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Pr_eface

"This thesis i3 devoted to the study of some problems related to the
inclusion ol a pair of (usually hyperfinite) Il factors I, Specifically, the

following and the relation between them are studied:
(a) pairs of graphs which can occur as principal graphs for N C M,

(b) construction of commuting squares starting with a pair of finite

graphs;

(c) computation of the higher relative commutants of subfactors con-

structed from specific commuting squares.

The first chapter ig introductory in nature and is included for the sake of
completeness and convenience of reference, It contains a rsither perfunctory
description of the basic construction for a pair of II; factm'é The inclusion
of ﬁnlte dlmensmnal C*-algebras and the constr uction of a path-algebra on

a tower of such algebras iz described.

‘We go on to describe Ocneanu’s pa.ragroup'invariant for the in!clusiﬂn
of a pair of I Facturﬁ, which includes a description of the principal graphs
for ¥ C M and Ocneanu’ hlunlturl'{.-y cottdilon [or (he exiglonco ol o com-
in_uting square.l ‘An jterative proceduré for constructing a pair of subfactors
i described and a complete proof ol Ocneanu’s Compactness Theorem is

given.

In the second chaptel the properties of a pz-ur of graphs which arise as
p11n(:1pal gla,phe fm N C M are studied. Based on this, a property called
weak duality, for a pair of finite, b,l_par-tlte, cpnnected graphs is deﬁnedl. ‘The

technical result proved here is that a graph G with ab most triple points, no.



multiple bonds and not cnntain'ing two specilic subgraphs can be weakly dual
only to itself. Combining this with Ocneanu’s triple point obstruction, it is
shown that a tree, with trivial contragredient map, can occur as a principal
graph only if it contains a copy of Egl).

In the third chapter,. stafting with two specific pairs of finite, bipar-
tite, connected graphs, explicit constructions ol commuting squares, each
with these graphs as inclusions, is given. The first example i3 taken from
the theory of hypergroups and the second occurs as a principal graph of
> HC R > G, where I i8 a particular subgroup of a specilic group
(s,

In the last chapter, a special class of commuting squares, called vertex
models, is studied. Two classes of such commuting squares are congidered
and the principal graphs of subfactors, constructed from these following the
standard iterative procedure described in chapter 1, are computed. It is
shown that one of thege is related to the group dual of a suitable (clpsed)
subgroup of U(N), and the other to the Cayley graph of a (non-closed) group,

modulo scalars, generated by N elements of U(N),

~ Turther, the vertex models in the case N = 2 are classified and the
possible resulting principal graphs are identified ag AEé?;—l)rl <n<oo A
briel comment is made on some results which have been obtained in the case
when IV = 3 and the generating biunitary matrix is a permutation matrix,
" The most interesting result is the occurrence of infinite graphs among the

possible principal graphs arising from such commuting sqguares.
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Chapter 1

Preliminaries

1.1 The basic construction

-We slarl by recalling some facts about the basic construction for N CM, a
pair of 11 factors of finite index. Let {1 denole the unique faithful, normal,
normalised (so that !;?‘(3_)_= 1) trace on M. ‘Then, let L2(M, t7) denote the
Hilbert space completion of M via the GNS construction, Let ey denote
the prdjectiqn of LA(M, tr) onto L*(N,tr). Note that M acts on L*(M, ir)
by left multiplication. The suhulgebm fl[' L(IA(M, 1)) .gﬁn(}mtﬂd by M and

ey g said Lo be the basic construction of N C M, and is denoted by M) and

ey is called the Jones projection for the basic construction of N C M.

The niap Eﬁ.: M Nis f;he_restri_ction of ey to M and thus satisfies

tr(En(z)y) = tr(zy) for all y in N and ¢ ln M. Ey is called the _{:ﬂﬂdiﬁiﬂ_ﬂﬂl

| expﬂt:.bfxi;mh of M onto N .

The extension of the ._adjp_in_t.map i_il’ M to LA(M, 1) is denoted by JM,'
“and My = Jiy N Ju. Hence, under the assumption of fini__te _indéx, My is



also a II; factor.

The trace tr defines a Markov trace for N C M, i.e. it extends to a trace
on Mi so that tr(zey) = tr() for all z € A where 7= [M: N]™, and
its extension to M i3 a Markov trace for M C M. It is further true that
(M : M] =771, |

Using this, we can iterate the basic construction and thus obtain Jones’

- tower of the basic construction for N C M.

The existence of the x-operation and a well defined trace in B enables
us to carry out the basic construction for a pair of finite-dimensional C*-
algebras, A C B. The next section gives a brief description of such an

inclusion and the ensuing basic construction.

1.2 Inclusions of finite dimensional algebras'

We give here a brief description of the inclusions of finite dimensional C*-
algebras and the associated Bratteli diagrams. If A, B are such algebras

then, being semi-simple, A o~ @}Ll' M, (€) and B =~ @}’.‘.‘___1 M, (C).

Let w{X) denote the set of minimal central projections of X. The Brattel
diagi*am for A € B is the graph A whose set, of vertices is the digjoint union
of two sets labelled by m{A) and 7(B) and p; in n(A) is joined to g; in n(B)
by ms; bonds where my;; is the multiplicity of M, (C) in Ay, (C) under this

inclusion.

- The inclugion A C B can a_.lso be describ_éd_ by an incluéiﬂn.matrix Aof



gize n x m where A;; = my;. Clearly the adjacency matrix of A is given by

e iy

0 A
Moo |

The vectors (23,13, -+, &) and (ky, kg, -+, k) are the dimension vectors of

A and B respectively, Clearly, if the inclusion of A in B is unital,
k==Xl (1.1)
(We shall always regard vectors as column vectors.)

Since there is a canonical normalized trace on M,(C), any trace on I3
is specilied by a vector (t,t%, - 1), where i is the trace of 2 minimal
projection under ¢;. Then the the trace on A, obtained by the restriction of

the trace on B, is given by the trace vector f4 = A3

| If AC BC By is an instance of the basic construction for finite dimen-

sional é,lgebras; then it .i's not a difficult fact that 1{A) = w(By) and the

inclusion matrix for B C By is A, Thus, il '531 were to define a trace on Bi, |

whose restriction to B and A are givén ljy.t'.he vectors £p and f:i 1‘(&5_pect.ivély,
Liwen | | . | .

fa = Mp = (A\)ip. - (1.2)

Algo, £y p delines a Mz:u kov trace fm AC Bif and only if the fﬂllGWng equ1v~

alent condnmns are sa,tl'aﬁed

o

O OV =75

(i) (V\)ip = 71p ;

a0



in this case we necessarily have 7= ||\|| 2.

If the conditions above are satisfied, there is a trace on By given by tp,

whose restriction to B iﬁ_ given by t5 and
ﬂ;l = 7t 4.
Thus, from equ_a.tion 1.2 and the above equation we have
N, = [N Pl
So, i3, is the Perron-Frobenius :eigéh-vectar for (AN).

For the details and proofs see [J] and [GHJ).

1.3 The path algebra model

We give here a brief description of the path algebfa associated with t-h'e
inclusion of finite dimensional C*-algebras, A g B CC, Let @ a;ncl H be
the Bratteli diagrmﬁs [or the inclusions of A in B and B in C respectively.
Let §4,5 be the space whose elements are paths in g, from the vertices
corresponding to A, indexed by m(A), to the vertices corresponding to I3,
indexed by w(B). Let §i4,5,c1 denote the space of paths from w(A) to m(C)
through #(B), along the graphs G and H. -

Tor ar in QMC]- let s(c) denote the starting vertex of e in (A) and flee)
denote the finishing vert'e;( of cv in w(C), Also let ap denote the vertex in -

7(B) through which o passes.

_ - If the n_iatr_ix dESCri'bing-the. lﬂﬂluﬂionA C B WETB‘_ A-, then ﬁ’ﬂm'equﬂ{ti{?n.'
1.1 we have that, in particular, k; = 35N b = 5[Mij b Note that

4



for a longer chain of inclusions this would still hold with A replaced by the
product of the inclusion matrices, So, when all the I;’s are 1, the dimension
k; ol B; is the number of distinct paths in the Bratteli diagram, ending at
the vertex labelled by p; in #(B). When [;'s are not 1, we can introduce an

inclusion C € A, with inclusion matrix A_y of size 1 x n given by [A_1]; = L5

Deline Hjp p to be a Hilbert space with orthonormal basis indexed by
the paths in {4, B]. Then clearly, L(Ha ) is a matrix algebra. The

elements of L(H|4 ) are matrices with rows and columuns indexed by paths

in §2j4 g+ Irom the discussion in the last paragraph, it is clear that, B is

isomorphic to the subalgebra of L(H4, pp) given by

(@ € Moy, ,(€) : (e, B) # 0 only if f{a) = f(A)}.

When the p:-it;hﬁ of §24 5 are suitably ordered, the clements of B would
correspond to block diagonal matrices, the blocks being labelled by the

elements of w(13), under the above identification.

In this representation, the inclusions of the algebras are desceribed thus:

if @ is in B, then for all &, B in Qu ¢y, @(a, B) = z(wg, Py) if and only il

Q== Cyy O 5,}6‘ = [Fy o £ [or some £ in Qpqg.

When we consider the path space of a long chain of algebras, o A] is used

o denote the streteh of o upto A, cejq 18 used o denote the streteh alier A

and a4,p denotes the stretch between A and B..

Clearly, for z in 13, m-(cu,. A) is non-zero only if ap = Pp and (o, §) =
' (e, Byp) for some o’ € L(Hig).

[rom this observation it follows that an q]cﬁm_nl, of A”NC has the de- .
- scription: | | | .
| _ m(aiﬁ) = ﬂ,‘lﬂfuéﬂ[gﬁigx(w[ﬂ.(jhﬂif!,ﬂ‘l)
where X§ JC_(H[-A,B,C])_ﬁ Mﬁmiﬂiq (C)

5



Let G be the Bratteli diagram describing the inclusion of two finite di-

mensional algebras Ap C A, then, for the tower of the basic construction:

¢ 14 | g g |
Aﬂ - Al G AE ‘e -A2u C_:_ A2n~|-1 C A21L+2 "t

the Bratteli diagrams for the inclusions are alternately G and ¢’ as indicated.

Define

G — GO if n is even
gl  otherwise .

Let Q( " denote the spa.ce of all oriented pmthe of length k in G which start
at GO0,

Deline
i) = (o e Matﬂm(c) oo 6) = 0 unloss (3(a), o) = (+(8), S5 )
and .
fﬂflk = {@ € Matﬂiﬁ)xgiﬂ)(ﬁ) ; fz:(cr,ﬂ) - 0 inless M) = f(B)}. |
Then, clea.;'iy, usirig the path algebra model based on G o

(a) A, =~ A,.

(b) There are isomorphisms iy, 4.k 1.ﬂ&{_hia:h map O}c") onto A}, N Ag, a9
These maps are consistent with the inclusions of C‘E:L) into Cﬁ)l In particular
A:L i A(ﬂrl—k) = Aix—iwz M A(TH-J'_E-I-E)' |

For an element a in C‘E ) We use aj, ni4 Lo denote '.?lu,nél-kl(ﬂ*) :

' Yor a mﬂfe complete Idesd_-riptic_ul see {S1]. . .



1.4 Principal Graphs

For a pair of Il factors N C M, Ocneanu has delined an invariant called

the paragroup invariant which is given by a tuple of the form (G, H,r,[W]),
where G and H are finite, connected, bipartite graphs, 7is a mapping defined
on the vertices of these graphs, and {W] is a ‘connection’ delined on a square

of algebras defined by G,H and 7 (c[. [O1]). This and the next section give

a description of these in some detail.

| | The first part of Ocneanu’s invariant consists of the two principal graphs
G and ‘H. Ocneanu himself has followed the bimodule approach in describing
the principal graphs. We discuss here the method of obtaining the principal

graphs from the ‘derived tower’ in keeping with the spirit of this thesis.

Consider the following tower of finite dimensional (when [M : N) <
oo) C*-algebras | .
NANCNAMCNOMC

obtained from Jones’ tower {M,},>—1 of the bhasic cmlstructiﬁn. Thig is
called the derived tower of N in M. The Bratteli diagram for the above
tower is constructed in the following manner: first, the Brattéli diagram for
each inclusion, NN M, C NN My, is drawn. TE'EH, talcing care of the way
the nodes are labelled in the successive algebras, these Bratteli diagrams are

stacked up to obtain the Bratteli diagram of the derived tower,

L("L cr boe the-Jonoes pu:jm!mn in Mg,y which implements flm hasic

construction of My_1 C M. It car be shown [cf, GELI] that vy, y 18
ik

| the Matkov trace for N' NMp_q C N ﬁ)Mk and eg (which is in Mjc 1 N Mgy

(C NN M) ) 1mplements the conditional expectation of N N M, onto

NN M1 W1Lh respect to trpy,, and hence N N My contains the basic

construction of V' N M- 111 NN M&, From this it follows that if the glapll" .

[or the _mplu_slml of N ﬂMk«.—l,_m N ﬂMk.lﬁ (3, then the graph for Lhe inclusion -



of N N M in NV N My containg a ‘reflection’ of G,

The principal graph ¢ is obtained from the Bralieli diagram for the
derived tower by deleting at every stage, the reflection of the previous stage,
including only the ‘new’ edges and nodes. 1t can be shown [cf. GHJ| that

no information about the inclusion is lost in this process.

In some casges, for a [inite &k, the Bratteli diagram of NNAM, C NN Mg
congists only of the reflection of NNy € N nMy, i.c., there are no ‘new’
edges and nodes, Since it is true that ‘new’ edges arisc only from the new
nodes of the previous stage, the principal graph stops growing. In such cases

the graph is said to be ol finite depth.

The dual grziph H is obtained, in a similar way, [rom the other derived

tower of relative commutants:

MNnMCMNMMCMNMC....

Clearly G and H are connected bipartite graphs. The set V{G) of vertices
of G, can be written thus: V(G) = GO 11 g where 11 denotes disjoint
union. IFollowing convention, G(®) includes the minimal central projection
py corresponding to N NN, and is called the set of even vertices of G and py
is denoted ij *g. The set gM) is called the set of odd vertices, These sels

can be described thus:

00
g(ﬂ) — {p = H ?T(Nf M ﬂ‘fgk-p]) P £ JN*'F‘]M%Q*}N’FIM%
S |

for any g e ér(Nf N Moypp), k> 1}_
and

g = {p € I_[ (NN -Mok) 2 D 7 InMap TINNMo_
k=0 | -

 for any (}e_?r(N’ N Mgk;g), Ic_'-;; 1} o



The vertices of H are also described similarly:

V(H) = HO L ")

H(U) — {p & L[ ‘?I'(ﬂf a Mg;,) P 75 JM'ﬂMgkml f}’JMme%_l
k=0
for any g € #(M O May_2),k > 1]

ancd

x)
H(l) el {p E]_[ ?T(ﬂfr M ME.‘:--J-]) I;TJ -‘,é JM’I’“IME;.;"I‘JJ’M’F’IM%
k=()
- forany g€ (N NMa_1) k> 1}

We use the canonical anti-unitary J to describe the contragredient map.

Consgider the following instance of the basic construction
N C My C Mgy,

Then JpN'Jy, = My and JyMoedy, = N.  Hence

JM,E (V' N Mogi1) Iy, = N N Mok, Thus the contmgredien{; map 7 maps

Q[“ into itselt, i.e., it acts as a permutation on J[(il)’ where Gy denotes the

vertices in § th diﬂtmlce k from *.

Similarly for the even vertlees of 74, congider Lhe lhlluwlug"inﬁl;mlma of
the basic construction : . S -
M C My C My,

Since Jag, (M N Mag)Jp, = M N My, ﬁflnal:-sa HI(M) into 11%{,][ .
Tor _the odd ?ertices éﬂllsidef | | -
NC MC ML.C Moy, C M;L“
ZNGW: JM#(N" n-Mg;;)JM; M HM%H mul Iwnr;u g[(k]) gulq n;ml,pl-)ed to H[(k])-

o .'9.-'



1.5 Commuting Squares

Lot A, 3, C and D be {inite von-Neumann algebras with a finite laithful

normal trace tr on D. Then, the lollowing:

C C D
U Ul (+)
A C B

is said to be a commuting square if and only if Eg|p = E4lp, the conditional

expectations being delined on D with respect to the trace ir.

We describe here the ‘hiunitarity condition® due to Ocneanu, which is

equivalent to the commuting square condition for (). For a proof of the
equivalence see [SCHJ|. Let g, M, K, and £ be the Bratteli diagrams for the

inclusions in (}) as indicated below:

¢ & D

x U1 L4

A C B
U .

 The graphs are bipartite and are assumed to be connected, Again, as
described in §1.2, the inclusions can also he described by inclusion matrices
of the appropriate sizes. Let G, H,J{ and I be the malrices describing

G,H, K, and L respectively. T'he commuting square (1) can also be written

as below: L
¢ <€ D
x| L - (t) o
A C DB |
G.

'The comngistency of the inclugsions implies that we necessarily have

GH = KL . Then we define a set T of unitary matrices of the following

10



form
U= @u’,(i,7) € m(A) x m(D)

where each u* is a unitary matrix of size (GH);; whose rows are indexed by

paths
(o€ Qapppe=aob:s(a) =i, f(6) = fa) = s(b) € n(B)}
and columns by
{aeQgma=cod:s() =i J(d) =4 /c) = s(d) € 7(C))
For U in T deline IH/(U) to -be a, matrix of the following form :
) = @i, (k1) € n(B) x 7(C)

where each " is of size (G'J)w x (HL ) and is given by the following
prescription:

™ (a0b,cod) = a(?)5(/) wii(d@oebod
vlacheod) =y ghnq) e abod

- whore & denotes the ‘reflection’ of an cdge 2 of a graph, s(a) = 8(c) = k €
n(B), f(b) = J(d) = L € n(C), (a) = s(b) = i € n(A),f(c) = s(d) = j €

(D), and a, B, and § are the vectors delining the restriction of the trace

tr to the algebras A, B, and D respectively,

Ocneanu’s biunitarity cqnditian.: The diagram (1) above is a com-
- muting square if ahd only if: |

(a) GH = KI;

(b) G'IC < HL/ (meaning entry-wise inequality); and |

(c) there exists a U in T such that each._suimn'a,nd #* of V) is an isometric |

matrix.

AT



Again, the same diagram is said to be a symmetric commuting square
il G'J¢ = 1L, and g0 each % in (¢) ( and henco also V{I)) ) is a unitary

matrix.

Further, for a symmetric commuting square, it can be shown (cf. [SCH])
that |G|} = ||L||, ||| = || K]l|; 6 is the Perron-Ifrobenius eigenvector for
H'H as well as L'L and gives the Markov trace for the inclusions B C D
as well as ' € D; B and v are the Perron-Frobenius eigenvectors for G'G
and J{'K respectively and give the Markov trace for A € Band 4 C C

respectively; and o is the Perron-Frobenius eigenvector for GG,

In the path algebsa representation, it can hescen thal U7 maps the ilbort
space H(4,p,p) onto Higcp and delines a spatial isomorphism between the

representations of D on the two algebras L(H|4 p,p)) and L(Hs.cp))-

1.6 The paragroup invariant for ¥V C M

Associated with a pair-of 11} factors, N C M, of finite depth, is the lollowing
commuting square: |

G."

N My C NN Moy
i LI | _ Uty
M ﬂfgk C M N ﬂfgk_ﬂ
I |

Note that for 2k greater than the depth, the Brattcli'rliagra,m for the in-
clugion of NN My_; € N' N My is (the principal graph) ¢ and that for
M’ N My, C M N Mgy is (the dual graph) H. Also,

N'N M1 © N'0 My, © N' N Majyy
and | .

MO0 My © MO Mo © M 0 Mgy (= ag (N 0 Mag) Ty

12



are instances ol the basic construction, and hence,by the deflinition of 7- see

the last three paragraphs of §1.4 - the inclusions are as indicated,

Clearly, the above is a commuting square. ( For z € M N Moy,
Ennomy () = Fary, (), which clearly commutes with A/.) Tence it has a
‘hbiunitary’ matrix defined for it, ‘This matrix defines the ‘connection’ W,

the last ingredient of Ocneanu's paragroup invariant for N C M.

Now we describe a method for obiaining a pair of subfactors starting with
an admissible tuple (G, H, 7, W). For convenience of exposition, however, we
only consider the case of trivial uunm_*:ig1*{atllm1t mapy: 1.e.,weasgume that
o) = HW and that at the even levels 7 = 4d.

Let Ag, A1, By and 134 be finite dimensional algebras with inclusions given

~ hy:

¢!
Bo C B |
gUI ST . (*)
Ay C Ay .

0

so that W defines a biunitary matrix for the above square.

Now let By be the algebra obtained by the basic construction of By in
Bi. Suppose e; is the Jones prujﬂutiun' bringing this about. Let Ag be the
algebra generated by A; and e;. Then by the biunitarity of W and the
involutive nature of the operation U AU defined in §1.5, the following

is also a commuting square :

B C By
U | Ui .
A C Ay

13



By iterating the above process we oblain the lollowing towers of algebras:

1 i /1 i1
By C By € DB R By, €
guUl 21¢' Ul il - ¢
Ay € A C A C Ao C
g ¢ (! ¢

All the squares in the above diagram are commuting squares. Lel Ip ==
(U"_ AH)H and Ity = (Uu Bn)”-

If we [ollow the above iterative procedure for the canonical commuting
square associated with a pair of II; factors N C M viz.,

W

MNOMgy € MMMy
I1GT.UI U Fasi s
M, N Moy %: M N My,

il the given inclusion hag finite depth, and if & is sulficiently big, then it is
a fact (cf. [P]) that the pair g C I; obtained is isomorphic to N € M, On

the other hand, starting with a suitable tuple, (G, H, 1, [WW]) or equivalently

a commuling square, {ollowing the ilerative construction above, we obtain
a. pair ol subfactors Iy € ;. Now, if we could cmhpute the higher relative
commutants of Ity in Iy, i.e., {17 N L}, we can construct the principal
graphs G and H for the inclusion Iy < 1% . When (G,H) ~ (G, H) the
connection W is said Lo be ‘llai’, lor instance this é}l_w;Lyﬂ oceurs when
M N] <4, In general, the graphs are not isomorphic, but & is the ‘flat’
part of G, We give below a result due to Ocneanu, which gives, in principle,
a method of computing the higher relative commutants of I in Ry. Tor the

sake of cmmpleteness, we also include a proof of this fact.

4



THEOREM 1.6.1 (Ocneanu Compactness)

Let Ry C Ity be the pair of subfaciors oblained by the tleralive pro-
cedure applied to the symmelric commuling square (x) as described

above,

Then Iy N 12 = A N By.
Proof: 'l'o show that A\NDBy C IgN1y, we lirst show thal A{NBy = Al N3y,
for any (m,n) such that m > n. o

Now, Arn =< A1, Bt E.n.'—l—za R

D0, A;f.:n_ =..A:H_1 M {eu-l-l}f 2 {E?L-I-2P‘ Y '{Gm-l}f*

Also, ]3", C {e"“}f‘

B, C Byy1 C {en+2} and so on,

I'herefore,

CBunAyy,
B,nA,n{e.)
Ba_10 AL (since By N {e,) = By_y )

B, N A

I

B,—an Al _; (by the same argument)

= Iy ﬂ'A'i

Since the above equality holds for all (m,n) such that m > n it lollows that
Al N By C ByN Ry, '

The following lemma is needed to prove the reverse inclusion,



LisMMA 1.6.2 Lel 1 be a findle dimensional Hilbert space. Lel 1, 1r be

subspaces of . Then there exists a k > 0 such thal

d(z, ENI) < k(d(z, ) + d(z, I'))
for all & in H,

Proof: Let pi(z) = d(z, ENI) and pa(z) = d(z, E) + d(z, ). Then p
and ps defline seminorms on H, both having kernel £ N I? They define two
norms p1 and 7y on H/(EN I} which is also finite dimensional, Thus p1 and
s are equivalent and so there exists & > 0 such that 11 < kpy for all 2 in
HI(EN I, Using the [uct that py and py are geminorms on I, it lollows
that py(z) < k pa(a). W

Continuing with the proof of the theorem, consider the following finite
dimensional algebras:
Ho, = A;Qﬂ N Bopy1,
Yon = AL, N By,
Iy = Agpyyq O Bagyy.

Note that the two path spaces 4, 4, 5] and QA Ags, By &€ isomorphic
since the inclusion matrices are the same., So H) i3 spatially isomorphic to-
.[fllﬂﬂ,.

Let this isomorphism be denoted by L,,. Clearly, from the nature of this

isomorphism, L, (") = Iy, and L,,(Fo) = Ko,

Assertion: There exists a ¢ > 0 such that
lell < L@ < cllal]

for all # in Hy, for all n, where, of course, ||z][? = ir(z'a).
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We will first prove the theorem assuming the truth of the assertion.

Let GGy be any closed subspace of Hy and let &, be LH(GQ). Using the

agsertion above, we have !
C_ld(ﬁu, Gn) < d(ﬂ}m G'H) < d(:ﬂu, Gr[}).

for any g in Hp, where z,, = L,{xy). Now, let Go = Fg NI} so that

T = Fa,, N 115,01, Then we have

d(ﬁ}n., Ezﬂ, M 1}'2”,4-1) 5 & d(mu, Eu 2 ._M) .
< ¢ ko(d(zo, Ey) + d(zo, 1)) by Lemma 1.6.2
f:_ ﬂz k{](d(mn; E}Eu) {- d(mm ﬁl?n- I'I))

for all n.. So there exigtz a I > 0 guch that
d(mm E2n {1 F2u+1) 5 ]{(d(ﬂ;m EEH) + d(mm Fﬁn—l—l))
for all o,, in H,,, for all n,

For & in A' N B, define 2,, = Ep (2). Then 2, — @ a8 n — oo in L2

1101,

Since z € A, it follows that xz € 4!, for all n and therefore z @, = a,z

for all a,, in A,,.

Taking conditional expectation onto B, we have Ep (z)a,, = a,Fp, (),
L.e, &, € A, for all n, So, d(a,, B, N-A],) = 0 for all n.

f | ! |
NDW! E2n, M F2u~l-1 - A2n, M Bﬁn M Aau—]-l M BZn-H —= BZ-H M Aﬂn-}-l'
FDI‘ .’Dgn 3 d(mﬂn-j Ezﬂ_) — G E;Ild d(:’ﬂgu, Fﬂﬂ;}-l) S ”‘T'EH _" m211—|—1”2*'
SD! d(mﬂm Hoy, N FEH-I-I) < If”fﬂm ~ mEﬂ-I-IHE — () as n— 00.

- But By, N A,y = ByN A} for all n. Therefore x € A3 N By.

17



Proof of the assertion: IMirst observe that, using the path algebra model

Hy = Ay N By is a subalgebra of L(H[a, 4,,p,), which is a direct sum of

matrix algebras

Hy = - M, (C)
(i,7)en(Ag)xx(B)

where ny; 18 the number of paths from i € n(Ap) to 7 € n(B3)) along the

Bratteli diagram for the Inclusions Ag C Ay € By.

Thus suppose the minimal central projections Df Iy are
{p(n) 4 € w(Ao),7 € w(B1)}. Clearly, then, L,,,(p—,:,j)(u)) pfj) where
{p SL) 4 € w(Agy,) ~ m(Ag), 5 € w(Bapy1) = w(I31)} are the minimal cen-
tral projections of Hy,.

Note that it is enough to prove the assertion for 7) 1t (IE?'{]) i.¢,, the set
of minimal central projections in Iy, T'his is because Ty, 1 & v tr(Ln(mg))
is a frace on Hpp,;, which is a [actor, so that there exista a positive constant

cp such that, for all & in Hyp;;, we have

——

w(w) " ()

| Iry () L L Ln(pij))

We wish to show that there exists a positive constant ¢ such that

tr(piy)

¢t < <e,Vig

i (ps)

Note that it is enough Ln show Lha,t By, Ly (p ) exisls and is greater

than 0 [m each 2, 7.

f..? (p(n) )

H

Z(C;(-) (GII)IJ ;.fi’nil .
k

2(00’) ((*H)H(i*ﬁ'1 /A“) (Whele A = HH’HIE = [|C’C"||)
k o .

)

'18_"



= Y (GG N WGH )t

k

Y (GG g /N (pi))).

k

}

tr(p})) Z(c:c:*')j;;:i
ol FN

i]

- Let {1)1,'”2, oo U b be an orthonormal basis for O™ and let A = M\ >
Ag 2 o0 2 Ay 2 0 be such that GG'v; = A;y; for all §. 1t follows that if

w € C"™ and n are arbitrary, then
R e s oy
(GG Y'w = Y NP < v >

j

and hence

fy1L
lim (GE )

1n—+00 AT

= < W, > Y.

Put w = (1,1,-+,1) and deduce from the the last equation that

‘ t*rpg}") | (GG)B,
151412:1 b p([]) - 1!,211}-0 Z AT
. s i’j -|
s (GG ) w);
=TT
= < w > (1)
= (w)i

which is positive since v; is the Perron-Ifrobenius eigenvector of the irre-

ducible matrix GG,
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Chapter 2

Weak duality

2.1 Introduction

This chapter is devoted t(_)' a study of the properties of a pair (G, H) of |
pointed finite bipartite graphs which arise as a part of Ocneant’s paragroup
invatiant ol & [inite index subfactor. We single out a property possessed by a
pair of principal graphs of a subfactor {or which the cﬁni_;mgredient maps are
trivial, which we term ‘weak duality’. The Hl_f:hiﬁ result here is that if a pair
of graphs G and M are weakly dual, then G is necessarily iénmorphic to 'H. if
G -ﬁatisﬁes some conditions - at most triple points, no double bonds, and the
absence of two specific kinds of subgraphs. When suitably combined with

Ocneanu’s triple point Ubsltructi:}n, it leads fairly easily to a proof of the

result that a tree, with trivial contragredient map, can occur as a principal

graph, only il it contains a copy of .E&D .
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2.2 Weak duality.

[n this chapter, we will be dealing with potnied bipariite graphs. By a
graph, we mean what is sometimes called .:-m undirected multigraph « by
which, of course, is meint a pair (V(G), E(G)) where, as usual, the symbol
V(G) denotes the set of ‘vertices’ of the graph, and the symbol E(G) denotes
the set of ‘edges’ of the graph (with the understanding that there may be
several edges joining the same pair of Vel'tiCPs) The graph G is said to be
bipartite if the vertex set V(§G) is partitioned into two sets - which we shall,
for convenience, call the sets of even and odd vertices respectively - in such
a way thatl every edge in g joins an odd vertex to an even vertex. By a.
pointed bipartite graph, we will mean a bipartite graph ¢, together with a

distinguished even vertex - usually denoted by . #g - with the property that

the Perron-Ifrobenius eigenvector of the adjacency matrix of ¢ assumes the
smallest value at #g . (To be sure, we can talk of ‘the’ Perron-Frobenius

eigenvector only if the graph is connected - but we shall .ﬂnly be dealing with

such graphs.)

If two pointed bipartite graphs G, H arise as the two prilicipal graphs
corresponding to a finite-index subfactor, then the sets G2 H® of even ver-
tices of the two eraphs are naturally equmped with Lhe cuntragredlent map,
We shall be concerned with qubfdctmﬁ for which both these involutions are
tr wml for bmwty, we shall simply say that the subfactor has trwial con-

tragredient maps when this happens. 1or such a subfactor - i.e., one with
trivial contr agtedlent mapq -it fﬂllDWH from ‘the discussion in §1 4 that the

graphs G and H are wea]{ly dual’ in the sense of the next definition.

DEFINI TION 2, 2 1 Two pomted ﬁmt.e cc}nnet,ted b][)rli th.e glaphq (g *g)

and (H *;,5) are said to be woﬂkly dual if the lullnwmg cnndltmns are

satisfied:

2]



(1) ¢' =
(2) G'(xg) = H'(%3;) (i.e. the neighbours of * in G and H are the same).

(3) GIG(e, ") = IPH'(EI,HI) for all ¢1,n! € G, (i.e. the number of paths,
of length 2, between £! and 7' is the same in G and H ) .

( We would like to acknowledge our gratitude to Uffe Haagerup for point-
ing out that if the graph G ‘looks like an A,, up to a certain distance from

*g’, 80 also must H, a remark which led us to think along the above lines -

cf Remark 2.4.2)

Remark Note that when ¢ and 7 are a pair of principal graphs, the
identification of the odd vertices in (1) is via the contragredient map .
When the contragredient map on the even vertices is nontrivial the graphs

do not satisly condition (3), but they satisly G*rpG = H'ryp H.

2.3 Some illustrative examples

We turn now to pairs of gmph% which are nof isomorphic but whlch are
weakly dual. The simplest known examplc comes fmm the prlnmpﬂl grapha
for the inclusion N C M, wheﬂ M is the cr o%ed—pmduct of N with a non-
~abelian group of outer automor phl‘ﬂ]’l% of N. In this emmple, as i3 well-

known, the graph H has multiple bonds while § does not. ‘The following is

an example of graphs without multiple bonds.

IEXAMPLE 2.3.1 We are grateful to Bhaskar Bagchi for this combinatorial
example which, besides being pretty, illustrates the phenomenon of two
pointed, bipartite, connected graphs G and H which are .isnmtirphic:_' but

not. weakly dual:
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Both the graphs G, H have 15 = (g) odd vertices indexed by the 15 edges
of the complete graph I{s. Iach graph has 10 even vertices indexed by
cortain subgraphs of I{y (isomorphic to Cy 1T Cy or (4, where G, denotes
a k-cycle - thus Cy is a hexagon, etc.) In both graphs , an odd vertex is
adjacent to an even vertex precisely when the relevant edge belongs to the

relevant subgraph,

The cven vertices of M correspond to all the 10 = ((5))/2 subgraphs of
I(g isomorphic to Cy LI (.

‘I'he graph G also has ten even vertices ; these correspond to six subgraphs
isomorphic to Cy II C5 and four subgraphs isomorphic to Cy. They are !
{(124)11(356), (125)L1(346), (136} LL(245), (145) [1(236}, (134) 11(256), (146)11
(235)} and {(123456), (126453), (156423), (153426)} - where we have used

the obvious notation (v ...w;) to denote the k-cycle that successively passes

through the vertices v1,..., v.

Both graphs share the fDllDWiIlg properties: (i) each odd vertex has de-
gree 4 and cach even vertex has degree 6 (and hence the value of the Perron-
Frobenius eigenvector at a vertex depends only on the parity of the vertex);
(ii) given any two distinct odd vertices, the number of paths of length two
which join them is 1 or 2 according as the corresponding édges (111 I(g) share
a common vertex or not. These facts ensure that the graphs a,ré weakly dual
as asserted, provided the distinguished vertices of both G and H are taken

to be the same graph isomorphic to Cs II Cs.

Another such, but émaller; example is given below.
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EXAMPLE 2.3.2 We begin by discussing a pair of graphs which are ‘almost’
weakly dual, bhut just {ail to be so; nevertheless they have near relatives
which do furnish an example of a pair of graphs which are weakly dual but

- not isomorphic. The non-example is discussed here mainly because of the

key role these two graphs play in Proposition 2.4.1.

(a) Consider the following pair of graphs, with even and odd vertices

labelled as indicated.

O 1 o .r.‘.i .
Ky ai Xz 2 X3
1
53
o
x4
g=17 H = Cg

(Here and in the sequel, we write 7T"to denote the “I=graph’ each of whose
arms s two edges long., This graph is denoted by ESU in [GHL], but we use

the notation 7” because it is more suggestive.)

It is easily verified that the condition G'G' = H'H is satisfied. - Since
overy overl verlex in H has depree 2 while none in G does, cloarly these two

graphs cannot be weakly dual { by condition (2) ).



(b) Consider these graphs with labelling as indicated.

0
lﬁ..‘
o . 1
A X1 gi ﬁ"ﬂ
W » "
99
]
6,
<
G=Ag # T | H = Aq # Cp

( Here and clsewhere, we use the symbol # to denote ‘connected sum’,
whereby we mean that a pair of vertices, one froin each of the graphs in
question, has been identified; to be sure, there are several ways of forming

siich a counected sum. ) Again, the condition G'G = H'H is satisfied.

While the vertices of and £ have the same degree, what fails now is that
Lhe minimum valoe of the Perron-Frobenius eigenvector of A(G) occurs not.

at af but at the vertices of and o,

(¢) IFinally, the desired example comes from the following graphs, with

labelling as indicated.

'Lﬂ.?
bl
vy
G=A # T




Here, it is the case that xg = of and *y; = /.

(d) It goes without saying that by extending the A-part of the graphs
more and more, the graphs G and H generate a whole sequence of pairs of
non-isomorphic graphs - namely As, # T'and Ay, # Cs - which are weakly
dual. | | | |

2.4 Weakly self-dual graphs

We are now ready to prove the following proposition which gives some cri-

teria on a bipartite graph G which ensure that the only _gra,ph,.up to iso-

morphism, which is weakly dual to G is G itself. ( Observe that in view

of Bxample 2.3.2(c), (d), the conditions (3) and (4) in the proposition are

almost, necessary.)

ProrosrrionN 2.4.1 Suppose G is a findle connected bipartite graph sat-

isfying the following conditions:

(1) no vertez of G has degree greater than 3;
(2) G does not have double _boﬂds; |

(3) G has no 6-cycles; and

(4) G has no subgraph isomorphic to T'_H?.J.,ﬂh. that cach of the .ﬂerticea |

of degree 1 in T'is an even vertez in G whose degree in G is still
1. | |

20



Then the tdentification ! = H' extends to a graph isomorphism of G

onto H.

Belore proceeding to the proof proper, we set up some notation. We shall

use the notation (§y — & — ... — £,) € G to signily that &, &y,... ¢, are
vertices of the graph G such that &;..y is adjacent to & in G for 1 <1 < n.

The set. of neighbours of o in G will be denoted by MY, In the following,
gince we shall be dealing with a pair of weakly dual graphs G and H, which
have the same odd vertices, we shall, without fear of conlusion, write simply

Ny when « is an even vertex of either @ or H.

We shall also employ the following notation: for vertices £,7 in G:

(i) the symbol G(¢,n) will denote the set of common neighbours in G of ¢
and 7, i.e. G(£,7) = Ng ﬂNf; (note that, in the absence of double bonds,

G(€"n")| = G*G(€',n'), whence |G(€',€")| is the degree of £ in G;)

(ii) the symbol I9(¢) will denote the set of degfee one neighbours of £ in G;
e, 19(6) = {Be N : degg(B) = 1};

(iii) the symbaol A will denote the set of triple points (i.c., vertices of degree
3) in @Y% suppose A = {A},A5,..., A}, I >0

Proof: It is not hard to see that the above conditions (1), (2) and (4)
of the proposition imply the conditions (1), (2') and _(rl"l) below. ( To be
precise, conditions (1) and (2) are together equivalent to conditions (17 ) and
(2); while condition (4) is equivalent to (4'). ) What we shall prove is
that conditions (1), (2'),(3) and (4" ) sufﬁcé to ensure the validity of the
conclusion of the Proposition. ( We haﬁ?e, llﬂwe?ér, chosen to state the
proposition as we have, since we feel that this formulation is more ‘visual'

and easier to verily.)
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(1) (G'G)(!,€") <3, for all €l in G5
(2)) for all 8% € ¢° deg(ﬁo). < 3; and

(4) for all A & A there exists Eiﬂ € Ny such that Z9(¢3,) = ¢,

In the proof we would have occasion to use the following condition (3')

which can be seen to be implied by (3).

(3) Il = {w], wj, wi}is a subset of G such that between any two vertices
in £ there is a path of length 2 in G, i.e., (G'G)(w}, w} ) # 0 for i # 3,

then, £ is the set of neighbours of some triple point in G, ie., § =Ny for

some A\’ € A.

We break the proofl, which is somewhat involved, into the following steps.

Step 1 “H has no double honds.
Reason : H'H(E, &) = G*G(E, ¢Y) < 3 for all ¢ € G

Step 2 Llach vertex in H has degree at most 3. |
IZeason : For the same reason ag in Step 1, this is clear lor the odd vertices,

Suppose, now, that there is an even vertex §° in H" such that deg (60) > 4.

Case(l) T'here is an even \.rmlﬂx & i.ﬁ 'H” guch thal dcg (89) > 4.
Then 6" has at least five neighbours, 51, el €l E,, and €. The path
(& — & — 5;} ) in H ensures that G*G(¢,£;) = H*H(€},€;) # 0 for all
i and §. By (3'), for any choice of distinct 4, j and &k, [¢1.¢ ,£k} Ny for .
some A0 € A, i.e. each & is adjacent to ((g) =) 6 distinct triple points in

G, which contradicts (1).

Case(2) Suppose there is an even vertex 6” in 1" such that deg_(;ﬁﬂ)-ﬁ 4,

Then 6" has four neighbours €], &, €3, and & . By Lhe same reasoning a8
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- above, for distinct 4,5 and k, {£], }i £+ = Nyo for some N0 € A. So there
are 4 triple points XY, A), A3, A} in @ such that NA? == {E} 1 f7#% 1), Let G’ be
Lhe induced subgraph of G on the vertices {£Jl 1 <F<AJUN 11 <4 < 4),
Since each A} and €5 has degree 3 in ¢/, the conditions (1) and (2) imply
that ¢’ is a connected component, of G, and hence ' = G by the assumed

conncctedness of G
Since ¢ and ‘H are weakly dual, we have the following;
() "' = {&1, & & &a)-
(i) I H(E, &) =2 for 1. Si#Fj< A,
(iii) H'H(E], &) = Iforl €i< .-—1 .

We proceed lo deduce that thore must exist another even vertex 8 # 69 of

degree 4 in A such that N:E,? = Ny = [£1,€3,85, &1,

By (ii) there are unique even verbices h,u, distinet [rom &, such let.

(& — Ky — Ej) are in H. Then for any & and j ;é i, we have (fl &Y),

and (¢ — j.) are in H. But, deg(E]) < 3. Therefore for cach i, & 7 = 0
[or some 5 # k., Now (El — h:” = kY — &L} isin H. But rc.jk is the *u:liqu'e'

vertex other than 62 such that (51 — Ky — §k) is in H. So kg = k), = K,

which is then a vertex of clegree at least three, Hence each ¢} is connected

to a kY # & such that deg(k 0) > 3. We now show that all the & are the

Sallle,

Now, for 1 <14,7 <4, we see that, -

L

Nogl -+ Wogl = [N UN;g|

| IM?HM?I
2 3+ 3 - |'H1| 2.
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Let 1 <4 -715 7 £ 4. Then there exist 1 < &k # I < 4 such that £}, ¢ €

N, 2 NN, 0. 'T’hen since H(fk:f;) » {6“ E} and & # &Y, mg.‘:', the property

[}

(h), Hlfllr-d above, implies thal &7 == s,

So there does indeed exist 67 # .6° € HY, such that deg(87)=4, and
-"\Cﬁ‘f = {fi,f%,fl,&li}

By (iii) there must exist even vertices ﬁ?, ﬁg, ﬁg, 15?1 in H% such that
(&} — ) are in H and deg B = 1.

Thus the graphs Q and H arve fully determined. Observe that all the
even vertices of § (A}, 1 <4 < 4) have degree 3, while the even vertices of
M have degree either 4 (deg(6%)=deg(6}) = 4) or 1 (deg(?) = 1 for all i),
So there can be no choice of *g and x9; such that G*(xg) = H!(xq,).

‘T'his completes the proof of Step 2

| Let M = {uf, 13, ..., 19, },m = 0, be the set of triple points in H, -
Consider the following partition of the sets of even vertices of ¢ and H

respectively, obtained by considering the degrees of the even vertices:-

@ = || 79 | (@, n\ A)_l_l A

& e ! ¢, plep!
' 51?‘:?
H = || 7™¢) [ (e anwmy [ M.
g oe el plen!
£l

To establish that G is isnmtirphic to H, it ig enough to set up bijections
between the corresponding components of the abm?e partition for g% and

’H whlch preserve neighbours - i.e., if f:@HY— G“ is the reaultmg grand

B “IJ]J@LLlon’, then M —-Nf(nu) [or all o in 'H“

a a0 ..



Step 3 In order that there exist a bijection between G0 and HY as in the
P J

preceding sentence, it is necessary and suflicient thab Lthe following couditions
(A) - equivalently (A') - and (B) are salisfied:

(A) There is a bijection f: M 1= Asothat M, = N r( for all jein M.

(A') Tor any three element subset M of G, [{ &} € A+ Ny = N ||
=|{ 1§ e M: Ny = N}

(B) (Z9CN = (TN lor all &' in gL,

Ieason: 'The necessity of the conditions (A) and (13} is easy Lo see, as
L )

~is the equivalence of the conditions (A) and (A').

As for sufficiency, suppose the conditions (A") and (I3) are met. Note
that [G(EL,9Y)] = GG, o) = IH(E D) = |[HE, %)) on the
other hand, the condition (A") implics that, for all ¢t in G, we have the

equality
[N € Ar (€' — X —7') € Gl ={1] € M: (€' — i — ') € H}|.

Therefore, for all 4,9 in Y, we have

G, o\ Al = [H(EL o)\ M,

which establishes a bijection between the vertices of degree two connceting

¢ and 5t in G and H, This completes the proof of Step 3.

IHence, in order to complete the proof of the proposition, we only need
to verify the validity of (A’) and (B). The proof of (A} will be achieved in
Steps 4 and 5, while Step 6 will prove (13).

Step 4 Tor NV = {¢1,¢5,€5) C G, |[{\" ¢ A : Ny =N} 2 |{u® EM
M#ﬂ = M} | | |
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- Reason: We consider three cases according to the number of triple points
10 € M such that VN = Nﬂn, (which cannot exceed 3 since the odd vertices

can have degree at most 3, in either graph).

Case(i) Let N = .N'ﬁﬁ for some p® € M. Then G‘G(&},E})
HH(E], €5) |
# 0 for all 4,7, By (3') My = Ny for some AY € A.

Case(il) Suppose there exist pf, 13 € M such that 48 # 49 and Vo =

PRl
N,g =N. By (i) above, there exists A} € A such that Ny =Ny =N Since
Lhore are ab least two triple points in H each of whose set of neighbours
equals NV, G*G(Eﬁ,é}) = H'H(¢], g‘?) > 2. Therclore, there exist ."i'. # A} in

0

GY. such that (E} ~— K

— Ej) arc in G for all distinct 4 and 7.

If all the H,”J’ﬂ were distinct, (€l — kY — & — &Yy — & — &), — &)

would form a 6-cycle in G Therefore for some j # k, ], = ), which then

if
is a triple point, A3, in 9, such that N}&'g =N,

Case(ili) Suppose there exist three distinct points puf, 148, 1 € M such
that N, = N for all 2. By (i) above there exists N e A such that
Ny = Ny = N. Since there are three triple points in M each of whose
set of neighbours equals M, we have H'H(€], &) = 3. So there exist distinct
wY, 19, distinet from A°, such that (& — &% — &), (€] — k) — &3 aro
in g. Now G'G(¢},£3) = 3 and Deg(¢]) < 3. Therelore (E]l s ﬁ.[f — £) and
(€] — KY — &) arein G. So we have {\}, ) = KA = k) € A hlltll Lhat

N)‘u? - N- |
Step 5 Iind of proofl of (A').
For all e e ¢!

0, e = T 19, o |-—|{A“eA (\”—-—sl)ec’}ng(s G
£l Ay | | | |
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and

HEL D = D 1HE Y~ 1{ € M (] — 1) € HY+ TN (2)
£ 7 = -

(Reason: While |G(¢}, n')| counts the number of even vertices & such that
(! — F — nl) is in G, the first summation on the right side counts such

vertices of degree two precigely once and vertices of degree three twice.)
If £ is such that }Z9(¢')| =0, then
G, €N = 30 160~ 1{M € A (N — &) € G} and
A | | |

Do IHE )] = (s € M2 (i — &) e HY|+[ZHEN)
A .

H(E, )]

Now [0(¢1,£1)] = [H(€, )], and |G(€", )| = [H(E. )}
Therelore,
0 e A: () — &) e g) = |1 € M: () — &) e H))| - IPE)).
And hence, \ '
0 eh: (0 — ) e gl <[l eM: (W) — &) eH)l.
So, we have, -

0 > [{NeA: (N —eyed)-1{f eM:(d —¢) eH)

= | ehd eMgll -l e Mg eNg)

= Y (M eA: Ny =N}~ |{if € M: Ny =N}
N ¢l o | _ | |
> 0 (since each term in tho sum is positive by Step 4 above).

Hence each term in the sum is zero; i.e.,

I{AEEAEN*_‘*?:_ H o= E'M":ML?':N}' |

IS+ I



for all A C @1, containing an element ¢! such that |Z9(¢4)] = 0.

But, by (4'}, every N, has an element &} with [Z9(£})] = 0. It N # N,
for any A, there is no triple point in G whose set of neighbours equals M and

s0, by Step 4, there is no such triple point in 7 either. So we have (A’).
Step 6 Proof of (B)
By (A’) we know that for any ¢! in G

e (0 —E)ea) = I eA:Ny=A)

ETS |

¥ [(1 € M Mg = )
Nagl

{ui e Mo (u) — &) en}|.

1.

Therefore by comparing (1) and (2} we have

1Z9(EY] = TN

The proof of the proposition is finally i:omplete.

REMARK 2.4.2 (1) Bach of the glaphs A,,,,D,L and %, sabisfies the four
hypotheses of the last proposition. ( Forn > 8, we write E,,, = A,,,,.g # Fg,

 where the *'s of the two gr aphs are identified. )

(2) lor a bipartite graph G, there is a natural induced metm on V(G).
For each integer n 2 0, wntc G for Lhe induced %uhgmph of G on the set
of vertices at distance at most g) frﬂm *g. (Thuq, gn] = {*} 0y = Nﬂ U {*} .'
etc..) It is ﬂieau that 1f g and H are weakly dual, so are gz,,,l and Hoppe In _-

par LICUIM we mcapture Haa,gerUp 3 ﬂqu vation: if G d,nd 'H are the prlnuprﬂ |

. ,3;4‘._ .



graphs of a [inite-index subfactor and if G,) = A, 1, then Hy = Ay for
even 71.('lo be sure, it must be verilied that the contragredient map is trivial
on the even vertices; but for this it is enough to note that for all n the sel,

gEu +2]
above statement is also valid for odd n; this follows from the case of even n

Q’Enl is invariant under the involution on the even vertices.) The

and the connectedness of the principal graphs.

(3) It is tempting to call the subgraph conditions - ¢f. (3) and (4) of

Proposition 2.4.1 - a ‘double of a star-triangle’ relation: more precisely, is
B | ) y

there more than just a superficial similarity between the two notions?
2.5 The non-occurrence of some graphs as prin-
cipal graphs

~ We now recall the l’c}llowmg obser VEI.LIDII made by Ocnea.nu ( see [K] for the

statement and [OK] for a proof ).
OBSERVATION 2.5.1 Suppose a graph G salisfies the lollowing conditions:

(1) G does not contain a subgraph isomorphic to Cy;
(2) G contains a triple point; and

- (8) 6] > 2.



Then it is not possible to construct a commuting square of the following

[orm:
(. E_E 1)
L1 Uly’
A C B
g

In particular, there does not exist a finite depth subfactor N ¢ M with

trivial contragredient maps, both of whose principal graphs are G.

‘'he above observation, in conjunction with the preceding proposition,

has the following interesting consequence.

THEOREM 2.5.2 Let N C M be « pair of II} factors such thai M
N| > 4, Assume that the subfactor N has trivial contragredient maps.
If one of the associated principal graphs G is a finile tree, cach of
whose vertices has degree at most three, then G contains a subgraph
2gomorphic to T such that the vertices of degrec one in 1" are ecven

vertices of degree one in G,

Proof. Suppose now that a graph G arises as in the statement of the
theorem. The hypothesis ensures that G satisiies conditions (1), (2) and (3)

of Proposition 2.4.1, as well as conditions (1) and (3) of Observation 2.5.1.

Since ||G|| > 2, the graph G is not A, for any n. Since G is assumed to

have at most Lriple points, it follows that G also salislies condition (2) of

Observation 2.5.1.

On the other hand, it must be vaiﬂusfthat a finite graph cannof arise
as a principal graph of a subfactor with trivial cuﬂ_tmgredient'i_nu,_ps,'-if if
satisfies conditions (1) - (4) of Proposition 2.4.1 as well as conditions (1) -

(3) of Observation 2.5.1.

Bl¢



Hence it must be the case that ¢ violales condition (1) of Proposition

2.4.1, and the proof is complete. 1

REMARK 2.5.3 The hypothesis about trivial contragredient maps is egsen-
tial. It hias been shown by Haagerup (cf. [EIS]) thal there exists a subfactor
whose principal graphs are as shown helow, where the non-teivial conbragro-

dient mapping in the graph G is indicated by the dotted line:

a %
&

The above theorem shows that no Tigraph - i.e., a graph with a uniquo

vertex of degree 3, with all other vertices ol degree at most two - with norm

greater than 2 can arise ag a principal graph of a sublactor with trivial con-

tragredient maps,



Wao conelude Lhis chaptor by deseribing some move graphs which cannot;
arige as a principal graph of asubfactor with trivial {:nnl'.mgﬁ-z{liﬂnl; maps, a8
these are (rees which sabisly condition (1) of Proposition 2.4.1 ( and which
have norm greafer than 2 and have no veclox of dogree greater than 3 ):
(1} any version of n connecled sum of A, > 2 and f9g in which & vertex

of degroo one from A, has beon dontified with one of the vertices of degree

one in Js or one of their degree Lwo neighbours;

PP, mnmv/

(i) the Cayley tree and many othor subgraphs ol the Bethe lattice..
T

gte



Chapter 3

Construction of some

commuting squares

3.1 Introduction

In this chapter, we give the explicit construction of a couple of cﬂmmuting_ |
squares. ‘[he first example is motivated by the theory of hypergroups and
the second turns out to be the principal graph for a pair of subfactors of the

type, It =1 HCH > G, where 1] i3 a subgroup of a finite group &,

3.2 A commuting square using Hadamard mﬁtri-Q .

ces

Consider a hypergroup consigting of a group of m elements, {aj, ez Q)
together with a single element, 8. The hypergroup operation is defined by

matrices corresponding to each element, [or details see [SV].In this exa.mple- -

3



6% == 3 1" ey -)- N6, 'I'he mabrix corvesponding 1o § is

NI
me ' R '
D ... 0 1
L 1 N,

I 1 were the inclusion matrix of two finite dimengional algebras the corre-

sponding praph (Bratteli dlagram) would ho;

IR / S
X/
0¢\‘ ~|lss| N bonds

Both the sets of vertices (even and odd) are labelled {1,2,--+,m, N}
and the cdges bhetween N and N are labelled by the seb {ay, oy}, lhu |
Perron-ifrobenius eigenvalue of the symmetric matrix i, denoted by A, is
equal to (N - VN flrﬁ) /2. 'Ihe Perron-Frobenius cigenvector hag enbries
1 corresponding to the vertices 1,+ -+, and A corresponding to the vertices

N,

0



We wish to construct a commuting square of the Torm:

L."
¢ € D
LUl Wik
A C B
I

By the biunitarity condition described in the first chapter, to do this it
is enough (o construct unitary matrices U and V satislying the foliowing

criteria:

(8)

i 1 m
= @ Uij O @'ﬂm & €9 wy; D UNN
W ES) jex] i)
and
1. 1M m
V= @ vi; @ @vm & @‘Upﬁ. M UNN

whore wi;, vy are 1 x 1 matrices, wy,wpg, vy and oy are ¥ X N matrices,

(b) the direel summmands of Vare defined as lollows:

A iy |y " N g

(i) vi; = Muny)ji for 4,5 =1+ m;

(ii) ('UfiN)n:b = \/,\ (HNN)Em,i for (., b € {ﬂ.l, P H-N},*i = 1, I,

(

(iV) ('UNN)f_j e ;{:TFE ford,7 =1, m,

el

i) (vni)ab = VA (unw)iga for ab € {ag, - anhii= 1, m;

| (v) (waw)iah = -\-}E'(-um)bﬂ' for a,b & {qy,+anli=1, m;

(“‘v’i) (T"NN)HI!,‘E == "\}l’i(t‘!ﬂiﬁ){u: for ﬂ'ab € {ﬂ.],' o H*N} ﬁ‘i =1, Tﬂ';

-

(Vii) (UNN) wh,od = (H'Nﬁ)db,m*



One way of ensuring the wnitarity of Vis to impose thoe condition V= TJ

Thon tho problem reduces to finding a unitary U of the above form sabis{ying
the lollowing criteoria

(1) wi; ford,j=1,-++,m, are 1 x 1 matrices;
it) wv and uy; are N X N matrices;

(

(i31) naw s an (N% - m) x (N? - m) malrix such that
(n) (uyn)ij = ;lgT.Lji for 4,5 € {1,2,--m}
(h) (uyn)ian = _\%X(T“',’Nf){”‘ [ori e {1,2,:--,m}a,be {ay,29, - an}
(¢) (e )an = ';,%‘('*-HN)I:{: orie {1,2,«,m},0, b€ {a},a9,+ an}.
() (et et = (UNN) dbya TOr asb o d € {ay, a9, + - apy). E

In other words, we wish to congbruct an (N - m) x (N? + m) unitary

matbrix wyny of the lollowing form

A S
ho

o
whora,

(a) A s anm x m matrix with [ayf = 1/)

(b) cach row of VAS is an N x N unitary matrix writlen out row alter row.

(¢) each column of VAL is an N x N unitary matrix written oul column

afler columny and

(d) I is an N* x N? matrix, which when labelled suitably to form Nx N

hlocks, i.o., I{(aoe, dob) = Ku(c, d), satislics the condition ..’_{'ﬂb = jfbﬂ |

Iere we would liko to state a couple of results used in the comstruction -

of u. (IFor the proof see [S2].)



LeMMa 3.2.1 Let A € My, (R), 3 € M,,, N(JI?). Then the following condi-

Lions are equivalent,

(i) there exists a sell-adjoint, orthogonal matrix

-

A B
Bt G

P =

=

(ii) A = A" and A%+ BB* =1,

LaMMa 3.2.2 et A B be matrices satisfying the conditions of Lemma

3.2,1. Then there exists an orthogonal matrix Q@ € M, 2 (I?) of the form:

-

A By By - By
B{ .[(1] I(]g Ile

LBF\E K Kpyo oo ](NN_

where | |

(1) B; is the mx N matrix with p-th row given by 13,,jr:§m, Wh&l‘e-ﬂgN) denolos
the j-th standard basis vector of R and

(i) Kpg € Mpy(I2),1 < p,g < N, and these matrices satisly

Ky = Ky

So if we could find

43



(i) an m X m self adjoint matrix A such that lai;l = 1/X for all £, 7

1,2, m;

(ii) an m x N matrix B such that | Byl = 1/v/ A for all 4= 1, 2o, j
1,2, N;

it

(iii} so that A and I3 satisfy A2 + BBY = I,

then A and B would satisly the hypotheses of Lemma 3.2.1 and then from
Lemma 3.2.2 we would have the matrix ¢ which would satisfy all the re-

quirements (a) - (e) of the matrix wyy.

If uyy = @, then the matrix U is completely specified in terms of Q) and
in turn, in terms of A and B, using the conditions (i) - (iii) stated belore

Lemma 3.2.1.

So we would be through if we could find A and B satis(ying the conditions

(i) - (iii) above.

Note that if we could choose A to be a (ym/M)A where A is o unitary
matrix, and B to be (/N/X)(B) where the rows of 3 are orthonormal then

condition (iii) follows from the (cigenvalue) equation m + N = )2,

Recall that a matrix is called an Hadamard matrix if il ig a. real: nrthug-
onal matrix all of whose entries have equal modulus. (L'hus, for instance,
it is known that if & > 2, a necessary condition for the existence of a k x &
Hadamard matrix is that & is divisible by 4. 1t is conjectured that the above
condition is also sufficient (or the existence of an Hadamard matrix of order

k; this conjecture, although as yet unrcsolved, has heen verified for fairly

large values of &.)

44



Hence, il N (resp., m) is an Hadamard (resp., symmetric Hadamard)
integer - 1.¢., a number which admits a real IHadamard (resp., real symmetric
Hadamard) matrix of that size - and if N > m, then we could choose A
to be a real symmetric m x m  Hadamard matrix and B to be the firsl
m rowg of an N X N real Hadamard matrix. 'Then, by the defining
property of Hadamard matrices, all the entries are of equal modulus and all

the conditions (i) - (iii) are met.

3.3 A biunitary matrix on a 4-star -

For the second example - which is an example with non-trivial contragredient

map - we start with the following graph:

The dotted lines indicate the action of the cnntragmt_iient map. 1 hf; ?Ldjﬂr
cency matrix for G is given by | |
0 G

@0




where (¥ is the GO x ¢ matrix :

-1

0 0 0
L 11
01 0 0
0 0 1 0
0 0 0 1

bt =

The Perron-Irobenius eigenvalue for G'G denoted hy A is equal to §. ‘The

entries of the Perron-Frobenius eigenvector, corresponding to the odd ver-

tices are all equal to VB, Corresponding to the even vertices all the entries

are 1, excopt for the vertex labelled 2, for which the entry is 4,

The contragredient map, restricted to the even vertices, is given by :

. -l

1000 0
01000
r=[00 010
00 1 0 0
00001

We wish to construct a symmetric commuting square of the type :

¢ & D

Ul Ulga's

A C B

]
Now,

. 1100 0
2111 . 14 111
deey=|1 PP @en=0e@=]010 10
L2 1 o1 100]|
111 2 “0-1.U 0-‘1“:'

A6



So, in order to construct a commuting square as ahove, we need to construct

a unitary matrix U which satisfies the lollowing criteria;

(1) Uis of the [ollowing form:

U= 69 Wi 69 9

(i.d)el

where I = {(0,0},(0,2),(2,0),(2,4),(2,6},(2,8),(4,2),d,6), (6, 2),
(6,1),(8,2),(8,8)} and wy; dsa 1x 1 malrix for each (,§) € |
and uge = [am]xieq1,3,57) 18 a4 x 4 matrix,

i

(ii) V, defined as follows, is a unitary mafrix :

V= EB Vi

(ke b

where Jy = {(1,3), (1,5),(1,7),(3? ].),(:.i,B),_(H,_?) (5, 1), (u,a)_( 7),.
(7,1),(7,3),(7,58)} and Jp = {(1,_1),(3, 5),(5,3),(7,7)} cand

(a) il (k,1) € Ji, then vy is the 1 x 1 matrix
v = V5 ay;

(b} for (k1) € Ja, we have

| U AT ATy “
= 1/\/5 " “ y U35 = 1/\/_ [ | '

2%{}2 flﬂ:ll Zuﬂg -f]ﬂ-;;;] |

Ugg U 2U98
Vnn = 1/\/5 46 % U7 = 1/*/_ [

2uq9  dass 2ugg  daiy

[=

We require hoth U and V to be unitar v which means that all the sum-

mands must be unitary. Irom this 1t is not hard to see tha,t the moduli 0[



the entrics in ugy are ag in the following matrix

1/4

If we choose uss to he :

1ng=1/4 . | ,

ugy to be [—1) and all the other ui;'s to be 1], it is not hard to see that all

the summands of V are unifary.

It is known (cf. [KY] and [RS] ) that this graph actually occurs as a
principal graph lor a pair of subfactors of the type, It > II C Il >

"‘f

~where IT is a subgroup of . 'To be precise, G is the group of alline
transformations of the field Zg, and I7 is the non-normal subgroup of lincar -
tranformations ( i.e., those that fix 0); thus & is the semi-direct product of

the normal subgroup I of translations, by H.



Chapter 4

Vertex models

4.1 Introduction

This chapter ig devaled to the study of subfactors huilt out of & commuting

square corresponding to a ‘vertex model’, Le., a commuling square of the

form | |
My(C)®1 C  My(C)®My(C)
Ul | Wy
¢ G (Ad w)(My(€) 50 1)

where w ig o (bijunitary in Mpy(O) @ My(C).

IFirst, we use the Compactness 'Theorem due to Ocneant -gee Theoreinl.6.1
to obtain a formula lor computing the higher relative commutants of a pair

of subfactors 12y C Ky, built out of a commuting square of the form:

G.f

B C D

¢l Ulg'
A C uwbu

i

9



Then in the third section we apply the results of the second section to
two specific families of commuting squarces, Lo compule the prinuipnl graph

of the resulting sublactors,

The fourth section is devoled to ‘classilying' such commuting squares, at
least, whon IV = 2; the conclusion is that the resulting subfactor always hag
non-trivial relative commutant and (as a result of the analysis of the second
secbion) the principal graphsg of sublactors of index 4 that are so congtructed,

(1)

are procisely the extended diagrams Agy yn=1,2,--+ c0.

[Finally, we state, without proof, some results that have been obtained .

in the case when w is a biunitary permutation matbrix.

Acknowledgement ¢+ We would like Lo Ghank Vaughan _Jnii_{}ﬁ”ﬁu'-éuﬁgrrs[?
ing that we should look ab these vertex models. Also he pointed out that
the formula for the higher relative commutants (and hence the subseql_lent.
computations) can be simplified by considering the tower of the basic con-
struction instead of the tunneo! as we did in [KSV/. We would also like to
thank Vishwambhar Pati who helped us clarify our thinking along the Iincﬁ

which led to the classification result in the fourth section,

4.2 Computing higher relative commutants

In this section, wo start with a commuting square of the form

el

B C D
cUI Ul - (*)
A C ubu
=

where u is a unitary element of A’ N D, construct a subfactor 12 of _1511*_3 __

hyperfinite factor (= I;) in the usual manner - cf. §1.4 -and describe 2’

50



mathiod lor-computing tho higher relative comymminnts 0 1, whiere (1)
denotes the tower oblained by flerating tie basie construetion Lo il izl
inclusion Iy C N, |

We shall use (and build upon) the notation of path-algebras infrodueol

in Chapter 1 (in sections 1.3 and 1.5). ‘Thas, we [ix a bipartite graph G, with

the seb ol aven (resp., odd) vertices denoted by GO (rosp., HSO I withy
ncidenco wadrig’ glyon by (7 ¢ HHITATOR Um(’&' )o o convendenen, wo
define W (o, (u'(”)) Lo bo G (e, ) o g (reap, GUY neeording

nd 1 s evon or add, A holore, woe wrile ili.”} fir e spneo of pathy In ¢

* which start in ¢ and wo writo ('ﬁ:.l} for the pill.|l~i_llli,rlrl'u given hy

Gi”) = {w & J\f!rl-f,gzin;(ﬂ) cow(ay ) =0 unless (s(a), f(n)) (( ), (p‘))J

T'hus Che hivuilacity condition says thid Lhe squine of algebras

) “[.r_:lﬂ}
¢ e n
() L) _ Lilgint) (H)
A G U
“(II}

iy o connmubingaquare (with respect to the' Markov teace) i0and only i thero

existy a unilary element u € C( ") guch thal l(u)( (i “)) s nlso uulLauy, | |

where V() is defined ag in §1.5. (H.m,ull Lt

ardpm L T BEL ok N, ] 4h u 'sm 3 =

N £ () I e
(V(u))(nob,cod) = \/!ﬂ(-‘f(”))ﬁ(f(”) u(: e, bo o)

where g denoles lllu Purron-Iroboniun aige hyector of Lhe sdjacency inntrix
of Lhe bipartite graph g, and ol couse, tlwL symbol i tluuuLm Lho reflection

of the path o)

Tor convenience of notation, we delino
UH((H--{,”]) = [u € (Jm _:'-hu!h. waind V{u) are anitary), (1Y)

T



Thus, the square (**) i8 a commuting square precisely when the set I3U(C‘(2"J)
(of ‘biunitary matrices’) is non-empiy.

It must be clear that v € BU(G‘&Q) il and only i'ff'(-iL) c ;_3({((_;%"'*"1)),
and so we shall think of V' as a map from HU((_,@”): " HU((,{;” ’}) (v
all n . (I'hus, lor instanco, il we identily :'J(J'((;‘g")) with _BU({;E’”?)) in
the natural manner, then V2 = VoV isthe identity map on U ;‘é"));)

For our purposes, a slight variation of V', which we shall denoie by V

will be more useful, Thus for u € (}'E-") , define Wu) € C.‘&"'F'I)' 1;:,:

't {1 O QO = “(IGL)‘)}L(‘{E‘Q%II Ef ﬂ;; FG |
(M)aob, cod) = \/H(-‘*(”-))ﬂ(f(f”) ob o)

(It is a fact that u & BU(OS'L)) if and only if V{u) 3 BU(CQI'“)).)

More generally, we would have occasion to uge the following result from [S3]

several times. (It must be remarked here that although there is a standing

additional assumption in [S3] - called ‘rotational symmetry’ there - that

assumption is not needed for the validity of the conclusions stated hero.) .

| | ! - 4 o _ _ |
'TnronrnM 4.2.1 Lel Ag C A be an inelusion of finile-dimnensional (-
algebras, and lel

Ap C AL C Ager e Ay C gy
be the resulling lower of the basic conslruclion.

(a) Lel u & BU(G‘g])) be arbilrary; define

) ey if u is odd

Uy = | . _
{ (V{) i8] .?,f n 18 even

L
and define

Uy, = WUy UUp, N =1,2,

H2



- Then
(%)
An Au-l-}
U LI
(Ad wnml)ﬂnh'-l C (Ad wu)Au

i8 o commauling square, for all n , where Ad w denotes the map

Y

r - wow'

(ii)

(Ad w?th)Au-—E - (Ad wuhl)Auﬂ-l G (Ad Wu)/in.

13 an malance of the basic conslruclion, for euch n } and

(iti) if o C Ry i3 the subfactor-factor pair constructed. in the

usual fashion, starting from the initial commauting square

A C Ag
U1 U,
A{] _g (Ad 'LL)A] .

then the equalion

a(z) = ']im- (Ad wy,)(z)

n—eo -

defines an endomorpiiam o of [ such that (It} = Itg.

(b) If n is any positive integer and_ﬁ'f U € BU(C_,‘E"‘)_) i arbitrary,

then

(Ad (ulrt—-ﬂ.rtl(t/(u))[rt—?] ,n-i—].]) )(Gu—l) = €y (’LQ)

where e, denotes, here and throughout this section, the _Jonea_-;am-
jection in Ay which implements the condilional capectation of

onto An— 1

0



We shall assume throughout this section that we are given a commuting
gquare |
G.f
A C A
c Ul Ulg!
Ay C wA
O

where u I8 a unitary element in A} N Ay, and that By € Ry is the [actor-
subfactor pair obtained in the usual manner, We shall assume that

RoCRICRC + CRyC Ry

is the resulting tower of the basic construction with f,, being the Jones'

projection implementing the conditional expectation of R,, onto R,_1.

Define a grid {A,z : n,k 2 0} of finite dimensional C*-algebras as fol-

lows:
(1) A1k = Agp fur. all k;
(ii)Ag x = (Ad wy) Ay for all k;
(ii1) Ay, =< Apgy fo > for all k and n > 1.
We begin with 501’1.:1& qbservations ﬁbﬂut the grid {A,le}. B
(1) Each of the follnwing is & commuting square:

An-i—l,k C Au*H Kbl
LJI I
An,k G Ail,k;f-l

(i) Foralln> 1,k >0 A1 C Any C Atk I8 an instance of the basic

construction, with Jones® projection f,.

(iii) R, = (UkAn.,.l:)”*

M



The prool of these facts can be found in [G11J].

PROPOSITION 4.2.2 Let I}y, and A, be as described above; then

R;] n Iz"; P A”.[] ﬂ A;]ll

Before proceeding to a proof of the proposition we gather together some

results about biunitary matrices:

LEMMA 4.2.3 For u € BU(CYY), define it € BU(CEY) by 6 = (Va){u),

where we write * for the mapping v u*. Then

(i) i = u,d.e. (V&) =id, and hence i = (V)?(u).

N

(?:'i) V(ﬁ,) == u)

‘Proof: (i) Note that V{Wu)) =« and fi{a 0 b,co d) = u(d 0 b o i); hence
i = u, or (V&) = id, It follows that (xV)? = (Vx)~2 = (V&)2.

(i)
i) = V(V*)?(ia)

GO0

and_ﬁ) = (xV)*V{(n)

= (xV3){u)

(Observe, incidentally, that V{u) = j:))

LEMMA 4.2.4 Forue B (C‘é"')), deﬁné

95“) B { u if nis even

i otherwise



ﬂ-ﬂ'd 05:1)1 _— ‘/(0(“)) fﬂ? k ::’ 1, flihr"ﬂ ﬂ{ ) — ﬂ(!H 1)

" FEt . H ' . Fpy 2 v
Proof: 'The proof is by induction on k. Vhe statemmt is Lrue for & == | sy

definition and Lemma 4.2.3 (ii}. For the induclive step,

ggj-)l = V(G(”))
= V(Bi. 1) ) by Lemma 4.2.3 (ii)
V(GE‘H)) by induction hypothesis

-1
= o0V,

0

LEMMA 4.2.5 If u € BU(C( )) arn 0( ") s as in Lemma 4. 24. define
( ) -—;;[,;, H.HI(U( } Jor k> 1. Then, for all k> 1,

(-3) 'Ibk -1 M Ak+1 ‘
(i) (Ad (uﬁ:iill) (“)) J(eri1) = e
(i) (Ad (il )(e) = ern
Proof: The first statement follows [rom the delinition of the map jy..q £41)-

As for the second, write uy = (@gl))ﬁ. Tllelh Up = (* VJ(G(")l) gince V(Wu)) =

u, and hence,

) = (v V) '

= (9};?1)
n-+1
- ( Eﬂq )) |
and 80, fjg-1k1}(t0) = u}c " and Tk 2]'(V(u_.g)) = ugir' )’ It follows now

from equation 4.2 that (Ad (u(ﬂ) LE *'i 2 ) New) = exqg,y or ﬂf]“i"'ﬂlﬂﬂtl.‘ﬁ U!ﬂt
(Ad () Vo) = ex.

1

i
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For the third assertion, put u; = GEL),nuLe that v = Wy;) = 9}:;)11

and proceed as in the proof of (ii), | o

DEFINITION 4.2.6 Let wy, . be construcled from v as in Theorem

4.2.1(a), and define {Ufk,ll = upty_y -y for k21 Also, define Ay =
u(ﬂ)*u(l) ' ,u(f“‘k)* for 1>k
ko Mkl l =

LiMMA 4.2.7 Forn 2 0,k21 and i > m the following stalements are

valid:

(i) w} € U(Arq1) and hence (Ad wi) A = Ay, Jor all 1 < k.

(ii) U(k+1) & Ak and hence

(a) (Ad wi)Ap = (Ad wp)Ag fu? all m > k, mul
(b) (Ad w,) Ak = (Ad wyp, y) Ak Jor allm > k.

(i) (Ad Agoy)(Am) = (Ad Agoy)(Am) Jor m<n.

(i\-’) (Ad ,:\([’,,L))(Am) = (Ad A(I,nt)‘:\(k,n))(‘/i"l) Jorl <m and k<n<m.

Proof:

(1) The first statement is clear from the definition of wk

(ii) This statcment follows from the f:_—].ct that u,i gi’ﬂ commute with A;;, for
i> 1. . | |

(iii) Nute that the umtarles E:)W cummute w1L11 A, for k > 0 -:-md that
proves (iii). - o | | |
(iv) This statement follows fr om the l'act that’ u{") are in A fur k>0 0

-1
-]



in order to prove Proposition 4.2,2 we first (ix a positive integer m and

consider a finite grid of algebras {B,x,n,k =0, .. m} as lollows:
(i} Box = Ap for 0 < k <m.
(i) Bre = (Ad wi, ¢\ 3)(Akes) for 0 <k <,

(iii) Bﬂ.k = (Ad" (A(ﬂhm-f*?l—l}"\(m--l,m+u--2)'"A(k+1,k+n)])(-flu+k) for all
n>1 a,ndl)gk_{_m._

(%)

Bm,k*-l - Bm.,k - Bm,k—l—l

is an instance of the basic construciion, and the Jones projeciion in
B k1 which implemends the conditional expeclation of B, p onilo

B k-1 18 nothing but ey , and this is valid z'ndc?mndgmt of m; and
(i) if 0<r<ns<m 0L1<m are arbitrary, then

BI'J = (Ad (A(m,mﬂz——l):\(m—l,m+u—-2) T A(I—f—l.l-f-u)))(AH*r)_'.

Proof:
(1) First ohserve that

Bm,k—l C Bm,k G Bm,kﬂ |

can be writben as follows, using Lemma fl;2..7(iy):

(Ad A(?n,ﬂm—l);\(mﬂl,ﬂmﬂﬁ ' '__.' A(k,f-r.ﬁ*k-l)){A?H'i'.k“‘l C Amk g A""+k+l‘.};
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This is clearly an instance of a bagic construction, with implementing

Jones' projection being given by:

(Ad ("\(m.ﬁm—l)*’\(:rn-l.2m—2) v f\(k,m-}vk—l)))3”:-_1..,1-

= (Ad ((u.(”)*u.,(ﬂ_ll#r D T Y O LSRN o U

m nt—1 m m Em-—

* m—2} ¥ (-1
(ﬂ'( ) " H’i(n i )2 fﬂ« |-k )1 )))E’""*'k
(Ad (D" w8y )l Dy

m
{m-l}r {nz 1)* (m-*lj
( 21‘11—* *m,-{-,{, 1‘1;11,'; | )))eﬂl*{‘k

= (Ad ((u' f,?,l" CROS uS,P" ) s

(m 2)* {r 2) Y (- 2} N
( m -2 | M’m”.: |- ”’mlj, 4 J))ﬂm-l'k'-l

If

= (Ad (@ uld W Yepn

= €.

using Theoretn 4.2.1(b), and the fact that ¢ commutes with u‘"’) “whenever

q> 141

(ii) ‘I'his follows from the fact that

}*(m}m-l-ﬂ.ml))\(m-—1,m~|—n—~2) tY A(I-H,I-iﬂ)

A I o RTINS ) ) BT % LA 5.2':;”)

11 -1 m—1 n—1 m+-n—2

ny o m n) ¢ 1y Yoy (1) t (H-"l) '” ~(n~-1)*
(”r(n_J “'(n.)l "ug.}.)l )(u’sn,?l-l u‘ﬁrt) uliz ) (umi "o 11 mfn 2 " Wy

Lng,el,hu with Lhe fact that u,g"’) = fl,; whauuw*ﬂ fi'?’f ' : D_

0



Proof of Proposition 4,2,2:

Deduce first, using Lemma 4.2.8(ii) and Lemma 4.2.7, that for 0 < k <
m, the grid

Ak'hl S,:_ ' Ak-l-‘z | g Am-l-k-l-l.
Ul Ul U)
Ay ©  Ad Mppr g Ae X C Ad My ppm Aetm

is mapped onto the grid

(Ji LI L L
BU,&' < Bl,k G Bﬂ,k RN Bm-l,k - C -Bm,k |

Dogrt & Bigt © 0 Bypr 0 © 0 Boapn © Bk

—— —

by the map Ad ("\(m,ﬁm—l)f\(n1—1,2171-=2) Y ’\(k-i-ﬂ,m.*k(k*bl.)))' Ior u = u,li+|_11 using
Lemma 4.2.5, the above grid is clearly of the type considered in ‘I'heorem
4,2.1, Since this is true for all k > 1 and for all m > 2, from Theorem 4.2.1

we have:

(i)

]3",“1,&: C }3ﬂ,1k G Bwl—l,._'r:

is an instance of the basic construction for al_l - 1 <n< m and 0 < & < m:

anel

(ii) the Jones’ projection implementing the above basic construction i3

independent of k.

w o



Notice now that the grids {B,, ;}ocprem and {A, 1} ocn kam satisfy the
following properties .

(a) any siring of three algebras along any column of either grid is an
instonce of the basic construction, and the implementing Jones projection
does not depond upon which column one started with; (for the B, ~grid,
this has just been obgerved - see (ii) above; while the A, g-grid has this

property by construction;) and

(b) by definition of By, g,k = 10,1, the grid {A,4:0<n<m0<k<
1} is mapped isomorphically onto the grid {B,x 10 <n<m,0 < k< 1} |
by the map Ad w}, .

It follows that the grids {B,x}ocakem and {A,rocnkam _ai'e.isomor-

phic and, in particular,the following algebras satis{y the hypotheses of the

Ocneanu Compactness theorem:

An.,!] ..C.. An,l C An,k C Au.k+—1 C
L] Ul U | LI
Ao © Ao C© Agx C Aot €

hence we have | |
Ri‘] n .l?an - Ag]ll n AH,D‘;
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R F \ - ' ) \
We again use Theorem 4.2.1 to compute Ay 1N A0, First, noke that the

commuting square

Alg € Ajg
UT LI
Aop C Ap;
ig by definition
Ay C Ay
Ul U

A{] C Ad (%)Al

which can be written as follows:

Ad (u*)Al (_: Ag

Ad (u) UI Ul
Ag C A
‘Therefore,
AU,I C Al,l C 4"12,1 C Anl C
U LJj L L]
Agp © Ao C  Agp C Ay C
ig isomorphic to
Ay C Ag - Ay e G Ap C
Ul Ul Ul Ui

—

Ao C  Ad(@)A €  Ad(in)Ay o C . Ad ()4, C
where 10, is constructed out of u* in exactly the smme manner as w, was

congtructed out of u« (in Theorem 4.2.1(a)).

Therefore 1ty N, o Ay 1 N Ay o~ A} N (Ad 0,)(An), where 1, is as in
the last sentence. (This is the description of the higher relative commutants

that we shall use in the next section.)

2



4.3 Computation of principal gl‘aI)lls for the ver-

tex model

We gtart here with the simple bipartite graph G counsisting of two vertices
with N bonds joining them, and congider biunitary matrices 1 associated

with this graph. Thus, we assume that

Ay C 7 Ay
LI N VN
A{] g (Ad 1!,)!11 B

is & commuting square where Ap = Mp(€), k=10,1,2,. Welel o © Ry be
the sublactor constructed in the usual fashion, as in ‘Theorem 4.1:1, starting
from this initial commuting H(].UELI'G, Such a construction of subfactors of the
hyperlinite 1I; [actorisreferred to as a ‘vertex model’ due to congiderations

from statistical mechanics,

In this seclion, we start with some'special classes of Ijilin.itary_ matrices
which give rise, as above, to vertex models, and use the machinery of the last
section to compute the relative commutants RN Ry,n=0,1, 2; SN (whei'e |
Ity g My C Iy C 1Ry Crvisthe tower ﬂbtained frmn'_i_;he hasic construction
applied to the initial inclusion Hy C I21) as well as the associated pri'néipal

graph,

Thus, throughout this section, we fix an integer N 22, :and.use the
following notation: A, = My(C) ® My(C)® -+ ® MN(C):'_ (n-terms); and -
thus A, is viewed as a subalgebra of A, via 2 — z®1 and B = Ry is the
von Neumann algebra completion of UA, with respect to the unique trace

on UA,,.

- When convenient, we think of A, - as £(®"G_N), and -__descrihe

elements of A, by their matrix - 'wit;h..'respect__ to the basis
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{6, ® - ®¢, 1 1 <4y, 0,4, < N}, where {¢1, ++,en} is the standard
. .‘ N | . " »

basis of €. Thus, for instance, thore is a natural unitary representation

S, — A, given by ¢ — I, where

Fol§1®@ @&) =&y @ ® &1

for all &,.++,&, € Y. The inclusions S, C Snuyy and A, C A,y are
consistent with respect to the above delinitions and so we have a unitary

representation S — H. It [ollows, {or instance, that il ¢ € S, then

(Ad [5)(z1 @+ @ &y) = Lg-1(1) @+ @ mﬂ"‘l(ﬂj v Ty e © Mn(C). (4.3)

It is fairly easy to see that if 0 € S, and t € 4, then (Ad F;)t depends
‘only on the n-tuple (o(1),,0(n)), and so we shall yse the notation

Lo(1)ma(n) = (Ad It ¥ te A, o€ Sn. o (4.4}
(Thus, for instance, if t = 2 @y with &,y € My(C), tllE‘Il.f;:ﬂ : Y@ 1®1e;

HJI'SD, ir i) e ATH Lll@l’l t — t]Qmun)_

For most ol this section, the symbols ugy, -+, uw wil dthl;é a lixed
(but entirely arbitrary) collection of ¥ unitary elements of My(C) and the
symbol t will denote the element of Ag defined by - " |

1’(&- ® E,?') U*(J)g @ Ejl | v & E [J | ]- S 9 S .N' | | (ELS)
. t ‘f . . :‘ | . -I a p= | | . | tll |

the matrix of ¢ with respect to the ofderedffirtlmnﬂfmal basis {€) ® €1,63 ®

€1, €1 ® €9, € @Ez} of @20N is given bjr
[1 00 0]
0100
00 ab
0 0 ¢ d_

ﬁd



(It is also true, lor general n and arbitrary choices of the w;y's, Lhat
the matrix of ¢ with respect to the ordered orthonormal basis {e; @
Gl ENRCEL B0, EN® 6 Ry, ey ey} i:ia the direel sum
of the matrices u.) |

This section is devoted to a proof of the lollowing theorems. (In both

results the symbol ¢ has the meaning given by equation 4.5.)

THEOREM 4.3.1 Lett be as before; assuime T(1) is the identity matriz.
Let w = t1pli19) € Ay, Then u is biunitary, and if Ry € Ry = R
18 the mbﬁmtm' as constructed in §4.1, then lhe principal graph G
corresponding to the tower {EN R, : n > 0} of relative commuiants

has the following description :

Let G be the closed subgroup of U(N) generaled by wgy, -« . Con-
sider the matriz A whose rows and columns are indexed by the set G
of distinet (inequivalent) ir?’educfble _?‘ep_?'aﬁ-cmaiiun.a of G, defined by
setting Ay equal to the multiplicity with which the representation j fea- |
tures in the temﬂr—pmduct of i and m, where 7 denotes the standard
representation of G on CV, Let ff denote the bipartilie graph, with even
vertices indewed by G x {0} and odd vertices indexed by G x {1}, with
adjacency matric A, Let G denote the caﬂ,n.ectcd component of G con-
taining (x,0), where ¥ denotes the trivial ?'ﬂp?‘ﬂ.ﬂﬂntqf;‘iﬂﬁ of G. ThenG

i3 the desired principal graph, with (*,0) as the distingﬂfshed pﬂrtem. :
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THEOREM 4.3.2 Let v = F{Ig)tm € Aq. Then uw is biunilary and the
principal graph G corresponding to the tower {Iz N R, : n > 0} of

relative commutants has the following description.

Let G be the (non-gloaed} subgroup of U(N} generated by ugyy,+++, uy,
and let G =G/GN{wls :we Clw =1}. Consider the mairiz A with
rows and columns indexed by G, where Afg,)5,) 3 dcﬁnéd to be equal lo
the number of 1 < j <N such that [sa] = [a1)fugy). (Here we un'ﬂp ]
for the element of G corresponding Lo the element s of G. ) Let G 7 be the
bipartite graph, with even vertices indezed b'J (7 X {{}} and odd vertices
indexed by G x {1}, with adjacency malriz given by A. Let G be the
connected component of (%,0), where x is the identity element of G.
Then G 13 the desired principal graph, with (x,0) as the distinguished

verten.

Before pfmceeding to the proof of the theorems, let us pause to intterpret

the notion of biunitarity in _thﬂ context of the exa_,mples.af this section.

'To be precise, we have A{] CC A= MN(G) ®1C Ag = My(€) ®
Mpy{(C); a unitary element % € Ajp is a ‘biunitar y' matrix (ag per the discus-
sion of §4.1) precisely when the element v = V(u) € Ag defined by 'uk’, = “if: is
also unitary. (Heie we write a“ = < a(r;,@c;) ¢i®c; > fora € flg ) For such
a bmmlmy u, the matrices 7,5 € Ay are also unitary, where i} = tf anc
v,ji = u . Note that if #'= Ly & Az, then IH = 6; 6‘7 and in partlculm 16

fallcws that u Iy I (and § = W F).

‘Now we proceed to pfuve the theorems stated above.



Proof of Theorem 4.3.1:

1Mt~ £I7na in Lhe slalement of the Lheorem, observe thad

< It (e, @ ), ¢ R €5 >

(u" )i

< ' {ep ® €1),6; @€ >

<umer ® €L, 6 6 >
‘5} (“f:))i

|

and hence
i AT s, .
Vu')d = v =6 (”Eij)k ~ 5 (H'Ei))i. = Wu)' g (4.6)
from which it is seen that Vu*) = I¥'; hence V(n') is unitary and u Js a

biunitary matrix,
We henceforth denote Wu) by v for convenionce.

(In the following, we shall have to deal with expressions such as
(¢) (+) R —

TA\T4T3T) ey, Where &y’ 18 @y, or @), according as n s odd or even. Sim-

ilarly, we will use such expressions as z1Zo23%4 - - *mgf)l.)

Continuing with the notalion of the lasi section (sce the last paragraph

of §4.1), we see that

Wy = Ujgthuig - (n terms) |
| | ()

] .
—— lFIQt'IzlPEH i,ga R -IF;'I.lH"l'] t:luﬂfll |

. ’ N
— Fialpg« - Elsﬂ‘l*ltiud-ltﬁ,wﬁl T tu,n+1( ):

Wy = F(lﬂ--'-(u{-l))Ll?"-(u-l-l )

,f* (;)

| . ' I !
tl?n-(n-l*l) - tl,n»{-ltﬁ,kH litmadl

I‘F(l.g...(ﬂ,_l.l-))_ - I'FHZFQE' " -l;;t,rt%l-
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It is seen from equation 4.5 that

B2t 1) (E1 @& @ £ ®€5) = (i) &1 @) ®- - '@ug*)j)(_—)gu@ﬁj (1.7)
for all £1,+++,£, e CV1<j< N,andn=1,2, .
It follows [rom the analysis of the last section that il ¢, = RHN R, then

Cn = Aj, DAy
A1 N {(Ad 9, )(Aw))
11 0 Apia N((Ad (F, (12 ek 1)L 12 n11)) ) (An) )
(Ad e () (((AdF 5.y 19) (AT N Any1)) N ((Ad by, (ug1)) An))
(Ad Fa..upy){(An N (Adbig. e n)(An)).

|

Il

|

|

Hence Ad F(Ig..,(nﬂ)) maps C'H,,, isomorphically to ), where

gt

Cn = ApD (Ad t]g...(,;+1))(A:a)
e [z € A, : e € Ay 3_(A’£(f*l‘.!--+(uf 1))')(3@’ 1)=m01}

It follows easily [rom equation 4.7 that for each n = 1,2..., the unitary
operator ty9...0,4.1) ( and hence also its adjoint operator Ligm(u +1) ) on ik b
leaves each subspace of the form (@"CY) ®e€;j 1 £ 7 £ N, invariant, s that.

there exists an operator Tffll on @€Y such that
1 (f@v-)—- 9 E® ¢ (1.8)
12+(n-+1) 3T RS O ‘
for all £ € ®"C" and 1 < j < N. In fact, it is scen from equation 4.7 that

TSL =uy @ D uﬁ"’- (4.9)
So it ['OIIDWS' that if z € A, then |

(3o (2 ® Drze ) ® ) = il ianliié®@e;  (4.10)

(R



for all £ € @ CY and 1 € j < N, hence, (Ad r,;zm("_,m)(zt@ N =281 [or

Ay ) 1 J ¥ 2 2 t '
some z € A, il and only if TELJE'I‘ZTSL-’?-I = 5»3—1”5:,4)*1 = = ﬂ}lm}{:’-};*

Thus we find that z € (i“”, & ze A, and z commubes with ‘r,(:f) ;Tfﬂ ¢ for

1<j<N.

It follows from equation 4.9 that

Dy (7 — e —
T Tot = (i) ® T ® u() ®TH B - D ul)

We deduce finally that if 2 € A,,, then. .

| —
2€ Gy & 2€ {uy @G Ouy @UH® - duly) 1 2< FSNY;

in other words, if G is the closed subgroup of U(N) generated by gy, * o Uy,

then
11

_ ”~ S et --ul"'-—-—-—-ﬂ-h——h--\ )
Co=(TRRARTRFTR - @ INCG) (4.11)

where 7 denotes the standard representation of & on ¢V,

Note now that z — z ® 1 defines an embedding ¢, «— Gy and clearly,

the following is a commutative diagram:

-~ Ad FIE---(H-I'E}

Cn—FI — J?H-i
I - Ul

. Ad Fyop.
G men o

it

Hence the tower {C,, : n 2 0} is isomorphic to the tuwef_{@’n T,
0}, and it is fairly easy now to deduce, from the description of G, as

(m TR B 'H("))(G)", that the principal graph is described as sta-ted )

in the theorem.
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Proof of Theorem 4.3.2:

IT 8 = (Ad Fyy)(t), it must be clear that s(c; ®€) = ¢; ® ypé lor all
te OV 1<i< N, and that u = I'1 = s}, 50 Lhat

uk}; = <sl{®a),a®c>
= < £ @u(;)q,c,@c}
== t?(u.m)

and hence

Hence (V' ))}j = u*ﬁl = 6"(11(J)),, so that Wu*) = I, It follows that u

iz a biunitary matrix.

Arguing exactly asg in the proof of Theorem 4.3.1, we see thal

Wy, = Fi’l2--*1-1-!-_1)312---111-11 | | | (4.13)

where

I12-entl = ql,ﬂ, L1920t "'i a1 gu.w!—l* (’1'14)

Irom the fact that s{¢; & &) = ¢ @H(ﬂf forall £& GN,I;:; i < N, we

have

810.m41(6, €, B B, ®F) = ¢;, VE;, @+ V€, QU Ujy» * uE:JE. (4.15)

As before, we see that if C‘ﬂ = Iy N Ry, then Gy, = (Ad F(l? (n+l)))(cﬂ)

where

n An N (Ad 312'--rt+1)(A11)
{ze A, :3m€ A, 5 (Ad 3'1‘2__‘(”44))(.2@ DN=21}.

-y
il

70



For typographical convenience, let us use the following notation : for
any positive integer n and any integers 1 < 45,-+,i, < N, we wrile

[} 4 ! '
b= (i) 6 = 6,0 @, Uy = WG,y tiig) ”Eiz)'

With the above ndtation, we see that if z€ A, and 1 <4, < N, an

easy computation shows that for all mulii-indices 1,j of size n |

< ((Ad 81g. 1) (S ) ey @61, (g R g >=< 204,05 > < uyeq, ey > . (16)

It follows from the above cquation that z € ¢, il and only il z € A, and

< z€y,¢; >= 0 unless w3 and wy are scalar mulliples of one another,

NOLiCﬁ_, [rom the description of C:;,,,, that z € C, = 2®1 € Cui ; 1.c, -
C, C',L_; via the embedding z — z® 1. A moment’s reflection should
convince the reader that the Bratteli diagram of the lower | (f‘,;_} w>p 19 de-
scribed by the Cayley graph of the group, modulo scalars, that is generated

by ufl), o 1“’EN} - as explained in the statement of Theorem 4.3.2.

To complete the proof of the theorem, we only need to observe that the
Bratteli diagrams for the towers {C) }u>0 and { C-‘,,,.},,;u are the same, which

is clear from the nature of the isomorphism Ad Fiyg...n) 1y), Which maps (S,

We conclude this section with a few examples ol principal graphs of

subfactors constructed as in Theorem 4.3.1.

Consider the finite subgroups of SO{3} corresponding to the symme-
tries of the platonic solids - viz. A4 (letrahedron), Sy (cubefoctahedron)
and As (icosahedron/dodecahedron). Each of these groups is generated
by two elements - to-be specifie, by {(12)(34},(123}}, {(12),(1234)} and
{.(12) (34), (12345)} respectively. If we et 1y and gy denote the images of
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the two generators under the standard representation an €7, we find that the
. three sublactors of @ M3(€), obtained as in "Theoreny -1,3.1, have principal

graphs which are given ag follows:

\

A o
¢ ® @
S
® ¢ —9
&
- Aﬁ:
&

There is another class of examples thatl generalise the Ay example. Let
- I'be the finite field of order ¢ = p™,p a prime, with q = 3; the additive
~group (F+) is isomorphic to Z, x +«+ Zy, while the multiplicalive group

. . o

' _ 11
n N " i b \ re - l- ’
>, being cyclic, is isomorphic to Z,.1. Thus Z,.y acts on Z;, via scalar

‘multiplication, in such a way that there are only two orbits, {0} and I\ {0}.
H follows that if G is the semi-direct product of Zy and Z,.1, then G is
generated by two elements - namely, any non-zero clement « of Z3 and a,
generator o of Z,.1. It follows from the general Mackey theory that G has |

(g — 1) distinct 1-dimensional representations and one (g — 1)-dimensjonal
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irreducible representation 7. If we now set. ¢ = w((7), then (7 is a subgroup of
U(g—1) which is generated by wugy) = m(xx), 1y = m(a),uegy =+ = 1g_y) =
1. 1f we now define the biunitary u using these wgy’s as in Theorem 4.3.1,
it is not hard to see that the principal graph of the subfactor so oblained is

as [ollows:

g-2 bonds

4.4 An equivalence relation on biunitary matri-

ces

[n this scelion we restrict ourselves to vertex models as in §4.2. We introduce
an equivalence relation on biunitary matrices which preserves the resulting
factor, sublctor pair (I, 1) up to isomorphism. In particular, we show
that all 4 x 4 biunitaries can be reduced by means of this equivalence to a
‘canonical form’ using which all possible principal graphs obtainable from

the irerl;ex model can be characterised.

We use the convention of writing elements of Mp(€)®My(C) as clemenis

of Mp2(€). The ordering of basis vectors in CY e CV is such that in block

form a ® b= ((bij a)).

Consider a unitary N? x N? matrix v wriltlen in block form as w = ((z3;)}
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where xj; is an N x N maftrix for 4,7 = 1,2, N. Then the [ollowing
conditions are equivalent;

(i) u Is a biunitary matrix (i.e. W{u) as defined in §4.1 is also unitary).

(ii) The 2;;’s form an orthonormal basis (with respect to the Ililbert-
Schmidt inner product) for Mpap(€).

(iii) > ; 255 Y zl; = Tr(y)lnxn for any y € Mp(C).

Giiven a biunitary N? x N? malrix u, consider the matrix ug = (¢ @

blu{e @ d), where a,b,c,d € U(N); then ug is a biunitary matrix since it can
be easily verified that

Wup) =(d' ® E)V(u).(ﬁ ®a').

We therelore define the following equivalence relation in the set of biunitary
matbrices

uy ~ ug if and only if u; = (o ® b)us(c @ d) for some a,b,¢,d in U(N).
| (4.17)

Recall from §4.2 that if (Ip, 1)) are obtained from the commuting square

e

A C Ao

G K.
G

Ag C wAdu’

then there exists an endumofphiﬁm oy of By such that Ry = c,(Hp). This
endomorphism is defined by

- ou(z) = lim (Ad wy)(z) Vo e Ry,

I—+D

- What makes the equivalence relation 4.17 useful is the lollowing:
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Assertion : liquivalent biunitary matrices yield conjugate subfactors.

Proof : Lel w,(u) denote the wy, associaled Lo the bhinnitary malrix u ag

in ‘Theorem 4.2.1; then an easy computation shows that

wy ((0@b)u(c®d)) = @1(babababs - - - by Jwn(u){e122e5 &y)aey (1 even)
ﬁl(b263b455 14 b,l_kl)w,l(u)(ﬂlﬁzﬂaﬁi “ e Cil)dﬂ'i-l (TL Gdd)
(4.18)

(where the subscripts have the interpretation described in §4.3.)

Consequently,
Clamb)u(c@d) = 01 0 v, 00

where 01,0y are the automorphisms of 125 defined by

0r(z) = lim (Ad (a1(bobabuls Baui1)} ) ()

n—00

Op(z) = lim (Ad ((csfacaPa -+ 8a)a 1) ) ()

L~—+00

for all z € ;. In particular 8 is an aut-m_nﬂrphism of ) which mﬁpa the

subfactor a,,(I%1) onto the subfactor cyagpyu(caa)(It1).

As a conseduenc_e we only have to look at a restricted collection of (in-
equivalent) biunitary matrices. In the two dimensional situation
(N = 2 in the notation of §4.2), it turns out that inequivalent biunitaries

are parametrized by the circle.

PROPOSITION 4.4.1 Any 4 x4 bdiunitary 13 equivalent to one of the form

1 0 0 0

0 0 1 04 | |
- 0_1 D U:._'- i

0 0 0 ??J

with || = 1.



Proof : I'vllowing the notation introduced earlier, we write

U = ((-’”ij))i,jml,ﬂ

(i) We may, without loss of generality, agsume that =z has rank one.

Reason : 1f z1y 18 non-singular, premultiply © by a matrix of the form

:
o

1® 'f: with (—c/B) equal to an cigenvalue of 27 #12. This ensures
J'),J‘

that the new ;3 is singular, hence rank 1 (since the biunitarity condition

forces 21y to have Hilbert-Schmidt norm 1.)

)

(ii) We may, without loss of generality, assume that @1

0 0

Reason ; Pre- and p-::}st—multiply bya®l and b®1 ivith-ﬁuitable a
and &. |

(iif}) Using biunitarity and by pre- and prjst-'tnu'lLiply-in_g by allowed di-
agonal matrices it is cagy to see that u can be reduced to the form £F or I¥
(see §4.2) with u(yy = 1 and wyy € SU(2).

Consider the case u = tF. Let A X be the cigenvalues of ug and let a
be a unitary matrix that diagonalizes ﬂ(g). Let b be the matrix diag(1, )).
Pre-multiplying v by (e ® b) and post-multiplying by (a* @ 1} reduces « to

the form displayed in equation 4.19.

A gimilar analysis applies to the case u = I't.

In view of the above proposition, the principal graphs of all subfactors of
index 4 constructed from the above ‘vertex model’ prescription are descrs bed
by Theorem 4.3.1. Tn particular, since any 'ﬁinp;ly_gnuremf.cd cl{}ﬂﬂtl subgronp:

of U(2) is abelian, no such subfactor is irreducible.
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It follows from [P1] that the only possible principal graphs for reducible

subfactors of index 4 of the hyperfinite factor are A%ﬂhl and Ag,). These

graphs are obtainable from the ahove veriex modal corresponding to a biu-

nitary w in the ‘canonical form’ of Proposition 4.4.1, when 11 is of order n or

0,

4.5 Biunitary permutation matrices

Lastly, we would like to comment on a class of commuting squares which

have been examined in some detail in [KS]. These are vertex models given

hy biunitary matrices, which also happen to be permutation matrices, i.e.,

commuting squares of the form:

My(C)®1 C My(€) @ My(C)
Ut | U
C C u(My(C)® Lu'

where u i3 a permutation matrix in My{(€) @ My(C).

Of special interest are the cases when N < 3. For N = 2, all the possible
biunitary permutation matrices are of the kind discussed in §4.2 and hence

the principal graphs can be computed using Theorems 4.3,1 and 4.3.2, and

these are:
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IFor N =3, it is found that there are 18 egivalence classes of biunitary
permutation matrices. Of these, 15 cases yield f{inite principal graphs, and
they are of the kind described in 'heorems 4.3.1 and 4.3.2, i.c.,lhe Cayley
graph ol a group or a group dual corresponding to a finite subset of the
group. Given below is a sample of the principal graphs arising from these

cases:

Two of the remaining cases, surprigingly, give rise to principal graphs of

infinite depth.

Without gning_ ﬁhrough the Cﬂmpufatiﬂﬂﬁ; for the first such case, we just

show what the subgraph of the principal graph induced by the set 1_::1.1' vertices o
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at distance at most 4 from * looks like. ( This amounts to computing the
Bratteli diagrams for the tower {N' N M} 1<p<3. )

I'or the second case yielding an infinite graph, we give here the subgraph

of the principal graph induced by the set of vertices at distance at most 5 -

from *, For further details see [KS].
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