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Chapter 1

Introduction

In the first part of this chapter, we explain the main theme of this thesis. The

second part consists of some of the notions and results used in subsequent discus-
slons.

It is a very familiar fact that a point outside a (bounded) closed convex set in
a Banach space can be separated from the latter by a hyperplane. One can ask
whether the separation can be effected by disjoint balls. This is a typlical example
of a ball separation property, study of which has become important in Banach
space theory. In this thesis, we study several such properties along with some
other related notions like the Asymptotic Norming Property for which, however,

a ball-separation characterization is not available at present.

We begin our discussion with (see the end of the section for the relevant
definitions) the Asymptotic Norming Properties (ANP) of Banach spaces. The
ANP was first introduced by James and Ho [JH] to show that the class of sep-
arable Banach spaces with the Radon-Nikodym Property (RNP}) is larger than
those isomorphic to separable duals. Three different ANP’s were introduced and
‘proved to be equivalent in separable Banach spaces. Later Ghoussoub and Mau-
rey [GM) proved that in separable Banach spaces ANP’s are equivalent to the

RNP. Whether the two properties are equivalent in general is still an open ques-
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tion. Subsequently, Hu and Lin [HL1] obtained some isometric characterization of
ANP’s and showed that the three ANP’s are equivalent in Banach spaces admit-
ting a locally uniformly convex renorming, a class larger than separable Banach
spaces. In dual spaces, they introduced a stronger notion called the w*-ANP,
which turned out to have some nice geometric equivalents. In fact, they showed
that w*-ANP-III and w*-ANP-II are respectively equivalent to Namioka-Phelps
Property (referred to as the Property (#*) in [NP]) and Hahn-Banach smoothness
considered by Sullivan in [Su]. The latter property in turn grew out of the concept
of U/-subspaces introduced by Phelps [P1]. More recently, Chen and Lin [CL| have
obtained some ball separation characterization of w*-ANP’s which suggest similar
characterization can be obtained for ANP’s too. Both ANP and w*-ANP’s are
hereditary in nature.

In the non-hereditary class of ball separation properties, i.e,, properties which
are not inherited by subspaces, we study nicely smooth spaces, Property (1) and
the Ball Generated Property (BGP). Nicely smooth spaces were first introduced
by Godefroy [G3] while the BGP by Godefroy and Kalton [GK], Property (/7),
which is a natural weakening of both-}v*-ANP-H as well as the Mazur Intersection
Property (MIP) was introduced by Chen and Lin [CL}.

In Chapter 2, we introduce a new ANP which lies between the strongest and
the weakest ones. We denote it by ANP-II". This new ANP has nice geometric
properties and we give an example to show that it is clearly distinct from the other
ANP’s. We also introduce a w*-version of ANP-II'. This gives a very elegant
characterization of Property (V) introduced by Sullivan in [Su]. We also study
stability of this new ANP along with its w*-version. In particular, we prove that
it 1s hereditary and that it can be lifted from a Banach space X to the Bochner
spaces L,(1, X) (1 < p < co). We also give a ball separation characterization
for w*-ANP-II'. Some of the proofs in this chapter are mainly modifications,
refinements and adaptations from [HL1], [HL2], [HL3] and [CL].

In Chapter 3, we study some stability properties of w*-ANP’s. We show

that these are all separably determined properties and some of them are stable

2



under co-sums. They all fail to have the “three space property”. That Hahn-
Banach ‘smoothness is a separably-determined property was recently proved by
Oja and Példvere {OP] using different techniques. In this chapter, we also study
the stability of Property (fI) and see that it is stable under cp-sum, £,-sum
(1 < p < o) and can be lifted to Bochner L,-spaces (1 < p < o0) for the
Lebesgue measure on [0,1]. Property (/) also fails to be a three space property.

We conclude this section by proving that Li-preduals with Property (/1) are
essentially £; (') for some I'. This leads to the interesting problem of classification

of Banach spaces with Property (II) among Li-preduals. However, this is not
considered here, |

In Chapter 4, we study mnicely smooth Banach spaces and related ideas. We
obtain some necessary and some sufficient conditions for a space to be nicely
smooth and show that they are equivalent for separable and Asplund spaces.
We obtain a sufficient condition for the BGP and show that Property (II) implies
BGP which in turn implies nicely smooth. We show that nicely smooth spaces are
stable under £,, ¢y and finite &; sums. Also it can be lifted from a Banach space X
to Bochner L,-spaces for Lebesgue measure [0, 1]. It is not a three space property.
We show that every equivalent renorming of a Banach space is nicely smooth if
and only if it is reflexive. Similar results were earlier observed in Chapter 3 for
Property (/7) and Hahn-Banach smoothness.

Chapter 5 is devoted to the study of all these ball separation properties in the
context of C(K, X) spaces where K is a compact Hausdorff space. We prove that
for any of these properties (let us denote it by P), C(XK, X) has P if and only if
X has P and K is finite. We also show that under a compact approximation of
identity on X, if £(X) has any of these properties then X is finite dimensional.
We conclude this chapter by showing that for a compact Hausdorff space X,
L(X,C(K)) has P if and only if X~ has P and K is finite.

In Chapter 6 we discuss ball separation properties in tensor product spaces.
This short chapter raises more questions than it answers. We show that ANP-I

is not stable under either the injective or the projective tensor product; ANP-II
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and w*-ANP-I and w*-ANP-II' are not stable under the injective tensor product.
Analogous questions for the other ANP’s remains unanswered at present. It was
already proved in [GS], that if X and ¥ are Asplund and nicely smooth, then
X®.Y is also so. We show that for any two Banach spaces X and ¥ with X ®,Y
nicely smooth, forces both X and Y to be nicely smooth. We conclude with a
simple result that connects the nice smoothness of the space of compact operators
from X to V™ with the reflexivity of spaces X, Y and their projective tensor
product X ®, Y (when X~ has the approximation property and any bounded

linear transformation from X to Y™ is compact).
Of the two classes of ball separation properties studied, the hereditary and

non-hereditary, we have among them the following relations, some of which had

been established earlier and some in the course of this thesis :

w*-ANP-1 =— MIP

v U Y N
w*-ANP-1I’ w*-ANP-II = Prop (II) == BGP
J Y e

w*ANP-IIl = NS

It is perhaps interesting to investigate under what conditions these implica-

tions can be reversed.

Notations, Conventions and General Prelimi-

naries

General reference to this work are the monographs [Bo|, [DU] and [P2]. We work
with only real Banach spaces. Unless otherwise mentjoned, by a subspace we
mean a closed linear subspace. We will identify any z € X with its canonical
image # € X**. For any A C X, let co(A), aco(A) and span(A) respectively
denote the convex hull, the absolutely convex hull (i.e., co{A U —A)) and the

linear space generated by A.



Definition 1.0.1 For a Banach space X, let Sx = {z : ||z|| =1}, Bx = {z :
|z]| < 1}, Bla,r] = {z : ||z —a| <r} and B(a,r)={z : ||z~ 4| <r}

(a) Let ® be a subset of Bx., where X~ is the dual of X. @ is called a
norming set for X if ||z| = sup z*(z), for all 2 € X. A subspace F' of X~
is said to be a norming subs;;ct of X~ if the unit ball Bz is a norming set
for X.

(b) A sequence {z,} in Sy is said to be asymptotically normed by & if for
any € > 0, there exists 2* € & and N € IV such that 2*(z,) > 1 — ¢ for all
n > N, '

(c) For k =1, Il or II], a sequence {z,} in X is said to have the property
if

I. {z,} is convergent.

I1. {z,} has a convergent subsequence.

NI (eo{ze 1 k=n}5#0.

n=1

(d) Let ® be a norming set for X. X is said to have the asymptotic norming
property « with respect to @ (®-ANP-x), k = I, II or III, if every sequence
in Sx that is asymptotically normed by ® has property x.

(e) X is said to have the asymptotic norming property & (ANP-&), & = I, II

or IIi, if there exists an equivalent norm |} || on X and a norming set ® for
(X, || - Il) such that X has ®-ANP-«.

Lemma 1.0.2 [G4, Lemma 1.1] Let X be a Banach space and F' a subspace of
X. Then the following are equivalent :

(¢) F' is a norming subspace of X

() Br is w*-dense in By..

Theorem 1.0.3 [HL1, Theorem 2.3]
(a) X has ®-ANP-III



(5) X"\ X = {z* :|=™|| > sup z™(¢)}
ped

(¢) Every sequence in Sx that is asymptotically normed by ® has o weakly

convergent subsequence.

Remark 1.0.4 It follows that a reflexive space has ®-ANP-III for any norming
set ®. And that a space X has Bx.-ANP-III if and only if X is reflexive.
In the sequel, we will say a sequence {z,} has property III if it has a weakly

convergent subsequence. By the above Theorem, this does not alter the definition
of ®-ANP-IIL.

Definition 1.0.5 Let X be a Banach space and X™ its dual. Let ¢ C X and

D C X~
(a) Let f € X* and o > 0. Then the set S(C, f,a) = {z € C: f(z) >
sup f(C') — «} is called the open slice of € determined by f and c.

(b) A point z € C is called a denting point of C if the family of open slices

containing = forms a local base for the norm topology at x (relative to C'}.

(¢} A point z € C is called an exposed point of C if there exists f € X*
such that f(z) > f(y) whenever z # y and y € C and f is said to expose
z. The point z is called strongly exposed if there exists f which exposes =
such that {S(C, f,a) : @ > 0} is a neighbourhood base for z in C for the

norm topology.

(d) If D € X~ and the slices are determined by functionals from X, we get
the corresponding definitions of w*-slices, w*-denting points, w*-exposed

points and w*-strongly exposed points respectively.

(e} A point z* € D is said to be a weak*-weak point of continuity (w*-w
PC) of D if * is a point of continuity of the identity map from (D, w*) to
(D,w). _

(f) A point z* € D is said to be a weak*-norm point of continuity (w*-PC) of
D if z* is a point of continuity of the identity map from (D, w*) to (D, ||-|]).
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(g) A Banach space X is said to have the Kadec Property (K) if the weak and

the norm topologies coincide on the unit sphere, i.e., (Sx,w) = (Sx,{||)-

(h) X is said to have Kadec-Klee Property (KK) if for any sequence {z,}
and {z} in Bx such that limljz.|| = ([z| = 1 and w-lim, z, = z, then

lim ||z, — z|| = 0.

Remark 1.0.6 Denting points can be defined in an alternative but equivalent
way. One can refer to [Bo] for this. We take the one convenient for our purpose.

It is well-known that a 2* € By. is w*-denting if and only if it is extreme and
w*-PC.

Theorem 1.0.7 [HL1, Theorem 2.4] Let ® be a norming set for a Banach space

X. The following are equivalent :
(¢) X has ®-ANP-II.

(0) X has ®@-ANP-III and X has (K).
() X has ®-ANP-III and X has (KK).

Theorem 1.0.8 [HL1, Theorem 2.5] Let & be a norming set for a Banach space

X. The following are equivalent :
(¢) X has ®-ANP-I

(b) X has ®-ANP-II and X is strictly convex.
(c) X has ®-ANP-III and all points of Sx are denting points of By.

We quickly note the following Corollary :

Corollary 1.0.9 Let ® be a norming set for X. Then X has ®-ANP-x if and
only if X has W-ANP-& for some (and hence, all) ® C ¥ C @co(®).

Definition 1.0.10 Let X* be a dual Banach space. X is said to have w™-ANP-x

(k = I, II or III) if there exists an equivalent norm || - || on X and a norming set

® in (Bx,|| - ||) such that (X*, |- ||) has ®-ANP-x.

T



Remark 1.0.11 If ® C By is a norming set for X*, we necessarily have aco(®) =
Byx. Hence, by the above Corollary, we can always take @ = By, and in the sequel,

we indeed do so.

Theorem 1.0.12 [HLI, Theorem 3.1} For a dual Banach space X*,
(a¢) X has w*ANP-I if and only if every point of Sx+ is a w¥-denting point

of Bxs. '
(8) X has w*-ANP-II if and only if (Sx»,w*) = (Sx+ | |).
(¢) X has w*ANP-IIT if and only if (Sx-,w*) = (Sx+, w).

Definition 1.0.13  (a) The duality mapping D for a Banach space X is the
set-valued function from Sx to Sy. defined by

D(z) = {2" € Sx+ :z%(z) =1}, =z € x.

Any selection of D is called a support mapping.
(b) Let F: X — IR be a function. Then F is said to be Fréchet differen-
tiable at z € X if there exists an f € X™ such that

o Fz+ Ay) — F(z) )] =0

A——07 | A |

uniformly for y € Sy. It is well-known that the norm of X is Fréchet
differentiable at z if and only if the duality mapping‘ is single-valued and |
norm-norm continuous at z. It is also known that z* € Sx. is w*-strongly
exposed by z if and only if the norm is Frechet differentiable-at z with
D(z) = z* (see [P2]).

(c) A Banach space X is said to be smooth if for all z € Sy, the duality

mapping is single-valued. °

(d) A Banach space X issaid to be very smooth if every z € Sx has a unique
norming element in X™, It is known that X is very smooth if and only if

the duality mapping D is single-valued and is norm-weak continuous.
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(e) A Banach space X issaid to be Asplund if each continuous convex func-
tion F' : X — IR is Fréchet differentiable on a dense G5 subset of X, It
is well-known that X is Asplund if and only if X* has RNP if and only if

every separable subspace of X has a separable dual (See [Bo)).

(f) For a Banach space X, let X+ = {2+ € X™: z-(z) =0 forall z € X}
X is said to be Hahn-Banach smooth if for all 2= € X*, ||z*+z*|| = ||lz*|| = 1

implies z+ = 0.

In other words, z* € X is the unique Hahn-Banach extension of z*|x.

Obviously X is Hahn-Banach smooth if and only if

Xt ={z7e X N7 = sup z*(z)}.

zeBy

(g) X is said to have Namioka-Phelps Property if all points of Sx.+ are w*-
PC’s of Bxs.

(h) X is said to have the Mazur Intersection Property (MIP) if the w*-
denting points of By. are dense in Sx., or equivalently, every closed

bounded convex set is the intersection of closed balls containing it.

(i) X is said to have Property (I1) if the w*-PC’s of Bx. are dense in Sk,
or equivalently, every closed bounded convex set is the intersection of closed

convex hull of finite union of balls.

(j) X is saild to have the Ball Generated Property (BGP) if every closed

beunded convex set is ball-generated, i.e., it can be realized as the intersec-

tion of finite unions of balls.

(k) X is said to be nicely smooth if X has no proper norming subspace.

Remark 1.0.14 (i) Property (II) for a Banach space X defined above,

should not be confused with property II defined for a sequence {z,} earlier.

To avoid any such ambiguity, let us always denote the former (i.e,, for X')
by (II) and the latter (i.e., for {z,}) just by IT.
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(ii) As just noted, all these properties deal with ball separation. We use
some of these properties in our analysis of the w*-ANP in Chapter 2. For
a detailed discussion one should refer to {G3}, [CL] [B1] and [GK].

Theorem 1.0.15 [HL2, Theorem 1| Let X be a Banach space. X 1s Hahn-
Banach smooth if and only if X has w*ANP-III if and only if the weak and

wt-topologies coincide on Sx-«.

It is clear from above that X has w*-ANP-IIif and only if X has the Namioka-

Phelps Property.
For a Banach space X, let

Cx = {z7" e X7 :|lz™ + &|| 2 {|=||}
for all z € X.

Lemma 1.0.16 [GK, Lemma 2.3] Let X be ¢ Banach space and z** € X™*. Then
the following are equivalent :
(a) z"~ e Cx.

(b) kerz* (Y Bx. is w*-dense in Bx-.
Thus we immediately have

Lemma 1.0.17 Let X be a Banach space. Then ™ € C'x if and only if kerz™”

1s @ norming subspace of X,

Definition 1.0.18 A Banach space X is said to satisfy the finite intersection
property (FIP) if every family of closed balls in X with empty intersection contains

~ a finite subfamily with empty intersection.

It is well-known that any dual space and its 1-complemented subspaces have
FIP.
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Theorem 1.0.19 [GK, Theorem 2.8] Let X be a Banach space. Then the fol-

lowing are equivalent :

(9) X has FIFP
(1) X* =X + Cx.

Let X be a Banach space, and (2, %, 1) be a measure space. Let L,(g,X)
denote the Lebesgue-Bochner function of p-integrable X-valued functions defined
on 2 (1 < p,q < o). Recall from [DU] that if 1/p+1/¢ =1, 1 < p,q < o0, the
space L,(i, X™) is isometrically isomorphic to a norming subspace of L,{g, X)”
and that they coincide if and only if X has the RNP with respect to p.

L(X,Y) (resp. K(X,Y)) denotes the Banach space of bounded linear operators
(resp. compact linear operators) from X to Y., [LC} and [DU, Chapter VIII]
contains all the necessary information on tensor product spaces. We just recall
here that for the projective tensor product of X and Y (denoted by X ®, Y),
L(X,Y*) with the usual operator norm can be identified with (X ®, Y)* while for
the injective tensor product (denoted by X &, Y), the space of integral operators
Z(X,Y™) from X to Y™ with the integral norm can be identified with (X ®. Y)*

(see [DU] for details).
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Chapter 2

On a New Asymptotic Norming
Property

2.1 The New ANP

The following lemma will be useful in our subsequent discussions.

Lemma 2.1.1 {HL1, Lemma 2.2] Let {23} be a sequence in Sx+ and let P be
a subset of Bx. If ® is a norming set of Span{z; : n € N}, and {z}} is
asymptotically normed by @, then

[2"[} = sup 2™ (¢) = 1
- ¢ed

for all z* in the w*-closure of {z}.

Definition 2.1;2 A sequence {z,} in X is said to have the property II' if {z,}
1s weakly convergent.

Let X be a Banach space and let & C By« be a por;}ling set for X. X is said
to have ®-ANP-II' if any sequence {z,} in Sx which is asymptotically normed by
® has property II'. X is said to have ANP-II' if there exists an equivalent norm
| || and a norming set ® such that X has &-ANP-IF.
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Remark 2.1.3 Clearly, ®-ANP-I = ®-ANP-II' = ®-ANP-III, so that every re-
sult on the equivalence of ANP-I and ANP-III also yields their equivalence with

ANP-IT'.

Theorem 2.1.4 Let © be a norming set for a Banach space X. The following
are equivalent : | | |
(a) X has ®-ANP-I
(6) X has ®-ANP-II' and X has (K)

(¢) X has ®-ANP-II and X has (KK)

Proof : Since ®-ANP-I implies both ANP-II and ANP-IT, (a) = (b) follows
from (a) = (b) of Theorem 1.0.7, and (b} = (c) is obvious.

(c) = (a) Let {z,} be a sequence in Sx which is asymptotically normed by
®., Since X has ®-ANP-II', {z,} is weakly convergent to some x € X, Then
applying Lemma 2.1.1 for {z,} in X < X we have ||z|| = 1 and hence by (KK)

we have z, — z in norm. B

Theorem 2.1.5 Let ® be a norming set for a Banach space X. The following

are equivalent :

(a) X has ®-ANP-IT.
(8) X has ®-ANP-III and X is strictly conves.

Proof : (a) = (b) To show that X is strictly convex, let z,y € Sx and suppose
z=(z+y)/2 € Sx. Foreachn € IV, let 27 € ¢ be such that z(z) > 1 -~ 1/n.
Then zX(z) > ] — 2/n. Hence the sequence {z,} with 23,y = 2, Zo, =2z, n € IV
is. asymptotically normed by ®. Since X has ®-ANP-II', z = 2.

(b} = (a) Let {z,} be a sequence in Sx which is iéymptotically normed by
®. Since X has ®-ANP-III, D = (Neo{zx : k > n} # 8. Now X has ®-ANP-
IIT implies {z,} has weak cluster points and all of them must be in D. Since

D C Sx is convex and X is strictly convex, D is a singleton, Moreover, since

13



every subsequence of {z,} is also asymptotically normed by ®, that singleton is
the weak limit of {z,}. Hence X has ®-ANP-IT. K

Remark 2.1.8 In the proof of () = (b) above, we use the same technique as
in Theorem 2.5 in [HL1]J.

Lemma 2.1.7 [HL1, Lemma 2.6] Let || - |I;, ¢ = 1,2, be equivalent norms on a
Banach space X and let ®; be a norming set of (X,|f-||:), i=1,2. Forallz e X
define

1
[z(]l = (=]} + ll=]2)2.
and .
d = {Mal+ rezs 27 €0, A, 20, (1 =1,2), /\f -}- A% =1},
Then ||| - ||| s an equivalent norm on X and ® is a norming set of (X,|]| - |l|)

with the following properties :
(1) If one of (X, || - li), ¢ = 1,2 is strictly convez, then so is (X, ||f - |[]).

(¢9) If one of (X,|| ' |li), 1 = 1,2 has (KK), then so does (X, ||| - |I]).

(¢4d) If one of (X,|| - |l:), © = 1,2 has ®;-ANP-III, then (X,||| - ||} has ®-
ANP-III.

Theorem 2.1.8 For a Banach space X, the following are equivalent :
(a) X has ANP-I

(6) X has ANP-II' and there exists an equivalent norm on X such that X
has (KK). |

Proof : The proof is immediate from Theorem 2.1..4 and Lemma 2.1.7. N

Similarly, using Theorem 2.1.5 and Lemma 2.1.7, one has

Theorem 2.1.9 For a Banach space X, the following are equivalent :
() X has ANP-II'

14



() X has ANP-III and X is strictly convezifiable, i.e., admits an equivalent

strictly convez norm. =

Definition 2.1.10 Let X~ be a dual Banach space. Then X has w*-ANP-II' if
~ there is an equivalent norm || - || on X such that (X~ || - ||) has Bx-ANP-II".

Remark 2.1.11 As before we could have taken some @ C By that is norming

for X™, but that does not give us anything new.

It is well-known that a dual space X~ is strictly convex if and only if every two
dimensional quotient space of X is smooth [D1]. L. P. Vlasov [V] transformed

this fact into the following equivalent form :

Theorem 2.1.12 [V] X~ is rotund if and only if for every increasing sequence
{B.} of open balls in X with radii increasing and unbounded, the set (UB,) is

either all of X or a half space.

Sullivan [Su| generalized this to the following stronger pmperty :

Definition 2.1.13 A Banach space X is said to have the Property (V), if there
do not exist an increasing sequence {B,} of cpen balls with radii increasing and

unbounded, and norm one functionals z* and y such that for some constant e,

z*(b) > cfor all b € UB,,
yr(b) > cforall be B,, n < k and
diSt(Cﬂ(yT,'y;j ‘o ‘)} 3:!) > (.,

Theorem 2.1.14 [Su] A Banach space X has Property (V) if and only if X is

Hahn-Banach smooth and X is strictly convex.

We need the following well-known fact :

Lemma 2.1.15 [C, P'ropositiori 25.13] Let E be a locally convez space, K a com-

pact convezr set in K and x € K. Then the following are equivalent :

15



(a) x is an extreme point of K.

(6) The family of open élices containing z forms a local base for the topology
of E at z (relative to IK).

Definition 2.1.16 Let X be a Banach space X and let X* be its dual. Let
W C X~ be a closed bounded convex set. A point z* € W is said to be a w*-
strongly extreme point of W if the family of w*-slices containing z* forms a local

base for the weak topology of X™ at z~ (relative to W).

Remark 2.1.17 Asthe namesuggests, a w*-strongly extreme point is necessarily

an extreme pc:-int._ This is also immediate from Lemma 2.1.15.

Theorem 2.1.18 Let X be a Banach space with dual X*. The following are

equivalent

(a) X has w™-ANP-IT,
b) X~ is strictly convex and X is Hahn-Banach smooth.
c

(
(¢) X has Property (V).

(d) All points of Sx« are w*-strongly extreme points of By..

Proof : (a) < (b) is immediate from Theorem 1.0.15 and Theoremn 2.1.5, while
(6) © (c) is just Theorem 2.1.14,

(6) => (d). Since Hahn-Banach smoothness implies (Sx+,w*) = (Sx+, ), and
the norm is lower semi-continuous with respect to weak and w*-topolbgj}lr of X*,
any z° € Sx+ is a w*w PC of Bx.. Now, since X~ is str_ict.ly CONVEX, every
T* € Sx. is an extreme point of Bx.. By Lemma 2.1.15, for any point * € Sx-,
the family of w*-open slices containing z* forms a local ‘base for the w*-topology,
and therefore the weak topology of X* relative to By:.

(d) = (b). From (d) and Remark 2.1.17 it is immediate that X~ is strictly
convex and (Sx.,w*) = (Sx+,w), whence by Theorem 1.0.15, we get (b). _
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Definition 2.1.19 [HL2} A Banach space X is said to be Quasi-Fréchet differ-
entiable if for any convergent sequence {z,} in Sy and any 2} € D(z,), n € IV,

the sequence {z} has a norm convergent subsequence.

From [HL2, Theorem 4], it is known that if X has w*ANP-I (resp. w*-ANP-
IT) then X is Hahn-Banach smooth and Fréchet differentiable (resp. Quasi-Fréchet
differentiable). The following question posed in [HL2] still seems to be open.

Question 2.1.20 Let X be a Banach space which is Hahn-Banach smooth and
Fréchet differentiable (resp. Quasi-Fréchet differentiable). Does it follow that X
has w*ANP-I (resp. w*-ANP-1])?

Theorem 2.1.21 If X has w™ANP-IP, then X is very smooth.

Proof : By Theorem 2.1.18, X~ is strictly convex and X is Hahn-Banach smooth.
Thus, X is smooth and Hahn-Banach smooth and as noted in [Suj, X is very
smooth. We, however, prefer the following direct and ANP-like argument.

As before, X is smooth. Now let {2,} be a sequence in Sx such that =, — =.
Let D(z.) be the singleton {z7}. We have [z:(z) — 1] < |z3(z) — z2(z.)| <

Iz3[lllz — 2a]] < |z — 2.]| — 0 as n — co. That is, limp—e 23(z) = 1. So {z:} is

asymptotically normed by Bx, and hence, is weakly convergent to z*, say. Now,
2°(2) = 1] = |a*(2) — a3(z) + 23(x) — 1| < [27(2) — 25(z)] + |z5(z) = 1] —> O,
as n — co. Hence, 2™ € D(z) and since X is smooth, {2} = D(z). Hence X is

very smooth. &

Analogous to Question 2.1,20, we have the following question :

Question 2.1.22 Let X be a Banach space which is Hahn-Banach smooth and
very smooth. Does this imply X has w*-ANP-II'? .

Definition 2,1.23 X issaid to be weakly Hahn-Banach smooth, if for all z € Sk,
and z;, € Sx-, lim,,o zX(z) = 1 implies that {zX} has a weakly convergent

subsequence.
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Remark 2.1.24 Let us say that a Banach space X has property P-x (g = I,
I1, Il' or III), if for any convergent sequence {z,} in Sx, and any z} € D(z,), |
n € IV, the sequence {z]} has property & (recall that property III means having
a weakly convergent subsequence). Then clearly, w*-ANP-x = P;-x and

X has property P;-III &= X is weakly Hahn-Banach smooth.
X has property P11 <= X is Quasi-Fréchet differentiable.
X has property P-1I' <= X is very smooth.

X has property Pi-1 <= X is Iréchet differentiable.

Thus Questions 2.1.20 and 2.1.22 are essehtially whether the implication w*-
ANP-xk = Pr-& (&= I, Il and II') can be reversed under Hahn-Banach smooth-
ness.

Observe that if we can reverse the implications for £ = II and IT’, the result for
£ = I would follow. Observe also that the Question 2.1.22 (i.e., k = II') actually

boils down to

Question 2.1.25 If X is smooth and Hehn-Banach smooth, is X strictly con-

vexr ¢

As for k = ]I, observe that since D(Sx) is dense in Sx., w*-ANP-II is equiv-
alent to the apparently weaker property that any sequence {z*} in D{Sx) that is
asymptotically normed by By has a convergent subsequence. Now, if {z,} C Sx
and z € D(z,) is such that the sequence {z]} is asymptotically normed by
By then, under Hahn-Banach smoothness, must {2,} have a convergent subse-

quence 7

Example 2.1.26 In general, for ¢ Banach space X, ;he properties ANP-I, I,
II' and III are all distinct, i.e., except for the obvious implications &-ANP-I =
O-ANP-II = ©-ANP-III and ®-ANP-I = ®-ANP-II = ®-ANP-III, no other

implication is true.
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Proof : (1) Let X = ¢, X* = £;. Since (Sx.,w) = {Sx+, || - ||) on 4, by
Theorem 1.0.12, X™* has Bx>ANP-II. But X™ is not strictly convex. Hence, X
has neither Bx-ANP-] nor Bx-ANP-II.

(2) Let X = £,. Let |- ||o be defined as ||z]|o = max{1/2(||z||2), ||z[lco }. Clearly
this norm 1s equivalent to ||-||2. For (o)) € £o, let T(ag) = ax/k. ThenT : 4y — £,
is 1-1 continuous linear map. Hence the equivalent dual norm ||z||s = ||z||lo+||T%||2
is strictly convex [D1]. Also since £, is reflexive, it has Bx-ANP-IIT with respect
to || - |ls (Remark 1.0.4). Thus by Theorem 2.1.5, (éa,| - ||3) has Bx-ANP-II".
We claim that (£s, ]| - ||3) lacks (KK). Then from Theorem 1.0.7, (€3, - ||s) lacks
Bx-ANP-II, and hence, Bx-ANP-I. Indeed, let 2 = (1,0,0,...) and for each £ let
zp = (1,0,...,0,1,0,...) (1 in the kth place). Then [|zxlls = 1 + (1 + 1/&%)"*
and [lz||s = 2 so that |zklls — ||zl]s, also zx — = weakly. However, for each zp,
|z — 2xl|ls =1 + 1/k which shows (£3,] - ||3) does not have (KK).

The above two examples show that a space may have ANP-III, but may lack
either ANP-II or II'. The following is an example of a Banach space which has
ANP-III but lacks both ANP-II and IT'.

(3) Let X* = £ @ IR. It is clear that X* is reflexive, and hence, has By-
ANP-III. However X~ is not strictly convex, and hence cannot have By-ANP-IT".
Also the weak and the norm topologies do not coincide on Sx». Indeed, £, being
infinite dimensional, by Riesz’s Lemma (see [Di]), there exists a sequence {z,}
in S5y, such that ||z, — zn]ls > 1, n # m. Let z, = (z,,1). So ||zallee = 1 and
|zn — zn|le = 1. Clearly, {2z,} cannot have any norm convergent subsequence.
Now £; being reflexive, By, is weakly compact. Hence {z,} has a subsequence

{zn,} converging weakly to some 2 € By, (say). Then obviously (z,,,1) = z,,

converges weakly to (z,1) = z (say) and ||z||e = 1. | -

‘:I.

Remark 2.1.27 (2) of Example 2.1.26 is due to M. A. Smith which occurred in
[Su] as an example of a very smooth Banach space whose norm is not Fréchet
differentiable.
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It is known that if X™ is separable, then X™ admits a locally uniformly convex
dual norm [DGZ]. And in that case, all points of Sy. are w*-denting points of
Byx+«. Thus we have the following :

Theorem 2.1.28 Fora separable Banach space X, the following are equfﬁalent ;

(3) X* admits a locally uniformly convez dual norm.

(77) X has w*ANP-I

(#i) X has w*-ANP-I]

(iv) X has w*-ANP-IT

(v) X has w*-ANP-III

(vi) X™ has RNP. |
Remark 2.1.29 In [HL1] it was asked whether a dual space X™ having w*-ANP-
[ admits a locally uniformly convex dual norm. For separable Banach spaces,

Theorem 2.1.28 gives an affirmative answer to this question. However the question

1s still open for non-separable spaces. We also note that there exist Banach spaces

whose dual has RNP but lacks w*-ANP-III [HIL1].

2.2 Stability Results

Theorem 2.2.1 Let X be « Banach space with ®-ANP-x, x = I, II, IT or I1.
Then for any closed subspace Y of X, Y has ®ly-ANP-& where ®ly = {y™ :y" =
:B*ly, T* € P},

Theorem 2.2.2 Let X be a Banach space such that X has w*~ANP-x, k = [,
I, IT or IIl. Then for any closed subspace Y of X, Y has w*ANP-x,

Proof : Let {y:} C Sy. be asymptotically normed by By. For every n 2 1,
let z; be a norm preserving extension of y: to X. Then {2z} is asymptotically
normed by By, and hence has property x. Now the restriction map z* — z*|y

brings property « back to {y*}. | E
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Corollary 2.2.3 Hahn-Banach smoothness and Property (V) are hereditary.

Remark 2.2.4 This observation appears to be new. Note that we do not need
the stability of the ANPs under quotients to prove the above theorem. In fact, it

is not clear whether the ANPs are indeed stable under quotients.

Let X be a Banach space, 1 < p,q < co with 1/p+1/g =1 and (Q, %, u)
be a positive measure space so that ¥ contains an element with finite positive
measure. Let @ be a norming set for X. Then define &; = co(® U {0}) \ Sx and

il _ ,,, (n — 1) n
An — i . L . < < y Ly y
{E AZIXE, xz: € Oy - "'"”m‘”"(n—l-l)EEE

=1

E,nE; =0, for 1 # 3, A; > 0 with ZA?p(E;) = l}

p=1

Then A(®, u, q) = Uﬂ21 An 1s a norming set for L,(u, X) [HLS].

Theorem 2.2.5 [HL5, Theorem 6] Let X be a Banach space, ® C By. be a
norming set for X. X has ®-ANP-I{I if and only if L,(n,X) has A(®, i, q)-
ANP-II].

Thus we have

Theorem 2.2.6 Let X be a Banach space, ® C Bx. be a norming set for X. X
has ®-ANP-IT if and only if L,(, X) has A(®, u,q)-ANP-1I.

Proof : The result follows from Theorem 2.1.5, Theorem 2.2.5 and the fact that
X 1s'strictly convex if and only if L,(g, X) is strictly convex [D2]. M

Remark 2.2.7 Let X be a Banach space. If (X,|| - ||} has ANP-II, the space
(Lo(#t, X), || -]I) may not have ANP-II. For an example, see [HL5]. Thus we have
nicer stability results for ANP-II’ than for ANP-IL. |
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Theorem 2.2.8 Let X be a Banach space. X has Property (V) if and only if
Ly(1t, X) has Property (V) (1 < p < o0).

Proof : By Corollary 2.2.3, X inherits Property (V) from L,{u, X).
Conversely, if X has Property (V), by Theorem 2.1.14, X is Hahn-Banach
smooth. Hence X is an Asplund space. Thus, Ly(p,X)* = L,(g, X*), where
1/p+1/q = 1. From Theorem 2.2.5, L,(u,X) is Hahn-Banach smooth. The
result now follows from Theorem 2.1.5 and the fact that X™ strictly convex implies

L,(p, X*) 1s strictly convex. |

2.3 Ball-Separation Properties

In a recent work, Chen and Lin [CL) have obtained certain ball-separation prop-
erties of Banach spaces, which can be used to obtain ball-separation character-
izations of w*-ANP-x, (x¢ = I, II, III). We obtain a similar characterization for
w*-ANP-IT'.

The following notions will be useful for our future course of discussions.

Definition 2.3.1 [CL] Let A be a collection of bounded subsets of a Banach
space X, Then f € Sx. issaid to be a A-denting point (resp. A-PC) of By., if for
each A € A and € > 0, there exists a w™-slice S of By. (resp. w*-neighbourhood
5) such that f € S and diaygS < €, where diagS = sup{||f —g|la: f,g € S} and

I1f = glla = sup{| f(z) — g(z)| : = € A}

Remark 2.3.2 If A consists of all bounded subsets of X, then it is easy to see
that a A-denting(resp. A-PC) of By. is a w*-denting (resp, w*-PC) point of Bys.

Definition 2.3.3 [CL} We say that A is a compatible collection of bounded sub-
sets of X if | |
(a) HAe Aand C C A, then C € A.

(b) Foreach Ae A,z€ X, A+ z € Aand A J{z} € A.
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(c) For each A € A, aco(A) € A.

Theorem 2.3.4 [CL, Theorem 1.3] Let X be a normed linear space, and A be a
compatible collection of bounded subsets of X. If fo € Sx-, then the following are
equivalent :
(i) fo is an A-denting point of Bx-.
(i7) For ell A € A, ifinf fo(A) > 0, then there ezists a ball B in X such that
A C B, andinf fo(B) > 0

(i57) For all A € A, if inf fo(A) > «, then there exists ¢ ball B in X such
that A C B, and inf fo(B) > a.

Theorem 2.3.5 [CL Theorem 4.3] Let X be Banach space, and A be a com-
patible collection of bounded subsets of X. If fo € Sx+, then the following are

equivalent ;-

(7) fo is an A-PC of By..

(5) For all A € A, if inf fo(A) > 0, then there exist finitely many balls
By, By,... B, in X such that A C co{|J_, Bi} endinf fo{@o{{J;., Bi}) > 0.

(7i2) For all A € A, if inf fo(A) > «, then there exist finitely many balls
By, By, ... B, in X such that A Ceo{lJ_, B;} andinf fo(ce{lJi., Bi}) > «.

Remark 2.3.6 One can see from the proof of the above theorem in [CL], that
it works even if we redefine compatible collection of sets by changing the first

criterion in the following manner :

IfAe Aand C C A, C closed, then C € A.
In fact this seems to be the justification of Corollary 1.11 in [CL] where A =

{all compact subsets of X} is taken to be compatible.

Theorem 2.3.7 [CL, Theorem 3.1] Let X be a Banach space and let fo € Sx-,
then the following are equivalent .
(a) fo is a w¥w PC of Bx:.
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(b) For any z5™ € X, if 5™ ¢ f5'(0) = {z™ € X : fo(z**) = 0}, then
there exrists a ball B* in X with centre in X such that 23> € B™ and

B f7{0} = 0.
And we immediately have,

Theorem 2.3.8 Let X be a Banach space and let fo € Sx-«, then the following

are equivalent :

(7)) fo is a w*w PC of Bx..

(22) for any x5* € X and a € R, if fo(zy™) > «, then there exists a ball
B™ in X" with centre in X such that zj* € B™ and inf fo{ B™) > «a.

The following ball-separation characterizations of w*-ANP’s can be obtained
using Theorem 2.3.4, Theorem 2.3.5 and Theorem 2.3.7. We have stated it in a

slightly modified form.

Theorem 2,3.9 For ¢ Banach space X,
(1) X has w*ANP-I if and only if for any w*-closed hyperplane H in X**,
and any bounded conver sel A in X~ with dist(A, H) > 0, there exists a
ball B in X™ with centre in X such that AC B* and BN H = 0.

(7)) X has w*ANP-II if and only if for any w*-closed hyperplane H in X*~,
and any bounded convezr set A in X with dist(A,H) > 0, there exist
finitely many balls By, By™,..., B> in X with centres in X such that

A C T(Up_, By") and eo(Up_, By™) N H = 0.

(78) X has w*-ANP-III if and only if for any w*-closed hypernlane H in
X", and any 2™ € X™ \ H, there exists a ball B* in X™* with centre in
X such that z** € B™ and BN H = 0. i

Now let us obtain a similar characterization of w*-ANP-II'. In fact, we char-

acterize w*-strongly extreme points of By..

In view of Remark 2.3.6 we get,
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Theorem 2.3.10 Let X be a Banach space and let fo € Sx+, then the following

are equivalent :

(a) fo is an extreme point of By..

() for any compact set A C X if inf fo(A) > 0, then there extsts a ball B in
X such that A C B and inf fo(B) > 0.

(¢} for any finite set A C X ¢f inf fo(A) > 0, then there exists a ball B in X
such that A C B and inf fo(B) > 0.

Proof: (a) & (b). Let A = {all compact subsets of X}. Now Bx. is w*-compact
and the restricted b-w™ topology on Bx. (i.e., the topology of uniform convergence
on compact subsets of X, see [DS] for more on this) coincides with the restricted
w*-topology. Thus it follows from Lemma 2.1.15 that fy is an extreme point of
Bx. if and only if the w*-slices form a neighbourhood base of f; in the restricted
b-w*-topology, i.e., fp is an extreme point if and only if it is an .A-denting point.
The rest of the proof follows from Theorem 2.3.6.

(a) < (¢). It suffices to repeat the above argument with the compatible
collection A = {all compact sets with finite affine dimension}, after observing

that co{z1,z2,...,2z,} € A for any finite number of points z;,22,...,2, € X. B

Remark 2.3.11 The idea of the proof of the above theorem has been adapted
from [WZ, Lemma 2] and [B2, Corollary 2].

Theorem 2.3.12 Let X be a Banach space and fy € Sx«, then the following are

equivalent:

(a) fo is a w*-strongly eztreme point of Bx..
(8) fo is a w*w PC and an extreme point of By..

(c) for any compact set A C X, if inf fo(A) > 0, then there ezists a ball
B C X™ with centre in X such that A C B™ and inf fo( B**) > 0.

(d) for any finite set A C X, if inf fo(A) > 0, then there ezists a ball
B* C X™ with centre tn X such that A C B™ and inf fo(B™) > 0.
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Proof : (a) & (&) follows from Lemma 2.1.15 and the proof of Theorem 2.1.18.

(b) = (c). Since fp is a w*-strongly extreme point of Bx«, it is easily seen that
it is an extreme point of By«.. Thus by Theorem 2.3.10, for any compact set A
in X** with inf fo(A) > 0, there exists a ball in B™ = B™*(z5*,7) € X™ such that
A € B™ and inf fo(B**) > 0. Now, inf fo(B*(z5",r)) > 0 implies fo(z3") > 7.
Since fp is a w*-w PC, by Theorem 2.3.8, there exists a ball B**(z,t) € X** such
that z3* € B™*(z,t) and inf fo(5**(z,¢)) > r. This implies fo(z) > r +¢. Also,
AC B*(z5™,r) € B*(z,r +1t) and inf fo(B=(z,r + 1) > 0.

(e) = (d) is trivial.

(d) = (). Taking A C X, it follows from Theorem 2.3.10 that fp is extreme
in Bx.. And taking A to be a singleton, it follows from Theorem 2.3.8 that fo is
a wh-w PC. | | B

-y

Corollary 2.3.13 Let X be a Banach space. Then the following are equivalent .
(i) X has w*-ANP-II.

(it) for any w*-closed hyperplane H in X*, and any compact set A in X™
with AN H = 0, there exists a ball B in X™ with centre in X such that
AC B and B"NH =0,

(¢it) for any w*-closed hyperplane H in X, and any finite set A in X**
with AN H = 0, there exists a ball B™ in X with centre tn X such that
AC B™ and BN H = 0. | |
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Chapter 3

Some Stability results on
Weak*- Asymptotic Norming

Properties

3.1 Hahn-Banach Smoothness, U-subspaces

and their Permanence Properties

Our first result gives a simpler proof of the following theorem by E. Oja and M.
Példvere [OP]. But let us first quote the following definition and result which we

need for proving the theorem and for subsequent discussions.

Definition 3.1.1 [OP} Let X be a Banach space, Y a subspace of X. Y is said

to have property U/ in X, if for any y™ € Y™ there exists a unique norm preserving

extension of ™ in X™. Henceforth we will refer to such a subspace as a U-subspace
\

of X.

Remark 3.1.2 Notice that, X is Hahn-Banach smooth if X is a U-subspace of
X** under the canonical embedding of X in X~
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Proposition 3.1.3 [SY] If X is any Banach space, N is a separable subspace
of X, and F is a separable subspace of X*, then X has a separable subspace M
containing N which admits a linear extension operator, i.e., a linear mapping

T : M* — X*, such that for each f € M*, Tf is a norm preserving eztension
of f and T(M*) D F. |

Theorem 3.1.4 X s Hahn-Banach smooth f and only if every separable sub-
space of X is Hahn-Banach smooth.

Proof : We have already observed in Theorem 2.2.2 that Hahn-Banach smooth-
ness 1s hereditary.

Conversely, let X be such that all its separable subspaces are Hahn-Banach
smooth. We will show that X is Hahn-Banach smooth, i.e., X has w*-ANP-
III. Let {zX} be a sequence in Sx. which is asymptotically normed by Bx. In
view of Theorem 1.0.3, it is enough to show that {z}} has a weakly convergent

zx|| = 1 for all n, for m,n € IV, select ,m € Bx such that

Tt

subsequence. Since |
2 (Zam) = 1 — 1/m. Also since {27} is asymptotically normed by By, for each
k € IN, there exists n;, € IV and x; € By such that a}(zx) > 1 — 1/k for all
n > ng. Let Y = span[{z.m} U{zr}]. Clearly {z}} is asymptotically normed
by By. By Proposition 3.1.3, there exists a separable Y/ D Y and a linear
extension operator T' : Y — X~ such that 7Y’ D 3pan{z:}. Hence there
exists y* € Y™ such that T(y:) = zX and ||yz|| = ||z:|l. Since Y is separable, ¥’
has w*-ANP-III. Let {y7,} be the subsequence of {y;} weakly converging to y”.
Let T'(y*) = z*, then \y"‘: = |lz*||. Also let 2™ € X™, then T"‘(:I:"‘*} e (Y')*,
hence T*(z**)(y%,) — T*(2*)(y~) which implies =T (y5;) — z**T(y*) which

in turn implies z**(z},) — 2™ (z™), and this is true for all z** € X**. Hence

{z*} is a subsequence of {z} weakly converging to ™. This completes the proof.
=

We next consider the stability of being a {/-subspace under ¢, sums. -
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Proposition 3.1.5 Let Y C X be a proper subspace of X and let Z be any

nonzero Banach space, then the £ -direct sum Y €, Z is not a U-subspace of
XD, Z.
Proof : Let y* € Y*, 0 < |ly*l| < 1 and let z* € Sz.. Let 2* € X* be a

norm preserving extension of y*. Since ||z*|| < 1 and Y is a proper subspace
of X, choose 7 € Y+ such that 7 # 0 and ||z" £ 7|| < ||z"|| + |I7]| £ 1. Now
|(z* 47, 2"}|| = max (||z~ £ 7|, ]|z"||) = 1. Thus (z" & 7,2") are two distinct norm

preserving extensions of (y*,27). B

Before our next result, let us recall the following definitions :

Definition 3.1.6 [HWW] Let X be a Banach space.

(1} A linear p‘rojection P 15 called an L-projection if
|2]| = |[Pz|[ + |l ~ Pz,

for all z € X. If a closed subspace ¥ of X is the range of an L-projection,

it 15 called an L-summand of X.

(ii) A linear projection P is called an M-projection if
|lz]| = max{||Pz|, |z — Pz},

for all z € X. If a closed subspace Y of X is the range of an M-projection,
it is called an M-summand of X. A closed subspace ¥ C X is said to be

an M-ideal if Y+ is an L-summand of X~

Corollary 38.1.7 If X is non-reflezive and Hahn-Banach smooth, then X has no

1

non-trivial L-projections,

Proof : Suppose X =Y P, Z is a non-trivial L-decomposition. Since X is not
reflexive, assume without loss of generality, Y is non-reflexive. Since X =Y (b, Z
is a U-subspace of X** = Y@, 2, it is a U-subspace of Y™ &), Z as well.
By Proposition 3.1.5, this is a contradiction. Hence there are no non-trivial L-

projections on X, | | | N
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Remark 3,1.8 It was observed by Sullivan in [Su] that if a dual space is Hahn-

Banach smooth, then it is réflexive.

Corollary 3.1.9 Let {X;}ier be a family of Banach spaces. Then @51([‘) X; 18
Hahn-Banach smooth if and only if all but finitely many X;’s are trivial, i.e., {0},

and the remaining are reflerive.

Proof : First, suppose only finitely many X;’s are non-trivial and reflexive. Then
obviously €P:_; X; is reflexive and hence Hahn-Banach smooth.

Conversely, suppose @el(r) X; 1s Hahn-Banach smooth. Suppose X, 1s not
reflexive for some m € I'. Hence @, ) Xi is not reflexive. In this case Xy, 1s an
L-summand of ), y Xi contradicting Corollary 3.1.7. So X;i's are reflexive for
all 2. Hence X; = Y;™ for dual space ¥;*. This implies

X=@Y =Y
&1(l')

Hence X is a dual space and by Remark 3.1.8 it follows that X is reflexive. This

in turn implies that

DY =¥V =V = X~ = .
Pri=yY=Y"=X=PHV
co(T) £ oo (T)

and the first and the last spaces are equal only when Y;’s are zero for all but

finitely many ’s. - | -

Corollary 3.1.10 If, for a Banach space X, every equivalent renorming is Hahn-

Banach smooth, then X s reflexive.

Proof: Let X = Y D Z be a nontrivial direct sum. Clearly such a decomposition
is always possible by taking Y to be finite dimensional and Z its complement.
Now define [|z|, = [|y|| + ||2]| where z = y+ z, y € Y, 7 € Z. Applying the open
' mapping theorem, it readily follows that || - ||, is an equivalent norm on X and

this new norm has nontrivial L-projection. Therefore every non-reflexive space

can be renormed to fail Hahn-Banach smoothness. Hence the result. -]
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Remark 3.1.11 In [HL2] the authors showed that X is reflexive if and only if
for any equivalent norm on X, X is Hahn-Banach smooth and has ANP-Iil. The

corollary above is a much stronger result with a simpler proot.
Corollary 3.1.12 Hahn-Banach smoothness is not o three space property.

Proof : Let M be Hahn-Banach smooth and non-reflexive, e.g., cg. Let X =
M@, M. Then X/M is isometrically isomorphic to M, hence Hahn-Banach
smooth. From Corollary 3.1.7, it follows that X is not Hahn-Banach smooth. H

Theorem 3.1.13 Let {X;}icr be a family of Banach spaces. For each i € ', let
Y; be a U-subspace of X;. Then the co-direct sum $ca(r) Y; is a U-subspace of

®Cn(1-‘) X;-

Proof : Let X = P,y Xi, then X~ = Do,y X7+ Similarly, ¥ = D..m Yo
Y* = @p Y- Let y" € Y™ Let 27 = (af)ier and 2" = (z)ier be norm-
preserving extensions of y* = (y7)ier. Clearly z7 # 0 if and only if y7 # 0 if and

only if 2z # 0. Thus 27 = y7 = 27 on Y¥;" for all i. Now ||z¥|| = ||ly*| implies
>oUlzzll = lly=th) = 0. Since ||zZl| = ||ly7)|, we have ||2}|| = ||y?|| for all 7. Similarly
for z¥. Thus ||z7)| = ||z7]| for all 2. Since each Y¥; is a U-subspace of X, it follows
that 7 = 2z for all . Hence z™ = z~. | o

Before proceeding to our next result, we need to prove a simple lemma for

which the following “three ball characterization” of M-ideals is needed.

Theorem 3.1.14 [HWW, Theorem 1.2.2] A closed subspace Y of a Banach space
X is an M-ideal if and only if for all yi1,y2,y3 € By, all x € Bx and all ¢ > 0,
there is y € Y such that

b

L.

lz+y—yll<l4+e (i=1,2,3).

Lemma 3.1.15 If {X;}ier be dfamily of Banach spaces then P, X; 15 an M-
ideal in P, X;.
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Proof : Let Y = @, Xi, X = b, Xi. Let 11,492,943 € By, z € Bx and
e > 0. Since y; € @m(r) X; y; = y}'ﬂ-)j we have ‘yi(ﬂJ“ — 0, as n — oo, Thus,
there exists a N € IV such that [[y{™|| < e for all n > N, ¢ = 1,2,3. Define

y = (z1, 23 26 2™ 0. .). Clearly y € By. Also for any 7 = 1,2, 3,

2™ 4+ ™ — ™) = i) <1 if n<N

whereas

2™ + y{™ — g™ = 2™ 4y < 2 + P <146 i n> N

Therefore,
fz+yi—yll <l+e

Hence by the Theorem 3.1.14, Y is an M-1deal. i

Remark 3.1.16 As remarked in [HWW], any M-ideal is a U-subspace. Given a
family {X;}:er of Banach spaces, the above lemma gives an easy way of gené;&ting
M-ideals.

Corollary 8.1.17 If {X;}ier is a family of Hahn-Banach smooth spac.es, then so

o (I :
33 "‘--Jﬂu Xl'

Proof : Since X; is Hahn-Banach smooth for all ¢, X; is a [/-subspace of X"
for all 4. So by Theorem 3.1.13, this implies @, X; is a U-subspace of &5, X
- which, by Lemma 3.1.15, is an M-ideal in b, X" = (P, X;)™. Thus @, Xi
is a U-subspace of (B, Xi)™. Hence P, X; is Hahn-Banach smooth. |

Theorem 3.1.18 Let X be a Banach space, Let zo € Sx. Suppose
D, span{zo} is a U-subspace of @, X (countable sum). Then zo is a smooth
point of X and the unique norming functional zj € X~ is w*-strongly ezposed by

Lo,




Proof : To show that zp is a smooth point, suppose

Iz}l = lly"|| = &™(zo) = y"(z0) = 1.

Fix a Banach limit L on £,||L|] = 1. Define &,¥% : X — IR by
3({za}) = L({z"(2x)}) and T({za}) = L({y"(za)}). Since z*(z0) = y*(z0) = 1,
clearly ||®|| = ||| = 1. For {anz0} € B span{zo}, ®({anzo}) = L{{an}) =
U({anzo}). Also clearly |[®] = ||¥]| = 1 on P, span{zo}. Therefore by hypoth-
esis, ® = W, Treating z € X as a constant sequence, we thus get z*(z) = y*(z)
for all z € X. |

To show that 2} is strongly exposed by zq, let {z} € Bx+ and z,(zo) —

1 = z5(zo).

Claim : z7 — 27 in norm.

Define § : . X — IR by §({z,}) = L({z}(z,.)}). By our assumption,
16l = 1 and §({anzo}) = L({cxn}) and ||§]| = 1 on €, span{zo}. Therefore by

the uniqueness of extension, § = @ (P as above), 1.e.,

L({z}(a)}) = L({z5(z0)}) forall {z.} € PX (3.1)

Suppose z. 4 z*in norm. By passing through a subsequence 1f necessary, we may
assume that there exists & > 0 such that lzx —z3|| > €. Choose z, € Sx such that
zi(z,) — z5(zn) > €/2. So for this choice of {z,}, L{{z:(za) — z5(za)}) 2 €/2.
But this contradicts (3.1). Hence the claim. X

Example 3.1.19 We now use the above theofem to show that being a U-subspace

s not preserved under £, -direct sums.

Proof : Suppose X is a reflexive Banach space that is strictly convex (see fol-
lowing remark) but fails the property H (i.e., there exists a sequence {z,} € X
such that z, — = weakly, ||2.|| — ||z||, but 2, /4 z in norm). Then in such a
space X, there are zo € Sy, {z.} € Sx, zn» — zo weakly, but not in the norm.

Fix z} € Sxs, z8(zo) = 1. Since X is strictly convex, span{zg3} is a U-subspace
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of X*. However zj does not strongly expose zo. Therefore P, span{zg} is not
a U-subspace of @ _ X~.

Remark 3.1.20 One such example due to M. A. Smith (discussed earlier in
Example 2.1.26) given in {Su| is the following renorming of £, :

Let ||z|lo = max{})zll2, ||zllw}. Define T : £, — £y by T({cax}) = {ax/k}.
Finally {|[z||| = l|zl|lo + ||Tz||» is an equivalent norm with the required property.

Example 3.1.21 By considering IR as a U-subspace of the Euclidean IR? and
taking a non-atomic measure A\, we shall show that L,(A) s not a U-subspace of

Li(), RY).

Proof : Let (%, M., A) bea non-atomic probability measure space.. So there exists
A € M such that 0 < AA) < 1. Define ¢ : L;(A) — IR by ¢(f) = [, fdA.

Hence
[¢]] = lIxallee = L.

Note that Li(\, R?) = {(fi, o) : f: € Li(\),i = 1,2}, where ||(fi, f2)l1 =
S (I (w)? + [ f2(w)[?)FdA\(w). With this identification, we have

Li(A, RY)™ = Loo(A, IR2).

where (g1, 92) € Loo(A, R?) and ||(g1, 92)lle0 = es3.5up{(|g1(w)|>+]ga(w)|?)? : w €
R}, Then ® = (x4,0) € Loo(A,IR?) is a norm preserving extension of ¢. Let
U = (x4, xa¢c) € Loo(A, R*). Then ||¥| = 1. Also

U(f,0) = /Afd/\ = ®(f,0).
Thus ¥ is a norm-preserving extension of ¢ different from . | B

- Remark 3.1.22 Suppose Y is a U-subspace of X. Then is the analogue of
Example 3.1.21 true? Or in other words, under what condition on X does L3(A,Y)
become a U-subspace of Ly(A, X)7
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Theorem 3.1.23 If X is Hahn-Banach smooth and has finite intersection prop-
erty (FIP), then X is reflezive.

Proof : Since X has F/P, it follows from Theorem 1.0.19 that X*™* = X 4 Cx
where Cx = {F € X*™ : ||F+%| > ||z} for all z € X}. Let A € Cx and ||A]|l = 1.
Then by Lemma 1.0.16, Bre;a = Bx+. Let ||| = 1 and z}, € Biera such that
-z} Y, 2z*. By w*-lower semicontinuity of the norm it follows that ||z}|| — 1.
Since X is Hahn-Banach smooth, the weak and w*-topologies coincide on Sx..
So, z» — z™ weakly. In particular, A(z*) — A(z™). Thus A(z*) = 0 for all

™ € Sx+, a contradiction. Hence C'y = {0} and consequently X is reflexive. N

Remark 3.1.24 That Hahn-Banach smoothness for a dual space implies reflex-
ivity was first remarked by Sullivan [Su|. The same result for 1-complemented

subspaces of a dual space was noted by Lima {L2].

3.2 Spaces with Property (/1) and their Perma-

nence Properties under Various Conditions

In this section we study w*-ANP-II and related properties, Proceeding similarly

as in Theorem 3.1.4, we conclude that

Theorem 3.2.1 The w*ANP-x (k= 1, II, II') is a sepambly determined prop-
erty.

One can easily prove

Theorem 3.2.2 Suppose X is a Banach space, ® a norming set for X. If for
all separable subspace Y, Y has ®|y-ANP-& (v = I, I} AT, II]} then X also has

®-ANP-x (k = I, II, II', II).

Remark 3.2.3 One can look at Theorem 3.2.2 in a more general setup in the

context of equivalent renormings. So we can ask
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Question 8.2.4 Suppose X is such that all its separable subspaces have ANP-x
(k = I, II, IT, II), then does X also have ANP-¢ (k = I, II, II', III)?

Let us look into this question a little more closely. It has already been re-
marked earlier that for separable Banach spaces ANP <= RNP. It is still an
open question whether this is true in general. However it is shown in [JH] that
even for non-separable spaces, ANP = RNP. Since it is known that RNP is a
separably determined hereditary property, the affirmative answer to the above
question will therefore show that RNP = ANP.,

Analogous to Theorem 3.1.23, we have the following result.

Theorem 3.2.5 If X has Property (I1) and has FIP, then X is reflexive. In

particular, any dual space with Property (II) is reflezive.

Proof : As before, we will show that Cx = {0}. Let A € Cx. Since X has
Property (II), the w*-PC’s of By« are dense in Sy.. Hence it suffices to show
A(z*) = 0 for any w*-PC z* € Sx.. But this follows from arguments similar to

the proof of Theorem 3.1.23. o
We next look at the stability results for Property (/f). The following lemma.

will be useful for our subsequent discussions.

Lemma 3.2.6 If X has Property (II) and A C By. is such that Bx» = W'(A),
then Bx. = To(A).

Proof : Let y= € By.. Since X has Property (/I), for any € > 0 there exists z”,
a w*-PC of By., such that, ||z* — y*]l < £/2. Since Bx. = @¥ (A), there exists
{2} C co(A) such that 27 — 2™ in the w*-topology, and hence z}, — z* in
norm. So there exists ag such that ||z* — 23] < €/2 for.all & > . This implies

ly* — z%|| < € for all @ > op. Hence Bx. = co(A). !

Corollary 3.2.7 (2} If X is separable and has Property (II), then X* is

separable.
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(it) If X* has Property (II), then X is reflexive.

Proof : (i) Let {z.} be a countable dense subset of Sx. Let {z}} denote the
corresponding norming functionals. Then By« = @ {z2}. Since X has Propérty
(II), Bx+« = @{z}}. Hence, X~ is separable.

(ii) We simply observe that if X™* has Property (I7), then By« = ¢o(Bx) =
Byx. B

Remark 3.2.8 In a recent work Moreno and Sevilla [SM] have given examples
of non-Asplund spaces which have MIP (hence Property (11)). So it follows
that Property (/I) cannot be hereditary. Indeed, if it were hereditary, then all
its separable subspaces will also have Property (/7). Thus by Corollary 3.2.7,
it follows that these separable subspaces will have separable duals, or in other

words, X will be Asplund, a contradiction.

Now, let us look at Property (L) for ¢y direct sums. For this we prove the

following useful characterization of w*-PC’s for ¢g sums of Banach spaces.

Proposition 3.2.9 Let { X;}icr be a family of Banach spaces and X = @cn(f‘) X;.
Then z~ = (x™(2))ier € Sx+ 1s a w*-PC of By. if und only if for each 1 € I, either
z*(¢) = 0 or z7(2)/||z"()l| is @ w*-PC of Bx:.

Proof : First suppose z* = (z*(%))icr is a w*-PC of Bx:«. Let 2*(ty) # 0 and

g (t0) i z"(20)/]|z" (30)|, where 27 (i) € By . Define y as

(i) = { Ol i =

Then, \
lvall = D llva@)l
(el
= ) )l + [EXCHEAC]
i#io

37



< >0

2"(3)|l + ll2" (i)
Y1)

= flz7]l = 1.

Hence y> € Bx-, and we have y 2, 2™, which imples 'y; — 2™ In norm, which
in turn implies that z7(z9) — 2™(20)/||z"(i0)] in norm. Hence z*(%0)/||z*(30)|| is
a w*-PC of Bx; . |

Conversely, let 2™ = (2*(2))ier € Sx+. Let I'q be the countable set such that
for ¢ € T, 2*(7) # 0, and z~(¢)/||z"(¢)|| is 2 w*-PC of Bxs. Let z7 >, T,
z* € Bx+. This implies z7,(i) =~ 2~(i) in X7, for all ¢ € I".

Claim:

lt;n”:r;(z)ﬂ = |z"(2)|| forall: €l

Proof of the claim:

Since norm is a w*-lower semi-continuous function, it follows that

1 = llz”|| < liminf||z’ || € imsup||z,| < 1.
o =

This implies lim, ||z%]| = 1.

Similarly,
|2™(2)]| < liminf||z}(¢)|| forallz e,

We first observe that
lz"(2)|] = lminf||z}(z)]] foralls €T, (3.2)

Indeed, if for some g € T, |[27(%0)]| < liminf, |2} (20)]]. Then

1<) lle* @)l < ) liminf||25(3)]| < liminf ) |l ()] < 1,

el el el

a contradiction. Now suppose that for some 29 € T,

& (io)l| = liminf || (io)|l < Bimsup [|27(io)]}
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Then

(27 (o)l < limsup |7 (éo)]]

Cx

r.
limsup |1 - )" H:::;(i

“ _ I#Iu

1 — hmmfZ”u’? )”
i#ig
1 — Z lin;lrinf IEMO]

i#ig

1

IA

(i)} [by (3.2)]

]
[}
g
=

Thus, 1 = ||z7|| = #Zier |l=*(2)]| < 1, a contradiction. Hence the claim is proved. |

Since z~(z)/|[z~(¢)|| is a w™PC of Bx:, i € I'y, it now follows that z}(i}) —
2*(1) in norm for all ¢ € I, Now, for € > 0, there exists a finite set A C I’y with
No elements such that > .., ||2(1)|] < e/4. Also since z(Z) — 2™(z) in norm
for all ¢, there exists ap such that ||z (i) — ™ (?)|| < &¢/4Np for all 1 € A, for all

a 2 ag. Now, for all a > ay,

lzg = 2| + [|la™| = =z
= Zn(m — )@+ ) (s — 27)()
iEA 1 A
| |
Ol LTSI [CHO P € Z)II |
1'6# g A 1€EA i¢A
= (O =L =)@l = Y @6
i¢A i¢A .
+ O 2@ = HEL@N + Y s =)0+ > = @)l
i€A €A 1EA | i¢gA
< > 2@ =)@+ Y 2@l < —+-2—*— '
€A igA
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Hence 7, — z™ in norm and consequently x~ is a w*-PC. ¥

Remark 3.2.10 The last part of the proof of the above proposition is adapted

from Yost’s arguments in [Y, Lemma 9.

Thus we have the following theorem which we prove using the same technique

as in [BRo]. However, we include the proof for completeness.

Theorem 3.2.11 Let (X;)ier be a family of Banach spaces and X = ®¢D(P) X;.
Then X has Property (II) (respectively w*~ANP-II) if and only if each X; has
Property (I1) (respectively w*-ANP-II.)

- Proof : For Property (I]).

First suppose X; has Property (/7) for all ¢ € I'. Let =™ = (2(2))ier € Sx-.
Fixe > 0. Let I'o = {¢ € I' : 27(¢) # 0}. Then, for i € T, 27(2)/||=*()|l € Sx:.
Since each X; has Property (/7), there exists y*(z) a w*-PC of Bx: such that
lz(@) Az~ — v (] <e. '

Define 2= = (2*(1)):er by

(i) = Jz"()ly=(2) i €T
0 if i¢gTy -

Then by Proposition 3.2.9, it follows that z* is a w*-PC of Bx. and | ¥ — 2t < .
Conversely, suppose X has Property (/7). Let 7o € I and (%o, = Sxy . Fix
0 <& < 1. Define z* = (27(7)) by

ﬂ:*(iﬂ.) 1f _ 3 = fn .

0 if 1Ay

Then z* € Sx+ and hence there exists a w*-PC of By. such that |[z* — y*| <
e. Hence, ||z*(1.) — y™ (1) < €, so, ¥"(i0) # 0. Again by Proposition 3.2.9,
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y*(i0)/Wly*(30)|| is a w*-PC of Bx; . Now,

127(i0) — ¥ (o) /™ Go)lll < 1l=7(20) — 9™ (Go)ll + |1 — [ly™(zo)lll
' < e+ (lz"Co)ll — lly™ (@)

S e+ [[27(0) — ¥ ()]

< 2

Hence X, has Property (/7).

For w*-ANP-II.

Suppose X has w*-ANP-1I. Then the latter being hereditary, it follows that
X; has w*ANP-Il for all: € ', |

Conversely, suppose X; has w*ANP-IL. Let z* = (z*(i)) € Sx+. Since X; has
w*-ANP-1I, it follows that either z7(i) = 0 or z*(z}/||z*(z)|| is a w*-PC of Bx:.
Consequently it follows from Proposition 3.2.9 that z* is a w*-PC of Bx.. Hence
X has w*-ANP-II. B

Remark 3.2.12 (a) Since £; (resp. £ ) is not strictly convex, it clearly fol-
lows from Theorem 1.0.12 and Theorem 2.1.18 that w™- ANP-I and w*-ANP-

II" are not stable under cg-sum (resp. £;-sum).

(b) As noted in [Ra}, the £-direct sum of spaces with Namioka-Phelps Prop-
erty always fails Namioka-Phelps Property.

(c) Also, Property (/1) is not stable under ¢, sum. In fact, £, does not

have Property (ffj since it 1s a non-reflexive dual space.

(d) It follows from [BRo], that the MIP is not stable under £; or ¢ sums.
An-argument similar to Corollary 3.1.12 shows that
Corollary 3.2.18 The w*ANP-x (k= I, Il, II'} is not ¢ three space property.

Remark 3.2.14 (a) It has been already noted in [B1], that MIP is not a
three space property. .
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(b) In their paper {HL4], Hu and Lin showed that if Y is a subspace of X
such that X/Y has ANP-I, then X has ANP-x (« = I, II, ITI) if and only
if and ¥ has ANP-x (x = I, II, III}. Similar conclusion follows for ANP-IT’
also. |

One can ask the following :

Question 3.2.15 Suppose Y and X/Y have ANP-x (k = [, II, IF, IlI), then
does X have ANP-x (v = [, II, [P, [{])? |

We now consider Property (I1) for £, (1 < p < o0) direct sums.

Proposition 3.2.16 Let {X;}ier be a family of Banach spaces. Then X =
®£,, X: (1 < p < o0) has Property (I1) if and only if for each i € I, X; has
Property (11).

Proof : Since X~ = @fq X7, where 1/p+1/g =1, and z* € Sx+ 15 a w*-PC of
Byx. if and only if for each ¢ € [/, either 27 = 0 or 27/ ||z} is a w*-PC of Bys {HL3,
Proposition 2.14|, the proof follows similarly as the proof of Theorem 3.2.11. H

It is known that if (2, £, 1) is a non-atomic measure space, then f € Sy, x)s
is w*-PC if and only if it is a w™-denting point of By (, x)» [HL3]. We use the

following proposition to deduce our next result.

Proposition 3.2.17 [BRo, Corollary 12j Let X be a Banach space, A denote the
Lebesgue measure on [0,1} and 1 < p < oo. The space Ly(A, X) has the MIP if
and only if X has the MIP and is Asplund.

And we immediately have

Corollary 3.2.18 Let X be a Banach space, A denote the Lebesgue measure on
[0,1] and 1 < p < co. The space L,(A, X) has Property (11} if and only if it has
the MIP if and only if X has the MIP and is Asplund.
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Remark 3.2.19 It follows that there exists space with Property (I7) such that
Ly(A, X') does not have Propérty (IJ). Clearly any finite dimensional space which

does not have MIP (e.g., IR™ with £; or sup norm) serves as an example.

Proposition 3.2.20 Let X, Y, Z be infinite dimensional Banach spaces such
that X = Y @, Z. (v, 27) € Sy- is a w'-PC if and only if ||l = 1, ] = 1
and y*, z* are w*-PC’s of By« and By. respectively, -

Proof : First, let |ly*|| = ||z7]| = 1, and y~, z* are w*-PC’s. Then obviously
(y*,z") is a w*-PC. ' |

Conversely, suppose (y*,2*} is a w*-PC of By.. Let {y>} be a net in Sy such
that y* — y™In the w*-topology. Thus ||(v,z*)|| = 1 and (¥}, 2*) — (y*, 2%} in
the w*-topology. This implies (y3,2”) — (¥, 2") in norm. This in turn implies

that yy — 3™ in norm. This also implies |[y*}| = 1. Similarly for z*. W

Now we readily have

Corollary 3.2.21 Let X be an infinite dimensional Banach space. Then the

following are true : | |
(a) If X has Property (II), then X has no non-trivial L-projections.

(0) If every equivalent renorming of X has Property (I1), then X is reflexive,
(¢) Property (I1) is not « three space property. |
Let us now look at Banach spaces which are L;-preduals with Property (17).

We need the following characterization of L,-preduals due to Lima’[L1]. This
result is also noted in [HWW].

Theorem 3.2.22 [L1, Theorem 5.8] A real or a complez Banach space is an
Li-predual, if and only if for all f € extBys, span{f} is an L-summand in X",

Theorem 8.2.23 If X is an L,-predual with Property (1I) then X s isometric
to £4(T") for some T'.
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Proof : Let z* € extBy., then —2™ € extBy.+ also. Hence there exists A C
eztBx+ such that A(1—A = @ and A{J—-A = extByx.. Now Bx. = @co” (4).
By Lemma 3.2.6, Bx. = @co(A). -

Since X 1s an Lq-predual, it follows from Theorem 3.2.22, that for each f € A,
span{f} is an L-summmand. Thus, for any fi, fa,..., fa € A, Blpani{fi,famata)) =
co{tfi:i=1,...,n}. Thus & : {;(A) — X™* defined by ®(c) = > af) - fisa
linear isometry.

We shall show that & is onto.

Since ® is an isometry, ®(£;{A) is norm closed in X*. Clearly, elements of
X* of the form Y =~ Aifi (with 3" M| =1, f; € A, = 1...n) are in ®({,(A)),

==

and since By = @¢o(A), such elements are dense in By.. Thus ®(¢;{A)) must

contain By., and hence, X~. ‘ | =

Remark 3.2.24 One can perhaps try to classify Property (II) among I-
preduals. It is known that if X is an L;-predual and ¥ € X is a separable
subspace of X, then there exists Z a separable Li-predual such that Y CZ C X
[L1]. A similar result is true for Property (/I) also [CL]. So one can ask the

following

Question 3.2.25 Given X is an L,-predual with Property (II) and Y C X, Y
separable, does there exist a separable Z which is an L1-lp*r'edual with Property
(IT), such thatY C Z C X7 '
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Chapter 4

On Nicely Smooth Spaces

4.1 The Relations between Property (I1), BGP

and Nice Smoothness in Banach spaces

The following lemma is well-known and will be used in the subsequent discussions.

Lemma 4.1.1 [GS, Lemma 2.4] Let X be a Banach space. Then the following

are equivalent :

(a) For all 2™ € X,

() Bla, ™ ==l = {z™}

zEX
(b) For all z** € X\ X,
M Be, s ~ 2} ()X = 0

.'I}'E.'Y

"'-.

(¢) X* contains no proper norming subspace of X.

Proposition 4.1.2 For « Banach space X, the following are equivalent :

(a) X is nicely smooth.
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(8) Cx =10}
(¢) For all 2™ € X™,

| Bla,llz™ — =] ="{=™}

TEX
(d) Every norming set A C B(X™) separates points of X™.

Proof : Equivalence of (a) and (c) follows from the definition of nicely smooth
spaces and the equivalence of {(a) and (c) in Lemma 4.1.1.

(a) = (b). Let 2™ € Cx. Then by Lemma 1.0.17, it follows that kerz™ is
a norming subspace of X™. Since X is nicely smooth it has no proper norming
subspace. Hence X = keraz™ which implies 2** = 0.

(8) = (¢). In view of (¢) = (b) in Lemma 4.1.1, it is enough to prove for all
e X7\ X, |

() Blz, ||z — 2|} )X =0

TEX
Let y € (,ex Blz,|lz" —z|]] () X. This implies

|y — < Jla™ — z|| for all ze€ X

Le., | Sla™—a~y|| forall ze€X

which implies z* —y € Cx = {0}, or in other words, z™* =y € X\ X, a
contradiction.

(a) = (d). Let A be a norming set for X. Suppose there exists z** % 0 such
x+ = 0, a contradiction,

that z**|4 = 0. This implies ™"|;pan(4) = 0, hence 2™
(d) = (a). Suppose F is a proper norming subspace. Then there exists a
non-zero ™ € X™ such that z**|F = 0. But this implies Br, a norming set, does

not separate points of X", a contradiction. o H

Remark 4.1.3 Godefroy observed in [G3] that if a separable space is nicely

smooth, then it has a separable dual. And a dual space is nicely smooth 1

and only if it is reflexive.



We now identify some necessary and some sufficient conditions for a space to

be nicely smooth.

Proposition 4.1.4 For a Banach space X, consider the following statements :
(a) X* is the closed linear span of the w*-weak PCs of Bx.. |

(8) Any two distinct points in X ** are separated by disjoint closed balls having

centres in X.
(¢) X is nicely smooth.

(d) For every norm dense set A C Sx and every support mapping ¢, the set
d(A) separates points of X™.
Then (a) = (b) = (c) = (d).

Proof : (a) = (b). Let z3* # y3*. By (a), there exists a w*-w PC in By., such
that (3™ — y5™)(z5) > 0. Let m be such that

w5 (2h) > m >y ()
Hence z3* ¢ zi~ (m) = {2™ € X~ : 23(z™) = m)} = H (say). Now applying
Theorem 2.3.7, it follows that there exists a ball By with centre in X with
zy" € Bi™ and By*(H = 0. Similarly there exists a ball B3* with centre in X

such that y5* € B3~ and By H = . It is now clear that By* [} B;* = 0.
(b) = (¢). By Proposition 4.1.2, it suffices to show that for all z** € X**,

() Bl 2™ =2l = =™}

X

If possible, let y™ # z** and y™* € (,cx Blz, ll™ — «||]. This implies

ly™ — z|] < |[¢™ — z|| for all 2 € X (4.1)

By (b), it follows that there exists balls B; and B, with centres in X such that
z** € By, y** € By and By () By = 0. Without loss of generality we can choose

By = B(z,, ”371 —z77[).
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Clearly y** ¢ By, but this contradicts (4.1).
(c) = (d). We only need to observe that ¢(A) is a norming set for X. The

result now follows from Proposition 4.1.2 (d). B

Corollary 4.1.5 If in the setup of Proposition 4.1.4, we have in addition that
w*w PC'’s of Bx« form a norming set, then (a), (b), (c) are equivalent., And

under the even stronger assumption,
{z € Sy : D(z) intersects w*-w PC’s of Bx+}
is dense in Sy, all the statements in Proposition 4.1.4 are equivalent,

Proof : The first statement being easy, we need only to prove (d) = (a) in

Proposition 4.1.4 in the second case. Let

A = {w*w PC's of.BJ\'-}
and B = {z¢€ Sx:D(z)(]|A#0}

Then B is dense in Sy and there is a support mapping ;35, such that for each
z € B, ¢(z) € A. By Proposition 4.1.4 (d), ¢(B) separates points of X**. This
implies §pan[¢(B)] = X and hence, spand = X~ i

Remark 4.1.6 We do not know whether the implications of Proposition 4,1.4,
can be reversed. It seems to be an interesting question to investigate the class of

Banach spaces satisfying the conditions in Corollary 4.1.5.

In the next few results, we use the terminology of [GK] relating to the ball
topology, i.e., the weakest topology making all closed balls closed. We have the

following characterization of the BGP.

Proposition 4.1.7 X has the BGP if and only if every o* € X" s baﬁ’-_-

conlinuous on Hy.
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Proof : Suppose X has the BGP. Let f € X7 and I be any closed interval in IR,
then f~1(I)()Bx is ball generated. Hence f is ball continuous on By.
For the converse, we simply observe that in this case, the ball topology coin-

cides with the weak topology on By. |

Remark 4.1.8 The above proof is adapted from [GK, Theorem 8.3].
The following result is a slight alteration of [CL1, Theorem 1].

Theorem 4.1.9 X has the BGP if and only if for every z* € By and € > 0,
there exists w*-slices S1,S5,,...,5, of Bx+ such that for any (z],z5,...,2%) €

i=1 Oi, there are scalars a1, ap,. .., a, such that flz~ — S0, a;z7]| < €.

Definition 4.1.10 A point z, in a convex set ¥ C X~ 1s called a w*-small
combination of slices (SCS)} point of &, if for every £ > 0, there exist w*-slices
S1,82,...,5, of K, and a convez combination § = Zl:f;l A:S; such that 23 € §
and diam(S) < e. | |

| Proposition 4.1.11 If X~ is the closed linear span of the w*-SCS points of Bx.,
then X has the BGP. |

Proof : Let 2 € X™ and € > 0. Since the set of w*-S5CS points of By« is

symmetric and spans X, there exist w*-SCS points xy,Tq,...,Zn of Bx+, and
positive scalars a;,asq,..., soairl] < 6/2 By definition
of w*-SCS points, for each 7 = 1,2,...,n, there exist w*-slices Si1, Sia; -+« y Oim;
of Bx+, and a convex combination S; = ) [\ AiSix such that z] € 5; and

diam(S;) < &/(23 %, a;). Now, for any (27 )1<i<nick<m, € [[im H;T._il Sik,s

o =3 ahurill < "~ el + D aler - 3 hail

1=1 k=1 i=1 i=1" - k=1

< gf? Za;dlam(S,-) <e.

i=1 -

Hence by Theorem 4.1.9, X has the BGP. . o
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Remark 4.1.12 This gives a weaker sufficient condition for the BGP than the
ones discussed in [CHL, Theorem 7]. See Corollary 4.1,15 below.

We need the following lemma due to J. Bourgain for our next result.

Lemma 4.1.13 [Ro, Lemma 1.5] Let E be a locally conver space, K a bounded
convez subset of &, and W a weak neighbourhood in K. Then W contains a convex
combination of slices of K. That is, there exist n € IN, A,..., A, € IR with
2. Ai=1and A\; > 0 for all i, and slices Sy,...,S, of K, so that > \;5; C W.

Corollary 4.1.14 Property (1I) implies the BGP which, in turn, implies nicely

smooth.

Proof : Recall that X has Property ([7) if and only if w*-PCs of Bx. are norm
“dense in Sy, and that a w*PC is necessarily a w*-5CS point (this follows from
Lemma 4.1.13). Thus, Property (71) implies the BGP.

That the BGP implies nicely smooth is proved in [GK]. But here is an ele-

mentary proof. |
Let F' be a norming subspace of X*. Then By is ¢(X, £')-closed, so that every

ball-generated set is also o(X, F')-closed. But if every closed bounded convex set
is o(X, F)-closed, then F = X~ | |

Corollary 4.1.15 If X is an Asplund space (or, separable), the following are
equivalent ; | -
(a) X~ is the closed linear span of the w*-strongly exposed points of Bx.

(b) X~ is the closed linear span of the w*-denting points of Bye.

(¢) X* is the closed linear span of the w*-SCS points of Bx-.

(d) X has the BGP. .

(e) X™ is the closed linear span of the w*-week PCs of Bx-.

(/) Any two distinct points in X** are separated by disjoint closed balls having

centres in X.
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(9) X is nicely smooth.

(h) For every norm dense set A C Sy and every support mapping @, the set
$(A) separates points of X |

Proof : Clearly, (a) = () = (¢) = (d) > (g¢), and (b) = (e). And from
Proposition 4.1.4, (e) = (f) = (g) = (k). |

Now if X is Asplund (if X is separable, (h) implies X~ is separable), then for
A = {x € Sx : the norm is Fréchet differentiable at =}, and any support mapping
¢, #(A) = {w™-strongly exposed points of B(X‘)I}. Hence, (k) = (a). B

Remark 4.1.16 In this case, the conditions in Corollary 4.1.5 are satisfied.

Theorem 4.1.17 [CHL, Theorem 12] Let X be an infinite dimensional Banach
space. If all the separable infinite dimensional subspaces of X have the BGP then
X has the BGP.

And we immediately have

Proposition 4.1.18 [f every separable subspace of X is nicely smooth, then X
has the BGP, and hence, is nicely smooth.

Theorem 4.1.19 X is nicely smooth with FIP if and only if X 13 reflerive.

Proof : Sufficiency is obvious from weak compactness of closed balls in refiexive

spaces, ,
For necessity, recall from T'heorem 1.0.19 that X has FIP if and only if X™ =

X + Cx. Since X is nicely smooth, Cx = {0}, and consequently, X is reflexive.
|

W

Remark 4.1.20 Since Hahn-Banach smooth spaces {resp. spacés with Property
(1)) are nicely smooth, Theorem 3.1.23 (resp. Theorem 3.2.5) of Chapter 3 fol-

lows as a corollary.
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Theorem 4.1.21 A Banach space X is reflextve if and only if every equivalent

renorming ts nicely smooth.

Proof : The converse being trivial, suppose X is not reflexive, Let z** € X™*\ X
and let F' = {z" € X~ :z""(2") = 0}. Define a new norm on X by

lzlls =sup{a™(z): 2" € Bp} forze X

Then || - ||, is a norm on X with F as a proper norming subspace.

Claim: || - ||: is an equivalent norm on X,

Clearly || - s < I - |l

Conversely, by- standard duality relations, for every z € X, |z|1 = ||Z|r| =
d(z, E), where E = span{z™}. Let Y = X**/E. The map T : X — Y defined
by Tz = [z] = ¢ 4+ E is a one-one continuous linear map.

We check that T(X) is a closed, and hence com_plete', subspace of ¥, Let
Tn+ B — z3* + £. We will show that there exists 29 € X such that z§" 4+ F =
2o + B.

Since |zn — 25 + £l — 0, we can find scalars A, such that ||z, — zg" +

I

AnZ™|| — 0. If {A,} is unbounded, passing through a subsequence if necessary,

 |lza/ A+ 2| — 0, Le, 2™ € X, a contradiction. And if {A,} is bounded, again

L

passing through a subsequence if necessary, A\, — A. Then z, — 2§* — Az™ =
29 € X (say). It is clear that this is the required zq.
It now follows from the Open Mapping Theorem that T is an open map. Thus

there exists a constant M such that

|lz|| < Ml[[z}}| = Mz}

Hence the claim. | | ]

Remark 4.1.22 The main idea of the proof of the above theorem has been
adapted from the proof of {GK, Theorem 8.2|. The details are supplied by us.
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4.2 Stability Results
Now we obtain some stability results for nicely smooth spaces.

Theorem 4.2.1 Let {X4}aer be a family of Banach spaces. Then X = @3:: Xa
(1 < p < oo) is nicely smooth if and only if for each o € T', X, is nicely smooth.

Proof : We will show that C'x = {0} if and only if for every a € T, Cx, = {0}.
And the rest follows from Proposition 4.1.2. Now, X = P, X, implies ™ =
b,, X2, and 2™ € Cx if and only if

[ o |z]l, for all z € X

&= ) ey P 2 ) lizalP forallz € X
el “ﬂEF

IV

It is immediate that if for every o € T', 2 € Cx,, then 2™ € Cx. And hence,
Cx = {0} implies for every o € I, Cx, = {0}. .

Conversely, suppose for every o € ', Cx, = {0}. Let 2™ € X**\ {0}, Let
o, € T' be such that z¥* # 0. Then z3* ¢ Cx,,. Hence, there exists 2, € Xa,
such that ||2** 424, || < ||Za.|l. Choose € > 0 such that [|lz5; + 24, ||? +€ < [|Za,]}”.
Now for this € > 0, there exists a finite I', C {a € ' 22" # 0} such that o, € 1)
(if o ¢ To, replace T'o by T'olU{@o}). 2 aer. P < e If o €T,, then
z** ¢ Cx.. Hence, there exists z, € X, such that ||z} + Zaf| < |jza]|. Define
y € X by '

e
:I:D.'

Yoo =

{ z. H €T,

0 otherwise

Then we have,

S e + )

|a™ + gllf = P
- oel | |
= 3 oo+ gallP + Yot + SallP + D HoTH
QEPQ ﬂﬁrg
aFap '
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< D lzallP + |2+ da P + 6

a&leo
ayop
< D laall” = Ilyl?
aCl,
which shows that 2** ¢ Cx. H
Remark 4.2.2 (a) The above argument also works for finite &; (or £.,) sums

and shows that if X is the £; (or £ ) sum of Xy, X,,... , Xn, then X is nicely

smooth if and only if for every coordinate space X; is so.

However, 1f I is infinite, X = €P, X, is never nicely smooth as @, X} is
a proper norming subspace of X* = p, X;.

A similar argument also shows that being nicely smooth is not stable under

infinite £, sums,

(b) Since Property (II) is not preserved under finite £; sums, the space
co D1 ¢o produces an example of a nicely smooth space, which being Asplund
has BGP, but lacks Property (I1).

We now show that being nicely smooth is stable under ¢, sums.

Theorem 4.2.3 Let {X,}oer be a family of Banach spaces. Then X =P, Xe

is nicely smooth if and only if for each o € T, X,, is nicely smooth.

- Proof : As before, we will show that Cx = {0} if and only if for every a € T,
an — {0}‘ '

Necessity i1s similar to that in Theorem 4.2.1.

Conversely, suppose for every o € T, Cx, = {0}. And let z** € X**\ {0}. Let
a, € I' be such that z2* # 0. Then 2} ¢ Cx,,. Hence, there exists z,, € Xq,

such that ||z} + 2o, || < [|Zaol|- Let

2™ oo = suP lze"l| = M (say)
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Case 1. If ||zq,| > M, then define, y € X by

Ya = §
~. 0 otherwise

ﬂ:ﬁﬂ' if a —_— Ct'ﬂ

We have,

”ﬂ:**’l‘i}

oo = MAX{SUP |25 lasters }s 257 + Bl } < |l

Hence z** ¢ C'x. |
‘Case 2. If |[@q, |l < M, there exists A > 1 such that A||zq,| > M. Now define

Ao, H a=aq,
Yo =

0 otherwise
then,
127 + Jlloo = max{sup{lla3lazao}, =%, + Adaul}
Now, [[a5% + Al < 1625 + daoll + | = Fou + Mol < (1 + A= 1)llf,]. This
implies ||z™ + ylleo < AllZaoll = ||¥]], which again shows z** ¢ Cx. =

Corollary 4.2.4 Nice smoothness is not a three space property.

Proof : Let X = ¢, the space of all convergent sequences with the sup norm.

Recall that ¢* = ¢; and that ¢; acts on c as

co |
{ﬂr,ﬂl) = dp limﬂln -+ Zﬂﬂ+1$n, ad = {ﬂn}:;(] C £1; €O = {mn}z—:{] € C
n=0 |
Then {a € 4 : gy = 0} is a proper norming subspace for ¢. Put ¥ = ¢,. Then ¥
1s nicely smooth and dim(X/Y) = 1, so that X/Y is also nicely smooth. But, by

above, X is not nicely smooth. B

Following the arguments of [BRo, Proposition 2], we now show that the BGP
1s inherited by M-summands (cf. Definition 3.1.6). |
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Proposition 4.2.8 If Y is an M-summand in X and X has the BGP, then so
does Y,

Proof : Let K be a closed bounded convex set in Y. Since X has the BGP,'

K={) U Bz, rit),

i€l k=1
where for each ¢ and k, K N Blag, rit] £ 0
Given 7 and &, let @ € K N Blay,ry] C'Y, then ||z — 2] € rix, so that
[zt — mek“ = ”('E ~ le) Pl -zl < ||z — za]| € rix.

CrLamd @ K =) UBy[P ik k] | (%),

A€] k=1
Since || P|| = 1, we have

"

K=PK)C P Blzi, ri]) C N U By [Py, ik,

16l k=1 &l k=1
Conversely, if 2 is in the RHS of (%), for all { € I, there exists & such that
”3: — m;;;H — IHELX{H’B - Pmik”: ”:B;k — P:L‘u,,”} S Tik, A48 ”:U,:,:: - P:I:.'k” S ik Thus,
oy

r & ﬂ U B[:I:fk, T‘ik] = J(, | B

(€] k=1
We need the following lemma for our next result.

Lemma 4.2.6 [BRo, Lemma 10] Let X be a Banach space, (\Q,E,p)_be o MEeasure
space and 1 < p < oo, Let 1/p+1/q = 1. A simple function of the form
00

9= ) iz ¥IXE € Spy(uxv) 18 a whdenting point of Br (ux) if and only if for
v =1,2,..., a}/||2}|l is a w¥-denting point of Bx-.

Theorem 4.2.7 Let X be o Banach space, pu denote the Lebesgue measure on

0,1) and 1 < p < co0. Then the following are equwalent
(a) Ly(p, X) has BGP.

() L,(u, X) is nicely smooth.
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(c) X is nicely smooth and Asplund.

Proof : Clearly (a) => (b).

(b) = (¢). Since Ly(p, X*) is always a norming subspace of L,(g, X)*, 1/p +
1/q = 1, and they coincide if and only if X* has the RNP, (&) implies X* has the
RNP, or, X is Asplund. Also for any norming subspace F C X*, L,(y, F') is a
norming subspace of L,{yt, X)*. Hence, (b) also implies X is nicely smooth.

(¢) = (a). If X is nicely smooth and Asplund, by Corollary 4.1.15, X~ is
the closed linear span of the w*-denting points of th. And it suffices to show
that L,(p, X)* = L (p, X*) is the closed linear span of the w*-denting points of
BLq(HIIX*). | _ |

Let I = 3 ", ozixa withaf € Sy foralli=1,2,... nbe a simple function
in Sz (4,x+). Let € > 0. Now, for each 7 = 1,2,...,n, there exists Mir € R, and
:{::-'k, W*-dﬁﬂting pﬁiﬂts of Bx*, k= 1,2, e ,N, such that H:]::‘ - E';:r:l kam?ﬁ:” < E.
Fork=1,2,...,N. Define |

ﬂ .
*
Fi =)  cidpTixa

1=1

Since each z3 is a w*-denting points of By, for each k, it follows from
Lemma 4.2.6 that Fi./)|F|| is a w*-denting point of B ,,x+). And,

‘n N n
1> " eiaixa, — > ) edweixall;

1=1 k=1 1=1

n N
> |ailllz} - > huzi I p(Ad)
=1 k=1

T

< Y ellalu(A) S SIF <e M

=1

Il

N
|F = Fll?
k=1
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Chapter 5

Ball Separation Properties in

Spaces of Operators

5.1 ((Generalities on Veétor Measures

Let K be a compact Hausdorff space and X a Banach space. Let C(K,X) de-

note the set of all continuous functions defined on K taking values in X, where

continuity i1s defined as follows :

f 1s continuous at kg € K if
Jim |7(k) ~ F(ko)] = .
The norm on C(K, X) is defined as

IFIl = sup{|lf(K)|| : k € K}, feC(K,X)

It is well-known that C(XK,X) is a Banach space with respect to this norm. In
the particular case when dim(X) = 1, we get the space C(K). For a detailed

discussion on C'(K, X) spaces one can refer to [Si].
Now we briefly discuss the analogue of Riesz’s Representation Theorem

this general setup. Let B(K) denote the Borel subsets of K. We recall that a set
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function g : B(K) — X* is called countably additive if for every pairwise disjoint

Borel sets {Kn} C K, p(in, Kn) = > ey #(Xy), in the sense of convergence in
the norm topology of X*. Let @ € X. We define u, : B (/) — IR as follows

pa(A) = p(A)(z).

Then p, is a scalar measure defined on B(K). 4 is said to be (weakly) regular if
for each & € X, p, is regular in the usual sense. One. can similarly define weakly
countably additive X™*-valued measures.

Let 1 be a countably additive measure on B(K) taking values in X*. Let
A € B(¥). Define

Var (1) = sup |3 w(Za)f

ECA ‘
1=1 .

where supremum is taken over all finite disjoint partitions { £, } of A and let ||u|l =

ggm}( ). s 1s said to be of bounded variation if || u|| < oo. It is well-known that all

countably additive X*-valued measures form a Banach space with the variation
norm, Now let us define the Gowurin integral for a function f € C(K, X).
Let 2 = > o, ZiXE, ¢ € X, E's disjoint Borel subsets of K (xg; is the

characteristic function of E;), ¢ = 1,...,n. z is called a simple function taking

./;z(k d.’,u(L Z,u Ei(z:)

§=1
It can be easily seen that any z € C'(J, X) is the uniform limit of sequence {z.}

of simple functions, So one can define

(500, duh) =1im | {en(0), 00

values in X, Define

K
and verify that the limit is independent of the choice of the sequence {z}. From

this definition it immediately follows that

[ 42009, )| < bl

The following representation theorem is well-known :
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Theorem 5.1.1 Let K be a compact Hausdorff space and X o Banach space.
Then the space C(K,X)* is isometrically isomorphic to the space M(IK,X*) of

all X*-valued countably additive (weakly) regular Borel measures i, of bounded
variation and endowed with the norm

lpll = Var p

The cgrresgmndenﬁ:ﬂ is given by @ € C(K, X)* «+— p & M(K, X"),

3(z) = fK (2(k), du(k)), =€ C(K,X).

We add some remarks concerning supports of the vector measures described
in the above theorem. Let 4 be such a measure, If { F;}ier is a collection of open
sets with w(E;) =0 for all ¢, then it follows from the regularity of scalar measures
ftz that gz (E) = 0, where & = | J,.; E;, for all z € X, and hence p(E) = 0. Thus,
it makes sense to define the (closed) support S(u) of ¢ by

S(p)=K \ U{E B open, p(E) =0},
As in the scalar case S(u) is the smallest closed set in K for which u[S(p)} = p{X)

and 1t is also characterized by the property :
if £ is open in K, and £ N .S(g) # 0 then p(F) # 0.

We define an atom E € B(K) for i in the usual way, i.e., (&) # 0 and
if ' C E, E' € B(K) then either u(E'} = 0 or u(E') = pu(E). It follows
immediately that an atom for p is also an atom for each e, T € X. We note that
if 11 is non-atomic, i.e., ¢ has no atoms, then S(x) is a perfect set. - |

Now suppose that p vanishes on singletons, i.e., u({k}) = 0 for each k € X.
Then we claim that the vector measure p has no atoms. For if not, suppose E 1s
such an atom. Then by the previous remark, F is an atom for p, for each z € X,
and by a well-known result for scalar measures, pz(E) = fig(pz) for some p, € 2.
But then, |

(z, u(E)) = p(E) = iz (ps) = {2, p({p=})) = 0

for all € X, whence u(F) = 0, a coutradiction,
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Definition 5.1.2 A topological space is said to be scattered if it has 0o perfect
subsets.

For a detailed discussion on scattered slﬁaces one can refer to [La].

We first prove the following useful representation of C'(K,X)* when K is
scattered.

Lemma 5.1.3 Let I be a scatlered compact Hausdorff space. Then for any Ba-
nach space X,

C(I, X)" = @y rep X"

Proof : Let & E.G(I{', X)*. Then by Theorem 5.1.1, there exists u € M (K, X*),
such that || ]| = |||

Clearly, p € M(K,X™) is purely atomic.

Ior, if not, g will have a non-atomic part whose support will be a perfect
set, a contradiction. Also, p € M(J, X*} can take non-zero values for at most
countably many points of K. Indeed, {k : ||z({k}) H > 1/n} has to be finite for

each n, since ||| < co. Hence

{kp({kDI > 0} = U{k IR DI > ~ }

ne=1

is countable. Clearly, o =Y 0, p({ki}) ® 5(&-), where u({k;}) ® 6(k;) 1s given by
p({k}) ® 6(ki)(=) = p({ki})(e(k)), =€ C(K,X)

Hence i1 € g, grep ™
Conversely, any (27) E De, kX" can be identified vnth some p € M(K, X*)

by defining u({k;}) = a} for some k; € K, the non-zero :::"‘fs being a;t.most

countable. Hence the lemma. Bl
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5.2 Property (1) in C(K,X) and £(X)

The following result shows that for a scattered compact space K and a Banach
space X, U-subspaces can be “lifted” from X to C(K, X).

Proposition 5.2.1 Let K be o scattered compact space and suppose Y is a /-
subspace of X. Then C(K,Y) is a U-subspace of C(K, X).

Proof : We only need to observe that if K is a scattered compact space, then

by Lemma 5.1.3, C(K, X)* = @, ) X* for some discrete set T. The conclusion
then follows from arguments identical to the proof of Theorem 3.1.13. A

Remark 5.2.2 Unlike the situation for £, direct sums considered in Proposi-
tion 3.1.5, in the case of the space C(K, X), C(K,Y) may be a U-subspace of
C(K, X) for some U-subspace ¥ of X (without any extra topological assumptions
on the compact set K).

Example 5,2.3 Let Y C X be a proper M-ideal (for ezample consider X = Lo
and Y = cp). Then, for any compact Hausdorff space K, it is known [HWW,
Proposition VI.8.1] that C(K,Y) is an M-ideal in C(K, X) and is thus a U-sub-

space,

Now we look at Property (I1)for C(K, X) spaces, First we have the following
result for the special case C'(X).

*

Proposition 5.2.4 Let K be a compact Hausdorff space. Then C(K) has Prop-
erty (1) if and only if K is finite.

Proof : Suppose C(I) has Property (7). Now JeBcx) = {+6(k): k€ K},
then by Krein-Milman theorem, Bygx)e = c0¥" {£8(k) : k € K}. However since
C(K) has Property (I1I), it follows from Lemma 3.2.6 that this w¥*-closure is same
as the norm closure. Now arguing similarly as in Theorem 3.2.23, it follows thg,t
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C(I)* is isometric to £y(|K ). Thus X does not support a non-atomic measure.
Hence X is scattered and K, the set of isolated points of X, is dense in X,
Claim : Berys = t6*" {£8(k') : k' € K'}.
Indeed, let & € K, there exists k&, € K such that &4, — & which 1mphes
flka) — f(k) for all f € C(K), 1. y 8(kg) = X 6(k). Hence

0" {+6(k) : k' € K'} = @ {£5(k) : k € K.

Hence the claim. Since C(K) has Property (I1}, by Lemma 3.2.6, we have
Berys = To{£é(k') . &' € K'}. Now, for an accumulation point k € K,

Ni6(k) - Zﬂ’: ”——1+Z;m ke XK'

=1 1=1

Thus 6(&) cannol be approximated in the norm by a sequence from co{£6(%") :
k' € I{'}. This shows that X' = K and hence K is finite.

Conversely, if & is finite, say {K| =n. Then C(K) is isometric to €7, so has
Property (11). . i

Proposition 5.2.5 C(K,X) has Property (II) if and only if X has Property
(II) and I{ is finile.

Proof : Suppose C'(K,X) has Property {/1). Proceeding similarly as in Propo-
sition 5.2.4, it follows that X is finite. Hence, C(X,X) = @, qxyX. Thus By
Theorem 3.2.11, it follows that X has Property (/7).

Conversely, suppose X has Property (I7) and K is finite. Then t‘(K,-X) =
Doz X+ Since X has Property (I7), it follows from Theorem 3.2.11 that
C(K, X) has Property (II). c - R

We similarly have

Corollary 5.2.8 C(JX,X) has w*-ANP-II if and only if K is finite and X' has
w*ANP-II, o
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Remark 5.2.7 (a) Since £} is not strictly convex, it follows that C{K, X)
does not have w*-ANP-« (¢ = I,II'), even if X is finite and X has w*-ANP-x
(k=1L II'). |

(b) Similarly, it follows that C'(K,X) does not have the MIP even if X is
finite and X has the MIP.

J

We now consider Property (I} for spaces of operators £(X) on a Banach
space X. Since this is not a hereditary property, it is not clear if £(X) has
Property (II), then X and X™ should also have it (which in turn will force X to
be reflexive). Our first result shows that under a mild approximation condition,

finite dimensional spaces are the only ones for which £(X) has Property (I7).

Theorem 5.2.8 Let X be a Banach space such that there ezists ¢ bounded net
{K.} of compact operators such that K,(z) — = weakly, for all z € X, If L(X)
has Property (I1), then X is finite dimensional,

Pmof . For any z € X, 2* € X*, if z @ =" denotes the functional defined on
L{X) by 2 @ 2*(T) = z*(T(z)), then ||z~ ® z"|| = ||z||||z*|. Indeed,

lz® 2z = sup z™(Tx)
I T]l=1
< sup ||lz7|[[|Tz|
1T}l=1
< [lz”[lil=]

Conversely, suppose ||zz|| = 1 = ||zo]|. Given, € > 0, choose ¢ € X*, |[¢]| = 1,
d(zg) > 1 — ¢ and choose 55 € X, llyoll = 1, 25(y0) > 1 — €. Define T €
£(X) by Tz = d(a)yo. Then [T = suppayes 16(2)} = I = 1 and o5(Tac) =
z5[d(zo)yo] = d{zo)zi{yo) > (1 — €)% And this implies |jzo ® z5)] = 1. Hence

|lz ® =™|| = [j="{l}=].

Since ||T|| = supjjzepe o=1(&"(L(2)) = SUP|jgefj=1 jlzlf=1 £ & z*(T), it follows
that A = {z ® 2* : ||z*|| = 1, [[z]| = 1} determines the norm on £{X). Therefore
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by an application of the separation theorem, Bg(x) = @@* (A). Since L(X) has
Property (II), it follows from Lemma 3.2.6, B(x). = T8(A)

Claim : K, — I weakly. |
Since, Br(xy» = €o(A), for any & € Brxy» and any € > 0, we have

n )
12 - ) wzmi@ai <6, 0Sa<l, Y =1 2@z €A

1=1
1€.,

B(Ko)~ Y iz @ wf(Ka)| < el Kall

t=r]

|l

B(K,) - S aiwi @ o (Ka)

=1

-I—Zcztﬂ:i@m Z&ﬂ:,@ﬂ:

$=1

(K.) — 3(1)

< OIL) ~ D aimi ® a7 (Ka)
T B L
+ Z o @ ) (Kﬂ) — Z oz @ z; (1)
i==1 t=1
+ me, ® i (1)~ &)
n n
< Za’t:ﬂ:@zl(ﬁa) —me, Rz +¢
=1 =1

)| Kol + Zam (Ka;) Ecr,s: (x2;)| + €

=1 =1

esup | Ks|| +e+¢

I
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for all @ > «g for some aq (since K,z ~— z weakly). Hence ®(K,) — &(J),
i.e., the claim follows. |

Now, K, — ] we_akly: The space of compact operators is a closed, hence
weakly closed, subspace. Thus I is a compact operator. Hence, X is finite di-

mensional. 5

For our next result we need the following theorem.

Theorem 5.2.9 [Ba, Theorem 1] For reflexive Banach spaces E and F', L(E, F)
is reflezive of and only if L(E, F)= £* Q. F.

Corollary 5.2.10 £ Q. F* is reflexive if and only if E and F' are reflexive and
LE,F)=FE"@,F
Consequently, if B @, E* is reflexive, then E is finite dimensional.

Theorem 5,2.11 Let X* be a dual Banach space such that L(X*) has Property
(II). Then X is finite dimensional.

Proof : It is known that L(X™) = (X & _X")*. Since L{X") is now a dual
space with Property (I7), it is reflexive. But this implies X™ is reflexive, which in
turn implies X is also such. Since X is reflexive, ' — 7™ becomes an isometric
isomorphism of £(X) onto £{X™). This implies £(X) is also reflexive, Hence by
" Corollary 5.2.10, it follows that X 1s finite dimensional. i

Remark 5.2.12 The same argument also shows that if £(X*) is Hahn-Banach

smooth, then X is finite dimensional.

In the case of £L(X,Y), we have some partial results,

Theorem 5.2.13 Let Y = C(K). Then L(X,Y) has Property (1I) if and only
if X* has Property (II) and K is finite.
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Proof : Suppose £(X,Y) has Property (I7). One checks as in the proof of
Theorem 5.2.8, that {§(k)®z: 2z € By, k € K} determines the norm of £L(X,Y)
and since the latter has Property (II), it follows that

B;;(xiy)t = Eﬁ{ﬁ(k) Rax:z € By, k€ K}.

Claim : L(X,Y) = K(X,Y).
Let @ € Byx,y)« such that ®[xx, y) = (. For any € > 0, one has

1D — Za,&(k Rzil| <&,0 <y <1, Zai-—-l §(k:) ® 7 € Berxyye:

i=1
‘Since K is a compact Hausdorff space, there exists open neighborhoods U; con-
taining % such that for ¢ £ 7, Uy N\U; = §. Let Uppn = K\ {k1,ka.. kn}.
Thus {U;}% is-an open cover for K. Hence there exists a partition of unity
{fi+1=1,2,...,n 41} such that fi[x\v; = 0. Thus

filk) =1, filk;)=0, i#j
Define T : X — C(I{) as follows

n41

T(a: (k)= dilz)fi(k), ¢i€ Sx-.

=1

Clearly, T is finite dimensional, h'ence TeK(X,Y). Also,

1T (z)(k)} < Z |6:(2)| fi( k) < |l=]) Zf,(k lz|| for all & € K.

; 1-—1

This imphes

I < 1. (5.1)
We also have, for 2 € n,
ntl
6(k; @ i )(T) = T(mi Z i(z:i) f3(ki)
= ¢i(z:)filk) = ¢i(wi). (5.2)
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Thus from (5.1) and (5.2) we have the following :

T

B(T) - 3 ab(k) © z:(T)|| < €] T) <.

j==1

-i.l*e#’ i

> (k) ®@zi(T)|| < e (since (T) = 0.)

=]

IIEI:

D aigi(zm)| <e.
i=1 |

- Now, for each x; there exists ¢; € Sx. such that ¢;(z;) > ||a:]| — & which implies

S aillal - 2) < 3 aubilar) < e

i=1

Hence, )", aillz;|| < 2e. Thus,

12] < || - Z a;0(k;) ® ;|| + | Zﬂ:iﬁ(k;) Q z;|| < e+ 2,

1] i=1

which implies ® = 0. Hence the claim, |

Because of the isometric identification K(X,C(K)) = C(K,X*) (see [DS,
Theorem 1, pg-490]), C(X, X™*) has Property (I}, and it follows from Proposi-
tion 5.2.5 that K is finite and X™* has Property (II).

Conversely, if X* has Property (I7) and X is finite, it follows that any operator
T:X — C(K) is finite dimensional, hence compact. Hence |

- L(X,Y) =K(X,Y).

and again using K(X,C(K)) = C(X, X*), it follows from Plropc}sition 5.2.5 that
L{X,Y) has Property (II). | H

We similaﬂy have,
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Corollary 5.2.14 Let Y = C(X). Then L(X,Y) has w*ANP-II if and only if
X* has w*ANP-II and K is finite,

Remark 5.2.15 (a) Since £} is not strictly convex, it follows that
L(X,C(K)) does not have w*-ANP-x (x = I, II'), even if K is finite and
X* has w*-ANP-£ (¢ = I, IT').

(b) Similarly, it follows that £(X, (X)) does not have the MIP even if X
is finite and X™* has the MIP,

5.3 Nice smoothness in C(K,X) and L£(X)

The following results for nicely smooth Banach spaces closely parallel the corre-

sponding results for Property (/). However, we include the proofs for complete-

Nness,

Proposition 5.3.1 Let K be a compact Hausdorff space. Then C(K, X) 15 nicely
smooth if and only if K is finite and X is nicely smooth.

Proof : For a,rcompact Hausdorff space X and a Banach space X, the set
A={0k)@a": ke, 2" € Sx} C Bg(;-:,}:]*

is a norming set for C(K,X). So, if C(X,X) is nicely smooth, C(X,X)* =

span(A). It follows that K admits no nonatomic measure, whence K is scattered.

Now, let /X’ denote the set of isolated points of K. Then K' is dense in K, so,

the set '
Al={§(k)@z": ke K', 2" € Sx.}

is also norming, Thus, C(K, X)* = span(A’). Butif £ € K \ K', then for any
z* € Sxs, 6(k) ® z* ¢ 3pan(A’). Hence, K = K', whence K must be finite.

Hence,

C(K,X)= P X
o (1K)
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- Thus by Theorem 4.2.3 it follows that X is nicely smooth.

Conversely suppose X is nicely smooth and K is finite. Hence,

C(K,X)= &P X.
co (| K1)

 Again applying Theorem 4.2.3, it follows that and C(K,X) is nicely smooth, M

We similarly have

Corollary 5.3.2 C(K, X) ts Hﬂhn-Banach_smaﬂth if and only if X is Hahn-
Banach smooth and K is finite.

Remark 5.3.3 It is immediate that for C(K) spaces Property (I1), the BGP
and being nicely smooth (indeed, any of the conditions of Proposition 4.1.4) are

equivalent, and are equivalent to reflexivity.

Proposition 5.8.4 Let X be a Banach space such that there exists a bounded net
{K} of compact operators such that K,z — x weakly for all 2 € X. If L(X)

is nicely smooth, then X is finite dimensional.

Proof : As in the proof of Theorem 5.2.8, it follows that A = {z @ 2™ : ||z"|| = 1,
|zl = 1} is a norming set, and hence, £L(X)* = span(A).

Claim : K, — I weakly. .

Since {K,} is bounded, it suffices to check that K, — I on A, 1.e., to check
z*(Ka(z)) — z*(z) for all ||z|| = 1, ||z*|| = 1. But, K,(z) — =z weakly, hence
the claim. -

Thus, [ is a compact operator, so that X is finite dimensional. i

Proposition 5.3.5 If L(X*) is nicely smooth, then X is finite dimensional.

Proof : We need only to observe that £(X*) = (X &, X*)* is a nicely smooth
dual space, hence reflexive. The rest of the proof follows as in Theorem 5.2.11. &
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Proposition 5.3.6 For ¢ compact Hausdorff space K, L(X,C(K)) is nicely
smooth if and only if X is reflexive and K is finite,

Proof : Suppose L{X, C(XK)) is nicely smooth. By definition of the norm, A =
6k)®z: 2z € B(X), k € K} is a norming set for £(X, C(K)), and hence,
L{X,C(K))* = Span(A). Arguing similarly as in Theorem 5.2.13, it follows that
L(X,C(K)) = K(X,C(K)) = C(K,X*). Since C(K,X") is nicely smooth, it
follows from Proposition 5.3.1 that X™ is nicely smooth and XK is finite. Now by
Remark 4.1.3, 1t follows that X is reflexive.

For the converse part, X being reflexive, it follows from Remark 4.1.3 that X~
is nicely smooth. We argue similarly as in Theorem 5.2,11 and get

L(X,C(K)) = K(X,C(K)) = C(K,X).

Again applying Proposition 5.3.1 it follows that £(X,C(K)) is nicely smooth. H

We similarly have

Qﬁrollai‘y 5.3.7 For a compact Hausdorff space L(X, C(K) is Hahn-Banach
smooth if and only if X is Hahn-Banach smooth and K is finite.
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Chapter 6

Ball Separation Properties in

Tensor Product spaces

In this chapter we investigate several ball separation properties in tensor product
spaces. In our discussion we consider the injective and projective tensor products

only,

6.1 Asymptotic Norming Properties in Tensor

Product Spaces

Lemma 6.1.1 Let X, Y be two Banach spaces. Suppose ® C Bx., ¥ C By be
norming sets for X and Y respectively. Then @@V is a norming set for X @, Y.

Proof : Since ®, U are norming sets for X and Y respectively, 26“ (®) = Bx-
and €o¥ (¥) = By:. Thus
" Bx+ @ By, =" (®) @ ©* (¥)

But Bx« @ By« i3 a nc:;rming set for X ®. Y where the norm is given by

n

I Z:Bs Ryl = SUP{Z f(mi)y*(!h‘) . g* € Bx+, y" € By+}.
i=] |

[
1==]
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Thus it follows that co{®)® co('¥) is a norming set for X ®, Y. Since co(PRY) D
co(®) ® co(V), it follows that co(P @ ¥) and hence & ® ¥ is a norming set for
X&. Y. B

The following results will be used in subsequent discussions.

Theorem 6.1.2 [Gr] For Hilbert spaces E and F, T € L{E,F) is an extreme

contraction if and only if T or T is an isomelry,

Definition 6.1.3 A Banach space X is said to have the approximation property

if for each compact set X C X and ¢ > 0 thereis a continuous finite rank operator
T:X — X such that for all z € I{, [Tz — z|| < e.

Theorem 6.1.4 tDU] Let X, ¥ be Banach spaces. Suppose X has approxima-

tion property. Then
X QY = (X ®,Y)

if and only if L(X,Y™) = K(X,Y™).

Suppose H; is any Hilbert space, and Hy a finite dimensional Hilbert space.

Then using the above theorem it follows that
Hy @c Hy = (H @x Ha)"™.

Now, Hi, H, have ANP-I. If possible, let H; ®. H, also have ANP-I. Then by
Theorem 1.0.8, H; ®. H; is strictly convex. This implies Sy, g, H, = €xt B, 1, =
ext By, 0. 1,) = extBe(m, m,), and by Theorem 6.1.2, it follows that ezt Bem, my)
is a proper subset of Sgm, 1) = SHye.H., & contradiction. Since spaces having
ANP-IY are strictly convex, similar results follow for ANP-IT' also.

Thus we have

Theorem 6.1.5 ANP-I and ANP-IT are not stable under injective tensor prod-

uet.

Remark 6.1.6 Similar result was observed for MIP in [RS1].
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The following theorem is well-known,
Theorem 6.1.7 [W]
dentB(x@ﬂy) = dentByx @ dentBy.

Suppose X, ¥ has ANP-1. If possible, let X @, Y have ANP-1. Then from
Theorem 1.0.3 and Theorem 6.1.7, 1t follows that

S(X@.Y) = dentB(;f@“y) = dentBx ® dentBy = Sx ® Sy.

which is not possible if dim(X) or dim(Y") > 2.

Thus we have

Theorem 6.1.8 ANP-I is not stable under projective tensor product.

Remark 6.1.9 (a) Similar results for MIP was observed in [B1] and also in
[BRo1] | |

(b) In view of Theorem 6.1.5 and Theorem 6.1.8, one can ask similar ques-
tions for other ANP’s too.

The following well-known results characterise the w*-denting points and ex-
treme point of the dual unit ball of (X ®, Y)".

Theorem 6.1.10  (a) [RS1)

w*-dentB xg,v)» = w*dentBx. @ w*-dentBy:.

(0) [RS] _
ext B xg,v)r = extBx+ ® exlBy-.

Thus we have the following :

Theorem 6.1.11 For any two Banach spaces, X, Y with dim X, Y 2 2, X®.Y
never has w*-ANP-x (k= I, II). | |
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Proof : For w*-ANP-1
If possible, let X ®. Y have w*-ANP-I From Theorem 1.0,12 and Theo-
rem 6.1.10, it follows that

WV*"dEHt.B(Xﬁcy):
w*-dent By« ® w*-dent By
C Sx- ® Sy-

S(X®.Y)*

|

a contradiction, as not all integral operators have such a simple description (see
(DS, p 231]). Similarly for w*-ANP-IT". "

Remark 6.1.12 'We can perhaps look at the analogues of the above theorem for
w*-ANP-x (x = II, III). But there seems to be no characterisation of w*.w PC's
and w*-PC’s of Bixg,y)*. In a recent work, Rao [Ral] has exhibited some of the
w*-PC’s of Bixg,.v)-. However a complete description is yet to be established.

6.2 Nice smoothness in Tensor Product spaces

Theorem 6.2.1 [GS] If X, Y are nicely smooth Asplund spaces, then X ®.Y is

nicely smooth,
We prove the converse in a more general set-up.

Theorem 6.2.2 Let X, Y be Banach spaces such that X ® Y is nicély smooth.
Then both X and Y are nicely smooth. | |

Proof : Let M and N be norming subspaces of X* and Y™ respectively. Then
Bys and By are norming sets for X and Y respectively, and so, by Lemma 6.1.1,
By ® By is a norming set for X ®. Y. And since this space is nicely smooth,

(X ®. Y)* = spanll(By ® By)
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(dual norm). Suppose z* € X7, then for any y* € S}f- and € > 0, there exist
fi € By, € € By and A; € JR such that

' ]
|z @ y* — Z Mifi ®el < e.
i=1
Applying to elementary tensors, this implies

(=*®@y" — )  Mfi®e)(z®y)| < eyl foralzeX,yeY

= le"(@)y"(y) = ) Mfi(@)ey)| < elielllyll forallze X,ye¥

= |[&"(z)y" — ) Aifi(z)es| < ellz|| forallzeX

Choose = such that fi(z) =0foralli=1,2,...,n

Then, ||z*(z)y*|| < €|z, i.e., |z*(2)| < ¢|lz]|. That is, if E = () kerfi, then
B~ = X*/E+ = X*/span{f;} and |z*|g| < e. This happens if and only if
d(z™,span{fi}) < €

It follows that 2™ € M and hence X is nicely smooth. Similarly for Y. Hence
the theorem. &

It seems difficult to obtain analogues of Theorems 6.2.1 and 6.2.2 for the

projective tensor product. However, we have the following

Proposition 6.2.3 Suppose X, Y are Banach spaces such that X~ has the ap-
progzimation property and L(X,Y*) = K(X,Y™), i.e,, any bounded linear operator
ffom X to Y™ is compact. Then the following are equivglent ; |

(a) K(X,Y™) is nicely smooth.

(b) X, Y are reflexive (and hence nicely smooth).

(¢6) X Q®,Y is reflesive (and hence nicely smooth).
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Proof : (a¢) = (b). Since X has the approximation property,
KX, Y )=X"® Y~

and it follows from Theorem 6.2.2 that X* and Y™ are nicely smooth, and there-
fore, X and Y are reflexive, | ~

(b} = (¢). This is a well-known result of Holub (see [DU] and [Ba)).

(¢) = (a). X and Y being closed subspaces of the reflexive space X ®; Y are

themselves reflexive and from
KX, YY) =(X@, YY) =X@ Y

it follows that K (X , Y™} is reflexive, and hence, nicely smooth. o
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