwlu(X(tAn))
= Eollinapu(X(m))] + Lo [Lmsqu(X(t)))- (2.3.5)

Let A = {7, < oo} and Ap= {r < T}

Choose Tsuch that Py (A7) > 1 —e. This is possible as Ay T A. Consequently as u > 0,

we get

u(@®) 2 Bollnani(n)] + Buollp-nu(X(1))
= ()P (Ar) + EyoLagu(X0)]
> ()1 -e). (2.3.6)

But this is a contradiction to (ii) above. Hence the claim in Step 1
Step 2 : We will show that for all z € S,
Py(r, < 00) = 1. (2.3.7)
Proof : Put
Mok = Anf{t > oy Xo(8) = 1} gy = inf{t > g+ X (8) = 2},
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Since the process {X;(t)} is recurrent note that P, (i < 00) = 1 , k. Hence by condition

(iv), Ito’s lemma and optional sampling theorem we have,
Eu(X (g A 7)) € ule), (2.3.8)

for all k. Let A = {r. < oo} and B = {1 < oo for all k}. Suppose (2.3.7) does not
Lold. Then P5(A%) > 0, and hence by recurrence of {X,(¢)} we have (A1 B) > 0. By
transience of the process (by Step 1) and as X, and X, are bounded below by rA0 (= 0)

on A% note that for a.a.w e A°
Xi(t,w) + Xo(t,w) — 0o as t — co. (2.3.9)
This implics that, for aa. we A0 DB
Ka(pe(w), w) = 00 a5 k — o0, (2.3.10)
Now by (2.3.8) and condition (iii)
u(w) > Jim Blfu(X(p A7) 2 Jim B [Laeopu(X(r. An))] = co.

which is a contradiction. Hence equation (2.3.7) holds. Therefore the claim of Step 2 is

proved.

Step 3 : Let @ = (x,2,) be arbitrarily chosen. Choose r,7y such that 7, < » < x5,
Define

6., = sup{ I (m,, < 00) 1 y such that g, =r}.

By Step 1, 6, < 1. By strong Markov property,

Po(Xa(t) = 7 for a sequence of #5 T 00) < Pa(Cary1 < 00)
= E1s s coo Potiea ) (7o < 0)] < 6, PGy < 00) < --- < 8, (2.3.11)
where G = inf{t > Coioy 0 Xo(t) =7} and Gy = inf{t > G : Xo(t) = mi}. i=1,2,---

As 6, < 1 note that &), — 0 Hence P, (limsup, ., Xa(t) < 7) = 1. As r < 0 is arbitrary,

the proposition is proved. o



Example : Consider the function (s

e, Lot L, J be defined as in (2.3.1), (2.3.2).
Lu(s) = (an(w) + ba(w))e™,  Ju(s) = 7a(m)e’.

Hence, if (i) az(x) + by(w) <0 and (ii) ya(ws) < 0

we have on assuming the recurrence of X, that the process is transient down to —oo.

Note : Conditions for recurrence of X; are being investigated. In this connection one may

see R ! ian (1983), for conditions for recurrence of projections of diffusions in
It (that is, without boundary conditions). Such conditions (together with appropriate
modifications required to ensure that the derivatives along the reflecting directions are

negative) in the present context are not difficult to prove.

2.4 Positive recurrence of diffusions in the half space

In this section we will deal with positive recurrence of diffusions. Fivst lot. us define some
stopping times which will be used in the sequel. We consider diffusions in the half space

H, where ‘H is as in §2.1. For ¢ > 0, define

inf{t >0 [X(8)] =

Definition : A point = € H is said to be positive recurrent if there exist bounded open

sets Uy, Uy such that » € U, C U, C Uy and
sup{ B (ow,) : z € Oy} < oo, (2.4.1)
The diffusion is said to be positive recurrent if all points are positive recurrent.

Lemma 2.4.1 : Let @ be a positive recurrent point; let Uy,

» be open balls such that

(2.4.1) hold. Let U, Vbe balls such that Uy C UC U C U, € Uy € V. Then

(i) sup{ Bl (ow,) : z € U} < oo, (2.4.2)
(ii) sup{ B (ov,) : 2 € 9V} < 0. (24.3)
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Proof : By strong Markov property, Lemma 3 of Ramasubramanian(1986) and by pos-

itive recurrence of x, we have

o o . sup I .
j::}l)VEv(””‘) < ;:EEV [1,,,,l<,,,z au,]+:3}'>’Ly ll,,,‘\,,,‘ H,V‘J

iy 70 o TP
< sup Blrs) + sup By | B0t )|
< oo (2.4.4)

(ii) By Proposition 2.1.3, existence of positive recurrent. point implics that the diffusion

is recurrent and hence we have oy, < co a.s. I for z € Uy, Therefore we have

sup El(on,) -u}‘)'E” [EL (o0 18,.,)|
= all}‘{b'!(lﬁxm,)(m.)

sup El(oy,) < oo. (24.5)
iy

Proposition 2.4.2 : If there exists one positive recurrent point, then the diffusion itself

is positive recurrent.

Proof : Let @ be a positive recurrent point and let y be an arbitrary point. We will show
that y is positive recurrent. Since a is a positive recurrent point, we can find two balls
U,,Us such that equation (2.4.1) holds. Let Uy, Uy be balls such that Uy € Uy € Uy € Uy
and y € Uy. By Lemma 2.4.1,

sup Bl {(o1,) : 2 € dUy} < oo. (2.4.6)
Since oy, < oy, a.s. P, for z € 90U, we have
sup{ Bl (ov,) : z € 90Uy} < oo, (2.4.7)

Combining equations (2.4.6) and (2.4.7) we see that y is a positive recurrent point. As y

was chosen to be arbitrary we have the diffusion to be positive recurrent. o

Our next objective is to get an upper bound for the expected hitting time of a bounded

open set. For this we need the following lemma.



Lemma 2.4.3 : Let A be a bounded open set in H, and let » > 0 be such that

A C B0 : ). Then there exist M > 1,0 < ps < 1, such that for all = ¢
Pu(X(1) € A and |X()] < M Vte [0.1]) > pa (24.8)

Proof : Since the diffusion has a continuous positive density and A is an open set, note

that

po=inf{P(X(1) € A):w € B0:7)} > 0. (2.4.9)

Lot € = po/4. By tightuess of measures {25 02 ¢ B0 r)p on C(J0.1] 2 1), we can find

a compact set K, C C([0,1] : 1) such that for all = € B(

Py(K) > (1—e).

By Arzela-Ascoli’s theorem, there exists M > 0 such that [w(t)] < M. vt € [0,1], for
all w e K,. Hence for all & € B(0: 1), by (2.4.9) we have

PAX(A)NK) = Pa(X,'(A) = DX, (ANK)
3

> po—e="p=pa (2.4.10)

whence the lemma follows . [s]

Now with M, 7 as in the preceding lemma put, 5 = 0; and for i = 1, 2,--+ define

mo= f{E>0: (X =1} V(1 Aow)
na = inf{t >t X(0) € BO: M)A (g 1+ 1)

ey = nf{t > X(t) € OB 1)}
Let F={o4 < 1oy > 1} where AM are as in the preceding lemma.
By equation (2.4.10) note that, for any = € B(0: 1),
P,(F) > pa. (2.4.11)
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Proposition 2.4.4 : Let A, 7, M, pa be as in Lemma 2.4.3. For any @ € B0 :7),

Elo,) < L [2 + sup Ei’(n,)] + Bl(a,).
ra |zj<M

(2.4.12)

Proof : If sup El(a,) = co, note that equation (2.4.12) trivially holds. So assume

|A<M

sup B(0,) < co. Then note that any point in B(0 : r) is positive recurrent and hence

the diffusion itself is positive recurrent. This in particular implies that the diffusion is

recurrent. Therefore all the stopping times involved in the proof are well defined.

Ll(oa) = EF [M/m lls] v B {Z M/ (is]

o 2V oy A

+ E,”[Z [ as|.

Ll PV

Cleatly,

A
E’[ / (ls] <Bm) = oV (Aow)
)

< L+ E(e,).

Next by the strong Markov property for i > 1,

—— oanoyAl
Ef[ / d-’} = Ef[lm.\m,.rExm B / ‘is}
b

O AN -1
< Po(oa > i)

As {4 > m) C F, we have
Pa(oa>m) < (1=pa).
Now observe that for i > 3,

Puoa>min) = B [oomilinon]

N

B (o 1 B 3 (Loastownn)]

A

P(op >

up Pa(os > (on A1)

A

(1= pa)Pulop > i),
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As 13 > 1), a.s., by cquation (2.4.16) we have
Do(ap>m3) <(1—pa). (2.4.18)
By (2.4.17), (2.4.18) we have
Pa(oa> 1) < (1—pa) . (2.4.19)
Combining (2.4.15), (2.4.16) and (2.4.19) we have,

boi

1
Is| < — - . 2.4.20
> /l”]’er“ ) (2.4.20)

2L o0

By strong Markov property and the fact that X (1) € B(0

AN TANTr
Ef[ _/ 'is'] = 1"1'5’llw,.»m,)l!.xw.) /.lx}

oanmi 0

< Pu(oa > ) sup Bl(a,). (2.4.21)
<M

) we have,

As i > iy a.s., we have
Pu(04 > ) € Poloa > ) < (1=pa) (2.4.22)

Combining (2.4.21) and (2.4.22) we get,
aanmn .
Z4h / ds| < — [cup Ei‘(n,)} . (2.4.23)
1 g A Lslem
Now combining equations (2.4.13), (2.4.14), (2.4.20) and (2.4.23) we have the proposition.
0
Corollary 2.4.5 : If the diffusion is positive recurrent then El(a,) < oo, for any y € H

and for any nonempty open set A C H.

Proof : Without loss of generality take A to be bounded open. Let y € H be arbitrary
but fixed. Letw € A bearbitrary. By positive recurrence there exist open balls Uy, Us such
that = € U; C U, C U, and (2.4.1) holds. Now choose 7 > [y| such that AUT, € B0 : 7).
For any M such that B(0: r)UT, € B(0 : M), s I"(01,) < 00 by Lemma 2.4.1. Hence
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we have sup B¥(,) < oo, by continuity of sample paths. Choose a suitable M, such that
i

Lemma 2.4.3 and Proposition 2.4.4 hold. Now the cotollary follows. u.
Proposition 2.4.6 : Let 7y > 0, € >0, w€ C*(R\B(0: %)) be such that
(i) Lu(z) < —e, {lz| = ro} N H; (i) Ju(n) <0 o] = v} 00K (iii) w(e) 20 for
all @ such that {|z| > r} NH.
Then the diffusion is positive recurrent.
Proof : Let o7, = inf{t > 0: [X(t)] & (ro,n)} Then by Ito’s formula,

B [u(X(t nay))] - ule) < —eBL(tAa,). (2.4.24)

So Bt nop) < u(e) = BN u(X(EAa)]-

Hence (@) < 2 as t — oo . But since o) 1 0y, as n = 0o, we have

u(r)

Ey(o,) <

<o (2.4.25)
.

From (2.4.25) it follows that sup E!(a,,) < co for any r > rg.
fel=r

Hence we have that the procoss

is positive recurrent. o
Remarks :

(1) If the diffusion is recurrent then by the argument and results of Maruyama and
Tanaka(1959), there exists a unique (upto scalar multiplicity) o-finite invariant measure.
Further if the diffusion is positive recurrent then by the same arguments, the invariant
measure is a probability measure. (Note that the condition 6 of Maruyama and Tanaka

(1959) is needed just for open balls.)

(2) In Bhattacharya(1978) a point = is said to be positive recurrent if for all 0 < rg < 7y,
we have B!(0p(.,)) < oo, for all z € OB(x : 1). However to prove the existence of an
invariant probability measure a condition similar to (2.4.1) above is needed.

(3) Estimate (2.4.12) is stated (with a brief indication of proof) in Dupuis and

Williams (1994), in the context of semimartingale reflecting Brownian motions (SRBM’s)
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in the orthant. As this estimate is likely to be very useful we thought it fit to write up a

proof.

Note: Our analysis concerning recurrence, transience and positive recurrence can easily

be extended to unbounded domains that are C*- diffcomorphic to the half space.

2.5 Further comments and examples

(1) Lot H2 : {(wy,2) = > 0} and let ;‘ ”) be a positive definite matrix.
e
Define
Lf(z) =
Ifta) =

where 7, is a Cf function such that | for some ry > 0,

for w2y

b
b

> Jor @y <y

Then with the function u(x) = log(ca? + an?

Qbiryiry) we see on applying Corollary 2.1.5

that (L, J) diffusion is recurrent. By a transformation note that this example can also be

brought to the setup of §2.2.

2) Let H* = {(, 2, m3) : 1 > 0}. Let

Lf(z) = %Af(;n), weH

Ifw) = %Mz(mz‘m,'
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that is we consider Brownian motion in 7' with reflection field (1,42(.).73(.)). Take

fr) =i = L}l > 1, and £ is a smooth function throughout. Then Af(x) =0 and

So on applying Corollary 2.1.6 we have transicnce of the process if the 4, and 4y are
chosen such that

wY2(w2, 03) + way3(w2, m5) 2 0

(3) Let H* = {(wy,m) : @ > 0}. Put L = JA - p(d/d=;), p > 0. Note that in
I, L-diffusion is trausient as the diffusion is (B, (t) — pit, Bs(t)) where By and By are

independent. Brownian motions.
But let us cousider (L, J) diffusion where J = 7%

Now by taking u(z) = log 2], we see that

Lu<0 on H% Ju<0 on 9H?

Further u(x) — oo as

] 1 o0. Hence the process is recurrent, by Corollary 2.1.5.
(4) Now consider
H={(w1,m) : 2, > 0}

. Let 3y, /3 be negative constants, and

Lf(z) = Af(z)+ Bim

Iw) = i)

that is we consider Ornstein-Uhlenbeck process in the upper half plane with reflection

field (v (1), 1). We can have positive recurrence of the process in the following cascs.
Case(i) Lot y (1) < 0, for @1 > 1 and () > 0, for # < —1.

Then with the function f(z

= log ], applying Proposition 2.4.6 we can sce that the

process is positive recurrent.
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Casa(ii) Let & = f = . Now consider the upper half plane in polar coordinate form
Jthat is

H={(rn):r>0,6¢€ (0}

Then the diffusion and the boundary operators transform to

Now if the reflection field satisfies the condition in part(a) of Theorem 2.2.1, then by
Proposition 2.4.6 applicd to the fanction u(r,) as in the corresponding proof, we have

positive recurrence of the Ornstein-Uhlenbeck process.

Similarly if the reflection field satisfies the condition in part(c) of Theorem 2.2.1, we have

positive recurrence of the Ornstein-Uhlenbeck process.In particular we see that Ornstein-

Uhlenbeck process with constant angles of reflection is positive recurrent.

(5) Let H be the upper half plane as in §2.2.

Let.
L &
pI

where a;;(z) = &; + (g(|=]) /||

5+ g(r) is a bounded Lipschitz continuous function.

Note that H = {(,6) : 7 > 0,6 € (0,7)}. Let J be given by (2.2.1). In polar coordinates

L above gets transformed to,

16
o

L=+ _r,v(r)){)

: Lot the reflection field satisfy the condition in part (a) of Theorem 2.2.1.

Assume g(r) > 0. Take a, sy and v as in the proof of part (a) of Theorem 2.2.1. Note

that 0 < v < 1.
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Then on [0, 0 {r > so}]U [0 H 0 {r > s0}] we have
Ju <0, (25.1)
As g(r) > 0 we have

Lu < g(r)a(a— 1" 2cos(af = 6;) < 0.

and in this

se the process will be r

Case (if) : Let the reflection field satisfy the condition in part (b) of Theorem 2.2.1.
Assume g(r) < 0. Take a,u as in the proof of part (b) of Theorem 2.2.1. Since a < 0 we

choose sy > 0 such that on [O 21 0 {r > so}| U [0 01 {1 2 sy} we have

Ju < 0. (2.5.2)
As o < 0 and g(r) < 0, note that
Lu <0
Hence the process is transient.
In particular if g(r) = —1/(1 + logr), we have recurrence in the unrestricted case (see

Page 202 of Friedman (1975)). But in the upper half plane with the reflection as above

the process is transient.

(6) Let H' = { (0, @2, w5,w4) - w1 > 0} and let (1,792,793, %) be the reflection field on gH*,
where 7y, 95 and 4 are constants. Consider Brownian motion in H with reflection field
as above. The equation can be explicitly written for reflecting Brownian motion in 77,

Zy(t) = DBu(t) +&(t)

Zy(t) = Duft) +8(t)

Zy(t) = DBy(t) +1aé(t)

Zi(t) = Ba(t) +wk(t)
where &(t) is the local time at 0 for the Brownian motion By(t), and the Brownian
wotions By (), Ba(t), Ba(t) and By() are independent Without loss of generality assume
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that a3 443 + 12 = 1. Let O be the orthogonal transformation in I(= 9D) taking

(2273 31) to (1,0,0). Hence

O(Zy, Zs, Zy)' = O(Ba. By, Bi) +O(ma 3, v)'E(t)

(B, By \By)' + (&(), 0, 0)

where (By. By, By) is again a 3-dimensional Brownian motion. Consider the transforma-
tion TXIR' — IR such that

T,
As

) = (w1, Y2y, ya) where (ya, 3, 4a)' = O(ma.my,04)'
is a smooth transformation, it would preserve recurrence and transience. Let

NZy. Zs, Za, Za) = (%1, Za, 2, Zy),where
Zit) = Bu(t) +(1)
Zy(t) = Bu(t) +&(1)
Za(t) = Dalt)
Zi(t) = Bi(t)

Now note that (Z,, Za, Z4) is a 8-dimensional reflecting Brownian motion with normal

refle

on in the space B = {(#),2.4) : @y > 0} and is transient.Hence the diffusion

(Z1, 22, Z, Z1) s transient. In general the result is true for dimensions greater than 4.
(7) Further comments :
In the following situations the asymptotic behaviour of the diffusion is not clear

(a)Brownian motion in 3 dimensions with reflection field y(x), where  is bounded smooth.

One would expect this process to be transient; however even when = constant, we don’t

know the result.

(b) For Ornstein-Uhlenbeck process in the half plane with drift cocfficients fyay,

2,

(A < 0./ < 0) we don’t know about recurrence of the process. In particular we don’t
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A(w)) > 0,V € OD. Also we

know the behaviour of the process when 7 is such that

are not able to say anything about positive recurrence,



Chapter 3

Reflecting Diffusions in the Orthant

and their Asymptotics

In this chapter before studying the asymptotics we will first prove the existence of a
unique solution to an appropriate stochastic differential equation in the orthant. In this
regard we will deal with the Skorohod problem with a specific boundedness assumption

on the reflection field.

3.1 Path dependent Skorohod Problem

Lot O = {w € R*:w; > 0,i=1,2---d} be the d-dimensional orthant, where d > 2. For
notational convenience we denote O¢ by O in the sequel.

00 = {w e C(|0,00) : BY) : w(0) € O} and O = C([0,00) : 0). Denote the £ coordinate
projection on QO (resp§1°) by m(resp.i,). Now st By = ofm, i v <t} B, = o{f, :r < t}.
Denote Ju — 'y = sup{fas) — w/(s)| 0 € s < T,

Definition : Let g : [0,00) x Q7 — It be a progressively measurable function with

respect to the filtration {B;}.
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(a) It

t, — oo, and measurable functions g; on 2 such that

aid to be a simple functional if there exist 0 =ty <t <ty--- < t,---, with

(i) gi is B,-measurable

(ii) supigi(w) :we Qi =0,1,2,---} <0
(i) gsow) = 5 g:(w) L, (5)

(b) It is said to be a Lipschitz functional if for T > 0, there exists constant

Ky > 0 such that [g(s, w) — g(s,w)| < Kpllw —wly, for all w.w' € Q°, 0<s<T

(€) It is said to be a locally Lipschitz functional, if for T> 0, N> 0, there exists
Ky > 0such that [g(s, w)~g(s,w')| < Knyllw—u'|ly, foralls < T and w,w' with
Jlw] <N, Ju|| <N

As gls. ) is Be measurable, if w,u/ € Q are such that w(r) = w/(r), ¥r < s, then

g(rw) = g(rw) for r < s. Hence g is a Lipschitz fanctional if and only if for all 7> 0,

thore exists Ky > 0 such that [g(s,w) —g(s,w)| < Kyllw—w'|. ¥ 0 <s <Towuw €Q°
We can define similar functionals on [0, 00) x Q° with the filtration {B.} in place of {8}

Remark : Let g: [0,00) x 20 — I be a progressively measurable function with respect

to {B,}. For w € QO define i € Q° by w(t) = (lwy(£)], [wa(t)]. -+ hwstth) 8 2 0. Now

extend g to [0,00) x 2° by putting g(s,w) = g(s.w) fors > 0. w = Q7 Then the

 simple

extension is progressively measurable with respect to {B;}. 1f the original g is
functional (resp-Lipschitz functional) then the extension is also a simple functional (resp.
Lipschitz functional), (Of course such an extension need not be unique s So for our
purposes we may assume that the fanctionals concerned are adapted with respect to

{B.}.
Skorohod problem (SP):

Let by : [0.00) x Q0 — R and qi ¢ [0,00) x Q7 — B be progressively measuraine

functions for 1 < i k < d. We assume that 4; = 1. We seck a pair of maps Z: Q)



Y100 5 0° such that given w € 9 the following hold -
() (Zw)i(t) = wit) + [ bils. Zw)ds 1 (Vo)1)
3
.
5 [ s, Zu)d(Yin)(s) (3.1.1)
&

(b)  (Yw)(0) =0,  (Yi)(t) is noudec
() (Yw)i(:) increases only when (Zw)i(-) =0, i=1,2,+,d.

ing in t.

We will make the following assumption on the reflection field. We denote it by (BC) to

mean boundary condition.

Assumption (BC): Let v; = 1, i = 1,2,---.d. There exist positive constants

@y ay, - ag and 0 < o < 1 such that
> ailywi(s,w)| < aax (3.1.2)
itk

for all s > 0,w € Q7 k = 1,2,---,d. Note that the above condition is the pathwise

analogue of condition (3) on p.166 of Shashiashvili (1994) (scc

equation (3.2.1)).

also the note following

Remark 3.1.1 : For 0 < s < t < oo, let QF, = {w € C([s,4] : RY) : w(0) €
O} 3 0, = {w € C([s,00) : BY) : w(0) € O}. Similarly we define OO, = C([s, ] : 0)
and Q0 = C([s,00) : O). Let 0 < Ty < Ty < 005 1 : 2%, = I be Byy— measurable
functions satisfying (BC), viz., there exist positive constants ay,az, -, ag and 0 < a < 1

such that

(i) i =

(ii) 3 ailris(w)] € aag,  Vw € Q. i =12, d.
ik

Now consider the following problem.
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Let w) € Q0. W € Of 4 be fixed with W(T}) € O. We then seck functions
z€ C((T1, Ty : O), y € C(IT1,Ty] : O) such that

(@) &) =wi(t) +yi(t) + E r()ye(t), for Ty <t < Ty

(3.1.3)

(b)  4i(TV) =0, () is nondecreasing.

(¢) () increases only when z(-) = 0,

By Theorem 7 of Shashiashvili(1994), unique solution (z,y) exists for the above problem.

Now denote for Ty < t < Ts,

2w, (), T T (1) = #(1) } tare

Y, w, ((re)). Tr. To)(t) = y(t)
Lemma 3.1.2 1 Let b; : [0,00) x 27 — R, 7z : [0,00) x Q° — I be simple functionals
(1 < ivk < d) with ((ys)) satistying (BC). Then there exists a unique solution for the
Skorohod problem (SP).

Proof : Step 1 : Let bi(s,w) = bi(w), wi(s,w) = Fu(w).1 < i.k < d, for all s > 0,

w e Q° and further b; and 7; be By-measurable and uniformly bounded.

For any solution (Z,Y) of the problem (SP) we should have (Zw)(0) = w(0); and as b;
and 7 are By-measurable we should have bi(Zw) = bi(w). 3% (Zw) = Fa(w). Let w € Q°.

Take T} =0, 1

= oo, w(t) = w(0), (™) = Fg(w) and W(t) = w(t) + th(w) Then
we note from Remark 2.1 that

(Zu)(t) = Z(@w . (). 0.00)(F)

(Yw)(t) = ¥(w, w0, () 0,00)(t), Ty <t =Ty
solves the Skorohod problem.

Step 2 ¢ Let b, ((w)).1 < ik < d, be simple functionals with 7 satisfying (BC).

Suppose 0 =ty < t; < -+ <, <., T 0o and

Bi(set) = 5 b ) Ly (5)s e 10) = 32000 Lo (5)
ot i
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where b; j, 14 5 are By-measurable.
The Skorohod problem becomes

() = w) + S bt — ) +bn(Zu)e - 1)
RICICES> z i) (V1) = (Y(t)
5 2 ()~ (i)
- (Zku{v;,(t,‘) Fwi(t) — wilta) + bin(Ze0) (¢ — £)
+(Yw)i(t) = (Yi)i(ta) + 3 Wi [(Yer)x() = (Y)e(t)]
v (3.1.5)

for £, < t < 1, by adding and subtracting appropriate terms.

Now let us apply induction on 7. By step 1, (20w, YDw) are uniquely defined on [0, ).
Now let us assume that (20w, Y®w) are defined on [0, 1,] solving the Skorohod problem
on [0,t,]. Put Ty = £, Ty = tuyr; wD(t) = (Z0)uw(t).t < t,. Note that w) € C[0,,).
Now consider the fanction w(t) = (Z00w)(t,) +w(t) — w(t,) + b, (Z0w)(t—t,), t, <t <
ti1. Note that w(t,) = (Zw)(t,) € O. Take () = (i (V) = (Win(2"w)).
Now define Z6 Ve, YO Dy on [0, ¢,,,4] using Remark 3.1.1 as follows

(2 uye) (ZWw)(t),  0<t<t,
Z(i5, Z2w, (Yeip) ) tus b ) (£)s e <<ty

{ ¥hw)(t). t<t,

(e
(Y0) (1) + Y(@, Zw, (Ykin))- e bus1) (£ b < <t

(3.1.6)

Note that Z0' D Y0 Dy are continous functions on [0, £, ;1] and they solve the Skorohod
problem (SP) on [0, 4,1 Proceeding thus we can get a solution on [0,00). Uniquencss

follows from the uniqueness result in Shashiashvili (1994). a

Note that to solve the Skorohod problem, it is enough to solve the problem on [0,7'] for

an arbitrarily fixed T'> 0.
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Lemma 3.1.3 : Let T > 0, and b, 4{1 < i,k < d, n = 1,2,---. be progressively
measurable functionals such that b are uniformly bounded on [0,7'] x 28 and ((+{?))
satisfy (BC) with @,a;,as,-- a4 independent of n. For w € Q) let Zt9w, ¥w denote
the solution of the Skorohod problem (SP) on [0, T corresponding to b, 4. 1f H C Q5
is a relatively compact set then {(w, ¥®w, Z®w) : n=1, 2, ---, w € H} is relatively

compact in 00y x 203 x Q2%

Proof : Let w € H. As (Z®w,Y"w) is the solution of (SP) corresponding to b, 4

we see that

(Z"w)i(t) 2 2() + (Yw)i(t)
= wit)+ [bf“’(s, Z0w)ds + (YOw)i(t)

+3 /’)k,(s Z0w)d(Yw)y(s)

k#i 1”
(8.1.7)

Writing (Yw) in maximal function form (see p. 169 of Shashiashvili (1994)) we have
(Yw),(t) = sup max{0, - (s)}
st
Hence

(Yu)(t) < sup\u\(%)l{» Uf") s, 2%w)|ds

b
+3 /h‘;’ (5. Z0u) [ d(Yw)(5) (3.1.8)
ki
Now as 1{) satisties (BC), multiplying both sides of equation (3.1.8) by a;, we get
Saspln()  TaCt
Ti—am T Zaa

Y (w)i(r) <

< (m ””U|“ Il + Ct) (3.1.9)

where ay = mina; and Cis the uniform bound of 6 (sce p. 179 of Shashiashvili (1994))
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Therefore by (3.1.9) we have
sup{|(Yw) ()| :we H, 0 <t <Tn—= 1,2} < (3.1.10)
as H is uniformly bounded.

Hence {Y?w :n =1,2,---, w € H} is uniformly bounded. Now let us show equiconti-

nuity of {Y™w :n > 1, we H}. Note that

(Yw)(t) = sup max{0, — 2 (u)} = max{ (Y w)i(s), jlv.’,/)((fmf“)(u,))

Hence as b0 are uniformly bounded we get

—a(w) = (Fw)i(s)}

< max{0, s p( o (u) + o (s)}

(¥Pw)(t) — (Yw)i(s) = max{0, s

< sup \u"(u)fur,(.s')‘ F Ot - )
v

+y /hﬁ_’,”(u,z‘"h.r)l,i(Wmv)k(u)
k/i's
(3.111)

Now as 1{s satisfy (BC) with a;’s and « independent of n, procecding as in the derivation

of (3.1.9) we got

lAy

ST (w)i(t) — (Yw)i(s) < Lu, s Jwi(u) = wi(s)|

C
- — 3.1.12
T wm ( )
where a; = max a;.
By (3.1.7) and (3.1.10) it is casily scen that
sup{[(ZMw)(t)] :we H. 0<t<T.n>1}< o0 (3.1.13)
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Hence {Z0w : n > 1,w € H} is uniformly bounded. Since
[(Z0w)i(t) = (Zw)i(s)] < fwi(t) — wi(s)] + C(t — 5)
F(Yw); (1) — (Yu)i(s)
+3 [ P 2wy )
k7i”s
(3.1.14)

Proceeding as in the derivation of (3.1.9) and using equations (3.1.2) and (3.1.12), we see

that

STUZMw)i(t) - (ZMw)i(s)] < Wm, i sup. Jwi(u) = wi(s)|

— Y a,C(t - ) (8.1.15)

170 Yoo &

By (3.1.10), (3.1.12), (3.1.13), (3.1.15), relative compactuess of H and Ascoli’s theorem,
the desired conclusion follows. o
Theorem 3.1.4 : Let by i, 1 < i,k < d be Lipschitz functionals such that b is bounded.
Further let b,y be continuous in s. Let ((yx)) satisfy (BC). Then there exists a unique

solution to the Skorohod problem corresponding to (b,7).

Proof : As (1)) satisfies (BC), note that 4’s are uniformly bonnded. Note that it is

enough to consider the problem on [0, T] for some arbitraily fixed T> 0.

Define

b e

Note that by the definition of b and 8 we have

b (s, w) = by

(i) B (sow) = bi(s.w) o AL (s,0) = qls,w) o asmoor oo, Vs 200 wE O

(ii) b, 4L are simple Lipschitz functionals with the Lipschitz constants as that of b,y

respectively.
(iii) (")) satisty (BC) with the same a;’s and « as that of ((v)).
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Now for w € 920y, arbitrarily fixed, let (20w, Y*w) be the solution of the Skorohod
problem (SP) corresponding to (b, 4®). If (Zw, Yw) is a limit of (200w, Yw) (which
exists by Lemma 3.1.3) then we can show that (Zw, Yw) solves the problem (SP) corre-

sponding to (b,y) Note that
@) = )+ [ 0 Z00wds + (3,0
+ g _/0' A8 (5, ZO0w)d (¥ w)e(s) (3.1.16)
By Cauchy-Schwarz inequality and Lipschitz continuity of B and b we sce that
fi'%’l./‘,l B (s, 209w)ls — A (s, Zun)ds] = 0, a5 0 - o (3.1.17)
Similarly by Lipschitz continuity of A,y we have as 1~ oo,
sup| [ 385, 2wy ts) - | (. Zu)d(Yu)e(s)] = 0
' (3.1.18)

Hence combining (3.1.17) and (3.1.18) we have that (Zuw, Yw) solves the Skorohod problem

rr ling to (b,7). P ling as in the proof of Proposition 1 of Bernard and

El Kharroubi (1991)p.155, we can show that ¥; increases only when Z; = 0.
Now for the uniqueness of the solution let
(Zw)i(t) = wilt) +/ bi(s, Zw)ds + (Yin)i() + 3 /] (s, Zuw)d(Yin)i(s)
o Zih
and
. ) o )
(Zu)(t) = wi®) + [ bils Zuyds + (F)i(t) + Y [ nts. Zuyd(F(s)
b 2 h

be two solutions corresponding to the functions (b,7). Now by writing (Yw) and (¥Yw) in
the maximal function form (see p. 169 of Shashiashvili (1994)) and using the variational

distance Lemma (see p. 170 of Shashiasvili(1994)) we get

Sa ‘/“' Jd((Ya); — (Yw))(s)]

< (fﬂ;’“ A Z 1Z0)(5) = (Zu) () (Fiels))
Iih,. /.l sup | Zw — Z(w){lds (3.1.19)
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Consequently we have
Sal@u)) - (o0
< Z“J‘h A sup |z - Zw|uds
+<1+'nza./ ld((Yin)i(s) - (Fiu)i(s))]

+u.dl;,/2\(zm )i(s) — (Zw); 11(2} 0)i(s))

(3.1.20)
Therefore by (3.1.19) we have
I(zh0 - (Z)0)
< 2"(‘:;( i [ S0 = (Z NS 0)
+ u—fKT, [ suphzu -~ Zuls
(3.1.21)

Now let (t) = sup 3 |(Zw)i(s) = (Zw)i(s)|
Alt) =
Bty =t +p(t)

IG5 ()
2

. N

Hence (3.1.21) can be written as () < C | ¢(s)d3(s), where C'is a constant. Therefore
o

by Gronwall’s Lemma (sce pp.287-288 of Karatzas and Shreve (1988)) applied to @(t),

we have @(t) = 0. This proves the uniquencss; the proof is now complete. o

Theorem 3.1.5 : Let b : [0,00) x Q0 — R, 1 < i < dand yy : [0.00) x 7 = R,

1 < ik < d be progressively measurable functionals such that
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(i) by’s are locally Lipschitz functionals, b’s are continuous in s, and satisfy linear growth

condition :

|bi(s,w)| < K(1+ JJwlls) (3.1.22)

) s are Lipschits functionals, continuous in s and (1)) satisties (BC)

Then there exists a unique solution to SP corresponding to (b, 7).

Proof : Note that by (BC), y(-) are all bounded. Define for N € N,
BN (s,w) = b(s,wy)
where wy(s) = w(s A 7w(w)).7n(w) = inf{t > 0 : |w(t)] > N}. Note that bM(s,-)
is a bounded Lipsehitz functional for each N Let w ¢ Q7 be arbitracily fixed. Lot
(ZMw, ¥ w) be the solution to the Skorohod problem (SP) corresponding to (5, 4).
Then we have
1(ZMw)i(t) = (Z¥ Dw)i()]
) o
< % b (s, ZMw)ds — /’ BV (s, ZM) ds|
t V. . ! v V.
+1 / W s, Z00uhds — [ 4O, 2 Vs
{ Jo
(Y w)i(t) = (Y Dw)(n)]
. ! ,
HI13 [ anle, 201 u)als) - 0 )]
kfi”

FIE [ Gt Z0u) ~ 3, 7 D) (F D)
k#i”

(3.1.23)

Now for t < 75(Z™w), we see that the first term on the right side of (3.1.23) vanishes as

B Ni1)

and bV coincide in that case. But now as 6! is Lipschitz continuous bounded

functional and 7 satisfies (BC), by the proof of uniqueness in Theorem 3.1.4 we see that
(ZMuw)(t) = (ZNDw)(t) .t < n(ZMw)

) (3.1.24)
(¥Muw)(t) = (Y D)) Lt <y (Z0w)
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Since 7y, 1 (28 V) > 7y(Z0 Dw) = Tv(2Mw) we see that v(ZMw) increases.
Now let us show that 7y(Z(Mw) T oo, which, essentially will prove the result.
We have, from cquation (3.1.8) and the linear growth condition
() < suplus(o)] + G [ 1zl s
+3 /“' a8 Z0 ) (¥ V) () (8.1.25)
k#i®
Hence by using cquation (3.1.2) we get
(1= ) 32 as(¥Mw)i(t) < fully + Cod /"'U + 120w]l.)ds (13.1.26)
By the representation of Z(Mw and by (3.1.26) we have
s;;l;l(z‘”)w)‘(s)\ < kaflwlle + Ky ‘/"’(1 + 120wl ) ds (13.1.27)

for some constants ki, kz. By (3.1.27) and Gronwall’s lemma (see pp.287-288 of Karatzas

and Shreve (1988)), we have
sup 3 1(ZMw)i(s)] < k(1) (3.1.28)
et 4

where k() depends on ¢, but not on N. Now if 7y(ZMw) T m (say), where m < oo, we
have sup |(Z®w)i(s)] > N. That is we have sup S5, [(Zw)i(s)] = N, for all N But as
the right side of (3.1.28) is independent of N and is bounded, if we replace ¢ by m, we

have a contradiction. Hence y(ZMw) T oo.
Now define

(Zw)(t) = (ZPw)() . t < n(ZOw) } (5129)

Yw)(t) = (YMw)(t) . t < mn(ZMw)
By cquation (3.1..24) the definition is consistent. As T(ZMw) T oo, we see that for
any t € [0,00) we can define (Zw, Yw) and further uniquencss follows as the solution is

unigue on [0, 7y]. °
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Remark 3.1.6 : Consider the following path dependent Skorohod problem. To find

Z:00 =00, V: Q0 - 0 such that for given w € 20,

(1) (Zuh(t) = ji‘;‘ a5 Zw)dwy(s) + [bi(s. Zw)ds -+ (Y)i(t)
g2 it
£ [ s, Zu)d(Yi)i(s) (3.1.30)
k#i 0

(b)  (Yu)i(0) =0,  (Yaw),(t) is nondecreasing in t.
()  (Yw)i(-) increases only when (Zuw)i(-) = 0. i=1,2.--.d.
If 01, bi, s are simple functionals with + satisfying (BC), the above problem can be
<olved uniquely, essentially following the argument of Lemma 3.1.2. Note that if o;; is
a simple functional the first integral on the right side of (3.1.30) makes sense for every
we Q0.

Remark 8.1.7 : We can similarly consider the Skorohod problem in troughs. Let
1C{L2,--.d}, O ={ze R :w;>0j€l};0 = {we C([0.00): BY): w(V) €
O} and O = C([0,00) : Oy). With the notations and definitions analogous to the

case of orthants, we can define the Skorohod problem in the trough 0.

Skorohod Problem (SP)" : Lot b; = [0,00) « QF —» I and 44 ¢ [0,00) ¥ QF — R,
1<i<dkel, be progre

ively measurable functionals; let 4 = 1.k € I. . We seck a

pair of maps Z: Q9 — 0 and Y: Q) — QF such given w € 0, that the following hold
¢
(a)  (Zw)i(t) = wi(t) + [ bi(s, Zw)ds
0

+ AL‘I.;'m.(s,Zu-)d(w-)k(_q), i1,

A (3.1.31)

(b)  (Yw);(0) = 0. (Yw);(t) is nondecreasing in t, j € L.

() (Yw),(-) increases only when (Zw),()) =0, j € I.

() (Yw)()=0 for j¢I
Further we have a similar assumption on the reflection field as in the case of orthants.
Assumption (BC)" : Let vy = 1,k € I There exist positive constants ay.as.- -, ag and

() < a < 1 such that

> ah(s.w)] < aa
T
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for all s > 0,w € QO and k€ L.

When b and ~ are Lipschitz functionals which are continuous in s, with 4 satisfying (BC)"
and b satisfying a linear growth condition, we can carry through all the arguments as in

the orthant case to get hold of a unique solution for the Skorohod Problem (sp).

3.2 Reflecting diffusions in the orthant

In this section we consider diffusions in an orthant and prove some useful results regarding

them ; We have the following data

Let O be the positive orthant, as in §3.1. Let Fy = {w € O :m; = 0}

\Uji 5

tly positive definite matrix; denote a = 00"

(A3.1) 0 is a (d x d) real symmetri
(A83.2) b(-) = (bi().ba(),- -+, ba(") ) is an I-valued locally Lipschitz continuous func-
)€ O

(A3.8) For i € {1,2,-,d}, 9()d = 1.2 .d, j # i. are Lipschitz continuous func-

tion on O satisfying a lincar growth condition, viz., [b(x)| < K(1 +

tions defined on the face Fi. Though the functions 7;(-), 4 = 1,2+ - .d.j # i, are defined
on F; they can be extended to O in an obvious way by
a), T € 0. Assume 4 = 1, i = 1,2,---d. Ob-

Aij(m) = i way e w0y

serve that the extensions are Lipschitz continuous on O; thus the functions ;,1 < d,j <

d, may be taken to be Lipschitz continuous functions on 0.

We requite the functions yu(e),1 < ik € da € O to satisfy a condition which is

analogous to assumption (BC) of Section 3.1.

Condition (BC)': There exist positive constants ay, as.- -, ag and 0 <« < 1 such that

for any = € O.

> ailwi(n)] < oak (3.2.1)
itk
Note : (3.2.1) is just condition (3) on p.166 of Shashiashvili (1994); this is a "generali-

sation" of the spectral radins condition, (sce p.i57 of Dupnis -Ishii(1993)) © (however it
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must be noted that in Dupuis-Ishii(1993) the domain is assumed to be bounded).

Note : Observe that any Lipschitz continuous function g on O, can be extended to R

as a Lipschitz continuous function by putting g(), 2

wa) = glleil, [l - wal). (We

denote this extension also by g); if the function on O satisfios a lincar growth condition,
the extension also satisties the same growth condition. So without loss of generality we

may take b, to be functions defined on I,

Let Q0 = {w € C([0,00) : B¥) : w(0) € O} be endowed with the topology of uniform

CONVErgence on comp and the natural Borel structure.  Let B denote the Borel

-algebra on Q0. Let X, denote the t*-coordinate map on Q°, that is, X,(w) = X(t, w) :=
w(t); let B, = o{ X, : s < t}. Now let {5 @ € O} be a family of probability measures
on (27, B) such that under ), the canonical process {X;} is a Brownian motion starting

at x, with drift 0 and dispersion matrix a = oo".

Given functions by(-), () satisfying the conditions (2), (3) and (BC)' above we define

the Lipschitz functionals denoted once again by b, as follows.

For s > 0.w € QO put b(s,w) = bi(w(s)) ;  qw(s.w) = y(w(s)). I is casy to sce
that b;(resp.ye) are locally Lipschitz (resp.Lipschitz) functionals; also ((va (1)) satisfies
assumption (BC) of Section 3.1. Using results from Section 3.1, we can now show that

there exists a unique pair of continuous processes (Z,Y) such that the following holds.

() Z(t) = X(6) + J b(Z(s))ds + [y 2" (Z(s))d¥Ts)

(3.2.2)
(ii) 2Z(t) €O, fort >0 and Q.(Z(0) =
(i) fy Lzopd¥i(s) =0, for t > 0.0 =1,2.---.d .

(iv) Yi(0) =0 and Y;(-) is nondecreasing for all i =1,2.---d .
Along the same lines as in Shashiashvili (1994) (sce 1.191) we can show that
(a) Z(t) and Y{t) are adapted to B, ;

(b) Z(t) is Feller continuous, strong Markov process under {Q, 1z € O}



We also denote Z(t) by Z, in the sequel.

Note : Shashiashvili (1994)(sce p.193), observes that using the methods of his paper
in an obvious manuer, the existence and uniquencss of the above diffusion (when b is
nonconstant) can be established. However, we have not been able to do this; the difficulty
seems to be concerning the extension of the analogue of Theorem 1 in Shashiashvili (1994)

to the case of step functions. In fact this has led to the prosent analysis in Section 3.1,

Remark 3.2.1 : Because of the semimartingale representation (3.2.2) for Z(t), for any

f € C2(0), by Ito’s lemma we have,

d g
2) — (Z) = Z[ 9f(Z)

i

3 ZZ/I ‘](j)-r,()r
o3[ (;m :

d
AX(%) + 2/ .).:' ) i(72)ds

(Z.) JRp
= > AYi(s) (3.2.3)

From (3.2.3) we see that the generator L and the boundary operator J of the diffusion

{Z(t) : ¢ > 0} are given by

(3.2.4)

Note that (yi1(-),¥iz(-), 5701 () Lyiasn () 7a()) s the reflection vector field on
the regular part of the face F; (that is F).

We denote by LY, the expectation with respect to (.
Lemma 3.2.2 : For cach = € O, we have

U?flm )ids) = 0 (3.2.5)
Proof : Note that it is enough to consider the case when b is bounded.  Since

5l



equation (3.2.2) gives a semimartingale representation for Z, by Ito’s lemma, (3.2.5)

can be established just as in Lemma 7.2 on p.100 of Harrison and Williams (1987). O

Lemma 3.2.3 : Let @ € O and let y = inf{r > 0 : Z(r) € 90} . Then we have

Q. (0. Z()) " << Lebesgue measure on [0, 00) x JO.

Proof : Let {\, : @ € It} denote the L-diffusion in 12", that is under {A, > € '} the

coordinate process {X(£) : ¢ > 0} behaves like the diffusion in 12 with generator L.

Now as = € O and Z behaves like an L-ditfusion till hitting 9O, it is enough to prove

that
(i, X (7))} << Lebesgue measure on 0. 00) < 9O (3.2.6)
where fj(w) = inf{r > 0: X(r.w) € 90}

Now as 9@ is the union of a finite number of truncated hyperplanes, it is enough to prove

(3.2.6) for O; instead of O, where O; =

s Iy~ 0}, with i ¢ {1,2,--,d} and i}
denoting the hitting time of 90;. Note that O; is the half space and the boundary 90; is

<mooth.
Cousider the following problem for fixed T'> 0

((9)0s) + Lyu(s,z) = 0, s<T. =€0;

lim (s, 0, xe0 (3.2.7)
u(s,x) = gy, wEdO;
where g is a bounded measurable function on JO;. Then the unique stochastic solution

to the problem (3.2.7) is

us, @) = {1z 9 9(X(0)

where 12 denotes expectation with respect to A, In particular if we take g = 1,

AC 00, s =0, then we have

w(0.0) = M) < T X(3)) € A) (3.2.8)
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Now the problem (3.2.7) can also be solved by the method of double layer potentials
(see pp. 407-408 of Ladyzenskaja et. al (1968)) which gives the classical solution as an
integral over [0,7] x 90;, with respect to dsdo(z) , where do is the surface area measure
on 90;. Hence (3.2.6) follows and hence the lemma. o
Lemma 3.2.4 : For each = € O,t > 0, we have

Q.(Z(t) € D0) =0 (13.2.9)

Proof : Case (i) Let # € O

Let i = inf{r > 0 : Z(r) € 90}. By Lemma 3.2.2 we have
/ I‘,;[/'" Lo (Z(s))ds]do(z) 0 (3.2.10)
Joo
Now by the strong Markov property of Z,
Q(Z(t) € 90) = E2{Liyen lo(Z(1))]
= 210 B (Lao(Z(t = )
= o Bl (e = D101 Z) ' (1.2)
S o B ZONQ: 0 Z00) ()
(3.2.11)

Now by cquation (3.2.10) and Lemma it follows that the right side of cquation

(3.2.11) is zero.

Case (ii) Let = € 90. Fix ¢ > 0, and 0 < s < ¢ (s arbitrary ). By Matkov property we
et
Q20 €00) = [ Quz(t~5) € 90)Q.Z(x) ()
(2t~ 5) € D0)dQZ(5) '
+ [ Qul(t ~ 5) € 90)dQ.Z(s) ()
(3.2.12)
By case (i) the fist term in the right side of (3.2.12) becomes zero and hence we have

Qa(2(t) € D0) = Qu(Z(s) € 9O. Z(1) € DO) (3.2.13)
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by Markov property. Let now 0 < s; < sp < -+ < s, < t. Iterating the above argument
we get,

Q.(Z(t) € 00) = Qu(Z(s1) € VO, Z(s2) € DO, - -+ Z(t) € JO) (3.2.14)
Hence as the left side of equation (3.2.14) is independent of n, we have |

Q2(Z(t) € 00) = Q.(Z(s) € DO Vs € [0,t]N@)
By continuity of sample paths and as JO is closed we have,
Q.(Z(t) € 00) = Q.(2Z(s) € 0.5 < 1) (3.2.15)

Now if Q,(Z(t) € 90) > 0, then (3.2.15) will contradict Lemma 3.2.2. Hence the result.

o

Remark 3.2.5 : Before proceeding to the next lemma let us make the following obser-
vations :

(i) For every = € O, the matrix 1(z) = ((1i(#))1- 154 satisties the completely-§ condi-
tion. (Recall that a matrix I? is completely -8 iff for every principal submatrix 12 of It, we
can find a vector # > 0 such that 6 > 0. (sce Bernard and El Kharroubi (1991)). Here

the inequality is understood to be in each component.) This is because of the following :

Note that (s

satisfies (3.2.1) with positive constants ay,ay, - .ay and 0 < o < 1. For
IC{1,2,-+-,d}, let v '(x) be the submatrix obtained by deleting all rows and columns

of 4() that are indexed by I,

Let € O and j € I be fixed. Now put I = {i € I;i # j}. It = {i € I, - n.(x) > 0}
and I = {i € I§ : v;i() < 0}. Then by (3.2.1) we have 3} a;r,()| < aa.. Hence we
2%
have aa; — 3 amyii(z) + 5 ay;i(w) > 0, that is,
il ielg

(aa; = 3 am;(®) + D ansi(@) + 23 ami(e) + (1—aja. >0
it b et

(3.2.16)

By (3.2.16) note that, a; + ¥ ay(x) > 0. Now take i = a.. j = 1. Then 3 ()i > 0.

=3
As IC {1,2.--+,d} is arbitrary, we conclude that 4(r) is a complerely -8 matrix.
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(ii) Now put v = (a1, ay. -+, ag). Then from the above A(z)o > 0 for every = € O. As
A()v is continuous in x, for any compact set I C O, it now follows that one can choose
ik > 0 (depending on K) such that y(z)dx > 1, for all = € K.
Lemma 3.2.6 : Let U C O be a bounded open set and lot 7y = inf{t > 0: Z(t) ¢ U}.
Then we have

sup BY(ry) < oo

zell
In particular, the diffusion {Z(t) : t > 0} exits out of any bounded set in finite time with
probability one
Proof : Let h € C2(D) be such that h(r) = exp(ky 3 am) . # € U whore agi =
1.2, . d are positive constants as in (3.2.1), and Ay 50t appropriate constant to

be suitably chosen later. Now for = € U,

L

- (A-ﬁ > (e a) Hhe S ,,,,h,(m)> hie) (3.2.17)

il

"
By positive definiteness of a = ((a;5)), we have 3> as(ai - a;) > 0. Choose ko > 0 such
ig=1

that for all = € U,

(3.2.18)

where a = min; a;. This is possible as the right side of equation (3.2.18) becomes regative
for large ko and b is bounded (in particular bounded below) in U. Hence by (3.2.18) and

(3.2.17) we have for « € U,
Lh(z) > 1 (3.2.19)

Now by equation (3.2.3) we have

4 e Oh(Z o
W2t A ) - h(ZO)) = Z/: %7:211X,(s) Y AZIEATS
=

o

4 pinm .
+.2.,‘|-/“ dYi(s)

. )
(Z 15(Z.)
E=

(3.2.20)



Note that oh(w)/de; = kyash(x). By Remark 3.2.5 observe that the thivd term on the
right side of (3.2.20) is nonnegative. Further by (3.2.19) and as the first term on the right

side of (3.2.20) is a martingale, we have for every ¢ > 0,

E2 (h(Z(t A ) — h(Z(0))) = EL(t A7)

As h is bounded, by monotone convergence theorem, we have the result. [m]

Our next objective is to prove the strong Feller property of the ditfusion {Z(t) : t > 0},

for which we need a couple of lemmas.

Lemma 3.2.7 : Let G C O be a bounded open set. Define 70 = inf{r > 0: Z(r) € G}.

Then there exists a constant k& > 0 such that, for all ¢ > 0,

d
sup B¢ [Z Y‘(mm)} <k (3.2.21)
zeG =)

Proof : Note that by the maximal function representation of Yi(t), similar to equation

(3.1.9) we have,
4
Yy <c {s‘up Jw(s)| + K,,t] (3.2.22)
i1 st

where C'is a constant and K, is the bound of b on G. From (3.2.22) and Lemma 3.2.6

note that (3.2.21) is immediate. o
Before going to the next step let us fix some notations.

Let T'(t,x, z) be the transition density function of the L-diffusion in 7. Let Ty > 0. It

is known that for all ;,z€ RY, 0<t<Ty

|DPD(t 2, 2)| < kot <--Hh~x1,|“7’t (3.2.23)
for any multiindex p, such that [pl = py + py + -+ + pa with 0 = [pl < 2, where D?

denotes differentiation in the w-variables and kg ky are constants that depend on a, b, Ty.

(see p.376 of Ladyzenskaja ct.al (1968))



d .

Let U(t) = (Ui(t))i., where Us(t) = . 7ix(Z))Ya(t). For G C O, a bounded open sct,
k=1

t> 0,2 € G and z€ GNO, define

po(t,w,z) = T(t,w,2)— LY [l\u,r)(n:)l'(t - Ta, Z(n:L:)]

19 [/0‘ (VI(t -, Z(r),z).ril"(v'))J (3.2.24)
where VI'(s, £, z) denotes the gradient of I' in €.
Lemma 3.2.8 : For any Borel set ZC GNO,t > 0, € G we have
Q20 € Bre 2 ) = [ 1a()patt. . 2)iz (3.2.25)
Moreover pg is nonnegative.

Proof : For z € 9G\ O, both sides of (3.2.25) are 4

0. So we may

sume @ & 9G \ 90.
To prove (3.2.25) it is enough to show that for any continuous function f with compact
support K C GN O,

/( f@palt,e, 2)dz = B2 |1y (r6) f(Z)] (3.2.26)

Denote by u(z) the left side of equation (3.2.26). As I € G 1O, we have d(K,30) > 0
and d(X,9G) > 0. Hence by the estimate (3.2.23), by the fact that dU() changes only
when Z(-) € 90 and as f is supported in K we can casily see that u is a bounded
measurable function on O. Now observe that {u(Z(rg A7) : 0 < r < t} is a (,-martingale

with respect to {By,, : 0 <7 <t}
This is because of the following

Let €y = By, Co = B,

o Where 0 <rp <rp <t
Bz nrale) = B[, {26 A 2)dele)
B9 [ [ F) BN () ¢ = 7. Z(rc). 2
B [ [ A B [0 v 20200 |
= /r‘f(z)r(f,Z(‘r{;/\7'\).2):12
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=2 [ [ SR (vt P = . 2 e
2| [ some [ e - Z(r).z><ru'(r)>n;,m]]
(3.2.27)

where we have used the facts that Z has the semimartingale representation (3.2.2), T
satisfies the Kolmogorov backward equation, and the fact that Z(f) has strong Markov

property.

As €y € Ca, by combining the terms in equation (3.2.27) we sce that {n(Z(7: /1)) = v < t}

is a Q, - martingale with respect to {B,, 1 7 < £}, Therefore for any @ € G, we have
/ fpelton, )z = T I (n(Z(r; 1))
Jo .

= lmE¥ [/ Tt 20 A ). z)dz

hmﬂ?[/ J) Ny (eIt 2 A 7). 2)dz
+ I’h’l’x Y Uh T o (e )pe(t. Z(ra A ")-Z)'iZ]
= L+l (3.2.28)

Now observe the following fact = 16 ¢ G and #(s) ¢ ¢ he suel that w(s) > w as s — #,

then

lim/ et n(s), 2)dz — fr) (3.2.20)

sl

This follows essentially hecause of the

A(K.00) > 0, d(K,0G) > 0. the bounds (32.23) on I and VT, and dominated con-

ts that f is supported in K C G N O,

vergence theorem. By (3.2.29), as u is bounded, we have

1= 22 [ttoe) i [ (e 201, 2z
= B2 [l (re) (2(1))] (3.2.30)
Similarly, by (3.2.29) and dominated convergence theorem, as f is supported in K,
Il < B [ty il [ fepett. 2 ). 2)
[Ton (a2 =0 (3.2.31)

L
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Now by cquations (3.2.28), (3.2.30) and (3.2.31) we have equation (3.2.25).

Next let us prove the nonnegativity of pe. Let K be a compact set and K € G O. Let
w € G, z€ Kand t > 0. Choose nonnegative smooth functions {i,,} such that ¢, is
supported in K, [, (€)dE =1, n = 1,2,--, and @, (€)d = &,.

K

By the uniform bounds on T' and VI on G, it can be shown that pg is continuous in z.

Therefore we have by equation (3.2.26)

pa(t.e.z) = lim /I’r:(t-'fvf)%(f)'if
= Jim B2 (1 (re)pa(Z(1)] 2 0

Hence the proof. o

Remark : By using the Feller continuity of {Z(t) : t > 0}, the bounds on I' and VT,
and the fact that dU(-) changes only when () € 90, it can be shown that pe(t, =, 2) is
jointly measurable in (w, z) on {z € G,z € GNO}. Then by defining it to be zero outside

G x (GNO) we can take pe(t,-,-) to be a jointly measurable function on O x O.

Now let G, = B(0:n) N O, m = 1,2,---. Lot p,(t,x,2) = pe,(hw,2), n > 1. Define
Pt 2) 1= lim (b, 2) (3.2.32)

Proposition 3.2.9 : (i) p(t,,-) is a jointly measurable nonnegative function on O x O.

(i) Q:Z(t) " is absolutely continuous with respect to Lebesgue measure with

dQ,Z(t) !

dz

= p(t,m.2) (3.2.33)
(iii) The diffusion {Z(t) : t > 0} is strong Feller under {Q, : = € O}

Proof :
(i) By Lemma 3.2.8 and the Remark above note that 0 < pu(t,2,2) < p (8,2, 2), for
zeOt>0and n > 1.

®ence p defined as in (3.2.32) is a jointly measurable extended real valued function on
Ox0.
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(ii) For n > 1, let , = inf{r > 0: [Z(r)] > n}. As {Z(#)} is a non exploding diffusion
7,100 as. Let A € O be a Borel set. Then by Lemma 3.2.8 we have
Q(Z(t) €ANO) = lim Qu(Z(t) € ANONBO:n), 7, > 1)
= Jim [ Lwo@m(ta,2)ds
= L Lio(2)p(t, 7, 2)dz (3.2.34)
Thus Q:(Z(t)) ! restricted to O is absolutely continuous with respect to Lebesgue mea-

sure.

In view of Lemma 3.2.4 we have the result. Further by (3.2.34), we see that p is real

valued and is the Radon-Nikodym derivative.

(iii) Now let us show the strong Feller property. Let % be a smooth function on @ such

that > 0 and [(z)dz = 1. Put A(dz) = %(2)dz and q(t,7.2) = 75p(t, 7, z). Note that
o

q(t,-,

s jointly measurable on O x O and for t > 0, = € O,
/ﬁq(l,’n.z)/\(dz) =1 (3.2.35)

Also by Feller continuity of Z, for any bounded continuous function f on O, we have,

@1 [ f(2)q(t, 3, 2)M(dz) is bounded continuous.

Now by Lemma 11 and Remark on pp 60-61 of Skorohod (1989), for any bounded mea-

surable function i on O it follows that
/nh(z)p(t,:r,z)/lz:‘/;h(z)q(t,;v.z)/\(tlz)
is bounded continuous in @. Hence the proof. o

Note : The measurable transition density p given by (3.2.24) gives an expression for
the Green’s fnction for the operator (9/s) 1 L with Dirichlet boundary condition on
9G\AO and oblique boundary conditions on 9G N JO.

Lemma 3.2.10 : For any compact set K C O and ¢ > 0,

limsup Q.(1Z — o > ¢) =0 (3.2.36)
O ek
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Proof : Note that it is enough to consider the case when b is bounded. By (3.1.9),
(3.2.22) we have

i Yilt) < k [s.(lp ()] + 1(,,/.] (3.2.37)

il
where k is a constant depending on ;s alone and K, is the bound of b, Now by

Burkholder-Davis-Gundy inequality observe that
:
BY:(t) < A»,CE(/ w‘,z.s) +het? < kot (3.2.38)
o

for small t, where ko, ks, ks, C are appropriate constants. By the reprosentation of Z(t)

we have.
B2\Z(t) — af <Kt+ K6+ k"2 <kt (3.2.39)

for small ¢, and suitable constants k', k", &, k. Hence we have

limsup 9| Z;(t) -
4O e
and hence the result. u]

Corollary 3.2.11 : Let VC O be a bounded open set and let g be a bounded measurable
function such that for z € V

9(z) = B¢ [9(Z(n)))

Then g is a bounded continuous function on V.

Proof : In view of the strong Feller property, strong Markov property and Lemma 3.2.10

the corollary follows as in Lemma 2.1.1. o

3.3 Asymptotic properties

In this section we consider asymptotic behaviour like recurrence, transience and positive

recurrence of diffusions in the orthant. We use the notations and hypotheses of Section
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3.2. By Section 3.2, we note that the diffusion {Z(t) : ¢ > 0} given by equation (3.2.2) is

a strong Markov, strong Feller process under {Q, : = € O}.
For a Borel set A C O, define

Ta=inf{t >0 Z(t) ¢ A}, o4

nf{t > 0:  2(t) € A}

Further for 7 > 0, define o, =: inf{t > 0 : |Z(t)| =}
Definition : (a) A point = € O is said to be a recurrent point for the diffusion
{Z(t) : t > 0} if for every € > 0,
Q:(Z(t) € B(x : €) for a sequence of t's T o0) =1
(b) A point = € O is a transient point for the diffusion {Z(t) : ¢ > 0}, if

Q. (limy oo | Z(£)] = 00) = 1. If all the points are recurrent (transient) then the diffu-

sion itself is recurrent (transient).

(¢) A point = € O is said to be positive recurrent if there exist bounded open sets Uy, Uy
such that @ € Uy C U, € Uy and sup{E,(ov,) : z € 90Uz} < co. The diffusion is said to be
positive recurrent if all points are positive recurrent.

We will first prove some crucial lemmas which will enable us to get criteria for recurrence

and transience of diffusions in terms of the generator and the reflection field.

Lemma 3.3.1 : Let A C O be a nonempty bounded open set. Let ¢ > 0, M > 0 be fixed.

Then the following hold
(a) For any = € O, we have
Qu(Z(t) € A) >0 (3.3.1)

In particular the diffusion is irreducible.

(b) For any = € O such that [x] < M,
Qu(Z() € Ay > 1) >0 (3.3.2)

nf{Q.(Z(t) € Ary > t:we B0 7)) >0, for0<r< M.
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Proof : Note that (¢) follows from (b) and the strong Feller property of {Z(t) : t > 0}.

Hence it is enough to prove (a) and (b).
We will first prove (3.8.2) in the case = € O.

Let @ € O with || < M. Then & = (M—|x]) Ad(r, 90) > 0. Then we can find a nonempty
bounded open set Ay and 8 € (0,8) such that Ay € Int(ANO) and d(Ay, AN O)) > 6.
Let wy € 27 be such that wy(0) =, wo(t) € Ay and wy is defined by lincar interpolation

on [0,¢]. Put
N(wo) = {w € Q° : Jw(s) — wo(s)| < 6/2 for all 0 < s < t}
Note that any w € N(w) stays in O 0 B0 : M) upto time ¢ and w(t) € A.

Let Q. denote the L-diffusion in I, starting at @. The process Z(-) under (. behaves
like the process X(-) under @, upto the time of hitting 9O. So by the Stroock-Varadhan

support theorem we have,

QuZ() € Aty > ) > Qu(Z() € A > Lo > 1)

> Qu(N) >0
Thus (3.3.2) holds in this case.

Proof of (a) : From the preceding, note that (3.3.1) holds for = € O. So we assume
w € JO.

Let ¢, <t be arbitrary. By Markov property of {Z(t) : t > 0) we have,

Q.(Z(t) € A)

Q. (Qru(2(t - 1) € A)
= /[;(}I(Z(t 1) € A)Q,Z(1) (2) >0, (3.3.3)
as Q.Z(t) '(0) = 1 by Proposition 3.2.9.

Proof of (b) : Note that we need to prove (3.3.2) only in the case when # € 90 with

o] < M.
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Note first that Q(my > to) > 0 for some y > 0; (for otherwise 7y = 0 as. Q, and
hence fie| = |Z(0)] = M which is a contradiction). Consequently Q,(ry > r) > 0 for all
0<r<ty

Let ¢ > 0 be fixed. Choose 0 < s < ¢ such that ¢, (ry > 5) > 0. By Markov property

Q(2(t) € Ayry > t) = B9 [1,,‘\,;‘,5“.;,’(.) {Lroe s1a(206 .s‘))}] (3.3.4)

Note that Q.(Z(s)) (B0 : M)) > 0 by (a) above; as (3.3.2) holds when = € O, by

(3.3.4), we now sce that (3.3.2) follows also for = € 90 8]

Lemma 3.3.2 : (a) Let Uy, U be open sets in O such that U, is nonerpty and 0,00, = 6.
Let o3 = oy,

on UsNU5NO.

1.2, Then @ = Q,(01 < 02) is a strictly positive continuous function

(b) Let U € O be a nonempty open set. Then @ — Qu(ry < o0) is a s

rictly positive
continuous function on U.

(¢) Let F C O be a compac

set with nonempty interior, in O. If for some zo ¢ F,

Qs (0 < 00) =1, then for all z € O, Q,, (7 < c0) = 1.

Proof : (a) Let g(x) = Q.(0) < 0y) and = € Ui U5 1O be arbitrary. Let V be a

neighborhood of = such that = € VC VC U501 0. Then by strong Markov property

and Lemma 3.2.6 we have
() = B [ B (Lo, <onp)| = B2l(2(1v))] (3.35)
Hence by Corollary 3.2.11 we have that g is continuous on U. It remains to show that g

is strictly positive

Case (i) Let = € ONU; N U5 Since the diffusion {Z(t) : ¢ > 0} behaves like the
L-diffusion till hitting the boundary 90, by the support theorem of Stroock-Varadhan,

it follows that g() is strictly positive.

Case (ii) Let = € 9O N U5 N T5. We claim that there is a compact set K C O N %N T

such that
Qo < (a1 haw)) > 0 (3.3.6)
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Suppose not. Then Q,(o0 < (0y Aay)) = 0. As o ¢ U, U Uy, note that there exists

to > 0 such that Q,((o) A az) > ty) > 0. Henece we have

Q2(Z(s) € 9O for all s <ty) = Q.(00 > ty)
2 Qu(ar Aay) >ty (o) Aay) < o0)

= QoA > ) >0
which contradicts Lemma 3.2.4. Hence the claim.

Now uote that the process Z(-) under Q, behaves like X(-) under @, till hitting 90. So

by stroug Feller property of {¢),} and support theorem of Stroock and Varadhan we get

Qo <02) 2 Q01 < (721 )
= IEQLX() hits Uy before (Uy UYO))
2

> 0 (3.3.7)

where 7 is the hitting time of JO. By strong Markov property, (3.3.6) and (3.3.7), we
have g(x) > 0.

(b) Follows dircetly from (a) by taking Uy = Int(U 1 O). and Uy = ¢.

(c) Let us prove this in two cases .

Case (i) Let @y € O. Let h(z) = 1~ Q,(ap < ), =€ O. By hypothesis, h(z) = 0.

Note that by (b) above, k() is a continuous function on F*. By strong Markov property

we have

0 = h(x

B2 [h(2(r)] (3.3.8)

where 7 is the exit time of the process {Z(t) : t > 0} from the ball B(zy : §), where

)N F = 6, and B(z, : 6) C O. By (3.3.8) we have

& > 0 is chosen such that B

h(z) = 0,Q,2(r) " as. z By the Stroock-Varadhan support theorem for L-diffusions
and continuity of h, we have h(z) = 0, for all z € 9B(zy : §). Now as in the proof of
(¢) = (d) in Proposition 2.1.3 we can show that h(z) =0, ¥ = € O

Case (ii) Let @y € 90N F. Let HC O N F be a compact set with nonempty interior.



Suppose Q,(op < 00) < 1 for all z€ O\ F. Then by part(b) we have,
inf Qs = 00) >0 (3.3.9)
By (3.3.9) and strong Markov property,

Qualor=00) > EL (Lot By (Lior o))

v

inf Qu{or = 00) - Qg (o < 00)

> 0

as Qy, (o < 00) > 0 by part(b), and hence is a contradiction to the hypothe

Hence the result. a
Proposition 3.3.3 : The following statements are equivalent

(a) =y € O is a recurrent point.

(b) Qu,(Z(t) € U for some t > 0) = 1 for all nonempty open sets U C O.

(¢) There exist zg € O, 0 < ry < 1y, y € dB(z : ) such that Q,(0 < co) = 1, where
o=int{t > 0: Z(t) € B(z : o)}

(d) There exists a compact set K C O with nonempty interior such that Q,(Z(t) € K for
some t > 0) =1, for all z € O.

(¢) Qu(Z(t) € U for some t > 0) = 1, for all = € O and for all nonempty open sets U C O.
(£) Q=(Z(t) € U for a sequence of t’s T co) = 1, for all & € O and for all nonempty open
sets U C O.

(g) The diffusion {Z(t) : ¢ > 0} is recurrent.

Proof : Note that in the case of half space, the proof of the above proposition (namely
Proposition 2.1.3) essentially follows from the following facts

(i) The diffusion is strong Markov and strong Feller

(if) The Corollary 3.2.11 and Lemma 3.3.2 above hold.

(ifi) The diffusion exits from any bounded set in finite time with probability onc
(viz. Lemma 3.2.6).

(In the case of half space we used the fact that the diffusion does not hit any boundary
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point. But in the case of orthants this may not be true. We overcome this difficulty by
means of Lemma (3.3.2) (c) ). Hence the same proof can be carried through here and we

get the result. o

Tu view of the semimartingale reprosentation of Z(t), 1to’s formula and the above propo-

sition, the following results can be obtained just as in Chapter 2.

Theorem 3.3.4 : (a) (Dichotomy) The diffusion {Z(£) : ¢ > 0} is not recurrent  the

diffusion is transient.

(b) The diffusion {Z(t) : t > 0} is recurrent & there exists a compact set K C O with

nonempty interior, a point z € KN O and a real measurable function u such that

() u(z) T oo ns [2] T oo (i) B¥Ju(Zlow)) < u(a

(¢) The diffusion is transient ¢ there exists a compact set F C O with nonempty interior,

y€ F'NO and a real measurable function u such that

(0) B 1oy Zon))] S uly); (i) u(y) < inf

Corollary 3.3.5 : If there exist 1y > 0, u € C2(It'\ B(0: %)) such that

() Lu(x) <0, {la] > r0}n0; (i) TLy15(@) 52 < 0, € Finflal 2 ro}, i =1,2,---d.

i) u(z) 1 oo as || T oo.
then the diffusion {Z(t) : ¢t > 0} is recurrent
Corollary 3.3.6 : If there exists ro > 0 and a function u € C3(R\B(0 : %)) such that

(i) Lu(z) <0, {lz|>n}n0O

(it) T2y v ""U <0, € Fin{lz] >} fori=1,2,---,d

(iiii) There is a point #y such that o] > 1y and u(rg) < inf _u(w) then the diffusion
(] vl

is transient.

Proposition 3.3.7 : The following hold for the diffusion :

67



(i) If there exists one positive recurrent point then the diffusion itself is positive recurrent.
(if) Let 0 < 7 < M, A C O be a nonempty open set. Then we can find ps > 0 such that

for any = € B(0: r),
1
B (0a) < =2+ sup Bu(o,)] + E9(o,)
pa |zl<M
(iii) In particular if the diffusion is positive recurrent, then
EJ(04) < o0

for any nonempty open set A € O, for any y € O

Proof : The proof is analogous to the proof in Chapter 2, essentially using Lemma 3.3.1.

Note : Part (ii) of the above proposition has been inspired by a corresponding result for

semimartingale reflecting Brownian motion due to Dupuis and Williams (1994).

Proposition 3.3.8 : Let 1y > 0,e > 0,u € C}(R\B(0 : %)) be such that

(i) Lu(w) < —¢, {l#] 21} NO
() 3 ()™ <0, me B (o] 20l . i =12 od,
I= i

(iii) u(x) > 0, on {|z| > 1y} N O. Then the proce

s is positive recurrent.

Proof : Same as in the case of half space.

Example 3.3.9 : Let O, a, b, 7, L, J be as in Section 3.2 Suppose the following
hold :

(i) There exists a constant & < 0 such that for all = € O, maxby(z) < k.

(ii) For each i,5 € {1,2,--+,d},i # j we have y,5(z) <0, 2 € O

“Then with the function u(z) = |o[2, we sce on applying Proposition 3.3.8 that the diffusion

is positive recurrent.

Example 3.3.10 : (i) Let O, L, J be as in Example 3.3.9. Assume that the drift b(x) is
of the form

bi(x) = fimi, <0
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Suppose the following holds : For cach i, € {1,2,-++,d}, i # j we have v;(x) < 0,
ze0.
Then by an application of Proposition 3.3.8 with the same u as in Example 3.3.9 we

have that the diffusion is positive recurrent. Note that in this case the diffusion is the

Ornstein-Uhlenbeck procoss.

(ii) Let O, L, J be as in Example 3.3.9. If the drifts are of the form b(z) = flel, # <0,
then again with the same u as in (i) above we see that the diffusion is positive recurrent.

(This is also a variant of the Ornstein-Uhlenbeck proc

s in the orthant.)

Example 3.3.11 : Let 02 = {(z1,2,) : 7, > 0,2, > 0} be the positive quadrant. Let
1 (=) . . e . e
A(m) = be the reflection matrix satisfying Assumption (BC)' with
Tia(ix) 1
positive constants ay,ay. Let 4 > 0, f, > 0 be arbitrary positive numbers. Choose k > 0

such that §, > % and f, > %. Define

Li(z) =

Jf(z) = {my = 0} N 00*

{p = 0} N OO?

Then with the function u(x) = ke @ @ combined with Corollary 3.3.6 and Remark
3.2.5 (i) we see that the process is transient. In particular this says that the drift is too

strong and the reflection field can’t help in averting transience.

Example 8.3.12 : Let 02 = {(z1,5) : @) > 0, > 0} be as above. Let J be as in
Example 3.3.11.

Define

)
i,

Lf(x) = Af(x) + by

where by <0, by <0.
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Let the following hold

(a) 2b; < by and 2b, < by; (b) yiz(w) < 1/2 and 72

)<1/2, VzeO?

Then with the function u(z) = a? + z3 — =2, on applying Proposition 3.3.8 we see that

the diffusion is positive recurrent. Note that in this case the reflection field is allowed to

point away from the origin also.

Remark 3.3.13 : When the diffusion is recurrent it can be shown using the results of
Maruyama and Tanaka (1959) that there is a unique (upto scalar multiplicity) o-finite
invariant measure; in this context it may be noted that condition 6 of Maruyama and
Tanaka (1959) is needed for just two open balls for their proof to go through. If the
diffusion is positive recurrent, the invariant measure will be a probability measure; in
such a case as the diffusion is irreducible and strong Feller, by the results of Khasminskii

(1960) ergodicity can be established.

Remark 3.3.14 : Note that by Remark 3.1.6 the Skorohod problem for troughs is well
defined and has a unique solution. Hence correspondingly we have a unique diffusion in
the troughs, satisfying the conditions analogous to cquation (3.2.1). Further the entire

analy

sis of the orthants done in Section 3.2 can be casily carried through to the case of

troughs. In a similar manner the results in Section 3.3 can also be extended to the case

of troughs.

Remark 3.3.15 : When qy;’s are constants satisfying (BC)" Dupuis and Ishii (1991)

have obtained reflecting difusions in an orthant with nonconstant Lipschitz continuous

dispersion, as strong solutions of the corresponding stochastic differential equations; note

that such a diffusion is a semimartingale. If in addition, the dispersion cocfficient is
sufliciently smooth and the generator L is uniformly elliptic, then our proof of strong
Feller property and our analysis concerning recurrence, transience and positive recurrence

can be carried through.
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Chapter 4

Reflecting Diffusions in the

Quadrant

In this chapter we will construct a new class of diffusions in the quadrant using the
submartingale problem approach. Then we prove the dichotomy between recurrence and

transicnce by using certain auxiliary diffusions in the half plancs.

4.1 A class of reflecting diffusions in the quadrant

In this section we will exhibit a new class of diffusions in the quadrant which can be

realized as unique solutions of corresponding submartingale problems as defined below.

Let @ = {(z),m) 1@ > 0, @3> 0} be the positive quadrant. (We use Q instead of 0*
).Let 02 = C([0, o) : Q) be endowed with

the topology of uniform convergence on compacts and the natural Borel structure. Let

as in Chapter 3 for notational convenience,

X(t,w) := w(t) be the coordinate projection process on (12, We also denote X(t) by X,

in the sequel. Define B, = o{X(s) : s <t }. Let o(.),b(.), m2(.), 72i(.) be functions to
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be defined later. Define the generator and the boundary operator respectively by

Lilw) = %Z(t,](' reQ (4.1.1)
i) = Ay
= ’72\(1‘)%[ {m >0} NoQ (4.1.2)

where a = o0’ With these notations we can state the submartingale problem.
Let
€CHQ): Jf>00ndQ\0
o feCi(Q): Jf \ (41.3)

and fis constant in a neighborhood of origin

Submartingale problem : For cvery @ € O, we seck a unique probability measure i,
on Q9 satisfying the following:

(@) m(X(O) =) = 13

(ii) for every f€ T,

.
{ f(X,)—»/u Lf(X,)ds}is a u, — submartingale (4.1.4)

(iii)E’;[/ 1y (X,)ds] = 0 (4.1.5)
o

where I denotes expectation with respect to i,

The fanily {11, : = € O} of probability measures as above will be termed as the diffusion
in the quadrant corresponding to (a, b, 4) or simply the (L, J) diffusion.

Remark 4.1.1 There are two known classes of examples that satisfy the submartingale

problem above.

(i) Let o =1, b=00n Q and let 42, 21 be real constants. This case has been dealt
with in full detail by Varadhan and Williams (1985). (In fact. the above formulation is
inspired by that paper).

(i) Suppose @ is a constant. dispersion matrix, which is real symmetric and positive

definite; b(-) is a Lipschitz continuous function of finear growth on Q5 yia(), ()
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are bounded Lipschitz continuous functions satisfying Condition (A1)" of Section 3.2. 1t

can be shown that a unique solution to the corresponding Skorohod problem exists. Since

in this case we get hold of the strong solution, by Lemma 3.2.2, it solves the submartingale

problem also.
We now stipulate the following conditions on the coefficients o, b, 7.

(A4.1) For cach = ¢ Q, o(x) = ((05(x))) is 2 2 < 2 yeal symmetric positive definite
matrix and further o satisfics the following

(@) lo(w) —o(z)] < Klz—zl; |o(e

) < K1+ |=]) forallm, z€ Q.

(ii) inf{ cigenvalues of o

(iii)o(z) = I, for [z| < N, for some N > 0.

(A4.2) For each x € Q, b(z) = (bi(z), ba(x)) € R? b(-) satisfies the following
(i) |b(z) — b(z)] < Klz—z); |b(z)] < KO+ x| forall =, z¢ Q.

(if) b(z) = 0 for |o| < N for some N > 0

(A4.3) (i)

(Lima(e))  on {x € 0Q, ) =0}
(ya(2),1) on {r€0Q, m =0}

(ii) y(-) is a bounded Lipschitz continuous function.
(iii) m2(2) = o, for 2] < N; qmi(2) = Aa, for | < N, forsome N > 0, where y12, 721

are real constants.

We now indicate a construction of the diffusion process in Q corresponding to (o, b, 7)

satistying (A4.1) - (A4.3) above. For notational convenience we take N = 1 in the sequel.

Let {P, : x € Q} be the diffusion in the quadrant corresponding to (I, 0, 4) with

Al

) (va) on € 9Q = 0}
(a1, 1) on fa € 9Qumy — 0}

where 713, 721 are constants as in (A4.3) (iif)

The existence of a unique family {P, : = € Q} of probability measures is assured
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by Varadhan and Williams (1985).

Now let S be a smooth convex unbounded domain contained in @ such that
(Q\S) € B(0: 1) and (85 \ 9Q) C B(0: 1); that is the curved part of the bound-

B(0:1). Let 7 be a bounded Lipschitz continuous function on

ary lies entirely within B(0 :
98 such that 3(s

is the inward normal to 95 at @. It is not difficult to see that such a 5 ex

= () for = € 9Q N IS and (3(x),n(x)) = 1 for © € IS, where n(w)
Let

{P, : @ € S} be the diffusion with state space S, corresponding to (@, b, 7); exd

and uniquencss of such a diffusion is guaranteed by Stroock and Varadhan (1971).
Let # € Q be fixed. Define the following stop times:

7 (w) inf{t > 0: [u(t)] > Z }

Ta(w) = inf{t > 7 () \m(t)}gi)
(W) = iu[(t>r;,(m)-\m(t){z%). i=1 2,

Fori=1, 2, - let D," ' be the regular conditional probability distribution (r.c.p.d)

corresponding to P, given By, | and D¥ be the r.c.p.d corresponding to P, given By,

Define

w0 0
=P QDY Pr =15 @ Dy
) )

(Here we use the notation as in Section 6.1 of Stroock and Varadhan (1979))

Now by Theorem 6.1.2 of Stroock and Varadhan (1979) we sce that the measures {75},
as above are well defined. Observe that B = 0( U B,). Since P%, and I agree on By,
by construction, on applying Theorem 1.3.5 of s“omk and Varadhan (1979) we sce that
there exists a unique probability measure g1, consistent with {I},-.

Let BY, B, B* denote the expectations with respect to P, Py, and g, respectively.

Proposition 4.1.2 : Let  (A41) - (A4.3) hold. Then  the  family

74



{1 : = € @} of probability measures (given above) is the unique solution to the sub-
martingale problem corresponding to (g, b, 7). Morcover, the process {X(t) : ¢ > 0}

under {1, } is Feller continuous and strong Markov.

Proof: The only aspect which needs comment is (4.1.5). Tn view of the above construe-

tion, Theorems 6.1.2, 6.2.1, and 6.2.2 of Stroock and Varadhan (1979) all other assertions

can be obtained by fairly standard argument

To show that (4.1.5) holds for all @, note that it is enough to prove (4.1.5) for = € B(0 : 7).
Now let = € B(0: 71) be fixed. As X(t) # 0 on [m-1, 7] observe that

B[ xteas) = 221 [

[ Cxoas) + 322 [ (e

(4.1.6)

Fori=1,2,+, [ Lioy(X())ds is B, - measurable and p, = I% on By,,,. Hence we

have,
B[ v XCe)as) = B 1 (X))
- /!N(/"‘”( D¥((X(s) = 0)ds)dl% |(w) =0

S st
(4.1.7)

as {P, : = € Q} solves the submartingale problem for (I, 0, 4) and Dy is the r.c.p.d
corresponding to I, given B,,. As 1, and P, agree upto 7 and (f’, : x € Q} solves the
submartingale problem, the first term in the right side of equation (4.1.6) also vanishes.

Hence we got (4.1.5), by combining equations (4.1.6) and (4.1.7). o

Remark 4.1.3: For > 0, let Sy be a smooth unbounded open convex set in @ such

that (Q\ Sp) € B0 : £) and (855 Q) € B(0

2 2) ; that is, the curved part of the

boundary lis entirely within B(0 :

Let @ = 23and b = %3 Define the stopping

times

Oy (w) = inf{t > 0 Jw(t)] > b}, Ou(w) = inf{t > On () : [w(t)] < a}

a1 () = inf{t > () : Jw(t)] > b}, i =1, 2 -



Let 45 be a bounded Lipschitz continuous function on  9S; such that
Fp(z) = y(x) on 9Q N 8Ss and (Fp(x),n(x)) = 1 for x € 9S4, where n(x) is the inward
normal to 95 at z. Let {I% : = € Sp} be the diffusion in S corresponding to (o, b, 7).
Note that when 3= 1, we take, Sy =S, 1= Pand 6, =7. i=1, 2, ---. Note that
if | > 4 then g, and 1% agree till hitting B0 : /).

For r > 0, define

a,(w) = inf{t > 0 [w(t)] = r}

Lemma 4.1.4: For any r > 0, we have

sup B (0,) < 00 (4.1.8)

[BES

In particular, the process exits out of bounded sets in finite time.

Proof: Casc(i) Lot » < 9. In this case (4.1.8) can be casily derived from Theorem 3.6

and Corollary 2.2 in Varadhan and Williams (1985), together with the facts that the

diffusion {7, 1w € QY is strong Markov, it. solves (iii) of the submartingale problem and

that the diffusion has continuous sample paths.

Case (i) Let » > 3 Let 7, i = 1, 2, -~ be as in the construction of ji,. Lot

7y =%, 1= 3 Observe that by Lemma 2.1.2(a) of Chapter 2 and by the strong Feller
€ 8}in S wes

property of {P, ¢ that

‘i‘nf Pyo, <0,,) =6 >0 (4.1.9)

Observe that

Bo) = B {/ ds
0

cals T o enfy T

2 g\ >1

(4.1.10)

Note that to prove (4.1.8), by Case (i) and strong Markov property, it is enough to show
that

sup B(e,) < 0o (4.1.11)
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Let @ be such that |z] = ry ; then

0

Now for i=1,2,...,

. s
L'[ / ds} = [un,\,,“)1-ﬂ;(m y ] ,zs]

e ATai 4

Further
)od / ,is]
"

Observe that by (4.19),

a(@y > T 1)

Hence we have

ds} = o, Am) =0

o
< (o > 7o) sup Do A7)
s

"

= (o> m0) sup o, Aay,)

lal vz

ity
= I [l(w,,\u.)l‘j)‘r(,‘.) / ’i-“'}

0

< (o > 1) sup Bi(m)
al

= pa(oy > ) sup El(a,,)
x| =ry

= I [lw e o w}

< B [l(mm Bo. ,)(l(n»n))]

< pa(or > mig) sup Do, > 0y)
ol o

< (L= b, > 7 8)

pa(0r > i 1) S (L= 60!

pa(or > ) € pa(on > i 1) S (1=8)" "

Let Cy = sup B0, Aay); Cr =
fal vy

Combining equations (4.1.10) wit|

that C, and C, are finite, we can obtain (4.1.11) and hence the rosult

sup B(a,,).

(41.12)

(4.1.13)

(4.1.14)

(4.1.15)

(4.1.16)

b equations (4.1.12) - (4.1.16) , together with the facts
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Lemma 4.1L.5: For any = € Q, any ¢ > ),

(u)E;‘[/n loo(X(s))ds] = 0 (4.1.17)

Jo

(b)pa(X(t) €0Q) = 0 (4.1.18)
Proof: Because of condition (iii) of the submartingale problem it is cnough to prove that
21 [ 1no(X()ds] =0 (4.1.19)

It

where 9¢Q = {z € 0Q : i = 0, z; > 0}, jk =1, 2, j# k. To prove (4.1.19) when

k =1, it is enough to show that
[ 12(X(5)) € A)ds =0 (4.1.20)
b

for an arbitrary r > 0, where A, =

€9Q:m =0, x> r}. Note that it is enough to
prove (4.1.20) for 0 < r < 1. Put #:=r in Remark 4.1.3 and let /%, 6;, i =1,2, -+ be
as in Remark 4.1.3. Note that

0

o ds] = o X, )ds
I RMESTEED YAV IR MESTE
as X, ¢ A, when t € [0, 05,]. Now by strong Markov property,

Oz i
mf" o xgal = B[ L (Xl |
o A
= BB, o [ 1 X0 =0
o,

as j1, and I agree on [0,065] and duc to the fact that {7 : z € Sp} spends zero time on
the boundary. (sce Stroock and Varadhan (1971)). Hence we get (4.1.20). Observe that
(4.1.20) when k=2 can be proved similarly. This proves (4.1.17).
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4.2 Asymptotic properties

In this section we will be concerned with certain asymptotic propertics of the diffusions,

like recurrence, transience and positive recurrence.
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defined by

for i, j=1, 2, i # j, where 4$)() is a Lipschitz contimious function on 9G; such that

Yylw) i@ € 96, with ;> 1+ e

0 if wedG witha, <r—c

Let {27 ¢ € Gy} denote the (L, J9)- diffusion with state space G, i =1, 2.

Proposition 4.2.1 Assume (A4.1) - (A4.3). The following statements are cquivalent.
() mo € Q is a recurrent point.
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() (X (t) € U for some t > 0) = 1, for all # € @ and for all nonempty open sets U C Q
1
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