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INTRODUCTION AND NOTATION

In the present work we shall deal with the asymptotic completeness
problem in three and four (Quantum Mechanical) particle scattering. This
thesis is divided into three chapters. 1In the first chapter we give an
introduction to Scattering Phenomenon and give a description of the
N-particle completeness problem. Then we collect some results preliminary
to the later chapters and some results that would complete a discussion
of the prcoblem.

The second chapter consists of some technical results and a reduction
of the asymptotic completeness problem in N-particle scattering via time
dependent methods.

The last chapter has two sections. The first section deals with
verifying the conditions laid down in chapter II, for completeness to
follow, in the case of three particles. This we do under explicit conditions

|727€ in the

on the potentials. The potentials decay at the rate of |x
pair directions and have some local singularity.

The second section of the last chapter has completeness for the four
particle case. Here apart from some smoothness conditions on the pair
potentials we impose implicit restrictions on the pair Hamiltonians.

We deal with only separable Hilbert spaces with inner products linear
in the second variable and assume all the operator theory basic to our
discussion. This background is well covered in [AJS, Ki*RSI—II,W].

For a self-adjoint operator L on a Hilbert space H we use the following

notation. o(L), GP{L}, UG{L], ﬂac{L} and ﬂﬂc{L] denote the spectrum of

L, the point, continuous, absoclutely continuous and singularly continuous



spectra of L while Hﬁ{L}. Hc{L}, HaE{Ll and HECILI the corresponding

spectral subspaces of L in H. By ©

EEE[L} we denote the essential spectrum

which is the union of continuous spectrum, eigenvalues of infinite
maltiplicity and the accumulation points of eigenvalues of L. By EL we
denote the projection onto HPIL}. The range of a closed operator A will
be denoted by R(A). An eguation like a¥ = b* + ¢t will mean two
separate equations cne for each sign. Similarly a statement St means

two independent statements s and s7. an operator € on H and C 8 1

on H 8 K are denocted by the same letter C. For any two operators A,B,
by Bﬂ:{ﬂ} we mean the n-fold commutater [A,... [A,B]l...].

In the discussion of many particles Greek letters index nairs cf
particles while Roman letters index the particles themselves. The summaticn
I in chapters I and II is over the set of y's given by {y = (i4):15 i< jsN}].
: For any real valued function $=Hlt*+ IR we define, whenever it exists,

t

E 1im V(%) 1im ¢ [ ds ¥(e).
£+t g+t ° 0

1!

We indicate in [.], any reference to other works. All the absolute constants

are denoted by the letter K.



CHAPTER 1

DESCRIPTION OF SCATTERING PHENOMENON

§ 1. Scattering cross-scctions

Scattering is an essential part of Physics by means of which a
Physicist tests his theories, discovers interactions among fundamental
particles and studies the structure of matter in general. The scattering
experiment consists, usually, of an incident beam of particles, the target
(or the scattering centre) which scatters these particles and a detector
to detect (count) the particles going out after scattering. The obgervable
quantity in a scattering experiment is the cross~-section which has an
expression

o =), aw §F W
S

in terms of the differential cross-section %% fﬂ} defined as follows.

If the number of particles incident on the target per unit area perpendicular
to the direction of the beam is Nﬁ and the number of particles scattered

in the solid angle Aw about the direction w is ﬂac{m,ﬂml, then the

following limit, when it exists is defined to be the differential cross-

gection. That is

1im Nec (08 g
|Aw] + 0 N Ow an y

The corss-section is the effective cross-sectional area the target
presents to the beam of particles as an obgstacle to movement.
In the case of guantum mechanical particles the differential cross-

section ie related to the probability p(f * mi of a particle starting
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in a state f and getting scattered in a direction w as follows.

When the scattering matrix (defined in the next section) is unitary,
the probability that a particle incoming in a state f gets scattered
in a cone C is given by the scattering into cones formula, after
removing the part correspcnding to absence of scattering as follows.

(see [D, AJS]).

Proposition 1.1 If a particle in a state f gets scattered into the

cone €, the probability for this event is

pte+c) = [ |tse=p) % ap
C

where £ € thnial, S is the scattering operatcor and "” ~ " denotes the
Fourier transform in sznial.

In the case when there is a beam of uncorrclated independently scattered
particles ecach of which is in the state £, the formula gets modified

and gives the cross section for the event viz.,
- 2 ~ 2
o(f +C) = plg » @ = [ &®a [ &pl(rRe) (0]

where R = S-I and fa denotes the rigid translate of f in the plane

orthogonal to the initial (incident) direction of the beam by an amount
a. Under suitablec conditions on R (see pp. 283-286 [AJS]) the

differential cross-scction can be written as

,%% (W) = -Ia ax [ aw'|2mi RO |2 W |
2
S

where R(A,w',w) is the integral kernal corresponding to R in the spectral

representation of the free Hamiltonian Hn.
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In the case of multichannel scattering one takes into account the

incoming and the ocutgoing channels and obtains the relevant cross-sections

See [AJS, T, RS III]).

§ 2. Abstract multichannel scattering [AJS].

The guantum states of a multichannel scattering system are unit
vectors in a complex separable Hilbert space H. The system has the
associated Hamiltonians H_, {H{D}}DEJ and H which are self-adjocint
operators with appropriate dense domains and the index set J consists
of the clusterings D. Hc’{H{D}}DEJ and H are respectively called the
free, cluster and total Hamiltonians. The system has the asscciated

subspaces HD,{HD} and M_(H) which are, respectively, left invariant

DEJ
by the unitary evolutions U, {vfinl}nza and V,_ generated by
Hb'{H{n}}DEJ and H in that order. M_(H) is the collection of all
scattering states. From the physical principles of scattering it is
necessary that the scattering states evolve intoc free cor clustered states
for large times. Tt is also necessary that the scattering states giving
rige toc different cluster states are not the same and also in reasonable
gsituations all free or cluster states come from scattering states. These

requirements form the Asymptotic condition. We set H(0) = HG, ?t{ﬂ} = Ut

in the following.

Asymptotic condition

(AC 1) (Existence of wave operators). For each f € M _(H), there is

some £ (D) € M, DeJ lJfD} such that for each D ,

S 1im V_f - vt{mf‘t{n} =0 .
t+ +co



o)

or equivalently,

- o
S lim Vt

+t+ +x

v, (D)f = o).

+
exists for all f (D) € HD.

(AC 2) (Ortheogcnality of the ranges) Let the ranges of ﬂt{D} be

denoted by Ft{D}' for all D £ J{J {o}. Then,
F (D)- | F (C) if C # D .
(AC 3) (Asymptotic completeness)
® F_(D) =M _(H) = & F_(D) + De J{y{o}.

D D

The asymptotic condition results in the fcllowing Proposition [ARJS].

+
Propositicn 1.2 Let (D) be defined by (AC 1) for all D e J L}{D}_

Then,
(1) ﬂi{D} are partial isometries with initial space M-
(idi) ﬂt{D} intertwine H and H(D), that is for all +t £ IR,
v, ety = of (D)V,_ (D).
(iii) If Pi{D} is the orthogonal projection onto Ft{D}, then for
all t € IR, V_ P (D) = P (D)V,_.
(iv) If (AC 1) - (AC 3) arc wverified, then

+ A -
Spe ™ Q mMm} 9 (@

is defined for each D,C € J L}fﬂ};

vtfn} EDC = En-: vtn::}



~J

and

*
8 8 = 4 Pfﬂcj

peay{o} ¢ P ==
) Sep S;'n = Sper P(ML),
Degyio}

where P{HCJ is the orthogconal projection onto HE' We note that (iv)

expresses the unitarity of the matrix ((S__)) of operators on ] M.D.

peJ () {o}

The scattering will be called potential scattering when the Hamiltonians

DC

{H(D}}DEJ and H are given as perturbations of H_ by the multiplication
operators {W°} and W respectively on 12(m”). We deal with 2 model for

potential scattering in the next section.

& 3. A model for N-particle potential scattering
We refer to [AJS, Chapter 15] and [8 2, Section 4] for the details
of this section. We take LEEH} as the space of quantum states (and

corresponds to H of section 2) on the relative configuration space

NV N
X = {xe IR : 2 m.x. =0, Vv 2= 3} (1.1)
iTi
i=1
N
equipped with the inner product <x,y> =E m, X.Y,- Such a space
i=1
describes N-particles of masses m, i=1,...,N, interacting wvia the
. . . W
(real valued functions) pair potentials {Wij {xi-xj}}li i,j<N’ :-:i,::j E IR .
The free and the tctal Hamiltonians of such an N=-particle system are the
following operators respectively.
(N-1) k
1 1 2 1 1
H === A = I = P ; = + ). “‘Efﬂu
o 2 X i=1 2 %% Px %k m o4 Hi Hk j=1 1
H = H_ + E“.r , Y= (13), 1 5 j,i S N, (1.2)



o

where ﬁx is the Laplacian o©on LE{KJ and pK’s are the conjugates

toc the cperators of multiplication by (the Jaccbi coordinates) Yy given by,

il o~

_ -1
Ye T Fpa1 " % s

on their maximal domain in LE(IRU}. In (1.2) WY denotes the operator

of multiplication by the function wT(YY}' To account for the clustering
of particles we consider the partitions (clusterings) D = {Dl""'nk} of
{1,...,N} into nonempty disjoint sets (clusters) D,. Suppcse, for

convenience,

i(p) = {y = (43) : i, € DE for the same £, 2 =1,...,k}
(1.4)
e(D) = {y = (ij) : i € Doy 3 € Dy,» L#ERY, L,2'"=1,...,k},
then the cluster Hamiltonians are defined as
H(D) = H_+ ) W, . (1.5)

v € i (D)

We note that if # p =1, then e(D) = @ and H(D) = H and if #D= N
i(D) = @ with H(D) = H_ respectively. When dealing with clusters it is
useful to write X in terms of the internal and external configuration

spaces as follows. Let # D + i,N, then

x° = {xex: E m,X, = 0, for all 2 =1,...,k}
iEDE

(1L.6)

X, = {x € X : X, = Xy if 1,3 € D, for the same 2, %=1,...k}.

In this case in X,

D D
.7

X _l xD and X =X @ HD. (1.7)



A point xD in xD has (N~k) ccmprnents, each of which is in IEU and
the components of uD can be written by choocsing some Jacobi coordinates
for each cluster D, as in (1.3). Similarly a pcint X in RD can be
written in terms of the Jacobi coordinates obtained by treating the

clusters D, as particles with masses M, = I m, and positions
2 ieD,

HBI E m.X., 4in the confiqguraticn space X. When X has the structure
'3 ieD,

ag in (1.7), the tenscr product

L2(x) = 1°x°) ® LE{‘J{D}

results and the Hamiltonians in (1.2) and (1.5) can be written as, using

and ﬂx respectively on LEIKD) and EF{HD}, for

x° D

suitable nD, a_ .,

the Laplacians A

D
D 1l D 1
= . -_ e e -
s T ™5 3 2 B %Ay by
X D
(1.8)
H(D) = H + T~ where oY =10 + Y W,
YEi (D)
The Hamiltconians HD, "I'D and T are self-adjoint on their maximal domains

D
ﬂ{Ho}' ﬂ[TD} and ﬂ{TD} in inx], LEIRBI and LE{KE] respectively. The

following condition, which seems to be necessary for the Asymptotic

condition to be true, shall be imposed on the potentials from now on.,

Assumption (Al). Let ¥ be a pair and WT the associated two bedy

potential. Let D(Y) be the clustering with # D = (N-1), Y = D, (Y)

DY) = TY. Then

if

#Dii“f} = 2, For such acaosewe set ¥ = D(yY). Thus T

we assume that

Y 4 -1
W#[T 1)

is compact on LEEKY}.
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This assumption immediately implies that ﬂ{wT} contains F{TN} and

v EeD>O, there is a b(€) > 0 such that for each £ € D(T") ,

llw g |1 < ellr’ £]] + beerg]]

which is saying that W_ ie T'

Y

by the Katc-Rellich Theorem and Remark 1.4 below, we immediately conclude

bounded with relative bound zero [K]. Thus

that HD is self-adjcint on ﬂ{TD] for all D and that Hb, H(D), H are all

self-adjoint on ﬂ{Hn} = DD = D(H).

Proposition 1.3 (Kato-Rellich) Suprpose A is a self-adjoint operator on

a Hilbert space H with demain P(a) and B a symmetric operator with

demain D(B). Suppose, further, that
(i) P(B) contains D(aA) and

(ii) for some a,b £ (0,®), a < 1 and all £ e D),

el < allagl| + »llel]

then A+B is self-adjcint on D(A) and essentially self-adjoint on any
core of A and A+B is bounded below whenever A is soO.

We refer to [KL AJS, RS III] for a proof.

Remark 1.4 In view of the above Propcsition it easily follows that

H, Hm' H(D) are bounded with respect to one another.,
Henceforth the unitary one parameter groups gencrated by HDr H (D)

and H will be denoted by U_, vt{n} and V, respectively. By wvirtue of

t t

the eguation (1.8) we also have the decomposition

D i
2) = U
Ut = Ut Ut.D and Vt{F} vt £,D

" . D
= exp(-it TD} and V, = exp(-it H).

where UE = exp(~-1it TD}, U £

t,D
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As another conseguence of the assumption (Al) we have the
Hunzicker-Van Winter-Zhislin Theorem on the essential spectrum of H.
We Bet EF = inf ag(H(D)}).

D: § D>2

Proposition 1.5 (HVZ) If H is the N-particle Hamiltonian with the pair

potentials WT satisfying condition (Al) then

UEEE{H} = [L,=).

See [R5 IV, SB1] for a proof and further references on this
theorem.

In the discussion of spectral properties and completeness for
N-particle systems thresholds often play an important role, hence we

define them in

Definition 1.6 (Thresholds of an N-particle Hamiltonian)

Consider inHE} for any D with = #D =& 1,N. Then the thresholds

T(H) of H are defined by

D
T = .
(H) g UP{H ) U {0}

& 4. Discussion of available results on completeness.

In the multichannel scattering theory the pioneering work is that
of Fadeev [F] who dealt with the three body problem and proved completeness
when there are finite number of channels. Completeness in N-particle
scattering theory was solved by Torio - 0'Carrol [Ic], Lavine [L 2] and
Sigol [S 1] completely in the single channel case for a class of short
range potentials. In numerous papers Sigal made a reduction of the N-body

short range problem using a time independent method. BAll these culminated
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in [52] where a discussion of {and a reference to) all his work can be
found. Lavine [1.1,2] used the repulsive nature of the pair potentials
to conclude that HD has only continuous spectrum for all clusterings D
and that H has a2 conjugate to arrive at the result whereas Iorio-0' Carrol
[Io] prove the absence of point spectrum for all HD from smallness of
the coupling of the potentials to the free Hamiltonian. In [S3] Sigal
shows that if all the pair potentials W# consist of a repulsive part and
a weakly coupled part with a overall (3+€) decay at ¢« in the pair
dircction, then the resulting N-particle system has only one channel.
Hagedorn [Hal] has proved completeness for pair potentials with (2+€) decay
at @, in the case of three and four particles systems assuming finite
number of channels for ﬁhe systems.

Fadeev's method was adapted by Newton [N] for the three particle case
and this was followed by Ginibre-Moulin [GM], Howland [Hd and Thomas [T]
who all make use of the stationary method in a Hilbert space and
require more than |R!-2 decay at = in the pair directions for the pair
poctentials apart from having finite number of channels for the system.
Mourre [M1l] applies Ginibre-Moulin formulation and considers differentiable
potentials with (1+€) decay at ® and assumes single channel for the three
body system to prove completeness. In [M3] he gets weighted L2 estimates
for the total evolution of a single channel short range three particle system
in the pair directions using which he proves completeness for such a
system in [M4]. Hagedorn-Perry [HP] prove completeness for a finite channel
three particle system having pair potentials with (2+4€) decay at <.

Enss [El] cutlined a method for proving completeness in three particle

scattering and cbtained [E2] low energy estimates toward that end.

In [KKM] some of his ideas were
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adapted, along with commutator methods of Jensen [J] to obtain estimates
on the two particle evclutions and the theory of evolution of observables
developed by Muthuramalingam and Sinha [MS], for proving completeness
when'{W#}, consisting of local singularities, decay faster than !iTl_z at o
In the present work we reduce the N-particle completeness to the verification
of two conditions (local decay and the low energy decay of the N-particle
evolution) on the lines of [MS] and [KKM]. We present the work of [ KKM]

and give a partial solution to the four particle completeness allowing for
infinite number of channels for a class of pair potentials.

As for the two particle completeness the problem is completely solved
even for the long range potentials and the literature is vast. The methods
used fall in three catagories. The first is the abstract trace class theory
of Kato-Birman [K2, Bl]. Then the Agmon-Kuroda [A,Ku] theory of eigen
function expansions, the smoothness theory of Kato-Lavine [K3, 4, L3]. See
also Povzner [Pol and Ikebe [Ik]. Finally the time dependent theory
was pioneered by Enss in [E3,4). Davies [Dal, Mourre [M4], Muthuramalingam
and Sinha [MS] and Perry [P2] contributed to the development of the
theory for short range potentials. See alsc Simon [S8B2]. For further
references and literature see [AJS, Am, Mu, RS TIII].

In the spectral properties of N-particle Hamiltonians a lot was done
recently. Mourre in [M2] developed a theory of local conjugates using
which he proved the absence of singular continuous spectrum and non-existence
of infinite number of eigenvalues away from the thresholds of a three
particle Hamiltonian, for a large class of potentials. Using his method
the same results were obtained for the N-particle case by Perry, Sigal
and Simon in [PSS]. Froese and Herbst in {FH1] proved the absence of

positive eigenvalues for a wide class of N-particle Hamiltonians again
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using the Mourre inequality which they prove in [FH2]. They also show
in [FH1] that the non threshold eigenvalues have eigenvectors with
exponential decay at «. In [Pl] for the same class of Hamiltonians,
using the results of [FH1l] Perry shows that non threshold eigenvalues
do not accumulate at the thresholds from the positive side.
Having summarised the available results we shall now collect some
of the results on the spectral properties and completeness of N-particle
Hamiltonians. We give only those for which a complete proof is available.

We will start with theorem on quadratic forms. We refer to [RS I, II] for

relevant definitions and proofs.

Proposition 1.7 A closed semi bounded quadratic form on a Hilbert space

H is the quadratic form of a unique self-adjoint operator.

Remark 1.8 If the potential W satisfies the condition (Al) then it has

to be a function at least in Lioc' Then x.VW(x) will be a priori defined

1 1

as a distribution and when we further require {1+pzl_ H*?H{x}{1+p2}u to

be compact then even x.VW becomes a function again.

Proposition 1.9 (Froese-Herbst) Let H be a N-particle Hamiltonian with

a1

the pair potentials satisfying (Al) together with (TY+1}*1 xT.??ﬂ#{xT}{T?+l}_*

compact for each pair Y. Then
(i o (H 0,®) = and
i) P[ ) f} ( ) @
(ii) E E:UP{H} ~ T(H) and fE is an eigen vector of H corresponding
to E implies that ”expu[xlle(xﬂz dx < « whenever 'E:+-'.::t2 < B where
B = inf{T() () [E,»)}.

See ([FH1l] for a proof.



+ 15

Propositicn 1.10 (Mourre-Perry-Sigal-Simon) L.et the pair potentials

of a N-particle system satisfy the conditions of Theorem 1.9 and also let

:z”#l]‘ltxv.vY{xT.v W (x7))) (T +1) "1

Y'Y

be bounded. Then,

(1) o__(H = @.

sSC

(ii) T(H) is a closed countable set
(iii) tﬂ?ﬁﬂ r\(IR‘aT{H}] is finite with finite multiplicity for each.

See [PSS] for a proof.

Having described the spectral properties we will look at the

completeness results.

Proposition 1.11 (Iorio-0'cCarrxol) Let the pair potential WY satisfy

iv-€

iU+E{IRU} AL r 3

i

J (. 3.
‘Y( ) £ L

Then the wave operators for the corresponding N-particle Hamiltonian

H, = H + A L W
L

y Y

in particular H has only absclutely continucus spectrum.

A exist and are unitary for sufficiently small IA].

Sece [Io] for a proof.

Proposition 1.12 (Lavine) Consider a N-particle system with pair

potentials W, satisfying in addition to (Al) the following.

Yy
. Y Y
V. W = 0
(1) x v _TII:H )
1 2 i 1 o0 W
11 = . £ I IR
(ii) Wﬁ HT + W# with WY{ ) ( )

a

Wii.} e tP(m"Y) (p =2 4if v s 3, p>2 if V

and p =*%RJ if v > 5) and
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-G + ©)
(iii) WT{:{T] = WT[!lel with IHY{xT}l s k@ + |x'D)

Then the wave operators z2xist and are complete.
See [L1,2]) for a proof.

Then we give a two body result for which we take Hac{H} in the

place of Mm{H} of section 2.

Proposition 1.13 (Agmon ~Kato-Kurcda) Consider the case N = 2 and

&
wix) = (1 + |x]) -Wltx} , fFor & > 1. Let Wy (x) satisfy (21). Then

(i) GP(HJJHE{D,W} is a discrete subset of (0,®) with each having

finite multiplicity.

(11) GSEIHi = @ and

(11ii) The wave operators exist and are complete.

See [RS IV] for a proof.

The same result obtained using time dependent methods is contained

in [E4, Da, Mi, MS and p2],.

Note : After the present work was done we came to know of the work of

Kitada [Ki] on the asymptotic completeness of N-body Schrodinger operators.



17

CHAPTER IT

N=PARTICLE COMPLETENESS - A REDUCTION

In this chapter we present a reduction to the prcof of N-particle
completeness by a time dependent method on the lines of the work in [MS].
This chapter consists of two sections, the first of which has some technical
results and a theory of evolution cof the observables A and xg. In the second
section we prove N-particle completeness under the assumption that the
scattering states are not supported in any bounded region corresponding
to a pair direction in the distant future or the remcote past. We also
assume that they do not have small pair energies asymptotically. Apart
from these we make fairly general assumptions on the pair potentials.

Throughout this chapter unless specified otherwise we take a clustering
to have 2 £ # D £ N-1 and when $# D= 1,N are allowed, we set
H(D) = H for # D =N and H(D) = H for # D = 1,

-

€ 1, Asymptotic evolution of A and xz

3vo 30

fle” x) 1]

The generator A of dilations Ygq on inxl. [FYEf] (x) = e
and the moment of inertia xl play an important rcle in the theory of
observables, so we give a brief description of their properties below.
Both A and xz are defined on S(X) and leave it invariant apart from

being essentially sclf-adjoint there. A has the following explicit form

en S(X).
N-1
1 ' D

A= ) (ypetpy,) = R+ A

k=1

(2.1)

p_ i ,D 9 9 _D _ _ i 0 d
AT === p T T p* Yo By 3% 3%t Bx Xp)



x“ = a_myS = (a) x4 (a) T (%) (2.2)

2 Hil -1 2 D.-1. D.2
x Yx
k=1

in the coprdinate systems (1.3) and (1.7) respectively. Both A and xz
are invariant under a change in the coordinate system. We note that aP
and A, are essentially self-adjoint on S{HD] and S{xni respectively.

on S(X), the following commutation reclations are valid.

. . 2.
J.[HG,I‘;] = H-:} , 1[Hﬂ,x ] = 41 . (2.3)

At this point we make a remark.

Remark 2.1 Under the scale change yé = v ail Yy pé = Jhk Py the

following simple expressions result for Hc and xz while A remains invariant.

N-1 MN-1 .
Ho=32 3 epn? . %= § wn?=6"H% e xn? .
k=1 k=1 -

The potentials also undergo a scale change. In view of this we make
this transformation on the space X thrcughout this report.

We now make the fcllowing assumptions on the pair potentials and work
only under these assumptions in the remaining part of this chapter and the

later chapter.

Assumptions on the potentials : We use the notation introduced in (Al) and

-8
set ﬂlfl} = {l+121 1 , for some 61 > 1. Then the potentials {WT}

satisfy, for each Y,

(Al) W {TY+1}_1 is compact on LE(DRU].

(a2) {TY+1}h1 [i ﬂT.WT]{TY+1}“1 is compact on LE{IRuﬁ and

(n3) HT ﬁlfx }_I(TT+1}_1 is bounded.
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The Duhamel formula,

t
[C, exp(~it B)] = if ds exp(-i(t-s)B)[B,Clexp(-1is B) (2.4)
O

gives an expression for the commutator of a bounded operator C, with the
unitary group exp (-it B) generated by a self-adjoint operator B, the
integral converging in the weak sense. Henceforth, we will use this

formula, without further explanation, whenever necessary.

Theorem 2.2. IL.et H be a Hilbert space and C be a self-adjoint operator

with CE a family of bounded self-adjoint operators converging to C on

P(C) as £ + 0. If L. is a bounded self-adjoin% operator such that
eoL1l] < k<o

B for a1l 1 2 € 2 O, Tha i
(i) L leaves 0(C) invariant and

(ii) [C,L] is a bounded opecrator -

Further if Adg {L} is bounded for all 3 = 1,...,n then,

E
(1id) ad% {L} leaves 7D(C) invariant for all 3 = 1,...,n=1
E
(iv) hdé {1} ie bounded for each 3 = 1,...,n and
{v) L leaves ﬂ(cn) invariant.

Proof (i) TFor any f,qg € 7(C) we have, by the self-adjointness of CE

and L, for each € > 0,

<c.f,Lg> - <uf,cg>| s |ltc_,u1l| Hgll [Ilall s xl|el] [lgll. 2.5



By taking 1lim € = 0 in (2.5), this inequality implies

|<cf,Lg> - <Lf,cg>| = x||£l] llgl!
(2.8)

[<ce,rg>l < x e[ {]lg}] + [lcgl{}s
Since C is a self-adjoint operator (2.6) implies that Lg € D(c) and
also since g is arbitrary in 0(C) that L leaves U(C) invariant.

(1i) In view of (i) we have for any g £ P(C) taking lim € = O

in {2.5),

ltc,uigll = x|lgl]
which gives the boundedness
llte,L1]l = K <=

by the density of U(C) in H.

(1ii) By taking L = Adé (L} for 3 = 1,2,...,n-1 and applying
(i) by replacing L by Lj in (i), we obtain the result.

(iv) Given the result (iii), the proof is as that of (ii) replacing
L by Lj in (ii).

(v) For f,g € F{En}, we have the following inegquality.

n .
F{Cnf,Lg} - {Lf,cnql‘*[ = I*:f. }: ( r:-: ) Adé{L}cn"'j g}]
J=1

s % ¢y llell aad@yl) 1™ Vgl (2.7)
= j C « 1 l | g * -
i=1l

ey i, .
Now by the functional calculus for self-adjoint operators D(Cc™) is

contained in ﬂ{cn} for all 1 £ j &S n and E{n_j) is C" bounded
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for any 1 £ 4 = n, Hence (2.7) implies that

n
<, te>| s 1lel] €5 ¢ % Il 5k el] 1Ichs])
j=1 |

which implies the required result by the self-adjointness of c” and (2.7).

Corollory 2.3 Let S =H(D) , 13 #D3N, 2351017 <= ., Let

a, be such that a < uy < inf 0(5) and consider the bounded self-adjoint

operator {S-a}_l. Then for any positive integer n,

(i) !?ndz {zt}ll < kK(|e|™+1) when z, = exp (=it (s-a) 1),
(i) ||ad {¢®)}|| £ ¥ for any ¢ e dZ(na}.
(iii) I!{S—E}Adz{[E—z}nl}]} S K for all z ¢ o(s).

Proof we fix an N and then a D. Then we consider the family

X. = x{1+ﬂx2}_1 of bounded operators for £ > 0. Clearly X + x on Dix).

Since Et is bounded for any t, we havc,

t
. - * _ _ * S &
Rde{zt} = [x.,2,) = 2 (2 x_2.-1) =2, {} ds z_ il(s-a) ~,x )2
which implies that
. -1
< -
aa {2 31 = Jlies-a77, x 21| el + D).

£

Repeating this procedure we sec that for =z2ny n.,

In . -
Naa® 1z} < (el™n 3 k. ¢ 2y |ad I {(s-a) 3] [1aad {(s-a)"*}| ]|
X € j=1 1 I e Ye

Therefore we obtain the required estimate using Theorem 2.2 if we show

. k -1 e .
the uniform boundedness in £ of Rdx {(s-a) 7} for any positive integer k.
£
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Since x_ leaves S(X) invariant for g € S(X) we have,

2 Sxeq = 2 X Sg + [P,[P,xellg + [P,xelpg. (2.8)

A computation shows that [P,xeL[P[P,xC]] are bounded for each € and P

is S bounded. Thus (2.8) implies that, for some Ke'

s x.all < x_(llall + |lsslD (2.9)

Since S(X) is a core for S, this means that X leaves D(S) invariant

for each €. In view of this, on D(S),
(x_,S] = [x_,H7] =[x ,P]P - =([x_,P],P)
o , e’o i 2 g AR

and (2.10)

2
[xe'[xéS) = [xe'[xe'HO]] - ([xelp])
are both uniformly bounded in g} Since X leaves D(S) invariant we
can write,
Ad {(S-a)-l} = (S-a)‘-1 (s,x ](S-a)m1 .
x€ . €

Then repeatedly using (2.10) and computing explicitly we get the required

uniform boundedness of Adt {(s-a)"!} proving (i). The proof in the
€
remaining cases of D and H is the samc.

(ii) Since ¥(A) = (X-a)"1 is a bijection from (u,®) to (O,(u-a)-l)
and induces a bijection from C:((u,“)) to C:((O.(u-a)-l)),we set | = ct)o)(“1

and prove the uniform boundedness in € of Ad: {w((S-a)-l) only.
€

n -1 n
Adxe{w((s-a) )} = [at @(t)Adxe{zt} ,
hence by (1), |

|Iad} (61} s ||aa] {w(s-a) M} |
€ €

s xfae [P (Je]” + 1) s k)

Now the result follows by applying Theorem 2.2.



(iii) The proof is similar to that in (i) by noting that Range of

Ldi {{S_z}—l} is contained in 7(s8), writing (s-£) hdz {{E—t}-l} explicitely
£ E
using (2.8) and applying Theorem 2.2.

Lemma 2.4 Let S be as in Corollory 2.3 and sct p(A) = {1+12}~5; S > 0.

Then for all z # O(S) and & € c: (IR) the following are true.

P |
(i) If U(x) is an S bounded function with p(x) =~ Y (x) is also S bounded,

then w{x}{“"zﬂ_n D{H}Fl and ¢Ex]¢[5]p{x}_l are bounded.
(ii) If ¥ is an S bounded function thcen,

060 Y Yix)(s-2 ™ plx) and o (x) "TY(x)6(8)p (x)
are bounded.

1
(iii) For any pairs o,Y, ﬂfxﬂ]¢{TY}ﬂ[km] T iz bounded.

vy 22s-n7t a+xH 0, 2% ey (1ex?) 8
{l+x2}_af5~ﬂ}ﬂl Ee and {1+x2]-5¢{5} HB are bounded for all
0 £6052

@ on A e (43 ana 1D L s(e)a ey

ars boundad.

Proof. As in Corollory 2.3 we prove the result for a fixed N and D.

We do not discusgs the domain questions since they can be taken care of as in

Corcollory 2.3.
(i) Owing to the identity,

1

- - - - - -1 -1 -1
P(x) {(5-2) nﬂ{x} ! - vix) (s-2) “p(x) lﬂ{x}{E-Zl 1ﬂ{xi «..p{x)(5-7) px)

we prove only the boundedness of

$[H]{E-E}—1 p{x}_l .



Now we write 28 = u+e, where U is the integer part of 2§, in which case

the result follows from

0ix) (s-2) 1 %M (14x2) 1°

being bounded. We have,

, B
M= v § O, %
k=1

1 M=k

) (5-2)” ra” {(s-27")

Therefore,

wtxlfs-i3“1{1+x*}*a X

H=1 1 _ _ _
= v 10 R adE s T asd) Wt s-a T a)
k=1

$e

(2.11)

A typical term of the above sum is

-k e

v *7F pa® {(s-2 71 ()

which is bounded whencver

- 11 -
1:;{:.:}:-:” - ad {(s-2) 1}:-:

is bounded. Since

v E adk {s-27H)

= Ve 2dE (-2 Ty o0 T ady (s-2 7Y,

- =1 k+ -
and since wixlxu k+1{S—=] and (5-2) Ad*xl{tE—z} 1} arc bounded for

all k £ u-1, by Corollory 2.3 (iii) all the terms in the summation of

(2.11) are finite. Now the remaining term in (2.11) is

v ) (s-2) " (14 16

3 1

3 1

= vt () s - et s-2) s, (1) Ty (5-m) T
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By assumption the first term and thce factor w[H}HUIE—t]_l of the second

term of ths above equality are bounded, while

¥ 1

3 1

(s, (14x°) ) (s=z) 71 = [anf1+“2’ 1 (s-2)"

1

te-1 (s-z) .

1 EIQE—I E}iE—E

R o) B (s—z) Yi (14x 4 (e-1) %2 (14+x

Therefore it is clearly bounded since € < 1,

For the other result we have,

VEIG(SIo )T = W) (s+i) Tox) to(x) (s+i)d(s)p(x) T,

By the previous result than the result follow if we show the boundedness

i 1

of p{x) (S+i)d(S)p(x) ~. Since (. + i)d(.) € CZ{E}, p(x) (S+i)P(S)p(x)

is bounded by interpolation and Corollory 2.3 (ii), using the following

identity when My is the smallest integer greater than ¢,

, 2y
-4 2u 1 s —H (2, =k)
aex® LT omx Y= ) ash 'x ' adk (e
k=1

(ii) The preoof is similar to that in (i) except that we use, for

28 = U +E the eguality
xzﬁw{x}tsazjrlp(x}
el Lk ~1,_u-k € -1 _2u
= Px) ) {k} ad_ {(s-2) " }x p(x)+P(x)x (5-z) X p(x),

k=1

and Corollory 2.3 (iii).
. ot
(iii) When T,{]a = @ the result is trivial since p(x ) commutes

with ¢{T?}* Otherwise the proof is similar to that in (ii) when we note
that x_ can be written in the coordinate system of fx?,xT} as
cl Y
X = a(y,x)x + b{y,on)x and that

v

adk {6V} = {aty,w) ¥ ad® _ {6(rNH}
-3 _RY

is bounded by Corocllory 2.3 (ii) for all integers k =» O.
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(iv) We prove the boundedness of n2¢{51f1+x;}_1 only. Then
interpolation gives the boundedness of AE ¢{E}f1+ﬂ2}_e for any 0 = 8 £ 2.

we have

1

o + ﬂ2{¢{5}—¢(ﬂﬂ}}{l+x2]_ )

1

a2 ¢{S}[1+x2}_ = 2 ¢[H01{1+x2}*

We will prove the boundedness of the above two terms separately. Now

1

22 o) () = 18, 1,6 @ )11 () TR, 0 (1) 1A () Tt )% () T

By the commutation properties of A and Hn i.e. [h,HD] = iHu we see that
O

the factors {A,[h,¢{H¢}]} and [R,ﬁ{HG)] are again ED functions of Ha S0

that writing out A and hz in terms of x and p and using the above eguality

we get that
i!h2¢[HG1[1+x2}_1|i < K < ® o

On the other hand we deal with the term A2{¢(5}—¢[Hn}}{l+xz}_1 as follows.
. o -1
ns in the proof of (ii) of Corollory 2.3 we have a function £ Cﬂi!ﬂ.iﬂ-a} })

associated to ¢ for some Y < inf O(S) and a < u so that ,

A2{o(s)-0@ ) s T = [ at Dora’fz_~z0} (ax?) T (2.12)
where

Z = cxp(—it{E-a}“l] and 7. = exp (=it (H -a}_ll.

t t o

Therefore recalling that & = H(D) for some D, we have,

t
- =1 -
Az{ztvzz}{1+le L=y if as a? zi_stna—ai W (5-a)
¥ € i(D) 0

1 Z {1+Hz}'1.
3

Now

2 O 1

-1 -1 2, -
A Et_s(HD"a} WT{E-a] 2, (1+x)

- - - 2 - 2, -1
= {AEIHG-a} b 1ax®) 1}{{1+12}Eihsil+le 13 (1+x W, (s-a) L+ ™)

k=

{{1+32135(1+x2}'1}
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The first factor in the above term is bounded as before while the second
and the fourth factors have the bounds K{1+52] and K{1+{t-s]2] respectively
by Corellory 2.3 (i) and the third factor is bounded by (ii). Hence

t

=K J ds {1+[t—5}2]{l+51} ¥ K{l+|t|5].
0

| 18% (2, -2} (1) T |

Now the result follows since
2% (e(s)-0 ) ) T | £ x [ atldwr|a Wel®) < w

(iv) The proof is similar to that of (iii).

Next we have the following definitions and compactness results from

[PSS].

pefinition 2.5 (Almost verbatim £from [PSS]) We define D LJE‘ for any

two clusterings D,C, 1 < # D, # ¢ SN by "Draw lines between each pair in
{1,...,8} in a cluster of D and then between each pair in a cluster of C.
The connected components of {1,...,8} after this is done, form the clusters

of D {Jc".

Definition 2.6 ILet D be a clustering. Then a bounded operator is

D-compact if

(1) B commutes with exp(-ia PD] ¥ a € Xy

—

(in which case B = {B{pgl} in the spectral representation of P with

E{pn} a bounded operator on LE{HD} for almost every pD)_

(ii) p, * B{p,) is norm continuous and I1E{pn}||L2(xD} + 0 as pr} + o and

(iii) B{pn} is compact for each Pp-
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Remark 2.7 We note that if a4 is =-my Pair then Hul‘ﬂu-lrl]‘l i8 <-compact.

Because (i) and (iii) arc clear while for (ii) we write

-1 a L .o=1 o o -1 o o -1
{Wu{Hu+11 }[tn} = '[H'u{T +1) " H(T +1) (T + t +1) 1., Now (T +1)(T +t_+1)

is continuous in tt::' is defined for all f e I.2 {Hﬂl and goes to zero
strongly as \!:1,:'E + 0. By the compactness of W ETEI+11—1, (ii) now follows,

Proposition 2.8 Let the bounded operators El' B, be D and C compact

2

respectively for two clusterings D and C. Then their product E].BZ is

D U C compact.

We recall the definition of E lim given in the introduction for the

following:

Propogition 2.9 (Wiener) Let vt be a strongly continucus one parameter

group of unitary operators, with generator B, on a Hilbert space H , Then

for any compact operator C,

E 1im Jlcv_£]l] = o
t + ™ t

whenever f € H-: (B).

For a proof of the above proposition we refer to [RS III].

Next we give a widely known very useful decay result on the free
evolution of a N-particle system. In fact it is here that the restriction
on the dimension Vv 2 3, enters and the restriction is so that a large

class of zero energy free states have time decay faster than the inverse

power asymptotically.
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Proposition 2.10 We consider H_ for 2 SN < o, v 3, the pairs v,B

so that TﬂB = @ and set p(A) = {1+:’iz'.l-IiS

. 6}% . Then for some
My 1{u1{-26 i

(1) ||ﬂ{xT}e:{p(-—itHD} MRB}H = H{1+It|} 1
and
(ii) for any clustering D, with vy £ e(D) ,
Y Ns!
[lox")exp(-it TD}D{HD]II < x(+[t])

The proof is standard and uses the L:L to Lm decay of exp f-—itHG} in
t and the translation invariance of the Lebesgue measure along with
interpolation, so we omit it. However one can see [Lemma 16.3, AJS].

If the free states propagate with non zero energy then corresponding
to regions expanding with non-overlapping velocities there is arbitrary
decay. This is also true in some directiongs of phase gpace as we will

gee in the following Theorem.

o
Trorem 2.11 We consider Hﬂ for 2 S N <> and ¢ € EG{IR} with
positive constants a,b and c.

(i) If%h2 = sup supp ¢, b+c < a, then for |si s !t! s

-M
ledlx] > ale)) v, om F (x| < cleDh]] < x, a+|t])

(1ii) If % 1:12 = inf supp ¢, c+a < b then

-M
Hedx] s altD U, ¢[HG}F{IE| < cleh]] s KH(1+]t|]

for any positive integer M.
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(iii) Let supp ¢ be contained in (0, and let 0 < c < inf suppP ¢.

Then
tim  ||rdlx] £ <leh) ¢m YU F(a 20|l =o.
£ o ©
(iv) S 1im F(A S o)u £ = O.
£+ +

Proof We give a heuristic argument for (i), a rigorous proof using

stationary phase can be found in (pal or [Mu]. We have
u, F(lx| clt|yuy = F(|x-ps] < clt]).

Thus the lower bound to the gap between the regions {{x'] > alt|) and

(Ix| < c!tl} after evolution is
Ix'-(x-Ps)| = Ix'] - (|x] + Ips|) 2 [a-(b+e) |t],

since |si = 1t$. so classically we expect the regions to be disjoint
after evolution. However the spreading of the wave packets gives only the

stated decay. The case (ii) is similar.

(21ii) The idea of the proof is to write F(A ; D}¢IHG]U; in the diagonal

representation of A using the phase function

2
I(A,p,x) = Ei{t&p -p.x= X log |p])

and note that

A -1
2 10| 2 lele - Box - AlplT Z elpl - Il
> (b-c)|t]

for A ; 0 and t i 0 to use stationary phase method and obtain the

stated decay. See Perry [P2] for a rigorous proof using Mellin transforms.
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(iv) This follows easily from (iii) by taking an £ with d}{HG}f = £,

¢ E d:{{G.m}} and writing

<
0 :

=F( S 0)$(H YU, F(lx| > clthE + F(a 3 0) O (H_)U, F(lx] s cle]D£.

and then using the density of {¢{Hﬂ}f : & € C:{{G,m}}, f e LEIH}} to

conclude the result.

We are now ready to prove the existence of wave operators and all that

in the next theorem. For this theorem we set vt(n} = Ut and ED = 1 for

# D = N.

Theorem 2.12 For all D such that 2 = # D £ N, the following hold true.

o= . . 2
(i) ﬁi (D) = S lim ‘U’:: V. (D) exist on L (X) and
t
£ o
+ ~t
0*m) = s 1im V¥ v£{D]ED = 0 (E° ,
t++w ©

(ii) For any ¢ E ﬁmtﬂi} and B(D) = onc of ﬂi{E]; ﬂi{ﬂ},
6(H)B(D) = B(D)G(H(D)), B*(D)dH(H) = & (H(D))B* (D).

4
(iii) If FitD} denotes the range of (" (D), then for all D # C,

F (D) | F,(C).

¥ - t
Henceforth we set O (0) = Ri(D], if # D = N and note that Ri{ﬂ] = 7 (.

Proof. (i) Let # D < HN. We give a proof by Coock's method and show that

. 2
v; vt{D}f is Cauchy in t for f in a total set in L (X). Thereforec we
. ..=-1 D . fD D
consider a vector f of the form £ = (H(D)+i) £ 9p with e S(X7)

and g, € SIRD). Then for s = t,
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t
Hv:vtm}f - v;vstn}fﬂ = || [ at v; ) W, v _(D)f]]
S ¥ £Ee(D) \
t
s 3 f de|W#{H{D)+i]‘1 ﬂlfle'lil 1oy ") ) €° g ||
Y € e(D) s

Thus we have using Lemma 2.4 (i),

W 3
lim I!{vt v, (D) - v_ vh{n}}fll

$,t+®

t
D_.D -1 -
£ at |]py v o e T TIVEES T oy ()™ -

< lim y
s,t*+® YEe(D)

K
v
Since Ilpl(HD}—l gD|T is finite, the result now follows from Theorem 2.10,
If # D = N, the same argument goes through by taking f = IH0+1}_1 g with

g € S(X).

— ~ 4
(1i) We prove that vV, oY) = Q" (D)V, (D) for all t € IR. The

result then follows by functional calculus. Soc we have for f € L2 (X)

and a fixed t (omitting the indices * in the following),

v, @D)f = 1lim Vv, Vv Vv (D)f = 1im Vv
t 5 = o t 5 S g -+ @ g-=

. Vo o (D) V_(D)E

= 1lim v

(D) V_(D)f = Q(D) V. (D)£.
(s=t) + o0 55—t t t

v
-t
Since f was arbitrary the operator eguality results.

(iii) Wwhen # D # N, by density arguments and Propositiocns 1.9 and
1.10 it suffices to consider the case when ED and EC are rank one

projections. In that case if AP and lc are the corresponding eigenvaluv-

of HD and HC respectively, we have (again omitting the indices %),
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[< QYE, 2C)g)| = 1lim |< v: vtfniEDf. v: vt{EIECQ > |

Lt +

= 1lim ]<f, exp{it AP + 1 - 2% - 7 )}g>]
£ =+ o D (]

= lim |<f, exp{it(T -T )}g > | = O. (2.13)
t &+ @ D c

Since fTD-:E} has only absclutely continuous spectrum when cne of D,C

has N elements the proof is again similar.

To be able to describe the evolution of A and xz under Uf we need
the following three technical results. All the three are from [MS] with
minor modifications, hence we do not prove any of these. We denote for
the next Proposition, by cm{mki{cﬂ{mk}}{cb(mk}] the space of continuous

functiocns, of compact support {that vanish at =} [which are bounded]

respectively.

—_ . k
Propositicen 2.13 Fix k 2 1. Suppose for each s € IR+. L. = (Li....,LEJ

1 k A . s s
and L = (L ,...,L ) be two families of commuting self-adjoint operatcrs on

a Hilbert space H and let £ € H. Then, the following conditions are

cquivalent.

(1)  E lim|lexg-iw-L)f - exp(-iu-L|| =0, vu | .
g + w

(1)  E lim ||[{é(@) - ¢(@ || = 0, when ¢ is in any of S(mSy, cﬂﬂ{m}ﬁ,
g =+ o

k
c_(R") and cbfmk} .

Proposition 2.14 Let f £ H. wWhenever 1, L, = 0Oon H

r




(i) E 1im ||{exp(-it L) - exp(~-it L}£[| =0, ¥ tE IR.if and
s*l-c:ﬂ S
only if
E 1lim |[{exp(-t L)) - exp(-t )}l =0, w20
g =+ «© i

and for self adjoint Ls'

E lim ||{exp(-it LE}-l}fll =0 wteIR if and only if

5-1-m

E 1lim ||¢{Ls}f|| = 0, for every continuous bounded function ¢
g =+ W

vanishing in a neighbourhood of zero.

We set W= ) W, , BZ - (W+ifa,wl) = y BY where BY =- (W +i(aY, W]
Y ¥ Y Y

1 is bounded.

1

and note that {HU+1}" B{HG+11"

proposition 2.15  Let f,g € S(X). Then,

t
. w* .
(i) <V f, Ag> - <Af,Vig> - t<V H £,9> j;} ds <B V_f, V__, g>
(ii) <v_£f, ng} - < xzf, "J*g} - 4t < Af, v q>
t t t
2 t s
- 2t° <v Hf,g> = 4 J;} ds {—;, at < BV, £, V. 9 °

{111}HUtf = Utﬁf+tUt H-::uf'

2 B 2 2
(iv) x° U f = U X £+ 4t AU F - 2t7 Uy H_f

and

2 2 * 2

t
. 2
= - 4 {;. ds s <B V., V_, 9> -2t <W v f,9>
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Remark If we have a function ¢ € C:(HQO), then ¢(xY)vtf can not be

expected to go tc zero asymptotically in any sense if f is in the range of
Qf(Y). Recause, then vtf would behave like Vt(Y)g for some g in
R(Qt(Y)*) asymptotically and this range in particular contains bound states
of HY, which always stay in bounded regions of XY under evolution.

In view of this remark we can only expect the scattering states to leavc,
if at all, any region bounded in all pair directions only if they are
orthogonal to all the cluster wave operators. Though on the ranges of Qt(O)
the following condition is valid, we remove even these in the formulation of
local decay for later convenience.

Since ZQ Ft(D’ is a subspace of Hac(ﬂ) by Theorem 2.12, we define

- H_ (1) QH 5 P, (D)}
D: 4D¢1l

and note that Ht is a closed subspace of HC(H).

Local Decay Condition : (LD) Let f € H#, then for all pairs Y and any

V
¢ €C (R,

E 1lim ||¢(xY)vt £]] = o.
t>tw

The behaviour of some observables is dealt in the following Theorem

which is found to be very useful in showing completeness.

Theorem 2.16 Let f € H® and suppose the condition (LD) is satisfied.

Then,

*
(i) Etiix:mll(vt ¥ e Ve vu)f|| = 0, V u€RR

g * A o
(ii) Etl-ft:ooHvt VeI, = Y|l =0, wY e c_(R).



: 36

(iii) E 1im | Tv* U_ exp(-iu DU v }e-£]] =0, Vu e R.
> 2o t t 't 't ‘
H * x2 *

(iv) E 1lim (v* U exp(-u —)u, Vv _}f-f|| =0, ¥ u > 0.

£> 4o t t = t2 £t t H —_—

o * P9 * - +

(v) E tifiw | 1{vy u, w(*;}out v, - p(o)Yell =0, vy ec (R .
(vi) E 1im |lF(]x] > a‘tI)U: v, el =0, ¥ a>o0

t>too

The proof of this theorem follows very closely that in [Ms]. Before
we start proving this theorem a gquick technical Lemma is in oxrder. We

cbserve that D(H) [ H* is dense in HY and take B as in Propositicn 2.15.

Lemma 2.17 Let G = exp (-u x2) for u 2 0 and let £ € D(H)[} HE.
(1) Tf the condition (LD) is satisfied then

1

E lim || +1) ~ B thl| = 0
£+ N
P as et [ arll @™ I
(ii) E 1lim ds t at! | (H_+1) BV._ Y f = 0.
grt® 0 0 ° .
. -1 -1
(iii) Max {]]0(E_+1) Gu(no+1)-1]f|l, li[(no+1)cu(no+1) -11£) |}

< x{a+w|gl] + II(Gu-l)fil}, v u 2 O.

u t
(iv) E 1im [ ast ° J war] |+ BV, Ell =0, wuzoO
g> 420 0 st
Proof. (1) we have,
-1 -1y
l!(Ho+1) B‘er\\ = 2||(H0+1) B vall

¥

' - - - - -1
s Y(2|] @ _+1) b gY(u_+1) 1 VT(H+i)f‘|+%||(Ho+l) 1eY (u_+1) I wav £l

N (2.14)
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Now take a family ¢ > C (IR), O = ¢R =1, supp J} contained in

ill

{13?! < R) and -:,bR 1 en [I:«:TI -;-R} Then by (2.14),

-1
™ 8 v el
< Y2llm +n7™r 8 @+ Tt (-0 (x v _m+id £] |
v o O R T
+ |]{HG+11*1 BY (1 +1) |t o xv ]| + ) Ile{H+il'1 o, (x By=11]
' B
||p1thJvT(H+i]f|1l} . (2.15)

Using the ass'mption (A3) on the potentials, the condition (LD), Lemma 2.4

(i) and (2.15) we get the result by an £ argument.

3
(ii) We: have
lul t
~1 -1
{;. ds t {] ar|| @+ " BV Y_ . £l
ul -1 rt -1 -1
s as t [T at{||(_+1)" B(H+i) v (H+i) £ |
o 0

1 .—1H

+ K|}{HG+1} B (H+i) 1t{Hn+1}{Ysjt-1}fET} (2.16)

Now (2.16) and the estimate

2
@+ v-Dgl] < [l (e -nu gl | + || eF-Du gl + |l tvg-1rgl], ¥ 6 e ™
(2.17)

for g € S(X) and density arguments yield the result.
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(iii) By the commutation relations between P and x we have,

exp(-uxz}HG = Hg EHP{-UHE} - 2 iu P.X exp{—u}:g}

+ u exp{—u:-:g} - Euzxz exp{-uxzi (2.18)
Then by the triangle inequality,
. -1 P
| | { {HG+1} exp (-ux ) {HD+1]—-1}fI |
-1
< - -
< @ )77 6 (5 +1) Gu}f{] + (s, nel] (2.19)

Now using (2.18) in (2.19) we obtain the inequality,

|1 {(n )Y 6 +1) - ¢ el
o b | o u
: -1 21,2
s {2u]]@m_+1) " P-x Gull + ut[Gull + 2u°||x Gu[|]]]f|1=

which together with the obscrvation that

] Ixle |l s xu’ ana that 1% 6 !l s xu

leads to the required result. Similarly the same estimate follows for

the term ||[{(H +1)G _(H 1) " h-1)e] ]
o u o

(iv) Upon cbserving that

1

Il +1)" " BV G _ | |
o r & -7

_2—1}f11

< ll{HD+1}—1 B va1E + Ki]{H5+1]_1 B(H+i]'1]1 || (a_+1) (G )
=

the result comes from (i) and (iii).

proof of Theorem 2.16 We note that (ii) comes from (i) and Proposition

2.13 and {v) together imply (vii) so we prove only (i), (iii), (iv) and (v).
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(i) Since we are considering a sequence of contractions with a unitary

1imit, we need only to prove the weak convergence on a total set and by

similarity we prove only the + case. Thus we consider only
i!EH+i}"1 (vi v v -v )£l
- t u/t "t u

4+
for £ = 1. Again by density we take f E ﬂ{H}(W-H" then by the triangle

ineguality,
u " -1- *
E lim || (usei) ~(v_ ¥ v, - v.)f]]
% iz £t u/t t u
< £ vim {|| @+ Tasn ||| e Ty o +1) 1)
£ - o 3 O 11 Ly
(1w +n™r w-v*, v v O£l
o t u/t utt u/t
(2.20)

By the acticn of YB on Hﬂ it is easy to see that the first two factors are
uniformly bounded in t. Now for f£,g € S(X) since Y_, . leaves S(X)
invariant, and since s * H Tsft is strongly continuous owing to the

g

relaticn H Y. = e Y, H £, we have ,
o 6 g o

%

< - , >
vtf Euft vu+t Yuft £, 9
o a
ID ds 35 < Va4t Yase T Ygse9
= ‘fu [<(+at )Y £, V.., Y_, £>=-<V Yy ,. £,at Y, g>)
T lij dsi<(B+At ) s/t *' s+t "s/t s+t " s/t77 s/t
(2.21)
Applying Proposition 2.15 now to (2.21) we obtain the identity,
*
- v >
Vo f - Yo e Vase Yuse £09
u 1 t+s 1
- i N > < ’ >
L{}ds[t {{} At <BV Y, £V Y g2 st TSV (WY BT ]

(2.32)
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which can be extended as a guadratic form to F{Hmilf}H* by the boundedness

of {I’.[G'!'l}*l B{HD+1]“1 on S({X) and the astimate

“Loiyel] s K{I{e"ﬁ-«lﬁl [1e]] + ng-ljfil}, v 6 e IR

|{{{HG+11YGEHG+1}
(2.23)

Then we have the following estimate,

Il{Hm+1} (Ve - Yuft Vast uft)fll

-1 u t+s -1
S Kt {} as{s||€]|| + {} atf|@m +1)"" B V_ Y, £ |1} (2.24)

from which the result follows using Lemma 2.17 (ii).

(iii) Using Proposition 2.15) (iii) and (v) we obtain for f,g € S(X)

and t 2 1,
o % *
< - >
YeVe £ Yuft Ue Ve YUft £.g
u a
{_J ds G5 <Up Vy Y ¢ £0 Y )9
1 u
= - > - < >
it {} as{<v, Yo, fr U B Y9 Vo AY_, £, U Y_,.g }
_1 u t
= >
it {) ds{{) ar {EvT stt £, vf_t Ut stt g

< (H- Y > 2.25
+ t<(H Ho}vt Y / £, U, ag>} ( )

s/t s/t

As in the proof of (i) the above identity extends as a quadratic form on

FEHD} and one gets, by the estimate (2.23),
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- w *
[} _+1) 1{u;vtf - ¥ U VD) ]

lu] & .
s k£ as{f at| | (H_+1) pv

£l + ti!fﬂﬂ+1}‘1w v, Y_, £}
0 0

T stt s/t

Hence for f € ﬂ{HD}{ﬂ}H+ .

*v £-£) ||

=1, %
| (m+1) (V, Ug Yu!t u. v,

< |y ey, £-6) ||

u/t

u t
-1 -1 -
+ KI]{HG+1} Euft(Hm+1}!1{] as{t [ dTIl{HD+1}

0

1
E?TYEftf11

-1
+ 1|(HD+1}

Y f ’
W Ve Ys/t 113
from which the result follows by density as in the proof of (i) using

Lemma 2.17.

(iv) Applying Thecorem 2.15 (iv) and (v) successively, we get, for

f,g £ S(X) and t 2 1, that

* *
<G U, v, f-U V., G f,g> f
ut“E = tt ut =
4 a
[ as 5 Uo Vo G gye-2 2 9
o 3
2 u
- >
= t ° [as {<vx" ¢ o, £, UG 59
0 (u-s)t st
2
- < 7 0 _ f, Ut x G _ g}T
(u=-s)t st
-2 = 2 '
= ¢t [ as{<x" ¢ £, v_U0_G _, 9
0 (u-s)t st
2
- <Yy G o f, X ut G _5 g>
£ (u-s)t st
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2
+ 4tV G £, AU. G g> - 2t°<v._ G £, HU G g>}
- —2 - -—
e (u-s)t 2 £ st t (u-s)t 2 °t st 2

u t
= 4t™% [ as [ Tatr <= V.6 L, £,V __ U G _, 9>
0 0 (u=-s)t st

u

+2f ds<wv_c L, £, U G _, 9.
0 (u-s)t st

Extending the above identity as a gquadratic form to ﬂ{HG} and using

Lemma 2.17 (iii), we have the following estimate for f € F{H}fr] H+*

] aeiy~t (viu G _, UV E- D
ut
S E]!{HG+1}_1{Gut_2 U: vtf—U:vt Gutmzf}ll + ||{Gut_2-1]fi{
-, Mt -1
S 4Kt ,L as ID tat || +1)7" BV, G{ufs}t*z £]]
. LB -1
+ 2 Ky {] ds l'fHﬂ+1} WV, 45{“_3}”:#2 £]] + I?fﬂutz-lifli-

The result now follows from Lemma 2.17 (iii) and (iv) and density arguments.

(v) Since A -+ 12 igs an isomorphism of [0,®), it is enough to provc
the result for ¢{xzft2) which follows by a direct application of

Proposition 2.14 (ii), (i) and Proposition 2.13 (i), (ii) in that order.

§ 2. N-Particle completeness

With one mere result we will be ready to prove N-particle completenes.

under the stated assumptions.

[ ]
Lemma 2.18 (i) For each pair Y, let ¢T E CD{FR}, with O = ﬁY <1

and inf supp ¢T = 1-b2 and a < b = inf Db_. Then

2 v Y
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1im || -1 T o (tNHu, Felx| < aleD]] = o .
£ > w y Y t

o
Let ¢ €& C (IR). Whenever the condition (LD) is satisfied, we have

the following for every f € Ht.

(ii) £ lim [|[{¢-o@EM@) IV El| =0, 25 #DsN.
£+ + oo

(iii) F 1lim [ |[{e@ED)-0(T IV £]] = 0; 2 5 4 D < N.
£t oo t

Procof: (+ casc only). Since

Q7 (0)-1) T ¢Y{TY}F{!Hf s alth

¥
- . ¥ . - — =
= é [ as v, iw, u T ¢T{TT]F(|xf < ac]) = E {) I, (s.t),
it suffices tc show for each a, that 'f ds[lIﬂ{s,t}fl + 0 as t -+ s
0
Owing to the inequality
F(lx] = ﬂthlﬂF{hﬂl < ale]
for any B, we have, for 0, as in (A3),
. Y e
I s.e)|| < []w, E s o FxT] 2 aleD ]
SR PNC S S nltx“u'l!l 1o, x™ T o (xhe x|
( Y 1
Y#O
a, , o o o
floy ey (r+nye_(rHu,,  Flx| s aleDh ] (2.26)

Now by the condition on the potentials and Lerma 2.4 (i), (iii), the first

two factors of (2.26) are bounded, the third factor of (2.26) is dominated

by
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oy, xME(]x®] > clessD | [ rsna ™ ||
+ [E(x"] < clers]y (™ roer™) v, FUx'| s alessD]|
_.;51
S  K(1+|t+s]) 0

Since 51 > 1 the result easily follows.

(ii) By a standard argument using the Stcna-Weirstress theorem,

[PSS, SBl]l, it is encugh to show for all integers n > 0 and = g o(H) that

E 1im ||{@m-207"

- (H -2) "M £]] = o
t> o = L

which follows from showing that

E lim @ -7

- {H-:}'l}vt £]| = o.
t+

Thie is clear by the estimate
- - -1 -1 -1 -1
] |{(HD— R ¢ P }vtfl | = ;l H(HE-E} W, (H-2) pl(,{""} N [plfx'f;.vtﬂ |

Lemma 2.4 (i) and the local decay assumption (LD).

(iii) The proof is as ir the earlier cne because,

- .y ™ D, ..~ D, .,-1
@4yt - Pyt = - ) o) 7w (P T
Yy € i(D)
Low Energy Decay Conditicon (LED). There exists a set ﬂi of wvectors dense

.'..
in Ht such that for cach f £ 7, there exist constants bt{f} g that

e
for each pair vy and 0 < hT = b (£),

. Y . 1,2 )
E 1im ||r(T' < hT}thII 0.

t> 4+ e

Then the completeness result is the following.
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Theorem 2.19 Consider a N-particle system with the pair potentials

satisfying (Al) - (A3) and further let the N-particle evcolution satisfy
the conditions (LD) and (LED). Then the scattering is complete, that is

) ®
% F () = H_(H) = } F_(D) ,

D : D # 1 D: # D # 1

in particular HE(H} = HaC{H},

Proof. By the intertwining relations we have that Ft{D} is contained
in H ()Y, for all D : # D 2 2. Thus E F (D) is contained in
ac +
D : #D & 2
H__ (H).

-+
We shall show that H™ = {0} which implies the conclusion. We take
only the + case and show that the set p* of (LED) is zero thereby showing
i { . + . T . +
= {0} since D" is dense in . To this goal we take any £ € U, then

for a b as in (LED),

v
l1€l] s E 1im {<v_ £, T F(T' > = b))V, £>
t 2 ¥ Ot
t == oo "'lll"
+ 3 <v_ £, F(TY < = b)v, £>}-
v + — 2 Y 't

By (LED) 211 the terms in the above inequality except the first are zerc
on the right hand side. Alsc it is straightforward ¢to verify that there

£ c: ((0,)), 0 £ & < 1 such that

is a ¢ = 0y

~

2

HF(TT}lbi'j < 1 oéerYy -
Y Y

Hence for every < > 0,

1£]1]2 < E lim.{{vtf,{-ﬁ+{nl+1] 1 ¢{TT]Ut F(|x] > c|t|1u:vtf}
t = oo Y

~4
+ <V _f, (=27 (0)+1) 3 ¢(TY}Ut F(lx]| s c]tI}U; v, £>
+ <v £, @ (0) T & (T )V _£>} .

t . Y t



The first term in the above inequality is zero by Theorem 2.16 (vi), the
second term by Lemma 2.18 (i) if we choose ¢ < min inf supp ¢T and the last
by the intertwining relations and the fact that 1Irﬁ*{ﬂ)*f = D since £ E H+.
Finally we remark that eventhough the general theory of N-particle
completeness is simple as we saw in this chapter the verification of the
conditions (LD) and (LED) proves tc be difficult in many particle situations.

For the three particle case we are able to verify these under general

conditions on the potentials though for the other cases the proof is still

missing.
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CHAPTER IIT

COMPLETENESS IN THREE AND FOUR-PARTICLE SCATTERING

In the present chapter we apply the theory developed in chapter II
to three and four particle scattering. 1In section 1 we deal with the
three particle case and assume that the pair potentials decay at the rate
of (2+€) in the pair directions. We allow them to have some lcocal
gingularity. In the second section we verify the conditions (LD) and (LED)
for the four particle case under some smoothness and faster decay assumptions
on the pair potentials then those for the three particle case. We also
make strong implieit assumptions corresponding to two-particle subsystems
of the four particle system. Hence ours is only a partial result for the
four particle case.

We normalise the coordinates and momenta as in Remark 2.1 without

further comment.

§ 1. Three-particle asymptotic completeness

This section is based on the work in [KKM]. In this section we
prove the local decay and low energy decay results for the three particle
system. We allow the pair potentials to be sufficiently general as far
as local signularities are concerned and assume them to be of short range
with (2+€) decay at ®. This restriction is used only in the proof of
Lemma 3.3. If this Lemma can be generalised to the potentials with (1+€)
decay at «, then we can conclude completeness for such potentials also.

Throughout the section we take N = 3, Our assumptions on the pair
potentials for this section are the following

-6

We set P, (A) = 1433y 2 for some 5, > 1.
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LT3

Assumptions on the potentials The pair potentials satisfy

(ALl) WY{TY+1}“1 is compact on LE{IRu}

(A2) (T?+1}"1 HYJ?T w?{xT}{TT+1}_1 is compact on szﬂiul.
-1 Y -1 .

(B3) Wz GE{x b (T +1) igs bounded and

(n4) (r¥+1)" 1 nzth}“* EEY,HY]pztij-* (r'+41) "} is bounded.

we note that (A4) implies (A3) of section II. In our proof in most
Lemmas (A3) suffices instead of (R4). So we refer to (A3) instead of (A4).
when a weaker conditicn is sufficient.

We also note that the above assumptions mean that, at least for the

-8
case V = 3, the potentials W? E Liii (IR3} and WT{KY) v {1+!xY]} 2 d. > 1

2
at « are allowed.

We remark at this point that the only nontrivial clusters in the
three particle case are pairs Y. Hence we denote in this section all
clusterings D, with # D = 2, by the pair contained in D.

We start with a few technical Lemmas concerning two particle
Hamiltonians before we get down to proving the local decay condition for
the threce particle case.

We set, for any § > 0, p(A) = (1+12}_5

Lemma 3.1 Let the pair potentials gsatisfy {(Al) ,(A2) and let

WY ﬂ[xT}-l {TN+1]_1 be a bounded operator for any pair Y. Then for any
bec. (R,

. Y O, Y P -26 +

(i) Hedx"] > uy o {om) - o@D} £ rawx =, vre R

i) Jedx"] > uy r}ﬁ%i¢{ﬂwi—¢(TT}}l| < K:1+u1r}"5. vr EmRT
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and

(iii)for any X € EZfIH1H-

x(x ) {omy - @)}

is a compact operator.

Proof (i) We fix a pair Y and consider as in Corollory 2.3, ¥ < inf U{H?}

take an a < 1 and set 2 _ = exp{~it:{HY-a}*1}, zz = EIP(-it(TT—ﬁ}-I} for
any real t, Then for a suitable y € C:({D.{U*ainllﬁ
F(lx'] > u1r1{¢fHY1 - &1}
I -1 Y__ -1
= F(|x] > ulr}fdt ¢(t1{) ds zz{TT—al {-i'WT}{H -a) Ze_s
Thus
[E(]x"| > ulrl{ﬁtHT} - ot} |
< fdt|$(t31{:dﬂ||F(|HY| > ulr}ﬂ{xT}1]!]D{xT}_1 zop (x| |
Ao Ter¥-ar " o | e ™ awy @'y |

¥

By Corocllory 2.3 (i), Lemma 2.4 (i) and the hypothesis on WT the last
three factors of the integrand in the above integral are bounded by

K(l+|a|2}. Therefore,

HE(=| > uyoy{em’) - aerHi|

A - -2
< (x[at |¢(t}|(1+|t|3}}[1+ulr} 28 < K1{1+u1r} 6.

(ii) The proof of this result is similar to that of (i) using the

decomposition
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Y N -1 O |, Y -1
F > - i
{11 ] ulr}HY{T a) 35 le{H a)

{F(IIY! > ulr]G{ﬁY)E}{ﬂ{HT}_E WY{TY—H}FI p(x")}

{o(xy ™t zz otxN I pxNH™t W?{H?—a}dl}'
wrollory 2.3 (i), Lemma 2.4 (i) and (ii).
(1i1) We set Z_(Y) = exp (~it (H(Y)~a) 1). As in (i) we have for

some Y E C:{{D;{u—a}-ljl, when U < inf o(H) and a < 4 ,

x (xV ) {&(HY)) ~ 60D}

~ -t _ _
= ) Jatww) [ as K{xT}EEfTJ{H{TJ-EJ li-iwﬁliﬂﬁﬂ} * -
! ﬂ =3
- AT -1 -1
= Y [ at dyf asixex) -2z () H-iw (H(@)-a) Tl
oy 0
{ () -a) (B-a) “}z,___} - (3.1)

The first two factors of the integrand of the above term are respectively
vy and @ compact (See Remark 2.7)}. The remaining factors being bounded
for each s and t the integrand is compact by Theorem 2.8 since HYt}a = X,
Norm continuity of the integrand and its boundedness in t and s imply that
the integral in (3.1) is finite since ,[dt}t[t@tt}1 < =+ Hence the result.
Our next result is a decay result on the two particle group in certain
regions of the phase space. The results using the dilation generator was
given by Jensen who got only *I:_1 decay in [J}. His result was improved in
[KKM]. The phase space decay corresponding to low particle energies was
given in [E2] and a much simpler procf was provided by the referee of
[EKM]. Eventhough the (2+€) decay regstriction on the potentials in the
following theorem is unnecessary (see [KKM] Appendix) we give only 2

weaker result here.
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Recall that for N = 2, UE = Exp{—isHG} and vﬁ = exp(-isH)

specify the two partial free and total evolutions.

Theorem 3.3 Consider the case N = 2 with the potential satigfying

(A1) and (A2). ILet ©O,¥ € CZ{]R} 0S5 4,9 S 1.

(1) If the potential satisfies (A5) ana 1if inf supp ¢ > 0, then

11{1+x21'1 ¢(H}vt{1+xz}+1|| s xa+leh™? a+ lng{l+lt]}2].
(ii) Under the conditions of (1),
1 a+x®) ™ o vt{1+x2}'“{] s xa+leh™

for every u' < 24, with 0 5 U S 1.

(iii) If {1+}:E)5 W(H+i]_1 is bounded for any

s > %l, if inf supp Y =-% bz and if ¢ and a are positive constants

with ¢ + b € a, then
l1eclx) > aluhv_ eu, Fddx| £ cluD ] s x(1+]uly 2% .

8,T and u with |E| + || = |ul.

Proof (i) As a gquadratic form on F{H}(ﬁ}ﬂ{h}, we have the egquality,

t
(A,v,] = tHV_ - [ asv

(w+il[A,W])V . (3.2)
o g

t-5

By (Ad4) and (A5) with 51 > %- we can apply the smoothness result of

2
Levine [L3] to get, for f,g9 € L (X},

o

[ as <v_ o (H)E, (WHIAWV, o, (H)g> S k)£l gl (3.3)

- OED
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for any ¢1,¢2 E d:{nz‘th{n}). so applying (3.3) to the second term of

3 3

(3.2) after multiplying both the sides of (3.2) by H ° &(H)" we get,

||f1+x2]_! v, ¢{H1{1+x2}'*|[ < xa+leh ™t (3.4)

Having done this, we can find W¥,X € C:{Eﬂ,m}} such that &(H) = Hy(HYV(H),

then from (3.2) we have,

ee2en ™ v s DT = DT vy, X e ™

= I, + 1, (3.5)
where
I, = (x2+1) "1 w{H}{H?t-Utn}x{H){x2+1}*1
{3‘ E}
b 2 . .-1 2 . -1
I, =- [ as (x"+1) " YH) V___(W+i[n,wWHV_ X (H) (x7+1) .
2 0 t-5 5

3

1 Y (H) R[x2+1}i and {xz+1] HXIH}{H2+1}*1

By Lemma 2.4 (iv) both (H2+11-

are bounded, hence using the estimate (3.4) we chtain the following estimatc
-1 3.7
It s x@s+le) (3.7)

on the ohter hand (A5), Lemma 2.4 (iii) and (3.4) imply that

t
- 2 -
||IE{1 p {} ds{||{22+1} . ¢{H}{H2+1}Vt*5{1+x ) &|1.
2.} -1 } T SR -1, -3
] 4%y (H-1) P, (%) | | IIDE{H} (H+i) ~ (Ww+i[A,W]) (H+1) "0, (%)

-1 -1
“I‘D?{x}* {H—i}{1+xz}§l‘ﬂ||{1+32)* vEtH2+1}x{H}{x2+1} | |

t
< [ as (+|t=-s|)”
0

1 1

{1+|s11'1 < k@a+lthT (A+loga+|e])). (3.8)

]
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The result now follows from using the estimates (3.7) and (3.8) in (3.5).
(ii) This follows from (i) through interpolation .

(1ii) We take U, cztza}, 05y, €1,y =1 on the support of Y

£ 1=
and sup supp $1 =-%-5i such that hl + c+ £ < a for some € > 0, We set
for any positive M,
_ (M=-4) JE
= F e B - -— +
Fy = (Ix] > (c + G €) (s-ty) + (2 ) (ts lul))
i = - £ - E ':_; -
for any 3 1,...,M=1 and 0O = tH—l < tH-E t1 s Thgn by Lemma

3.1 (1i) we have

B(s,T,|ul) = |Ir(]x]| > alu]}vswtﬂ1 U F(lx] € clul)|]

< u({1+|uf1'26} + [edx] > alubhy @ )v_ o, F(lx| £ club) ||
s oca+luh ™% + lIF{|x|3*a|u{}w1(HG}UE[1—F1}[] [ lvau rlx] < eubl]
+ e > alubyy oo e e -p@ )] o melx] < clup) ]|

+ |lrdlx] > aiu}}¢1{HD}U$}| HF1 V(H ) U, F(lx] g cluh ]|

- §

+ 'L at, [ (|x] > alu|]¢1{H0}U$_t1{1—Fl}|| !1w¢{a}vt1 u F(|x| scluly|]
=

+ {} at, | v (x| > alﬂl}us_tl by (B )W F, vtlth}uT F(lx| € elub]] .

_2.‘1-
Now using Theorem 2.11 (i), the second, fourth and the fifth terms are Uﬂﬂﬁiu|
while the third term is D{{1+[u]}_26} by Lemma 3.1(i). The last term has a factc.
Fy Vo V(H) U F(|x|] € c¢|u|) which is of the form we started with. Hence
1

we can repeate the whole procedure. Doing this (M-1) times we obtain the

following inequality for B{E,T,|ui}.
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' { dt1.¢‘dtH_liIF{|x1haiu]}Ua_t1¢1{HDTWF1...WFH_1

-*r
" ﬂpﬂ{ L

. v ¢tH1UTF{Ixi < cluh 1],
M-1

It is now easy to see using Lemma 3.1 (ii) that the integrand in the above

term is bkounded by

M-1
T kK, (1 + |u] + s + t.) €0
for constants Kj depending upon j. Therefore when M > 26{26—1}-1 + 1,
M-1
: - -2
f dty...dty o T K, (1+|u]+s+t) 26 ¢ K(1+|u]) S .
ost, ,S°ceSt,Ss =1 J

Hence the result.

As an input to proving the local decay result for the three partiele
system, we have a compactness result connected to the wave operators.

We set p(A\) = t1+12}'1-

Lemma 3.3. et Y be a pair. If Y € d:(na“uﬂT(H}}, 0O £ Y £ 1 then,

{ﬁiEY}—l}w(H(T]}p{xY}F(HY > 0)

is cowupact.

Proof (+ sign only). Since HT is lower bounded and HT S H(Y)

L =]
as operators it is clear that there is a O E ED{ER} such that

¢:HT1¢{H{T)} = Y(H(Y)). Therefore we show that

{ﬁ+{T]—1}¢(HY}¢IH{T]}ﬂ{xT}F(RY > 0)

is compact. We set F; = F{RY > 0), then
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{ﬁ+{Y}-11¢{HY}w{H{Y]ID{xT}F:

i
i

* T . Yyt =
[ as Vool i W,V MOEDPEE)P(x )F, § [ as 17(a,s) (3.9)

oy ay

By writing the intcegrand of (3.9) as
VT -1 P Yvy ip?
(ﬂslilﬂﬁfﬂn+1! )E{HD+1}V5{Y}u(H YYH(Y)) e (x I}IFT}

we see that it is a compact operator (since o L}Y -~ compact operator is a
compact operator) for each s by Proposition 2.8 since the second and the
third factors are o and ¥ - compact respectively by Remark 2.7 with the
remaining factors being bounded. Also the integrand in (3.9) is norm
continuous in s. Hence it is enough to show the integrability in s of
||IT{u,5}T1 to conclude the result. Now the condition {Hd} implies the

condition (A3) hence by Lemma 2.4 (i), for a ﬂl as in (A3),

1Y a,s) ||

1 i, =1

< ttwufacw}+i1‘ Py (X)) | | |fﬁlfxu}vE{T}{H{Y1+i}"1¢{ﬂt?]IﬁiHTID(HT}F:}1

s kllp, MV mm+VEE)OED ptxNIFT]]

Since (H(Y)+i)P(H(Y)) = {¢1+¢2}{HiY]] for some $1,w2 having the same

support properties as Y, in the following estimate we continue to write Y for
¢1:$2 without loss of generality. Now O ¢ supp Y, hence there is a 4 > 0,
such that supp Y f}(-d,d} = @. In view of this we choose three functions

6y € € ((=2,00), ¢, € C_(IR) and &, € C_((0,)), 0 5 ¢;,0,,05 S 1 such
that (&,+0,+¢.) (1)6H") = ¢(1') and supp ¢, contained in (- b2, ¥b°) with

h2 < d and :::2 =1 on (- %b‘? ’ %bz} . At this stage we only need b to

be positive. Later we make a choice of this b, depending cn d for some

estimates to be possible. Thus we write, throwing away a factor
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1

ﬂ{xY}- ¢{H7}ﬁ{xY} and using Lemma 2.4 (i), that

3

o, M v emHeaHE ]l s} 1f(a,s)

1=l (3.10)

Y - oL . A Y L
I (a,s) = [loy (xV_ (Mo, (HD P (x aFTll

We estimate each of the Izta,s} separately. By the choice of ¢2. gince

¢1 + ¢2 + $3 = 1 on the support of ¢, supp ¢1 is in (==, =~ %-sz. Hence
by Proposition 1.9 there are only finitely many eigenvalues of HY in the
support cf ¢l. Therefore without loss of generality for the purpcse of
the estimate, we can take the suppcrt of $1 to contain only one eigenvalue

(say) A of H. Then

v! ') = exp(-is ADo@).

hlsoc since h¥ & T(H), it is not in the support of Y, thus there exists

a ¢1 E E:{(D,m}} such that

Y : = ey
¢ HEDVEE)V, (T) L (HODWHEY)) .

R

Therefore using the decomposition VE{T} = Vv UE we have,

#

Al . G, .
I, (o, s) Sk (D, (x IH[QGUE

+ -
A @O o)™ o mHvmee e |

(3.11)
By Lemma 2.4 (i) the second factor of (3.11) is finite. In the first

factor we use the inequality that for a # vy

1 Yy <
Dlix Yo(x') £ K ﬂltxY}'
We also take c > 0 such that ¢ < inf supp ml and use a partition of

identity

1 = F{]xTi < eclsl) + F{fxT[ > cls|)
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alcng with theorem 2.11 {(iii), so that

oy ahrdx | > els]] £ xaslsh ™
and
ledx| < clshu, ¢1iTT}F:11 < K(1+]sPh T
Yor arbitrary M. Then we obtain,
Y + =%
I, (a,s) < K[Iﬂl{xTIUEFT wl{TY]FYtl < K(+|s|) (3.12)

The second term IZ (¢,8) is estimated as follows. Again from the

support properties of ¢2 and Y it follows that there is a
=

wa £ E?[{ﬂ,m}}, 0 s wa £ 1 with supp wE contained in F%tﬁ:ﬂﬂ} such that

O, BNV EONIVLE)) = 6, (HDPEM).

Hence

' . o, =1 . Yy ot
10 (a,8) £ [ oy vEe e x0T | e, G }VE{Y}¢2fHT}¢3{TT}H{x ] |

Then by Lemma 2.4 (i)

_ oL T+
1 (a,s) 5 K| ey (xHV_ (e, DY, (r o FEL| (3.13)
Now

1 = F{Ix?l > allsf} * F{1x?! = 3115lr Ifo > 5215l} + FfExTI -3 asz!}

for any ajr a, > 0., Therefores using this partitien of the identity in

{(3.13) we get

10@s) s k{|lo M| e ]>a lsly v] e mpad) ]|
+ Iiﬂl{xu}F{|xY| < allnl, ]xT] > azis|]’i

+ fiﬂlfxa}!l lIF{IxT1 g aEIEI}UE,Y $3{TT)F:|1 o1
(3.14)
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We have for sach o # v ,

o 4

- C A
X I{H,T}x

+ {E{Q’Y}xy . (3.15)

Now we make a choice cf the constants b, b., a.. a, given 4d and the

1 1

numbers C c given by

1" 2
C = max c_ (o Y) c = min {¢ (x Y] } .
1 F r [
oy 1 2 o # Y 2
Let
b. > a., c.a_ > c.a b < a. and X(b’+b2) < 4 (3.16)
1 2 252 11" 1 2 1 :

A simple calculation shows that such a choice is possible when 4 > 0.

Then by Thecrem 3.2 (iii), the first term on the right side of (3.14) has

the aestimate,

-3
[lrclx"! > 31]Si}vY S|l 5 xa+]s] 2
s "2
_61

The second term of (3.14) is dominated by K{1+!5!] » by the choice of
the constants in (3.16) since

1> ey o] [x"] = Teyerion ] Ta l] 2 loylx l-ey IxY]1
The third term of (3.14) is estimated as

A " . -M
}[FT(IxTI $a,lshuo, o dyr |l £ xa+ [sh™ .

For arbitrary M > 0, again by Theorem 2.11 (iii). Hence
Y Es
Iz{u,s} =Y K{1+|s|} for some Hy > 1

New we turn to the last term I;{m,a} of (2.10)

Y & 'y Y Yyt -
I(a,s) S |]og(x vV (NS HDVEE)) P (x }FTIF
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: oY : .
Decomposing vs{T] vE UErT , using Lemma 2.4 (i), since UE.Y commutes
with p(x'),

(e, 5 |lp, v o e || o™ vaomeah |

A

K[|ﬂ (x }vT O HEHYexN ]|

s x{|lpyxMu ptx | ety ™ amre:y |

+ I!ﬂltxu}{v UT}h @} (3.17)

By Lemma 2.4 (i), Theorem 2.10 (i) the first factor of (3.17) is bounded by

-
K(1l + lsE} 1 for some ul > 1 and we use the Duhamel formula in the
second to obtain
Hul (=
1 (o,m £ o((l+|s]) TDy+x [ at 1]p (x }u w, v’ 04 Hpx) ]
3 o =T ¥ T
~Hy a

S o((1+]s]) }u:_ 0., (x Yy,

5
) + [ ﬂTIiplix .
O

“$|ﬂ2{#T}-! HY{HY+i1_1 pztxYI'*IIﬂ

i

A, N v e o ||,

By (A4) and Lemma 2.4 (i), the second factor in the integrand of the above

inequality is finite. Since p,(x")" = (1 + (x") > 1, by

2

Theorem 2.10 (i), the first factor of the integrand is bounded by
=H
Kl1+]5--'l.'l} 1 for some ‘-ul > 1. On the other hand, t'HT+i}¢3{HT‘.I has the

same support properties as ¢3fHT}. therefore applying Theorem 3.2 (ii) it is
-H
1

bounded by K{l+|T|} ’ ul > 1. Thus by a simple integeration,



=y 5 U ~u
IV (a,8) < 0(+]sh ) + xf at (+]s-T|) Laslth !
0
-1
k((+]sh D).

M

Collecting the estimates for II{&,E}, i=1,2,3 in (3.10) we get the requirec
integrability.

We had defined earlier two scts of wave operators namely ﬁi{D} and
ﬂi{D}. The latter are the physical wave operators while the former serve
as auxiliary objects useful for the proof of completeness by the

e s
method we present here. We now give a Lemma on the ranges of O (DY, a

result which depends on the completeness of two particle scattering.

Lemma 3.4 The ranges of ﬁi{T} for all pairs ¥ is exactly Ft{TJ o FEID].

Proof (+ case only). We have, by the definition of

-

ﬂ+{yj and Q+{?}, for any f £ LEIK}r

ﬁ+(Y}f = ﬂ+{?1f + ﬁ*ETI{l-ET}I* (3.18)
Wow by the completeness of two particle gcattering,

& * Y
= ii_‘rhn@ (vt Utll (Ut ft (v) (1-E" ) £)

O vy 1-EN £

= ot wr e * £

¢ ? i +
Since {m+[?}}t is an isometry from {1—EH)L2{R} cnto L (X) and since 12 (0)

: ~+ . .
maps LEEK} isometrically onto F+{D}, the range of @ {Y}[1-ET] is precicely
F+{G}- Mow the orthogonality of the closed subspaces F+{?} and F+EG} for

any pair Y implies the result. "
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We are ready to prove the local decay result now.

Theorem 3.5 The three particle system with the pair potentials satisfying

(A1) - (A3) verifies the local decay condition (LD).

Proof (+ case only). Since T(H) is a closed countable set,

{f € H+ :+ Y(HYf = £ for some Y E E: (IR ~ T(H))} is dense in HY. By density
we prove the result only for f's in the above set. That is for
A
¢ & C (IR )
E 1im oDy, £]] =0
t &> @
for all pairs Y. Now by Stone-Weirstrass Theorem, any ¢ € CD(IR?ﬁ can be
. o .

approximated, in norm, by a segquence ¢n of functions in CDIIR Y and hence
it is enough to take ¢ to be in C:[Eiu} for proving the above relation.

Now for o E'QZ(IEH}, {l+{:‘:¥]2}i ¢{HT} is bounded therefore if we prove

E o1im || (e:xNSH?

£t > o

the result would follow and this equality itself comes by proving

F 1lim |!(1+{xY121'*

+ =+ @

i

2
"thH o .

1

Thus we set ﬂ{x?J = {1+{iT]2]_ in the following and consider

E lim <V, €, ﬂ{xY}Uff}

$ -+ o

= E lim {<v £, [¢(H3—¢{H(T}}IGIHY}vtf}

+= &> w

+ wtf,wmm}mﬁwtf}}
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By Lemma 3.1 (iii) and Proposition 2.9 the first factor is zero. Now

E lim ||pxN? v £ 1° = E 1im {wtf,{—ﬁ*"mﬂwmmmth:rF{AY > 0)V, £>

t = t = w

T Y
+ wtf, 2 ()P Ey) ) o (x ]F{n*r ':-D}vtfb

+ <V £, (=" (M +DYH )P (xIF (A, < o)V, £>

Y

-

& Y .
+ <V E, QO (MY E))p(x }Fm'r < 0w £>}

Again by Lemma 3.3 and Proposition 2.9 the first and the third terms are

zero in the above equality. The second term is zero by the intertwining

relations and the fact that f l_F+[T}. The last term is equal to

E 1lim <F(a, < 0) V.M @ ()" £, c@HoxHv £>

tr =+

and is dominated by

E 1im ||F(a. < 0) U _qll
Mg Y t,Y

for some g € thxj and is zerc by Thecrem 2.11 (iv).

With the local decay condition wverified for the three particle system,
we are only left to prove the low energy decay restriction which will
imply completeness by applying the theory of chapter II. So we start with

a norm estimate corresponding to small pair energies.

Lemma 3.6 Let Y E C:{{D,m}}, 0 =¥ =1 and inf supp ¥ = %-hz. Then
there exists hl, 0 < bl < b, 9 E CZIIE}, 029 %1, sup supp ¢ = %—hi such

that for some ¢ > 0 and all pairs Y,
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tim ] @ m-no@Hyp@man o, Filxl < cleh |l = o
£ > o

Proct. (+ case only) wWe have,

@ n-noEHyEey, Filx| 5 cleh

fas v* 5 w v_moemHymmu, F(lx| £ cjt]
s oy o s t

E f ds ITtﬂ,s,t}.
c¥Fy O

i

Then for each o we show that

I d5|iIY{m,s,t]1|= 0 as t *+ = |
Mow we have,

*IIT{u,s,t}f| =

o e+ "o, B TH | oy e e @Dy @) men+bv Mo F(lx|scle ||

and we ncte that

wltﬂfY}] = (H(Y)+i)P(H(Y))

has the same support properties as ¥, hence by Lemma 2.4 (i) we have,
11 (s, 00| s ||pl{x“}ﬂtHwaltntvr}vstYnuth!xi <cleh ] 3.9

To estimate the right side of (3.19) we make use of the partition of

identity

1 =rF(|x"| > allt+5|}+F{iin < a11t+51{|ET|}aE|t+s|}+F{1xT*EaE|t+s|1
(3.20)

for some ayra, > 0. Then using the relation (3.15) and Cl, Cz defined

thereof, we choose the constants al,az

h2 > az and -% (bi + h;] < bz. with this choice ©of the constants

' > > ,
to satisfy a1 hl, ':Ea2 clal
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L] L] - m
(depending only on b), it is clear that there is a wz £ Cmifn,m}},

0 = wz, inf supp wz = %—hz and

¥s - - Y
¢ (H lblfH{Y}lmzme} G (H }wer{v}}.

Using this relation and (2.20) in (3.19) we obtain the inequality,
o -
[iITfurs.tlll = K||ﬂl(H ]¢1{H{T}ﬂ1fxa] 1||“

o
ey x| |fr{le[}allt+a|}vsry]¢{HTJwEtTT1utF{fx| s cle+s|) ]|

+ ey HEx"] s a fees|, |x | > a,lt+s)|] -

N

+ i!ﬂlfxﬂl|1’IF[IKT|5azft+sf}U5fY1¢fH¥}¢EfT?lUth|Hl$ cle+s|) ||}

(3.21)

Now we choose ¢ < min'{{al-hlj, {bz-az}} and note that
F(lx] = c1t+511 S FEleI = cft+5[, IxYl < clt+s]|).
Then the first term of (3.21) has the estimate, by Thecrem 3.2 (iii),

for some ul > 1,

F(lxT] > a [ershv meay, v, Folx] < clers)y [

$ Tyl HE(x>a, [e+s v smDu) pe]x'] < c|t+s])]]

S R(1 + |s+t]) . (3.22)

The second term has the estimate, by the choice of al'az'

-28
e, x| s a lees] x| > a,less]] £ x+|ess]) L. (3.23)

The last term of (3.21) has the following estimate by Theorem 2.11 (ii).
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L1

llFI!I?l p azit+s}}vEfY]¢{HY}¢2{TT}Ut F{]KT¥ < clt+s |}

< IIF(EETI < cit+s1]ﬂ wziTT}F{IHTi = 51t+5!jll

s+t,Y

A

K (1+|t+s|y 7" (3.24)

for arbitrary M > 0, Now using Lemma 2.4 (i), to bound the first factor
in (3.21), and the estimates (3.22) to (3.24) in (3.21) we get the result.
We are now all set for proving the low energy decay condition (LED) .
+ + o0 : +
We take D7 = {f e H : Yy(H)IEf = £, ¥ € C_ (m ~{o})}+ Clearly D is
dense in Hi and serves as the set mentioned in the condition (LED) .

with this we have the

Theorem 3.7. Let the three particle system have pair potentials satisfying

+
(Al). (A3). (Ad) and (AS). Then for each f£° € DY, there is a b,(£) = b,

such that for each pair vy and b, = b, ,

-

E1im |lF(rY S Lo

> bV 5] = o .
t 4+ + oo

t

=< W

+ .
Proof. (+ case only) We drop the superscript on £ in the following and
o 1 1 2
take a Y € Cé[lﬁ‘a{ﬂ}I such that Y(H)f = £, supp VY (WH— i'bz: E'h ) =@
for some b > 0. Tt suffices to prove that for each pair, there is a b

such that

YV fil = 0

tc eonclude the result. This follows 1f we prove the same with ¢{TT}

i A 1l .2 . a o < 2
replacing F(T < E-b+} feor a function o € CD{IR], 0 =1, ¢ =1 on
- % bi, + bi}. Thus we choose a b1. (0 < bl < b) as in Lemma 3.6 set

bi =-% hi and take & to have support in (- } bi, 3 hiJ# Then we have

tc show only that



E lim <v, £, ¢(THV £> = 0

+ =+ w
since

Yy .1 .2 2 .
[le(r! < 3 pHOHv El]T S <v £ 0TV P>

New we have the following ineqguality for any C > 0,
< £,b(TV_£> <
£t ' t

{vtf.{¢{TY1-¢{H?)}vtf} + fvtf.¢tHT}{w{H}—w{H(Y1J}vtf>
+ < v £, ¢EHVEEU Fx] > clehuy v £
+ < V£, {—ﬁ+{T}+1]¢{HT}¢{H{T}}Ut F(]x| c!tlju: v, £

+ < vtf,ﬁ+fvh¢{ﬁ¥}wiﬂtv}}ut F(lx| g c|tl1U: v, £> . (3.25)

Then by using the inter-twinning relations in the fifth term of (3.25) we

have,

Y
{vtf,¢{T }vtf > £
I|{¢{TTi-¢{HY]}vtf11 i1{¢cﬂa—w{H£T11}vtfi|+11F{1x|}c!tliuzvtflE

v 1@y -no@Hp@ouFxl s cleh[+]lve o & o el
(3.26)
when we take E 1im on both the aides of (3.26), the first and the
>
second terms aretzerz by Lemma 2.18 (iii) and (ii) respectively. We choose
some ¢ > 0 as in Theorem 3.7 SO that the fourth term is zero. Now the

third term is zero by Theorem 2 16 (vi). Finally the last term is zero

since by choice f € {F+{T}]l*



since we verified the local decay and the low energy decay conditions,

by the theory of chapter II we now have a theorem.

Theorem 3.8 (Completeness of three particle scattering). Let the pair

potentials of a three particle system satisfy the conditions (Al) - (A5).

Then,

(i) H () = 10)}

sc
and
& &
(i) Yy F (@ = H__m) = } F(D) .
D D
Remark 3.9 (i) Except for Theorem 3.2 (i), (ii) we do not require the

condition (A4) that is (2+€) decay on the pair potentials at <, (1+€)

decay suffices.

(ii) We admit in principle the possibility of having infinite number
of eigenvalues for the two particle subsystems, though technically the

condition (A4) implies finiteness of such eigenvalues.

(iii) We also do not make use of the decay of eigen functions of the

two particle subsystems.

(iv) However we make use of the absence of positive eigenvalues.

& 2. PFour particle scattering

Tn this section we verify the local decay and the low enexrgy decay
conditions for the four particle system under more stringent conditions
on the pair potentials than those assumed in section 1. We also have some
implicit conditions on the spectral properties of the two particle system.

We list our assumptions on the potentialsbelow.
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Since we verified the local decay and the low energy decay conditions,

by the theory of chapter II we now have a theorem.

Theorem 3.8 (Completeness of three particle scattering). Let the pair

potentials of a three particle system satisfy the conditions (Al) - (AS).

Then,

(i) H 1)y = {0}

sC
and
@ &
(i1) ) F ) = H @) = Y} F(D) .
D D
Remark 3.9 (1) Except for Theorem 3.2 (i), (ii) we do not require the

condition (A4) that is (2+¢) decay on the pair potentials at =, (1+€)

decay suffices.

(ii) We admit in principle the possibility of having infinite number
of eigenvalues for the two particle subsystems, though technically the

condition (A4) implies finiteness of such eigenvalues.

(iii) We also do not make use of the decay of eigen functions of thc

two particle subsystems.

(iv) However we make use of the absence of positive eigenvalues.

§ 2. Four particle scattering

Tn this section we verify the local decay and the low energy decay
conditions for the four particle system under more stringent conditions
on the pair potentials than those assumed in section 1. We also have som
implicit conditions on the spectral properties of the two particle system

we list our assumptions on the potentialsbelow.
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Throughout this section unless specified otherwise, we take N = 4

and assume that the pair potentials satisfy the following. We set
-0

— 2 3 . 5
pstl] = (1+A7) rGE > a "
(Al) W#[TT+1}_1 is a compact operator on LE{BQU}-
(BL2) {TT+11_1 {RY ?TW#{xY}liTT+1}_1 is compact on LEEBRU].

Yy=1 Y -1
(né) WT p3{x ) (T'+1) is a bounded opcrator.
(A7) E1W,WY]{TT+1}'1, deY{wT} (r’+1)"! are bounded for k = 1,2,3
A
for all pairs Y.

(A8) The two body Hamiltonians #' do not have any quasi boundstates

at zero (that is functions £ such that %L&Tf = W#f, f ¢ LE{IHU}]

and GP{Hv} = @ for all pairs Y.

Remark The asymptotic completeness statement (AC3) wunder assumption (AS8)

reduces to

-] L

E F (D) = HaC{H] = g F_ (D)
the direct sum being taken over only a class of two cluster clusterings
corresponding tc three particle boundstates and the clustering consimting
of three particle boundstates and the clustering consisting of four
free particles. All the pair clusters will be absent.

In the sequel we employ the following notation. If D is a clustering
with # D = 2, then LEIKDJ corresponds to a three particle Hilbert space and
D

H- a three particle Hamiltonian. In such a case for any pair Y € i(p),

we write

LEERD} LEIRT} ® LE{H$}



: /9 .

where we note that it is possible to decompose

D Y D
X X' @
= ]{T
and we write
D D D D D D D D
HO(Y) = T4W , T = T-YwT % = (xT,x?} and P = {PT,PT].

An operator E$ ig to be understood as an operator on L2{3$} or as 1 8 B$

2, D
on L (X).
In the case of clusterings with # D = 2, in the sequel, we often have

to distinguish two cases. So we have a definition.

Definition 3.10 Let D be a clustering with # D = 2. If i(D) = {a,B}

for disjoint pairs &,B then we call D as a disconnected clustering.

Otherwise it will be called a connected clustering.

We have a few technical results to start with as in Section 1. We

recall that
-8
2 3 5
I'-'}3{?'~1 = (1+A7) , O_ > 7 i

[ By
Theorem 3.11 Let D be a clustering with # D = 2, § € Cninlj and a > 0.

-23
w  llFe A 1x*] > ar) (WED-YTH | £ K(1+ar)
aei (D)

(ii) If D is connected, then for any distinct pairse a,f,y € i(D),

-26
iIF(erI A |RB] > ar}{wiHDtﬂ]]-¢{HD}}i1 < K(l+ar)

(iii) For any B € i(D),

-20
|1F<|EBI > ar}{w{HDtE)}—¢ITD]}]} < K({l+ar) 3
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(iv) TFor any ¢ € Eginquj,

b x2){(W(H) -~ PEHD))

is a compact operator.

(v) ﬁ3{HB1{¢{HD1-¢{HD{B}]} D3{xnl_1 is a bounded operator for any

B e i(D).

We note that HD—TD

= Wﬁ + WE in the case of disconnected D and
D .
H —HD{E} = Wﬁ + ﬂY in the case of connected D. Also HDfB]-TD = WE'

H-H(D) = L W for every D and inf O(H)> - «¢ Using these facts and
YE (D)

the decay properties of the potentials (condition (a6)), the proof of this
Theorem proceeds exactly as that of Lemma 3.1, using Lemma 2.4. Hence
we omit the proof.

Now we state two results useful for proving the local decay condition.
The first of these, 2 two body result, is due to Hagadorn and it was
successfully exploited in [HP] for proving completeness in three particle
scattering. It is this result that the assumption (A8) about the
absence of boundstates or guasi boundstates at O energy of the pair
Hamiltonians is required. This condition is necessitated by a counter
example of Jensen=-Kato given in [JK]. The second result is on the
N-particle total evolution of [JMP] who use the conjugate operator methods
developed by Mourre. There is a technical flaw in [JMP], however this

can be corrected, [SKB].

Proposition 3.12 Consider the two body Hamiltonian ' for any palr o
1

( o, =1 . >
with E~ its point spectral projection. If Wy plx ) is T compact for

-8
oy = (142%™, & > 1, then as functions of t,
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3 i!l

(i) e x™ exp (-itH™) (1-EN) o (x*) e LY (R)

{(ii) If Y ia a pair such that Yy (ja = @ , then
HD{xT}J" exp (-it H™Y) {l—Eﬂ]ﬂ(Hm}}” e LT(m).

A proof of the above result can be found in [Ha] and [HP].

0, we have the above result with

Since in our case by {nE),Eu

1 replacing fl—Eu}.

-0
For the following Theorems we set 04[11 = {1+lz} ﬁ, 54 > %--

Theorem 3.13 Let H be the N-particle Hamiltonian with the pair

potentials satisfying (aAl), (A2) and (A6). Then for Y € deﬂi‘iTIH]}:
! >
I!pQEH}V£ w{H}p4{R]|1 s k@+|th , for some U, 1.
This result is a straightfoxrward corcllory cf the main results of

[TMP]. Hence we refer to this work for a proof.

. . ) 5
Remark. The result of [JMP] implies that if 64 > 5 ¢ we have (1+€) decay
when the potentials are 4 times differentiable. However if one admits a
large numter of differentiations, then ﬂﬂ > %— will alsc lead to (1+£)

decay in time. In the latter case the assumption on P of (R6) can be

relaxed to 53 > 1 in the proof of Thecrem 3.15 and hence in the final

result.

Corollory 3.14 Let D be a clustering with # D = 2. If the potentials

L8 &
satisfy the conditions of Theorem 3.13 then for any Y € CD{IR"mMT{H}}

and U, > 1,

1

-y
o, P2 vPrp, ]| s xasleh T
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oo
rroof Let X € Cr:: (IR) such that ¥ Y = Y- Then we write

D D D D D -1
o, "2 w®y o D[] 5 o e x(H 1, (D) T

D D D D, -1 D D
g a0 ™Y 0 Py [ [0, (A" x )0, ) [+

The first and the third factors on the right hand side of the above

inequality are finite by Lemma 2.4 (iv). Now the result follows by

using Theorem 3.13 to estimate ! ind {AD} vzlp {HD} ﬂd {ILD] | ] .

Using the above corollory we derive some useful L]' estimates on some

three particle total evolutions weighted in the two particle sectors.

We make use of the method of Hagedorn and Perry for this purpose. Our

estimate is an extenticn of their result in [HP].

-0
Recall that Dd{l: = {1+12} = ' 64 :*% .

Theorem 3.15 TLet D be a connected clustering with # D = 2 and O € i(D).

Then for Y € C: (IR H‘I‘{HD}} we have for some 1.11 > 1,

o, xMv2 pPrp, x| s ka+feh ™

on the support of Y and set .

Proof Let ¢scztm1,os¢:51 and & = 1

D - Dy oD D a D, .,D D D
1% (@, ) 2 0, YV ) 0, () = P, (X OE DV YEDIP, ()

Then,
Intu.tb = ¢4(x“){¢m”3-¢mn{mw2 wm“mdtxnl

+ 0, MO @)V @IV EDB, ()

+ Py txﬂ} ¢ tHD (o)) {VE"“?:{“’ W {HP',I Py txbi (3.27)
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By Theorem 3.10 (v) and Corollory 3.14, the first term of (3.27) has the

following estimate for some Ul > 1.

1o, ™ (0 ™y -6 1% 01) vy w0, ) ] |
s 1o, = (@) =6 @)} 0, T oy v va™yp, ) ||

s x(1+leh (3.28)

The second term of (3.27) is estimated using Lemma 2.4 (i) and Proposition

3.12, Since Eﬂ = 0 by assumption (A8), we have,

1o, ™6 (@) VD @ (Hp, ) ||

< IInthﬂ}¢EHD{ﬂ}1pdtxﬂ}'1l! !Iﬂi{xﬂ}VEDdea]i]1!p¢{1&}_lwtﬂniﬂ4{xﬂiu
£ K hit)

L 4] o0
where h € [Llf“IL y(IR). Using (3.28) and (3.29) for some h1 £ {Llfw L ) (IR},

we obtain the following estimate

| 12,0 || h1{t1+1lndtx“}¢tnnta11tvﬁ—vf{a1}¢(ﬂﬂlpthnr1|

t
S h (0)+f as !fpﬁ{xﬂ}¢tﬂpiu]}vzustulw?vzwtﬂnlﬂd{xnii1 (3.30)
0 vyei(D)
Yo

Now for any R > O, taking the sum over Yy £ i(D), ¥ # O,

1117 (,t) |

t
s h )+ L {f d$11Dq{xﬂ]¢{HD{H}}Vf_E{ﬂ]WTF[IxDIE Rivzwfﬂujmdtxp}![
y#a. O
t

D D
+ {]ds11ﬂ4£x“1¢tH @VD__ (0w o, (x)

-1 F{lxD] > R)| |-

o, ,.D D
!!péiﬁT}v5¢{H yo, (x|} (3.31)
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By Proposition 2.12 and Corollory 3.14 the estimate that
t

L [ as|lo,xMom v _(ww F(xFer)vPuPyo, (x|
Y#x 0 : °F ® ?

t -
< ;ﬂjﬁ ds||ﬂ4{xul¢jHD{a}}(HD(a}+i}ﬂ£[x&} lrlllndtx“}vi_saQ{ungf_
Y

| le, ¥y (5”0 +1) 7

D D, ,.D D
woll TIEd="] £ Rvy e, (x|
£ h,(t,R)

: 1 o0
follows with hzi.,R} £ (L L )(IR) for each fixed R. Hence the inequality

(3.31) becomes

1P (a, 1) ] |
t o, . D D Y.,.~1 D
€ hye)+h, (e, R+ § [ das|lo, (xv__ ()6 (H ()W 0, (x) TF(|x |>R) ||
Y#0u O
111 v, 9 1] (3.32)

Now we set,

Ko(a,8) = |10, e)]]
anad

- a, . .D D Y, -1 D
I (t,y,0) = ||ﬂ4[H_}Vt{n}¢{H (@)W, P, (x") F(lx"] > r)|] (3.33)

We claim that

ifJRt.,?,ﬂ}Ill - 0

as R -+ «, We take xT to be the characteristic functicn of [0,T].
Then the inequality (3.22) we write for t £ [0O,T] as

D . T n
K (a,t) € h (t) + Y [ ds Jg_(t-s,y,0)K (y,s)
R
YA O

Xep Kn{a,t} = h_(v) + ) (T Y ) KD{T..}XTJ{t) ,
Y#Q
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so that
i B D P
YFQ
Therefore
. 0 D
oL YH# o

which impiies, by choosing R large enough, that, for all a £ i(D),

D
[Ixp K (e, 3 ]]; £ K <=,

for K independent of T for all T > 0, Now we show our claim. We note

that pcintwise in t, JR{t,T,ﬂ]'+ 0 as R =+ o, by the compactness of

o, .D D Y,.~1
Dﬁfx }vt{t:t}t:HH {':Jltll}ﬁ-i!ﬂrr Dd{x )

for each fixed t, since F{fxDI > R) + 0 strcngly as R =+ ¢ Therefore
the claim follows by Lebesgue dominated convergence theorem if we show

that JE{t,Y,ﬂ} is integrable in t, uniformly in R. For this we choose a

§ -6
3 1 B 2, 4 3
64 > ry such that 53—64 > > and set psil} = (1+A7) . Then by
(2.33), Lemma 2.4 (i) and Corclleory (3.1l4) we have,
o
[ at a_(t,v,o)
0 34
- o, D ¥, —1 C Y.=1
< {jﬂt”ﬂdix yWepgtx )]l pg )™ u ()W P, (x7) | ]
~ oL, L0t 't
= K{} dt1|0d{x YV Pg (x )| €= -

Hence the result. Finally we note that the method of proof is not

applicable for disconnected clusterings D.
We shall now fix a few constants coming from the relations between

the coordinates. Consider any connected clustering with # D = 2. Then



for any distinct pairs vy ,x€i (D), xT = c{u,v}xa + ad{a,y) xi_ Then
we set,
clfD} = max c(d,Y), GEID] = max d4d{a,y)
Y # O Y # O
(3.35)
4.-11{1:.1} = min c{o,Y), dzm} = min d4(a,Y)

Y # O Y #

Lemma 3.16 et D be a connected clustering with # D = 2. Given any

positive number d, there exist positive constants b, aq and A, smaller than

d and depending only on d such that for ¢ E EZ{EEJ, 0Os=sd =1, supp ¢

1
contained in (- 5 bz, %—hz} and for pairs 7Y,a € i(D) the following

estimates are valid.

o D D D Y ~Hy
W edx®] s aglehrdxg] > aJehviot@)p, G y |1 s ka+|eD
for some uz > 2 and all T £ (0O,t).
{ii) There is a ¢ > 0 such that for some ”1 > 1 and all T £(0,s8),
=1

rdxD] > 54|t+s|]v$[n}¢{HEtu}}US F(lx°] € clees ]| € x(+|e4s]

Proof (i) We consider the partiticn of the identity,

D Dy .
1 = Filx”! > a6|t|]+F{fxulEaE|tt,ixu|} aEIt]}+F{|xu] = 351t]].

and ~ < d, a. » b + a

> i =] > . -
6 6 57 dEID]aE cl{D]aE and a b+a (3.36)

5

Then we ccnsider the inequality that

A D o D N
leclx™ | < az‘tl}F{Ixut > ad!t|}?T(H}¢{H (@))p, (x )y |

< (1o, N ] Hrdx®] £ aglehvy s @aNFUx’] > a leh ]l
4 I
L Edet < aglel, 1G] > aglehe D
) D D D .
v 1o, 6N ] IR dagl>a lehoy o o @)F (x| aglth ]}

(3.37)
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-
We recall that pail} = {1+12} 3, 53 > %-, hence the estimate for the

second term of (3.37) is clear by the third of the inegualities in (3.36).
For the first term we have an explanaticon to nffer. We see that except
for the factor ¢[HD{H}} which is an operatcr on LE{ED], the remaining
factors are coperators on Lz{xu} and m{HD[ﬁ}] commutes with exp(-i t' Tzl
for each t' € IR.Thus we can write ¢{HD(G]] in terms of operator valued
functicns ¢ D{Hﬂ} with each of ¢ D{.i having the upper bound of support

t t
Ct i _
atmost the upper bound for the supp%rt of & by wvirtue of the non-negativity

. . a . .
of Tgﬂ nlso owing to the non-negativity of H (By (A8)) ., tg is restricted to
. : L
a compact set. Hence we can estimate the first term of (3.37) with ¢ D[H )
t
oL

replacing ¢{HD{1}} and then take a supremum over tz to get a final
estimate. Hence using the inequality (3.36), Theorem 3.3 (iii) (with

T = 0 there) we get that for some “2 > 2,

[lF(x™] = a3|tl}v{f: b(H (@)F (%] > ﬂE,'[t]H

s sup (%] s aglehvd o jaMEdxT] > agleD ]
oﬂtgﬂxl o
-\
< x@a+lth 2.

The last term of (3.37) is similarly estimated using Theorem 2.11 (1)

and the inequality (3.36). In fact it is for this term that we crucially

CL D 1 .2 . )
need the condition (AB) that GPP (H) =¢ so that H + T < 35 b” implies
D 1 .2

T = E-b , which is not true if H- < 0 is allowed. Hence we have the

result.

(ii} The procf is similar to that of (i) if we note that

D

t F{IHD] < clevs ||

D
HEdC] > a,lers| IV (@ E (@)U

< 1]F{tx§i > a4|t+si}UE+5!ﬂ ¢[HD{E}}F{]xH1 < clees ]

choose b+c < ad and use Theorem 2.11 (i).
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Theorem 3.17 et D be a clustering as in Theorem 3.15. Given a

b and c, less than 4,

E!.l,

positive number 4, there exist positive
S . 1,2 1.2
such that for any ¢ € Cﬂtﬂ?], O s ¢ £ 1, supp ¢‘E:f"§ b~ , E'b ) and

some ”1 >1, T € [0,s]

-
l!F{FHE| > allt+si}¢iﬂnlv$ UE F(lx"] 2 clevsD]] = k(1+|t+s])
24
Proof Wwe take some al > 0 and az = and note that since there
2v3

ig a partition of the identity (see [RS IV, D. 1341, or [SBl]) {Fﬂ} with

R O N LM =R E LI S e LR
a €i(D) YA 2v/3 aei (D) 2v/3
Yei (D)

and since

|F (1« |>a, lershF ¢ A [xT] > 2 1PVl of Filx"|s clersD |
Y#O 2V3
B D
< |IF, (a,lersDomHVY Ul F(lxT| S cless ]
it suffices to show that there exist positive B b, c, less than 4,
such that,
DD D Dy < - “Hy
IlFﬂ{azlt+s1]$[H 1vT Ut F{Ix | £ cit+5|]1t = K{1+it+s[} i

Now for any Ay b, ¢ > 0, we have,

n,.D D D
]]Fu{aztt+s1}${H YV UL r(lx’] = cleesh ||

S |1Fq{a2It+5I]F[1xﬁ|}aElt+51}{¢{Hn]—¢(TD}]tl

D
+1lFﬂ[azit+sl}F{]xn1 }aa!t+5|}¢[TD)U2+t F(‘x i < :1t+s|]!l

{ |8 D B D
+|]Fﬂ{az1t+s|]F{ixq|}a31t+sl}¢{T }[?T—UgluzF{|x | < clt+5!]|1

s a,|trs]) {6 -6 @7 (@) H]

¥/

+|1Fm{a2!t+s|}F{ix“1
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+ |IFﬂ{a2rt+s[}F{|xuf < 331t+s|}¢{HD{ﬁ}}v$[u]UE F(IxD| < cle+s ]

o D D .D D D
+ ITFa{a2|t+5|}F[!H l Eaaft+sil¢{H {a]}{vTva{mrlutFrlx < e+s] ] ]

(3.38)

By Theorem 3.11 (i) the first term of (3.38) has the estimate that

o I
IIFﬂ{a2¥t+s]}F{[x | > a3[t+s|}{¢{HD}-¢[T )] € ka+|ess]y L, My > L.
(3.39)
We choose the constants a,, a; to satisfy
a. N a, > b+c (3.410)

2 3

Then the second term of (3.38) has the feollowing estimate using Theorem

2.11(i), for every M > O.

l!Fu(aEIt+s|}F{ixﬂ| > aalt+s}}UE+T ST F (x| scle+s]) | sk (1+]tes |y ™M,

(3.41)

By Theorem 3.11 (ii), thc fourth tecrm of (2.328) is estimated as, for ul > 1,

a D D “Hy
Iipu{az}t+gl}F{1x | < a3|t+s]){¢{ﬁ y=a(H () ] € ki1+|t+s]) j

Using CE{D], cltﬁl as in (2.35), we choose ﬂd and HE and a3 are

further regquired to satisfy,
a, > c (Mt {a-c, (Ma,) (3.42)
4 2 2 71 3

In that case it is clear that

o a D
Fﬂfa21t+s}1Fc{x I = a3|t+51} < FP(lx | < 33}t+5]]F{fxﬂl > a,ft+s]).

Then we estimate the fifth term of (3.38) by, for any M > O,



: B0 :
||ru{a2|t+siaF{fx“{ < ﬂ31t+sT}VEIH}¢{HD[ﬂ}}UEF(1xD| < clt+s]) ||

D

D D
te,q O (NF(lx | £ cless ]

1A

||F{IH§| > a,|t+s]Hv
‘ -M
< KQ+|t+s]) . (3.43)

as in Lemma 3.16 using Theorem 2.11 (ii) after choosing

a. > b + c. (3.44)

-

4

The third term is estimated as follows.

IIFm[azlt+s])F{!xm| > aalt+s|}@{TD}{v$-U?]uE F{|xD| < c|lt+s]) ||

.
D D D
< Y [ as,||F_(a lt+s|)F (|x"|>a ]t+s1}UD s(ryw v. _u_ F(lx |scle+s]y |
vém) © 1 o2 3 Sy Y T-8, t
T i
s 3 [ as |lF (a lt+sF (x| >a ltes )P &Py (?P+1) o, (x| ] -
: 1 o 2 3 = 3
Yei(D) O 1
h y.=-1, D -1 ]
NN It ucs Sl S
By Lemma 2.4 (i), making use of the partition
F(lx'| > cltes]) + r(lx'] £ c|t+s])
of the identity, the above term is dominated by,
T W
I f asflIr ta,lesshrd]x|>a,ltes) ] o rmdlx" |selessh {10 (x3§
: o2 3 S 3
Yyei(D) O 1

+ 1‘F{FxY]>c]t+s}}ﬂ3[HT}II}“

Now using the arbitrary decay in (t+s) of the first term of the above

=5
integrand via Theorem 2.11 (i) and the (1+]t+s]) L2 decay of the second

=u
term the bound K{1+|t+s|} 1 ’ ”1 > 1 1is clear for the third term of



(3.38). The sixth term in (3.38) is estimated using Lemma 3.16 after
choosing a0 2y ag in Lemma 3.16.
The last term in (3.28) is dominated by
T

Y dsll{F(Ixﬂ[£a3|t+s|}Ft]x31}a41t+at}vD {ﬂ}¢{HD{ﬂ}}{Hniﬂ}+i}ﬂ3{xY}1ia
y#o. O as1

- P D D
°E|ﬂ3fxT} 1[ﬁD{&}+1} lw v F(lx | s cle+sh |-
Y T-sy
By Lemma 3.16 it +then follows that, for some M, > 2, this expression is

bounded by

i ~Ho —Hy
14 dsl(1+|t+s|} < K(1 + |t+s]) , My > 1.
C

Finally one can easily verify that the constants a A a a

1’ o0 33+ 247 “gr e’
b and ¢ can be chosen satisfying the conditions (3.36), (3.40), (3.42)

and (3.44) for any given d - 0.

Oour next result is a compactness statement connected with the wave
operators of a class of clusterings.

we set p(A) = {l+12}+l.

Lemma 3.18 Let D be a clustering as in Theorem 3.15. Then for any

U e dZ{nz ~T(H))Y,

{ﬁt(D}—1}¢{H{D}JE{HD}F{hD 2 0)

is compact.

+
Proof. (+ case only). We set FD = F{AD > 0). We consider b > 0, small
2 .
enough so that (- ibz, b)) supp ¥ = ¢ and take functions

¢l'¢2'¢3 E C:{HR}. 0 = ¢1,¢2,¢3 < 1, with their supports respectively

2 2
contained in (-=,0), (- #b", ¥b) and (0,®) so that
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(¢1+¢E+¢3}{HD}¢{H{D}} = (H(D)) and ¢2 =1 on (= ibz. ihzi. Now,

[ﬁ+{D}-1}¢(H{D]}ﬂ{xD}F;

o

= V[ as v* iw, v_(D)Y(H(D))P(X FL .
vyee(D) O s ¥ s &

By writing the integrand, in the above integral, as
(V) G (H +1) 1) ((H 41)V_(D)YY(H(D))P(x ))F
s Y o o s * D’

we sce that it is a product of a Y-compact and D-compact operators
(by Remark 2.7) with vy € e(D) and # D = 2. Hence by Proposition 2.8 the
compactness of the product is clear. HNow as in Lemma 3.3 it is enough

to show, using (A6) and Lemma 2.4 (i), the integrability of

Y | D. _+
IIp3{x )V_ (D)W, (H(D)) P (x Ll |

for each ¥ £ e(D) where wl{H{D}} = Y(H(D)) (H(D)+1) . This wl' clearly,

has the same support propcrties as Y. We have

\ . Dy g+
[To, x")v_(0)yy, (DN P (xIFp| |

3
¥ D D, _+
< izl 1o, v (033, B0y (D) P (xFL] |
3 D
= ) I (Y,s) Sl
i=1

We estimate the terms of (3.45) cne by one.
2
By the choice of ¢2, the support of ¢1 is in (==, 4b") and by

= in (-=,c], ¢ < O are finite in

Proposition 1.9, the eigenvalues of H
number. Hence the support of ¢1 has conly finitely many eigenvalues. We take

therefore, without loss of generality the support of ¢l to contain only
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one eigenvalue (say) AD of HD. Then,

D 2. D D, -1 D D
I, (v,s) = E1a3txY1{1+an px ] 1o ™ s e,
. 2. -U . D + .
g R N Tt +T ) Fo | (3.46)
-4
for any U > 0. Since ﬂS{xY} = {1+{xT}2] 3 ’ 63 > % and p{xn}={1+{xD)2}-1,

Y D, ¢ 2. =U
D3(H p(x~) = Ktl+xD}

for every 0O £ u £ 1. Alsoc since \P e T(H) and since lD ¢ supp wl,

by choice, the function

- D
M
has support in (0,®). Thus using Lemma 2.4 (i}, Theorem 2.11 (iii) in
(3.46) we get, by choosing }~% ., that
D ~H
I, (Y,8) S K (1+]s]) ;Mg > 1 (3.47)

Till now b was some positive number. Now we choose b depending
upon 1 for estimating the second term of (3.45). We take bl > 0 with
(-~ i{bf + hz}, i[bi+b2}}rﬁxsupp v =P a~and also take a functicn

¢2 £ c:{ﬂ,m], 0 = mz £ 1 satisfying

. D, o D,
wEITD}¢2{H yyq (H(D)) = QEIH 1¢1IHIDJ}.
Then
L 8 ¥.~-1
I,(v,s) 5 1|D3{x YWy (H(D)) P4 (x") (.
D D, .+
“{1!ﬂ3(KY]!|I!F{[H |>a; sV (D)0, (PP, (T) P (x P | |
D
+ oy aNedxC] £ agls| » x> aglshll
Y F] [, E n + '1'

+ |legix 1}!11rt|xD! s aglshv (D)o, BV, (TP (x yEoL

(3.48)
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We have x' = c(y,D)x + a(Y,D)x_. Therefore we set

max < (y,D) = C3{D} and min d(y,D) = n:q{D].

- (3.49)
YEe (D) Yee (D)

and take al,h to satisfy the conditions of Lemma 3.16, we alsc take

cd[D]aB > c3{D151 , b, > a

1 [ (3.50)

With this choice of the constants,for some ¢ > 0 as in Lemma 3.4 (ii),

-u
we see that the second term of (3.48) is dominated by K(l+[s|) 1 for

some ul > 1, by (A6), Lemma 2.4(i) and (3.50). The first term is dominated

by, using Lemma 2.4 (i) and Theorem 3.17 (with T = 0 there},
k| |F([x"| > ﬂ1|5T]V2 ¢2IHH}DIRD}11
s x||e([%°] > a [shv e W r(lx’| 5 c|sh]]

+ IR XP] > ¢lshoxD ]

—

< x@+lsh !

. My > 1 . (3.51)

The last term of (3.18) is estimated using Lemma 2.4 (i) and Theorem 2.11

(1ii) , since bl > aE, as

~U
+ < 1
11F{|xD] < aE[EIIUSrD wthD}FD!I < K(+|s , My > 1. (3.52)
Thus the estimate
D “Hy .
I,0y,8) s x(+lsh Fouy > 1 (3.53)

follows from (3.51), (3.52) and the ineguality (3.50).

The third term of (3.45) is dealt with as follows:
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D Y Y. =1 Y...D D D
I,(y,s) & ||ﬂ3{H Yy (HDY) P, (x ) R Ilp3(x IV, ©4 (H )P (x ) |

(T4

Y..D D D
K| |p, (x IV d3H )P (x ) 1] (3.54)

Using Lemma 2.4 (i). Now we take a pair a € i(D) with o [y = §. It
is easy to see that such a pair exists. Then adding and subtracting

a'vgtan to UE in Ig{Trs], we have

D D D. . D
I,(Y,s) S K{|Iﬂ3(HT} V() O (H) o (x )| |

5 )
# 7 as o xNvP  w, vE o, w1} (3.55)
Bei(D) O 13 i | B s 73
B#ct

The first term of (3.55) is estimated using Proposition 2.10 (1) and

Lemmza 2.4 (1) as

!|D3ixY}vZ(u]¢3{HD}ﬂ{xD}Ei < ]1p3{xT}v2{n)D(xD1]| 1|ﬂ{x51“1 ¢3(HD}HIEE}||
< x||p.(xNHu” =) ] £ k(1] 1}Hu1 >1 .  (3.56)
= P4, o Py = s r My ‘

In the estimate of the second term of (3.55), we use Propositicn 2.10 (1),
-8
2
Lemma 2.4 (i), Thecrem 3.15 and (A6). Recall that 0,(A) = (1+1%) 4
-0
64 > %. We take ﬂsil} = {1+k2) > , where 55 = 63-6ﬁ. Then from (3.55)

and (3.56) we see that

-

¥ =
D 1 Y .8
1,(v,s) £ x(+|s]) + {: as, | o  (x }vE_EI{J}LE{H y |-

- D - -1 B...D D) D, D
l!ﬂE{xB} . Wo (H +1) lmdtxﬂa [T [leyx }v51¢3[H ) (1 o+ p(x ) | |
-1 =1
1 Y\ D B
< k(1+|s]) + n{) ds, [1py0x }us_gl,t p x|} -
R..D » D . D
< |le,x }vsl Gy (H ) (H +i)p(x ) ||
~u1 s -ul -Hl
s kQ+|s|) +x [ as; c1+1s-51!1 {1+15111 (3.57)



Thus,

I (y,s) € K(L + |s]) i (3.58)

Using the estimates (3.47), (3.54) and (3.58) in (2.45) we get the

reguired result.

Lemma 3.19 Let D be a disccnnected clustering with # D = 2. Then for

Y € c::{R \T(H)),

©F () ~DYE D) e (X IF (A 2 0)

is campact.

Proof (+ case only) We have

tﬁ+{n}-l}m{H{nimm{xD}F{AD > 0)

= Y [ ds vl v OWEEO)EGFG, > 0)
yee(D) O -

By an argument as in Lemma 3.18 it is enough tc show the integrability of

o - Y . S
I (s) = |legxyv (o)) () e x|

for

T.iJlIIH{D)) = (H(D)+1i)w(H(D)) .

. =1

) wlunnnptx”] 1] -

i . Y oy gyt -
1) £ [leg vy o || [ lex

Now using Lemma 2.4 (i) and Proposition 3.12 (ii) we get that

D < 1 1 |}‘U1 - 1
IT{E] = K(l+|s . ul .

Hence the result.



Remark We f&mark that in the above Lemma the condition (A8) <on the
potentials is really not necessary. The result could have been proved
~n the lines of Lemma 3.3 if the condition (A8) is not used.

We collect the results of Lemmas 3.18 and 3.19 in the following

Thecorem 3.20. Let D be any clustering with # D = 2. If ¢ € C:{Hi ~ T(H))

and P as in Lemma 3.18 then,

@ (D) -1 (H (D)) p (x VF (A, 2 O).

is a compact operatcr.
As in the three particle scattering we have a Lemma on the ranges

of the wave operators.

Lemma 3.21 Let D be any clustering. If the two and three particle

scattering is complete, then
. ot _
(i) Range ({2 (D)) = Ft{G} & Fi{D}
(ii) 1f D = {a,B} is a disconnected clustering, then

Range {ﬁi{nll

l

Fi{ﬂ].

The prccf of this Lemma proceeds exactly as that of Lemma 3.4 hence
we omit the proot.

Our next Thecrem is the first step towards proving the local decay
result., The idea ~f the theorem is one cf iteration and invclves in
showing that if " is a I compact operator with # 0 = 2 and if

E 1lim HBD v

Tt =+ o

.—
. £il =0

r
then it is true for BJ with # DD = 3 and so on.
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+
we recall the definition of H™ and p that

+ — -

H™ = HE(H} . E* F, (D) and p(A) = {1+12] L

D 25#DEN T
o 2V : .
Theorem 3.22 Let © € cg(na ). For any clustering with # D = 2 and
£ e H ,
. D

(i) E lim ||o(x)v, £l] = o

t + £ o

o i o Y

(ii) £ lim |lex)pxDVv E[| = 0 for a#y -

+t = =

Proof (+ case only) We note that (ii) easily follows from (i) . We take
f such that YH)Ef = £ with Y € CZ{HE‘xT{H}} by density. &8s in Theorem

3.5 we consider only

. D
E lim {‘i.ftf, p(x }th}

t =+ o=

and then we have the equality,

D
E < >

t > =

= E 1lim {ﬁvt,{${H}-¢{H[D}}}ﬁ{xnjvtf}

£t > =

+ <V E, 5+[Dlw(H{h}}ﬁ{xD1F(aE > 0)V_£>

+ ﬁvtf,(—ﬁ+{?}+1}¢{H{5}}G{RD}F{RE > 0)V, £>

L

+ <V _f, ﬁ_{n}w{H{ﬂ}}p{x“}F{nE < 0Oy, £>

< vtf,{—ﬁ_{ﬁ}+1}w(H(D]]ﬁ{Hn}F{nD < o)V, £>) (3.59)

The first, third and the fifth terms of (3.59) are zerc by Theorem 3.11 (iwv) .
Theorem 3.20 and Proposition 2.9. The second term is zerc by the

. =+ .
intertwining relations and the fact that (O (r))*f = 0. Using the
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intertwining relaticns again we see that the fourth term of (3.59) 1is

dcminated by,

E lim [|F(a] < n}vtinj¢{ﬂcnj}{ﬁ"{my}*fi| (3.60)

t &+ w

which is zero by Thecrem 2.11 (iv).

Now we can prove the local decay result for the four particle

scattering.

\¥
Thecorem 3.23 (Local Decay). Let ¥ be any pair and let ¢ € Cn(IR ) .

*
Then for any f £ H we have

E lim [leaxNv, £]] = o.
t =+ + ™
procf (+ case). As before we show, for any £ with y(H)f = £,

Y € chIR-xHT{H]} and p(A) = {1+l2}"1, that

£ lim <v,_ f, m{nyvtf} = 0.
t =& @™

Now we take a clustering ¢ with ¢ = {v.B}, vy™ B = §. Then,

E 1lim <v £, p(x)v_£>
T t
£ =+ =@

E lim {<v £, [¢{H]*¢{H{C}]]P{HT}vtf}

t &+ oo

+ <v £, @ (C)P(H (©))e(x" v £
+ <V £, (-8 @+ ) p(xHv £} (3.61)

The first term of (3.61) is dominated by

r

E 1im || v - v@EEHIpxHV, £]]

£t + @
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Here the factor [Y(H)-Y(H(C))] is approximated in norm by linear

M

combinations of polynomials (H+i) -(H(C)-&-i.)-M by Stone-Weistrase theorem.

Also since,

M

1,

i) T+ HE D ™M = § (H(C)+1) "X (H () +1) ~2- (ued) ) (mag) I
Lel
we need to consider only
£ Lim || L@@+ 7w 7 e ™ o) v £]|
t &> o
for any M > 0. But we have,
E lim || (@H©+D) 7 -tre) e ™ 0 (xv £ |
t >
< E 1lim ) ||(n(c>+i)'1wap3(x“)’1|| ||03(xa)(H+i)-M-103(xY)-

t>o o€ e(D)

Q 8 f z
o, (x o (x"yv £]|

This is zerc by Theorem 3.22. Thus the first term of (3.61l) is zero.
The second term is zero by the intertwining relations since (§+(C))'f = 0.

We consider the last term of (3.61l) now. We have

(ﬁ*(C)-l)w(n<C))o<xY)vtf

@

= 1 [ as1tcov, £ . (3.62)
ace(C) O

Pointwise in s the integrand of (3.62) is dominated by

lu @+ ™ o x| o, ™M (@) (1@ +D)v_(©)0, (x™) 1|

o Y
o4 (x™) 0, (x W ||

so that by (A 6) and Lemma 2.4(i), pointwise in s, the E 1lim of the

t & c
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norm of the integrand of (3.62) is zero. Then by showing the
integrability in s of ||Ia(c,s)|| we can conclude that the second term of
(3.61) is zero using Lebesgue dominated convergence theorem. We have

by (A6), Lemma 2.4(i) and Proposition 3.12 (ii) that,

H1%¢.s)|] = |lw, W(H(C))p3(x“)“1||Ilo3(x“yv’(c)o(xy)l|

< xlloy vl x| s xa+lsh PRTE

Hence the last term cf (3.61l) is also zero.

Wwith the local decay result in our hand we have to show only the
low energy decay condition to apply the theory of chapter II and conclude
the completeness result. We warm up to this task by proving a few Lemmas

first.

oo . e 12 2. _
Lemma 3.24 Let Y € Co(ni) with supp ¥ { | (-38%, 3a7) = @g. Then for
any clustering D with # D = 2, there exist constants b,c, less than 4,
such that for any © € c:XnR), 0 £ & £ 1 and supp ¢ contained in

2 2
(- 4b™, 1b7),
. =+ D | <
1im |l @ oy -HomwHvm@HUu, F(lx! = cleh|] = o.
t =
Proof (+ case only). We ccnsider two cases.
Case 1. D is a disconnected clustering I = {&,8}. In this case we have

for every b,c > O,

(§+(D)-1)¢(Hn)w(H(D))Ut F(lx|] £ <lth

Y [ as v; W, vs(n)fb(ﬂh)xp(n(r;))ut F(lx] £ ¢clth
yee(l) O

oo

[ as IZ(D.S.t).
0

Yee (D)
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By the hyprthesis on ' it is clear that there are functions
¢1.¢2 and $3,¢1,¢2 having their support in {—ihz,isz and ¢3 having
its support in (- ibi,m] respectively for some bl chosen so that
o D D
o, @Ho, P em®) = o@D
and

¢"Hn}¢3{TD}¢{H{D}I = YW(H(D))

and th- s impljes that

EHDYYHD)) = ¢{HEJ¢[H(D}]QI(HE]¢2{HB}¢3{TH}‘ (3.63)
Then
iII?{D.E;t]{I < lle ﬁfHD}w{H{ﬁ]}ﬁafxTihllf“
8

oL
oy v ore, ™o, Yo (T v, F(lx] £ cltss])|].  (3.69)

Toc estimate the right side of the relation (3.64) we need a relaticn

between the coordinates, which is,

3 L o]
x! = €L OYDIX + e (v, D)% + a(Y,D)x,

and then we take,

max {EEfT,ﬁ}, leT;D]} = CS{D}‘ min J4(y,D) = dafE}. (3.6%)
YEe () YEe (D)

If we choaose the constants A b, bl anc ¢ to satisfy the inegualities,

1!’ 'r—:!EI

2 2 2
.. < A 1 > b+ > r)a d A, + < b 3.6
{Jl+b ) =4, 4 b+, ﬁjfﬁldg CB{”}‘l an L, c 1 ( 6)

then w= can estimate the quantity in (3.64) making use of the partiticn

cf identaity

1 =r(|x"]| > A | t+s]) + F(]x"| s a, | t+s], IxBI > a | t+s])

.

+ F[lxﬁ 5 r:':llt-i-sfir |xb| S d1]t+si, Ith > ﬂEIt+s[}

a 5 , -
+ F(|x| < dl§t+s|, [x"] < Llft+5i, ixﬁ’ $ a,|t+s])
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in the fcllowing way.

i111f5r5rt}[|

< E{||ﬂ3(£Y}|1 ]|F{Ix&|}d1|t+5hvi ¢1{Hu}u: F(lx | € cltesD ]

+ ]!GS(xY]F{lxm| + ixB[ = 2 d11t+5|, IxDE > dz]t+5$]1]

i
« eyl Hrdx"] > a, | e+s)Hvt s, @l Felx"| < clersD]]
+ 1|93{3?1;1 ||F{|xni 2 d2|t+s|lut+$'5 ¢3{TE]F{}351 < cless] ||}

(3.67)

By Theorem 3.2 (iii), the first and the third terms and by Theorem 2.11 &3
=H

+the fourth term are bounded by K{l+!t+s!} 2 , for some ul > 1, The same

bound frollows for the second term from the definition cof ﬂa and the

inegualities (3.65) and (3.66). MNow that we have,

=

1Y ,s, 03] £ x@A+|e+sD , Uy > 1

the result follows easily.

Case 2. when D is a connected clustering, we have again

&ty -nemHvmomnu, F(lx] < cleh

R

- [ as v® iw v mys @ YypmEmu, Filxl 2 cle)
o Y s t
Yee(C) O
rl'-'Cl
= ¥ ) as1lm.s,0.
vyee(D) OC

ne before it is enough to prove the estimate

=4
(ﬁ,s,t]1| = K{1+|t+$|} 1 P Yy > 1

1

b =
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Pl

to conclude the result. We choose a functicon ¢2 £ CZ{{D,W}}

with supp ¢2 contained in {ibg,m} gsatisfying,

¢{HE:¢2{TD}¢£H{n}J = A(H )Y(H(D)) .

Now using Lemma 2.4 (i), the partiticn of identity,

D !
1=F(|x | > alit+5f}+F[|xP[ < a lers], [x |>agtesy+r(]x [ sa,|t+s])
we have,

llIE{D,s,t){!

v oo, )L |- Y D 3
s [l vEE)eyxH T oy xDHv me )y, (m v, Filx|sc|t+s]) !

s k{|{o N [ [IF(]x"] > a,ltesHvy c@ul Felx7| 5 ¢lers]]]

-+ f|ﬂ3[xY]F{!xD1 = alit+5f, IxD! > ﬂ3|t+s[}|]

+ !ipBExY}I} 1lF{[Hm| < d31t+5|}U5+t,5 ¢2tTD}Ff|xD}E clt+s|) ||}
(3.68)

i i i > i
Now we can write xT in terms of the cocrdinates x7, x& and X, as

o D
x! = c (Y, DIXT 2 c (Y,D)x, + A(Y,D)x_

and set

Cg@) = max  {c,(v,D), c(v,m}, a () = min {d(y,D)} (3.69]

Yee () yYee (D)

and choose the constants ay P and ¢ depending cn 4 as in Thecrem 3.17.

We alsc choose bz. d3 satisfying

2 2 2 :
< | -
(b +b2},;ﬂ i dE{D]d3 > W2 EE{“}al' b2 > 63 + C (3.,70)

We note that all these constants depend only upon d and a calculation shows

that it is possible to make a cheoice of these constants. By (3.70) then



EIIE{DFErt}11

¢ x{|le(]="] > a,lersvl s o) p(lx| S clersD ]

==

+ Jlrdx |l s aylersDU ¢ wszn}FﬂxD[ < cltes) ||}

+ K(1l+|t+s] o, Hy > 1.

Now applying Thecrem 3.17 anc Thecrem 2.11 (ii) respectively to the

right side of the above inequality, we cbtain the estimate that

IIIE{DIEFt]E] £ X(1 +1t+5]}_“2 , My > 1.

Thus the required result follows.

For the next Lemma we recall the notation introduced in the condition

(nl) of Chapter I, section & that if y,0 are pairs they also denote the

corresponding (three cluster) clusterings. Then we can define their

union o L}Y if they are distinct, through definiticn 2.5.

oy

Then clearly # D = 2. Given any pair Yy there four possibilities for a

Aistinct o satisfying o [\Y # #. However (it is easy tc see that) these

s : : o
four a's will give rise to only two Aistinct configurations for D A In
Y
view of this we define a prcduct T +c mean
K
Y
N = product over X = 4,8 where a,B are some distinct pairs
K e g
esuch that Y f\u =@, Y f\B =@ v # o, ¥y #FE and D Y £ D i .

Lemma 3.25 For any positive number d and 2 pair y, there exist positive

=
constants b', b,, C, b, < L' < & ¢ < b' <d ana ¢T e C (IR},

L —1

0 £ 6. %1, supp ¢Y contained in {-ihi, ihil such that for B with BN Y

-
2

and any ¢ € C_(R), 0 £ & 51 with supp © contained in (3b<,=)

Let Y = o L oye

o
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_ ~4 AR Y B
1im @ - { 0 St IO H)(T yrilx| = <lth|] =0 .
t= * w e
Proof (+ case only). A&As usual we have,
- Y KY
@ (-1, @H{ 1 JeN }}¢<T51ut F(lx| < eltD
L
= * . Y Y T)KY B
= 1 J esviaw v.moe @I, HeHFxlsele]
cee(y) O K '
= ) ] Igtu,s,t].
aee(y) O

We will conclude the result by showing the estimate
Y ~Hy
IIIH{ﬂ;s.tli1 < K(l+|t+s]) Uy > 1

We divide the proof of this estimate into two cases.

Case 1 B = ote By writing,

. cioY I - F
FE{?} = exp(-is(H + TB{}TJ} exp(=isT" ) = V ,E{T}U 8 "
we have
!11Efﬁ,s;t}|!
-1 B, -1 . 2 5 i
g ey "o, DY T oy v, oo SirdxPl g clesh ]

Now we choose ¢ such that 2¢ < b?, then using Lemma 2.4 (i) and
Thecrem 2.11 (ii) it fcollows that,

-1
[1IE(B,s,tJ|1 < K(1+!t+s|) . My > 1.
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Y ]

Case 2 R # o« * HNote that ¢[T$ Y and &(T") commute with HT. Thus,

!iIEtm,s,tJ$|

y KY : _ o
s W 01 e, o ety @Y+ 7L oL x® TH

KFECL 3

oy

ol D Y,iva (e
o, v (e, ) m'+e, mHu, Flx] s cless)|] -

Now using Lemma 2.4 (i) to bound the first facter and making use of

the partition of the identity,

oy

¥
1=r(]x'| > £11t+s| + F(]x"] s E1|t+s1, 1xT | > £2|t+s]}

I"':I:-'irf
+ F{Ix; | = £2|t+51} ,
. Y.
we estimat 1|IE{4,5,t111 to get,
]!Ig{u,s;t}||
< K{!]DH{xﬁ}|| e x"] > Elft+sl}v1{HY+i}¢{HT}Ut F(lx'|sc|tss]) ]|
¥ Y DQT 1
+ 1|ﬂ3{x }F{|x I < El|t+s1, IHY | > szt+s|11|
oy oy wy Y
i D |9 A D D - I
+ 1]y tx ]|11IF{13Y | < Ezft+s1} Ugpr,y © Ty }F{1:T s |e+s {1}
(3.71)
Now we have the folleowing relaticn between the cocordinates
oy
= ey, pyx’ + d{Y.DuY}xi
we then take
ci = max{max c{YPDmT}}
Y 8
3.72
and [ )
¢! = min{min d{T,nﬂY}}

2 ¥y .
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and choose the constants to satisfy the fellowing inequalities.

{bf+5{b’}}£ ﬂz, Ly » b 4+ ¢, L < b'+c, cékz > C

1 1 2 (L2

Then using Thecorem 3.2 (iii) and Thecrem 2.11 (i) respectively for the
first and the third torms of (3.71) along with (3.73) and (3.72) for the

second term cof (3.71) we ckbtain the estimate that

L

||Ig[m,5,t}|| < k(+|t+s]) T, My > 1.

Hence the result.

Now we are ready to prove the low enerqy decay condition for the

four particle scattering. We define the sets

+ + oo
D" = {f e H: Y(IE f, for some U E CﬂfﬂiﬂyT{H}}, 0=y = 1}-

4 e
We see that U7 is dense in H™. We alsc write for any two functions h(t)

and g(t),

hi(t)
g (t)

h =o_(g) iff E 1lim
t &+ =

Thus h = ﬂé{l} means that € 1lim h(t) = 0.

Tt == o

Theorem 3.26 (Low Energy Decay) Let H be the four particle Hamiltonian

with the pair potentials satisfying (Al), (A2) and (A5) - (AB). Then for
e 4 . . *
any f £ U7 and any pair y, there is a constant b (f) > 0 such that

for any o s bi{f).

y
1 2
E lim llrerY < = v, £l = o.
t+ + w 2 Y ot

Proocf (+ sign conly) Since £ E ﬂ+, there is a ¢ € CT (IR T (H)),
0O=zyYy =21, Y(HKYE = £ and for some & > 0, supp rﬂ{-idz, iﬁzy = @, We

fix this A4 and consider the constants b, hl, E* and ¢ coming from



Lemmas 3.24 and 3.25 with a further restriction that

hf v+ amn? < v?, (3.74)

which is always possible. Then we have the following inequality, for

any pairs Y, with Yy 8 = @ and constants bﬁ' b? and bE (recalling
Y
the definiticn of I from Lemma 3.25).
K
FT’ < 3b2)P(H )
& o
: A K'Y
Y 2 D 1.2 6 _ 1,2
< = =
< {F(T' < ib,) 2 F{TY >3 PLYF (T > 5 hE}
. Y
Y 1.2 o0 X2
+ EF{T S 5 bg) F(T, $ 3 bo)
T::_}_'_hg B{lbgF
+ F(T' £ 3 bF(T £ 3 E}}v{HG} (3.75)
Now we choose the constants hﬁ, h? and bB to satisfy,
h <Xy Ly ¢ omin (bo.b), min (b.,b_,b ) < — b
3] 4 717 4 7R 6°77'°8 16
(3.76)
2 2 2 1 <z
{b6+b?+bﬂ} < 3 ad

with this choice of the constants and the inequality (3.75) we sece that

there arc functions ¢1r$,¢? € t;{nai, 0 = #1;¢2,¢ < 1, supp ¢ contained
2

in (i{b')z,m}, supp ¢, ccntained in (~}b, &bz} and supp ¢2 contained

b !
: 1 .2 1 2 . _ -~
in [--E hl,-E bl} so that by setting CTB = W{) g, for B:P [y = @, the

inequality (3.75) becomes,

F(TY < 3 bIW(H)
Y KY . ~ KY Ye
< {6,y T oer]) sy + 3 o @ ) 4o @ ). 37D
K {5}



Using (3.77) we then write,

Y 1,2 s 1,2
{ f— = P,
vtf, F(T' < 3 bE}vtf} {vtf, F(T' < 5 b5}¢(H}vtf}
s v -vm)tv, £]]

KY KY
- D o
+ E v £, {o,(m ) - Sy )} £

kY
n
+ E Vo E, opH ) YH )V >
Y KY
Y Y i B
& -
+ {vtf.{fer )=, (H ) } E ﬁ[TY Yo (T YU(H )V, £>
v. J n'Y A
) A e % . BT
+ fvtf;aE{H ) E q{TY yoo(T !&:Hﬂ}vtf}
< & -y
+ Utf. {,I{T ) ml{H }}wam}vtf}
CYE
iy '
+ ﬂvtf? -1(H }¢{Hﬂ}vtf}

| £ :-J'W“‘Ilr Dw
vy -p@ v £]] + E o (™ H=0, 1 )} v £]]

A

YR YE
i T o T ¥ = C —_ C
+ 1|{L2tT.} ﬁE{H }}Mtfil + |!{,1fT ) r:"1“'1 1}?t£ri}

L KY

+ ) v f, Gy ) YE )V £

v Y ~KY A
+ <v _£,5_ (H') T ﬁ{T% YCAT Y (H )V >

l${Hn}th} (2.78)

£ lim of the terms in the braces are zerc by Lemma 2.18 (ii). We note

that ¢{H]vtf can be subkstituted for wiHD]v or ¢{H{D}]vtf, for

f
t

any D, (whenever necessary) in the E 1lim . Thus replacing w{HG]vtf by
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UtF{1x[5clt|}U: vtf + Ut F(lx| > c[t!)uz vtf and using Thecrem 2,16 (vi)

we have,
Y . 1.2
{th, F(T' < L hﬁlvtf}
< o (1) + § <v £ (=27 Vye1)e mnﬁwmmwnu F(lx]s e|lt)hulv £
= E L e ©b 1 : t =C £t
23w, oo o eme . Filx] s clt]yu* v e
e 1 1 - t = t 't
+ < £, (07 ()41 ) 1o et < *
(o (CRTNHDG, (R ; STy HTHU, FUlx|se|t])uy v £>
o+ Y, ¥ oY, B .
+<VLE, QU0 (HD) 2 sty de(Hu, Felx| < clt)ul v £
£ it BY cPY B : ‘
FVLE (SRH(CT A0 (BT ) Y(EEC ))UL F(|x]| < clt)hug v E>
" By
+ <V E, ﬂ+{cGYJ¢1tHC lwa{cﬁijut F(lx| s clthuf v.E>  (3.79)

The third, fifth and the seventh terms in (2.79) are identically zero sincs
f e Ht, while the second and sixth terms in (3.79) are ﬁttl} by Lemma
3.24, the fourth is also GE{lj by Lemma 3.25.

Since we have local decay and low energy decay results we can now

state the completeness.

Theorem 3.27 (4-particle completeness). Let H be a fcur particle

Hamiltonian with the pair potentials satisfying the conditicns (Al), (A2).
(A5) - (AB). Then for such a Hamiltonian,

w &
(1) F (D) = H_(H) L F_ (M
D D

Il

(11) H_  (H) {o}.
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