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SOME CONVENTIONS AND NOTATIONS

We adopt the following conventions and notations throughout

the thEEiﬂ.(thGUgh some inconsistencies may persist).

All our manifolds are finite dimensional, smooth (Cuj),
paracompact, Hausdorff apacas with or without bnundafy. A maﬁifcld'
X is closed if it: is compact and without botindary (o% =9¢), and
X is nan-ciosed (also referred to in ﬁhe_litarature as open) if no
coﬁnacted cumpnnant.nf X 1is closed. Maps bstween ménifnlda are
always smooth, and the topology of a space of meppings is the c®

topology of compﬁnt convergesnce unless axPlicitly statéd otherwise,

If X and Y are manifolds, C® (X,Y) uill denote the
 gpace of smocth maps X =~>Y, Emb(X,Y) will be the subspace of
embeddings, Imm(X,Y) will be the subspace of immersions, 5ub(X,Y) 

will be the subspace of submersiuna, Diff(g,Y) will‘ba';ha subspace
nf.diffaumorphisms, NErk(X,Y) will be the subSPace nf k=~mersions, |
k < min{dim X; dim Y), which are maps of rank'at least k. suarymhé:e,
Sﬁbimmk(X,Y). will be the subspace of k-suﬁimmersionéilk a8 ahqya;
which E:e mépa of congtant rank k. Tuo immarsiﬁns anm X tp' YI
':afa':aguiarly homotopic if one can be defnrmed intu thﬁ'ntth-thrbughuf'
immersions uf,'in*othsr”mordﬁi if.thay'balnngyto;thé sahé pﬂﬁh
~_component of Imﬁ(ng).- . . . |

- The Foll@uin@ 5PBG§3_W411 hﬁué the.¢oﬁﬁa¢t-upen tnpology': |
 thé épaca.ﬁf_ﬁangént.bﬁndié:honﬁmbrphiéhs  TX_;érT?,_dénnted" .

| .benu(TX,TY);lthé $pacé~¢f'tangsﬁt Eundla ehimquhisms' Epi(TX,TY), o



the space of tangent bundle homomorphisms of rank at least K
gverywhere, denotsd Hnmk(TX,TY), and the space of tangent bundle

homomorphisms of constant rank k, denoted Link(TX,TY).

Weak homotopy equivalence will often be abbraviated as
Ww.heeey neighbourhood as nbd. and the symbol ]H will denote
the end of a proof. Thé symbol [, used as in Fl, will denote

the restriction of the function f to a subspace —=vident from .

the context.



CHAPTER O

GENERAL INTRODUCTION

In [10), Gromov formulated and pruveﬂ a vpry general Smale -
Hirach-Philiips tyﬁa thenrem; The theoram concserns tha classification
of & class ubf' cross~sections O uf’ a smooth fibre bundle E —> X over
8 npon~closed manifold X such that sach r-jst erJ) gatisfies an
bpannaas_cuﬁditinn as w311 aa a gtability bunﬁitinn. Briefly, the
openness conditinﬁ.is thét each erJ) is a cross-section of soms

B prsacribad open subbundla of the bundle of r-jets uf lucal crnés~ |
sactians of E ~->»X, and. the Btability condition is that thia Eubhundla_

ramain invariant under the actinn nf the paaudogroup of lncal diffsn-.

morphisms of Xa

In this thesis we.study extensions of G:nmou's'thadry in two
directions. In Part I,'wa'praaant a Grﬁmouetypa thénraﬁ mhich holds
" for closed manifolds as.uall, and.illuatraﬁa ité_applicahility.  In
Part II, we examine a.particular Grnmﬁu%ﬁyﬁe thﬁﬁram.fop a ﬁlaéé off-
maps dafihad on a Aan—clnsad mahifold, butlnuﬁ aatiéfying the upaﬁnéaS'
condition and;.ﬁftsp defiuing some results in algabraiu ﬁnpulugy;
aPPly.it to Prnue-a cladsifibatibn theorem fur.ﬁertain émbutﬁsmaps B
betwaen manifnids. | - . . . -
- In réﬁfoapécf Gfomﬁﬁiﬁ'caiéhfatéd tﬁéoram'fsprasahted-tha
"-culminatiun nf unrk that cnuld be aaid tn haue atartad with the papar
' -_nf’ Whitnay E35] .i.n 193? wharain he proued, fullnuing an idea nf "

'fGraustain. thst tha sat of rsgular hnmntnpy clasaaa nf immaraians nf



5'1 in ".Rz .(both oriented) is ina 11 cnrrsapbndanca with the set
of integers Z. During 1958-59, Smale L[297], [307], [31] clarified

the Whitney-~Graustein theorem and proved his famous theorsm 3 the set

of based regular homotopy classes of based immersions of S intn_rf",
n < m, corresponds bijamtiuély with the n th .hnmntnpy group ﬁf the
Stiafel manifold of n~frames in an.. Here a bassd immarsiqn f is
an immersion such thaf both f and df take prescribsd valugs at a
] :giuen base pnint. A more genmaﬁrio_and_cuncaptual procf of'thé_Smala
- theorsm was fuund by Thom [33 1. Hirsch 161 generalized the Smale .
theorem for érbitrary_manifnld pairs proving that, 1f dim X <'dim=Y§
| the bc#respuhdenﬁsl ff-ﬁ'df sets up s bijactinn_hetwean tﬁﬁ path
'.cumpcnénts.nf'thé shade- Imm (X,Y) and the péth componants of the
#paca_ Mona (TX, TY). A furthar ganaralizatinn of the immersion
theorem states that the differentisl mep d s Imm (X,Y) = Mono (1X \TY)
isy in fact, a ueak hnmutopy equivalence (w.h.e.) This theuram was
first prnued by Hirauh and Palais EJJ']. A proof nf the thenram may .
be f'ound :I.n Poanaru, L'25.'l ur (261, f’ur the diff‘arantiabla casa, and

'in Haaf‘li-gar and Poénaru £141 for ‘the ?cumbinatnrial case.

" The ta¢hniﬁue, mainly;geumstric, as i£ auplu;d with these
theorems lay aésanﬁially.in'ahuwing dartain maps to.bﬁ Serre ribfa;
 _tiﬂna._ In tha naxt important expnsition of this techniqua Phillips o
 f [23 ] prouad an analngnus reault for aubmaraions ! if dim X > dim Y

 and X 15 non-clnsad, than tha diffarsntial map d : SUb (X:Y)'“*'f'

Epi (TX,TY) i-ﬁ a W-h-E.



Finally, it was Gromov who in his thesis [l0] described ths
intrinsic geometry in its most natural setting and placed the existing
theory into proper perspective. The follouwing is a short outline of

Gromov's main result as formulated by Hasfliger [13 1 and Poénaru [273 .

Let £ and X be mlanif’alds and p s E —> X a amooth f’ibré
bundle. Denote by iD(X) the pssudogroup of local diffeomorphisms
of X which is, to bes precise, the category of open subsets of X
and their diffeomorphiems. Ctmaridar a functor 0 from D(X) +to
D(E) whiéh assoniatas with gach open subset -U of X the open
- subsat EIU (='p'l(U)) of &, and to each diffaumorphiam Nt U =Y
betwesn open subsets U, V of X a difreomﬁ;phiam B(A) 3 EJU =>E|Y

se that thes following diagram is commutative

(M)
EfU =——> E|V
]
p|u . plv
h 4 A 4
U —ﬂzrdr Vv

‘Further suppose thet § & Diff (U,V) —~> Diff (Eluy EJV) is continuous

for svery pair of open'aubsets U, V of X.

Let E° be the space (with the usual topology) of r~jets of
local sections of E anpd p-r t £ ~» X be the smooth fibre bundle

where the projection pr maps each r-jat onto its source. Then the

functor § induces a functor §° from D(X) to D(EF) in the



Pollowing way ¢ if A : U —>V is a diffsomorphism in  £(X) eand
@ s V-—>E is a germ of section at some point Nx), x € Uy represent-
ing an T=jet Jyo,y ¢ in ET |V, then BT (A)(3y(,y 4) is the r-jet

in E*JU represented by the gsrm of ssction ﬁ(?\}fl cyoA at X, 8o
87 (M35 9 = BN oyon).

lLet EE be a subbundle of Er which is invariant under the action of

8%, that 1s, §° (?\)(ji(x) y) 4s in EE Ju for every diffeomorphism

AN U=V in D(X), x €U and ji(x) y in EE]U. Denote by

e E; the space of continuous sections of Eﬁ., with the compact

opan topology, and by T;u]E the space of smooth sections 0 of E,

with the Cc% topology, whose r-jets 3¥(0) 1ie in T‘GE:.

Then Gromov's theorem states that if {1) X 4is non~closed, and
(2) Elﬁ is open in Er, the r~jet map jr s"]:lmE -j—-bT“nEE is a
WeheBe

One can look upon this remarkable theorem in at least two ways.
Firstly, it is a clasaificatiun theorem. It translates the problem of
classifying_tha smooth Bsctinns.nf E which satisfy cartaiﬁ differen-
tial inequalities (dafinad bj the subbundle  EE) té the classical '
problem in aigébraic.tnpology of classifying tha_cnﬁtinucua sections
'ﬁf a bundle, namaly E:.L Secundly, it is an intsgrability theorsem.
'Ths ingiuéion of the space of intagfabla sentinns_nf EE (aéetiuns

that_arB Jr~imagaa anSectipna of E) in the space of all continuous



sgctions of E: 18 @ Wehe@s

The applications of Gromov's theorem are many {(sse [JI!)), In
particular, the Smale~Hirsch theorem on immersions, the Phillips
thsorem on submersions, and, in gensral, the k-mersion theorem of
Feit (L7131, in the case where the source manifold is non-closed) are
all Eaéy consequences. fFor the k~mersion theorem, for example, take
E to be the trivisl bundle XxY, § the trivial Punctor defined by
D(A)Y(x,y) = (Mx)y y)y v = 1, and Ei tha subspace of Jl(X,Y) of
l-jets of maps X —=>Y of rénk .at least ks Then T;mE represents
the spaca.uf kemersions MBrk(X ,?), T‘aEi' may bs identified with the
spacé Hom (TX,TY) and the jet map i1 with the differsntial mep d.

So Gromov's theorem asserts that the differentisl ﬁap d 3 Nark(X,Y)-—}

Hnmk(TX,TY) is 2 w.,heB, in the case whesre X is non-closed.

Next observe that both assumptions (1) and (2) are vital to
Gromov's theorem in the general setting formulated above. The
gsomatriﬁ constructions in the proof make essential use of both
assumptions and.cuunter-examplas are avajlable if we drop either of
Ehaﬁ. I1f we drop assumption (1) we may refute the conclusion:inftha |
case of submersions by noting that 8; is perallelizable but does
‘hot submerge in IT;. On the other hand, if Gromov's thsorem were
true without aasumptidn (2), it'would imply thﬁt the differential
map d s_ubimmk(x,_v)--éa»_Link(Tx,T_v) is & Wch.g. when k & min

(dim X, dim ¥) and X is non—closed. WNote that the subspace



Subimmk(X,Y) is not open in -Cu](X,Y) unless k = min (dim Ay

k+1><ﬂ?, there sxists a ¢ € Link(TX,TY)

dim Y)- .Now' ‘if X = Y =85
cavering the identity mgp, but such a ¥ cannot be Hﬁmﬂtupic ta a -
df for some f € Subimmk(X,Y) for then f, by Sard's theorem, would

be null homotopic. So, without assumption (2 ) Gromov's statement

failse.

The theme of this thesis is to look for Gromov~type ‘theorsms
sven after relaxing, alternataly, either of Gromov's assumptions

‘and so, of necessity, imposing some others.

In Part I, we alter Gromov's satting.anmawhat and, additionally,
impose a certain 'local stability' condition on tha?subbundlé Ei to
prove a Gromov~typs theorem true for closed manifolds as well. Our
fnrmulatiun of the problem is detailed in Chapter 1 end the maln
theorem proposeds 1In Chaptér 2 we provea this theorem through a
sequsnce of propositions and Chapter 3 describes some of its'applicau_
tions. In particular, we deduce Feit's k—merﬁiun theorem for closad
suurcs' manifolds (7], Feldman's theorem for immersions with non-
vanishing msan curvature vector [97, the theorem of Gromov and
Eliashberg on higher order non-~degenerate immersions [12 1, end
further, another theorem, firat proved by Gromov, classifying immer~

slons transverse to a field of planes [JI}].'

Now, it should be mentioned that du Plessis in [53 described

a somewhat similer generalization of Gromov theory. In fact, his



paper suggested some problems that we attempt to solve here and we
do borrow some techniques. However, our development of the theory
diverges significantly from his and we bellsve that we meat with
greater success as our main theorsm is more pnﬁarﬁul than that
nraoved in [5 ] This is evident on comparing an application. The
case in point is the Gromov-Eliashberg theorsm which we deducs in
its full generslity, a form which du Piaasis is unable to derive.
fn fact, du Plessis manages only to reduce the problem tc a compli~
cated problem in algebra. Further, it is ﬁnclear ag to how to

retrisve ths k-mersion theorem using du Plsssis' theorem.

In Part II, we start by examining a Gromov~type theorem of
Phillips [24 ] (see also Gromov [1l7]) uwhich states that the differ-
ential map d s Subimm (X,Y) —>Lin (TX,TY) ds & wihie. 4f X i
non-closed and admits a proper quaa function with no critical points
of index greater than k. Filrstly, in Chapter 4, we try and elucidatse
Phillips® proof of tha'ﬁhaurem - his own paper is uncomfortably terse -
and bring out the slepant geometry inunluéd. Chapter 5 1s a study
purely in algebraic tupoluéy of certain spaces which are ralated;
by Phillips' theorem, to subimmérsinna in the same mennsr as the
'-Stiéfai manifolds are rélataﬁ ﬁu.immersiuna in tha.claasinal theorem
of Smele claaéifying.imma:aions of sbhersa in Euclidéah space [31f].
We calculats.tha homnﬁopy groups and cohomnlugy.algehras of thase
spécea which are termed ganaralizad Steifel manifolds. It should be

nﬂted that, though thajachomﬁlugy aigabra has not been further usad
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in this thssig, its calculation may be treated as an interesting
digression to our primary diacussiﬁn. Finally, in-Chaptsr 6, we
employ an obstruction theory in applying the prscadihg reaults to
prove @ cleasification thsesorem fof subimmersions. This extends

the thsorem of Smale on immersions of spheres in Euclidean space.

Though they both share the common aim of generalizing

Gromov theory, Part I and Part II of this thesis are independent

of each other.



PART I
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CHAPTER 1

FORMULATION OF THE MAIN THEDREM

As indicated in the general introduction, Gromov's theorem in

. its full gensrality holds for non-closed manifolds but not nescessarily
for closed ones. The reason is that it is the subclass of non=-closed
manifolds (of any given dimension, say n) that possasss the special

property of having a handle decomposition into handles pK % phK

of
index k < n (ses [21f], {23 ] Por deteils). This fact is essential
to Gromov's theory at a crucisl step ¢ the non-trivial transverss
discs Dn'k then provide room for defermations inside the handls'that
ar.e necessary ‘to prove that the restriction map r:DE |)(2 — FumE |xl
is a Serre fibration whers xl and Xz are submanifolds of X ,X2

being Xl with a8 k=handle attached.

8 1. UWe describe in this section a formulation, different from

Bromﬁu's, with a view to extending the theory to closed manifolds.

If X 1is =& m'anif’uld, let S(X) denote the category whose
objects are submapnifolds of X and morphieme are embeddings Y —» 7
whers Y, I are submenifolds with dim Y < dim Z. Then the pseudo-

group JXX) of local diffeomorphisms of X is a subcategory of
B(X).

Assume that to each manifold X there is associated a smooth
fibre bundle E(X) —>X such that, if Y is & submanifold of Xy
Cthen E(Y) = E(X)|Y if dimY =dim X, and E(Y) is = subbundle

of E(X)|Y if dim Y < dim X.



Assums further that there is a functor § s B(X) ~» G(E(X))
which assoclates to each aubﬁanifuld Y in B(X) the bundle space
E(Y), and to each embadding A ¢ Y ~> 12 .m S(X) en embedding
F(N) ¢ E(Y) =>£(Z) which is also a bundle morphism covering A
such that, for every pair of submanifolds Yy £ of X with
dim Y £ dim Z, the map U : Emb (Y,Z) =>Emb (E(Y), E(2Z)) is
continuous. Note that §(A) defines maps ﬂi(h) ¢ E(Y)-ﬂé-K*E(Z)
and  ,(A) + N'E(Z) => £(2) such that T(A) = §,(N)od,(A) end the

following diagram is commutative

Here the right-hand rectangle represents the canonical pull«back
over A, Ue suppose that the restriction of J to X) is the

Punctor § ¢ DX) = D(E(X)) of Gromov's theory.

Moreover, ve assuma.that, to each ambedding A ¢ Y'—é-Z in
®(X), there corresponds a bundle morphism 7(A) 3 :?x%E(Z) —> E(Y)

over 1. such that

Y

(1) 71 =1ppy
(2) _H_(?\)ﬂl(.?\)._"" “E(Y)

Cand  (3) if A3 Y-=»Z and M Z DU
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are embeddings in ©(X), then n(?\)h}x*n(u) = B{fko A} or, in other

words, the foullowing diagram over Y is commutativs

?\*u*‘a(lw) ey (L) E(W)
') o - (N)
v o
NE(Z) ——————> E(Y) .

H(A)

Note that, in the case of Gromov's theory, if A is a diffeomorphism

in  &XX), then 7(A) may be realized as ﬁ(?\)'l. .

Lat T PE(X) denote the space of smooth sections-of E(X).
Then €(X) acts on P E(X) in the following ssnse. Let
A3 Y—>Z be an embedding in ©(X) and P 3 7> E{Z) a smooth
ssction, Then M(A)oA (P) s Y —» E(Y), uhere A'(f) s ¥ —>N'E(Z)
is the pull-back of £ by A, is a smooth sactinh of E(Y). wé shall

write J(A)(P) = m(A) onN'(P),

- T(A) )
E(Y) S ?S:E(Z) -—E—Z-E—-——a E(Z)
(CSICO N RN 3
Y ——————— Y - Y A
1 A

Note that, I‘B_atficti'ng § to b(x),' we retrieve the natural action
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of D(X) on T'®E(X) as considerad in Gromov's theory. More
precissly, if A $ U —>V is a diffeomorphism betwesn open subsets
U, V of X and if ¢ s+ V—> E(V) is a smooth saction, then
gA)(F) = @(?\)-lufu}\- . The naturality of the action of B(X) may

be checked easily with the help of (1) - (3) above., In fact,

(4) F(1))(f) =+
and (5) (hoN)(f) = FOI(EHI(F))

where f s W —> E(W) 4is a smooth section and A ¢ Y —> I,

ILs Z=> W are embeddings in ®(X).

Again, if Er(X) ~>» X is the bundle of r~jets of local
sgotlions of é(X), then we have an action. Qr of ®{X) on Er(X)
defined as Pollows $ if A s Y —>»2 is an embedding in ©(X), xEY
and f dis a germ of section of E(Z) st A(x), then WWA)(Ff) is

a germ of gsection of E(Y) at x. Define

\

F(NGT ) =SSN,

Clesrly this action induces the action §° of o&(X) on E'(X)

of Gromov's theory.

Ra.in Gromov's setting, suppose EE(X) —>» X to ba an open
aubbun_dl-e of _Er(X) which is invsrient under the action nf D(X)e
Let T“n EE(X) be the space of continuous sections of E:(X), with
the cﬁmpaf:ﬁ - up.en topology, and Tfr: £(x) C‘T“'m-E(X)' be the sub~
space of sections 'f‘ 3 X —=»E(X) such ’bhat | jrf’(.x)' > E:‘;(X) for ali

- XEX, Then jr indu_c:aa .a_cdntinunus function jr.: If’me(X) -—-?T"OEUT(X_).



§ 2. In this section we motivate and formulate the main {thaorem.

First, we describs an additional condition requiraed to sxtend Gromov-

type results to closed manifolds.

For a manifeld X, the spacse TlF’E(X) is sald to be locally

stable if, for sach section f & T\  E(X) eand esch x € X, there

gxlsats

(1) @&n open neighbourhood U of x in X,
(11) a manifold N with dim N > dim X and U (C Int N,

and (iii) an apen subbundle EE(N) ~»N of E(N) uwhich is

invariant under the action of <D(N), such that

(a) there exists a section P ¢ Fﬂ“’z(n) ‘with

g(L)(f') = fILl:
and (b) i(i)(g')-s Fw"“ E(U) for every g1I € T‘nm E(N),

wherg i s U ~»N is the inclusion. OFf COUTS 8y .'T‘:' E(N) 4is the

subspace of sections of E(N) whoss r~jets lie in E_(N).

~ Observe that, if -Tlij(K) {a locally stable and Y 1is a
submanifold of X with dim Y = dim X, then T."E(Y) is locally

stable ﬁun.

- Bafore further discussion, let us at this point formulate the
theorem that is our objective ¢ | | .
Main Theorem s If X 1is a manifqld whare f:?JE(X) is locally
stable, then the map,

358 TPE(X) = T g0 (x)

13_ E wi hl E-.'
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Yo motivate the definition precsding the theorem, observe
that the difficulty in Gromov's theory with a closed n-dimensional
manifold X _liaa'in showing that ths restriction map

@ ® | |
. E(Xz) ->T‘u E(Xl) is a Serrs f‘ih’raticn when Xl C X, (C X

and X. 1is Xl plus 8 handle of top index n attached. Then

2
there is no room for the transverse deformatione of Gromov. However
if T.T E(X) 4is locally stable then a section f € [ E(X) can

be dominated locally by sactions over a higher dimensional manifold,

That, at least locally, this may be done continuously is the content

of the following crucial lemme which we prove in the next chapter

Main Lemma ¢ If T]?JE(X) is locally stabls, for each section

P € Tl?JE(X) and each x € X, there exists
(i) ean open neighbourhood W of % in X,
. | @®
(11) an open neighbourhood ( 2, of £ in TLJ E(X),

(111) an open subbundle ET(WxDX) of ET(WxD¥),
for some Kk > 0, which is inverient under the actiop of 19(U>ch),
| K
cand  (iv) amep P 3 () ~> T’:J E(Wx0"),
such that | |
(8) "®1)(P(g)) = g |U, for every g€ (),
and  (b) §(iXg') ¢ T"wm E(U), for every g € T’"ﬂm E(W x DX,

1x0 s W —»WxDX,

where 4

With this lemma, the technique of prouing that the restric-

tion map T‘: E(Xz) — T"wm'E(Xl)- is-a Serre .f’ibratiun, when Xz s



Xi plus a handle of top index attached, will, roughly apeﬁking,

be to split a lifting problem:

G
§ — TL?’E(XZ)_

lx0 restriction

v - -
a

where Q is a compact polyhedron; inte a family 6? local lifting
problema ﬁnd extending each such problem to é higher dimenSiﬁnal

manifeld. The extanded-prablams_may then be indiuidu;lly golved by |
Gromov-type methods as there is room in the added dimenslons for

| transuersa'dafnrmatiuns. The local solutions are then pulled bsck

to thﬁ original menifold.

It should be remarked that the local stebility of [ .°E(X)
is the only hypothesis we shall assume in addition to the usual
ones of Gromov fhsnry and that the Main Lemma contains precisely

the additional information required to extend the theory to closed

manifolds.

A further remerk is that; if X is compact, the jat mep jT
of the Main Théuram is, in fﬁct, a homotopy equivalence as its

domain and range are metrizable (see R, Palais [ 22 ]).
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: | CHAPTER 2

Sl e S el

PROOF OF THE MAIN THEOREM

Our exposition is based upon thes expositions of Gromov theory by

Haefliger [13 ] and Poénaru [27 1.

§ 1. Firstly, without going into proofs (available in Milnor [21 1]

and Phillips [23 ]), we record certain facts about the structure of

smooth manifolds ¢

A smooth n-manifold X maylbe repressntaed as the union of an

increasing sequence, |
1l ~ .1 2 p i+l |
X Cx; Cx3 Ceee T3 Cx; CTx7 C o

of compact manifoldes with boundary whers Xi is an n-disc % X% is

the union of Xi and a collarlike naighbaurhnbd (80,
i i+l
2 1
A 1s diffeomorphic to Dk>th

X is the union of 'Xé and A whgre

Xy U ?Xyx [0,21)3 X

K for some k, 0 < k < n, and Xé’ M A

is diffPeomorphic to & collarlike neighbourhood B8 of 30K % 0K

(so, (A, A ﬂx;')ﬂ (ZDRan"k, gty (1,2 ]x Dn—k)); We say that
_Xi+l is Xi with a handle of index Kk _attanhsd. X 4is non-~clogsed

if and only if it has & representation uhere all the attached handles

are of index < n.

w Next note tha-fullnwing propositions which shall be proved

further on $
Proposition 2,1 3 If D" ' is the n-disc, then the map,.
i* ¢ TPe(™) = T° g5

1is a w;h-a;
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Proposition 2.2 3 If X, is 'xl plus a collarlike neighbourhcod,

then the restriction maps,
, V@ o .
JERN £(X,) = T E(X, )
¢ .T o .7
and K3 T°E(X)—=>T E (X))
are both w.he.es and Serre fibrations.

Proposition 2.3 If Y 1is a submanifold of X cof the same dimension

as X, then the restriction map,
K« '° E:;('x) ~» ['° E:(Y)'
is a Serre fibration.

-~K k-l

k and B=5txr1,21x0"¥, uhere

x D"

Proposition 2,4 ¢+ IP A = 2D

k < ny then the rsstriction mep,

J s meE(a) — T"m“’ﬁs(s)

is & Serre fibration.

Proposition 2,5 + If A =20" and 8=5""x[1,21 end TPE(A)

is locelly stable, then the restriction map,
3 T7e(r) = MPE(B)
is a Serre fibratinn._

Ii; is to prove this last propeosition that we shall require the

Main Lemma fnrmulatéd in the previous chaptar.

'Furthar.wa_shaii need the fqlluwing.twu lemmas.



Lemma 2,1 ¢ If in the commutative diagram of bundle maps

0 ’

E
Pl p'
1
B-—E~*?' 8,

p and p' are Serre fibrations and g is & W.h.e., then g 4is a

weheos if and only if its restriction to each fibre of £ i3 & Weh.se

Proof s This follouws from the homotopy exact ssquences of the fibra-

tions and the five lemma. I
The next lemma is from Phillips”f23:].

Lemma 2.2 ¢ If in the commutative diagram of continucus maps

css == ] .. P ———. gy —— Al

i+l i
3341 I 31
: v W _ L d
ese > B ————— O m—'*iii-__"_* B8

3+1 i 11

all the horizontal maps are Serre fibrations and all the di are

w‘h;a., then

lim 3, 3 1im A, —> lim B

e PR G T

is also 8 wsheoo Il

If,.far the present, we assume the five propositions, the main

theorem follows by inductiue argumsnta.,

‘Main Theorem ¢ If X ,is a manifold where T}?’E(X) is lnnélly stable,
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then the map,

572 TPE(x) = T° £5(x)
iz a w.hene

Proof ¢ Suppose X 1is of dimension n. Inductively assume that

jr ¢ I"w““ E(Y) => | E;(Y) i 8 Wehese if Y 1is a compact manifold
(wve essume that each manifold Y considersd in this proof is & sube-
n~manifold of X so thét TL?JE(Y) is also locally stable) which is
a union of handles of index < k, where k < n. Of course, induction
begins with Proposition 2,1. To makalthé induction step we shall
show that, 1f § s [ CE(Y) = T ® EF(Y) 4is a w.h.e., then so is

35 TP E(v™) g oL E(Y') wuwhers Y" is obtained from Y by
aﬁtaching 8 handle of index ke Suppose Y' is Y- with a collarlike

haighbuurhood attached so that Y =Y’ LJA and Y' NMA =B uhere

we have (A,B) = (ZDkan'k, Sk"lx [1,2] xD""k).

Consider the commutative diagram
Iy
MPe(r) ~—s T'° £5(a)

(1) J K
| v \’
" ®e() --;;-—-:» re Ez(a-) ,

where jr is an r~jet map and J, K are restriction maps.

Now K is a Serre fibration by Proposition 2.3 while J is a

Serre fibration by Prﬁpoaitiun-Z.d, if kK< n, or by ﬁrnposition.2,s,
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if k = n. By Proposition 2.1, 3 ¢ T'w“” E(A) —» T'° Ei(n) is & Weheee
Further, by the induction hypothesis (as B is & O~handle with a

(k=1)-handle attached), i & rwcn £(g) ~>» T7° EE( B) is a w.hese Hence,

r

by Lemma 2,1, 3 is & w.h.e. on sach fibrs.

Next consider the similar diagram
I'i jr | T,
FPe(y") == T2 (v")

(2) I . K
v | | v
FPe(y") .——-a»jr _ T er(v').

The pair (Y , ¥') restricts to the pair (A,B) and the restriction
maps diagram (2) into diagram (1) so that the vertical maps of (2) are
pull~backs of the fibrations J,K in (1). It follows that the maps

J,K in (2) are aslso Serrs fibrations and that the restriction of jr
to esach f‘ibré 18 8 WeheBe Furthar-, .jr 3 rme(Y') ——p rﬂ E:I(Y') is
8 Wwoheoe by the initial assumption and Proposition 2.2; So, 2gain by
Larﬁma 2.1, we conclude that ;]r_: T‘w“’ E(Y" ) —> re EE(Y") is a

WeheBe cdmplating the induction step.,

This proves the theorem if X is compact. If X is non-compact
- and 80 not a union of fihitsly many handles, represent X as & union

of an increasing sequence of compéct submanifolda,
| 1 2 : i i i+l
X Cx Cxp Coee Cxp Oy Cx7 Ceee

._ o ot
Then I"w E(X) = lim T (X7)s
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- . i
e E;(x) = if_"l o EE(Xl)

and epplying Lemma 2.2 completes the proof. [l

It should be remarked that if we restrict to non-closed
n-manifolds X (which are representable as unions of handles of
index < n) we do not require'Prupqaition'Z.S or, consequently,
local stability and the above method proves Gromov's theorem.

8 Ze In this section we shall prove the preliminary propositions.
Proposition 2.1 ¢ If D" is the n-disc, then the map,

375 TPe@") —» 9 £°(0")
is 8 WeheBe

Proof ¢+ As D" is contractible, E(Dn) 1s a product bundle Dn><F

- with fibre F . Hence T‘“"E(D“) may be identified with Cm(D_n,F),
T'w‘" £(0™) with an open subspace 'C:' 0", F) C c®(",F), the Pibre
of ET(D™) over D€ D" with J;(D“,F), and the fibre of E.(D")

T n r; N
over O with en open subspace 3. (0,F) C a3.(0"F).

We first show that the evaluation map ,

o o gi(n") —->J§N(D”.F)

defined by e(f) = £{0) 1is a homotnpy'aquiualanca. It x& R" ,
define the diffeomorphism T, 3 R" —=» R" by T {y) = y=-x. Then

I_dafihe

r N "G Teony
. JM(D ,F-_) ~> T Em(D.)_. |
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by cg)(x) =§"* (Tx)(g), assuming O C R", where g & JEN(DH,F)
and x € D" (the definition is proper by continuity of {I and the
invariancs of E:‘; undex the action of Eﬁr) . Clearly soc is the

identity on Jzu(n“,F) and a homotopy H bstwsen coe and the

identity on FUEE(DH) is given by

- P(x), if Ix il <t
H(f:t)(x) = {
J* (T ...’.‘._)(f(t WETI))’ otherwisa,
X =%

where 0<t <1, fe T°E(D"), xeD" Sothemap e is indead

a homotopy equiuaiance.

It is now sufficient to prove that eo0 jr : Fum E(Un) -—-bJ;N(Dn,F)

is a wehees

Consider F as a submanifold of some R"™ and suppose q 3 W S F

is a smooth retraction of a tubular nbde W of F | in ]Rm.

Let g ¢ Si —> 3° (DH,F) C .'.lr(Dn,]Hm) ba a continuous map
oul - 0
from a sphere. Choosing the polynomial representative Ga of degree
r of sach q(s) € JE(DH,IH ".‘), s € Si, we have a continuous map
G i Sian > R defined by G(s,x) = GB(_x), g8 € 51, % & p, Note
that G(Sj"x {o3) C F as G(s,0) =g(s){0) e F, sc Si, so that by

the compactness of 5S> there exists a nbde VY of 0 in D" such

_ i - - :
that G(s"xV) (C W = in other words, . 6. (v) (C Uy s s"f

Now the r~jet at O of qG_ |V is g(s) & a_,(0",F)  for

s €5Y so that by the openness of £°(0") it follous that



a6, |u e T®E(U) for some nbd. U of 0 in V and ell s € 57,
Let w be an embedding of D" in U uwhich is identity on a nbd. of
0. Define § 1 S° —> e e(o") by g(s) = Q(w)(eG, |U). It follous
that (e o 3°){(a(s)) = g(s), s € Si, proving that

Ty W /N r :
(803 ), 3 7 I, g0™) —‘Pﬁi(Jﬂw(Dn,F)) is surjective.

. ol
Next let fU’fl ¢ 5

there exists a homotopy h ¢ 5% % I -&sz(Dn,F) where h{s,0) = agjrafn(a)

— T'wm E(Dn) be continuous mape such that

and h(s,1) = eo jr 0 f’l(s), 8 € Si.' Choosing the polynomiel reprasenta-
tive H_ . of degree r of sach h(s,t) we have & continuous map
’ .
H s Six I xD" — IRm defined by H{s ytyx) = Ha t(x)" Hence define
’ 1
H:stxixo"=>R"™ by
(1-3t)fn(a)(X) + 3tH(8,0,x) y 0 <t 5-%-
- - l 2
H(B,t’x) = H(E’St"'l,)‘) 9 '5' f_ t i "3"
(3t =2)f,(8)(x) + (3 -3t)H(s,1,x), %—5_ t <1

for 8 €S+, t € {0,111, x € D, Note that
Astx 10,1} x 0" yUstxix 18}) C F so thet there exidts a nbds V

of 0 in O" and a nﬁmber v € {(0,1) such that

F(Six(fﬂ,v] J[l1=v,l ])an USixI'xU) C W,

Further, from the openness of E.(D") and ths fact thet f_,p, & [ "E(D"),
there exists a nbde U of 0 in V and 8 number M € (0,V) such

— ® i | == M s ~N
thet o, , (U e TUPE(U), tor (e,t) €87 x1, and i, & TPECO"),

for (s,t) € Six(.[ﬂ,u] U [léu,l])'whara, of course, Ha,t 1t D" R

is defined by ﬁs t(x)# 'I:l'(s,t,x).
| | ’ )



Let w be an isotopy of embeddings of D" in itself such that
w(0) =w(1l) =1  and w(e)(0") C U for K< t< 1-M Defins the

D
Yx1 - TPE(")  betusen P and f, by

i

homotopy h 1-S
A(sst) = Tu(e) (o, o [w(e)(0™)e It Pollows that

(eo3”), ¢ ni(Fw“’E(D“)) > ”1(32w(°an)) is injective.

Hence 80 jr is a w.,h.e. H

Proposition 2.2 ¢+ If X, is X, plus a collarlike nbtd., thsn the

restriction maps,
. @ D
33 T, ey = TR E(x))

and K

L 3

e E;(Xz) ~> FO_E:I(X]')

are both w.hes. 8nd Serre fibrations.

i

Proof ¢ Any -contiﬁunua map g $ 57 —> Fum E(Xl) may be extended Ea

a contlnuous map g" . Si — rmE(U) where V 18 8 nbd'. of Xl in

X, (in fact, continuously chooss smooth extensions across the boundary)
sb that _g'(a) ]Xl = g(s),'s € Si. Since 'Ez is an open subbundle on

manifolds and as _g'(a) |X1 > Ii:JE(Xl), there is a nbds U of Xl in

i

'V such that -g'(a) |U g TZ:JE(U), s €5°., Let w be an smbedding of

.
2
G5t~ £(X,) defined by §(s) = T(w)(g'(s) |U) we have

3(3(s)) = g(s), = s._si,'su that J, :'ni(T‘m”” £(X,)) -+:r1<rw“° £(x,))

in U which is identity in a nbde of Xl* Then for

is surjectivs.



Next, let P _,f, : gL

that there exists @ homotopy h ¢ ST xI —> NPE(X,) uhare

n(s,0) = f (s) | X, and h(s,1) = . (s) |X,, s € 5%

= T"mm E(Xz) be continucus maps such

Let 7T 3 SlxIxxz ~> X,

E =n"E(X,) the pull-back. Then hyf sF

bs the naturel projsction and

1 together give 8 section

E | Six I.x Xl USlx (0,1} x X This mey be extended to a section

2'
(see Husemoller [191), say h', of
E[SixIxUUSix([D,vJU[l-v,l])xxz where V is a nbde of

X in X and W €& (D,1). By opanness of the subbundle EE on

1 2

mapifolds, there exists a nbd. U of X, in V and M€ (0,V) such
, . @ i oy . @

that h! jue NPe(u), for (s,t) €8°x1I, and h i € T, £(X, )

for (S’t) £ sl}( ( ED,LL] U I:l-U-,l ])’ where, of coursea,

' o ot
hs,t(x) h (s,t,X).

Let w be an isotopy nf'ambsddings of X2 in lteelf such that

w(0) = w(1) =1  end w(t)(X,) C U for Mt < 1-K. Define tha
. ' _ 2
homotopy h :Six 1 ---’?r'me(Xz) betwesn FO and f'l by
h(sst) = m(u(t))(h; . | w(t)(X,)). It follows that '
]

), H’i( me E('Xz)) f"")ni(].-‘mm E(Xl)) is injective. Hence J is 8 WeheBe

Next, consider the lifting problem

G
P —N .- T'w“’ £(X, )
1x0 J .
v ®.
P E(X )r

Q):Iv——--—i W

wvhere Q is a.compact polyhedron.
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Let T ¢ UXIXxX, —>» X, be the natural projsction and

2 2
— % 1 |
£ =7 E(X,) the pull-back. Then G, and G together give & ssction

of 3 ‘ DxIxXl J8x {0} x X,. This may be extendsd to a section,

2
say G, 0f E|QxIxU{JUx(01IxX, uvhere U is a nbds of X,
in X, &and M & (0,1). In fact, choosing U and M sufficiently

I
small, we may suppose that G{:I £ IU g TL?JE(U), for (Q:t) &€ UxI,
i ?
and G' . e T®E(x,), for (q,t) € @x [0,4], uwhere
et W y
!

rsq't(x) = G' (qytyx)e

Let w be an isotopy of embeddings of X, in itself such that

w(0) = 1x2, w(t)(X,) C u, for B<t<1l, and w(t) is identity in
some nbd. of Xl, for all t. Then Gs AxI —> l"w“’ E(Xz) defined by

E'(ci,t) = _@(w(t))(G;’t l w(t)(xz)‘) is the required lift for (G ,G ).

Hence J is 8 Serre fibration.

The corresponding proofs for K eare similar. [l

Proposition 2,3 ¢ If Y is a submenifold of X, of the same dimension

as X, then the restriction map,
k3 TP E(X) = T2 g (Y)
is a Serre fibration.

Proof 3 Consider a lifting prnblem_

G
Q > [ ° EE(X)

1x0 | | K
Qx] sy e el(y),

where Q is a compact polyhedron.
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- This may be translated‘tu the lifting problem

G UG
AxIxY Jax {0} X X =t Eo(X)

inclusion | bundle map

natural projection

Since Ez(x) -> X is a locally trivial bundle, it has the polyhedral
covering homotopy extension property {PCHEP, sse Hu [183). Nou

(AxX, @xY) is a polyhedral pair and so the PCHEP provides a lift

G ¢ QXIXX ~—> EE(X) for the second lifting problem above.e Then

G2 QxI—>»TF E;(X) defined by G(g,t){(x) =6'(q,t,x) is a lift

for the first lifting problem. Hence, K 1is a Serre fibration. il

~K k-l kK

KD and B =5 *xr1,21x0",

PrnEositinn 2.4 ¢ If A =2D

vhere k < n, then the restriction map,
3: T PE(R) = I P e(s)

s a Serre fibration.

Proof ¢ Consider the lifting problem

. |

q > [ P E(R)
lx0 J

17 | il

ax1 ——> I'®g(s) ,

where @ is a compact polyhedron. There are thraa stages in the

~construction of & lift.
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(1) By the openness of Ei in €* We may extend G ¢o

K=l n—k)
’

G QxI"-#rme(S X [842 ]1xD for some a € (0,1), so that

6(qst) =G (a,t) | end G'(qe0) =G _(a) | when q €@, t € I.
(2) We require the constructs provided by the following ¢
Lemma 2.3 ¢+ Thers exists

(a) a partition 0=t <t <o tp=1 of I,.

(b) numbers b,c such that a < b < ¢ < L, and

K=l ﬂ”k)
?

(c) meps M 1= TP E(s"“ " x [a,21x0D

i

t Qx [ ti,ti_l_l

for 0 <1< p=~1, such that

G'(q,t)(x,s,y), t = ti’ or ¢ £ 8 £72

Hi(q,t)(x,a,y) = {
G'(q:ti)(xpﬁ,y), a<ls<b.

Proof ¢ As A is contractible, E(A) is a product bundle AxF with

-k) = Sk_-lx [a,2 d x_Dn.kx F. Hence

fibre F so that E(Sk-lx {a,2 ] x D"

FP®es 2ty ra,21x0™%) may be identified with

c® (Sk-]'x [a,2 ] an-k, Fly Pum E(Sk"lx_fa,Z ]an“k) with an open

subspace [ !, C c® (Sk-lx La,2 ] an-k., F) and we may suppose the
map |3I $ QxI ~> ,S 2,. Chnasa'numbara b,ec as in (b) and a smooth
map h s [a,2] => (0,11 such that h|I[ebl=0 and h|Ecy2] =1,

If t!' < t" are real numbsrs define ht"t-" : [B,Z-JF_-') R by
H

.ht' en Loh where L:R =R is the unique linear map with
J | - | |

L{(0) = ¢t', L(1) = t" ., Choose a Riemannian metric on FQ Ey the

compectness of ax5" ™ x [ay21 xD"¥, thers exists €19 &, > 0 . such

that if gty t" e 1 | with t' < th< 1;'+$‘l '_than there is e unique



t'l tll .
geodesic arc 3'\:' ’ : L t',t"] —>F of length less than 52 from
1S sY

G'(q,t")(x,8,y) to G'(q,t")(x;s,y)s Hence define the smooth maps

iy,

toen -
uq,t BTy gkl La,21xD"™ —»F by

T 1 4N
“ﬂ’t € (xlsiy) = hq’t & (h (8)).
: K,E,y tI’t“ '

| ' '
ag udrt et o G (g,t') € () which is open, for all t' € I,
! 1] :
there exists € > 0 such that MV'° % ¢ () 1p (t'- " | < &,
Now choose a partition as in (a) with the ti SBtia'Fying ti_}_l-ti'( €,
0 <4< p-l, end define M, ¢ OxI ti'ti-l-_l 1= () by

ui(q!t)(xtalff) = uq'ti’t(xiﬂg}')- ”l

(3) With ths maps }J-i,'ﬂ < i € p~l, provided by the preceding lemma

in hand, we prove ¢

Lemma 2.4 (Inductive Lemma t Suppose for some m, l<m¢< p=l, va
heve a lift G 3 Gx [0,t 1 —> NP E(A) such thet G (q,t) = G (q,t)
on sy }\m,Z ] an_k, for some _?xm with b < ?\m < 1, and such
‘that Gm(q,D) = Gd(q). Let € & (0,1) be given. Then there is a

A with ?\m < }\n'ri'l <1 and a 111’?.

mtl |
' Kk n=K - |
Gooq 3 9% D048 g 1> rumE(ZD x€ D) such that Gm_i_l(q,t)=i3'(q,t)
k-1 n-k A _ | |
on 87 T x T A 492 1xed" and Gml(q,ﬂ) = Gn(q) I

Proof ¢ Choose numbers «,B8 . such that ?\m <ag<B <1 andusing the

fact that k < n define an isotopy Ht t A—>A, 0L t < tm.'. such that.

is the identity on a nbd. of 8 °A and on & nbde of

t
X i?im'ﬁ X E:[Jn"_k

(1) H

gk=1 , 0< LSt
==
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s k=1 n~k k=1 -k
(i1) H(sT7"x TN y21x D7) C 87 x[e,21x0™", 0<t<t , and

(111) H, (8" x 0a,81x 80"*) C % (a,b1x0™ K,
m

Figure 2.1 indicates the construction of H, - |

Next defimne
)

Dy

. | o _, K n
Gy ¢ 0% [0y, ] —~> [P e(20%x&0

(G (ayt)(xyy)y Nx L&A, 0SS

/ BCH, ) (67 (ant))Oxay)y A S I 1182, 08 8 <t
Gm+l(qrt)(x!Y) = |
I_(Htm})(gm(q,t))(x‘,y). e lixl g2, t St )

GWl(q’tm)(x,y), “K“ i CL; tm i t S' tl’l’l""l

where (x,y) & 20X x 0™ K and (get) € Gx T Oyt 1y 1+
1
U(Htmi)(uh(q’t)) ' G pq (st )
U(H, (6" (a,t)) G (ayt)

{
-
|
— .

2 N -« N B 0

Figure 2,2'
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See figure 2.2.We observe that the second line i{s wsll-defined becauss
of.(ii),and that the first and second lines agree smoothly when

I x 1l = A because of (i) and the fact that G (q,t) = G'(q,t) uwhen

Il ?xm . The third line is again well-defined because of (ii), and

the second and third lines agres when t = tm bacause

L (ayt ) = 6" (gt ) By (1ii) and the fact that

Hﬁ(Q:f)(er> = G'(q’tm?(XrY) for a g lixll £ b and tm =t E'tm+l:

we have that G t) = 6 q,tm) for «< llxli B and

m1 (91 1

t <t<t so that the fourth line fits smoothly.

m m+l?
Noting that Ez is invariant under diffsomorphisms and that
U(H, ) varies continucusly with t we see that G, 1is indeed &
continuovs map Qx [ 0y8 11 7 —-> Fw‘:“ E(ZDkxEDn_k) ¢ finally {i) permits

us to choose & suitable hm+1 to complete the proof of the lemma. i

To complete the proof of the proposition,ocbserve that, considering
A as embedded in Iin, we may, by the openness of E$ , extend the

original lifting problem to the problem

A
g ——2—s [P (20" xn0"™)
1x0 | ]

M H M Y el Nk .
uu-—-—-—-—-——ﬂ"w E(s" ™ x [1,21x00""),

where N > 1 and Go(q) ='Hn(q)_[, G{q,t) = H(a,t) | » Obtain maps

Hy s

Let N =7_2> n1_>'a-->ﬂﬂp , =1 bean arbitrary sequence. Ue have

0 < i< p-l, by applying Lemma 2.3 to this axtended_problem.
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8 1ift H, on Q)([ZD,tl 1 for the extended problem by dafining

Ho(aye)(x,y)y, lixil2a
Hl(Qrt)(xry) =
Ho(a)(xay)y Hixil g a

where (x,y) € 20k>rn0”“k. Next, repeatedly apply the Inductive Lemma
to the extendsd problem so that after the mth application, 1< m < p-~l,

ve have a lift H . ¢ Qx [0, . 1 — [P g(20" x'an”"“) satisfying

mtl w1

_ Kel Nk
Hm_i_l(q,ﬂ_) = Hu, Bnd. Hml(q,t) = H{g,t) on S Tx [1,2] xn D

(note that with each application we need only restrict the domain of

the ui(q,t) without altering the parameters t, or a,b,c). Finally,

K

i

it is Hy ¢ Ox 00,17 = M P E(20%xD7™) uhich solves the original

lifting problem and completes the proof of the proposition. i

It might not be out of place to point out hers an insccuracy in
the corresponding proof provided by du Plessis (5 ] (fnllowing Haef liger
[131). He attempts to complete the proof, after deriving the Inductive

Lemma, in the following manner 3

First define

Gyt Ax [0, 1T 7 £(s< L x T, 027 x 0" K 20K xe0™) by
o 6 (q,t)(x,y), (x,y)& Sk"lx [ ?\m+l.’2 ..'1 x DN
6oy (3rt)(xyy) = { .
. Gml(q,#)(xiv), ' (X.y)HD Xx& D
Then define G;ﬂ : O x E'D,tm_i_-l ] — r‘f E(A) by

' | . .
Gﬂ.ﬁ,l(qft) o E(ht)(sr:ﬁ'l(q’t))’ where ht ' ¥ i t'S.. tm'l'l ) is aﬂ J.Sﬂtﬂpy
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K

of embeddings of 2D x DK

into itself such that ho is the idantlity,

h, is an identity in a nbd. of 8 in A, for all ¢, and,

K -k

t

k=1 N~k n
n () C 8 T x LA s 2 Ix0" Y20 xe0™™, for t 3t /2.

However, this definition falils as, for small ¢, ht(x,y)'lias

el K ~K

outside O % L A 2 1X Dn"k L1 20 x €D s the domain of

mtl?

’ q}t), for some (X,y) € A.

Gt

Main Lemma 3 If Tl?JE(X) is locally stable, for each section

PE rme(X) and each X £ X, there exists
(1) an open neighbourhood W of x in X,
(11) en open neighbourhood (), of £ in T " E(X),
(1i1) ap open subbundle tz(w><0k) of Er(w>+Dk):
D(w x o)
for some Kk > 0, which is invarlant under the action of ( x[JI '
| @ -k
and (lv) a map P 3 { ), > FD E(WxD"),
such that
(a) §(1)(P(g)) =g |u, for every gt (),

and (b)) B(1)(g') & T'®E(W), for every o' & T E(Ux0"),

where i = 1x0 ¢ hJ—-I'UJka*

Proof ¢ Suppose Tl?]E(X). is locally stable and choose x & X and

f e Tl?JE(X). From the definition of local stability we have the

following 3

sn open nbd. U of x in X,
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a menifold N with dim N > dim X and U ( Int N,

an open subbundle E;(N) of EF(N) which is invariant under

the action of D(N),

a section f' & T CE(N) such that §(i)(f') =f|u, end

the fact that

§(1)(g") & T®£(u) for every g' & I'TE(N),

where 1 t U --_-)N is the inclusion.

Consider the disgram

{ i)
E(U) —:'ﬁr-l-(-—?-—a» E(N) | U —P-z-&—-——) E(N)
(i)
proj. OTG] e Proje.

where H(i)o@_l(i) = lE(U) and @2(i)oﬁl(i) = P(i). Siﬁce
H(i)t:@l(i) is the identity, 7(i) is 2 surjective submersion on
fibres. By restricting to & tubular nbd, of U in N we may
suppose that N =UxOX, where k = dim N - dim X > 0, and that

{3 U=->N is given by i(u) =(u,0). Further choose so small a nhd.

W of x in U and an € > 0, that

L™

E(U) |V == WxF

E(N) |UxepX Uxeokx F'

-

E(N) |'i]1" ~ UxF',
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identifying W uith-lﬁ>< {0} , and where f and F'  are the fibres
of E(X) and E(N), respectively. The following commutative diagram

arises

E(N) [U 2 UxF' ~——> UxF ~ £(U) llﬂ

Proje proj.

&) <
£ €

w

1.
7
where 1 = 1x0 : U —>Vxeo0X,

Stnce N{L)(F'(x)) = £(x) ahd, as observed, /N{i) dis s

surjective submersion on fibres, we may choose local coordinates
(wl,.-Q,Nn) inanbd, W of x in ?H,_
(wl,...,wn, yl,'...,yp) in a nbde WxY of £ (x) in WxF',
(Wypeass y 2 peeerz ) in anbde UxZ of f‘(x) in WxF,
where dim F'_==p 2 q = dim F, such that
H(i)(ul’f"'un’ yl,...,yp) = (wl,...,wn, yl,...,yq).

Assume that Y and 2 are identified with WP and RY via

the coordinates (yl,...,yp) and (zl,;..,zq), respectively. Define

a local right inverse K s WxXZ —=»WxY of (L) by
k(wl,lil ’Un’ Zl,n-- ’Zq) = (wl,‘*.'fmﬂ’ 21,-rt’zq’ Ur-i!.’ﬂ)i

Since the restrictions of  E(X) over W and E(N} over

m;<a[99 ara-triuial we may consider f |U. ss a map from W to
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( K
and f IthBD as a map from lJJxEDk to F' with F(x) € Z and

F'(x) e Y. Choosing smaller W and €, if necessary, we may suppose
l K

W) C Z end f (UxeD") C Y. In fact, we may further suppose
I

there is a nbd, { 2 of §f in T'fs(x) such that g(W) CZ for

o P |
g &), . Then define the map 0 ¢ () = IP"Pr(uxep®) by
ﬁ(g)(wl,...,un,d) = f'(wl,...,wn,d) fkf‘(wl,... ,wn)+ kg(ul',“. ,wn)

where (wl,...,un) =W, d € pK (use the smooth identifications

v =2 RP, 2~ R? for arithmetic).
Observe that O(f) = f" Il!Jx BDR and that

(1) oP(g) o 1wy o0 ,wn)

m(1) oD(g)(wl,... "‘”n’D)

n(i) {Fl(wl,i-i rlﬂnjg) - kf(uli"'twn) ¥ kg(ul?“'imn)}

1

) s

g(ml,...,wn

as - .T(1) {f'(ml,...,un,O)i = F(W geoegw ),

proving that {i)oP(g)oi =g |U or, in other words,
P(1)(P(g)) =g |u for ge ().
Since P(f) = p' llﬂx E:Dk ¢ Fom_ﬁ(lﬂx EDk)., there is-a nbd, S !,

P’ .
of f in () such that P({ )) C rlﬂcn (W x E:Dk) recalling that

| E;(N) is open in Er(N). The lemma is Finaily obtained by 1identifying

EZDk. with Dk.' Observe that condition (b) is directly a consequence

of the definition of locsl stability. |l
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Proposition 2.5 1 If A =20" and B=5""'x (1,27 and [ PE(A)

is locally stable, then the restriction mep,
J s T“f E(R) —> Pum £(B)

is a Serre fibration.

Proof ¢ It is sufficient to show that J has the local PCHP

(polyhedral covering homotopy prnperty). S0 ahppuse f & T‘f £E(8).

From the locsl stability of T‘m‘“ E(8) and by the Main Lemma, we have

for each x & ™% (= 50=L i1} ) ¢

a nbde Nx[l,1+d3J of x in s"1x[1,21 where N is a

nbde -of x in 5”"1,'

anbde () of £ in T@E(s"xr1,21),

Kk
an open subbundle Ez(Nx (1, 1+d ] x Dk) of E(NxC 1,1+d] xD )y
where k > 0, which is inuari.ant under the action of

NN x [ 1,)1+d ]ka),

a map P :Q—-b T'Dm E(N x [1,1+d ']ka), such that
§(i)(P(g)) = g{Nx [ 1l,1*d 1, for each g e ()

§(i)(g") e T'®(Nx [ 1,1#d1), for each

o' & T'® (Nx [ 1,1+ Ix09),
. I. ‘qlI
where i = 1x1x0 $ Nx [ l,l4dJ ->NxT1,l+d 1xP"

. . | -l
As Sn_l js compact there is a finite subseat {xi"ﬁ of S_n

| - n=l | _
s0 that the corresponding {N,} cover 57 . Let ()= ? ),
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and d = min di' Now, consider the lifting problem
i

G

)

I1x0 J

L4
0xI ""'P"""*Dr

whers { Is a'cnmpact polyhedron,

Smoothly extend G to a family

G 3 B xI —-brmE(Sn-lx { l1-a, 21}, a€ (0,1),

so that G(q,t) |s“"1x [1,2] = G(q,t) and E(q,ﬂ)=GD(q) 15““lx [1-a,s2 1.

For 0 < s < g, defins LB 3 Sn"lx (1,21 -—)5“'-1'}( (l=8,27]. to

L T

be the diffeomorphism given by linear expansion along radial segments.

Define A ¢ QxIx [(O,a} -=> PmE(Sn"lx [1,21) by
A{q,t,s) =i_]1(l. ) (G(qyt) ISn“lx [ 1-s,2 1). As A(q,t,0)=G(q,t) ¢ (),
for (Q,t) € Q)(I, by the continuity of A and compactness of UxI,
there is b > 0 such that m(Ls)(EYq,t) |Sn_l><E 1-8,2 1) s in (),
Cfar 0 < s < 2b, (qpt) € QxI. Now, identify S"Tx [1,21 with

Sn*lx Cl1-2by,2 1 by L and correspondingly ildentify E(Sn-lx (1,2 1)

2b?
- - - -] |

and EE(8™1x £ 1,2 1) with E(S™*x C1-2b,2 1) and ET(s™x [1-2b,21),

respectively, by MLZb)' By theéa identif‘icatﬂiona, there correspond to

the families

v, x 01,1+ 07, () (C TRes™ x 01,2 1)),

K o K

c (N x C1,1+4d 1x0 *) a subbundle of EF(N; X T 1,140 x D iy
"k

S ), —> rmE(N x [ 1, 1+d ]xD i) the f’ﬂllnwing f’amiliea, respec—

and

tiUElY'
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v
N, x [ 1-2b, 1+e 1, (), (C T’wms(sn“lx [ 1-2b,2 ]),

| K K,
EI(Ni x [ 1-2b, I+c 1xD *) a subbundle of Er(Nix [ 1-2b, l+c 1xD ),
K,

~ v
and 0, 3 (1) —> rimE(Nix [ 1-2b, 1te 1xD *).
Choosing b sufficiently small we ensure that l+c = L2 b(l+ d) > 1.

P

Most importantly, observe that E(q,t)-\Sn_lx [1-2b,2 1 < Q

for (q,t) € @xI. This was, in fact, the object of the identifications.

Henceforth, suppose the domain of each E(q,t) to be

5" [1-2b,2 1. Define G t QxI —> I"wm E(s”"lx [1,21 U (1=b)D") by

G(g,t)(x), x € Sn"lx [ 1,2. J

G'(‘-'Ht)(x) = {

5,(a)(x), x & (1-b)0", For (q,t) € UxI.

Putting X = Snwlx {E l2by, 1-b 1 {4 L 1,1+c ]} BNd

Y = 5n"lx [ 1-2b, l+c ], it is sufficient npow to lift (G' \X, G

1 v).

0

Nl

Note, G'(ayt) |87 x [ 1,l+c 1 = G(qyt) |,

6" (q,t) | 5" x T 12b, 1-b 1 = B(q,0)|,

.

and Go(q) ‘Y =E(q,0)l.

Let K be a triangulation of 5"~ cach of whose (nhi)-aimplexas
JA| liss in exactly one of the nhds. 'Ni’ say Ni(ﬂ)' For each simplex
C of K, choose an open nbd, N(C) nf‘ |C I x [ 1=2b, l+c 1 such that
N(C ) C Ni(ay X F 1=2by 1te 1 for sach (n-l)-simplax A - suoh that C<A.

Dsins “Hg XESWRECON: 4(8),

by M) =7, (A)(s (3,0)) [N(E) xO -'L(“)
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k
and lﬂ‘H[: t: QX —> T"i“'(:’ﬂ) EC{N(C) ﬂX)xD i(A})

k
by "W (qyt) [ N(C) N (8™ x [1, 14¢ 1) x D 1(R)

s - K
ﬁ’i(ﬂ)(G(q,t)) .N(C) N (s™* x [L,1+c]) x 0 1(A)

and "HC(q,8) | N(E) N (8"Lx € 12b,1-b 1) xD +\A)

= B, (y(&a,00) [0(e) N (5" x £ 126, 205 1) x0 L)

for each C € K and sach (n~l)-simplex A such that C < A

_ e .
(all well-defined as G(q,t) is in L)

Denote by KJ the j-skeleton of K and supposs inductively

y

that we have constructed, for some j > 0, the following ¢

(i) a nbde N(C) of ICIx [ l-2b, 1+c¢c ] 4in N(C) for each

(j=1)~simplex C so that
N(Kj-l) =X {JUIN(C) s C is a (j~l)-simplex of K}
is a union of X and nbde of | KJ"l | x [ l=2b, 14c ] in Y,
j=1 By j=1 : ' =l
(1) 67" 2 Qx1 —->T‘u E(N(KY™)) lirting (G' |X, G, | N(KYTT)),

K,/
and (iii) an ¢ UxI =—> i”E’A)E(N(c)xD i( )) 1lifting
’ |

i

" _
("W | (N(C) N X)xD "(A), P‘HE | N(C) xD jn‘)),, such that

(a) 'E(i)(AHC(q,t)) = Gj-l(q,t) |» for each,(jwl)-aimplex C

and each (n—l)uaimpiex- A such thet C < A, where 1 = 1x0 ¢

.
N(C) <‘——>_'r'4'(_c)xo 1(A),

. . ‘ | I | .
Further, if both (j-l)-simplexes C, C < A, an (n-1)-simplex,

we should have
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(6) P(aq,t) = "' (a,e) on (R(C) NF(C")) xo HA),

J

We may begin induction with j =0 when K = = ¥, Choose

1 - -
a nbde N'(K3™) of x U ) kIt « [ 1=2b, 1+c¢ 1 in N(KI™1) and
for each j~simplex E choose a nbde NCE) of Ex [ 1-2by 1l+c 1]

in N(E) such that

_.'PT(E) AN (kI C uiNE) s ¢ 1s a (§-1)-simplex, C < 3F
and there is a diffeomorphism

(NCEY, WCE) NIN'(K3™H)) =~ (203" xo™ 31 53y r1,2 1x0™37h),

Then, for each j~simplex E uwe have a (j+1)~handle 1ifting problem

N
Q ———-9-|-—---> [ P E(N(E))
1x0 J

',L . l |
gx 1 A=y TP g(R(e) NN (k37))
and for each jesimplex E and each (n-l)=simplex A such that E < A

we heve & (j+l)-handle lifting ﬁrnblem

A E
Hal

K
Q ————— i?ME('ﬁ'(E)xD i(ﬂ))

Ix0 J

v AﬁE :L - Vo gl ki(ﬂ)
QX] ———te—d T'i(ﬁ) EC(N(E) NN (KI™7)) xD )

o AsE _ AC = k1(4&) ' g
 where uve define H~ = H (g,t) on N(C)xD - well-defined
by (b) above. Obssrve, for sach (n-l)-simplex A such that E < A,

§(1)*E(a) = 6,(a) | and E()*Ca,e) = 63Ma,e) | by (a) sbove.



To make the induction step consider two cases

Firstly, if J < n~l, wuse Proposition 2.6 described bslow to

AE A~E A E \AE A’
find lifts "H™ for (' H-, Hﬂ l) such that m(l)( Ho) = I(L)( HE)
for (n~1)-simplexes AA' such thet £ < ﬂ,ﬂ'. Then define Gj on

N(Kj) =X U UIN(E) s E is a j=simplex of K} by*

BCLPRE(q,e)) (%), x & N(E), £ a j~simplox of K

Gj(qtt)(x) “{ )
637 a,t)(x)y x & &' (K37,

Secondly, if J = p-1, use Proposition 2,4 to find lifts RHH_
for A A A A\ Then define 6"~ on
NCKD 1 = Ui N(A) ¢ A 1s sn (n-l)-simplex of K§ =Y by

Gn_l(q,t)(x) =q_(i)(AHH(q,t))(x) for X E A, A an (n-l)'-simplax

of K. Then, 6" is.a lift for (G' | Xy G, [ Y¥)e

Proposition 2.6 ¢ Suppose A =20°x0"%, 8 =5kt xr1,21x0"¥

where k < n, and suppose,for J = l,.ss,r, we have open subbundles

K K

EE(A:&D j) of E(AxXD j), each lftJ » 0, which are invariant under
| K

the action of DA %D j).

Suppose we have & lifting problem

G
g —=—> T 7 E(R)

1x0 J

Ox] —> T"wm.E(B_)
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and l1ifting problems

G K .
g —2 s '@ eaxp J)

J

1x0 J

Vv G N 4 L
Ax] =t rij(BxD 3y,

Q is a compact polyhedron, 1 < j < r, such that

CU1)(6 (@) = 6,(q) and F(i)( Gla,t)) = G{q,t)

for qEQ,tEI,lijf_r-

it —

Then there is a 1ift G of (G,G ) and lifts G of

( Gg) such that

30 5

D(1)(,6(a,t)) = Glayt), (apt) € Ax1, 1< < re

Proof 3 The constructions parallel that of Proposition 2.4.

(1) Extend 6 to G ¢ QxI —> T‘w‘“ E(l) where U is 2 nbd. of
B in A so that G(q,t) = G'(q,t)[ ‘and G (g,0) = GG(Q)l for
q€ Q, t €1 (use the openness of E:(A)).

 Then extend each jG' 1< jsr, bo

t

K . '
& s a1 > TPe(ux 0 JY where U, is a nbde of B in U

j , e U
s0 that jG(q,t) = jG'(Q,t)|, jG'(Q;U) = jGﬁ(?)l Fﬂrl q &y t i I,
and (1)(,6'(q,t)) =6'(ayt) | U, where i=1x0.1 U, —>U, xD i,

These extensions aha obtained as follows ¢

Fix j, 1< j < vo Consider the bundles E(A) —>A and
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Kk
E(AxD j)|ﬂ"5ﬂ (A=A x 10} ). <at P2 AXUXxI —>»A be the

natural projection. Since (i) in

E(A xD J) A--—->E(A)
bundle bundle
prUJ‘ prGJ¢

is a surjesctive submeraion on fibres (comparse Main (emma), g0 is

ptn(i) in
# | |
*(E(n x D 3) JA) ey P (1) pYE(A) .
pullaed~back pulled~back
P?Djr PfDJ:
AxQxIs

Now, G' and jG Lleu ’ provide partial sections of the two

pUlled-back bundles in a commutative diagram

k *
p*(e(a xD ) |A) L), p*E(A)

JGUjGo' G,

lhﬂln

BxQxI U 4 xQinjC—'————wxaxr.

For each 8 & Sk"d)q {1}_x Dnﬁkl (a point on the inside boundary

of 8), gt Q, t € I, we may sst up local co-ordinates in a nbde. of
Glart)(s) tn' p*(E(AxD 3){a) and in & nbd. of G'(q,t)(s) in

P*E(A) so that p*M(i) is the natural projection. By the local
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triviality of pYir{1), ws may extend ;jG U 46, to cover G' over

a nbd. of (s,q,t) in UxUxI. Finally, using the compactness of

~1 ~K
s¥ "t xD"™ xQx1 to plece together the local extensions, it is

possiblas to sxtend jG U jBn to a section E, covering FI’

]
defined on ijQxI where U, is anbds of B in U. HNext,

considering jB U jEI as a (Qx1I)~family of smooth sections of

K K |
F{(AxD j) I BxD J U Uj x {0} , we may extend smoothly to

K

jG' t QxI *—&PmE(ijD j).

| K K
Since j-G (gyt) | BxD 9 & ij (BxD j), (qet) € Qx I, we may

(by continuity, openness, atCs ) choose @ 3 (D,1) such that

| K .
jG'(q,t) Isk"lx [ g,42 ]an'kxD J is Ej-ragular (a section
P e X ~»E(X) is E;-ragular if f ¢ T’j""E(x)), and

-K

G'(q,t) lsk"lx [ a,2]x p" is Eﬁ-ragular, for each j and (g,t).

Henceforth, suppose jG' and G as defined on these restricted

domainse

(2) As in step (2) of Proposition 2.4, construct
(a) a partition 0=t <t <ot = 1 of I

(b) numbers byc such that 8 < b <pc<l, and

K
- | - - ., y
Pyt AX bty ) — P e(s" ™ x [a,21x0"x0 )

-1 K
(c¢) maps M, ¢ thti,ti+l]—->rme(8k x [ 8,2 1xD" ")

such that
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Gl(ﬂ:t)(x:ﬁiy), t=¢t or c < 8 <2
“i(Q,t)(xrs r)’) = E
G'(Qati)(X|3:Y): a s s b

jG'(q,t)(x,s,y,z), t=t, or c<s £ 2
3 i(Qst)(x 3!?12) {

jG'(q,ti)(x,a,y,z), a<s £ b,

We outline the construction. Henceforth, denote

s*lxre2 1x0"* by C_

| Vo
" Find an € > 0 and maps “g,t 't “for t <t"<t'+e

exactly as in step (2) of Proposition 2.4. Define

: |
bt C, x0x Ct',t" 1—=>F by pE 't (x,8,y,q,t) = TRLAIR A PPNV

ti gt"

where (x,s,y) € C,» 80 that K is smooth with respect to X,8,Ye

Ennsidar also G' and G as maps from C x@x1 to F and

J
C x D jxﬂxl to F' , respectively, whara F and F' are the

'yt

respective fibres., Observe that u is homotopic to

G |Caxl} X L t', tf' T (move aleng the unigue geodesic arcs - sae
Proposition 2.4). Let p s C_x@xUt',t" I —=>C_ be the natural

projection. Pulling back the diagram of bundle maps

n(i)

E(C xDj)lc ———>€(C_)



by p we have the diagram of hundle maps

pr(E(C_xD j)Ic )-—E-E(-—l—-e»ps(c)

N

C X Q X Etit]

where p*ﬂ(i) s a surjective submersion on Fibres. Now we have &

diagram of sections of the prsca'ding bundle meaps 80 that the unbroken

lines form a commutative diagram ¢

k. ptr(i)
*(E(C xD J) lc_) —-—-—-——-——->p""E(EE)

E_xax I ¢t 1.

As in the previous stap we may set up local coordinates in & nbd, of

each point of the total spaces so that p*H(i) is lnbally a natural

If we took care tn choose € > 0 8o small that the pathS,
g

projection.

above each point of the base spacs, of the homotopy betwsen ut r

and G [ lay within such nbds. we could lift the hamo__tnpy (ansuring'

that paths theat are stationary with the homotopy 1lift to stationary

R |
pathe) and so find j.Ult 't (the unmaerked line in the diagram) such

that p"‘n(i)gju“"*t" = ut' 2" | 1pe partial sections defined by

' B
j“'t 't . on Cax iU} x Qx [ tljt"' ]y
‘ K. kj o .
jG on C_xD Jx.Qx e} U ¢, xD _lex_E-t_'pt"l



and jBI(X’}’fq’t') at (X,}‘,Q;t) whan X & %kﬂlx [E,b:] KDn—k,

K,
may be smoothly extended to all of C %D Jxux bt t',t" 1. Choosing

t',t" closs enough to snsure E?-—ragularity of such extsnsions,

we obtaln the required maps j“l'

(3) The following lemma holds (compare Inductive Lemma of

Proposition 2.4) ¢

Lemma 2,5 (Extended Inductive Lemma) ¢ Suppose for some m,

l1<m<p-~l, we have a 1lift

Gt Ax [ 0,8 I~ M PE(R) and lifts

| - K
j%;cucaﬂm:—aﬂfuan:%,lijgr,

- sych that for some Am ;, where b < hm < 1,

Gp(drt) = 67(a,t) on C) G (3,0) = G_(a),

e | K,
- 1] J _
ij(q,t) = jG (q,t) on Chm><ﬁ ' ij(q,ﬂ) = jGG(q), and

ﬁ(i)(jcm(q,t)) = Gm(q,t), for (qyt) € Ox [ 0,6, 3 and 1< J <.

Further, let € € (O,1). Then there is a hm+l' whare hm < hm+1 < 1,

and 8 1ift G, 2 Qx [0yt . 1=>T PE(A) snd lifts

i1 mt 1

”
: Qx [ O,t 1-«-}1";"5(“0 Y, 1<3¢<r,

38m1 1

"

l —1
such that Gm+l{q,t) G {g,t) on Gy 9 Gm+l(q,0) Gu(q),
mt 1
| Kk
_ ot wn 3 _
j5m+1(q't) = G (q,t) on c?\mlxn : jGMI(q,o)gjsa(q), and

m(i)(jﬁnﬁl(q’t)) = Gm+l(q't)' for {q,t)EQx [D’tm-h-lj y lf.jir'_ :
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Proof ¢ This lemma may be proved exactly as the Inductive Lemma of

Proposition 2.4, provided we use the isotopy .Ht><l i s
D

K Kk
AxD J 4 x D J simultansously with the prescribed isotopy

Hy ¢ A =>A.

We proceed with the induction, again as in Proposition 2.4,

first extending the lifting problem by replacing Dn*k by

TIDn_k , 1< 7, in the statement of the proposition. Obtain the maps

M, and j“'i’ D<igp~l, 1< 3j<r, aof step (2) for these
extended problems. Define a lift H, and lifts jHl' on Gx [0, t,]

for the extended problems by

po(ut)(x,y), lx 1l 2 a
HI(Q¢t)(er) = |
; | Ga(Qrt)(Xﬁ)r txil £ a,

R jno(q.t)(xw')j I x J} 2 e .
j”l(q,t)(x:y)- ={ | |

jGn(q,t)(x,y), Il xil <a.

Of courssa, G0 and G correspond to the extended problem.

j o
This starts the induction and repeated application of the

Extended Inductive Lemma leads to a solution of our original problem. Il
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CHAPTER 3

APPLICATIONS

Throughout all the sections of this chapter X and Y will
denote Riemannian manifulds of dimension n &and m respectively.
If Z 4is a submanifold of X we shall teke for E(Z) the trivial
bundle ZxY =» 2 with the functor § ¢+ B(X) = S(XxY) defined
by F(N)(xyy) = (Mx)yy)e Then FPE(X) may be identifisd with the
.apaca c® (x,Y) and E'(X) becomes the r-jet bundle I (X,Y) =» X,
and ©(X) ac.ts on the right of T®e(x) (ﬁr E"(x)) by the composi-
tion 'ulf_maps (or jaté). Furthery if A 3 Z —>» W is an embedding in

8(X), the map 7(\) ¢ 2NE(w) —>» E(Z) 18 defined by (z,}\(z),y)'k—}(z,y).

§ le k-mersions : Let Ei(x) (:;EI(X) bs the subspace of l=jets of

" maps X —>Y of rank at least k whers k < min {n,m). Then

TLF]E(X) is-tha spacse MErk(X,Y) of k—marsinhs of X into Y and
Tﬁo Ei(X) is the apaca Hnmk(TX,TY) of tangent bundle homomorphism

of TX 4into TY whose restrictions to each fibre has rank at lesast K.

Locel stability may be realized for Nerk(X,Y) if k < me In
this case, for any k-mersion f ¢ X —>Y and any point X E Xy thérg
is an open nbd, V of X, in X, and k vector fiélds ul,...;uk
on V such that df’lx (ul(x)) ,-..,cW’Ix:(uk(k)). are linearly inde-~
pendent for x € V. Let B8 be a closed n=-ball in V cnntaihihg X e
'Fixing a Riemannian metric on Y, we may split the pull-back bundle

(¢ | BY*TY of TY by f|B so'that (P|8)'TY =L@N where the Fibre
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of H over x & B is spanned by df | « WO eengaf | (v, (x))
and 11 18 orthogonal to M, Let f s (f , B)*TY —> TY  be the
canonical map of the pull-bsck. Let G be a nbd, of the zero-
saction of TY on which the map Exp ¢ TY —> Y oiven by txp (x,v)

= expxu, 8xp .being the exponential map of the Hiamannian connection
of Y, is defined. Since B iﬁ compact we can choaoss € > ﬂ 80 that
the € -disc bundle N essociated to 1 is maepped into G by .
We check easily that the map Pl = Expn(F l N) ls a submersion N —> Y
and that f'.|B = f |B- Moreover, since dim N = mi-n-?k, for any
submersion g' $ N—Y and any embﬁddihg As B->N, rank g‘n?\ >
renk g' + rank A={(m+n=k) = m+tn-(m+n=-k) = k, by Sylvester's

law. In particular, any submersion g' $ N—>Y restricts to a
ke-msrsion B8 —>Y. Thus, if we allow E(N) to be thé tfiuial'bundla
NxY and Ei(N) the subspace of l-jets of local submersions N --}_Y,
then the conditions of local stability may be seen to be satisfied by -

taking U = Int 8. Consequently we obtain the k-mersion theorem of

Feit [7 ] ¢

Theorem 3.1 (Felt) 3+ If k < m, then the differential map,

d s Nerk(X,Y) — Hﬂmk(TX ,TY)

is a woh.e,. Hi

§ 2, Non-degenerate immersions ¢ For & fixed integer r 2 1, the

r th order tangent bundle Tr(){) of X is the #Bct_ﬂ? bund;e of

linear differential operators of order < T on smooth real valusd
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functions on X. If XyyeeeyX ~ Or8 local co-ordinates around X 8 X,

then the fibre Tr(X)x 1s the real vector space spanned by the linsar

functionals Bk/BXi ...bxi I
| 1 k

The fibre dimension of Tr(x)- may then be sesn to be

x,likf_r’liilinvniikinr

(F'l+ i —l)

)J(n,r) = :

Ht

i=1

If f ¢ X —=>»Y 1is'smooth, there is induced a vector bundlse

homomorphism Tr(f’) s Tr(X).--} Tr(‘l’), covering f, which is defiped

by Tr(f‘)(u) = up f* where f' ¢ cP (v, R) =»c®(X,R) is the

function composition on the right by f. Clearly Tr is a functor
from the category of smooth manifolds to the category of smooth vector

bundles and we have Tl(X) = TX, the usual tangsnt bundle, and

Tl(f) = df, the usual differential map. Gensrally, Tr(F) is callsd

the r“ﬂ1'obdar differential of fo

For each r 2.2 we have a naetural exact sequsnce of vector

bundles

I P
0 -——-)Tr_l(X) — Tr(x) ——> 0F(TX) —> D eea{l)

whers Dr(TX) is the r~fold symmetric tensor prnduct of TX, Irwl

-1

is ths canonical inclusion, and pr-l =m._q .::Hr_l where

Mo Tr(X) -—-)-Tr()()/Tr_l(X) is the canonical epimorphism and

m oy of(Tx) —> T (X)/T__,{(X) is the isomorphism defined in terms

of local co-ordinates by



mr_l(a/érxi |xn...ub/3xi | ) =71

1 r X Lol

( Br/Bxil.r.. Bxi |>c
Iy

The exact sequsnce is natural in the sense that the following diagram

commutes for any smooth map f": X —>»Y 3
0 —> T (X)) —=> 1 (X) = 0"(1x) —> o

T (f) T (f) 0" (TF)

0 —> T:_l(Y) —> T:(Y) —> 0°(TY) —> 0 eea(2),

A splitting of the exact sequence (1) is called an (r~l)th

order disssction on X, D¢,y 1 T (X) => T__ (X). 4 classical

Tl
theorem of Ambrose, Palais and Singer [1] says that the lst order
dissections on X are in 1l-1 correspondence with symmatric linesr

connections on X, Moreover, by a result of Pohl [2871 (ses also

Feldman [C8 1) a lst order dissection on X 4induces an r th ur@er

dissection on X for all r.

Let O ) be the segusnce of dissections induced on Y by

(1
its Riemannian structure and let

DI‘ = D(l) 5 .,., ﬂD(r_l) 3 Tr(Y) —> TY ,

For any smooth map f 1 X ~> Y, the bundle homomarphism
DroTr(f‘) s Tr(x) - TY i_nouaring f is _ﬁallad the r th ordsr
osculating map of f with respect to the dissections D(i) on Y.. B

The map f 1is celled rth order nandEQBneréta (u':ith respact _tn ths



given dissections on Y) if Dr ::Tr(f) is of maximal rapk everywhers
on X. It follows from diagram (2) that if v (n,r) <m and if f is
r th order nondegenerate, then it is s th order nondegenerate for all
s < r. Thus, if w(n,r) < my all rth order nondegesnerate maps are

immersions.

Let Immr(X,Y) be the space of r th order nondegensrats
immersions. Clearly Immr(x,‘:’) is open in c® (X,Y). Let
HOM( Tr(X), TY) be the bundle over XxY uwhose Fibre ovar
(xyy) € XxY is the space of linesr maps Tr(x)x — (TY)Y. Then
the correspondence jif‘ I-—’.*_(Dru TP(F)):{ y Where f 1is a germ at X
of a map X —»Y with f(x) = y, defines a bﬁndle jsomorphism
3 s I5(X,Y) —> HUFI(Tr(X), TY) and, therefors, uwe ma? identify
27 (X,Y)  with HGN(Tr(X)_, TY) and T °2%(X,Y) with the space of bundls
maps Tr(X) ~> TY. Let Nonu(Tr(X), TY) be the sp-acel of bundle maps
which are fibrewise injective. The subbundle munu(rf(x), TY) of
HDN(Tr(X), TY), whose space of continuous sections is P‘Iuna(Tr(X), TY),

corraesponds under the isomorphism J to an open subbundle Etru(X) of

3(X,Y) sa that T PE(X) = Imm (X,Y) and T"‘“Ei(x) = Mono(T_(X), TY),

If wv(n,r) < m, then Immr(X,Y) becomes locally stabla.
In this case, for any f € Immr(X,Y), we have the notion of the r th

| . | \ _

ordsr normal bundle Nr(f‘_) of f so that f TY.='- Tr(X)@ Nr(F) |
. ' ' I
(see Feldman [81). Thersfore there is a suitable disc bundle N
over X associated to Nr(f') so that f extends to an immersion

(of order 1) (P' : N' —> Y .by_ the exponential map of the Riemannian
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connection on Y. Again, by the same argument, there exists a small

it ¥
disc bundles N oveyry N associated to the 1st order normal bundle

N, (9')  of ¢' and ap impersion 9" : N" =3V such that e"In' =o',
"
Note that dim N =m. Now, since rank D 0 Tr((P") = Viny,r) on X,

it has rank > V(n,r) on a neighbourhood N of x in N . Set

t' = 9" |N noting that ¢'|X =f. So, now, let E(N) be the trivial
bundle NxY and EE(N) be the subspace of .'Jr(N,Y) wvhich corresponds
(under an isomorphism similar to J above) to the gpace of bundle
homomorphisms Tr(N) ~» TY uwhose restriction to each fibre has

rank 2 V(n,r)e Then E:(N) ialin\rariant under the action of local
diffeomorphisms of N and is an'opanh subbundle of Dr(N WY)e ﬁnranu;r,
if A¢ X ~»N is an smbedding and g' 2 Tum I.-:(N.), then

rank Dr oTr(gn?\) = rank DruTr(gf) nTr(J\) 2 }J(n,r) because each of
the matrices DroTr(g') and Tr(?‘) has a non-zero minor of order
v(n,r). This means g oOAE€ Immr(X,Y). Thus Immr(x,‘() is indeed

l
locally stable and we therefore have the following theocrem (12 1] :

Theorem 3,2 (Grumw-Eliashbarg) 1 If ‘)3(n,r) < m, then the rth order

osculating map,

DrQTr | Imr(X,Y) -*Mﬂnﬂ(Tr(x)vTY)

is a WeheBe l“

§ 3. lImmersions with non=vanishing mean curvature $

As in the prauioua.‘saction, a smooth map _f‘_t X --? Y giuqa rlse

to a commutative disgram with exact rows @
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i

0 ~—> TX-—-———X—-% TZ(X)-—-——-——} TX g TX ——3 D
df Tz(f’) df o df

v iY- 3 & .

0 ——> TY = TZ(Y)-———-——b TY 0 TY =——> [

where TQ(X) is the 2nd order tangent bundle and TXoTX 1s the
symmetric product. The Riamannian metric on Y induces a splitting

D

5 TZ(Y) ~> TY of the lower exact sequence.

If f is en immereion, then it has a normal bundle Nf,.duar Xy

(NF)K. = (Iﬂ’l dfx)hL C (TY)F(X).'

T4 ' .
Let N (TY)f(x) --a--(Nf)x be the orthogonal prn;ection. Then the

bundle map o0, oTz(F) s T2(X) -» N vanishes on iX(TX), since

f

.?I::JD2 r.::Tz(i“)t::i>< = HnﬂzniYodF = fodf = 0, and, therefore, induces

t TXoTX —>N This is, in fact, the second funda-~

a linsar mep BF P

mental form of the immersion f,.
Let g be the inner product on TY provided by the Riemannian

metric on Y anag 9o be the induced metric on TX defined by
(Qf)x(uru) = gf(x)(df(u)’df(u))'

X & X ¢ Ugyv © (TX)X. Then the mean curvature vector Hf at x € X

is defined to be the trace of (Bf)x ‘with respact to (gf)x’ that
n .

v 8.(e, y8.) where e, is an orthonormal basis of
1= T i’ 1 i

(TX)x with respect to the metric (gf)x' Thus Hf is a section of

is, Hf(x) =

the normal bundle Nf .
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Let M(X ,Y) be the space of immersions X —>Y with nowhsre
vanishing mean curvature. Now, if @« is a 2-jet from X to Y
with source x and target y and o is representsd by a local
immersion f ¢ X —>Y, then B, 'ia defined on a neighbourhood of X
and BF lx depends dnly on «. Let Ei(X) be the subspacs of 2~jets
of local immersions X.—arY with powhere zerc mean curvature. Thean
FTPE(X) becomes M(X,Y) and T'° Ei()() the space of 2~jet Pields
whose underlying l-jet fisld is a vector bundle monomorphism &nd whose

mean curvature vector is never zsro.,

Let k be a fixed positive integer < n and Gk be the

Grassmannian k-plans bundle over X associatad to TX. The fibre
(Gk)x over X €& X is the Grassmann manifold of k~planes through
the origin in (TX )x' let B s TXoTX —»E ba a linear map where E

is a vector bundle over X. Then, for P € (Gk}g and an orthonomal

| . k |
basis @, 40048 of P, urite Tk(B)(P) =1£18(95"Bi)'(X)' Then 8

is said to have nnwhara.uaniﬂhing ketrace if Tk(B)(P) # 0 for every
P £ Gk' Let mk(x ,Y) be. the subspace of Ima(X,Y) consisting of
immersions f ¢ X ~» Y, whose second fundamental form Bf has nowhere

vanishing k~trace with respsct to the Rismannian metric on X induced
' 2
by f. Clearly Mk(X,Y) = TZTJE(X) for an open subbundle EG(X) of

EZ(X) which is invariant under O(X)e

We apply the notlons ﬁf the_praceding paragraph to establish

the local stability of M(X,Y). Let m> n¥l sand f & M{X,Y). The

N, inherits an inner product atfuctura and let N

normal buhdla ¢
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. orthogonal to ths curvature vector Hf' 0

that N, = N' B Ho + Then, as shown by Feldman [ 9, Proposition 2.11],

be the subbundle of N

there exists a tubular neighbourhoed N of X in N' and an

f' & M (N,Y) such that f£'|X =r¢. In fact, f' is given by

f’I(X:U) = EXPf(x)(u-l' c(x) 1l v qu(x))

where exp is the exponential map of the Riemannian connection on
Y, c 8 X —» R 1is a smooth pnsi‘tius Punction and u(x) is the unit
mean curvature vector Hf.(x)/ il Hf,(x) li« Note that the map

2 .
v > v+c{x)illvii“u(x) embeds each fibre N, s a paraboloid of
. t . . . BN -
revolution in (N )x' Again, if g € Mn(N,Y) then g |X & M(X,Y),
as may be seen easily. Takfng .Ei(N) ='Nn(N,Y), this amounts to saying

that the space M{X,Y) 4is locally stable and therefore we obtain the

theorem of (9] 3

Theorem 3.3 (Feldman) s If .m > ntl, then the 2-jot map,
32 s M(X,y) —=>T° Ei(X)
is a wo,hege IH

§ 4. Immersions transverse to a fisld of planes t

Let & ‘be & subbundle of  TY such that dim § < m-n and 7

be the quotient bundle TY/E with natural projection A ¢ TY "-?'?’] .

Then a smooth map f s X —>Y is said to be transverse to § 1if

Todf ¢ TX —=>TY is of meximal rank at each point of Xs This implies,

by the restriction on the dimenﬂion_'of’ £, that Hodf is fibrawisg

injective, and so f must be an immersion. The space of such immersions
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X —>Y transverse to & is denoted Tranag(}(,Y). Let El(X). C Jl(x,‘f)
) w

denote the associatad open subbundle such that l"“ El(X) baecomes
W

the space of bundle maps @ ¢ TX ~>TY vuhich ars fibrewise injective

and satisfy Im® 1z = 0. Then Transg(X,Y)ﬁ Fu“:' £(X).

We shall show that, if dim 'g < m~n, then Transg(X,Y) is
locally stable, Let f & T PE(x), x € X and V be a contractible
open neighbourhood of X in - Xe Since dim § < m~n, we clan choose
a section u of the normal bundle of lthe immersion f IU over V
which is always outsi.da the pull-bacﬁk (f IU)%g. This means, for esach
x € V, g(u(x)) does not lie in Im df @ Ep(y)? vhere
o ¢ (f IU)'*TY ~>» TY is the canonical map of the pull-back, Then df | TV
extends to a bundle mep @ ¢ TV & R —>TY defined.by
(Px(u,t) = dlf’x('u) + tg(u(x))., where X € V, v € (TU)X and t € IR,
Clegarly, rank ¥ =n+l and Im ¢ ﬂtj .= 0. This implies that therse
axists an f' e rm(le}) =% (UJ&J,Y), whera U is an opsn neigh=~
bourhood of .xn in V énd J is ap open interval about 0 in R,
such that jlf' = df = @ l UxJ and £ IU has fhE seme l-jet as

fFIU on U so that, too, a IU = f |U., Therefore, to establish the

I ]
local stability of Transg(x,‘r’), merely take N = UxJ -and ED(N) as

the subspace of l-jets of bundle monomorphisms TN —>TY which are co
transverse to ¢.
The clsssification theorem implied by the local stability of

Tranag(){,Y) was first proved by Gromov (101 s



Theorem 3.4 (Gromov) ¢ If dim & < m=~n, then the l-jet map,

jl - Transg(x ) —> FG Ei(){)

is a wshege ‘“

Note that, if § = 0, it gives the classical theorsm of Smale

and Hirsch on immersions [l6].



PART 11
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CHAPTER 4

e v e S

A_THEOREM OF PHILLIPS

In this chapter, the first of the sscond part of this thesis,
we examline a theqrem of Phillips (24 ]T The resason 1s that, combined
with some results of our own,-t'his theorem will have applications of
interest 1n this thesis. As indicated in thes genseral introduction,
this study will constitute an extension of Gromov theory to classes
of maps, defined on a non-closed manifold, but not $étisfying the

openness condition. Our objective 1s the clessification theorem

proved in Chaptser 6.

8 . We, however, do not content uursalusa with mersly quoting
Phillips’ theorems For Phillips' paper is in the nature of anp announce-
ment and the proofs pmuided' are talegraphic and, wa believe, do not
bring to .tha surfaece the elegant geometry involved. For such reasons,
we hope it will not be considered a digrassion t-u slaborate in this .

section on Phillips' techniqus as used to prove the following !¢

Theorem 4.1 (Phillips [(247) ¢ If X 4is open and has a proper Nnra_a

B T o

Punction with no critical points of index greater than Kk, thén the

differential map,

d 3 Suhimmk(X,Y) 4 Link(TX,TY)

is 8 Wehete

*See also Gromov [11].
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(Note ¢+ A manifold X with a proper fMorse function with all critical
points of index < k has a handle body decomposition with all handles

of index < k and we denote geo dim X < k.)

We shall first prove s weaker version of the theorsm. Define

a function a on ilnteqers by !

a(0) = a(1) = 0, a(2) = 1, a(x) =3 (x-1) if x 2 3.
Theorem 4.2 ¢ Lat dim X = n. If gao dim X < min (a(n), k), then,
g ¢ Subimmk(x,‘() --}Link(TX;TY)

is 8 w.NeBe

Following Gromov [101, it unuld have sufficed to show that
the restriction map Subimmk(xz,Y) -ﬂrSUbimmk(Xl,Y) has the covering
homotopy propsrty uhere Xl C X2 (C X} are n~dimensional submani-
folds and X, is X, plus a hendle of index A where n < min(a(n),k).
However, this ie not generslly true (see remarks of [243) Eut_with

the results of [4] and (101 in hand, we may reduce the problem to

proving the following lemma $

Lemma 4.1 (Weak Micro-covering Homotopy Lemma) s

Suppose we are given X,, X, as sbove, a compact polyhedron P and s
continuous map F ! P —-}Subimmk(Xz,Y) 'an_d fiPx ED,lj %Subimk(xl,ﬁ‘)

with ¢ 5 Fp |Xl’ for p & P. Thah there axists € > 0 and a
, _

continuous F ¢ Px [ <1,8]=>Subimm (X,,Y) with F =F , for p € P,

F

o

= 0, and IENEN if
such that rp,tlxl_ foot F £ 0y and Fo [X) = Fp e

D<t<€e for pt& P
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Proof 3 For simplicity, assume P 4is & point (one can sasily geperelize

to compact P) so that F ¢ Subimmk(xz,Y) and f ¢ 1 —ﬂrSubimmk(Xl,Y)

with Fu = F,,Xl. By smooth extepsion, assume f 0<t<l, is

t ’
dafined on a8 collar nhdse N  of Kl in X?'

Now, first consider the simplest case whan k = A = 1 and ws
examinea the details of the geometry. Chooss two points z and z' in
the interior of either componsnt of N - Int Xl. Naxt, fix attention Dﬁ
the componsnt containing z though the procedurs is the same for the

other componsnte.

There exists a ball B sbout 2z in N ~ Int Xl, and a co~-ordina-

tization (Xl go ey xn) of B such that
ro(xl prec xn) - Ju(xl)

where JD_ t R ~>Y 4is apn immersion (this follows from a constant rank

thearem)fu If € > 0 is chosen small enough we may assume that in B,
ft(xl y* ur., Xn)_ = Jﬁ(xl)

where J, ¢ R ~>Y is ap immersion, 0Lt < ¢, and J,  varies con-
tinuously with ¢t, (For if a curve - here the xl-axis or a paralle]l -
is transverse to the foliation induced in B8 by Fn, it will also be

transverse to the foliations induced in 8 by l-subimmersions close

enough to fn.)

*see Milpor (20, (1.9) 1.



 OF7

() :
N 'z'
xl \ )
1 |
Figura 4,1

NexXt, construct an isotopy ht ¢ N ~Int Xy --}NéInt Rip DSES L,

such that identifying each component of NeInt X, with D"“lx "

1

where I = [ «l1,1], we have,

o = Iy« 1nt Xy ’

' n-l '
h, is fixed on a nbde of 0 “x {-1,1} ,
hl(Dn_lx [a,b]) C B for some. ~l1<a<b<l1,

and, hl(y,x) = (%, xz,....,xn), for some xz,...,xn & ']H ’ for every
(yyx) € Dn“lx fa,bls Note that in the last equation the co-ordinates
~on the left and right hand sides are those of Dn*l’xl and B8, .

respectively, For this last condition we may have to reco-ordinatize

B if necessary - geometrically, the condition means that yx {a,b]

is moved transverse to the foliation defined by fo 1N 8y for each o
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Define f_ 2 0" " x [a,b] —>Y by

f‘tohl(y,x), 0 <t <e,

O
———
-
-
>
e S
il

It follows that

\ —~
Flyix) =0.(x), 0<¢t<E.

Next, choose a', b' such that a < a' < b < b,

parallel to the X ~8xis in B

. Ee— e,

Define g, on a,a’ 1 {) [byb'], 0Lt SE, by

Ut(x)‘l a i X S— a|

gt(x) = {

Ju(x)r bt £ x £ b

and G on [a,bl by G(x) =3D(>‘-)-
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'
Let G, ¢ [e,b] —>Y, 0< t <€, be the solution of the

l-handle lifting problem (G’gt) of immersions of rank 1, so that

G, | ap8' 1Y [b'yb] =g, end G =G.

t

Define F; 3 Dn"lx [a,b1 —>VY, 0<t <&, by

FL(Y:'X) = G;(X): (ysx) € DnﬁlK (ayb 1.

fFinally, extend the isotopy ht to an isotopy H,, D0 < t £ 1, of

t!
xz, defining

ht’ on N~Int xl
H, = |
ldentity, elsewhers on X, .
The required F i [ =1,¢ ] —>Subimm (X,,Y) is defined by
FoH(z), -2 S £ <0y 2EX,

-1
FooH(2), 0Ctge, ze xlu(D” x [0,a])
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Next, consider the case for arbitrery A < min (a(n),k).

The method is similars Generally, N-Int Xl".:-." Sy\“lx 1 an"}".

Consider the compact submanifold
5 = "™y {o] x to%

ifslide the collar N=-~Int X Asauma Pirst that'(ma_return to this

l"
later) F |S (= f IS) {s an immersiocn. Then, by a constant rank

theorem for compact submenifolds, we deduce that there is a tubular

nbde T of S5 3in N-~Int Kl

=S xUk_}\+lan‘k, and there exists an €. 5> 0, such that

g0 that
T o g xpn=htL
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Pelz) = (U op)(z) for 2cT,0<tcc,

Keivt 1 Hek K+ 1
where P 1 Sx0 x0T =>5xD"™ " " is the paturel projsction,

| Kot 1
and -Jt35xD ~>Y, 0L t<eg,

ara immersions varylng continuously with ¢.
Again, construct an isotopy ht : N=-Int Xl ~> N «~Int Xli Octsl,
such that,
h =1

o $
0 N~Int Xl

1\.-1 ""\-
ht s fixed on a nbde of 5" {-—l,l} X g ;,

h

-.\”l - '
1(5! x (a,b]xD" }\) CT for some -1 < 8 < b< 1,

and, idantifying 5" x [a,b1x 0™ & M1, fa,bdx0™x0"™,

hl(ﬂrr;x:)’) = (8,(ryx)yy') € T(=5 ka-}\ﬂxﬂ_n-k-)

N~K A K= X Dﬂ"‘k

for some y' £ D7, Por svery (s,r,x,y) €S

lx [é,b] % D
Interpreting geomatrically, S““lx Caybl xbk'}‘x Lyl is moved transe

~-K
verse to the follation induced by f‘ﬂ in T, for sach Yy ¢ "™,

The eusontisl geometry is complete and, without repeating details,
it is asen that, if we proceed as before, we shall have e lifting problem
of immersions of rank Kk over the manifold pair

] L o
(5™« (a0 x 05N, s" Lk [ayat1 () b',01 %05

which is a A-handle pair, and this problem is solvable,

Returning to our assumption that F ]S is an 1mmgrsiiqn, it is

evidently sufficient to show that 3 1s lsotoplec to a spher?e_ jmmersed



by F (for, then we may 'add on' this isthpy before the isotopy ht)'

By theresult of § 5.2.1 of [(10] and the assumption that & < k, the
inclusion 1L 8 S —N-Int Xl le homotopic to en immersion i' +trans-
verse to the foliation defined by F so that Foi' is also an
immersion. Further, by the assumption that x < a(n), we may approxi-
mate 1' by an embedding i" . If the approximation is closs snough

Foi'" will still be an immersion and L and i" will be isoctopic.

This completes the proof of Lemma 4.1 and hence that of

Theorem 4.2, il

§ 2, Finally, from Theorem 4.2 to Theorem 4.1 is purely technical
and an applicstion of some of Gromov's rssults {10]., The details

may be checked in [247] but, for the sake of completensss, we

indicate the method.

Choase q sufficiently large that geo dim X < alrtq). Lot
' = XxRY g0 that X' satisfies the hypothesaes of Theorem 4.Z.
Give X & Riemanplan metric and X' the product metric. Leat

o3 X —>X be the projection and 1 ¢ X C—> Xx {03 (::(1I be the
inclusion. .

To show that d ¢ Subimmk(x,‘{)-—} Liﬂk(TX,TY) is é. WeheBey uB
have to show that .

d, ¢ 7, iSubimmk(X,Y)} ~> 1, { Lin, (TX :.TY).}

is both surjective and injective for gach 1 2> U,
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We shall here show that t:lj_P is surjective for i = U, tha.
technique being similar in other cases. So, given H & Link(TX,TY)
we must find F E Subimmk(X,Y) such that H is homotopic to dF.
Now, by Theorsm 4.2, H' =Hodp s TX =»TY is homotopic to oF

|
for some Fle Subimmk(x ,‘{). It follows that the projection
R i b '
X —» (ker H) = (ker H ) ‘X is homotopic to an epimorphism
A

X —> (ker df ') caovering i. Hence (see [101), i 4is homotopic

to s smooth map ¥ § X --—->>i' transverse to ker dF'. Eonsaquantly*,

H 1is homotoplec to d(F'catP). Set F =F'n~*-P. I
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CHAPTER 5

ON GENERALIZED STIEFEL MANIFOLDS

A generalized Stisfel manifold is the space of mxn matricss
of a fixed ramk Kk < min (m,n)- If Kk = min (m,n), the space becames
a classical Stiefel manifold. These spaces were introduced by Milnor
[20] for the study of immersions of manifolds. In (61, Favaro
determinad tha integral homology qroups of generalized Stiefel mani-
folds of rank 1 by the method of cellular decomposition. In this
chapter, we determine the homotopy groups and mod 2 cohomology
algebras ¢f arbitrary generalized Stiefel manifolds. There are
three kinds of generalized Stiefel manifolds according as the entriss
of matrices are real, complex or quaternionic numbers. The case of
interest to our intended application is that of real entries end it

is for this case thet we go into calculations though parallel results

for the other cases may be deduced similarly.

The technique of calculation will be to exploit the following
fact : since the row (or column) space of an mxn matrix of rank k
spans 8 k-~plane, @ generalized Stiefal manifold fibres over a

Grassmannian with flbre a Stiefel manifold.

E 1. Homotopy groups

Let M{m,n3 %) be the generalized Stiefel manifold of mxn

matrices of rank K with real entrigs. Then GL(m, R)xGL{n, )
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acts on the left aof M{m,n 3 k) by (u,v)x = uﬁxfut, where v

denotes the transpose of v, and the action is trensitive. The
RO

€ M(myny k), I
L0 0.

the kth order identity matrix, is the group consisting of elements

y baing

subgroup of stability fixing

of the form

where a £ GL(k, R), ¢ € GL(m=k, R}, 8 & GL(n-k, H?); and 0 denotes
a certain null matrix. It follows then, by a standard argument, that

M(myn 5 k) has the homotopy type of the guotient space (0(m) x 0(n))/G,

where G 1s the subgroup consisting of elemsnts of the form

| S

where u € O(k), v E O(m~k), w € O{n—k}.

tet Um y be the S5tiefel manifold of orthonormal k—frames
?

in H%m, and regard an slement of Urn , @8 an mxk matrixe
!

Then O(k) acts freely on the right of the product space Um k}qun i’
' ’

by the diagonal action (x,y)eq = (xg, yg). Lat u: - be the quotient
?

space of X\ by squivalsnce under 0(k), and
MoK nek

K
P 3 Um,k”n,k "'”m,n be theﬂ quotient map. Than thﬂ.graup D(m) x0(n)

is a transitive topological transformation group of Uﬁ - under the
| ’

action defined by (a,b)p(x,y) = p(ex,by), and the suboroup of stability
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leaving p ( K ' k ) fixed is the group (G described above.
. L0 O '

. 'l - ot

This amounts to saying that M{myn 4 k) has the homotopy type of ”; n’

!

Let Gm be the Grassmann manifold of k~planes in Iﬁm. The

k
construction of Uk ¢ives us a fibrs bundle Uk —> ( wi th
mln m’n ' m’k
fibre Un y and structurse group 0(k), which is associated to the prin-
4
cipal O0(k)=bundle V —3 (5 . If n > my, we have an 0{ Kk )-equi-
m,k m,k -

X
: i = ‘ b
variant map s Um,k "}Un,k given by s(x) [Djl Thereforse, by

the correspondence between squivariant meps and cross-sections of an
e admits a cross~
my kK .

section. Therefors, by Steenrod [ 32, Thsorsm 17.7 ], we dsduce 3

associated bundle, the fibre bundle Uﬁ "
’

Theorem 5.1 ¢ (i) If n > m, then
K |
T = 3 > 1,
(v ) Hi(un,k)iﬁ Ii(Gm,k) for all i > 1

(i) If m > n, then

i}

Ri(um,k) @ Iti(Gmk) for all i > 1. . i

Note that (ii) follows from (i) by interchanging the rols of

m and n. The case for « (Ul } follows because Ul has the
1'7°2,2 | 2,2 .

homotopy type of 513451.

8 2. Mod 2 cohomology algsbra

Recall from Borel [3 1 that thse algebra H*(Un i} 22) has a
1 :

:.-...j,

simple system of generators (xn—k ya ooy xn-—l)' uhers degree X

We denote the simple system of generators of H*{U $ Z,) by
1,k 2
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. %
(Yr'_l-k'l'l ,lt-’yn), and that of H (Un'l'l,k'l'l Y 22) bY (Zn__k YREN" Zn).

Lemma 5.1 : '
5 If 1§ Un,k —> i/ 1,k is the natural inmclusion, then
% , ¥
the elsments x_ 4 i (yn—4ll)"""l‘(yn—k+r) generate a subalgsbra
* L 4
of H (Un,k ! 22) containing the elements x_  jeeeyx . 4 where

r is a number such that 1 < r < k-1,

Proof ¢ First note that the map 1 is the composition of the

inclusion f : V _;Urri-l,k-i-l followed by the projection

Ny K
g 3 Un+l,k+l _}Un'l-l,k . By the Serre exact sequence of the fibre
n
bundle Un+l,k+l ~>»S5" with fibre Un,k ;
¢ . .q | q | .
f~ ¢ H (Un+l,k+l ' 22)-—é-H (Un,k % 22) is a monomorphism for

q | e :
g < n-l. But for q £ n~l, H (Urr+l,k+l ) 22) and H (vn,k 2,
are isomorphic as finite dimensional vector spaces. Therefore P
is an isomorphism for ¢q £ n-1l. Again, by [3 1], g*(yj) = zj for

Rkt < 3 £ np~l. These make the proof of the lemma quite clear, 11

Lemma 5.2 ¢ The system of local cosfficients H*(Un ) 22) in the
T '

fibre bundle Uk ~> is simple.
m m K

s N

Proof § Assume inductively that (for a fixsed k and any n) the

gensrators X i puhi’xn_k+r of the cohomology of the fibre Un,k

pver some point xX € Gm . 8re invariant under the action of the funda-
'

, X), for some T < k-l. The induction may be

ﬂ'—k(

JI
mental group l(Gm,k

v ' 12)'ﬁi 22 whose only automorphism is

started, as X ¢ H
N,k

N=K

the identity. Now we have & bundle map
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K E k
My Um,n+l
Gm,k

induced by the inclusion of the 0{k)-egquivariant subspacs Un K
?

V

in Un+l " This gives a homomorphism of .the local systems, which
-1, |

)

at the point x is i & H (V Z.)e Now,

¢
kY RV

(e L
by the inductive hypothesis, the generators

*
Ykt 7* 0 Ypogerser © 0 W

action of Hl(Gm " y X)eo Therefors the elements
H

s 22) sarae invariant under the

b 2 , . : A '
i (yn—k+l) "“"1'(yn-k+L+r) are invariant in H (Un,k , 22).

Hence, by Lemma 5.1, X b 1T ie alsc invariant. This completes

the inductive step, and so the proof of the lemma. dil

¢
Lemma 5.3 ¢ The generators x_ , jeeey X , €H (un,k % 22) are

K

transgressive in the fibre bundle V -G
My nyK

L

Proof ¢! Noting that the generator Xl of lowest degres is clearly

transgressive, we simply pursue an induction similar to that of

Lemma 5.2, Hi
Lemma 5.4 3 All transgressions in the fibre bundle UE " He-Gm K
e ' '

are trivial when n > m.

imininl

Proof ¢ Obsarve that as the fibrse bundle admits a crass-gection,

P* is 8 monomorphism, where p 1is ths bundle projection. 11
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With these lemmas in hand, we see that the spectral sequence

of the fibre bundle Uk --arc;m

- collapses whan n 2> me This gives 3
!

K

Theorem 5.2 ¢ (i) If n > m, then

"
TN 2,) = H(V

® H(c . 32.).
Mm 4N ( m 2

Z
npk L 2)
(1) If m > n, then

*
H (vk

%
2.V ® H (G
nn b 2y) (

* 1
y 22) = H (U } 22)- il

myK nykK

Nota that (ii) follows from (i) by interchanging the role of

m ancd e
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CHAPTER 6
AN APPLICATION

§ l. A classification theoram

Let X and Y be smooth manifolds of dimensions n and m
respectively, and fix a constant k < min (m,n). Then, recollact
according to Phillips (24 ], as described in this thesis in Chapter 4,
if X 1is open and hés no handles of index > k, the differentisl
map d Suhimmk(X,Y) —arLink(TX,TY) is a wehes.

Henceforth we shall always suppose that X is simply connected

and that Y = R ™,

We may identify the space Link(TX,TY) with the space of
cross~sections of a certain fibre bundle p ¢ £E—>»X, Indeed, pansidar
the fibre bundle g s L -F-}XXY whose fibre over the point (x,y)& XxY
is the space of linear maps of rank k betwesn the tangent spaces
(TX)>c — (TY)Y , and define p to be the composition of g followed
by left projection. As the fibre of the bundle p ¢ E —> X 1is
homotopic to Uﬁ,n’ one would expect, in'classifying the cross-
sections of E, to meet obstructions that are elements of the cohomo-
logy groups Hi(x ; Ri;l(ui,n))' As the space U;'n is not i-simpla,
there would further be, in the above cohomology, 8 systam'nf local
groups as coefficlients which display the action of Hl(ui,n) on

Hi_l(U; n). Howsver, as X 4is simply connected, this complicatlion

of twisted coefficients may be avoided by using the obstruction theory
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of Barcus [2 ] as developsd by Hermenn [15 1. This theory is brisfly
outlined in the next section where we reotreive an analogus of a
classification theorem for cross-sections of Steenrod (32,8 37.5 1.

At present, we apply this new classification theorem in the following

form ¢ if E —» X admits a cross=-section aa and if

(VK

|
oK i myn

i =1 K
)) =0 for i = 0,l4eeeyn=l and H (X 3H (V" ))=0
' 1 My

for 41 = lyeveqyn=1l, whers HQ is undserstood to be the rsduced
cohomology, then the assignment of the cohomology class d(s,sﬂ)

of the diffserence cocycle d(a,sn) to each cross-gsection s sSets up
a 1l-l1 correspontdence between the based homolopy classes of cross-
sections and elements of H™(X 3 it (uk })e

N’ myn

Now, if X =-Sk><Dnhk, k<n and k < m, the existence of

the cress—section 8, follows trivially since Sk immerses in R

and,_therafqre, vsing the k-skeleton of X (there being no highsr

abstructiuns) in the above arguments, we get the following classifi-

cation theorem

Theorem 6.1 ¢+ If k< n and k < m, the set of based reqular

homotopy classes of k-subimmersions of SR:ADn"k into TR

correspond bijectively with the elsments of the homotopy group

K
i'r[ a2
k(Um ,rl)

For, if k < n, then 5k><Dn_k 18 open with no handle of
index > k so that Phillips! theorem applies - or, toc be preclise, a

bassad version of Phillips' theorsm applies. The corresponding modi-

fication of Phillips' proof is not difficult. Ses, for example the
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discussion by Poénaru {27, Theorem 1Y 1.

Note that, if we set k = n < m, the preceding theorem becomes

thEFClESBiCEl thearem of Smale [31 ].

B 2, Obstruction thsory

The classical obstruction theory as described in Stesnrod
[32, Part III ] leads to ths following classification theorem for
cross-sections. We psrsist throughout this section with the assump-

tion that X 4is simply connected.

Theorem 6.2 { {32, § 37.5 with modifications of B 36.111)1

Let (X,Y) be a simplicial pair such that dim X = n. Suppose
the bundle & —» X with fibre F admits a crosgs~section S and

(l) Hi(K,Y Y Hi(F)) = D, 1L = D,l,;--,n-—l
(2) WXLy 1 (F)) =0y &= lyee.,nel

and  (3) F is i-simple, 1 = l,...,n-l.

Then the assignment of the cohomology class d(s,an) of the difference
cocycle d(s,an) to each cross-section s sets up @ L-l correspon-
dence between homotopy classes of cross-sections which agrese with S,

on Y apd elements of Hn(K,Y 4 Hn(F)).

As we shall demonstrate, this theorem is bassd upon the follow-
ing propositions each of which is proved by Steenrod. All assumptions

are as for the theorem 3
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Proposition 6,1 (32,§ 36.4]3% If & and s

N s R S S S 25 S 5 y @re cross-sections

of £ which agree on Y, the primary difference E(s0 ,al) ig an
invariant of the homotopy classes rel Y of 8§, 8nd 8, Its

vanishing is necessary and sufficient for s_ o s, (rel Y),. i

Proposition 6.2 [ 32, § 36.6 ] ¢ Lat 8 8, and s, be three

cross~gections of E which agree on Y. Then
d(sa '52) = d(So 3 51) + d(sl y 52)- “l

Proposition 6.3 [ 32, § 33.911 s If s is a cross-section of E

and d € Cn(X,Y $ Hn(F)), than s IY LJXn_l may be extended to a
cross-section 8' of E such that d(s,s') =d (X* is the

i-skeleton of X). )i

 Proof of Theorem 6.2 ¢ If s 22 s' (rel Y), Proposition 6.1 saserts
that 5(5'50) = E(s',sn). Thus sach homotopy class corresponds to a
single cohomology class., Suppose E(s,soj = E(s',sﬂ). By

Proposition 6.2 we have a(s,s') = 0 so that, agaipn by Proposition 6.1,
s o s' (rel Y). Thus the assignment is 1-l. Next suppose

de H(X,Y 3 1 (F)) is glven. Choose a cocycle d in the class d,

By Proposition 6.3,- 8 _ lY Lan-l extands to a cross-sesction s’

over X such that d(sn,s') = -d. Hence H(SO,S') = -d and, by

Proposition 6.2, E(s',sm)=5. The assignment is therefore onto and

this completes the proof. 11

To avold the requirement of i-simplicity of F, we exploit

the simple connectedness of X by resorting to the obstruction theory



of Barcus [2 ] as developed by Hermann [15]. The main idea there is
to define the obstpuction cocycles and difference cochains in terms
of the global homotopy properties of the bundle space rather than the
local structure as in the classical theory. Following is a brief

outline of the +theary leadinc to an analogue of Theorem 6.2,

All spaces considered ars path connectsd and with basepoint.

Maps are basepoint preserving.

; |
Let F <= £ Ko X be a fibre bundle with 8 the

besepoint of E and F, and X, = p(eﬂ) the basepoint of X.

Let s be.a cross-~section of £« Then (ses Steenrod

[32, B 17.7 }) there is a canonical isomQrphism

~ . :
”j(E’BD) — HJ(X,X ) & Hj(F’EG)’ 2 1

0
Let 8 ¢ h’tj(E,aD) --}T[j(l-‘,eo) denote the prujectidm Henceforth
we shall suppress the basepoint in our notation as it is fixed.

Next assume that Y. CX, EY = p"l(Y) and 8 2 Y --}EY is a cross~

section of the bundle Ey. The homotopy obstructions to extending

8 to a cross~seaction over X are defined to bs the homomorphisms

w(s ) 1 A (X,Y) =, ((F), 322,

where each w(s ) is the composition

P - S oy
nj(x’y) f---i-)frj(E,EY) 4 n_j--l(E‘f) “-E“)Hj-l(r)'

Proposition 5,4 s If s is extendabls to X, all w(s) = 0.




Proof ¢ Suppose 8y denotes an extension of 8 to X. Ue have

the commutative diagram

T .(E,E) _3_2__” (E) LH )
A j=1 3-1'F
e A
1, | i, id
a~ 1 | s |
Hj(x,v) ——anj(E,EY) —-—-—-a»nj_l(sy) -—--wrj_l(r)

so that BGBJ.:EXG 3201l=0. 1l

To define difference obstructions, apply the loop functer

o | |
to construct the fibre bundle .g !,F cQL—# ! LEI*-iL} j L X
(i',p' denote § Z,i,g Q,p). If Y CX and 8 ¢ Y —>E is a

cross~section over Y, then s' 3 ( ) Y~—> ( ) E is a cross-

section of the loop space bundle.

If El and 52 are cross~sections of £ such that

N |y = s, | Yy construct the map g s ( )X —> () E by defining
glw) = Ei(w)'-sé(wﬂl), 7l E.( ) Xy where the inverse and composition

opergtions are as for paths. Now, for w € | Z,X,

Il

p'a(w) = p'(s}(w) 4 sp(w™))

-]l -1
P‘a'l(w)-p’az'(w ) = wew

tl

proving that p'g is ipessentiasl, soc that

0, (7 ( LLx)) Cuer pl =im 4, .

Further, as 8, ]Y = 8, |Y, it follows that gf{ E,Y) is contractible

so that we may define g, ¢ Hj(1§ ), Xy L )L Y) —> JTj(Q E) such that
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the diagram

:rrj(Q'x, () y) S N frj(Q £)
™

(LX)

is commutative. Then define
d(al,sz) $ ﬁj(X,Y) —a-;rj(r), i>2 1

as the composition
=l

| g i
| jrrj'(x""’) = nj-l(ﬂ Xy L) "‘l“"’”j_lm E) —-—i—--mj__l(ﬂ F)mrjr.

The collection 'd(sl,sz); j 2 1, are called the difference obstructions

to deforming 8y onto s, oOver X e

Having given the relevant definitions in the general casse, uwe
restrict attention henceforth to the cass where (X,Y) is a CW pair.
N 5N N
Let X denocte the n-skeleton of X, X =X |JY and

_ AN Ane-l _ | |
cn(x,v) = Hn(x , X' ). Define 31 cn(x,v) ——-arr:n__l(x,v) as the

"‘n—Z}

S Anel
boundery operator of the triple (X ', X, X It is a standard

fact (347 that the nth homology group of the chain compleX

(C_(X,Y)5 2 ) is Hn(X,Y).

A
let s be a cross~section of the bundle E =>X over X' <.

/

Consider the first non-trivial homotopy obstruction

(note Hj(ﬁn, in-l) =0, j<n)
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(F)

w(s) 3 :Tn(%“, %"= —>n_

A
to extending s over X", By the relative Hurswicz theorem,

A ;"ln.._l A A ....._1
C(XyY) = H (X7, XT77) o x (X7, X770,

Hence w(s) denotes a map
w(s) ¢ CH(X’Y) "-—)Hn—lqr)’
thet is, wis) & Cn(X,Y % Hnnl(F))'

Similarly, if Sy 5y * X"~ E  are cross-sections that

inwl

agree on y the difference obstruction in dimension n

| . ~ 20 An-l
d(ﬂl’ 32) . !Tn(x ’ he ) HHH(F)
may be interpreted as

d(syy 5,) # C (X,¥) —>7 (F),

) . .. . _ n 1 o
that 18, d(sl, 32)-¢ C{X,Y 3 ﬁh(F)).

In fect [151], w(s) is always a cocycls, 6d(51,52) = u(sl)-w(sz)
and i1t may be shown that the obstruction anmd difference cochains
(presuming they are interpreted as above as they hencsforth will be)
are the negatives of the classical onss 8s defined in [32]. The

following proposition proved by Barcus is more than a conyerse to

Proposition 6.4,

Proposition 6.5 (Barcus {2 1) s+ Suppose the base X of the bundle

F —>»X is a CU complex with Y a subcomplex. Suppose

8 3 Xn"l Uy -—=>E, n>2, is a cross-gection so that
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w(s) 2 c”(x,v ¢ T l(F‘)). Then, w(s) = 0 is also sufficient for
the extension of s to X" |J Y. Suppose, secondly, that

g 1 X" LY —>E is 8 cross-section and d = CH(X,Y 3 ”n(r))' Then,
S IKn"l'U Y extends to a cross-section s' ¢ X JY —>E such that

d(s,s') = d. i

Without going into details that are just technicel, we observe
that Proposition 6.5 suffices to prove analoguess of Propositions 6.1
.
and 6.3 in the setting of Barcus's obstruction theory. Further, an
analoque of Proposition 6.2 is a consaguence of ths Hurewicz theorem

just @s in the classical case., We thersfore retrieve the following

analogue of Theorem 6.2.

Theorem 6.3 ¢ Let (X,Y) be a Cu pair such that dim X = n.
Suppose the bundle £ -» X with fibre F admits a8 cross-section 8,

and (1) H;(X,Y ‘ ni(F)) =0y 1 = 0j400ayn-l

and (2) thl(x,Y 3 ;—[i(F)) D‘, i= l’ili’nfl'_twﬂﬂ__‘.w.—..-—-.u“

sm— ks mmn
[

e ) ahhk . [E——T
Figarl 3 Wy f - "'Wq-_wﬂq-*
=r

-

Then the assignment of the cohomology class E(s,sn) of the difference
cocycle d(s,sﬂ) g Cn(K,Y % Jn(F)) to each cross-section s sets up a

l-1 correspondence betweemn homotopy classes of cross-gections which

agree uith s_ on Y and slements of H7(X,Y Hn(F))- ¥

It is important to note that Theorem 6.2 is true even if X is
not simply connected (in contrast to Theorem 6.3) in which case we have
to replace the group of coefficients Hi(F) by a systenm of_lncal groups

@(ﬂ'i(F)) which display the action of JIl(x) on Hi(F).
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