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Chapter 1

Introduction

1.1 Graphs

A graph G = (V E) consists of a finite set V and a subset E of (;’) (Here (;9
denotes the set of all 2-subsets of V.) Elements of V are called the vertices and the
eléments of F are called the edges of the graph, So Vis the vertex set and E is the
edge set of the graph G. Two vertices z, y are said to be adjacent if the pair {z, y}
is an edge; otherwise they are non-adjacent. If two vertices are adjacent then each

is called a neighbour of the other vertex.

| Sometimes the edges of a graph are ordered pairs of vertices and in this case
the graph is called a directed graph. If both ends of an edge terminate at the same
vertex then the edge is said to be a “loop”. If two edges of a graph join the same
two vertices then the gfaph is said to have multiple edgés. But in this thesis the

graphs we consider are undirected, loop free and with no multiple edges.

A graph G = (:;’., E‘) is said to be a subgraph of a graph G = (V E) if ve vV



and  C B If L= In (2") then 7 is said to be an induced subgraph of G. It is
also called the induced subgraph on V. The complement of a graph G = (V E) is

the graph G* = (V,(;/) \ E).

An isomorphism of a graph G onto a graph G ' is a one to one correspondence
between the vertices in G and the vertices in G’ such that a pair of vertices are

adjacent in G iff the corresponding pair of vertices are adjacent in G''. Two graphs

are said to be isomorphic if there exists an isomorphism between them. In this
thesis we identify two graphs if they are isomorphic. An iscmorphism of a graph
to itself is called an automorphism. The automorphisms of a graph form a group

under composition; it is called the automorphism group of the graph.

The degree of a vertex ¢ in a graph G is the number of vertices in G which

are adjacent to . A graph is regular of degree k if all its vertices are of degree k.

The unique connected regular graph of degree two on n vertices is called the

n-cyele. A graph on n vertices in which each vertex is adjacent to all other vertices
is called the complete graph on n vertices, denoted by I,. A graph whose edge
set is empty is called a null graph. In other words, a null graph is the complement
of a complete graph. If ny, ..., ng are positive integers, the complete multi-partite
gmph K,,,.n has its vertex set partitioned into k éets (if size 14, ...,7 such th_ﬂ.t
- two vertices are adjacent iff they belong to different parts. The line graph L(G) of
a graph G has the edges of GG as its vertices; two vertices of L(G) are adjacent iff '
the ccé:rresponding edges of G intersect. The triangular graph T, is by definition
the line graph of K,,. The lline grap h of the complete bipartite graph K, , is called

the n X n grid,



A clique of a graph is a complete subgraph. A co-clique of a graph Is an
induced null subgraph., A clique in a regular graph is called a regular clique if

there exists a constant a such that each vertex oufside the clique is adjacent to

exactbly « vertices inside the clique. In this case, @ is called the nezus of the clique.

An I-factor of a graph (on an even number of vertices) is a partition of the
vertex set into edges, An I-factorisation of the graph is a partition of the graph
into 1-factors. Note that the union of any two l-factors in an 1-factorisation is a

union of disjoint cycles. An l-factorisation is called a Kotzig I-factorisation if the

union of any two 1-factors in it is a single cycle.

1.2 Strongly Regular Graphs

A strongly regular graph with parameters v, k, A, p is a regular graph of de-
gree k on v vertices such that given any two vertices the number of their common
neighbours is A or p according as the given vertices are adjacent or not. Clearly
the complement of a strongly regular graph is also stmngly.regular. The notion of

strongly regular graphs was introduced by Bose [1].
Examples: The triangular graph T, is a strongly regular graph with pafameters

(n(n —1)/2,2n — 4,n — 2,4). The n x n grid is a strongly regular graph with

parameters (n?,2n — 2,n — 2,2),
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1.3 Partial Geometry

An incidence system is a triple (X, B,1) where X, B are sets and I C X x B is a
binary relation between X and B. Elements of X are called points and elements of
B are called blocks. If z € X and # € B are such that =z I 8 (i.e., (z,8) € I), then
we say that = is incident with £ and the pair (z,8) is called a flag. It (z,3) ¢ I

then (z, B) is called an anti-flag.

'The dual of an incidence system (X, B, I) is the incidence system (B, X, I™1)
where I-! C B x X,is given by I'! = {(8,z) € B x X: (=, 8) € I}.

An incidence system in which any two distinct points are together in a unique
(respectively at most one) block is called a linear (respectively partial linear)
incidence system. In a linear or partial linear incidence system the blocks are

usually called lines . Two points are called collinear if there is a line containing

both.

A partial geometry with parameters s, ¥, « (in short a pg(s, ¢, @)) is a partial
linear incidence system with s + 1 points on each line and ¢ + 1 lines through each
point such that, given any anti-flag (x,!), exactly « points on [ are collinear with .

‘The parameter o of a partial geometry is called the newus of the partial geometry.

The point graph (or collinearity graph) of a partial geometry is the graph
with the points of the partial geometry as vertices, where two vertices are adjacent
if the corresponding points lie on a line of the partial geometry. Dually, the line

graph of a partial geometry has the lines of the partial geometry as its vertices, two



vertices are adjacent in this graph I the corresponding lines intersect. Clearly the
incidence system dual to a pg(s,t, ) is a pg(¢, s, «), so the line graph of a partial

geometry is just the point graph of its dual.

The notion of partial geometry was introduced by Bose [1]. It was shown by
Bose in [1] that the point graph of a pg(s,t,a) is a strongly regular graph with

parameters:

=(s+ 12 +1), k=s(t+1), ? ()
A--s-—--1+t(cr 1) 1= {t+ 1.

¥,

1.4 Geometrisability

Any strongly regular graph with parameters given by the formulae (*) for some
positive integers s, ¢, « is said to be a pseudo geometric graph with parameters
s, t and o, We say that it is geometrisable if it is actually the point graph of some

partial geometry.

Because of equality in Hoffman bound, any t:lique of size s + 1 in a pseudo .
geometric graph with parameters s, ¢, « is aubomatically regular of nexus o (see,
e.g., [2], p.10). Note that each line in a partial geometry is a regulaf cligue in its
point graph. It follows that a pseudo geometric graph is geometrisable iff there is a.

faxmly L of regular cliques in the graph such that any two adjacent vertlces lie in a

unique member of L; in this case L serves as the set of lines of a partial geometry

with the given graph as 1t_s point graph.,

Example 1: The.complemen-t of the n x n grid is pseudo-geometric with parameters

0



s=n—1, t=n—2, a=n—34 for every n > 4. It is geometrisable iff there is an

affine plane of order n.

Example 2 The complement T,* of the traingular graph T, is pseudo geometric

with parameters s =5 —1, t =n—4, a = % —2, for every even integer n > 6. This

graph is geometrisable whenever there is a hyperoval in a projective plane of order
n— 2 (in particular, whenever n = 2°+4-2 for some e > 2), In this case the incidence
system whose points are the secant lines to the hiyperoval and lines are the points of
the plane outside the hyperoval (with induced incidence) is a partial geometry with

point graph 7.*. It is known (and easy to verify) that T3* is not geometrisable. See,

for instance [7], where it is shown that there is no partial geometry with parameters

3:3, t=4, o = 2.

Example 8: Cohen [5], Hacmers and Van Lint [13] and De Clerck, Dye and Thas
18] gave constructions of partial geometries pg(7,8,4) which later turned out to be

isomorphic [27].

For a survey of the known partial geometries, see Brouwer and Van Lint [3].

1.5 Question of Uniqueness

Of course, even when a pseudo geometric graph is geometrisable, there may be
nothing unigue about the geometry. In other words, the set L of lines may not
be determined upto automorphisms of the graph, sn that there could exist non
isomorphic partial geometries with the given point graph. For instance, in [19],

Mathon showed that T\ is geometrisable in two non isomorphic ways.

§



Even when the point graph of a partial geometry is uniquely geometrisable
there is no guarantee that the line graph of the geometry is uniquely geometrisable.
For instlance, if 6 is one of the partial geometries pg(4, 2, 2) (i.e., nets of order five and
degree three) then one can show that the point graph of 6 is uniquely geometrisable
(in fact, the point graph of any pg(s,t,a) with s > (o — 1)(¢t + 1) is uniquely
geometrisable in the strong sense that the only regular cliques of the point graph
are the lines of the partial geometry) but its line graph I{§ 55 18 geometrisable in

non-isomorphic ways,

In this thesis, we deal with the geometrisabilty of some graphs derived from

orthogonal polar spaces.

1.6 Orthogonal Polar Spaces

All vector spaces in this thesis are finite dimensional vector spaces over finite fields.

In the following, Vis such a vector space over the finite field F = F, of order ¢ (thus

g is a prime power).

A symmetric bilinear form is a function f: V x V— Fsuch that
(i) x — f(e,y) is linear for each fixed y € V

and

(i) Kzy) = f(,0) for all @, y € V.

(1t follows, of 'course,', that y — f(z,7) is also linear for each fixed @ € V). The kernel
ker f of fis the subspace of V consisting of all @ € V for which f(z,y) = 0 for all
y e V. : f is called non-degenerate if its kernel is tri#ial. Two vectors z,y € V are

called orthogoﬁal (in symbols, z.ly) with reépect to the bilinear form fif f(x,y) = 0.



Note that zly implies Az Lluy for any two scalars A, u. So it makes sense to say

that two points in the projective space P(V) are {or are not) orthogonal with respect

to f.

A quadratic form g on Vis a function g : V — F for which there is an

associated bilincar form f: Vx V— Fsuch that;

g(Az + py) = Ng(w) + 1’g(y) + e fz, y) (#%)

for all z, y € Vand all A, it € F. (Note that (**) implies that fis determined
by ¢g.) The kernel ker g of g is the subspace of ker f consisting of all z € ker f for

which g(z) = 0. The quadratic form g is called non-degenerate if ker g is trivial.

Let Vbe an n-dimensional vector space over the finite field of order q. Given a

non degenerate quadratic form on V, the corresponding quadric is the set of totally

isotropic one dimensional subspaces (i.e., subspaces on which the quadratic form
takes the value zero) of V, viewed as a set of projective points in the associated
projective space (V) = PG(n — 1,q). The associated orthogonal polar space is
the lattice of all projective fHats contained in the quadric (i.e,, the totally isotropic
subspacés of V, viewed projectively) with set inclusion as the partial order. The
rank of the polar space (also called the Witk index of the quadric) is the maximum
of the ranks (i.e., vector space dimensions) of the flats of the polar space. When n is
odd, there is, upto isomorphism, a unique non degenerate quadratic form on ¥, and
the rank of the corresponding polar space is (n—1)/ 2;.bu't when n is even, there are

two of them, with ranks n/2— 1 (the elliptic case) and n/2 (the hyperbolic case); see .
[25]. These polar spaces (as well as the. simple cores of their alitomorphism groups)

are denoted by O(n,'q). for odd n and by O*(n, q) for even n, v{here the plus sign is

for the hyperbolic case and minus for the elliptic case.
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1.7 Other Polar Spaces

In this thesis we are almost exclusively COIlCEI‘I”:IEd with orthogonal polar spaces. But,
for completeness, let us briefly recall the other kinds of polar spaces. A symmetric
bilinear form f: Vx V— Fis called symplectic if f(x,z) = 0 for all £ € V. Given a
non-degenerate symplectic form f on V, a subspace M of Vis called totally isotropic
(with respect to f) if f(z,y) = 0 for all z,y € M. The lattice of totally isotropic
subspaces (viewed projectively) constitute the associated symplectic polar space.
When V admits a non-degenerate symplectic form, dim Vis necessarily even, When
dim V = 27 and q is the order of the ground field F, the associated polar space
(which is uniquely determined upto isomorphism) is denoted by Sp(2r,q). When

q = §* (for a prime power s), ¢ — «° is a field automorphism of order 2 on F, which

we shall denote by an overline. In this case, a function f . Vx V— Fis said to

be a sesquilinear form if f is linear in the first argument and f(y,s) = f(xz,y) for
all z,y € V. One defines kernel, nondegeneracy and totally isotropic subspaces of a
SESQLﬁHPQ&I‘ form f exactly as before. If n =dim V, the lattice of totally isotropic
subspaces of V {viewed projectively) with respect to a non-degencrate sesquilinear
form on Vis called a unitary polar space (which is again unique upto isomorphism)

and is denoted by U(n, s).

Taking A = p =1 and ¢ = y in (**), one sees that when q is even, the bilinear
form éssociated with a (non-degenerate) quadratic form is necessarily symplectic.
When ¢ is even and dim V= 2r+41 is édd, the symplectic form asso ciated with O(2r+-
1,q) is degenerate with a one-dimensional kernel. Viewed projectively, this kernel
is a distinguished point outside the quadric, called the nucleus of the polar space.

Fix a hyperplane W which does not pass through the nucleus. Then restriction of



the symplectic form to W defines an Sp(2r, g) polar space on W. Further, projection

from the nucleus to W defines an isomorphism between O(2r + 1, ¢) and Sp(2r, g).
Thus we have O(2r + 1, q) = Sp(2r,q) for q even. In this thesis, we use the special

case ¢ = 2, r = 3 of this isomorphism,

1.8 Graphs in this Thesis

The collinearity graph of a polar space is the graph whose vertices are the points
of the polar space and two vertices are adjacent if the (projective) line joining them
is contained in the quadric (equivalently, adjacency is orthogonality with respect to
the bilinear form). (In the rank one case, this is the null graph, so we assume r > 2
in what follows.) We shall use ﬁlle same syrxibol as the one for the polar space (viz.,
O(2r + 1,q) or O*(2r,q) ) to denote this graph, This graph is pseudo geometric

with parameters

Here r is the rank, and ¢ = 0 in the elliptic case, ¢ = 1 for odd n, while
¢ = 2 in the hyperbolic case. In all these graphs the 0111y maximal cliques are
the regular Dlle.S, and these are precisely the maximal flats of the polar space. (To
see this, note that given any clique, the flat generated by the points in the clique
is totally isotropic.) So we have a plentiful sﬁppl._y'of regular cliques, so that the
question of geometrisability of these graphs is 5111 interesting one. When r = 2, these
graphs are clearly un_iquely geometrisable: all the-lin_es of the polar space must

be chosen as lines, leading to classical examples of generalised quadrangles (i.e.,
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partial geometries of nexus one). In the rank three hyperbolic case, the Pliicker
correspondence implies that the collinearity graph is geometrisable in two distinct
but isomorphic ways: leading to the partial geometry whose dual is (the point-line

geometry of) PG(3,q). In the hyperbolic cases of higher rank geometrisability is

trivially ruled out since o > ¢ 4 1 for these graphs.

Geometrisability for odd n and rank » > 3 is open except that the cases g even
and 7 =3 or 4 were settled negatively by De Clerck, Gevaert and Thas in [9]. (An

independent proof for the non geometrisability of O(7,2) is given in Chapter 3.)

The elliptic cases of rank > 3 were all 61)@11. But the smallest of these cases
(r = 3, q = 2) is settled negatively in chapter 5 of this thesis. In [10] De Clerck
and Tonchev describe a computer aided project to decide the geometrisability or
otherwise of the graph O~ (8,2). They also prove that if the geometry were to exist,

the orders of its non-trivial automorphisms could only be 2 or 3. They conjectured

that the partial geometry (with O~ (8,2) as point graph) does not exist. The referee

of the paper [21] has kindly informed us that this conjecture has been established
by L. Soicher (unpublished) using a computer. In chapter b we give a computer free

proof of this conjecture: O7(8,2) is not geometrisable.

In the hyperbolic case, the non collinearity graph Ot (2r, ¢)* (i.e., the comple-
ment of the collinearity graph O*(2r,q)) is also pseudo geometric with parameters
s=q 1} t = q"‘l_ —1and a = ¢ %*(g —1). When r = 2, this is the complement
of the (g + 1) x (g + 1) grid, so that it is geometrisable iff there is a projective
plane of order ¢+ 1. Even for 1 = 3, its geometrisability is open except in the cases
qg=2 and g = 3, Non gcomcﬁrisubility for g = 2, r = 3 may readily be established

using the combinatorial description of O*(6,2) given in section 2.2 of this thesis.

11



Non geometrisability in tl;e case ¢ = 3, r = 3 may be read off from the computer
aided results of M. Hall, jr. and R. Roth in [15]. In this paper, the authors showed
that there is no projective plane of order 12 containing the point-line geometry of
P((3,3) as a subgeometry. If such a plane existed then the lines of the subgeometry
and the points off the subgeometry would yield a partial geometry With 0t(6,3)"
as its line graph, The arguments in [15] actually show that such a partial geometry
does not exist. By Theorem 1 of Dye [12], the clique size of O*(2r,2)* is at most
2r + 1 (with equality only when 7 is a multiple of 4). Hence O*(2r,2)* does not
have any regular clique (and hence is not geometrisable) for » > 4. In view of
these remarks, it is a surprise that the graph O"(8,¢)* is indeed geometrisable for
g = 2 and 3. Indeed, in (8], the authors construct an infinite sequence of partial
geometries whose line graphs have the same parameters as O"(2r,2)* for even r.
However, as Kantor shows in Proposition 4.2 and Corollary 4.5 of {18], the line
graph is actually isomorphic to O*(2r,2)* only for » = 4, Thus the line graph of
the partial geometry pg(7,8,4) in Example 3 (scction 1.4) is O*(8,2)*. This is also
more or less apparent from the construction of Haemers and Van Lint [13]. (To
keep this discussion simple, we have deliberately blurred the distinction between
a partial geometry and its dual) Later on, in [26], Thas generalised the above
mentioned construction to get a partial geometry pg(26,27, 18) whose line graph is
(again by Kantor’s result) the graph O*(8,3)*. For the remaining parameters, the

geometrisability of these non-collinearity graphs is wide open,

Let P(r) denote the graph ﬁ.rhﬂse vertices are the non-isotropic points in the
ambient projective space of the polar space O*(2r, 2), adjacency being orthogonality
with respect to the associated bilinear form, This graph is pseudo ger_:imetric (and,
in fact, the action of O (2, 2) on its vertices is rank three) with pamﬁnete'rs g =

211, t =21 =22, I'(3) -is easily seen to be isomorphic to the co-triangular

12



graph Tg*, hence it is not geometrisable. (This isomorphism probably explains the

appearance of 13" in the thesis.) However, I'(r) is actually geometrisable for even

values of r since it is the point graph of a partial geometry in the De Clerck-Dye-
Thas series, as is apparent from their construction in {8]. In this connection, it may
be noted that the action of O*(2r, 3) on each half of the set of non-isotropic points
is again rank three. This yields a pscudo geometric graph (with non-orthogonality
as adjacency) with parameters ¢ = 3! — 1, ¢ = 3"“‘1, o = 2.3"% When r = 4,
thig is the point grapl'i of the partial geometry of Thas mentioned above, More

generally, Thas shows in [26] that, for even values of », this graph is geometrisable

whenever there is a spread of O*(2r, 3).

By a diameter of a root system wé shall mean the line joining an antipodal
pair of roots. The 240 roots of the root system 7 determine 120 diameters. An'y
two of these diameters make an angle of sixty degree or ninety degree. Define a
graph " with the diameters of F as vertices and with orthogonality of the diameters
as adjacency. We call it the diameters graph of Ig. The Weyl group of Iig acks in
a rank three way on the 120 diamecters (see, e.g., (L7]). So I' is a strongly regular
graph. A computation SllOIWS that this graph is pseudo geometric with parameters
s =17, t=8and & = 4. Clearly its regular cliques correspond to the orthogonal

bases (modulo sign), of the ambient euclidean space, contained in the root system.

It is wéllknown that the Weyl gmuﬁ of Fg is isorﬁorplu'c to the group 20*(8, 2).2,
in the notation of the Atlas [6]. The central involution acts trivially on the diameters
SO -thﬁt 0*(8,2).2 is the full automorphism group of the diameters graph I From
the description of the isomorphism between the Weyl group of Iz with 2_O+ (8,2).2
giiren in the Atlas, it is -imumdiatc l;lmt. [* is ismuurphic to ['(4) and hence it is

geometrisable.

13



Similar constructions yield pseudo-geometric graphs from symplectic and uni-

tary polar spaces as well. See the survey article of Hubaut [16] on strongly regular

graphs for further details.

1.9 Chapterisation

The main results of this thesis are (0) the polar space O(7,2) = Sp(6,2) has a

unique spread upto isomorphism [22], (i) the graph O~(8,2) is not geomet'risable

[21], (ii) the diameters graph I' of the root system [ is uniquely geometrisable
[22] and (iii) the graph A = O%(8,2)* is uniquely geometrisable [23]. We have seen
above that I" and A are the point graph and line graph of the partial geometry
pg(7,8,4) of Cohen, Haemers-Van Lint and De Clerck-Dye-Thas, Thus the results
(ii) and (iii) characterise this partial geometry in terms of its point graph and line

graph, respectively. Notice that both graphs have the same automorphism group,

viz. O7(8,2) : 2.

The present chapter, Chapter 1, contains the prerequisites fc:-;r the thesis and
gives an overall idea of the problems we deal with. In Chapter 2, we present com-
binatorial models of the graphs O*(6,2), O(7,2), 07(8,2), O*(8,2)*, I'(4) and
O~(10,2). These descriptions amount to looking at the vertex - orbits under the
action of a suitable subgroup (which is Sym(8), Sym{9) or Sym(iD)) of the automor-
phism group. The description of O~ (10, 2) _identiﬁes it vgitlh a graph attributed by
Brouwer and Van Lint [3] to Matllﬁxl. Our désnription of O (8, 2').i's derived from
that of O‘(lO,Z). The description of O(7,2) and I'(4) show that I'(4) is locally
0(7,2),. i.c., the neighbours of any vertex in I'(4) induce a copy of O(7,2). The

description of O7(8,2) and I'(4) further show that O~ (8,2) may be obtained from

14



I'(4) by isolating any fixed vertex by switching.

To prove the geometrisability or otherwise of a pseudo geometric graph, the
first step is to have a convenient description of the regular cliques of the graph. So in
Chapter 3, we find all the regular cliques of the relevant graphs and classify them in

terms of the action of a suitable subgroup (Sym(8) or Sym(9)) of the automorphism

group. .

A spread in a pseudo geometric graph is a partition of the vertex set into
regular cliques, In Chapﬁer 4, we show that the graph O(7,2) = Sp(6,2) has a
unique spread upto isomorphism. For comparison, note that it was only relatively
recently that Brouwer and Wilbrink (4] classified the spreads of the (much smaller)
graph O~(4,2) (=5Schlafli graph): upto isomorphism there are two non-isomorphic

spreads in this case. The unique spread in O(7, 2) is an example of the desarguesian

spreads discussed in Example 5.1 of [18]. Our uniqueness proof for this spread
proceeds by reducing the problem to that of classifying the Kotzig 1-factorisations
of the complete graph K3 we show that I has a unique Kotzig 1-factorisation

upto isomorphism, and its automorphism group is the affine group PGL(1,7).

In Chapter 5, we prove that the graph O~(8,2) is not geometrisable. The
assumption of the geometrisability of O~(8,2) implies that exactly six of the lines
of the putative pg(6,8,3) (having O~(8,2) as its point graph) are contained in the
vertex set of each induced subgraph isomorphic to O*(6,2). We find that, up to
isomorphism, there are only seven possible configurations for these six lines and .then

prove that the occurence of any of these configurations leads to a contradiction,

In Chapter 6, we prove that the diameters graph I' = I'(4) of.t_he root system
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Fjg is uniquely geometrisable. The description in Chapter 2 implies that the graph T

is locally O(7, 2), i.e., the neighbours of each vertex in I' induce a copy of O(7,2). In

view of the result in Chapter 4, this implies that given any fixed vertex of I, there
is an essentially unique way to choose the lines of the partial geometry through this -
vertex. It will finally turn out that, once this choice is made, there are only two
(isomorphic) ways to choose the rest of the lines. This readily implies that the full
automorphism group of the partial geometry pg(7,8,4) is Alt(9), acting transitively
on the flags (i.e.,incident point-line pairs) of the geometry. The point stabiliser
‘in Alt(9) is PT'L(2,8) {= Ly(8) : 3 in Atlas notation) while the line stabiliser is
AGL(3,2) (= 2°: L3(2) in Atlas notation).

As we have already pointed out (in section 1.5), although the point graph °
I’ is uniquely geometrisable, this does not by itself imply that the line graph A
is also uniquely geometrisable. In Chapter 7, we prove that O%(8,2)* is indeed
uniquely geometrisable, Our uniqueness proof yeilds a new description of the partial
geometry in terms of the affine plane of order three. Indeed, it is shown that if N is
any regular clique of the line graph which does not correspond to any point of the
partial geometry, then N is the point set of a subgeometry isomorphic to FG(2, 3)
and the structure of the partial geometry is essentially uniquely determined by the

structure of this affine plane.
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Chapter 2

Combinatorial Models of The Graphs

2.1 Bisections and Trisections

By a bisection of an 8-set we mean an unordered partition of the 8-set into two

3) —= 35 bisections.

subsets of size 4 each. Thus there are { x (
By a trisection of a 9-set, we mean a circularly ordered partition of the

set into three 3-subsets. (Thus we do not distinguish between the trisections

(N7, NQ,N;}), (Ny, N3, Ny) and (N3, Ny, N;). However, e.g., (N1, N3, Na) and (Ng, Ny, IVy)

are considered distinct.) So we have 3 X (g) X (g) X (g) == 60 trisections.

2.2 Combinatorial Model of O*(6,2)

‘Proposition 2.2.1 The graph O*(6,2) is isomorphic to the graph Iy whose

vertices are the bisections of an 8-set and adjacency is even intersection.

Proof: Consider the 7-dimensional vector space W over F; whose elements are the .
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even subsets of an 8-set IV with symmetric difference as vector addition. Define a
quadratic form ¢° and a bilinear form <. , .> on W as follows. For w,wq,w; €

W, (w) = z|w| (mod 2) and < wy,w; >= |w; Nw,| (mod 2). It is easy to see

that <. , .> is the bilinear form associated with ¢°. But ¢° is degenerate with kernel
{#, E}. So ¢° descends to a non-degenerate quadratic form qon V= W/{¢, E}, which
is a 6-dimensional vector space. The elements of V are complementary pairs of even
subsets of I, Let us identify the projective points with the nonzero vectors in V.
Under this identification the totally isotropic projective points correspond to the
4-subsets of It and complements. So they may be identified with the bisections of
E. Under this identification, the collinearity graph of the guadric of ¢ is identified

with the graph I'y defined above. But the maximal cliques of T’y are easily seen to

be of size 7. Hence q is of plus (or hyperbolic) type and so O%(6,2) is isomorphic

to thae graph I'. (]

Remark 2.2.2 From [14], one sees that the graph Iy is isomorphic to the line
graph of PG(3,2). So by Proposition 2.2.1, O"(6, 2) is isomorphic to the line graph
of PG(3,2). This is also a consequence of the Klein currespondeﬁce between the

lines of PG(38,¢) and the totally isotropic points of O(06,q).

2.3  Combinatorial Model of O(7,2)

Proposition 2.3.1 O(7,2) “is isomorphic to the graph Ty which is the vertes
disjoint union of two induced subgraphs Tyt and Ty (of Proposition 2.2.1),

where adjacency between Ty* and Ty 1s even intersection.

Proof: Let the notations be as in the proof of Proposition 2.2.1. Then <.,.> is a

non-degenerate symplectic form on the 6-dimensional vector space V. The points
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of the associated symplectic space Sp(6,2) are naturally identified (as before) with
bisections and 2-subsets of the 8-set [7. This identifies the graph Sp(6,2) = O(7, 2)

with Fl*

2.4 Combinatorial Model of O*(8,2)*

Proposition 2.4.1 The graph O*(8,2)* is tsomorphic to the graph A with ver-

ter set NU (‘D, where N is a set of 9 symbols and (‘D denotes the set of all

4-subsets of N; N induces a clique, adjacency in (f) ts odd intersection and

¢ € N 28 adjacent with f¢& (‘D if © € f.

Proof: Let V be the 8-dimensional vector space over Fg whose vectors ave the even
subsets of a 9-set N, vector addition is set theoretic symmetric difference. Now,
if ¢ is the quadratic form defined on V by ¢(x) = 7|z| (mod 2) (where || is the
Hamming weight of ), then one readily checks that g is a non-degenerate quadratic
form of Witt index 4 on V, and the associated bilinear form is the standard inner

product. The totally isotropic points are the subsets of N of size 4 and 8. If we

identify each subset of size 8 with the unique element of N in its complement, then

the above description of A results.

Remark 2.4.2 This is essentially the description of the point graph of pg(8,7,4)
given by Haemers and Van Lint in [I13] (except that they use the language of binary
codes and Hamming weights). They proceed to use the action of PI"L(2,8) on the

co-ordinate positions to choose 120 regular cliques of this graph.
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2.9 Combinatorial Model of the Graph I' =I'(4)

Notation 2.5.1 Let I be a set of 8 symbols, Take B/ = {a’ : a € E} and
F'"={a":a¢€& i} to be two disjoint “copies” of . Herea —~ a’, a — a” are

bijections from F onto ' and I ” respectively.

Proposition 2.5.2 Consider the graph T whose verter set is the disjoint union
of the four sets A, B, C, S and an extra verter co, where S is the set of all
bisections of I and the sets A, B, and C are the sets of all 2-subsets of
E, F' and E " respectively. The vertex co is adjacent with all the vertices of
SUA, Inside cach of the four sets S, A, B, C, adjacency is even intersection.
Adjacency is odd intersection between B and C, 5 and B and between S and
C while adjacency between A and BU CU S is even intersection. Then T' is

tsomorphic to the diameters graph T'(4) of the root system Hg.

Proof : Let e;, 1 < i < 8, be the standard basis of %, One of the standard

descriptions of the root system I7g is as follows. It is the (disjoint) union of two sets

U and V where U= {de;+e;: 1 < i # 7 <8} and V= {357 te; with an even
number of minus signs }. For any antipodal pair =, y € Ity (y = —x), we represent
the diameter of Fy joining « and y by the pair {z,y}. Let I

A = {{z,—x}, =z € U: the two components of z have opposite signs }

B

I

{{z, —x}, = € U: both the components of = have the same sign }
= {{z,—=x}, = € V: only two or six components of = have plus signs }

= {{x, —=z}, = € V: only four components of x have plus signs }

g W Q

= {wx,—x}, ® € Vand all the components of © have the same sign.
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So the vertex set of I' is the disjoint union of the sets A, B, C, S and {co}, '
The vertex oo is adjacent in the diameters graph with all the vertices of SUA., Let E
be the set of the eight co-ordinate positions. Identify each element {x, —2} of AU B
with the set of co-ordinate positions where z is non-zero. Identify each element
{z,—=z} of C with the set of co-ordinate positions where & has the ‘minqrity’ sign.
Thus each of the sets A, B, C is identified with the set of all 2-subsets of I, To
emphasize that these three sets are mutually disjoint, think of them as the set *of all
2-subsets of three disjoint copies of B Finally, identify each element {x, —x} of S
with the bisection {a,b} of E, where a (respectively b) is the set of all co-ordinate
positions where z is positive (respectively negative). Thus S is identified with the |
set of all bisections of E. Then it is easy to check that under these identifications,
adjacency in the diameters graph (defined by perpendicularity of diameters) carries

over to the descriptian of adjacency for the graph I'" as given in the statement of

this theorem.

2.6 Combinatorial Model of O~(10,2)

Proposition 2.6.1 The graph O~(10,2) is isomorphic to the graph Ay whose

vertices are the 4-subsets of a 12-set and adjacency is even imnterseciion.

Proof: Consider the 11-dimensional vector space W over Fz. whose elements are
the even subsets of a set Tlof size 12, with symmetric difference as vector addi-
tion., Deﬁue a quadratic form ¢ and a bilinear form <. ,f > on W as in Propo- _
sit:ic:n 2.2.1. Then ¢° is degenerate with kernel {$,T}. 50 q" descends to a non-
degenerate quadratic form g on V = W/{¢, T}, which is a 10-dimensional vector

space, The elements of V are complementary pairs of even subsets of T. Let us
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identify the projective points with the nonzero vectors in V. Under this identifi-
cation the totally isotropic projective points correspond to the 4-subsets of T and
complements. So they may be identified with the 4-subsets. Under this identifi-
cation, the collinearity graph of the quadric of g is identified with the graph Ag

defined above., But the maximal cliques of Ay are easily seen to be of size 15 (for

instance, given any partition of T'into 2-subsets, the pairwise unions of the cells of

this partition form a maximal clique of Ag). Hence ¢ is of minus (or elliptic) type

and so O~(10,2) is isomorphic to the graph Ay. ]

Remark 2.6.2 In [3] Brouwer and Van Lint attribute the graph A, of Proposition

2.6.1 to Mathon. But the above theorem shows that this is not really a new strongly
regular graph. The construction in Proposition 2.6.1 exhibits the sporadic mﬁximal
subgroup Sym(12) of the group O~ (10,2); sce the Atlas [G]. The following is an
amusing way to see that, despite appearance, Syni(12) is not the full automorphism
group of Ag, and indeed, the full group is rank three on its vertices. Take D to be
the point set of a dodecad in the extended binary Golay code. Let D’ be the
complementary dodecad. An easy counting shows that, for any 4-Si1bs_et F of D,
there is a unique 4-subset F'/ of D’ such that FU F-" is an octad. If one identifies
D’ with D (via anjr fixed bijection) then Fi+ F' s a per.muta.tion J of the vertex
set of Ag. Since the Golay code in sclf orthogonal, J, thus defined, is a,f::l;uall;y,'r an

automorphism of Ag. It is easy to see thaﬁ J mixes up the Sym/(12)-orbitals.
2.7 Combinatorial Model of O~ (8,2)

Proposition 2.7.1 The graph O“(BI,Q) 18 1somorphic to the gmph {1 which s

 the vertex-disjoint union of four induced subgraphs, three of which are copies
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of I3' and the fourth one is the graph Ty of Proposition 2.2.1. Adjacency

between each copy of Tg* and Iy 1s even intersection, while adjacency between

two distinct copies of Ig* 18 odd intersection.

(A more detailed description of £ is included in the proof of this Proposition.)

Proof: The graph O7(8,2) is the induced subgraph of O~(10,2) on the set of
common neighbours of any pair of non-adjacent vertices wy and we of O(10,2).
In view of Proposition 2.6.1, take O7(10,2) = Ag and without loss of general-
ity let wy,w; be the 4-subsets {1,2,3,4} and {1,2, 3,5} of T'= {1, 2,...,12}. Let
Ty = T\ (wg Uwsy)., So |[I1] = 7. Then the set of all common neighbours of
wy and wy in O7(10,2) is SU A; U Ay U Az, where S = (rﬂ‘) and fori = 1, 2, 3,
A; = {{4,5,4,b} : be Ti} U {{c,d,e, f} : c,d € {1,2,3} \ {i} : e, f € T} }. Introduc-
ing a new symbol oo, identify an element w of S with the bisection (w, T} U{oo}\w)
of the 8-set I = T} U {0} and identify the clements {4,5,1,b} and {¢,d, e, f} of
A; with the 2-subsets {oo®, 4} and {e®, fD} of the 8-set B = {z): =z € B}
Under this identification, the graph O~(8,2) is seen to have the following descrip-
tion. Take an 8-set Iy and three pairwise disjoint ‘coples’ B, 1 <1 < 3 of F,
For 1 < i < 3, let z — z be a bijection from I onto L%, Let S denote the
set of all bisections of I/ and, for 1 < i £ 3, let A4; = (E;J) be the set of all 2-
subsets of FX). The vertex set of the graph is SU A; U A, U 4. Each A; induces
T,* (i.e., two vertices in A; are adjacent iff they are disjoint). Adjacency within
S is even intersection of bisections (i.e., two bisections qf E are adjacent iff their
common refinement is a partition of I into pairs). For i # j, adja'cency between
A; and A; is odd intersection (i.e., {a®,b#} € A; is adjacent with (cD),d9} € A;
if {a,b} and {c,d} meet oddly). Adjacency between the vertices in § and the ver-

tices outside S is even intersection (i.e., the vertex {a®”, b} € A; is adjacent with
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the vertex © = {z;, @3} € S iff the 2-subset {a,b} of I is contained in one of the

two cells @1, 2 of the bisaction ). This is precisely the graph Q described above. C

Notation 2.7.2 We shall continue to use the notation S, A;, Ao, Aaintroduced in
the proot of Proposition 2.7.1. Thus the vertex set of O(8, 2} is the disjoint union
of these four sets, where S induces a (fixed but arbitrary) copy of O*(6,2) and each

A; induces a copy of T3*,

COROLLARY 2.7.83 The induced subgraph of O~ (8,2) on SU A; is a copy of
O(7,2) for each i.

Proof: Immediate from Propositions 2.3.1 and 2.7.1. [

Remark 2.7.4 By Proposition 2.7.1, I'g is an induced subgraph Ot (6, 2) of O~(8, 2),

and the significance of Proposition 2.7.1 is that it illuminates the structure of the
complementary induced subgraph. Since the automorphism group of O~(8,2) acts
transitively on the induced subgraphs isomorphic to O%(6,2), this description ap-

plies equally well to all these subgraphs.

Remark 2.7.5 Here is yet another description of the graph I' = I'(4). (This de-
scription, however, will not be used in this thesis.) Propositions 2.5.2 and 2.7.1
readily imply that Seidel Switching of T' with respect to the neighbourhood of oo
yields the graph O~(8,2) U {co} where oo is an isolated vertex. This shows that I’

is a strongly regular graph in the regular two-graph corresponding to the switching

class of O~(8,2) U {o0}.
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Chapter 3

Regular Cliques in The Graphs

3.1 Regular Cliques in O*(6,2)

The regular cliques of O%(6,2) are of size 7. Since the graph O*(6, 2) is isomorphic
to the line graph of PG(3,2) (see Remark 2.2.2) the regular cliques of Oql'(ﬁ,2) are
naturally divided into two equal classes (with 15 cliques in each class) so that the
cliques in the same class meet in a single vertex, while cliques from different classes
are either disjoint or meet at three vertices, We shall arbitrarily name these classes
as class 1 and class 2. For & = 1,2, the cliques belonging to class & will be called

the class & cliques.

Definition 8.1.1 A clique of size 3 in O*(6,2) will be called a claw if it is a totally
. isotropic prtj jective line, In other words, a clique of size 3 in O%(6,2) is a claw iff it

is the intersection of two regular cliques,

(Via the isomorphism between O*(6,2) and the line graph of PG(3,2), any
- totally isotropic line of O (6, 2) is identified with a set of three coplanar lines through

a point of PG(3,2), which does look like a three-fingered claw!)
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Since the claws in § are the totally isotropic (projective) lines of O*(6,2), the

following lemma is immediate.

LEMMA. 38.1.2 (a) Each vertex of OY(6,2) outside a claw has one or three

netghbours in the claw.

(b) If a 13 a regular clique of O*(6,2) and © 13 a vertex of O*(6,2) outside a
then the three neighbours of © in « formn a claw.

(¢) Each regular clique of OY(6,2) contains scven claws and any two of them
meet exactly at one vertex.

(d) Each claw of O*(6,2) is contained in exactly two regular cliques of O+(6,2),

one from each class.

3.2 Regular Cliques in O~ (8,2)

By an obvious extension of Definition 3.1.1, we shall refer to the lines of the polar

space O~ (8,2) as claws.

LEMMA 3.2.1 (a) All regular cliques of O(8,2) have size 7; there are 765
~regular cliques. Each vertez is in 45 of them and each claw is in five of them.
(b) Given any 'r'c,qu,idr cliqgue in O (8,2), there are 28, 224 and 512 regular
cligues in O (8,2) wlvich meet the given. f*.a!rﬁq-_mr: i & wnd O verlices respee-
tively, .

(¢) Given an induced copy of O(6,2) in O~(8,2) with vertex set S, any regu-
lar clique 1s either contained in S or inecets S in a claw or in a single vertez.

(d) Any two disjﬁmt regular cliques of O~(8,2) are together contained in a
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unique copy of O1(6,2) in O~(8,2). Any two regular cliques of 07(8,2) in-

tersecting in a single verter are together contained in 4 copies of O1(6,2).

Proof: (a), (b) and (c) follow from easy counting arguments.

(d): Let W, and W, be two disjoint maximal cliques of O~(8§,2), V and ¢ be the
vector space and the quadratic form associated with O~(8,2). If one thinks of
Wi, Wy as 3-dimensional subspaces of V, then Wi @ W3 is a 6-dimensional subspace
~of V. Let q; be the restriction of the quadratic form g to Wi @ Ws. It is easy to see
that ¢1 is a non-degenerate quadratic form on Wi @ Wy, The quadric on Wi & W,
corresponding to ¢ contains both Wy and Wy, But both W and W; are totally

isotropic subspaces of dimension 3, So the collinearity graph of the abwe quadric
is O*(6,2) and is uniquely determined by Wi and Wa. This proves the first part of
(d).

If b is the total number of copies of O*(6,2) in O~(8,2), then by counting
in two ways thé ordered t;riples (®, v, B), where © is a copy of O%(6,2), « and f
are disjoint maximal cliques of O~(8,2) and o, 8 C ©, we get b = 1632, Then
counting in two ways the ordered triples (©, oy, f1), where © is as above, a; and S5

are maximal cliques of O~ (8,2) intersecting in a single vertex and cu, i C 0, we

get the second part of (d). L

Definition 8.2.2 For a fixed copy of O'(6,2) in 07(8,2), a maximal clique of
0~(8,2) is a type 1, type 2 or type 3 clique if it meets this copy of 0*(6,2) in 7, 3

or 1 vertices respectively.

The _type 1._ cliques of O7(8,2) are actually the regular cliques of O*(6,2) on the

vertex set 9. So type 1 cliques are divided into two equal classes (see Section 3.1).
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In the fqllowong lemma S5, 4y, Ay, Aj are as in Notation 2.7.2.

LEMMA 3.2.3 Each type 2 clique is contained tn SUA; for somei, 1 <1 < 3.

Also, each type 3 clique meets each A; in twoe vertices.

Proof: For adjacent vertices z, y with ¢ € 4; and y € A;, i 5 j, the set of common .
neighbours of % and y in S (five in number) induces a.co-clique. So any maximal
clique of O~(8,2) meeting both A; and A; can contain at the most one vertex in
S. So a type 2 clique has to be contained in A; U S for some i. Similarly , for
T, 9 as aﬁove, the set of common neighbours of z and y in A; (or in A;) (again

five in number) also induces a co-clique and so a type 3 clique has to meet each

A; (1 =1,2,38) in (at most, hence exactly) two vertices. ' (]

3.3 Regular Cliques in O(7, 2)

By Corollary 2.7.3 O(7, 2) is contained as an induced subgraph of the graph O~ (8,2).
Both these graphs are pseudo-geometric with the same size (=7) of regular cliques.
It follows that the regular cliques of O(7,2) are precisely those of 07(8, 2) contained
in the vertex set of O(7,2). Therefore, from the classification of the regular cliques
of O~ (8,2), we get, in particular, the following classification of the regular cliques

of O(7,2).

Definition 3.3.1 Lct us say that a regular clique of O(7, 2) is of type 1 or type
2 (with resl)ect to the part1t10n S'U A of its vertex set gwen in Proposition 2.3.1)
accc:rdmg as it is contamed in S (that is, a regular c,hque of O*(6,2) induced on S)

or meets S and A in 3 and 4 vertices respectlvely.
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Remark 3.3.2 The non-empty intersections with the vertex set A of T3* of the
regul.a,r cliques of O(7,2) are precisely the regular cliques of Ty*. Therefore, if
O(7,2) were geometrisable then T3* would also be geometrisable, But T,' is not
geometrisable. Thus we have an easy proof that O(7,2) is not geometrisable, This

is a special case of the result in [9].

!

LEMMA. 3.3.3 FEach regular clique of O(7,2) is of type 1 or type 2. Thle"re
are 30 regular cliques of type 1 and 105 reqular cliques of type 2 in O(7,2).

. Remark 3.3.4 The 105 type 2 cliques of O(7,2) have the following description.
Note that there are 105 regular cliques in Tg*, cach of size 4. If o = {a,b,¢,d} is
one of these regular cliques, then & = {{a U b,cUd},{aUc,bUd},{aUd,DUCc}}
is a claw in (the copy of O1(6,2) on) S. Then v U & is a regular clique of type
2 in O(7,2), and all the regular cliques of type 2 arise this way. Notice that the
number of claws in O1(6,2) is also 105. Since « — & is clearly one to one, we getl

the following lemma.

LEMMA. 3.3.5 The map o — & defined above provides a natural bijection

from the set of reqular cla’quas.of Ti* to the set of claws in O1(6,2).
3.4 Regular Cliques in The Diametres Graph of L

LEMMA 3.4.1 The diameters graph T is locally O(7,2). All the mazimal
cliques of T are regular cliques (of size 8) and there are 2025 of them. The

automorphism group 0%(8,2) : 2 of " is transitive on'these.'cliques.
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Proof: In view of Propositions 2.3.1 and 2.5.2 the neighbourhood SU A of co

induces a copy of O(7,2). Since the automorphism group of T" acts transitively on
the vertices, the neighbourhood of each of the 120 vertices of I' induces a copy of

O(7,2). By Lemma 3.5.1, the graph O(7,2) has 135 regular cliques (which are of

size 7)., So the total number of regular cliques in I' is (120:135) = 2025, Since all

the maximal cliques of O(7,2) are regular and the automorphism group of O(7,2)

is transitive on them, the analogous statement holds for I' as well.

Notation 3.4.2 In view of Proposition 2.5.2 we shall identify the graph I' with the
diameters graph of Fg and freely use its description (including Notation 2.5.1) in
what follows. Thus the vertex set of this graph is the disjoint union of the four sets
S A, B, C and the vertex co. By [14], S induces the graph O*(6,2) while each of
the sets A, B, and C induces a copy of 13",

The bijections / and # of Notation 2.5.1 induce isomorphisms from the copy of Tg'
induced on A onto the copies of Ty* induced on B and C respectively. We shall use /
and # to denote these induced isomorphisms as well, For any vertex set -y contained
in A, v/ and v * will denote the images of v (contained in B and C, respectively),

under these two graph isomorphisms.

In this section we classify the regular cliques of the graph T' in terms of its
description in Proposition 2.5.2. (In view of Lemma 3.4.1 this is an artificial clas-
sification.) The regular cliques of the graph I' are of size 8. All the regular cliques
through the vertex oo are of Ehe' form {oc0} U, where o is a regular Cquue of O(7,2)

contained in SU A.

Definition 3.4.3 A regular clique of I’ not passing through oo will be called (i}

type 1 if it meets S at 4 vertice's. and is contained in SU B 0r.S_U C, (ii) type 2 if
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it meets A in 4 vertices and is contained in AU B or AU C, and (iii) type 3 if it

meets each of the sets 5, A4, B, in two vertices. The following lemma shows that

these are the only possibilities.

LEMMA 3.4.4 The type 1, type 2 and type 3 eliques and the regular cliques

through oo are the only regular cliques of the graph I.

Proof: Let c be a claw in S and o C S be a regular clique of O%(6, 2) containing
the claw c. If v C A is the regular clique of T3* corresponding to the clawe¢ C S '
of 0O*(6,2) (i.e., ¢ = 4, see Lemma 3.3.5) then (a\c) Uy’ and (a\c)U~vy " (recall
Notation 3.4.2) are two regular cliques of type 1 in I, There are 105 claws in 5.

For each claw c in S there are two regular cliques « in § containing ¢. So we have

found 105 x 2 x 2 = 420 type 1 cliques.

If v C A is a regular clique of Tp* then yU v’ and yU+« " are two regular
cliques of type 2 in I', Since there are 105 regular cliques of T3*, we have found

105 x 2 = 210 type 2 cliques.

For each of the 210 edges a C B there are exactly two edges b C C such that
aUbis a clique. So we have 420 cliques of size 4 meeting each of B, C in two
vertices. For each such clique o, there are 3 edges ¢ € A such that o U c.is a cliqﬁe
of size 6. So we have 420 x 3 = 1260 cliques of size 6 meeting each of A, B, C'in
two vertices. For each such clique 5, there is unique edge d C S such that fU d is

clique of T". So we have 1260 regular cliques of type 3 in T,

Fiilally, by Lemma 3.3.3 and Lemma 3.4.1, there _.éire 135 regular cliques in I’
1zh 00. So we have found 135 + 420 + 210 + 1260 = 2029 regular cliques of

ice by Lemma 3.4.1, this is the total number of regular cliques of I', we have
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accounted for all of them. 0

3.5 Regular Cliques in 0*(8,2)*

We use the notation A for the graph O*(8,2)*. By Proposition 2.4.1, we know that

N induces a regular clique of A. Let us call this the special clique.

LEMMA 3.5.1 Ewery regular clique of A (other than the special clique) meets

the special clique at zero, one or three vertices.

Proof: Let a be a regular clique in A which meets N at two vertices, @ and 4. Then
{f\{z,y}: f € a\ {z,y}} forms a clique of size 7 in T7. But there is no clique of

size 7 in T%. So no regular clique in A meets IN at two vertices.

Obviously for any four vertices in N there is only one vertex in (‘D adjacent

with each of the four vertices. So no regular clique other than the special clique

contains more than three vertices of NV.

Definition 8.5.2 A regular clique of A which meets N at 8, 1 or 0 vertices

will be called a clique of type 1, type 2 or type § respectively.

We now proceed to determine all the regular cliques of each type in A. In the
following, v,b and k will be the generic notation for the number of points, blocks

and block size (respectively) of any incidence system with constant block size.
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LEMMA 3.5.3 Any reqular clique of type 140 A is of the forin

5U{fe (2'):5(:1’} (1)

where & 18 a J-gubset of N.

Conversely, for each 3-subset 6 of N, (1) defines a regular clique of type

1 i A. So there are (ED = 84 cliques of type 1,

Proof: Trivial.

Let o be a regular clique of type 2 in A, Say NN = {z}. Then {f\ {z} :
f€ a\{zx}} are the blocks of an incidence system with v =8, b=8 and k=3 in

which any two blocks meet evenly.

LEMMA 3.5.4 There is a unique tnctdence system with v = 8, b = 8 and
k=3 in which any two blocks meet evenly. It may be described as follows:
The point set 15 partitioned into two 4-subsets Fy, Fy and the blocks are the

J-subsets contained in cither Fy or I,

Proof : Let I be an incidence system with the given properties, It is easy to see
that for any block [ of I there are at least two blocks of I disjoint from [, So for
any disjoint pair b and ¢ of blucks_ in I there are blocks b, # b and ¢; # c such that
bijNec=¢ and ¢;Nb= ¢. Since v = 8, b b | = 2, |cr‘l¢1| =2and b;Ney = q!:_. Let

Fy =bUby and Fy = cU¢;. Then it is easy to see that no block of I can intersect

bOth F1 and Fﬂ- . | | C
In view of Lemma 3,5.4 and the preceding comment, we have:
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LEMMA 3.5.5 For any symbol x in N and any bisection {F, Fy} of N\ {z},

{m}u{{m}ué:ée(g),agﬂ or 6 C My} (2)

18 a regular clique of type 2 in A.

Conversely, every regular clique of type 2 in A looks like this for a uniquely
determined pair (z, o) where w € N and « = {F, Fy} ts a bisection of N\ {x}.
Thus there are -% X 9 X (ﬁ) = 315 cliques of type 2 in A.

If @ is a regular clique of type 3 in A then the elements of o are the blocks of an

incidence system with v =9, b =9 and k¥ = 4 in which any two blocks meet oddly.

LEMMA 3.5.6 There is a unique incidence system with v = 9, b =9 and
k =4 in which any two blocks mect oddly. It may be described as follows:
The point set ts partitioned into three 3-subsets Ty, Ty, T3 and the blocks are

T;U{z} with © € Tiy1, 1 <1< 3 (addition in suffiz is modulo 3).

Proof: Let I be an incidence system with the given properties, Thus any two blocks

of I have one or three points in common. In particular, the blocks are distinct.

Claim: If 81, ., Bs are distinct blocks of I such that |8y NG| =3 = |F1N 3] then
P10 = 2N fa=PaN P

Suppose, if possible, 8; N Bz # 1N Ps. Then f3 C fiU L. In this case, if o is
any 4-set not contained in the 5-set f) Uz such that « meets each of 81, F;, f3inl
or 3 points, then « contains only one point in Sy U fa. It o, ag are two such 4-sets

then they have at least two points outside [ U # in common, In order to be blocks
of I, oy N oy contains either no poink from fF; U By and three points from outside

51U B, or one point from ;U 3, and two points from outside G U f2. In the former
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case, there are at most two blocks of I not contained in 8; U B,. In the latter case
there are at most (g) = 4 blocks of I not contained in £; U 8. If all 4-subscts of
f; U B; are blocks then no other 4-set can meet all of them in one point. Thus there

are at most four blocks contained in £, U 8, and at most four blocks not contained

in 8 U 8. This contradicts b =9, So we have proved the claim,

Let us call two blocks of I equivalent if they are equal or have three common

points. By the claim, this is an equivalence relation. Clearly there is at least one

equivalence class containing two or more blocks (otherwise I would be a projective

plane in consequence of the Erdds -de Bruijn theorem (see, e.g., {20}, p.11). But the

parameters v =0 = 9, k= 4 are impossible for a projective plane.) Take any such

class. By the claim, there is a set T} of points, [T}| = 3, such that all the blocks in
this class contain T}, Let T3 be the set of points % such that T3 U {z} is a block of I.
Let T3 be the set of points not contained in Ty UT,. Thus T, 13, I3 is a partition
of the point set. |T1]| = 3, |T3| > 2 (= the number of blocks in the equivaience class

under consideration) and so |T3| < 4.

By the claim, there are three types of blocks: Type 1 blocks contain T} (and
are contained in 77 UT3), type 2 blocks are disjoint from T3 (i.e., are contained in

T, UT3) and type 3 blocks have exactly one point in T,

Since trivially [T3]| < 6, there are at most six blocks of type 1. Since & =9,
either there are at least two blocks of type 2 or there are ab least two blocks of type
3. l
Since a type 2 block must meet all the type. 1 blocks od.dly (hence in a.lunique, point),

it follows that all of them r:tintain Ty (and are contained in T U T3). Therefore, 1f

there are at least two type 2 blocks then (since they l1ave ab most three common
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points) |T3| < 3. So there are at most three type 1 blocks in this case.

Since a type 3 block must meet each type 1 block oddly, it follows that each
type 3 block contains three points from T3 (and is contained in 73 U T}). Hence, if
there is a type 3 block then |T3]| > 3 and then |T3| < 8. Therefore there are at most
three type 1 blocks in this case also. Thus in any case, there are at most three type
1 blocks. Since the type 1 blocks constitute an arbitrary equivalence class with at

least two blocks, it follows that each equivalence class contains at most three blocks.

The type 1 blocks are equivalent by choice. Since all the type 2 blocks contain
Ty and |Ty} > 2, they are all equivalent. Since all type 3 blocks contain three points
each from T3 and |[T3| < 4, it follows that any two type 3 blocks have {at least two
points and hence) three points in common, i.e., they are equivalent as well. So there
are at most three equivalence classes and each of them contains at most three blocks.
Since b = 9, it follows that each equivalence class contains exactly three blocks and
there are exactly three classes; namely, the blocks of type # constitute the ith class,

i =1,2,3. Thus there are three blocks of each type. Hence |T}| = |[T3]| = |T3]| = 3§,

and I has the description given in the statement of this Lemma.

LEMMA 3.5.7 For any trisection (of section 2.1) (N1, Nz, N3) of N, the sel
{V; U {m} 01 <41<3, © € Nipa} (3)

is a type 3 clique of A { where addition in the suffiz ¢s modulo 5’) Conversely,
every type 3 clique of A looks like this for o uniquely determined trisection of

N. Thus there are :13- X (g) X (2) X (:) = EGU.cliques of type 3 in A,

Proof: Immediate from Lemma 3.5.6 and the preceding comment, o
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THEOREM 3.5.8 There are exactly 960 regular cliques in A = O1(8,2)".
The automorphism group O(8,2): 2 of A acts transitively on these cliques.

Any two of these cliques have 0, 1 or § vertices in common.

Proof: By Lemma 3.5.1, 3.5.3, 3.5.5 and 3.5.7, the total number of regular cliques
of Ais 1l + 84 + 315 + 560 = 960. From the description of A used above, it
is clear that there is a subgroup Sym(9) of O*(8,2) : 2 which fixes the “special”
cliqgue N. Since Sym(9) is a maximal subgroup of O*(8,2) -: 2 (and since the latter
group does not have any permutation representation of degree 9), the full stabiliser
of Nin O7(8,2) : 2 is Sym(g). Since Sym(!)) is of index 960 in O+(8,2) . 2, the

transitivity of O%(8,2) : 2 on the regular cliques follows. The last statement is now

an immediate consequence of Lemma 3.5.1. .

Remark 3.5.9 In Theorem 1 of [12], Dye shows that the automorphism group of

O*(2r,2)* acts transitively on its cliques of largest possible size for any r > 2.
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Chapter 4

The Graph O(7,2) = Sp(6,2) has a Unique Spread

In this chapter we prove that O(7,2) has a unique spread upto isomorphism. Ob-
serve that an 1-factor of K, is nothing but a regular clique of T'*, and an 1-

factorisation of I, is a spread of T},

LEMMA. 4.0.10 Any spread of O(7,2) contains seven cliques of type 2 and

two cliques of type 1 (recall Definition 3.8.1).

Proof: Let ¢; and ez be the number of type 1 and type 2 cliques in a spread of
0(7,2). Then ey + e3 = 9 and counting pairs (z,1) where & is a vertex in S and ! is

a clique in the spread through =, we get Tey + 3e3 = 35. Solving these equations we

get ey =7 and ey = 2. -

LEMMA 4.0.11 If v, and vy, are any two disjoint regular cliques in Ig' and
c1, ¢y are the corresponding claws in 0*(6,2) (in the sense of Lemma 3.5.5)

then ¢; Ney = ¢ iff v1 Uy s an 8-cycle.

Proof: It is easy to see that v Uy is either a union r.j_f two 4-cycles or is an 8-cycle, |

Then the prodf is immediate from the definition of the correspondence in Remark
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3.3.4.

LEMMA 4.0.12 For any spread ¢ = {o; : 1 <1< 7} of T, the following are
equivalent:

(a) There exist seven mutually disjoint type 2 cliques f;, 1 <1 <7, of O(7,2)
with o; C f;, 1 <1< 7.

(b) e 18 a Kotzig 1-factorisation of K.

Further, when (b) holds, the cliques f5; of (a) are uniquely determind by the
spread o. Thus there is a natural bijection between sets of seven pairwise

disjoint type 2 cliques in O(7,2) and Kotzig I-factorisations of Kg.

Proof: (a) = (b): For 1 £i <7, ¢ =: §;\ o are pairwise disjoint claws in O"(8, 2).
Since ¢; corresponds to o; for 1 €1 <€ 7, Lemma 4.0.11 implies that « is a Kotzig
1-factorisation. |

(b) = (a): If e is a Kotzig 1-factorisation and ¢; is the claw in O* (6, 2) corresponding
to o for 1 <4 <7, then by Lemma 4.0.11 {8 = ;Uc¢: 1 <i<T}is a éet of seven
mutually disjoint type 2 cliques of O(7, 2).

The last statement follows since o; U c; (where ¢; is the claw corresponding to o)

is the only type 2 clique of O(7,2) containing a regular clique «; of 15", ]

The following is a wellknown construction of Kotzig 1-factorisations.

LEMMA 4.0.13 For any odd p'?"ime p let F,U{oo} be the vertex set of K1,
where F, is the field of order p. For a € B, let fo={ {a,b}:a, bEFp:a+ b
= o,a # £} U {{%,00}}, then each f, is an 1-factor and {fy : @ € F,} i5s a
- Kotzig 1-factorisation of Kﬁ,l.'. The g-r*oﬂpl AGL(1,p) of order p(p — 1) (fizing

o0) is an automorphism group of this 1-factorisation.
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(Recall that the affine group AGL(1,p) consists of all the permutations of F,

of the form z — am + b, a,b € F), a # 0.)

Definition 4.0.14 For a fixed 8-cycle ¢ in I(g, by a diagonal of ¢ we mean an edge
(of K3) joining two vertices which are non-adjacent in ¢. Let us say that a diagonal
of ¢ joining the vertices £ and y (say) is a short diagonal, mid diagonal or long
diagonal according as the distance in ¢ between « and y is 2,3 or 4. Thus there are
8 short diagonals, 8 mid diagonals and 4 long diagonals for a fixed 8-cycle ¢, We
shall represent the 8-cycle ¢ by a regular octagon in the real euclidean plane. Then
the diagonals of ¢ are represented by line segments in the planeg, so that the words
“narallel” and “perpendicular”, when applied to diagonals of an 8-cycle, have their
usual school geometry meaning. However, we shall say that two diagonals of ¢ are
disjoint if they have no vertex of ¢ in common even though the corresponding line

segments may meet elsewhere.

LEMMA. 4.0.15 Let f, and f, be any two disjoint I-factors of Kg such that
fiJ fy 18 an 8-cycle. Let f be another I-factor of Kg such that f is disjoint
from both f; and fo and both fU f; and fU fo are 8-cycles, Then the edges
[ are diagonals of ¢, and tn terms of the c:‘.'a.smﬁmtlfzfmz, of the dﬁagmml&
in, Definition  4.0.14, there are only three possibilities for.the edges in f.
Namely, f must consist of

(1) two perpendicular long diagonals and a pair of parallel short diagonals
both of which are parallel to one of the two long diagonals in f (Figure (1)),
or '

(i7) one long diagonal, one short diagonal perpendicular to the long diagonal
and the unique pair of mid diagonals disjoint from these two (Fiy-we (1)), or

(1i1) two perpendicular mid diagonals and the unique pair of short diagonals
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disjoint from these two (Figure (iii)),

Fig.{1) Yig () Fig. (1K)

Proof: Easy, n

LEMMA 4.0.16 If ) is a Kotzig 1-factorisation of Ky and fi, fa are any two
I-factors in A then with respect to the 8-cycle f;U fy the number of type (1),
type (it) and type (ifi) 1-factors (described in Lemma 4.0.15)in A 13 1, 2 and

2 respectively.

Prooft Let e, ej, and ey be the number of 1-factors in A (different from f; and
f2) of type (i), type (i) and type (iii) respectively, with respect to f; U f. Then
1 + ez + e3 = 5. Counting in two ways the pairs (f, (), (.f, s}, where f is 8 1-factor
(# fi,f2) in A, Uis a long diagonal and s is a slwft diagonal of fi U f3 such bhat
s € f, we get 2eq + e3 = 4 and 2¢; + ey + 2e3 = B respectively. Solving these

!

equations we get ey =1, ep=2ande; =2. 0

TILEORIEM 4.0.17 Upto isonvorphism there 49 a unigque ICotzig 1-factorisation .
of Kg. Its full automorphism group is the affine group AGL(1,7) of ovder 42.
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Proof: There are 105 (=index of 2* : Sym(4) in Sym(8)) 1-factors f; of K, and

clearly Sym(8) acts transitively on them. Choose and fix an fi. Then there are

6 x 4 x 2 = 48 1-factors f; (disjoint from f;) such that £ U f2 is an 8-cycle, and
the stabiliser 2* : Sym(4) of f, acts transitively on these 48 1-factors., Choose and

fix an fp and let ¢ = f1 U f3 be the corresponding 8-cycle. Now, as is clear from
Figure (iii), there are 8 choices for an 1-factor fy (disjoint from f1 and f;) such that

fa is of type (iii) with respect to ¢, Each such 1-factor fy corresponds naturally.
to the unique edge of ¢ which meets both the mid diagonals in f:;.. Therefore the
stabiliser g of the 8-cycle ¢ acts transitively on these choices. Choose and fix an
f3. Next there are two choices for an 1-factor fy (disjoint from fi, f, fi) which
is of type (i) with respect to ¢ (this is because there are two choices for the pair
of long diagonals in f;, and then the requirement that f; should be disjoint from
fa determines the two short diagonals in f;). Look at the edge of ¢ joining ends
of the two mid diagonals in fy. The reflection BCIOSS the perpendicutar bisector of
this edge fixes fi, f2, fa and interchanges the two choices for fy. Choose and fix f;.
By Lemrﬁa 4.0.16, to cmmi;lete a Kotzig 1-factorisation, one needs to choose two
1-factors of type (ii) and one of type (iii) with respect to ¢, But one now sees that
there are exactly two 1-tactors, say fs and fg, which are disjoint from f;, 1 <1 < 4,
and are of type (ii) with respect to f; U fy; again, there is a unique 1-factor, say
fr, which is disjoint from f;, 1 <1 £ 4, and is of type (i) with respect to f; U fz.
. Finally, one verifies that the set {fi + 1 <4 < T} thus obtained is indeed a Kotzig
1-factorisation. This last verification may be omibtted bécnuse by the case p =7 of

Lemma 4.0.13, a Kotzig 1-factorisation of Kg does indeed exist.

Thus there are 105 X 48 x 8 X 2 mutually 150111011)1110 tieples ( fis fas fa, fa)

of pmrmso disjoint 1-factors of K such that f;] and f; are of type (111) and (i)

(respectively) with refspf: t to f1U fe, and ea,(,h such tuple extends to a unique Kotzig
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1-factorisation. However, Lemna 4,0.16 shows that for each Kotzig 1-factorisation
), there are 7 x 6 x 2 x 1 such four-tuples (fi, fa, fa, fa) with fy e Afor1 £ 1 £

4. So all the Kotzig 1-factorisations of Kz are isomorphic, and their number is

102485832 = 960. Since Sym(8) acts transitively on these 960 1-factorisations, the
stabiliser of any of them is of order gﬁé = 42, In other words, the automorphism

group of the (essentially) unique Kotzig 1-factorisation of Kg is of order 42, Since
by Lemma 4.0.13, this group contains the affine group of order 42 as a subgroup, it

follows that the full automorphism group is AGL(1,7). u

LEMMA 4.0.18 Any set of seven patrwise disjoint regular cliques of type 2
in O(7,2) can be extended to a unique spread of O(7,2).

Proof: Since T' is geomctrisable (sce the introduction) and locally O(7,2) (see
the next section), the lines through any given point of a partial geometry with
point graph I' induce a spread of O(7,2). Therefore O(7,2) does have a spread.
(Alternatively, Example 5.1 in [18] gives an explicit example of a spread in O(7,2).)

By Lemma 4.0.1[j, this spread contains a set of seven mutually disjoint type 2

cliques of O(7,2). So there does exist such a set which extends to a spread. But

by Lemma 4.0.12 and Theorem 4.0.17, all such sets are isomorphic. So each set of

seven pairwise disjoint type 2 cliques extends to at least one spread, and only the

uniqueness of this extension remains to be proved.

So fix a set @ of seven disjoiut type 2 cliques, and let F be the set of vertices
-~ of O(7, 2)' not covered by these cliques. Note that ' C S and |F] = 14. So we only
need to show that the set F of 14 vertices of O (6,2) can be written as a (disjoint)
union of two regular cliques of O'(6,2) in at most one way. This is clear since it

PrUB, = F= 33U 0, were two such expressions then 33 would meet one of §; and ﬁg
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in at least four vertices. This is impossible since any two regular cliques of O*(6,2)

meet in at most three vertices. .

THEOREM 4.0.19 Upto isomorphism, O(7,2} has ¢ unique spread. Its full
automorphism group is Ly(8) : 3 = PI'L(2,8) of order 1512.

Proof: By Lemma 4.0.12 and Lemma 4.0.18, there is a natural bijection between the
spreads of O(7,2) and the (unique isomorphism class of) 960 Kotzig 1-factorisation
of Kg. Therefore, the spread of O(7,2) is unique upto isomorphism and its auto-
morphism group is of index 960 in the group O(7,2). From the list of maximal
subgroups of O(7,2) in the Atlas [6], one can see that the only subgroup of index
960 in O(7,2) is the maximal sﬁbgmup Ly(8) + 3 = PI'L(2, 8). | O
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Chapter 5

The Graph O7(8,2) is Not Geometrisable

We assume that the graph O7(8,2) is geometrisable, i.e, it is the point graph of
a pg(6,8,3). For brevity, we shall refer to this putative partial geometry simply as

“the pg”. Also, we shall refer to the lines of this pg simply as lines.

Definition 5.0.20 A line of the pg will be called type k if ©t 18 a type k clique

of O7(8,2), k = 1,2,3. A type 1 line will be called class | if it is a class |
clique, | = 1; 2.

Notation 5.0.21 For z € S, let 7(z) denote the number of type 1 lines through =.

For a non-negative integer j, put S = {zeS:r(e)= i}

LEMMA 5.0.22 (a) For x € S, 0 < r(z) < 3; also there are 9 — 3r(z) type 2

lines and 2r(z) type 3 lines through .

(b) There am.equal number (namely, 3 —r(z)) of type 2 lines through = con-

tained in SU A; for i _# 1,2,3.



Proof: (a) For z € §, let s(x) and #(z) be the number of type 2 and type 3
lines through z. Then r(x) + s(x) -+ t(z) = 9 and since = has 18 neighbours in
S, s(z) =9 — 3r(z). This implies that t(z) = 2r(z) and 0 < r(z) < 3.

(b) If s;(z),i = 1,2,3 is the number of type 2 lines through « contained in A;U S,

then counting the neighbours of © in A; in two ways, we get 4s;(z) + 2¢{z) = 12, so

that 9;(x) =3 — H{x)/2 for 1 <1 < 8. | )

LEMMA 5.0.23 Each copy of O*(6,2) in O (8,2) containg six lines of the

pg In other words, there are siz type 1 lines,

Proof : Let e;, i = 1,2,3 be the number of type i lines of the pg with respect to
the given copy of O*(6,2). Then e¢; + e; + ez = 153. Counting the ordered tuples
(I,z) and (I,2,y) in two ways, where [ is a line of the pg and =, y are distinct

vertices of (the fixed copy of) OF(6,2) contained in the line I, we get the equations

7e; +3ey+e3 =35 x 9 and (;) ep -+ (g) e = (35 x 18)/2 respectively. Solving these

equations, wa get ¢p = 0.

LEMMA 5.0.24 If I are type 2 lines intersecting within § such that [UI' C

SUA; for some i, i=1,2,3, then SN (IUY) is a cligue in S,

Proof: Write [, I’ as disjoint unions I = {;Uly, I' = [{Ul; where [;,1] C S, I, I; C A;.
Then I, I}, are disjoint regular cliques ( of nexus 2) in A;. So any vertex u € Iy Is
‘adjacent to two vertices in Iy and to the unique vertex z in iy N l}, accounting for
all the neighbours of u in . Siuce I is regular of nexus 3, it follows that no u & Zg
is adjacent to any element of I\ \ {#}. Therefore, for any v € I} \ {2}, the three

neighbours of v in { belong to I). But I has ouly three vertices on ib. So cach v € [

is adjacent to all the verticesin I, So ({UV) NS =1, U is a clique.
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Notation 5.0.25 Forx € Sy and 1 <11 £ 3, let {;(x) denote the intersection with
S of the three type 2 lines through @ contained in 4;U S, Thus /;(«) is a set of seven
vertices in S. Also Lemma 5.0.24 implies that each l;(z) is a clique. Thus [;(z) is a
maximal clique in S. Clearly, for each = € Sp, any two of l;(z), la(z), l3(») intersect

in a singleton. Hence these three are cliques from the same class.
This justifies the following :

Definition 5.0.26 For x € ), we shall say that ¢ ¢s in class j (j = 1, 2 ) if
the three cliques ;(z), 1 <1 < 8 are from class j. Also for © € §\ So, we shall

‘say that © is in class j if the type 1 lines through = are in class j (1 = 1,2).

LEMMA 5.0.27 Any two distinet non-adjacent vertices from Sg belong to
different classes. In consequence there are no co-triangles (i.e. co-cliques of

stze 3) in the induced subgraph on So.

Proof: Suppose = # y are non-adjacent vertices in \Sy from the same class. Hence
li(x) and I;(y) meet in a unique vertex z € S, #z # =z,y. By the definition of
l1(z) ( respectively l;(y)) there is a type 2 line ! (respectively I’ ) joining = and 2
 (respectively y and 2) and lying in SU A,. By Lemma 5.0.24 ({Ul)NSisa clique.

But z and y belong to this clique and they are non-adjacent. Contradiction. [

. LEMMA 5.0.28 Any two non-adjacent vertices, one of which belongs to Sy

‘and the other to Sy, belong to the same class.

Proof : Let y € Sy and z € S, be non-adjacent vertices. Without loss of generality

‘say y is in class 2 and z is in class 1. Since z € Sy, it follows that out of the three
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type 1 cliques of class 1 through 2z, exactly two are lines of the pg. Let I be the type
1 clique of class 1 through 2z which is not a line. Since y is of class 2, Li(y) (1 < i < 3)
are the three type 1 cliques of class 2 through . Since the nexus of [ is 3 and y ¢ I
( as y and 2z are non adjacent and z € [), three vertices on ! are collinear with .
As each l;(y) meets ! in 0 or 3 vertices and together they cover all the neighbours
of y in &, it follows that exactly one of the cliques I;(y) meets I ( in three vertices
). Say l;i(y) meets l. Since z € Sy, there are three type 2 lines of the pg through #,
say these are my; C SU A;, i =1,2,8. For each 4, m; N S is a claw containing z, so
that m; N S is contained in one of the three cliques of type 1 and class 1 through
z. Of these three cliques, the two lines of the pg do not meet m; except at z ( since
any two lines of a pg meet in at most one point )., So m; NS is contained in I for
i =1,2,3. Hence (m;UmyUmy) NS =1. Since y and z are non-adjacent, z € I, ().
But z € m;nNS. Hence m;NS ¢ [)(y) . Since m;N S is a claw in S aﬁd i(y) is
a type 1 clique , it follows that no m; meets /;(y) in more than one vertex. Since

(mi Umg Uma) NS =1 and {;(y) meets | in three vertices, it follows that each of
the lines m; (¢ = 1,2,3) meets [;(y) in exactly one vertex. Say w is the vertex in
common between my and I,(y). Since w € {,(y), there is a type 2 line m joining
y and w and lying in A, US’. Since my is a type 2 line lying in A; U S and meeting m

in w € S, so by Lemma 5.0.24 (mUm,)NS is a clique. But y and 2 are non-adjacent

vertices belonging to this clique. Contradiction.

Notation 5.0.29 In order to refer to points, lines and planes of PG(3,2), we shall
write “points”,“lines” and “ planes”. This is meant to avoid confusion with points
and lines of the pg or with points, lines and planes of the projective space PG(7,2)
associated with O~(8,2). Now we shall use the isomorphism between O¥(6, 2) and
the line graph of PG(3,2). Uilder this identification, the “points” and “planes”

correspond to the two classes of type 1 cliques. By changing the names, if necessary,
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we may (and do) agsume that class 1 cliques correspond to “points” and class 2

cliques correspond to “planes”.

Remark 5.0.30 Notice that the claws contained in S correspond to “fags” i.e,

incident pairs of “points” and “planes”. Namely, if (x, ) is such a pair, then the
“lines” through = contained in 7 is a claw in S, and all the claws contained in S

arise in this way (this is why we have chosen the word “claw”).

For the case (4) of the next lemma, recall that a hyperoval in a projective
plane of even order is a set of "points" which meet every "line" in 0 or 2 "points",

The only hyperovals in a "plane" of order 2 are the complements of "lines".

LEMMA 5.0.31 The foliowing are the only possibilities for the siz type 1

lines :

(1) Siz “points” on two disjoint “lines” .

(2) Siz “points” on a “plane” .

(8) Five “points” on a “plane” and one “point” outside this “plane”.

(4) Siz “points” in © Ul where © is a hyperoval (lying in some plane of
PG(8,2)) and | i5 a “line” such that IN© 4s a singleton.

(6) Siz “points” in the complement of a “plane”.

(6) One “plane” and five “points” outside this plane.

(7) Two “planes” and the four “points” lying outside their union.

Proof: Let A be the set of six type 1 lines of the pg. So the elements of A

are “points.” and “planes” of PG(3,2), with the condition that no “point” in A
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belongs to any “plane” in A. Since there is a polarity of PG(3,2) inducing an
automorphism of O*(6,2) and interchanging “points” and “planes”, we may assume
that the number of “planes” in A is less than or equal to the number of “points” in

A. Thus the number of “planes” in A4 is less than or equal to 3.

First note that the number of “planes” in A can not be equal to 3. This
is because there are at most two “points” lying outside the union of any three
distinct “planes” of PG(3,2). So A contains at most two “planes”. If A contains.
two “planes” 7y, @, then there are only four “points” outside my U my and A must

consist of m1,m; and these four “points”. This gives the configuration (7). Next
suppose A contains exactly one *plane” «, Then the five “points” of A are from the

complement of m, yielding configuration (6). In the remaining cases, A consists of

six “points”. It is well known that if no three “points” in a set A of six “points” from
PG(3,2) are collinear, then A must be contained in the complement of a “plane”,
vielding the configuration (5). In the remaining cases, there is at least one “line”
which is a subset of A. If there are two sﬁcll “lines” and they are disjoint then A
is their union, yielding configuration (1), If there are two such “lines” I3, which
intersect then A contains the five “points” in I; Ul; and a sixth “point” outside
l; Uly. This sixth “point” may or may not belong to the “plane” containing {, U I,
yielding configurations (2) and (3) respectively. In the remaining situation, a unique |
“line” 1 is contained as a subset of 4. In this case the three “points” in A \ ! are
non collincar and hence they lie in a unique “plane” x. The “plane” o meets { in a

uniue “point”, so that wN A is a set of four “points” in , no three collinear. So

© =@ NAis a hyperoval in 7 and A =0 U I, yielding the conﬁgurabion-(ﬁi).

- Recall thﬁt our classification of the lines of the putative pg. into three types

‘refers to a fixed copy of O*(6,2) in O~(8,2). We shall say that the configuration (j)
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occurs in a particular copy of O*(6,2) if the set of six lines contained in its vertex
set is isomorphic to the set (j) in Lemma 5.0.31, 1 € § £ 7. Clearly exactly one of
these configurations must occur. We finish the proof by showing that there is at

least one copy of O*(6,2) in which none of these configurations can occur.

LEMMA 5.0,32 There exists a copy of OY(6,2) in 0O(8,2), in which the

configurations (6) and (7) do not occur.

Proof: For any copy A of O%(6,2) in O~(8,2) and for ¢ > 0, let e;{A) denote the
number of vertices of A which are in exactly 4 lines of the pg contained in A. By
Lemma 5.0.22 , we have ¢;(A) = 0 for i > 4. Also ¥ ;»eei(A) = 35, and, by the
~ proof of Lemma 3.2,1(d), the number of copies of O'(6,2) in 0~(8,2) is 1632. So

we get

S5 ei(A) = 35 x 1632. (5.0.1)
A

izl

Again Y ;5pte;(A) = 6 x 7 and hence

S 3 ie(A) = 42 x 1632.  (5.0.2)
A 120 |

Next let us count in two ways the ordered triples (a,ﬂ, A), where a and 0
are two lines of 07(8,2) meeting in a single vertex and A is a copy of 0+(6,2)
containing aeJ 8. In view of Lemma 3.2.1(d) and since the total number of lines of

the pg is 153, this yields

Z i(i—1)e(A) =158 x 56 x4.  (5.0.3)
A | | |

120
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From equations 5.0.1, 5.0.2 and 5.0.3 we get 24 2ot — 1) (i—2)es(A) =
11424. So Faleo(A) + es(A)) = 5712, Hence 2oalea{A) + e3(A))/ 41 > 3, which
implies that there exists at least one A such that eo(A) + e3(A) > 8. But in the
configuration (6) eg(A) + e3(A) = 3 and in the configuration (7) eo(A) + e3(A) = 0.

S0, with A chosen as above, configurations (6) and (7) do not occur in this A.

THEOREM 5.0.33 The graph 07(8,2) is not geometrisable.

Proof : In view of the Lemma 5.0.32, it remains to prove that the cofigurations

(1) to (5) of Lemma 5.0.31 do not occur in any copy of O*(8,2) in 0O~(8,2).

Case 1: Siz “ points” in the union of two disjoint "lines”.
In this case S consists of the six “lines” disjoint from both the given “lines”. -
It follows that the induced subgraph on 8y is the bipartite graph K33, But this

contradicts Lemma 5.0.27.

Case 2: Siz “points” on a “plane” .

In this case, let the six type.1 lines be the “points” in w\ {2} where z € 7 is a
fixed “point”. Then S, consists of the three “lines” through #lying in the “planeﬁ
7 and Sy consists of the remaining four “lines” through z. Note that SyU S, induces
a IC;, but no type 1 line contains more than one vertex in Sg U S;. Therefore the
line joining any two vertices in Sg U S, is a type 2 line.

Sy consists of the three vertices in the claw corresponding to the “fAag” (z, 7r)_.
Since no line of the pg can meet a claw in exactly two vertices, it follows that there
is a unique type 2 line [ such that S C I. Let us say that | C SU A3, Since each
vertex in S, lics in a unique type 2 line contained in SU As, it‘.. follows that any type

2 line which meets S; in a singleton must be contained in SU A; or SU 4,.
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The “plane” containing two of the “lines” in Sy meets o in a “line” through
z. That is, the claw containing any two vertices in Sy meets S; in a singleton.
Therefore the same is true of the type 2 line joining any two vertices in Sp. For
7 =1,2, we define A; to be the graph with S as its set of vertices where two distinct
vertices z,y € Sp are adjacent in A; if the type 2 line joining  and y is contained
in SUA;. Then, in view of the preceding paragraph, A, and A, are complementary
graphs. Each claw (and hence each type 2 line) joining a vertex in 9z to a vertex
in Sy, contains two vertices of Sy. Therefore both of the type 2 lines (other than 1)
through any vertex in S, have two vertices both from S;. One of these two lines is
contained in S U A, and the other is in SU Ay, Therefore both A, and A, are non-

null graphs. It follows that either A or A, has a vertex of degree two (this is true
of any ﬁomplementary pair of non-null graphs on four vertices). Say, without loss of
- generality, that s € S, has degree two in Ay. Then two of the type 2 lines through
s contained in SU A; together cover 14 2+ 2 = § vertices of Sy U S, (including )
while the remaining such line meets Sp U Sz in {s}. Thus the two maximal cliques

l1(8) and SHU S; in O~(8,2) have exactly five vertices in common. Contradiction.

Case 3: Fliue "‘points " on -a, ‘nlane” and one “point” outside this plane.

Let 7 be the given “plane”, y, z € v and w be a “point” outside = so that the
type 1 lines consist of the “points” in (m\ {y, z}) U {w}. Then S; consists of the
“lines” ;, mi, 1 < i< 3, where l; (respectively n2; ) are the three “lines”not lying
in or, passing through y (respectively z) and missing w. It is easy to see that there is
an l; and an m; which are non-adjacent, Say, without loss of generality, {; and my
are non-adjacent (i.e, &y Nnmy = ¢) and then by Lemma 5.0.27 {; is of class 1 and mj
"~ is of class 2 (without loss of generality), Take a “lﬁlé" { I:hr'ough y but not through
z such that ! lies in . Thén l e S,is of class 1, m; € Sp is of class 2 and I, m, are

non-adjacent, But this contradicts Lemma 5.0.28.
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Case 4: Siz “points” in © Ul, where © is a hyperoval ( in some “plane” n )

and l is a “line” meeting © in one “point”,

S, consists of the “line ” m = 7 \ © and the six “lines” meeting m but not !
and not lying in 7. Given any of the six “lines” m' in Sp\ {m}, one can find a secant
m’ C 7 to © disjoint from m'. Then m” € Sy and is of class 1. So by Lemma 5.0.28
all six elements of So \ {m} are vertices of class 1. Fix m; € S\ {m}. Let z be
the “point” in common between m and m,. Let o be the “plane” thmugh m which
does not contain m; and is different from #. Let y be one of the two “points? in
m \ my. Let m” be the “line” through y contained in ¢ such that m” # m and m”
does not pass through the “point” in INe. Then my,m” € Sy are non-adjacent

vertices from the same class, in contradiction to Lemma 5.0,27,

Case 5: Siz “points” in the complement of wU {z,y} where 7w i{s a “plane”
and x,y are two “points” outside . )

Sp consists of all the “lines” from the “plane” 7 and the “line” ! joining  and .
It is easy to see that for every m € Sp, there is a “line” m; in 53 such that m and
my are disjoint. Since m, is of class 1, by Lemma 5.0.28 m is also of class 1. So all

the elements of Sy are of same class. If { N« = {2} then take a “line” I’ contained

in 7 such that z ¢ I'. Now ! and !' are non-adjacent vertices of Sy and are of same

L]

class, in contradiction to Lemma 5.0.27.
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Chapter 6

The Diameters Graph of Fg is Uniquely
Geometrisable

Let us fix an arbitrary partial geometry with point graph T, In this chapter, we
shall refer to this partia,l' geometry as “the pg”. Thus the lines of this pg are regular
cliques of I'. Eventually we shall show that this geometry is determined uniquely

upto isomorphism by the structure of T

Notation 6.0.34 Let S, A, B, C be as in Notation 3.4.2. Let ¢ C S be a claw of
0*(6,2) and let § C S be a regular clique of O*(6,2) with ¢ C 6. Let v C'A be the
regular clique of T;* corresponding to the claw ¢ (ie., ¢ = 4, see Lemma 3.3.5). Let
v'C Band v” C C be the images of v under the isomorphisms / and / of Notation
3.4.2. Then we shall use the notation [c, §]p (respectively {c, é]¢) to denote the type
1 clique v/ U (6\ ¢) (respectively v ” U (6\ ¢)). We shall also use the notation [e]m
(fespectively [c]c) to denote the type 2 clique YU~ (réspectively U~ "). Notice
that by Lemma 3.3.5 these cliques depend only on ¢ and 6. Also, the proof of

Lemma 3.4.4 shows that these are all the cliques of type 1 and 2 in I,

=)
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By Lemma 3.4.1, T is locally 0(7,2). So the nine lines through oo of the pg

induce a spread of the copy of O(7,2) on the neighbourhood SU A of co. In view
of Lemma 4.0.10, it follows that the structure of the lines through oo are as in

Notation 6.0.35{a).

Notation 6.0.35 (a) Let o; C SUA, 1 < i < 7 denote the (pairwise disjoint) type
2 cliques (see Definition 3.3.1) of O(7,2) and let @ C S and 8 C S be the (mutually
disjoint and disjoint from all o;) regular cliques of O*(6,2) such that the nine lines

of the pg through co are

a;U{oo}, 1 <17, aU{cc}and AU {x}. (4)

(b) Let ¢;, 1 < ¢ £ 7 be the claws of OV(6,2) defined by ¢; = ;N S, 1 <i < 7.
Let ¢} (respectively c¢f*), 1 <1 < 7, be the seven claws of O™(6,2) contained in «

(respectively in f).

(c) Notice that the regular cliques ¢ and 3 are disjoint and hence they belong to

different classes. For any claw ¢ C S, let §(c) C S (respectively é(c) C S) denote

the unique regular clique of O*(86,2) containing the claw ¢ and in the same class as

a (respectively ).

LEMMA 6.0.36 For xz € aUpf, © is adjacent to all three vertices of only one

claw ¢;, and has only one neighbour in each of the remaining claws ¢j, 1 <
§ <7, 444 Further, if v,y € a (or 8) and = # y then both x and y can not

be adjacent to all three vertices of any claw ¢, 1 <1< 7.

Proof: Without loss of generality let 2,y € c. = has 6+ 3 = 9 neighbours in cUS.

Since the degree of O* (6,2) is 18, © has 18— 9 = 9 neighbours in U{e;. Since ¢;'s are
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seven pairwise disjoint claws and = is outside all of them
)

from Lemma 3.1.2(a).

now the first part follows

For the second part, if possible, let both = and ¥ be adjacent to all three

vertices in ¢; for some i, Since all the the maximal cliques of OY(6,2) are regular,

there is a regular clique 6 C § containing {z, ¥} Ug. 6 contains two disjoint claws

(namely ¢; and a N d), contradicting Lemma 3.1.2(c).

Definition 6.0.87 A line of the pg (not passing through co) will be called type k
if it is a type k clique of the graph T', k= 1,9, 3, (see Definition 3.4.3).

- LEMMA 6.0.38_ The number of type 1, type 2 and type 3 lines in the pg is
28, 14 and 84 respectively.

" Proof: Let e;, ¢ = 1,2,3, be the number of type 1 lines of the pg. Then e, +
es + ez = 135 — 9 (because there are 9 lines through oo). Count the ordered tuples
(f, z) and (£, ,y) in two ways, where £ is a line of the pg not passing through co
and z and ¥ are distinct points of S contained in £. . Each of the 35 points of S lie on
nine lines, out of which exactly one line passes through the point oo, Also, as the
degree of the subgraph induced on S is 18, there are 35 X 9 = 315 unordered pairs
of distinﬁ:t collinear points in S. Since by Lemma 4.0.10 seven of the lines through
oo meet Sin threé points each while the remaining two lines through co meet Sin
seven points each, it follows that out of these J19 pairs, exactly 7 X (g) +2 X G) = 63
pairs are collinear with co. Also, cach type 1 line meets § in four points, cach type

three line meets S in two points, while type 2 lines are disjoint from 3. Therefore,

the suggested counting yields 4ey +2e3 = 35 x8 = 280 and Gey +ez = 315—63 = 252.

Solving these equations we gf}t'e.j:_ 28, ey = 14 and ¢; == 84. | N
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LEMMA 6.0.39 For any point © € aUf, there are exactly fwo type 1 lines

through =, one of these is contained in SU B and the other one 18 in SUC.

Proof: Without loss of gencerality let # € . Let » and s be the number of type 1
and type 3 lines through @, and let M be the set of neighbours of  in S\ a. So,
IM| = 18 — 6 = 12. Let r; be the number of type 1 lines through = contained in
S U B, and let M, be the set of neighbowrs of = in B. So |M;| = 16. All the lines
through «, excepting the one joining = and oo, are of type 1 or 3. Each type 1 line
through o meets M at 3 vertices and if it is contained in SU B then it meets M; at
4 vertices. Each type 3 liné through © meets M in a single vertex and M, at two
vertices. So we get the equations, r+ s =8, 3r+s5 = 12 and 4r; + 25 = 16. Solving

these equations we get r =2, s =06, 1 = 1. )

The following lemma is immediate from the definition of the correspondence

in Remark 3.3.4.

LEMMA 6.0.40 Letc, and g be two distinct claws of 01(6,2) and let vy and v
be the corresponding T'egula.i' cliques of Tg*. Then

(a) if |y Neg| = 1 and ¢; U ey is not a clique then |y Ny| = 2, .

(b) if cyNey = ¢ and each verter of ¢; has only one netghbour in ¢y then jyy Nyl
= 1.

(Note that by Lemma 8.1.2(a), if ct Nex = ¢ then either some vertex of c

13 adjacént to all vertices of ca or each wvertex of ¢y 13 adfacent to only one

vertez in c;.)

LEMMA. 6.0.41 Given that the lines thrﬂugh oo have been already chosen

and fized, there are exactly two poasibilitics for the scit_o f type 1 lines of the
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pg. There is an tnvolutional automorphism of T which fizes the lines through

oo and iterchanges these two possibilities.

Proof: Let @ € a and let £ be a type 1 line through =. Let § C $ be the unique

regular clique of O%(6,2) containing £ N S. Suppose, if possible that the regular

cliques 6 and « of O"(6, 2) are from different classes. Since § and o have the point
z in common, it follows that 6N« is a claw. Since §N « and § \ £ are two distinct
claws contained in é (the first contains the point & while the second does not), they
have a unique point in common. Therfore {nané= (§nea)\ (6\ £) contains two
points. It follows that the lines £ and U {oo} of the pg have at least two points in
common and hence £ = aU {oo}. So oo lies on the type 1 line ¢, a contradiction.

So & and « are in the same class.

Let i be the unique index, 1 < 1 < 7, such that = is adjacent with all the ver-
tices in the claw ¢; (see Lemma 6.0.36). Let 4 be the unique index, 1 < 7 < 7, such
that = is adjacent to all the vertices in ¢}' (namely, by Lemmma 3.1.2(b), c;* is the set
of all neighbours of = in 3). Since {z}Uc; and {z}Uc!’ are cliques of O*(6,2}, they
are contained in two regular cliques of O*(6,2). Let 6;, 6; be the regular cliques of
O*(6,2) such that {x} Uc; C 6 and {z}Uc}* Cé. Fixk, k=1or 2. Since the
regular cliques & and 8 meet in =, if they were from different classes then o né;
would be a claw. Then there would be two disjoint claws (namely a N4, and ¢ if
k=1, aNd; and c}' if k = 2) contained in the regular clique &, of O*(6, 2}, which is
a contradiction to Lemma 3.1.2(c). So a, §;, 8; are the only three regular cliques of
O*(6,2), from a given class, passing through z. Since 6 is one of these three (;liques
and & # o (sim:aﬁ meets £ in three :p(}intﬁ_while e meets £ in a unique point}, .w'e |
get § = 8§, or § = &, Then either ¢; C 6 or c}' C é. First suppose ¢; & b, Tllen 5 \ €

and ¢; are two claws containt_zd in the regular clique & of OF (6,2). If 6\ £+ ¢ then _ "
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these two claws would have a unique vertex in common and it would follow that

and £M & have two vertices in common. Since ¢ C oy and €N C £, this would imply
that the two distinct lines £ and o; U {00} of the pg have two points in common,
which is a contradiction. So §\ £ = ¢; in this case, and hence ¢ is one of the two
type 1 cliques [c;, 6(ci)]p or [c;, 8(c))e. Similarly, if c;' C 6 then £ is one of the two
type 1 cliques [c;*, 8(c}*)]p or [e}*,6(c}')]c. Both of (e, 8(c;))5 and [ai, 6(c;)]c can not
be type 1 lines through « because they meet at four vertices in . Similarly, both
of [c}*,cﬁ(c}")]ﬂ and [cj',6(c;')]c can not be type 1 lines through «. Therefore, by
Lemma 6.0.39, either the two type 1 lines through z are [¢;, 8(c;)]p and [c}’, 6(ci')le
- or they are [c;, 6(ci)]c and [c!*, 6(c}*)|p. Since there is an involutional automorphism
of I which fixes co and all its neighbours and interchanges z’ and =" for all z in A

(ag is obvious from the description of I' given in Proposition 2.5.2), we may assume

. that for a fixed = € «, the two type 1 lines through = are [c;, 6(ci)}p and [c}*, 6(c}*)]c.

Let y € o, ¥y 7 @ Let k,l bé such that y is adjacent to all the vertices of cy
and ¢f*. Then by the above argument (with y _repla{:iug @), the type 1 lines thruugh
y are either [ck, 6(ck)]p and [c!*, 8(c*)]c or they are [k, 8(ck)]c and [¢f', 6(cr*)] . Next
we show that the second possibility can not oceur. This is because, if this occured,
the lines [c;, 6(c;)]p and [¢)*, 8(c]*)]p would have more than one point in common,
forcing ¢; = ¢f* which is a contradiction since ¢; is disjoint from @ and ¢’ is con-
tained in A To see that the cliques [c;,8(c;)]p and c]',6(ci*)]p have more than
one common vertex, nﬁte that the claws ¢; and ¢;" are disjoint, while the cliques
5(c;) and 8(cf*) have a unique vertex in common (since by definition they are in
- the same class), so the type 1 cliques [e;, 8(¢;)| p and '[Gf*aé"(ﬂf*)]_ﬂ have a cqmﬂjon _
vertex in S. Also, since each vertex of ¢j* has a neighbour in 6(c;) \ ¢ (namely
the vert.ex common to &(c;) and 8(c]*)) and the nexus of the clique 6(c;) is 3, no

vertex in ¢y* can be adjacelit to all three vertices in ¢. Then by Lemma 3...1.2(9;) and
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Lomma §.0.40(h), the regular clicquies of 3 ou 3 corresponding to these two elaws

have a common vertex, Thus the two type 1 cligues have a common vertex in B also

Notice that for each index i, 1 <4 < 7, there is a vertex g € « (respectively a
vertex #* € «) such that ¢ is adjacent to all the vertices in ¢; (respectively in c!*)
).

Therefore, [c;, 8(ci))my lci*, 8(ct)]er,1 < 4 < 7 are the 14 type 1 lines of the pg which
meet ¢,
Similarly (interchanging e and 8 in the above argument) we see that there are just

two possibilities for the 14 type 1 lines meeting B, Namely,

(i) [es, é(en)le, e}, &(ci)lpy 1 <i LT

or

i) [es,B(e)l, (e}, By 1< i <7,

We now show that the second possibility can not or.fc:ur. Indeed, if it did, then for
any fixed 4, the “lines” [e, 6(c)]p and [, 8(c;)]y would have four common points in
B (namely, the four vertices in the regular clique in B cmresbonding to ¢;), forcing
5(01) = 3(0,-), which is a contradiction sil';ce these two regular cliques of O%(6,2)

belong to different classes by definition.

By Lemma 6,0.88 there are 28 type 1 lines. So we find that there are just two pos-

sibilities for them (given that the lines through oo are chosen and fixed). Namely,

either they are

e 8(e)]b, lef, 8l lendlele lef"6(ci" o 1S 4T @

or they are obtained from these bjr interchanging the suffixes B and C. These

two choices are isomorphic since the inmlubiﬂnal au’tqrnc}rphl_sm of I mentioned
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above fixes the lines in (4) through oo and interchanges these two possibilities for

the type 1 lines. | 0

LEMMA. 6.0.42 Once the lines through co and the type 1 lines are chosen

and fized, the type 2 lines of the pg are uniquely determined.

Proof: Suppose, without loss of generality, that the chosen lines of the pg are as in
(4) and (5). Let ¢ C S be a claw of O(6,2) such that ¢ = lc}p is a (type 2) line. Let
v € A be the regular clique of T}* corresponding to ¢ in the sense of Lemma 3.3.5.

Thus, £ =vyU~y".

If ¢ C o« then the lines £ and [c, §(c)]» meet in (the four vertices of) v/, which-
is a contradiction., If ¢ meets o in a (necessarily unique) vertex z, then there is
a claw ¢ through = and contained in « such that ¢ Uc’ is not a clique. Then by
Lemma 6.0.40(a) the lines £ and [c% 8(c®)|3 meet in at least two points (in B), which

is a contradiction, Thus ¢ is disjoint from a.

If ¢c = ¢; for some i (1 <1< 7) then the lines £ and o; U {oo} meet in the four
points of 4. Contradiction. Suppose, if possible, ¢ C U_,c;. Then (as ¢ # ¢ for all
i) there are three indices i such that ¢ meets ¢; (necessarily in a unique point). On
the other hand, neither of the two regular cliques of O*(6,2) through ¢ can contain
more than one of the claws ¢ (since a regular clique does not contain two disjoint
claws). So there are at most two indices ¢ for which cU¢; is a clique. Therefore
there is an index i, 1 < i <7, such that ¢ and ¢; meet in a single point and cU ¢
is not a clique. For this i, Lemma (i.O.dﬁ(a) 5ayS that the regular cliques of T3' on

A corresponding to ¢ and ¢ have two points in common. Hence the lines € and

a; U {oo} of the pg have two common points. Contradiction.
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If ¢ meets U]_;¢; in two points then there is a polnt z € (e\Ue). gU {2} is
a clique for at most one 1. Therefore cU ¢; is a clique for at most one index i, On
the other hand, in this case ¢ meets ¢; for two indices 1. So there is an index % such
that ¢ meets c; in a singleton and e U ¢; is not a clique. So we have a contradiction

as before.

Thus ¢ is disjoint from a and ¢ meet Ue; in at most one point. Hence ¢ has
at least two points in common with the regular clique [, Therefore ¢ C . That
is, ¢ = c¢!* for some i. So the only possible type 2 lines contained in AU B are the
type 2 cliques [c!*]p, 1 £ ¢ < 7. Similarly, the only possible type 2 lines contained

in AU C are the type 2 cliques [¢}]q, 1 <1 £ 7. Since by Leinma 6.0.38 there are

14 type 2 lines, the only possibility for the type 2 lines is that they must be

letley 6Tl 1 <4 L7 | | (6)

LEMMA 6.0.43 Once the lines tlw-a-u,gh oo and the type 1 lines are chosen

and fized, the type 8 lines are uniquely determnined.

Proof: Assume, without loss of generality, that the cliques listed in (4), (5) and
(6) are lines of the pg. Let us say that an edge of T' is closed if it is contained in
one of these 51 lines. Otherwise let us say that the edge' is open. More generally,

let us say that a clique of I is open if all the edges contained in the clique are open

edges. Clearly the type 3 lines of the pg must be open cliques.

From the lists (4),(5) and (6), one can see thab

(i) an edge e C A is closed iff e is contained in a regular clique of Tﬂ"_ corresponding

to one of the 21 “special claws” ¢, ¢, o', 1<i<7 and
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(ii) for any edge e C A, e is closed iff ¢’ is closed iff e ” is closed.

Any z € 5 is contained in one or three of the special claws according as ¢ € Ug
or @ € o U fi. In view of the characterisation (i) of the closed edges in A, this fact
translates as follows. For any 4-subset F of I, cither all three edges {e, f} C A
with e U f = F are closed or else exactly one such edge is closed (according as the
bisection {; Lr\ F} is a vertex in U f or not). The number of closed edges {=,y}

with ¢ Uy = F equals the number of such edges with zUy = F\ F.

Now take any open edge {z ',y '} € B and let ! be the type 3 line containing
{z’,y'}. We show that [ is uniquely determined. By (ii), {z ',y '} is the image
(under /) of an open edge {I:B,y} C Aand {z ",y "} is also an open edge contained
in C. Applying the above observation to the 4-set F = ¢ Uy, one sees that there is
a unique open edge {u, v} # {@,y} with wU v = F From the description in Propo-

sition 2.5.2 of the adjacencics in T, one then sces that {u",4"} is the unique open
edge contained in C such that 8 := {z’,y'}U {u",v"} is a clique. ¢ is an open
clique because every edge meeting both B and C at one vertex is open. Since type 3

lines meet each of the sets A, B and C in an edge, ! has to contain the open clique 6.

Let m be the type 3 line containing {z ”,y"}. Clearly m # l. Note that {u, v} is
the unique open edge in B such that ; := {z",/'} U {«/, ¢/} is a clique. f; is an

open clique and 8, C n.

Since there are two open edges {z w} with zUw = F, we ge_t_tlmt there are also

two open edges {a, b} such that aUb = L'\ F, say these two open edges are {a1, b}
and {ay, b}. Note that {a;,bi} and {ag, ba} are the only open édgﬁﬂ in A such that
80U {a1,b,} and 6 U {ag, by} are cliqﬁes. Thus i D 8 U {ﬂ-l;-b_l} or I D 8U {az, b2}
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Similarly, m D 6; U {a;, b1} orm D g, U {a2,b,}.

Let v; = AN |[ef*)p, 1 <1< 7. Then {11:1<€4i< 7} is a spread of T.' on A. Since
all the edges contained in either of the two sets {z,y,u4,v} and {ay, by, a9,b;} are
open, no y; meets any of these two sets in more than one vertex, Since v; 8 partition

A, it follows that there exists an index ¢ such that v, contains a vertex from each of
these two sets. Then without loss of generality one of the following two cases arises:
(a) 2, a1 €y or (b) u, a; € 4,

In case (8), ¢ " € ~;'. Then the edge {x',a,} C ; Ux;" = [cf*]p. So {z’,a,} is not
an open edge. So 8U {a1,bs} is not an open clique and ! has to contain 8U {as, by}.
Then [ is determined uniquely since any clique of size six is contained in at most
one regular clique,

In case (b), u' € v,'. Then {u',a;} C 1 U%". So 8 U {ay, b} is not an open
clique and m has to contain 6) U {ag, by}, Then ! has to contain §U {ay, b} and is
determined uniquely, l

Since every type 3 line meets B in an open edge, hence all the type 3 lines are

uniquely determined {one can count that there are exactly 84 open edges in B). C

THEOREM 6.0.44 The diameters graph of the root system By is uniquely

geometrisable. The full d-zatomorph:ism group of this partial geometry is the
alternating group Alt(9). This group acts trn.nsitt"uely on the flags of the partial
geometry; stabiliser in Alt(9) bf any pomnt is PT'L(2,8) and the stabiliser in
Alt(9) of any line is AGL(3,2). o | -

Proof: Since T is locally 0(7.2) uniqueness of the spread in O(7,2) (Proposi-

| tion 2.5.2) unphes that upto ISOIOL pluam there is a unigue choice for the lmes of

the pg through a.uy given pcunt Then Le:mna 6. 0 41 6.0.42 and 6. 0. 43 lmply that .
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upto isomorphism there is at most one pg with point graph I'. In fact, following
the above arguments one can show that such a pg must be isomorphic to the one
whose lines are the 51 cliques in (4), (5) and (6) together with all the type 3 cliques
which meet each of these 51 cliques in at most one vertex. One may prove the

geometrisability of T' by verifying that this actually describes a partial geometry.
Alternatively, as we pointed out in the introduction, existing results already imply

that I' is geometrisable, so the uniqueness proof is complete.

Since by Theorem 4.0.17 there are 960 choices for the lines through oo and for
each of these choices we have seen that there are two choices for the pg, it follows
that there are exactly 960 x 2 = 1920 partial gecometrics with point graph I' and the
automorphism group O*(8,2) : 2 of T acts transitively on these partial geometries.
Thus the automorphism group of the partial geometry is a subgroup of index 1920
in O*(8,2) :.2. From the list of the maximal subgroups of this group given in Atlas
16], one sees that the automorphism group must be Alt(9). Clearly the stabiliser of
the point oo is contained in the automorphism group PTL(2,8) of the spread of the
graph O(7,2) induced on the neighbonrs of co, On the other hand, P[‘I:(Q, 8) acts
on the two choices of the partial geometry given the lines through infinity. Since
this group has no subgroup of index two, it follows that it acts as an automorphism
group of both the geometries. Thué the stabiliser of co in Alt(9) is PT'L(2, 8). Since
the index of PI'L(2,8) in Alt(9) is 120, which is also the total number Gf-points
of the pg, .it follows that Al6(9) is transitive on points. Point transitivity, together
with the fact thét the point stabiliser acts transitively (in fact 3-transitively) on the
nine llnes through the fixed point, implies transitivity on flags. In partlcular, this

means that Alt(9) is transitive on the 135 lines of the pg. So the stabiliser of any
line is a subgroup of index 135 in Alt(9). From the list of the maximal suhgroups

of AIL(D) in [6], one sees il apto conjugaey the only suel sibgroup of AlL(D) I8
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AGL(3,2). _ -

Remark 8.0.45 From the Atlas, one sees that O"(8, 2) has three conjugacy classes
of subgroups (each maximal) isomorphic to Alt(9). The subgroups in one class are
contained in copies of Sym(9) in 0*(8,2).2, while the other two classes are merged

into a single conjugacy class in O*(8,2).2. Clearly an Alt(9) in the first class can
not be the automorphism group of the pg(7,8,4) (or else the full automorphism

group of the partial geometry would be Sym(9), contrary to what we saw),
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Chapter 7

The Graph O7(8,2)* is Uniquely Geometrisable

Throughout this chﬁpter, we fix a partial geometry pg(8,7,4) whose point graph is
A= 07(8,2)". We shall refer to it as “the pg"”.

While there are 960 regular cliques of A (by Theorem 3.5.8), there are only
120 lines of the pg. So, of course, there is a regular clique which is not a line of the

pg Since the automorphism group of A acts transitively on the regular cliques, we
may (and do) assume (without loss of generality) in the following that the

special clique N is not a line of the pg.

Definition 7.0.46 A line l of the pg will be called type k if it is a type k clique
of Ot(8,2)*, k=1,2,3.

LEMMA 7.0.47 The type 1 lines of the pg are undquely determined upto

rsomorphism.

Proof: For every pair of vertices in N there is a unique line of the pg contain-

‘ing them, and this line must be of type 1. So the elements of the set {{N N :
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lis a type 1 line} are the blocks a 2-(9,3,1) design, that is, an affine plane of order
3. But the affine plane of order 3 is unique upto isomorphism. By Lemma 3.5.3, a
type 1 line { is determined by the triple N N. So type 1 lines are uniquely deter-

mined upto isomorphism (by the blocks of the affine plane with N as its point set).

Notation 7.0.48 We fix an affine plane of order 3 with N as its point set and take

the type 1 lines of the pg to be the type 1 cligues corresI)ondiIig (via Lemma 3.5.3)

to the blocks 6 of this affine plane. In the following we refer to this fixed affine plane

of order three as “the affine plane”,

Remark 7.0.49 Since there are 12 blocks in the affine plane and each point is
contained in 4 blocks, the total number of type 1 lines is 12 and each vertex in IV
is contained in 4 type 1 lines. So through each vertex in N there are 4 type 2 lines

also and the total number of type 2 lines is 9 x 4 = 36. Hence the total no of type
3 lines is 120 - (12 + 36) = 72.

LEMMA 7.0.50 (a) A pair of distinct type 2 cliques through a vertez z € N

meet at more than one vertez iff the corresponding bisections (via Lemma 3.5.5)

of N\ {z} meet oddly.

(b) Let l1 be the type 1 clique corresponding to the 3-subset {x,y,2} (via
Lemma 3.5.3) of N. Then a type 2 clique thwugh x meets Iy at more

than one vertex if {y,z} is contained in some cell of the bisection of N\ {z}

corresponding to la.

Proof: Easy.
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Notation 7.0.51 Fix a symbol 1 in N. Put E = N\ {1}. In the following, (f) is

taken as the vertex set of T3* (with disjointness as adjacency).

(a) For ¢ € N let y;= {{=, y} : {®,y,1} is a block of the affine plane}. Let ; =
if i = 1, and define 7: to be the image of v; under the transposition (1,i) of N
- which interchanges 1 and ¢ (and fixes the remaining symbols in N) in case i € B,
S0 i, 1 € N, are regular cliques of Ty*.

(b) Let S denote the set of all the bisections of . Take any type 2 clique 1. If
! passes through 1, then let < I > be the bisection of E corresponding to 1 via
Lemma 3.5.5. If | passes through ¢ € E, then let < I > be the image under the
tranSpositian (1,1) of the bisection of N\ {i} corresponding to I, Thus, for each
t;,rpé, 2 cliquﬁ I, <l >€ 8. Notice that any type 2 clique ! is determined by the pa,ir.

(z, < 1 >) where {z} = Nni.

LEMMA 7.0.52 Letl; andl; be type 2 cliques through the vertices I andi € B

respectively, Then 1y and [; meet at mare than one vertexr iff <i; > = <l >.

Proof: Kasy.

Notation 7.0.53 For i € N, let 5; denote the subset of S consisting of the bisec-

tions of IZ which meet each element of «y; oddly.

LEMMA 7.0.54 For each i € N, there is a caﬁem’cal partition of S; into two
4-subsets a; and fB; such that am;y two bisections contained in either oz or 3,

meet evenly while each bisection in o; meets each bisection 3; oddly.
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Proof: By Scction 2.5, taking cven intersection as mijaceucy defines a copy of
O(7,2) on the vertex set SU (E) dince ; is a regular clique of Ty*, there exists a
claw c (i.e., a totally isotropic line) contained in S such that v;Uc is a regular clique
of O(7,2) (see Lemma 3.3.5). There are two regulat c[iqu.es' 6y and 6, contained in

S and containing the claw ¢, Since the nexus of O(7,2) is 3, all the elements in
(8, U &) \ ¢ meet every element of 4; oddly. Every element of S'\ (6; U 82) has only
one neighbour in ¢ and two neighbours in ;. So 8; = (6; U6} \c. Now a; = 61 \ ¢

and 5; = 65 \ ¢ satisfy the requirement of this lemma. - L]

LEMMA 7.0.55 For ecach i € I8, 8, and 5; have exactly two biseciions in

common and these two bisections ineet oddly.

Proof: It is easy to see that, v Ny = {{1,5}}, where {1,4, 5} is the unique block of
the affine plane containing 1 and 1. (7,Uy;)\{{4,4}} is the set of edges of a 6-cycle C.
There are two sets of alternate vertices in C, say A and B. Then {AU {i}, BU{j}}

and {AU {4}, BU{i}} are the only bisections contained in 51N .5;. Obviously, these

two bisections meet oddly.

LEMMA. 7.0.56 Once the type 1 lines are chosen and fized, the type 2 lines

of the pg are uniquely determined upto isomorphism.

Proof: For i € N, let A; C S denote the seb {< 1 >:1is atype 2 line of the pg
through i}. Note that the type 2 lines are determined once the sets A;, i € N,
are fixed. By Lemma 7.0.50(b), Ai C 9;, for all i. Also, by Lemma 7.0.50(a),
any two elements of Ai Iﬁeet evenly., Hence A; © o or A: € B; by Lemma 7.0.54. |
. Since |A;| = |a;| = ']ﬁill = 4, it follows that 4; = o; or A, = [ for eaqhi € N,

By Lemma 7,0;55, for each i1 € E, 5; NSy 18 a doubleton, say S NSy = {x:,¥i}-
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Since by the same lemma «; and y; meet oddly, we may arrange the notation in
Lemma 7.0.54 so that z; € ay 0 fF; and 1 € BiN oy for each i € B, If, now, 4 = oy
but A; = f; for some { € F, then by Lemma 7.0.52 the type 2 lines through 1 and i
corresponding to the bisection @; would have more than one point in common. Se
A1 = oy implies A; = o; for all i € N, Similarly, A; = f; implies 4; = G; for all
i € N. Thus either A; =q; foralli € Nor A; = g, for all 1 € N Since there is an
automorphism of the affine plane interchanging «; and &), we may take A; = oy for

all i, This determines all the type 2 lines; for i € N, the type 2 lines through ¢ are

the type 2 cliques [ through i with < >€ «;.

LEMMA 7.0.57 If ¢, v, 1= (f) are distinct vertices of A such that |znynNz| =

3 then there is only one type 8 clique of A containing =, y and 2.

Proof: Let the trisection (Ny, Ny, N3) of N represent (via Lemma 3.5.7) a type 3

clique containing the vertices @, y and z. Then z NyN z = N;, for some 1 =1,2 or

3. So without loss of generality let Ny Nz= Ny, Then Ny = (z UyUz) \ N1 and

N3 =N\(N1UN2)

LEMMA 7.0.68 Letwx € (‘D be such that x does not contatn any block of the

affine plane. Then the type 8 lines through = are uniquely determined once

the lines of type 1 and type 2 are chosen and fized.

Proof: Since by assumption @ is not in any type 1 line, it follows that = is in

exactly four type 2 lines 1;, i € x, where I; denotes the type 2 line joining =z and 4.

Hence = is in four type 3 lines as well.

Claim: For each 3-subset t of =, there are exactly two vertices ¥ in (ﬁ’) such that
y D t, and y is joined to ¢ by a type 3 line.
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Let A denote the set of all vertices y %% = in ({1") such that y 2 ¢ The
description of I; in terms of a bisection of N'\ {i} (see Lemma 3.5.5) shows that if
i € ¢ then {; contains exactly one vertex from A, while if i € =\ ¢ then I; contains no
such vertex. Therefore, together, the four type 2 lines through = cover exactly three

vertices of A (which must be distinct since otherwise two of these typ'e 2 lines would

have two distinct points in common), It follows that the remaining two vertices of

A (which are adjacent to x) are joint to @ by type 3 lines. This proves the claim.

Now fix a 3-511bsetr t of , and let y1, y2 be the two vertices guaranted by
the claim. Let ! be the type 3 line joining = and ¢,. Since £ Ny, =t is a J-set,
the description of I in terms of a trisection of N (see Lemma 3.5.7) shows that ¢ is
one of the parts in this trisection. Also, the same description shows that I contains
a vertex z other than w, y, such that z D t. Then by the claim, 2z = 3. Hence
! 2 {=,y1,y:} and therefore ! is determined by Lerﬁma 7.0.57. Thus each of the

four 3-subsets of & determines a type 3 line through ® and hence all the type 3 lines

through o are determined uniquely.

LEMMA 7.0.59 Let © € (f) be such that x© contains a block of the affine

plane. Then type 8 lines through © are uniquely determined once the lines of

type 1 and type 2 are chosen and fized.

Proof: x contains a block #; of the affine plane. Thus @ lies on a unique type 1 line

(namely, the line corresponding to t) and a type 2 line (namely, the line joining @

and 1 where {4} =\ t). 16 follows that @ is on six type 3 lines.

Fix a 3-subset ¢ of @ such that ¢ is not a block of the affine plane. Define A as
in the proof of Lemma 7.0.58. There are three vertices v in A such that y does not

contain any block of the affine plane. (Since t1s a triangle in the affine plane and
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each block of the affine plane contains three points, it follows that there are exactly

three 4-sets containing ¢ which contain no block of the affine plane.) Since ¢ 3 £,

the type 1 line through # does not intersect A.

Since x is on a unique type 2 line and this type 2 line contains a unique vertex

from A (in consequence of Lemma 3.5.5), it follows that there is at least one vertex

y € A such that (i) y does not contain any block of the affine plane and (ii) = and
y are joined by a type 3 line. Fix such an . By Lemma 7.0.5¥8 the type 3 line
joining and y is uniquely determined, and by Lemma 3.5.7, this line contains a
¢hird point z from A. Let w € A be the unique point joined to x by a type 2 line.
Put {u, v} = A\ {y, z,w}. Then the type 3 line joining = and « must contain v, and
hence it is determined by Lemma 7.0.57 as the type 3 clique containing {z,u, v},
For each of the three 3-subsets ¢ of x which are not .blc}cks of the affine plane, this

argument determines two typeB lines through z. Hence we have determined all six

type 3 lines through =.

THEOREM 7.0.60 The graph O0*(8,2)' is uniquely geometrisable upto iso-

morphism.

Proof: Immediate from Lemma 7.0.47, 7.0.56, 7.0.58 and 7.0.59.
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