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PREFACE

A real n by n matrix M is called an N(P)— matrix of exact order £, if
the principal minors of M of order upto (n — k), are negative (positive) and
(n — k 4+ 1) to n are positive (negative). In this dissertation, we study the
properties of these matrix classes using the linear complementarity problem
lep(q, M), for each ¢ € R™. Emphasis is placed on N and P-matrices of exact
orders 0,1 and 2,

Chapter 1 provides the necessary background on linear complementarity
and its connection with game theory. Lemke’s algorithm is introduced and
a. brief survey, on some already known classes of matrices in relation to the
lep(q, M) is brought out. |

A complete characterization of the class of exact order 0 based on the num-
ber of solutions to the lep(q, M) for each ¢ € R", is presented in chapter 2.
Also, a sign reversal property for N-matrices is proved. Counterexample to a
well-known characterization on P-matrices is given in the end, while a proof of
the same result is provided for the size of the matrix, n < 3.

Chapter 3 deals with matrices of exact order 1. Here, results on the number
of solutions to the lep(g, M) for each ¢ € R™ is presented for both the categories
of exact order 1. In the end, a generalizaution of exact order one is given, and
a characterization of these matrices in terms of the lep{q, M) is brought out.

Chapter 4 is on matrices of exact order 2 or more; we at first define three
different categories that evolve in these matrices and study their ¢)-nature, A
complete characterization of the class of exact order 2 and a partial one of the
general exact order k are presented. We also look into the following question:
When v(M) < 0 and M is of exact order k, can we say that —M € Q7 We
present a few modifications of the already known algorithms that would process
the lep(g, M) when M is a matrix of exact order 2, Also, the difficulties that
crop up as we go up the hierarchy in these classes, are cited in the end.

C'-differentiable maps with the Jacobians being matrices exact order k,

are studied in chapter 5. Gale-Nikaido result is extended for C'-maps with
Jacobians being exact order &k of the first category. Finally, a result on the

global univalence of C'-maps when the Jucobian is a matrix of exact order 2is

proved.



NOTATION

R"™: Euclidean n-space.

Rf,‘_ The nonnegative orthant of R".

. |J|: The cardinality of the set J.

R™*"; The space of all real n by n matrices. I will denote the identity

matrix of appropriate order.

A vector is regarded as a column and superscript ¢ is used to denote

transposition, ‘e’ denotes the vector of all 1s.

We say that a vector z € R" is unisigned, if either z; > 0for all1 < i < n,
or z; <0foralll << n, |

Let M € R**™, For subsets J,K C {1,2,...,n}, we denote by M x and
MK the submatrices of M and M ™! respectively, with rows and columns
corresponding to the index sets J and K. For J = {1,...,n}, Mk is

- written for simplicity as M.g.

The matrix My; forJ C {1,...,n} denotes the principal submatrix of M.
When |J| = k, Mj; is called the principal submatrix of order k. Then,
the determina.nt of Mjsdenoted by det(Mjyy), is called a principal minor

- of order k. -

10.

11.

12.

The (2, 7)th entry of M and M~! are denoted By m;; and m* respectively.

For any J C {1,2,...n},J denotes the set {1,2,...,n}\J.

v(M): The minimax value of the two-person zero-sum game, with M as

the payoft ﬁ;liatrix.
JAK: '_(J U K)N(J U K), the symmetric difference between J and K-

For a ¢ € R", the number of solutions Icp(g, M) has, will be denoted by
m(q). -

i
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Chapter 1

PRELIMINARIES

1.1 Exact order matrices

Matrix theory is one of the fundamental tools in mathematical sciences, Since
the subject began, the theory of matrices has come to have ramifications in
many areas of pure and applied mathematics. In the later years, its growth
has been directed towards introducing and studying various classes that arose
naturally in numerous applications. One such renowned and classical class, is
the class of positive definite matrices. This class is well-studied, and has a long
history in matrix theory. |

Gale and Nikaido [18], generalised positive definiteness to positivity of prin-
cipal minors, which they named as P-matrices (symmetry in positive definite-
ness being omitted). Inada [21}], introduced N-matrices whose principal minors
are all negative, and presented results on these two classes (P and N), to an-
swer some questions that were raised by economists. Olech, Parthasarathy
and Ravindran ([46] and [47]} in sequel defined almost P (almost V) matrices,
' “whose proper principal submatrices are P (N) with the determinants alone
being ﬁegai;ive (positive). Putting these classes together, one can in a nutshell,

define a matrix of exact order k, as follows:

~ Definition: A matrix_ M € R"™**" is cal_'leci an NV -mdtr;’m (P-matriz) of ezact



orderk, 1< k< ﬁ, if every principal submatrix of order (n—k) is an N-matrix,
(P-matrix), and if every principal minor of order r, n — k < r < n, is positive
(negative). M is called a mairiz of exact order k, if it is either a P-matrix or
an N-matrix of exact order k. |

An N ( P)—matrix, is an N (P)—matrix of exact order 0, and an almost N
(almost P) matrix is an N(P)—matrix of exact order 1. Thus, the classes of
exact order matrices unify some of the already known classes of matrices. Our
aim in this dissertation, is to characterize some of these classes of matrices.

The motivation for studying these classes, besides their matrix theoretic
importance, arises from a mathematical programming problem, known as the

linear complementarity problem. The next section takes us to this.

1.2 The problem and its importance

In this section, we introduce the linear complementarity problem and see some

of 1ts applications.

The problems that crop up in an industry, where there 1s an objective
to be met under a set of constraints, like time factor, labour force, etc., can
all be formulated as mathematical programming problems. The advantage of
such a formulation is that, some of the mathematical programming problems
have efficient techniques in finding out a solution and in turn providing an
answer to the industry. Many such mathematical programming problems can
be far;nu_la,ted as what is known in the Literature as the linear complementarity
| prublem.

For a given n-vector ¢ and M € R"*", the linear complementarity problem,
denoted by lep(gq, M), is that of ﬁnding nonnegative vectors w € R z € R"

such that
w-Mz = q N (R )

w'z = 0,

A pair of vectors (w,z) that satisfies (1.1), is said to be a solution for the
lep(g, M). " I ' ' o



This problem arises in mathematical economics. In mathematical program-
ming, the linear programming problem and the convex quadratic programming
problem can be transformed into linear complementarity problems [42}. In cer-
tain problems in engineering, like plastic analysis of structures, plastic fluctual
behaviour of reinforced beams and free-boundary problems of journal bearings,
the linear complementarity problem finds a wide applicability. For more de-
tails on this refer to Duval [13], Ingleton [22], Maier [32], Kaneko [23] and [24],
Pang et al (49], Samelson et al (62] and Cottle and Dantzig [8]. The problem
of finding Nash equilibrinum points of bimatrix games was first posed as a lin-
ear complementarity problem by Lemke [30]; and as a result, he proposed an
algorithm, now well-known as Lemke’s algorithm, for solving lcp(q, M) for any
g € R", for some classes of matrices. We will see this algorithm later in this
“chapter, in detail. -

A considerable amount of literature in linear complementarity problem deals

with the following questions:
(a) When does the lep(q, M) have a solution ?

(b) Given that the lep(g, M) has a solution for a ¢ € R*, can the number of .

solutions it has, be determined 7

Several classes of matrices have special importance regarding these questions.
We call a matrix M € R**", a @-matrix if the lep(q, M) has a solution for every
g € R*. A sufficient condition for M € @ was given by Karamardian [26]; later
Murty {43] and Saigal [58] generalized these conditions. Unfortunately, an
efficient method for determining membership in the class of @ has not yet been

discovered,

There have been classes of matrices defined in the linear complementarity
theory, based on the signs of their principal minors. They have been studied
in detail, and some of their properties identified are found useful in other areas
of mathematical programming. See Ingleton [22], Murty [42] and Cottle [6].
One of our aims in this dissertation, is to study the nature of solutions for
the lep(q, M) for each ¢ € R", where the matrix M under consideration isan
exact order matrix.. Besides their connection with linear complementarity, the

3



niceties of the matnx structure, the inverse sign pattern and the game theoretic
1mportance of these classes of matrices are also brought out. In the end, global
univalence results of C*-differentiable functions, with Jacobian matrix being

an exact order matnx are discussed.

1.3 Definitions and well-known factls in com-

plementarity

In this section, we introduce the required ferminologies for the lep(g, M). Unless

otherwise stated, M always stands for a square matrix of order n.

We introduce the notation here, that is followed in this thesis. For ¢
JJK € {1,...,n}, Myk is a submatrix obtained from M = (m;;) € R"X"®
by retaining the rows indexed by J and columns indexed by K. Similarly,
when the matrix M is nonsingular, by M“®* we denote the submatrix of /™1
whose row and column indices are given by J and K respectively; m" will
denote the (7, j)th entry of M. J denotes the index set {'1,.. .., i\ J. When
J={1,...,n}, we write Myx as M x and M7¥ as MK the jth column of M
and M1 are denoted by M; and M respectively. M is often written in the

partitioned form as

[ Af '
JJ MJT !, | (1‘2)
| My; Myr | -

M =

for some J C {1,...,n}. When M is nonsingﬁlar, the schur complement of
M with respect to My, is denoted by (M/M;;) and is given by |

(M/My;) = Mgz — M3;M7iM 3

- I denotes the identity matrix of appropriate order and e € R stands for
the vector whose entries are all 1s, A vector ¢ € R", for ¢ # J C {1,...,n} is
written in the partitioned form as ¢ = (qs, ¢5)* (after a suitable rearrangement

&

of rows and columns if necessary).



As in linear programrning, one deals with feasible and optimal bases, in the

theory of complementarity we talk about complementary bases.

Complementary matrix: Consider [I: — M]. For j € {1,...,n}, a pair
of column vectors {I;,—M;} of [I: — M] is called a complementary pair. A
matrix B € R™* with B; the j-th column of B, being either I; or —M ; for
1 <j <k<n,is called a complementary mairiz of [I: — M].

Let B be a complementary matrix of order n by n. Let

J={j: —M;is a column of B}. (1.3)

We then write B as (if necessary after a principal rearrangement),

q

—Mz; O

B = .
My Ijr

(1.4)

Hence, we sometimes denote such a complemen'tary matrix as B(J). Here,

if J = ¢, then B(J) = I.

Complementary basis: Let B be a matrix of order n x n whose columns are
columns of [I: —~ M]. B is said to be a basts, if its columns are linearly inde-
pendent. B is called a complementary basis, if its columns are complementary
also.

A solution (w, 2) of the lep(g, M) is said to be a complementary basic feasible
solution, if the set of columns I ; for j such that w; > 0 and the set of columns
—~M y for k such that z; > 0 form a linearly independent set. We note that this
need not In general contain n columns, |
For a ¢ € R", the number of solutions the lcp(g, M) has will be denoted by

' m(g)-

Nondegenerate ¢: A solution (w, z) for the lep(g, M) is said to be noﬁdegr—:n-
" erate, if it has exactly n coordinates positive. A vector ¢ € R is said to be
nondegenerale with respect to M, if each solution (w,z) for the lep(q, M) is

nondegenerate.



Complementary cones: The nonnegative cone generated by a complemen-
tary matrix B of [I: — M) denoted by pos(B), is defined as

pos(B)={Bz: z € R", z > (0}.

When B is a square matrix of order n, pos(B) is called a complementary

cone of [I: — M]. The complementary cone pos(B) is called a full cone, if
det(B) # 0. We call pos(B), a degenerate cone, if B is singular and a strongly
degenerate cone, if there exists a 0 £ ¢ > 0, z € R" such that Bz = 0.

Hence, if the lcp(q, M) has a solution for a ¢ € R*, there exists a comple-
~ mentary cone pos(B) of [I: — M] such that q € pos{B). We use the notation
g € pos{(B)° to mean that ¢ ¢ pos(B). There are atmost 2" complementary

cones in [I: — M]. We denote the union of complementary cones of [I: — M| by
D(M). It can be seen that

D(M) = {q:q€ R" lep(q, M) has a solution}.
So, a matrix M is a Q-matrix if and only if D{M) = R",

Principal rearrangement: By M, a principal rearrangement of M € R"*",
we mean that there exists a permutation matrix P € R™™ (which is a matrix

of 0's and 1's with every column and every row having exactly one nonzero

entry), such that M = PMP*.

We have the following easy consequence.

Theorem 1.1 If M is a Q-matriz, then PMP* i Q for all permutation ma-

trices P,

‘This can be observed easily, as only the indices get rearranged in w and 2

in a similar way as in PM P?,

Principal pivot transform: The concept of principal pivot transforms is
due to Tucker [68], Let B(J) be a nonsingular complementary matrix. Note
that we can write the n X 2n matrix [I}: — M) as [B(J): B(J)] where B(J)
is the matrix of columns of [I: — M] not in B(J). We can transform the
original problem lep(g, M) to an equivalent problem (g, 11s(M)) where p;(M) =

6



B(J)™1B(J) and § = B(J) !¢q. The matrix u;(M) is then called a principal
pivot transform of M with respect to the complement ary matrix B(J). Given
the partitioned form of M, with respect to the index set J, the principal pivot
transformed matrix (PPT in short) pj(M), with respect to the nonsingular
B(J} is written as follows: .

-1 -1
My —~M;;" M7

pg(M) = 1 4 > :
( 7aMr™t Myz— My My My |

More often we write, for the simplicity of notation, a PPT of M by M.
We have the following lemma which relates the principal minors of M to

those of its PPT, M.

Lemma 1.1 Let B(J) be a nonsingular complementary mairiz with the indez
set as defined in (1,2). Let M be the principal pivot transform of M with respect
to B(J). Then for any K C {1,...,n},

dﬁt_ﬁj'{f{ = dﬁtMKﬁJ/dﬁtMJJ (15)
where KAJ is the symmetric difference between K and J.

Proof: For a proof of this, we refer to Cottle [5],

Proper and reflecting facets: Consider a submatrix C of order n by (n—1),
of (I: — M| which is a cﬂmplementary matrix. We call pos(C’) an (n. — 1)-face
of [I: — M] if rank (C) = n - 1. Let F = pos(C) be an (n — 1)-face of
[I: = M]. A complementary cone pos(B) is said to be incident on F if the
columns of C are also columns of B. Thus, for any (n' — 1)-face F, there
are exactly two complementary cones incident on it. If we assume that the
matrix M is nnndegenetate-(i‘e. none of the principal minors is zero), then it
is valid to say that any n by (n — 1) complementary matrix of [I: - M ) is an
tn —1)-face of [I: —~ M ] Further the subspace generated by such an (n 1)-face
will be a hyperplane in R*. We say that two complementary cones 1nc1dent |
on an (n — 1) -face F are praper!y sttuated if they lie on appomte mdes of the

" hyperplane generated by F. Fis called a proper face, if the two complementary_
cones 1n01dent on F are properly mtuated If the two cones 1nc1dent on 1t are

. . -
' .
. . . . ' . .
' - . 7 .
. . . "
. -



not properly situated, then F' is called a reflecting face. The above notions

-have been introduced by Saigal [59]. He proves a lemma which we require in

the subsequent chapters.

Lemma 1.2 Let M € R**", Let F be an (n—1)-face of [I:— M|, with the two
complementary cones incident on it being pos(B) and pos(B’'). Let def( B) # 0.
F is proper if and only if |

dei( B')/ det(B) < 0. (1.6)

These concepts are dealt with in detail by Saigal and Stone [61]. Saigal [59]

observed the relationship between the complementary cones and the faces of
[I: — M} and those of {I : —M], where M is a PPT of M, which is stated as

follows:

Theorem 1.2 Let M be a PPT of M € R**", Then there ezists a one 1o one
correspondence between the cones and faces of [I: — M] and those of [I! — M].

Hence, if M € Q, then M € Q.

1.4 Two-person Zero-Sum Games

Our results in lep(g, M) depend on a well-known minimax theorem due to Von
Neumann for two-person zero-sum games, which we describe here. For more
details on this subject we refer to Parthasarathy and Raghavan [52).

- A two-person zero-sum matrix game can be described as follows:
Player 1 chooses an integer ¢ (¢ = 1,2, ...,m) and player 2 selects an integer
j (j =1,2,...,n) simultaneously. Then player 1 pays player 2 an amount m;;
(which may be positive, zero or negative). M = ((m;)}) is called the pay-off

matrix of the game. Since player 2’s gain is player 1's loss, the game is said to

be zero-sum.

A strategy for player 1 is a probability vector (p, pg,..l., Pm). The idea
is that he will choose integer : with probability p;. Analogously, strategy ¢
for player 2 is defined. Von Neumann’s fundamental minimax theorem is as

follows:



Theorem 1.3 Consider a two-person zero-sum game with a pay-off mairiz M.
There exist strategies (P1,p2,.++,Pm)y (91,92, ,9n) and a Teal number v such
that |
Ep;m,-j < fﬂ?‘ ﬂll ] = 1,2,...,71
]

CSgmi v forall i=1,2,...,m.
j

This v i1s called the minimaz value associated with the matrix M or simply
value of the game and the strategies are called opfimal sirategies for the two
players. In the game described above, player 1 is the minimizer (that is he
wants to give player 2 as little as possible) and player 2 is the maximizer. We
write (M) to denote the value of the game corresponding to M.

Sometimes we may change the roles of the two players - in other words
player 1 will be the maximizer and player 2 will be the minimizer, The following
clementary lemma is quite useful. Here, we consider the column chooser to be

the maximizer.

Lemima 1.3 Let M be a nonsinguler metriz with v(M) > 0. Then v(M) is

also positive, where M 13 o principal pivot transform of M.

Proof: Asv(M) > 0 there exists a probability vector z > 0 such that Mz > 0,

Hence we have,

.y - gl

Ly 0 My —Myz || vy
0 Iz My, —My || 2

§

where y = Mz. Multiplying the first J rows by —M7; we have

|

[ Y -
~M37; 0 Iy MjiMyz || vy 0
0 77 —Mz; —Mjy; Ty -0




Adding the last J with the first J rows multiplied by M=, and rearranging

the columns, we get

Ty |
P ] r. -
Ij; 0 —Mj} Mjj M5 y7 | |0
0 Iy —MypMj Mpp— Mz MM ||y |
o
'

Thus we have for the principal pivot transform M a vector 2 = (y7,z7)
such that z > 0, Mz > 0, which implies v(M) > 0, M

A strategy z is pure if it is of the form {0,0,1,...,0); otherwise it is called
a mixed strategy. A mixed strategy z is said to be completely mized, if ¢ > 0.
If the only optimal strategies 1in a game are completely mixed, we shall call
the game completely mized. We present next, two famous theorems due to

Kaplansky [25], on completely mixed games.

Theorem 1.4 [et M denote the payoff mairiz of order m by n, of a two PETSOT

ZET0-3Um game.

1, If player I has a completely mized optimal strategy p = (py,pa2,.. . Pm), then
any optimal strateqy ¢ = (g1, q2. .., qn) for player 2 satisfies 3 miq; =

v, Vi=1,,..,m

2. If m = n, and the game 13 not completely mized, then both {he players have

optimal sirateqies that are not completely mized.
9. A game with value zero 18 completely mized if and only of

(a) 113 matrizc i3 square, i.e., m = n and has rank (n — 1) and
(b) all the cofactors M;; are different from zero and have the same sign

(cofactor M;; denotes the determinant of the principal submatriz of
M got by deleting the ith row end the jth column).

4. The value v of a completely mized game 1s given by
M

| EEMH

where | M| 13 the delerminant of M.

v

10



Theorem 1.5 Let M be ¢ mairiz of order m by n. Let V = {(v;;)) denote
the matriz of order m by n, where cach v;; i3 the minimaxz value of the game
played with the principal submatriz of M gotl by deleting the ith row and the
jth column, as the payoff mairiz. Then the game M is not completely mized if
and only if the game‘V has a pure saddle point, t.e., 3 o pair 1o, ju'mch that

12279 < Viodo < Viso Vt:j (1'7)
and v;,;, i3 the value of the game M,

For proofs of these results, see Kaplansky [25] and also Parthasarathy and
Raghavan [52]. "

Completely mixed games with value zero were considered by Eagam-
baram and Mohan [15]~in connection with the linear complementarity prob-
lem. They prove under these conditions over the matrix M that D(M) is
convex. They alsc propose,a variant of the Lemke’s algorithm that processes
the lep(g, M) whenever the game is completely mixed with v(M) =

A result on the @-nature of a special class of completely mixed games is

proved in Chapter 4.

1.5 Lemke’s Algorithm for the lcp(q, M)

This algorithm was originally proposed by Lemke and Howson [31] for finding
an equilibrium point of a bimatrix game, Later, Lemke [30] modified it for

solving a class of linear complementarity problems.
This algorithm is very much similar to the simplex method for the linear

programming problem in the sense that it makes use of the minimum ratio
technique in the choice of its leaving variables.

If q is nonnegatwe, then it is clear that lcp(q, M) has the trwml solutlon
(w = q;z =0). If ¢ 2 0, an artificial variable is introduced. Then we have the

following system:

w = Mztqg+tez . - (1.8)
w2 = 0, w>20,2>0,

11



where 2 is an artificial variable which takes a large positive initial value so

that w 2 0. This 1s known as the primary ray. Let
zg = max {—¢q;: 1 <1 < n}. (1.9)
f

The triplet (w, 2, 25) gives rise to the initial solution to the system (1.7). The
algorithm is based on pivot steps. It aims at making the artificial variable lcave
the basis, thereby obtaining a solution to the lep(q, M).

Before we describe the algorithm, we require to know about the almost

complementary solutions and adjacent almost complementary solutions to the
system (1.7).

Definition: Consider the system (1.7). A feasible solution (w, z,2g) to this

system is called an almost complementary solution if
(i) (w, 2, 20) is a basic feasible solution to (1.7).
(ii) Neither w, nor z, is basic, for some s € {1,...,n}.

(1i1) zp is basic, and exactly one variable from the complementary pair (w;, z,)

is basicfor j =1,...,n, 7 #s.

An adjacent almost complementary basic feasible solution of an almost com-
pleﬁlentary basic feasible solution with w,and 2z, nonbasic, is got by introducing
either w, or z, into the basis in the place of a basic variable y # 2.

Let s be the index of the row at which the zp value in (1.8) is attained. At
any iteration, the variable that is entering the basis is denoted by (z,) for the
sake of simplicity.

Now we describe the algorithm.

Step 1: Let d, be the updated column in the current tableau under the
variable z,. If d, < 0, go to step 4. Otherwise, determine the index r by
the following minimum ratio test, where 7 is the updated right hand side

column denoting the values of the basic variables.

Q@ . G
J = min {dh : dig >10}.

If the basic variable at row r is %o, go to step 3. Otherwisé, go to step 2.
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Step 2: The basic variable at row r is either w; or 2;, for some [ s s. The
variable 2, enters the basis and the tableau is updated by pivoting at row
r and the d, column, If the variable that just left the basis is w;, then let
z, = z;, and if the variable that just left the basis is z;, then let z, = w;.

Go to step 1.

Step 3: Here, z, enters the basis, and z; leaves the basis. Pivot at the
d, column and the row z;, producing a complementary basic feasible

solution. We stop.

Step 4: The algorithm ends in a secondary ray. A ray {(w,z, z0)4Ad : A > 0},
where z # 0 and d # e denotes the extreme direction, is found such that

every point in this ray satisfies the system (1.7).

When the algorithm ends in step 4, the problem lep(q, M } might still have -
a solution. But the Lemke’s algorithm is unable to determine it.

An algorithm is said to process the lcp(g, M) if and only if whenever the
lep(q, M) has a solution, it should be able to find it, or else conclude that the
lep(q, M) has no solution. Lemke in his paper [30], proved that his algorithm
can process the lep(q, M) for the class of copositive plus matrices (for definition,
see section 6). There have been attempts 1n defining various classes of matrices

for which the Lemke’s algorithm processes the lep(g, M), We would see them

in detail, in the next section.

1.6 Classes of matrices

Several classes of matrices have been defined and studied in connection with

the linear complementarity problem. In this section, we list some of the classes.

Nondegenerate matrix: A matrix M is sald to be nondegenerate if its prin-
cipal minors are nonzero. Murty {43] proves a nice characterization of nonde-

generate matrices which we state below:

Theorem 1.6 Let M € R**"™. M s a nandegenemté matriz if and only if the
lep(q, M) has finitely many solutions, for every ¢ € R*.
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A vector ¢ nondegenerate with respect to M is said to have an odd (even)

parity, if m(g) is odd (even). Murty {43] also proved the following:

Theorem 1.7 Let M € R™*™ be a nondegenerate mairiz. Then every vecior g

nondegenerate with respect to M has the same parily,

As a consequence, we note that if M is nondegenerate and lep(q, M) has
an odd parity for some ¢ € R™ nondegenerate with respect to M, then M is a
Q-matrix. This was observed by Saigal [58] also.

We have already defined that M € R"™" is called a @—matrix if and only
if D(M) = R™ When D(M) is convex, M is called a Qo~—matriz. Kelly and
Watson [27] had brought an altogether different perspective of studying the
problems of @ and Qy-matrices. We refer to Watson [71] for a spherical geo-
metric approach to these problems. In what follows, we define matrices based

on the sign of the quadratic form z'Mu.

Copositive matrix: A matrix M is said to be cuposiﬁw if, whenever z >
0 = z'Mz > 0. This class has a very long history in matrix theory. See for
instance, Motzgin [40} and Cottle et al [9). A matrix M is said to be copesitive

plus, if M is copositive and
Mz =0 2>0,z€R* = (M+M)e=0.

Clearly, a positive definite matrix is copositive plus. Lemke’s algorithm
processes the lep(g, M) when M is copositive plus. This was proved by Lemke
[30]. Further classes, based on the behaviour of the quadratic forms are defined

and studied by Valiaho [69)].

The following classes of matrices are based on the structure of M and the
signs of its principal minors. | .
Z-matrices;: A matrix M is said to be a Z-matrix, if my; < 0, Vi €
{1,...,n},1 # j. There are various characterizations of these matrices given by

Fiedler and Ptak (17].
Define for a ¢ € R" and a matrix M,

X(g,M)={z20: ¢+ Mz20}.
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A point z is called a least elementof aset X ifer e X andye X =2 <y.

Following characterization of Z-matrices is due to Tamir [66):

Theorem 1.8 M € Z if and only if for any g such that X{q, M) is nonempty,
X (g, M) has a least element which solves the lep(q, M).

The theory of least elements is very much connected to the study of ¢ and
M for which lep{g, M) is equivalent to a linear program. See Mangasarian [33),
Cottle and Pang {10} and Murthy [42]. Saigal [60] proved that Lemke’s algo-
rithm processes the lep(q, M) when M € Z. Mohan [35] proved that through
linear programming formulation of the lcp(q, M), the simplex method processes
the lep(q, M) in atmost n steps when M is a Z-matrix. Chandrasekaran (4]
developed an efficient algorithm for the lep(q, M} when the matrix under con-
sideration is a Z-matrix. Ramamurthy [566] proposed an efficient algorithm to

determine whether a given Z-matrix has all its principal minors nonnegative.,

Signature matrix: We call a diagonal matrix S of order n, a signature matrix

the set of all indices ¢ with s;; = 1.
'The principal minors of A and SM.S keep the same sign for any signature

if s;i = +1, forall 1 €2 < n. S is sometimes written as S; where J denotes

matrix S.

We present below, the classes of matrices that are defined based on the
number of solutions to the lep(q, M) for some fixed g € R™. As this literature

is vast, we present here only those classes of matrices that we frequent in this

dissertation.
Regular matrix: M is said to be regular if

z 2 0, t>0, _ (1.10)
M;z4+t=0 if 7 i1s such that z; > 0
M;z4+t20 if ¢ is such that 2; = 0.

Consequently, M is régula.r if and only if the lep(g, M) has a unique solution
V ¢ > 0. A matrix M for which lcp(0, M) has a unique solution is denoted by
Ry. These classes were defined by Karamardian [26]. He also proved that if
M € R, and Icp(q, M) has a unique nondegenerate solution for some ¢ € R",
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then M is a Q-matrix, This result was earlier observed by Ingleton [22]. His
arguments showed that Lemke’s algorithm would process the lep(g, M) under

these conditions. In this dissertation, we often make use of the following result
of Ry, due to Murty [43] and Saigal [58]:

- Theorem 1.9 If M € R™" {3 such that lep(0, M) has o unique solution and
for a ¢ € R*, lep(q, M) has an odd number of nondegenerate solutions, then M

13 ¢ QQ-mairz.

E, matrix: A matrix M is called an Ey-matrix (also known as a semimonotone
matrix), if Yz € R", ¢ > 0, there exists an index 3 such that z; > 0 and
(Mz); > 0. Eaves [16] calls this class of matrices as L;-matrices. The following
result gives the connection between Ey and the lep(q, M):

Theorem 1.10 A matriz M 1s Ey of and only if the lep(q, M) has a unique

solution whenever ¢ > 0,

This is due to Eaves [16] Periera [54] proved that if M is symmetric, then
M 1s semimonotone if and only if 1t i1s copositive,
Strictly semimonotone matrix: A matrix M is said to be strictly semimono-
tone, if for every n vector 0 # z 2> 0, 3 an index 7 such that, zi(Mz); 2 0. M

is strictly semimonotone if and only if for every principal submatrix M of M,

the system
| Mz <0, 220

is inconsistent. Another equivalent way of defining this class is as follows:
M 1is said to be strictly semimonotone if the lep(g, M) has a unique solution
whenever ¢ > 0. For results on this class, we refer to Eaves [16], Cottle and
Dantzig (8], Karamardian [26] and Lemke [30]. Lemke denotes this class by E.
Cottle defined and studied the class of completely @Q-matrices in [7]. He also
proved that they are precisely the class of strictly semimonotone matrices. Van
- der Heyden [70] studied this class in the name of V—matrices and developed
an algorithm for the processing of the lep(¢q, M) when M ¢ V.

Fully semimonotone matrix: A matrix M is said to be fully semimonotone
if M and all its principal pivot transforms are semimonotone. A matrix M is
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fully semimonotone if and only if lep(q, M) hias a unique solution for each ¢ in

the interior of every full cone of [I: ~ M]. This result has been observed by
Cottle and Stone [11].

Garcia’s class: M is said to satisfy Garcia’s condition, if, whenever (w, 2) is
a solution of the lep(q, M) with z 5 0, there exists a v € R™, v.2> 0, such that

u=~—Mv>0and z2>v, w2 u. (1.11)

For more details, we refer to Garcia [19],

Doverspike’s class: We say that M satisfies the Doverspike’s condition, if all

the strongly degenerate complementary cones of [I: — M} lie on the boundary

of [I! — M]. We denote the class of matrices satisfying this condition by E, .
Doverspike [12] proved that when M € Ey . and if lcp(g, M) has a unique

nondegenerate solution for a ¢ > 0, then M is Q.

Todd’s class: We say that a matrix M is in Todd’s class L'(d) for some vector
d > 0, if the following conditions are satisfied:

1. M e Ey
2. {(w,2) is a solution of lcp(d, M), z # 0 implies for é,ny J,
{i:2; >0} C J C {i:w; =0},
det(M;7) > 0.
We refer to Todd [67], for results on this class.

For more details about the classes of matrices that are defined and studied

in relation to the linear complementarity problem, we refer to Murty [42].

1.71 Global Univalence results

In this section, we review some univﬁleuce results that are known in the liter-
ature of C-differentiable mappings of functions from R" to R*. Global uni-

valence thecjry has gained immense importance because of its a.ppliﬁations_to
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several fields, Mathematical economists study univalence in connection with
the uniqueness of a competitive equilibrium. The study of global univalence

using Jacobian matrices has been of interest for a long time. We present in
chapter 5, results on global univalence of C'-differentiable functions, whose

Jacobian matrices are exact order matrices.

To start with, we definc what we mean by a C''-differentiable map.
Definition: Let Q be a rectangular region in K*. A real-valued mapping
F . — R"is said to be differentiable at {5 if 9 a linear transformation L

(depending on #p) such that,

. 1 o
im (Pt B) = F(to)) ~ I(k)] = 0.

Here, we write F' = (f1, fo,..., fn) where each f; is a real-valued function
from Q to R. Let their partial derivatives be §f;/6z;,Vi,J € {1,.'..,n}. A
mapping F' is differentiable at #p, if and only if each of its components f; is
differentiable at #y,for 1 = 1,...,n. If F' is differentiable at ¢y, then denote the
matrix of partial derivatives ((6fi/6z;)) by J(%0). This is called the Jacobian
mairiz of F' at ¢;. F' is said to be differentiable, if it 1s differentiable at each
point of Q. It is said to be C'-differentiable, if it is.differentiable and all its

partial derivatives are continuous. We next define an univalent map.

Definition: A mapping F' : Q - R" is said to be globally univalentif, whenever
z#Y, 7,y € Q= F(z) # Fy).

In one-dimension, the problem of univainece is easy; non-vanishing of the
derivative throughout Q ensures global univalence. But in the n-dimensional

Fuclidean space, it only ensures local univalence at a point. This is given by

the local univalence theorem. We state it below without proof,

Theorem 1.11 (Local Univalence The.afrem): Let F': ! — R® be a mapping,

where §) 13 a rectangular region, We have the following:

(1) If F' i3 differentiable at tg € Q, and detJ(1p) # 0, then there is a neigh-
 bourhood U of tg, such that F(y) = F(1y) = y = {,.
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(1) If F' is C*-differentiable in o neighbourhood of an interior point 45 of §2,
and detJ(tg) # O, then there is a neighbourhood U of t, where F is
univelent, i.e., Fy) =F(z), y,z€ Q= y=2z.

Even if the Jacobian J is non-vanishing throughout the domain of definition,
the mapping F' need not be univalent. Gale and Nikaido [18] gave an example
of such a function. Take F' = (f, g) with

f=e% —y*+3, g=4e¥y -~ (1.12)

Here, 6f/6x > 0 and detJz > 0 on R®. However, F' is not univalent, since
F(0,42) = F(0,0). |

Most of the results in univalence are initiated by a conjecture due to Samuel-
son, which is as follows: F is globally univalent if all the leading principal mi-
nors, det{ (§F;/6z;)(p), 1 <4, <r | of the Jacobian Jr(p) are nonzero, for

allpe R and all 1 £ r < n.
But this turned out to be wrong and the Gale-Nikaido’s example (1.11)

serves as a counterexample to this,
Hence, it becomes necessary to look for more conditions over the principal

minors for the existence of univalence. The following is the question that
remains open: |

Question : Let F : Q — R™ be a C'-differentiable mapping, where € is a
rectangular region. If the Jacobian matrix J(x) associated with F' has all its

principal minors nonzero, is it true that F is univalent ?

This has been answered affrmatively, for n < 3, by Ravindran {57]. Beyond
R?, the answer is not known. There have been attempts at answering the
above problem under certain further restrictions over the Jacobian matrix.
The following is known as the Fundamental theorem of global univalence due
to Gale, Nikaido and Inada. For a proof of this, we refer to Parthasarathy [51].

Theorem 1.12 Let F' : §2 — R"™ be a differeniiable mapping where §1 1s a
rectangular regron in R*. Then F s globally untvalent on 1 if either one of the

following conditions holds good:

(a) J(z) i3 a P-mairiz Vz € Q.
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(b) J(z) is an N-mairiz and the partial derivatives are continuous Vz € 4.

Univalence results have been proved for C'-differentiable functions with Jaco-
bians, being matrices of exact order one by Olech et al in [46] and [47]. We
make a mention of these results in chapter 5 and prove in detail, a result on

C*-functions with Jacobians, being exact order two matrices.
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Chapter 2

THE CLASSES OF N AND
P-MATRICES

In this chapter, some characterization theorems are proved for the class of V-
matrices. We start with P-matrices, which have a long history in matrix theory.

Most of the results of this chapter are from [38]. The last section results are
based on [39).

2.1 Some known results on P-matrices

The class of P-matrices arises in a number of applications. There are many well-
known equivalent characterizations of these matrices. In Berman and Plem-
mons [3], one can see a list of fifty equivalent characterizations of the class

PN Z, a subclass of P-matrices.
The following theorem states a few of the equivalent characterizations of

P-matrices,
Theorem 2.1 The following condittons on a maitriz M are equivalent;

1. _M s @ P-mairiz,

9, For every nonzero vector « there ezists an indez i such that :z:;(ﬂff:n); >D
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3. For every nonzero vector x there exists a positive diagonal mailriz D such

that 2*M Dz > 0.
4. The real esgenvalues of all the principal submatrices of M are positive.

5. For every signature mairic S there exists o positive veclor z such that
SMSz > 0.

6, For every vector q € R, the lcp(g, M) has a unique solution.

7. Every principal pivotl transform of M has its diagonal eniries posiiive.

The equivalence of the first two conditions and the fourth is due to Feidler
and Ptak [17]; Condition 3 and & are due to Gale and Nikaido [18]. Conditicn
6 is due to Samelson, Wesler and Thrall [62]; the last one is by Tucker [68]. We

also refer to Murty [42] for proofs of these results.

2.2 Sign pattern of N-matrices

As mentioned earlier, N-matrices were introduced by Inada [21] with regard
to studying univalence. But though P-matrices attracted a lot of attention
from mathematicians, N-matrices, introduced around the same period in the
literature, did not receive an equal amount of importance. It was Saigal [59], in
the seventies, who at first classified these matrices into two different categories
and studied them in the context of the linear complementarity problem.

Let M € R"*" be an N-matrix, i.e., M has all its principal minors negative.
M 1is said to be an N-matrix of the first cafegory, if it has a positive entry;
otherwise, it is said to be of the second calegory.

For the first category N-matrices, Inada [21] proved the following:

Lemma 2.1 Let M be an N -mairiz of the first calegory. Then the system,

Mz<0, 20

has only the irivial solution z = 0.
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In other words, this lemma asserts that for an N-matrix of the first category,
the minimax value of the game is positive.

In what follows, we study the structure of the entries of an N-matrix, When
M is an N-maftrix, then no entry of M can be zero. The following lemma is
due to Ravindran [57].

Lemma 2.2 Let M be a square matriz of order n, whose principal minors of

order 8 or less negative. Then there is a signature mairic S such that
SMS < 0. (2.1)

This lemma determines the sign pattern of entries of an N-matrix. To

obtain an explicit form, we define the following:

Definition: Let z,y € R" have nonzero coordinates; we say that x and y have
the same sign pattern if 2;y; > 0, for all 2 = 1,...,n. If z and y have the same
sign pattern, they are said to be sign equivalent. We have the following lemma
on the sign equivalence of matrices whose principal minors of order upto 3 are

negative.

Lemma 2.3 Let M be a square mairiz of order n, whose principal minors of
order § or less are negalive. Then the sign equivalence i3 an equivalence relation
on the set of columns of M, which partitions the columns of M inlo atmost two

equivalent classes.

Proof: Let M; and M, be two columns of M. Suppose m;m; > 0. Then
clearly, m;. < 0, and considering the 2 by 2 principal submatrix,

iy T4k
Mk Tkk o
we see that my; < 0. Thus mpmer > 0. We now claim that m;im;sk > 0, V7.

Suppose for some r # ¢ or k, m;m,; < 0. Consider the 3 by 3 principal

submatrix,

My Ty Mk

My My Mk

Mii My Mik



The sign pattern of this matrix is either

or

—ye—ft 000 mee—  pe—

._...._.+i
....+.._

- ot

depending upon whether m,; > 0 or m,; < 0.
But these are not the sign patterns of an N-matrix of order 3. See

Parthasarathy and Ravindran (53], Hence if mgmy > 0, then mymy > 0V,
Similarly, we can show that if mymy < 0, then m;miu < 0, for any
., 1, ke{l,...,n}

Now consider the index set

J={l:myumy >0,1<1 < n}.

J is nonempty and it follows that all the columns of M whose indices are

in J are sign equivalent; J and J induce the desired partition of the columnns

of M. If J=1{1,...,n}, then M < 0. »

Remark 2.1: Let us define, for the signature matrix § such that SMS5 < 0 in
(2.1), the index set J, ¢ £ J C {1,2,...,n} as

J={i: s;; = +1)}. (2.2)

Then the partition induced by J in M can be written as (if necessary, after a

principal rearrangement of its rows and columns)
MJJ MJ}'

M = , (2.3)
| Ms; Mjyy | . .

with M;y < 0, Myy < 0 and My, Mj3; > 0, Thusif n 2 &k -+ 3 and M is an
N-matrix of exact order k, then M has the sign pattern as given in (2.3).
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2.3 Some known results on N-matrices

In the theory of linear complementarity, it has been of special interest to char-
acterize a class of matrices based on the number of solutions the lcp(g, M) has
for each ¢ € R". We have mentioned such a result, for the class of P-matrices

due to Samelson, Wesler and Thrall [62] in Theorem 2.1.
The linear complementarity problem lep(g, M) with M as an N-matrix has

earlier been studied by Saigal [59] and Kojima and Saigal [28]. They prove in
(28], the following theorem.

Theorem 2.2 If M is an N-matric of the second category, then lep(q, M) has

exactly two solutions for any ¢ > 0, and no solution for any g € R™, ¢ £ 0. If
M i3 an N-matriz of the first category, then for each ¢ 2 0, lep(q, M) has a
unique solution and for a g € RY, lep(q, M) has ezactly three solutions,

However, until recently there has been no published proof of the converse,
viz., a characterization of N-matrices using the number of solutions to the
lcp(q, M). Recently, Parthasarathy and Ravindran [53] , proved the following

for the second category N-madtrices.

Theorem 2.3 Let M < 0. The follounng statements are equivalent :

(i) The lcp(q, M) has ezactly two solutions for every g > C.
(1) v(SMS) > 0, ¥ signature matrices S, where S # +1I.
(14i) For any vector z € R*, z;(Mz); £ 0 = esther 2 2 0, or = < 0.

Another characterization of N-matrices of the second category was given
by Maybee [34].
A main result in this section is the converse of the Kojima-Saigal result for

N-matrices of the first category. This was posed as an open problem in [53].

The following theorem is about the number of solutions lcp(q, M) has for
each ¢ € R? when M is an N-matrix of the first category. This result has been
observed by Kojima and Saigal [28]. But here, we give a different proof and

correct some errors in their paper [28].
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Theorem 2.4 Let M € R™™ be an N-malriz of the first category. Then for
each ¢ > 0, lep(g, M) has ezactly solutions. If ¢ 2 0 with q; = 0 for some
1 € {1,...,n}, then lep(q, M) has ezactly 2 solutions.

Proof: Let J be as defined in (2.2); let the matrix M be partitioned as in
(2.3).

Consider a ¢ > 0, and let g = (g7, ¢5)". As My is an N-matrix of the second
category, from Theorem 2.3, we see that (¢y,Mys) has exactly two solutions.
With the solution (w}, z3}) of (g7, Mys) where 27 £ 0, define w € R*, 2 € R* by

*, - *, -

————" Pa— * p— —

It is easy to see that {w,z) solves lep(g, M) and zy # 0. Since (w3, z%)
uniquely determines wy, there is exactly one solution with 25 £ 0, 25 =

By a similar argument, we can show that there is exactly one solution (u, v)-
for which vy = 0,v7 # 0. In addition, we have the trivial solution to the
lep(g, M), viz., w = ¢,z = 0; hence we have three solutions for the lcp(q, M).

To show that lep(q, M) has exactly three solutions, we show that there is no
other solution (z,y) to the lep(g, M) in which ¢y and 5 both have nonzero coor-
dinates. Suppose on the contrary, there is a solution (2, y) to the lep(q, M) with

yy # 0 and y57# 0. Let

L={s:y,>0,1<3<n}.

By our hypothesis, LNJ # ¢ and LNJ # ¢. Therefore, the principal submatrix
M7 is an N-matrix of the first category; further we have

—qr, = Mrryr, yr > 0

which contradicts Lemma 2,1. Hence lep(g, M) has exactly three solutions
for ¢ > 0.

If ¢ > 0,q # 0 with at least one coordinate of it being zero, then the above
arguments show that there are exactly two solutions: to the lep(q, M), This’
completes the proof of the theorem. o | =

26



Remark 2.2: Let us define two classes of complementary cones of M. Let

Cy {pos(B) : B is a compl. matrix of [I: — M] withB, = I, Vk € J2.4)
Co = {pos(B): B is a compl. matrix of [I: — M| with By = I, Vk € J}.

Geometrically the above theorem shows that the complementary cones in
Cy, other than pos(I), intersected with R}, make a partition of the positive

orthant (if there is only one complementary cone in C;, it covers the whole of

pos(I}). So are the cones in s,

Remark 2.3: The above theorem corrects a wrong assertition in the statement
of Theorem 3.3 of Kojima and Saigal [28], which claims that the number of
solutions to the lep(q, M) when g > 0 is not nondegenerate with respect to M,
is two, This and some other corrections have been noted by Stone ([63] and
(64]}, also.

Remark 2.4: Theorem 3.4 stated in Kojima and Saigal {28] on the number of
solutions to the lep(g, M) when ¢ is contained on a face of pos(I) is also wrong,.
It asserts that the number of solutions of lep(q, M) is exactly two, when q 2> 0,
with ¢; = 0, for at least one index 2. The following example shows that this

need not be so.

Example: i
-1 2 -1

M=| 1 -1 1|

-2 2 -1

is an N-matrix of the first category. Here, for ¢ = (0,0,1), lcp(g, M) has a

unique solution.

Remark 2.5: A refinement of the above theorem, stating cléarly the number
of solutions for the lep(q, M) when ¢ lies on a face of pos(I) has been proved
by Gowda [20), using degree theory.

Kojima and Saigal [28] present a lemma on the types of solutions for the
lep(q, M), when M is an N-matrix. This is stated below.
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Lemma 2.4 Let M be an N-matriz. If lcp(q, M) has a solution (W,Z), with
w; =0 for some 1, then every other solution (w,z) of the lcp(q, M) has w; > 0.

2.4 Characterization theorems for N-matrices

We prove some theorems characterizing N-matrices of the first category. The

first theorem is a converse of the Kojima-Saigal result [28] on the number of
solutions to the lcp(q, M) when M is an N-matrix of the first category. We

start with a lemma.

- Lemma 2.5 Suppose X € R™ ™ 18 a matriz of nonzero principal minors. Let
the two complementary cones incident on any (n — 1) face of [I: — X, which
18 not a face of pos(—X) be properly situated. Then all the proper principal

minors of X are positive,

Proof: The proof is by induction on the order of the principal minors of X.
We at first, show that all the principal minors of order 1 of X are positive. To
show that z;;, the (7, j)th entry of X is positive, 1 < j < n, consider

pas(Bl) o pos(I_l, e ,Ljﬂ1,"X.j: Iit1y.-. v I

and let
~ pos(B) = pos(I).

Since these two cones are properly situated on the (n — 1) face
F=pos(li,...,05-1,L541y..,15)
using Lemma 1.2, it follows that
det(B')/det(B) < 0

which = det(B!) = —z;; < 0, or 2;; >0, V1< j < n.
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Let us assume that all the principal minors of order upto r, (r < (n—2)) of
X are positive; consider a principal submatrix of order (» 4+ 1). Let it be X,
where |J| =r + 1. Let s € J and L = J\{s}; consider the two cones

pas(Bl) = po&{*-—x_j,v_f € L, I.j; \¥) g L}

pOS(B) ZPQS{"‘X-.f:Vj € J,1;, VigJ}

and the face

F = pos{—X;,Vj € L, I;,Vj ¢ Land j # ).
Since pos(B) and pos(B') are properly situated on F, using (1.5),

det(B')
det(B) <
We have det(B) = (—1)"detXy;, and by induction, det Xy, > 0. Therefore,
det(B) < 0if r is odd and det(B) > 0 if r is even; it follows that, det(B') > 0
~when r is odd and det(B') < 0 when r is even. Since det(B*) = (~1)*+'det X,
it is clear that det(X;5) > 0 in either case. The proof is complete, B

0.

The following theorem characterizes N-matrices of the first category based

on the number of solutions to the lcp(q, M) for each ¢ € R".

Theorem 2.5 Let M € R"™" be such thet M; £ 0,V5,1 < ;5 < n. Suppose
lcp(g, M} has o unique solution whenever ¢ Z 0 and a finite number of solutions
whenever g > 0, with lep(q, M) having more than one solution for at least one
q > 0. Then, M 1s an N-mairiz of the first category.

Proof: Since lcp(q, M) has a finite number of solutions for any ¢ € R", from
Theorem 1.6, it follows that none of the principal minors of M is zero.

We will show that, if # is an (n — 1} face of a complementary cone of
[I: — M} which is not a face of pos([), then the two complementary cones
incident on it are properly situated. Suppose not. Let F be an (n — 1) face in
[I: — M] generated by k columns of I and (n—k—1) columns of ~M, 1 <k <
(n—2), such that the two complementary cones pos(B) and pos(B') incident on
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it, lie on the same side of F'. If F' C pos(I), then for some r € {1,...,n}, —M,
which is in the set of columns generating F, is in pos(I), contrary to the

hypothesis. Hence F ¢ pos(I).

Suppose the complementary pair of vectors left out in generating F' are —M
and I,. Since pos(B) and pos(B') lie on the same side of F and ¥ ¢ pos(I),

we can find a ¢’ € F, ¢ & pos(I) and an € > 0 such that
g(say) = ¢ + e(—M,) € pos(B) N pos(B*).

But g # 0 and for this vector ¢, lcp(g, M) has at least two solutions, which

is a contradiction. Hence our assertion follows. |
Let X = —M™*. By Theorem 1.2, it follows that if F'is an (n — 1) face of

[I: — X] other than pos{—X), then the two complementary cones incident on it
are properly situated. We note from Lemma 2.5, that all the proper principal
minors of X are positive.

Now if det{X) > 0, then X and hence X! = M is a P-matrix, which
contradicts Theorem 2.1 on the number of solutions to the lcp(q, M). Hence
det(X) and in turn det(M) is negative. From Lemma 1.2, it follows that all
the proper principal minors of M are negative. This completes the proof. =

Theorem 2.6 Let M € R"™" be such that every column of M has o positive
entry. M 1s an N-mairiz of the first category if and only if lcp(q, M) has

(i) a unique solution for all ¢ 2 0,
(ii) ezactly three solutions far.all g >0 and

(111} atmost two solutions for any g € R}, q p 0.

Proof: This follows fromn Theorem 2.2 and the above theorem. |

Next, we present a theorem characterizing an N-matrix based on the signs
of the diagonal entries in each of its principal pivot transforms. This is similar

to (7) of Theorem 2.1, on P-matrices.

Tﬁecrem'2;7 Let M € """, M 1s an N -matriz if and only if the fo'llowing_
holds: . | | . |
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(1) All the diagonal entries of M are negative and

(i1) let ¢ # J C {1,...,n}. Let py(M) as defined in (1.8), be the principal
pivot transform of M with respect to B(J). Then whenever |J| > 1, all
the diagonal entries of py(M) are positive,

Proof: (Only if): When M is an N-matrix, all the principal minors are
negative (in particular, the diagonal entries). Hence we can take principal
pivot transform with respect to B(J) for any ¢ # J C {1,...,n}. Condition

(11} now follows easily from (1.4).
(If): By hypothesis, all the diagonal entries are negative. Consider any 2 by

2 principal submatrix Myz, of M. Let L = {i,7}. Consider J = L\{:}. Since
the diagonal element m;; is negative, let M = uy(M), be the principal pivot
transform with respect to B(J), Now let X = {¢}, then using (1.4},

déﬁﬂ}g{ = dﬂtM[{ﬁ_}'l}'{ﬁJ/dEthj (2.5)
— dEtMLL/dﬂtMJJ.

By hypothesis this is positive. Since detM;r < 0 it follows that det My, < 0.
We can now complete the proof by induction on the order of the principal

minors of M. K

2.5 Sign reversal property for N

Sign reversal property of maftrices plays a key role in the theory of linear com-
plementarity. We say that a matrix M reverses the._sign of a vector z € R", if
:c,(M z); <0, for all 1 <7 < n. For P-matrices, condition {2) of Theorem 2.1
gives the sign reversal property.

‘For an N-matrix of the second category, the result on sign reversal property
is mentioned in Theorem 2.3, which has been observed by Parthasarathy and

Ravindran [53].
The next theorem gives a characterization of N-matrices of the first category

in terms of the sign reversal property.
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Theorem 2.8 Let M € R"*" be partitioned as in (2.8), for some J €.
{1,2,...,n}, M is an N-maitriz if and only if M reverses the sign of only
those vectors of the formzy 20, 27 <0 orz72 0, 2y 0.

Proof: This theorem easily follows from the sign reversal property presente:!
in Theorem 2.3, by observing that M reverses the sign of a vector z € R", i
and only if SMS reverses the sign of Sz, where § is the signature matrix with
s;; being —1 for i € J and +1 for i ¢ J. However, we prove this theorem base-l
on the linear C{Jmplementarity.
(Only if): Suppose M is an N-matrix of the first category, then by Lemma
2.3, M has the partitioned form as in (2.3) (after a principal rearrangement of
its rows and columns if necessary), where J is as defined (2.2), 1t is clear frorm
the partitioned form of M, that M reverses the sign of vectors (z,25)* of the
form z; £ 0 and &7 2 0 or of the form z; 2> 0 and z37 < 0. To show that A/
does not reverse the sign of any other vector, we proceed as follows.

Suppose M reverses the sign of « where x5 and zy are nonnegative with at

least one coordinate in z; and @7 being positive. Consider the index set
L={i:z;>0,1<i<n}

We have
LNJ#¢, LNJ#4.

Let (Mz)y, = qr = Mppzy; we note that ¢r, < 0, Also, it is clear that My, is

an IN-matrix of the first category. Thus we arrive at a contradiction to Lemm:

2.1.

The only other possibility to be considered is that of M reversing the sign
of a vector of mixed signs in z; and z7. Let the sign of #, where z; has both

a, positive and a negative coordinate, be reversed by M. Let

+

z; ifa; >0, _ ~z; ifz; <0,
T; =
0 otherwise. 0 otherwise.
Now z = &+ — 7 and we see that with ©« = Mz,

ut — Mat =u~ — Mz~ = g(say).
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Thus Icp(g, M) has two distinct solutions, (u*,z) and (u™,27), as zt #
0, = # 0, There are two cases:
Case(i): § ? 0. We have a contradiction to the result that for such a

7, lep(qd, M) has a unique solution.
Case(ii): §2 0. If 23 = 0, then we have at least three solutions to (g7, Msy),

a contradiction to Theorem 2.3, If z; # 0, then we have a contradiction to

Theorem 2.2.
Similarly, we can show that M does not reverse the sign of a vector (2, 25)°

when z75 has both a positive and a negative coordinate. This completes the

proof of the ‘only if’ part.

(IF): Suppose M can be partitioned as in (2.3) and M does not reverse the sign
of any nonzero vector ¢ = (zJ, 25 ' except when ry2 0and 7 <0ora; <0
and zy 2 0. By taking either 25 = 0 or 5 = 0 we see from Theorem 2.3 that,
Mj; and M55 are N-matrices of the second category. Let C;,Cs be the classes
of complementary cones of [I: — M], as defined in (2.4). Then by the proof of
Theorem 2.4, any ¢ > 0 is exactly contained in one complementary cone from
Cy (Ca) other than pos(I). We now show that for such a ¢ > 0, lcp(g, M) has
no solution (w, z) in which z; > 0 for some ¢ € J and z; > 0 for some k € J.

Suppose this is not true. Let

L={k:z,>0,1<k<n)
and LN J # ¢, Lﬂj%qﬁ. We note that

gr, = —MjprzL.

Define y by taking yr = z1; yr = 0. Then, M reverses the sign of y,
contradicting our hypothesis.

The above argument also shows that under our hypothesis about M, for
any g > 0, lep(q, M) has exactly three solutions.

We now show that no principal subdeterminant of M (including det(M) ) I
is zero. Suppose not. Let det(Myr) = 0 for some set L C {1,...,n}, then
there is 0 3 z € R¥ such that Mz = 0, Without loss of generality, we may
assume that no coordinate of z is zero. Let y € R" be defined by taking y;, =
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and yy = 0. Then M reverses the sign of the vector y. Note also that

(My)r = Mgryr + M;3y5 = 0.

Suppose yy < 0 and y7 2 0. From the sign of M and the fact that at least one

coordinate of either y; or ¥y is nonzero, it follows that

(My)ing = Mrpng tad¥ong + Mg ogViag > 0

contradicting (My);, = 0. Similarly the case y; 2 0, y7 < 0 does not arise.
Thus M reverses the sigu of a vector y, not allowed by our hypothesis, This
contradiction shows that no principai subdeterminant of M is zero.

In particular, it follows that M is nondegenerate. Also, the number of
solutions for the lcp(q, M) for any q € R” is finite, from Theorem 1.8.

Now consider any ¢ 2 0. Suppose lep(q, M) has a solution. We then claim
that the solution is unique. Let on the contrary, (w?, ') and (w?, 2?) be two
distinct solutions to the lep(q, M). Then

w' — Mz' = w? - Mz* =g

or

w' —w? =M -2 . (2.6)

from which it is clear that M reverses the sign of the vector (2! - 2?). By our
hypothesis, (2! — 2%); € 0 and (2! -- 2%)57 > 0. From the sign pattern of M and
the fact that (w! — w?); > 0 and (w! — w?)y < 0, it follows that 2} = 0 and

z%- = 0. Now it is easy to check that
q7 = w§— Myz;2; 2 0.

In a similar manner, we have ¢y > 0. This however, contradicts our assumption
ahout ¢. Hence the claim is proved. °

Let § = —Me. By the sign reversal property of M, it is easy to see that
g # 0. Moreover, lep(q, M) has a solution w = 0, z = e. Hence by the previous
argument, the solution is unigue. Since lep(0, M) has a unique solution and
lep(q, M) has a nondegenerate unique solution, we note that M is a -matrix
using Theorem 1.9. From the previous paragraph, it follows that lcp(g, M) has a
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unique solution whenever § Z 0. Thus we see that M satisfies all the hypotheses

of Theorem 2.6 and hence is an N-matrix of the first category. This completes
the proof of the theorem. =

The following theorem gives in a nutshell, the various equivalent character-
izations of an N-maftrix.

Theorem 2.9 Let M have the partitioned form as in (£.3) for some ¢ £ J C

{1,...,n}. Let Sy be the signature matriz salisfying (2.1). Then the following
conditions on M are equivalent:

1. M 13 an N-muairiz.

2. Whenever o veclor z € R™ gels reversed in sign, then z i3 either of the
formzy; 20, 27<0o0rz; <0, a7 > 0.

3. For every signature matriz S #£ £S;, v{SMS) > 0.

4. For every vector ¢ € R",q 2 0, the lep{q, M) has a unique solution;

lep(g, M) has finitely many solutions YV ¢ € R™ with more than one solu-
tion for at least one g > 0.

(1) All the diagonal entries of M are negative and

(it) let ¢ # J C {1,...,n}. Let py(M) as defined in (1.8), be the prin-
cipal prvot transform of M with respect to B(J). Then whenever
(J| > 1, all the diagonal entries of py(M) are positive.

2.6 A counterexample to a characterization of

- P-matrices

In section 1 of this chapter, we had seen a characterization of the class of P-
matrices due to Samelson, Wesler and Thrall, In geometric terms it can be

stated as follows: M is a P-matrix if and only if the complementﬂfy cones of
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[I: — M] partition the whole of R". However, to decide whether a given malrix
M is a P-matrix or not, this theorem is not directly of much help. In [43],
Murty presented the following result:

Theorem 2.10 Let M be a Q-matriz and let lep(g, M) have a unique solution
for each g in the finite {est sel

{I.l,'n I.ﬂ} vusy I.m "“"M.l: _M-Qi' > “M-n}'
Then M 13 ¢ P-matriz.

We refer to 4.9 and 4.10 of [43] for a proof of this result. Using this result,
Murty in [44] and Tamir in [65] have observed the following refinements in the

characterization of P-matrices.

Theorem 2.11 (Murty [{4]): M i3 o P-matriz if and only if lep(q, M) has a

unique solution for each q in
I'= {I.I:, ’ s -;I.m ‘"’I.la Py _"I.mM.I; b oo ;M.n: "“NI.I: 1 eoey '“"‘M.m 6}

where e i3 the vector of order n each of whose coordinates is one.

Theorem 2.12 (Tamir [65]): M ts a P-matriz of only if lep(q, M) has a

unique solution for each q in

Pl = {LI:LQ: <o :I.n:Mle.E: P 1M.n1 ""M.h ““M..Ej *ry ”_-M'.me}

Also Kostreva {29] had given a further refinement of this test set, We show
in this section that the above theorems are in fact, not correct for n > 4. The
proof 4.10 in [43], we submit, contains an error. In what follows, we present
a counterexample which is a matrix of order 4. It has been brought to our
notice by one of our referees of [39] that about an ycar.a,gﬂ, Professor W.Pye,
Department of Mathematics, University of Southern Mississippi, has pbintetl
out an error in Murty’s proof. Later in this section, we present a 'p'm'c:f of these

theorems for n <3.
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Counterexample: Let

[-1 -9 9
-1 -1 2 1]
M = (2.7)
2 1 -1 -2
1 2 -1 -1

We note that all the principal minors of M are negative and M £ 0. M is an

N-matrix of the first category and hence, a §}-matrix, From Theorem 2.6, it is

clear that lcp(¢, M) has a unique solution for
q - {I_]; ..,IA,"—'MJ...,"MA}.

Here, the observation that lep(l;, M) has a unique solution, V 1 < j < 4,
follows from Lemma 2.4. It can also be proved as follows.

Let J = {1,2}, then J = {3,4}. Also note that M;; < 0,M57 < 0 and
that these are N-matrices of the second category. M ;7 > 0, and M5; > 0.
Suppose lep(l,, M) has a solution (w,2) with 2 £ 0. Let K = {1 : z > 0}.
Suppose that K NJ # ¢,and K NJ # ¢. Hence, Mg is an N-matrix of the

first category, The equations

w—~ Mz = I_l . (28)
wlz =0
imply that

~Mgxzrg 2 0,

1.e., the system

Mrrzi 20, 2z 20

has a solution, which contradicts Lemma 2.1, We thus have K C J or
K C J. Consider the case K C J. Since My < 0 and z; # 0, we have
—Mj5z5 > 0. As 27 = 0 we have a contradiction to the assumption that (w, z)
solves lcp(ly, M). Similarly, we can show that there is no solution (w,z) to
lep(I;, M) with 25 # 0 and 25 # 0. It follows that the solution to lep(l;, M)
is unique, Thus lep(d;, M) has a unique solution for 1 < 3 € 4. Thus, M given
in (2.8) satisfies the hypothesis of Theorem 2.10 and is not a P-matrix.
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Let M be the matrix given in (2.8). Then M~! satisfies the hypotheses of
Theorem 2.11 and 2.12 and is not a P-maitrix., |

The reason for the failure of these theorems is that the part of the proof
which shows that under the hypothesis of 4.10 of {43] every principal subma-
trix of order (n — 2) is also a Q-matrix, i.e., the concluding part of the 4.13
[43] is incorrect. The matrix in (2.8) is a counterexample. Murty’s finite set
characterization of P-matrices has inspired many researchers to look forward
for a similar characterization for other classes of matrices so far, without much
of a success. We sce that the cardinality of the sets I' and I'; are linear in n.
Our observations here leave the question of finding such a nice set (i.e., a set
whose cardinality is bounded above by a polynomial function in n) open even

for P-maitrices.

In order to prove the above mentioned results for n < 3, we first state some

lemmas.

Lemma 2.6 Let M be a real square matriz of order n. If for every ¢ €
{(-My,...,—M,}, lep(q, M) has a unique solution, then lcp(0,M) has a

unique solution.

Proof: The unique solution for each lep(~M;, M},1 £ 7 < nis givea by
(w =0, z=-e¢;). Suppose l¢p(0, M) has a nontrivial solution (i, z) with Zx # 0
for some kth coordinate. Then we can easily verify that (T, e; + 7) solves the
problem lep(—M i, M), which is a contradiction. oA

Now we prove a result in R?,

Theorem 2.13 Let M be a square malriz of order 2 with M; < 0 and M, > 0.

Then the following are equivalent:
(1) M is a Q-matriz.
(31) lep(1g, M) has ezactly two solutions.

(1ii) dei( M) > 0.
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Proof: (i)= (ii): It is easy to see from the given conditions and (i) that, if ¢ =
(z,y) withz < 0andy > 0 then ¢ € pos{—M;,—M,}. Since pos{—M,—M}
is also closed, it follows that Iy € pos{-—~M,,--M,}. It is also clear that Iy €
pos({) and pos{—M,,1,} but not contained in pos{l;,—M,}. Hence (ii)
follows.

(12) = (i23): Since lep(I,, M) has two solutions, from the givun conditions, it is

easy to check that I, € pos(—M ). Thus there exists a vector ¢ > 0 such that
""'Mm — €9.

Let = = (1, z2)*. Note that zo(—detM/m,1) = 1, which implies that detM > 0.
(i1t) = (2): Since none of the principal miunors of M are zero, lep{0, M) has
a unique solution. Also it is easy to check that lep(—I;,M) has the unique

solution & = (21, z;)* where

X1 = ng/dEtM

Tq = —-mgl/detM

and the solution is nondegenerate. Thus M is a Q-matrix. K

Lemuma 2.7 Let M be a Q-mairiz of order 8. Then lcp(0, M) has the unique

solution (w = 0,z = 0).

Proof: This can be verified very easily, by drawing the complementary cones
in K%, Also one can see exercise 3.103 in (42, p.248]. B

Lemma 2.8 Let M be a square matriz of order 2 with my; < 0. f M is a Q-
matriz, then 1ts eniries must be nonzero and 1t must have one of the following

sign patlerns of ils eniries,

_—
— +.
ar -
[—— }
T
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Proof: This is easy to verify. =

Now, we prove the desired theorem.

Theorem 2.14 Let M be a square matrmz of order n, withn < 3. M is a
F-mairiz sf and only if for all

qely={I4,I, ..., 0, —M,,~M,,... ;"M.n,ql}

lep(q, M) has o unique solution, where q' 1s in the interior of some comple-

mentary cone of [I' — M].

Proof: Suppose lcp(g, M) has a unique solution for all ¢ € T'y, then by Lemma
2.6, lep(0, M) has a unique solution. Since lep(q', M) also has a unique non-
degenerate solution, it follows from Theorem 1.9, that M 1s a @-matrix. Now,

we proceed as in 4.11 of Murty [43] to show that all the principal submatrices

of order (n — 1) of M are @-matrices,
Suppose A, a principal submatrix of M of order (n — 1) is obtained by
striking off the first row and the first column of M, and A is not a ()-matrix,

Then 3 ¢ € R™Y such that the problem

w— Az = ¢ | (2.9)

w'z =0, w,z >0

does not have a solution. Let § € R" be defined as 7 = (o, ¢")* for o, a
scalar. If lep(q, M) has a solution (w, z) when ¢ = @, then z; > 0, for otherwise

(we, w3} 22, z3) will be a solution for (2.10). Hence every point on the line
{7:7=(a,¢"), o a scalar}

corresponds only to solutions in which 2, > 0. Since there are only a finite

number of complementary cones and each one is convex, there must exist an
ap such that the half line

{g:q= (crb,q")‘ + 814, 6 >0}

lies fully in a complementary cone. This complementary cone should have
the column —M; as one of its generators. This implies that pos(I;) also
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lies in the same complementary cone, i.e., lep(ly, M) has another solution,
which is a contradiction. By a similar argument, we conclude that all principal
submatrices order (n — 1) are (J-matrices,

If n = 2, this shows that the diagonal entries are positive, Now the conclu-
sion of the theorem follows from (7) of Theorem 2,1.

For n = 3, we have all the order 2 principal submatrices being @-matrices;
we have to show that all the diagonal entries are positive. We proceed as follows,
by considering different cascs. At first, our claim is that the diagonal entries
are nonzero. Suppose on the contrary that mj; = 0. Since all the submatrices
of order 2 are Q-matrices, by Lemma 2.7 we conclude that mqy < 0, mg < 0.
But this implies that lep(—M ;.M ) has at least two solutions contradicting our
hypothesis. Thus m;; and consequently all m;; are nonzero.,

Suppose my; < 0. We have the following two cases.

Case 1: my < 0,mg < 0. Then lep(—M1.M) has at least two solutions, a
contradiction.

Case 2: mq > 0,mg = 0 or ma1 > 0,3 > 0. In either of these we have, I; €
pos{—~M,I2, I3} contradicting the uniqueness of solution to the lep(I1, M).
Case 3: mg; < 0,mg > 0 or my > 0,mz; < 0. If my; <.0 and mg, > 0, then
by Lemma 2.7, the sign patbern of the entries of M is given by

[~ + +]
|~ + -],
- + + - o

Let N be the priﬁcipal submatrix of order 2 of M obtained by deleting its
last row and the last column. By Theorem 2.13, for ¢ = (0,1), (¢, N) has

exactly two solutions. From the proof of Theorem 2.13, we see that (0,%) is a
solution to (¢, N), where Z > 0. Choose a scalar 23 > 0, so that

—Ma1Z) — MagzZy + 23 = 0.

This is possible by the signs of mg; and mg;. Now note that (0, 2) solves
lep(Ia, M) where z = (%%, 23)%, which contradicts the uniqueness hypothesis.
Similarly, we can arrive at a contradiction for the case mg; > 0,ma; < 0 also.

Thus my; > 0. By a similar argument, we can show that mg > 0 and
mas > 0. The conclusion now follows from (7) of Theorem 2.1. N I
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Chapter 3

MATRICES OF EXACT
ORDER ONE

Like N-matrices, we would at first categorize the matrices of exact order one
into two different categories. (As mentioned earlier, these matrices are known
as almost N and almost P-matrices, in the literature). Most of the results in

this chapter and the later ones are based on the papers [36) and [37].

Definition: Let M € R**" be an N-matrix of exact order one, forn > 4. M is
said to be of the first category if both M and M~ contain at least one positive
entry each; otherwise, it is said to be of the second category.

From the definition, it is clear that if M € R"*" is an N-matrix of exact

order one, then so is M1,

Definition: Let M € R*™" be a P-matrix of exact order one. M is said to be

of the first category, if M ? has a positive entry; otherwise it is said to be of

the second category.
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3.1 P-matrices of exact order one

Characterizing P-matrices of exact order one becomes easier, due to the fact
that a P-matrix of exact order one is the inverse of an N-matrix.
We present below a complete list, of all characterizations known so far about

P-matrices of exact order one of the second category.

Theorem 3.1 Let M be ¢ nonsingular matriz with v(M) < 0. Then the fol-

lowing statements are equivalent:
1. M 13 a P-malriz of ezact order one.

2. Whenever a nonzero vector © € R" gels reversed in sign, then either x > 0,

or z < (.

3. For every signature matriz S % :£I, v(SMS) > 0.

4. For ¢ € R", q €mtD(M), lep(g, M) has ezactly two solutions.

5. Let A = SMS, where S is a signature matriz, § ¢ I, For every vector
g € R", g & pos(—A), lep(gq, A) has a unigque solution; lep(g, A) has finitely
many solutions V ¢ € R", and has more than one solution for at least one
q Epos(—A),

Proof: The equivalence of first and third is due to Parthasarathy and Ravin-
dran [83); they also prove condition 4. From the earlier cha,pter, we get the
last condition. Also, Gowda [20] proves the last condtion for a matrix of exact
order one using degree theory. Hence, only the equivaleﬂce of conditions 1 and
2 remains to be established,

Let M be a P-matrix of exact order one and as noticed earlier, M~ is an
N-matrix; since v{M) < 0, M~ is an N-matrix of the second category.

Suppose M reverses the sign of a nonzero vector x € R®. Then M~ reverses
the sign of y, y = Mz. Hence from Theorem 2.3, y is unisigned, i.e., either
y > 0ory <0, As M is nonsingular, y # 0. Wheny 2 0, z = M~y < 0.

Similarly ¥y < 0 implies z > 0. Hence condition 2 follows. _



Suppose the condition 2 holds for a nonsingular matrix M with v(M) < 0.
Let N € RU-1xX("~1) ¢ a principal submatrix of M; N does not reverse the sign
of any nonzero vector. Otherwise, if y € R("1), the vector y # 0 gets reversed
in sign by N, then the vector (y*,0)* € R (after a suitable rearrangement of
its entries) gets reversed in sign by M contradicting our assumption. Hence all
the proper principal submatrices of M are P-matrices. We conclude, from the

value of M being negative that M is a P-matrix of exact order one. -

3.2 N-matrices of exact order one

Throughout the rest of this chapter, we consider matrices of order greater than

three,
Several equivalent characterizations of these classes of matrices were given

by Olech, Parthasarathy and Ravindran [46]. We state without proof, the

following theorem from [46].

Theorem 3.2 Let M <0 be ¢ nonsingular matriz. Then the followmg state-

ments are equivalent;
1. M i3 an N-matriz of ezact order one.

2. v(SMS) > 0 for all signature mairices S with the exception of two, viz.,
S =xI, and § = £So(5¢ I) where the signature matriz Sy 18 such that

SQMMISD < 0,

9. Whenever a vector ¢ € R® gets reversed in sign, then either x is unisigned

or Soz 18 unisigned (this Sy is as given in condition 2).

4.SMS € Q for all signature matrices S, except for S = xI and S = £S5, (So

as given in condition 2).

Olech et al {46] also proved a result on the number of solutmns Icp(q, M) has

for some vectors g, ¢ € R":
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Theorem 3.3 Let M be an N -matriz of exact order one and ¢ > 0 be an n

vector, Then
(1) if M is of the first category, then lep(g, M) has exactly three solutions;

(i1) if M~1 <0, then lep(q, M) has ezactly four solutions.

The main task of this section is to provide a complete characterization of N-
matrices of exact order one in terms of the number of solutions the lep(q, M) has

for each ¢ € R*. This was posed as an open problem in [486).

To start with, we prove a lemma which plays a crucial role in these results.

Lemma 3.1 Let M be an N-mairiz of ezact order one. If Icp(q,M)' for g €
R"™ has two solutions (wt,z') and (w?,2*) with w} = w} = 0, for some ¢ =
1,2,...,n, then q € pos(—M).

Proof. Without loss of generality, assume that { = 1, i.e.,, w = w? = 0. We

consider two casges :

case(i): M~ < 0. Since lep{g, M) has a solution .(wl,zl); considering the

system

7 — M™'w=—-M"g (3.1)
z>0, w>0and 2'w = 0.
We see that the lep(—M g, M~1), has a solution (zl;tbl). As M < 0, we
get —M~1g > 0 and hence ¢ € pos(~M).

case (ii): M~ has a positive entry. We notice that (z',w') and (2%, w?) are
two solutions to (3.1) with w] = w? = 0. Let A be the principal submatrix of
M~ got by omitting its first row and first column. Extracting the system

Z— Aw=7 (3.2)

obtained by dropping the first entry of (—M "1;;) in (3.1), we note that all
principal minors of A are negative and the reduced lcp(g, A) has two solutions.
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- Let them be denoted as (!, ') and (w?,2%). As A is an N-matrix, this implies
that §> 0, i.e., (—M™q); >0, forz =2,...,n.

If (-M~1g); > 0, then ¢ € pos(—~M) and Lemma 3.1 follows. On the
contrary let (—M~1g); < 0. From (3.1) we note that .

21—y mVw} =z — Zm”w =(-M"gh <0 (3.3)
j=1 J=

Simitarly,
—~ Y mPuwi=(-M"¢); <0

3=2
It follows from (3.3) that there exist indices j and k, 1 £ 3,k < n such that,

w} >0, m* > 0 (3.4)

J

and
wi > 0, m** > 0

If in (3.4) j = k, then by complementarity, z; = 2f = 0, and this violates |
Lemma 2.4 when applied to (g, A). Hence j # k and the following must hold;

1 1 ean? — ) o2
w; > 0,z; = 0w; =0,2; >0

wi > 0,z = 0;w? =0,z > 0 (3.5)

Note that A reverses the sign of (! -- W?) which is not unisigned, in view
of (3.5). Hence by Theorem 2.3, 4 is not an N-matrix of the second category,

and A should have at least one positive entry, By Lemma 2.2, there is a
¢ #J C{l,...,n} such that (@' —@°); <0,(W" —W*)7 > 0. Further j € J
and k € J, by (3.5). Hence we have

mm* <0 foralll1 <: < n.

The partitioned form of M~ is as given in (2.3),

where either [, = JU{I},_fz J or
L = J; L= JU{1}.



In either case using Lemma 2.3, we get mYm'* < 0, a contradiction to (3.4).
Hence ¢ € pos(—M) and the proof is complete. X

We state below a lemma, proved in [46], regarding the minimax value of

exact order one.

Lemma 3.2 Let M € R™"*", n > 4, be a matriz of ezact order one. Suppose
M has a positive entry. Then exactly one of the following holds:

(1) There exisis a positive vector u such that Mu > 0.

1t) For allu > 0, Mu < 0; that 1s Mt < 0.
(1)

Proof: For N-matrix of exact order one, it is already known [46]; if M is a
P-matrix of exact order one, the proof follows from the fact that AM~! is an

N-matrix. -]

The following theorems present the number of solutions lep(q, M) has, for

each ¢ € R", when M is an N-matrix of exact order one.

Theorem 3.4 Let M < 0 be an N-matriz of ezact order one of the second
category. Then

(i) m(g) = 4, for ¢ € int[pos(~M)).

(i) m(g) = 2, for ¢ > 0,q  pos(~M).

Before we prove this theorem, we remark that a more precise version of this

theorem has been obtained by Gowda [20], using results on degree theory.

Proof: (of Theorem 3.4): Since M < 0, we have D(M) = R} and it is sufficient
to show that if m(q) > 2, then ¢ € pos(—M}, and m(q) = 4. Observe that
lep(g, M) has at least two solutions for ¢ > 0, due to Theorem 1.7 on parity
of solutions. Suppose for some ¢ > 0, there exist two solutions for lep(q, M),
other than the trivial solution, w = ¢, z = 0; we have two solutions (w', z?)

 and (w? 2?) such that z' # 2% # 0. M reverses of the sign of the nonzero



vector (z' — 2?). Then, by Theorem 3.2, either (#! — 2?) is unisigned or there
is a signabture matrix Sp # +I, such that So(2*' — 2?) is unisigned.

Suppose (z! —~ 2?) is uﬁisigned. Without loss of generality, we can assume
that (2! — z%) > 0. Since 2* #£ 0, there exists an index ¢, 1 <1 < n, such that
z{ > 0 and 2z} > 0. Hence w] = w? = 0, and applying Lemma 3.1, we have
g € pos(—M). If Sp(z' — 2z*) is unisigned, we have SoM ™15y < 0 and let the
partition of M~ induced by S, be

I MJJ M‘fj )

-1 __
MU= s

N
Further, we have (2' — 2%); > 0 and (' — 2*)7 < 0. If there is an index ¢ such
that 2z} > 0 and 2? > 0, 1 < ¢ < n, we are done as in the previous paragraph;
Otherwise, we have
2y 2 0;25=0
z} = (; z% > 0.
In this case, we notice that,
- JJ -1
| M2 =(-M"q)y >0
~MV 2y =(-M"q)s 2 0

and hence —M~1¢ > 0 or in other words, q & pos(—M), Hence if lcp(q, M} for
¢ > 0 has more than two solutions, then ¢ € pos(—M). | |

To complete the proof, we note from thereom 3.3, that lep(q, M) has
exactly 4 solutions if ¢ > 0. As there is a one to one correspondence between
the complementary cones of [I : —M] and that of [T : —M™1], it follows that
m(q) = 4, if q € int[pos(—M)]. This completes the proof. _

Remark 3.1: From Theorem 3.4, it follows that, if M £ O is an N-matrix of
exact order one of the second category, then m(q) = 4 for ¢ > 0, and m(g) = 2,

for g € int[D(M) N pos(I)°].

Remark 3.2: For M « 0, an N-matrix of exact order one of the second
category, one can easily check that lep(q, M) has exactly 1 or 2 solutions, for
g > 0, with ¢; = 0, for at least one 1,1 < ¢ < n, depending on the sign pattern
of M. The proof is similar to the one given in Theorem 2.4,
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Theorem 3.5 M € R"*" be an N-mairiz of ezact order one of the first cate-
gory. Then

(i) m(q) = 3, if ¢ € int[pos(—M)] or int[pos(I)];

(11) m(q) = 1, if g € [pos(I) U pos(—M)]°.

Proof: It is clear from Theorem 3.3, that m(q) = 3, if ¢ > 0. As M™% is
also an N-matrix of exact order one of the first category, it follows that if
q € int[pos(~M)], then m(g) = 3.

Since we know that M is a Q-matrix using Theorem 3.3, we need to prove
that if m(g) > 1, then either ¢ € pos(—M) or ¢ € pos(I).

Suppose that lcp(q, M) has two distinct solutions (w!, 2"} and (w?, 2?) with
z! # 2. Then M reverses the sign of the vector ¢ = (2! — 2%). This implies
that there exist signature matrices Sp, S, such that either Spz is unisigned or
S1z is unisigned, where S5,.8; # +I and SeM Sp < 0,5; M5 < 0.

Consider SqMS; < 0. The signature matrix Sy induces a partition as in
(2.3) for some ¢ % J C {1,2,... 'n} and we have (2! — 22); > 0, (2! ~-2%)5 £ 0.
If there is an index ¢ such that 2z} > 2? > 0or 2! 2 2! > 0,for 1 <i < n,
then as in the preof of Theorem 3.4, it follows that ¢ € pos{(—M); otherwise,

we have
27> 0;27=0
z-} 0; 25 > 0.
From the sign pattern of the partitioned form in (2.3) it follows that ¢; 2 0
and g7 2 0, and hence ¢ € pos(]).
We can proceed similarly, in the case of the signature matrix 5, with

'S1M"IS1 <0, U.Sillg M1, |
This completes the proof of Theorem 3.5. =

The following theorems establish the converse of Theorem 3.4 and Theorem

3.5,. respectively.

"Theorem 3.6 Let M < 0 be ¢ square mairiz of order n 2 4. Suppose m(q)

satisfies the follounng conditions:
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(1) m(q) < o for all ¢ € R™;
(11} m(q) > 2 if ¢ € int{pos(—M)];

(i) m(q) <2, if g ¢ pos(—M).

Then M is an N-mairiz of ezact order one of the second category.

Proof: Since m(q) < o, for all ¢ € R*, none of the principal minors of M is
zero., We shall show that if F' is an (n — 1)-face of[I: - M}, which is not a face
of pos (I) or pos (—M) then F is proper. Let F' be an (n — 1)-face generated
by k columns of I and (n — k) columns of —M, 1 < k < (n — 1), such that the
two complementary cones pos(B) and pos(B') incident on it are not properly

situated.
Without loss of generality, let us assume that

F=pos(li,...,Ip,—Misa,...,—M,)

with {Lr41, —Mgy1} as the left out complementary pair. Since M < 0, it is

easy to see that the vector

k n
¢g=) I.4+6 ) (-M,)eF

r=1 s=k+72

is not contained in pos(—M) for § sufficiently small and ¢ > 0. As F'is not

proper, there exists an € > 0, such that

g+ e(liy1) & pos(—M) and

g +€(Lxs1) € pos(B) U pos(B*)

We then find the (¢ + €(lx41), M) has at least 3 solutions, contrary to our
hypothesis. Hence our claim that F', which is not a face of pos(I)} or pos(—M),

is proper follows,

- Now by Lemma 2.5, it follows that all the proper principal minors of M
have the same sign. Since M < 0, all the proper principal minors are negative.
If det(M) < O, M will be an N-matrix. This however contradicts Theorem 2.3.

‘Therefore det(M) > 0, and M is an N-matrix of exact order one. |
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Theorem 3.7 Suppose for M € R*™*, with n 2> 4, we kave the following:
(1) m(q) < oo for all g € R™;
(i) m(g) =2 or 0, if ¢ & RZ;
(1it) m(q) > 2 for all ¢ > 0.

Also suppose that pos(I) C pos(—M). Then, M i3 an N-mairiz of ezact order

one of the second category,

Proof: Notice that as pos(I) C pos(—M), pos(—M ') C pos(I); therefore,
M~! < 0 and M ™! satisfies all the conditions of Theorem 3.6. Hence, the

conciusion follows. | | _

Theorem 3.8 Let M € R™**, n > 4, be such that M as well as M™! have the
partitioned form as in (2.3) and suppose that M saitsfies the following:

(1) m(q) < oo for all ¢ € R
(i) m(q) =1, if ¢ & [pos(I) U pos(—M));
(31) m(g) > 1 for q € int[pos(I)] or ¢ € int[pos(—M)].

Then, M ts an N-matriz of exact order one of the first category.

Proof: Since m(q) < oo, for all ¢ € R", it follows that none of the principal
minors of M is zero. We now claim that if F' is an (n — 1) face of [I: - M},
which is not a face of pos(I) or pos(—M), then F' is proper. Suppose this is
not true. Then there exists a k&, 1 < k < (n — 1), and an (n — 1} face F,
generated by k columns of I and (n — k) columns of —M, such that the two
complementary cones that are incident on F lie on the same side of it. Without

loss of generality, let us assume that
F = PQS(LM co 1I~k - M*k+2: voe i'"M-ﬂ)'

- We now construct a ¢ € R", contained in the relative interior of F' which is

~ neither in pos(I) nor in pos(—M). First note that, for any §, 1 € j < n,
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I; ¢ pos(—M), for otherwise —M 7 € pos(I), contradicting our hypothesis
about M~!. Also by hypothesis, M.x42 contains a positive entry, i.e. 3 an index
r, such that m,p42 > 0. Consider for A > 0, s # r, § = ~Mypeo + AL, 2 0,
where 1 < s < k. Hence § ¢ pos(I).

Also, as I, € pos(—M), there exists a Ag > 0 such that

'“M.j;_l_z -+ }kuI.,g Q pos(-—-M)

Let g = —Mygpo+ Aol +0 Ele Li+63 % rra(—M;) € F. For sufliciently small
6, q is neither contained in pos(I) nor in pos(—M). Now, we note that there
exists an e > 0, such that Iep(qg + e(—M.t), M) has at least two solutions and
g + e(—My) € pos(I) or pos(—M), which contradicts our hypothesis.

The remaining part of the proof follows in the same lines as that of Theorem
3.6. | o

3.3 Generalizations of exact orders 0 and 1

The class of matrices with nonnegative principal minors are called Py,-matrices.
It had been of interest in complementarity, to find constructive characteriza-
tions of Py N Qp. We refer to [2] and [41]. Among the class of Py-matrices,
(J-matrices are precisely the Rg-matrices. This was observed by Aganagic and
Cottle {1].

A similar a,ttémpt has been made to characterize the class of Ny N Q-
matrices, i.e.,0J-matrices whose principal minors are all nonposiive. Eagam-
baram and Mohan [14] and Pye [55] have shown that the Aganagic-Cottle result

holds good for nonsingular Ny-matrices with a positive entry.

In this section, we investigate the class of Ny-matrices, which are got as
limit points of N-matrices and obtain a result regarding their Q-property. Our
result generalizes the results of Pye [55] and Eagambaram and Mohan [14].
Unlike P,-matrices, there are Ng-matrices which are not limit points of N-

matrices. Hence, the question of characterizing the class of Ny N @ completely,

still remains open.
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The class of N -matrices are defined as follows:

Definition: A matrix M € R**" is said to be N , if and only if 3 a sequence
{M®)}, MK ¢ R¥n of N-matrices, such that mf; — mi;, Vi, j € {1,...,n}.

For Py-matrices, by perturbing the diagonal entries alone one can get a
sequence of P-matrices (whose principal minors are all positive) that converges
to Py. It is not so with Ng-matrices; one of the reasons is that an N-matrix
needs to have all its entries nonzero. Hence the matrix

1 -1 9 1

M=|0 0 2 (3.6)

11 -1

though it is Ny, cannot be got as a limit point of N-matrices by perturbing the
diagonal; but M € N , as the sequence

[ -1 —1 2 -
M®) — |~ -1 2 (3.7)
} 11 -1

converges to M as k — oo,
We note that N includes the following matrices: .

(1) No with nonzero diagonal entires;
(ii) Symmetric Ny and
(iii) Nonsingular N,.

The following example shows that N does not include all the Ny-matrices:

(o 1 1]
M=)0 -1 2 (3.8)
'_0 1 -1

In order to characterize the class of N -matrices, we at first study the

following class of almost P -matrices:
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Definition: Let M € R™*" . M is called an almost P (almost P ¢)-matrix, if 3
ad#KC{l,..,n}suchthat VJ C{1,...,n}, J # K, det(My,;) > 0(= 0),

and det(Mkx) < 0. Throughout our discussion, we fix the index set to be K
with respect to which the class almost P is defined. The above definition of
almost P and almost P ; generalizes the class of P of exact order one.

The reason for such a generalization of the class of P of exact order onc
stems from the fact that if M is an almost P -matrix, then px (M) , its PPT

with respect to the fixed index set K, is an N-matrix, Hence some of the
results of section 1 can be reformualted in terms of almost P . But such a
generalization of N of exact order one will result in altogether a new class and

hence, is not done here.

As a consequence, we have v(M) # 0 whenever M is an almost P -matrix.
Also, there exists a signature matrix Sy for some J C {l,...,n} such that

v(Sy;MS;) < 0. when M is almost P .

Following is a lemma on the signs of minimax values of M and M' when

M is an almost P -matrix.

Lemma 3.3 Let M € R**™ be an almost P -matriz for ¢ £ K C {1,...,n}.
If v(M) < 0 then v(M*) > 0.

Proof: The proof follows from the relation between the PPT of M and the
PPT of M*, viz.,

pr(M') = Sk(px(M))Sk (3.9)
and the fact that px(M) is an N-matrix of the second category. _ g

Next we prove a sign reversal property for almost P -matrices.

Theorem 3.9 Let M € R““l" be an almost P -matriz with v(M) < 0. Then

whenever

zi(Mz); S0=> ether z =0, (3.10)
| or zx > 0,z <0,

or e <Ozxg210,

o4



Proof: Let y = Mz and y;2; <0, Vi€ {1,... ,n}. Writing vy = Mz in the
partitioned form,

- l-yf( - -
[ Ik 0 —Mxx ~Myx || vz _ [0 | (311)
0 Iz Mgy "‘MF(T{'_ T (]_J
LI .
Multiplying the first K rows by ~Mpz; we have
ry.r{ -
| Mgk 0 Ixk  MgkMyg | | v _ |- (3.12)
| 0 g —Mpx —Mgg | ek | L0 |
L K .

Adding the last K with the first X rows multiplied by Mz and rearranging

the columns, we get

[ x5y
- - ] 0
Igx 0 ~Mik My Myx | 7 o (3.13)
0 Ing —MgueMgy Mg — MpeMgi Mg 1| Yk O

L K |

Thus we have, for the principal pivot transform px{M) a vector #* =
(yx, zx)! such that 2, (ux(M) 2)i < 0. As o(ux(M)) < 0, ux(M) is an N-
matrix of the second category. From Theorem 2.3, we see that 2z is an unisigned

vector, ie., either 2 < 0orz 2 0. When 220, z % 0, pux(M) 2z < 0 which
implies zx < 0 and zz > 0. Similarly, when z < 0, 2z # 0, pg(M)z > 0
which implies zx > 0 and z% < 0. That M reverses the sign of no other vector
follows from the sign reversal nature of ug(M) . This completes the proof. m®

For N matricég, we have the following result;

Theorem 3,10 Let M € R**" be an N -matriz, with v(M) > 0. Then the

following are equivalent:
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(i) M € Ry
(ii) M € Q.

Remark 3.3: Before we proceed to prove Theorem 3.10, we remarl: that
this includes the already known results in the class of Ny N Q. Pye [55] and
Eagambaram and Mohan [14] prove Theorem 3.10 for the class of nonsingular
Ng-matrices with a positive entry. Since nonsingular Ng-matrices have inverse
almost-Py [55], one can easily verify that they belong to N . The class of N
matrices includes more than nonsingular Ng-matrices, is clear from the example
in (3.8).
Now we present the proof of Theorem 3.10.

Proof: At first we note that M has no zero column, for otherwise M is neither
@ nor Ry. See [42].
(1) = (ii): This has already been observed by Eagambaram and Mohan [14};

we give a different proof here.

‘Let M € RyNN , with v(M)>0. Since M € N, 3¢ #J C{1,...,n},

M= | Mo My N (3.14)

where Mj; <0, M55 <0, M3, 2 0, M,7 > 0, using (2.3).
Consider the principal submatrix Mj; of M, Every column of M;; should
have a negative entry, for otherwise (0,M) will have a nontrivial solution,

violating the condition that M € Ry, Hence 32 € RVl z > 0, such that
2*My; < 0. Thus, the sufficient condition of Theorem 4.3 of [58] is met, and

for any ¢y > 0, g5 nondegenerate with respect to My, (g7, M) has exactly
two solutions. We choose and fix a ¢; > 0. By symmetry of the structure,
(g7, M77) also has exactly two solutions, for any ¢y > 0, ¢y nondegenerate
with respect to My7. Thus for ¢ € R", ¢ > 0, lcp{gq, M) has at least three
solutions. As M is a limit point of a sequence of N-matrices with v(M) > 0, |
we conclude from Theorem 2.6, that for ¢ > 0 nondegenerate with respect to
M, lep(q, M) has no other solution. Using Theorem 1.9, we have M € Q.
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(i1) = (i): Let M €¢ N N Q. From (42, Exercise 3.103], it is clear that 3
a ¢ # K C{1,...,n}, such that det{Mkg) < 0. Consider the PPT matrix
pr(M)of M.

Let M ¢ Ry. Then px(M) ¢ Ry and there exists a nontrivial solution
(w,2) for (0, ux(M) ), which can be written in the matrix form, for some

p#LC{l,...,n}as

. .
”K( ) LL 0 ZL qL (315)
| —vx(M) g, Izp | | wz qr

L ] L= =

[l

i
i

where z;, > 0. Now, we claim that for any ¢ € R", with (g, < 0, ¢r > 0),
lep(q, M) has no solution.

On the contrary, suppose (u, v) is a solution of (g, px(M) ). Let y = v Az,
for some A > 0. As in the proof of Theorem 1 [1], one can verify that

y;(pK(M) y),— < 0, fory; 5£0,:=1,...,n, (3.16)
for sufficiently small A > 0, with y; > 0 and y; < 0.
Let T = {{ : y; # 0} and N be the principal submatrix of ux(M) with

respect to the index set T'. Let the cardinality of the index set be s. From
" (3.16), clearly K C T By the choice of A, we have L C T\ Let us denote the sets
T\K andT\L by K and L respectively. Then for g€ R, (g0 <0,9;, >0),
(¢, N) has a solution, viz., (ur,vr).

M € N implies 3 a sequence {M")}, M") ¢ R™*" M) an N-matrix,
such that M) converges to M. As det(Mgr) < 0, we have the sequence
{ur(M©)}, where pug (M) the PPT of M) converging to pur(M) . If NI
denotes the principal submatrix of px(M{)) with respect to the index set T,
then {N(J} converges to N. Let B = N (), for the simplicity of notation.

Therefore, for r large enough, we have
yi(B'y) < 0, Vi€ T, (3.17)

B™ has the principal subdeterminant det(Bjj) negative, and B” is an almost
P -matrix. For the signature matrix S, € R***, v(S.B"S1) < 0. Rewriting
(3.17), |

(Spu)i(SpB"SLSiy) < 0,VieT. (3.18)
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From Theorem 3.9, it follows that

either (Scy)x >0, (Spy)p <0, (3.19)
or(Sty)k <0, (Spy)p >0,

Let (SLy)x > 0,and (Spy)z < 0. Then (3.19) implies that
y = (yLnK’ > (), Yrnk < 0, Yinkw < anf, nR - 0) (3'20)
= (y(LnR’)u(fL nR) < 0, Y& ny(Lng) = 0)
But from (3.16), we have yz, > 0 and y; < 0, and hence

L = (LnK)U(L nEk) _ ('3.21)

I = (LnKYU(LNK)
or in other words,
LCKandl CK

As UL =T and K C T, we get T = K. This implies that det(V) < 0 and
N is an almost Py-matrix as defined by Pye [65]. But the fact that (g, N) has
a solution for ¢ € R* with (q; < 0,q; > 0) yields a contradiction to Theorem
5 of [55]. Hence the theorem follows. ' | N

“Finally, we state without proof & similar theorem for the class of almost

P o-matrices.

Theorem 3.11 Let M € R**™ be an almost P o-matriz with del{Mgg) < 0
for ¢ # K C {1,.. . ,n}, for which there ezists ¢ sequence of almost P -matrices
that converges to it. Let v(M) > 0. Then the following are equivalent:

(i) M € Ry
(i) M € Q.

Proof: This follows from Theorem 3.10. | o | o
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Chapter 4

MATRICES OF EXACT
ORDER TWO ‘

In this chapter, we study the properties of matrices of exact order 2. Charac-
terizing these matrices, regarding their Q-nature, forms the main result of this

chapter.,
We start with some examples.

Example 4.1: Consider the matrix

-9 -2 -2 2 -2

-1 -9 -3 3 -1

M=| -1 -3 -9 3 -1
1 3 3 -9 1
-2 -2 -2 2 -9

One can directly verify that, every principal minor of order 1,2 or 3 of M is
negative and principal minors of order 4 and the determinant of M are positive.

Hence M is an N-matrix of exact order 2,
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Example 4.2

19 0 1.453378 0
1 4,980 1 1.368317 1
= I 0 2 1.2 1.168878 0

1 26 1 2.842317 1.41
0 2 0 1.168878 1.2

As before, by looking at the principal minors of B, one can see that B is a

P-matrix of exact order 2.

4,1 The three categories of exact order

The following notation is followed in this chapter only., A square matrix M €
Rr*n is assumed to be of order at least 5. B; € R~-Ux(n-1) 1 < i < n,
will denote the principal submatrix of M, got by deleting the :th row and the
ith column of M. By vi;,1 £ ¢, < n, we mean the value of the game whose
pay-off matrix, is the submatrix of M obtained by deleting the ith row and the

jth column of M.
We notice that if M is of exact order k, then B;,1 <1 € n, are matrices of

exact order (k —1). |
Depending on the categories of the exact order one matrices in M, we

classify a matrix of exact order 2, into three categories.

Definition: Let M € R"*® be an exact order 2 matrix, M 1is said to be of
the first category, if M £ 0 and every B;, which is a matrix of exact order 1,
B; £ 0,1 < i £ n, is of the first category; we say that M is of the second
category, if all B;s are of the second category. M is said to be of the third
category, if there are indices, 1,7 € {1,+++,n}, such that B; is of the first

category, B; £ 01s of the second category,
The matrix given in example 4.1 is an N-matrix of the exact order 2, of the

third category. In example 4.2, we have a P-matrix of exact order 2 which is

~of the first category.
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We observe the following about the principal minors of M™%, if M is of

exact order 2.

Lemma 4.1 If M 1s an N(P)-matriz of exact order 2, then M~ has diagonal
entries positive, all proper principel minors of order grealer than or equal to 2
are negative and det(M) > 0(< 0).

In general, we observe the following relationship between the classes of P of

exact order r and N of exact order r:

Lemma 4.2 Let M be an N-matriz of ezact of r and D be ¢ principal subma-
triz of M~" of order k by k, n > k> r-+ 1. Then D! 1s a P-mairiz of ezact

order r,

4,2 Two-person zero-sum games with exact or-

der matrices

We now prove some game theoretic results for these classes of matrices.

Lemma 4.3 Let M be a matiz of exact order 2. Then v(M) # 0.

Proof: Suppose v(M) = 0. Then there exists a probability vector y, such that
y*M <0, If y > 0,then there is a probability vecor z, such that Mz = 0, which
contradicts the hypothesis about M. Hence, without loss of generality, assume
that ¥y = (y1,¥2, . - - ¥n-1,0)". If B, < 0, (which may occur, if M is an N-matrix
of exact order 2), then from the fact that y*M < 0 and the sign pattern of M,
it follows that M < 0, contradicting our assumption that v(M) = 0.
| Now, it follows from Lemina 3.2 that § = (y1,92,.+.,¥a~1)¢ > 0. Thus
Mz} =(0,...,0,a) for any optimal strategy z of the maximizer, where o >0

1s a scalar.
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This implies

z=M1|" | =a.M"

where M™ denotes the nth column of M~!, By Lemma 4.1, since every 2
by 2 principal minors is negative, it follows that M™ > 0 as z 2 0. Thus
v(M™1) > 0. It follows that »(M) > 0, contradicting our assumption. This

completes the proof.
Lemma, 4.3 can be restated as a theorem of alternatives as follows.

Theorem 4.1 Let M be a mairiz of exact order 2. Then ezactly one of the
following holds:

(1) there ezists o y > 0, such that y* M < 0.

(1) there exists an z > 0, such that Mz > 0.

It is well-known tha,-t‘ v(M) and v(M*) keep the same sign whenever M is a
matrix of exact order 1 or 0. This result, for matrices of exact order 2, is

proved next, in Theorem 4.2. We first prove two leminas,

Lemma 4.4 Let M be a mairiz of exact order 2. If all B;,1 <t < n, are of
the same category, then v(M) and v(M?') have the same sign,

Proof: If the matrix game M is completely mixed, then it is known already
from Theorem 1.4 that v(M) = v(M*). Otherwise, from (1.6), there exist

indices 1, Jo, € {1,.. ..,n}, such that

v, SV M) <y foralll <7 <n (4.1}
Similarly, there exist 7;,71, € {1,...,n}, such that

vi; So(M) < v foralll <i,5<n (4.2)

where by v{; we mean the value of the subgame with the pay-off matrix obtained
from M by deleting the ith row and the jth column. |
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Suppose v(M) > 0 and v(M*) < 0. From {4.1), (4.2) and Lemma 3.2, we
conclude that B; is of the first category and B;, is of the second category,
contrary to our hypothesis. This concludes the proof. -

More precisely, for the first category matrices, we have the following:
Corollary 4.1: Let M be a matrix of exact order 2. If it is of the first category,

then v(M) and v{M") are positive.

Now, we prove our desired theorem.

Theorem 4.2 Let M be a mairiz of ezact order 2. Then v(M) and v(M*)

have the same sign.

Proof: If M is either of the first category, or of the second category, the
theorem follows from Lemma 4.4. '
So, let M be an exact order 2 matrix of the third category. Then there
exists an 7 € {1,...,n} such that, B; £ 0 is of the second category. Assume,
without loss of generality, that 7 = 1. Let us also assume that v(#) < 0.
By Lemma 4.1, M~! has no zero entry,' with the diagonal entries being
positive. Suppose the first row of M1, 1.e., MY > 0, Then M'! > 0, and hence

v(M~1) > 0.
This contradicts our assumption that ’U(M Y < 0 by Lemma 1.3. Hence M
contains a negative entry. Thus, there is a k € {2,...,n} such that m** <0,

Define the vector (wy,...,w,)t € R*! by taking
| | -
w; = ,  if ¢ £ k-
—1 otherwise, 1 =2,...,n.

Let y :Bi"lw; As B{'_l_ <0, y>0

0
By taking u = as an n-vector, we have
Y
[ L ) " wt } ) 0 h
Mu=|" (s2y) and M ™ =
= w ol - w - - y wd

Now w* can be determined from the equation

m'w* + mi*(—1) =
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Then w* < 0, We have Mu = 0 <0, orutM' <0,
Y

This, with Lemma 4.4, implies that we have v(M*) < 0. Similarly, one can
prove the theorem with v(M) > 0.

This completes the proof of the theorem. |

4.3 Completely mixed game and @-matrices

The following result which we present for a class of completely mixed games
with value greater than zero, will be macde use of in the sequel, in characterizing

the class of exact order matrices.

Theorem 4.3 Let M € R**", Letv(B;) < 0, for 1 < ¢ < n. Then the

following are equivient:

(1) v(M) >0
(it) M € @

111) M 13 nonsingular and M~ > 0.
(13)

Proof: (i) = (ii): We shall show that, for a ¢ € R*, lep(g, M) has a unique
solution, viz., (w = 0; 2z > 0), which by definition, is nondegenerate.

Let v = v{M) > 0, and v; = v(5;), for 1 < i < n.

Consider the vector ¢ = —ve, where e is the n-vector of 1's. Since v > 0, and
v; < 0, for all 1 <17 < n, it follows that the game is completely mixed; hence,
there exists a z > 0,2 € R" such that Mz = —ve, or (0, z) solves lep(g, M).

Suppose (w!, z') is another solution to lep(g, M). We then have the follow-

ing equations:

Mz+qg=0 (4.3)
Mz +qg=u (4.4)

If w' = 0, then z = 2/, since the game is completely mixed. So assume that
w' # 0; Suppose the first coordinate w} > 0. Then 2| = 0. We note that

Bz +g=w" = ' (4.5)
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Where £ denotes an (n — 1)-vector obtained from z € R" by omitting its first
coordinate.

Equation (4.5) implies that v(B,) = v; > 0, contradicting our hypothesis.
Thus (0, z) is the only solution to lep(q, M). Similarly, we can show that (0, 0)
is the only solution to the lep(0, M).

It now follows from Theorem 1.9, that M is a Q-maitrix.

(it) = (iii)): Take ¢ = —e;, for 2z € {1,...,n}, where ¢; is the ith column
vector of I. Since M € @), lep(q, M) should have a solution.

We can observe, as in the previous case, that lep(¢, M) has a unique solu-
tion, {0, z), with 2 > 0. In otherwords, —e; € pos(—M), for 1 €1 < n. This
implies, pos(—1I) C pos(~M), and hence M~! > 0.

That (iii) implies (i) follows from Lemma 1.2. B

Remark 4.1: As a consequence of the above fheorem, if (M) > 0 for the

second category matrices of exact order 2, then we have M € Q. But it is clear
that with B; £ 0, 1 € ¢ < n, this will not happen at least for the size of the

matrix being odd, as it would contradict Theorem 1.7 on parity of solutions to

lep(q, M).

In fact, the value of the niatrix game is never positivé for the second category

matrices. This is proved in the next theorem.

Theorem 4.4 Let M € R**" be a matriz of exact order 2. If M 13 of the
second category, then v(M) < 0.

Proof: Let us assume that M has at least one positive entry, as otherwise

there is nothing to prove.
Let v(M) > 0. Suppose B; £ 0 for all 1 < ¢ £ n. There are two cases

possible based on the size of the matrix.

~ Case (i): ‘n’ is odd, From Remark 4.1, it is clear that v(M) < 0, if M is of

the second category.

Case (ii): ‘n’ is even. Let v(M) > 0. We now claim that M is of the second
category if and only if lep(I;, M) has at least n solutions for each j = 1, .
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As v(M) > 0, and M is of the second category, each subproblem lep(1;, B;)
for any fixed 7, 1 € j < n, has a nontrivial solution for all { % 5,1 = 1,...,n.
Since each of them can be extended to the lep(g, M), with ¢ = I;, lep(I;, M)
has at least n solutions. The solutions are distinct from the fact that in each
subproblem lep(l;, B;), we have I; € intpos(—B;) for i £ j.

Conversely, suppose lep(l;, M) has at least n solutions. Let a nontrivial
solution (w, z) for the lep(d;, M) be written in the matrix form, for ¢ £ J C

{1,...,n}, as

-y I- iy = =

My, 0 2 I
iy IﬁH Wy _0

I

i,e. the system,
~Myy25 2 0,2;>0

has a solution. This means that the matrix M;; cannot be an N(P)-matrix;
hence, My; has to be a matrix of exact order one, i.e., My; = B; for some
2 <t < n. Using Lemma 3.2, we conclude that v(B;) < 0. In a similar manner,
we note that v(B;) < 0 for all i = 1,...,n and hence, M is of the second
category. Thus our claim is established. That is, M being of the second

category is equivalent to assuming that the lep(];, M) has at least n solutions

for each y =1,...,n.

For a fixed j, say j = 1, from the earlier paragraph we see that, lep(I,, M)

has solutions in the complementary cones,
pos(I), pos{—M1,...,— M1, L;,—Mip1,...,~My), 1 =2,...,n.

Let N = M~!, Under our hypothesis, N > 0. Due to the 1-1 correspondence
that exists between the cones of [I : —M] and that of [I : —N] from Theorem
1.2, we note that the lep(—N, N) has at least n solutions viz,,

pos(—N), pos(Iy,... L1, — Ny Titr,ooydn), t=2,...,n,

Thus one can list down all the n solutions of (I_j, NYj =1, ceny n explicitly.
Let N be the principal submatrix of N, leaving the last row and the last
column of N. We can see that N > 0 and by Lemma 4.2, N-! is a matrix of
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exact order 2, of size (n — 1) by (n — 1). But (=N, N) has at least (n — 1)
solutions for each j =1,...,n— 1, with o(N) > 0 implies that N~! is a matrix
of exact order of the second category. This gives rise to a contradiction to case

(i), as the order of N7 is even. Hence v(M) < 0.
If there exists an ¢, 1 < ¢ < n, such that B; < 0, say B,, then the roles of

case (1) and case (ii) get interchanged and one can prove in a similar way that
v(M) < 0. This completes the proof of Theorem 4.4. B

4.4 Results on first category exact order two

matrices

We now have a result on the (J-nature of the exact order 2 matrices of the first

category.

Theorem 4.5 Let M be a mairiz of ezact order 2 of the first category. Then
M € Q.

Proof: Since M is nnndegenlerate, (0, M) has a unique solution. We treat P

and NN-matrices of exact order 2 separately, below.

Suppose M is a P-matrix of exact order 2, of the first category. Consider a
g € k", q > 0. We claim that lcp(¢, M) has a unique solution w = ¢,z = 0.
Let there exist a solution (w',2') for lep(q, M) with 2! % 0. The solution

can be written in the matrix form, for some ¢ # J C {1,...,n} as
~M;; 0 [z ] -
JJ ] J;j':[QJI (4.6)
_M':;FJ Ij"j I L w? QT ]
i.e. the system, |
— Mz > 0, zJ > 0 (4.7)

has a solution,r which implies that v(M}5;) < 0. We know that v(My;) =
v(M};) > 0,J C{1,...,n)}, for a P-matrix of exact order 2 of the first category,
‘using Corollary 4.1. Hence (4.7) is impossible and lep(g, M) ha,s a unique
solution for ¢ > 0. By Theorem 1.9, we have M € Q.
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Suppose now, M is an N-matrix of exact order 2, of the first category. Two

cases arise,
Case(i): There is an 25,1 < tp < n, such that B;y < 0. We may assume,

without loss of generality, that ¢y = 1; the sign pattern of M can be written as
[ - + + ...+

+ r 3

M= |+ B, = | ™ | (say)
. C B1 |
n

with By < 0. Consider a ¢ > 0, whose partitioned form is ¢ = (¢, §)*, where
§ € R*!. Choose § € R}, such that § € int[pos(—B;)]. Since By is an
N-matrix of eéxact order 1, of the second category, and § € int[pos(—By)], by
Theorem 3.3, it follows that the lep(d, B,) has exactly four solutions. Also, if
(W, Z) solves lep(§, By), then the pair (w, z),w € R*, z € R", defined by

W, = ¢t + d'F 2 = 0
‘ Wj=-lﬁj,1;3j:fj_1,2£j£n,
solves lcp(q,M ). Thus we obtain 4 solutions to the lep(q, M), We construct

another solution as follows:

T&kﬂﬂ} == ql/(—-mu); w.}=0

1 (e and o 1 -
z = 0; w =§.1+2z.c V2<i<n,

Then (w!, 2') solves lep(q, M) and (w', z') is different from the four solutions

constructed before. Thus we have 5 solutions to lcp(g, M) and ¢ nondegenerate

with respect to M, by our construction. Now, for this ¢ € R}, we proceed to

prove that lep(q, M) has no other solution. |
Suppose (u,v) is a solution to lcp(q, M) distinet from the b listed above.

Let
L::-.'-{i:v;>0}_

Then since (u,v) is different from the aforesaid 5 sﬂlutioné, it follows that, the
index 1 € Land LN {2,...,n} # ¢. Now the equation

u-e»Mvzq,
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leads us to
MLLUL <

where either Mpp is an N-matrix of exact order 1 of the first category or
- L ={1,...,n}. But this gives rise to a contradiction to the property of an
N-matrix of exact order 1 or 0, or when L = {1,2,...,n}, to our assumption
on the v{M). This shows that there are exactly 5 solutions to lcp(g, M), and
by our choice of § € int[pos(—DB)), ¢ is nondegenrate with respect to M. This
along with lcp(0, M) having a unique solution implies (using Theorem 1.9) that

M is a Q-matrix.

Case (ii) A iy, such that B; < 0. M can be written in the partitioned form,
for some ¢ #J C {1,...,n} as

M = MJJ MJ:}"
Mz, My;

where M;; < 0, M55 < 0 and M5, M5, > 0 with 1 < |J| < n—1. We proceed
as before, finding a vector ¢ > 0, ¢ nondegenerate with respect to M and

lep(q, M) has exactly three solutions. By Theorem 1.9, the result follows. ®

4.5 Results on second category exact order 2

matrices

It is well-known that if M is an N-matrix of exact order 1 or 0, or a P-matrix
of exact order 1, of the second category, then —M € (). In view of this, one

may consider the following question:

Question: Let M be a matrix of exact order 2 of the second category. Is —M,
a Q-matrix?
Our Theorem 4.7, that follows will provide an aflirinative answer to this

question. To do this, we need the following results.

Lemma 4.5 Let M be a matriz of exact.drder. 2, Let By, and By be matrices
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of ezact order 1 of the second category, with B; £ 0, + = 1,2, Suppose that
(M) < 0. Then m!2, the (1,2)th entry of M~ is negative.

Proof: By hypothesis, By < 0. Let y = (w;,0,...,0) € R*!, where w, < 0.
Then J a z € R*™!, Z > 0 such that
iy = Blf

Let z = (0,%')' € R*. We note that

uny
0y
Mz=110 for some wy.
- 0 |
In other words,
z =M tw, - (4.8)

From Lemma 4.1, the diagonal entries of M~ are pdsil;ivﬂ, and its 2 by 2
principal minors, negative. Hence m!? # (. From (4.8) we have the first

equation

mw; + m?w, =0, (4.9)

Now suppose m'’> > 0. It then follows from (4.9), that w; > 0.. As B, is also

of the second category, B; &£ 0, we have B;' < 0.
Let ¢ = (~wy,0,...,0)" € R* !, where w, is determined from (4.9). Then

there exists a vector & € R"*, 9 > 0 such that
Let v € R"™ be defined by

) { o, forie {1}U{3,4,...,n},
;=

0, otherwise.
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Note from (4.10) that

My

[§
o

for some ws.

This implies

M(v+z):! 0 where wy" = wj + w,.

Let u = z+4v. Asu > 0, and U(M) < 0, we sec that w3* < 0. On the other

hand, the first coordinate of u, 1.e.,
— -1 12, %%
uy = (MIMu); = m?wi* <0
a contradiction. Henece m** < 0, and this concludes the proof. B

The next theorem characterizes the class of inverse Z-matrices (matrices

whose inverses belong to Z), within exact order two matrices.

Theorem 4.6 Let M be a matriz of ezact order 8, M~ € Z if and only tf M
i of the second category with each B; £ 0.

Proof: Let M be of the second category exact order 2 with each B; £ 0, V1 <
i < n. Then by Theorem 4.4, we have v(M) < 0 and the assumptions of Lemma
4.5 are satisfied; .hence, it follows that M~! € Z,
- Conversely, let M~! be a Z-matrix. By Lemma 4.'1., the principal minors
‘of order r, 3 < r < n, are negative, Hence for 2 0 # 2z > 0,z € R*, we have
2M~! < 0. Hence v(M™1) € 0. From Lemma 1.3, it follows that v(M) < 0.
Using Lemma 4.3, we conclude that v(M) < 0. We shall show that B; 4 0 and
B, is of the second category. Th:s will complete the proof.
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Clearly, B; < 0 is not possible as M~! is a Z-matrix. Suppose B is
a matrix of exact order 1, of the first category. Then there exists a vector

¥ € R*L, 7 > 0 such that

Bi7>0 (4.11)
See Lemma 3.2. L
0
Let y€ R* bedefinedasy=|  |.
Y
Note that My y < 0, for otherwise, My > 0 (4.12)

and hence v(M) > 0, contradictory to our earlier conclusion. We have
y1 = (M7 My); = 0. (4.13)

However, we also note that, (M My), = YL, mY(My); < 0 from (4.11),
(4.12) and the fact that m¥ < 0, for j # 1, which contradicts (4.13). This
contradiction implies that B; is of the second category. This concludes the

proof of the theorem. m

We now present a theorem that answers our earlier question. For notational
convenience in the next theorem, we denote the exact order matrix by A and
the negative of its inverse, by M. B;, 1 £ 1 £ n will stand for the principal

submatrix of A, leaving the ith row and the sth column,

Theorem 4.7 Let A € R**", be a matriz of exact order & of the second cale-

gory. Then —A is a Q-mairiz.

Proof: If A <0, then —A4 is trivially a Q-matrix. We refer to Murty [43].

Hence, we assume that A has at least one positive entry.
Let M = —A~'. We prove that, for some principal pivot transform M of
M, there exists a ¢ > 0, such that (¢, M) satisfies Todd's conditions and hence

M € Q.

Note that lep(0, M) has a unique solution as no principal minor of M is
zZero. - o

Let us take ¢ = —I. Suppose lep(g, M) has a solution (w, 2). . |
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Then the solution (,7) can be writien as

il

—Mp; O ]_EE- thw (414)

[-Mm Iy | | wp qr.
for some ¢ # L C {1,...,n}. As M is nondegenerate, it is clear that 1 € L.

Let |L| = k. We claim that k = (n — 2).
Suppose 1 < k £(n — 2). Then

—~Mppz, = Appzp <0, 21, > 0

implies that Apj, is an N-matrix of the second category. But, Arrz;, = ¢ with
z;, > 0 is impossible, since Ary, < 0. Hence k > (n — 2). Again, k = n is not

possible, for otherwise,
—Mtqg= A" >0

implies that a'! < 0, contradicting Lemma 4.1 that A~! has diagonal entries

positive.

Thus, if ever lep(g, M) has solutions, for ¢ = —I; for any 1 < j < n,
it has solutions only in the complementary cones, containing exactly (n — 1)
columns of —M as generators, Now, we proceed to show that lep(q, M) has
a solution and in turn, all its solutions are nondegenerate, for a ¢ = —1I;, for
some 1 <7 < n.

Without loss of generality, let B, the principal submatrix of M got by
deleting the last row and the last column of M, be such that B, ¥ 0 (this is
feasible, as A £ 0); and M be partitioned as

B, ¢
d f

where f is a scalar and d and ¢ are the last row and column vectors of M

leaving the diagonal entry, respectively.
M- in the partitioned form is given by

| -1 -1 “1dB-1 —¢B:! -
[B,, + B 1c¢(M/B,)"1dB; CBH_(M/B") } (4.15)

—~dB;Y(M/B,) (M/B,)"
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Let pos(C) be the complen:lentary cone of [I:~ M] with the first (n—1) columns
of —M. Then from the hypothesis that —B-! < 0 and the fact that dB1
must have a negative entry from the partitioned form of M1, it follows that
C~'q > 0 for some ¢ = —I;, 1 £ j < (n —~1), and hence ¢ € pos(C). Thus
lep(q, M) has at least one solution for ¢ = ~I; for some 1 < § < n. Also
we note that, dB;" has no zcro entry for any 1 < 1 € n, from Lemma 4.2:

this implies that every solution of the lep(g, M) is nondegenerate for ¢ = —~1I;,
1<) <n.

Let us fix ¢ = ~1;. We do a principal pivot transform of M, with respect
to any one of these complementary cones in which icp(q, M) has a solution. If
M = B~'B is the PPT matrix, where ¢ € pos(B), then by taking § = B™1q, we
see that M with respect to g (along with lcp(0, M) having a unique solution)
satisfies the Todd’s conditions and hence Lemke’s algorithm, when applied to
the lcp(g, M) will never end in a secondary ray. Therefore M, and hence M is

a (J-matrix. This concludes the proof of Theorem 4.7, E

Remark 4.2: In the above theorem, we have only made use of the fact that
every 2 b},? 2 principal submatrix of M is an N-matrix of the first category.
Hence we have, f M € R"™ ", n > 2 is such that every 2 by 2 principal
submatrix of M is an N-matrix of the first category, then M € Q.

Remark 4.3: A comparison matrix of M is defined as A, where

_{ mi| i i =

Ai; = cp ‘
’ Mgy lfz?l—'J.

Let M be an N-matrix of exact order k. Then rabove theorem and Remark 4.2

imply that for its comparison matrix 4, —A EIQ.

4.6 A characterization of the third category

In this Section, we turn our attention to matrices of exact ordef 2 of the third

category. Before we proceed to give a characterization theorem on their Q-
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property, we present a few lemmas, for the class of matrices of exact order

2.

Lemma 4.6 Let M be a matriz of exact order 2, with v(M) > 0. Suppose
B; £ 0 13 @ matriz of ezact order I of the second category, then Mt > 0, and

MY >0,

Proof: Clearly from Lemma 4.1, m* 3 0, for all 1 < ¢, < n and the diagonal

entrics of M~ are positive.
Suppose m'? < 0. Taking w = (w,,0,...,0) € R*? for some wy < 0, there
exists a ¥ > 0,7 € R"!, such that

WQh
By = :
o

- Let y € R" be defined as y* = (0;7*). Then, M}y > 0, for otherwise v(M) < 0.

Now,

(M~*My), =0 or
m' (Myy) + m'w; =0

However, we note that, since m'? < 0, w, < 0,
m't (Myy) + m?w, > 0
which is a contradiction. Hence m'#* > 0. This completes the proof. B

Lemma 4.7 Let M be a mairiz of exact order 2, with v(M) < 0. If By 13 of
the first category, then M (as well as M) has

m¥ < 0,m¥ > 0, for some j,k € {2,...n}.

Proof: This follows from the proof of Lemma 4.3, | E

The next lemma characterizes, first category matrices tllfﬂugh the sign pat-
tern of M1, |
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Lemma 4.8 Let M be a malriz of ezact order 2, with v(M) > 0. If every row
(or column) of M~! has a negative entry, then M € Q.

Proof: Suppose m!? < 0. We will prove that either B, and B, are of the first

category, or B; < 0, for some 7 € {1,2}. Suppose By £ 0 is of the second
category. Consider (w,,0,...,0) € R"!, with wy < 0. Then there exists a

7>0,ye R,
B
(

o |

By taking y = (0,5!)' € R", as before we have

By =

(M~ "My), =0
implies
m (Myy) + mPw, =0

which implies that M;y < 0 and hence My <0, for y > 0. _

This contradicts our assumption that ¥(M) > 0. Hence all B;s are of the
first category, except possibly, for one i, B; < 0. Thus M is a mafrix of exact
order 2, of the first category and by Theorem 4.5, M € (). |

The next theorem gives a characterization of exact order 2 matrices of the

third category.

Theorem 4.8 Let M be a matriz of esact order 2 of the third category, with
v(M) > 0. Define |

L= {i{: B; £0,B; is of the second category,1 <1 < n}.

M is a Q-matriz iff the cardiﬁality of L 13 even.

Proof: If part: Suppose the cardinality of L is even. As in the proof of
Theorem 4.5, let us construct a ¢ € R}, ¢ nondegenerate with respect to M,

such that lep(q, M) has an odd number of distinct solutions.
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Now, with each B; £ 0, B; a second category matrix , ¢ € {1,...,n}, we
produce a solution to the lep(q, M) which is different from the ones stated. Let

B; £ 0, be a second category matrix. Let us partition M, as

ISR d

M=
:_C Bl

where d,c € R*!; let § = (ga2,...,9a) € R*"! be the (n — 1)-vector got from ¢
by deleting its first coordinate. As B! < {,

q € pos(—B)
i.e, Jan z > 0,z € R*"*, such that —Byz =; if d'z <0, then
M [ : = [ dti: < 0, and we have a contradiction to v(M) > 0. Hence
dtz > 0. .
Let w € R*,z € R" be defined as

wy=q +da; 2z =0

w,---:{); Zi = Xy fﬂ.l“2_<__3'_"§ﬂ.

Thus, (w,z) 1s a solution to the lcp(q, M) and it is distinct from the earlier

solutions, mentioned,

As |L| is even, altogether Icp(q, M) has exactly an odd number of solutions,
all of them being nondegerate. Using Theorem 1.9, it follows that M is a

(-matrix.

Only if part: Let M € @. Assuming that |L| is odd, we will arrive at a
contradiction. | .

We prove for |L| = 1, and the proof is similar for |L] being odd, |L] > 1.
- Let us agsume without loss of generality, that By £ 0, is the only matrix of the

- second category in M.
Since v(M) > 0, using Lemma 4.6, M~ can be written as

- “

+ 4+ ...+

romy .

' b |
4 ]

M =
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where D € R(mUx{(n=1}  As before, we can produce a ¢ € R?, ¢ nondegen-
erate with respect to M, lep(q, M) has an even number of solutions; hence
lep(g, M) has an even parity for all ¢ nondegenerate with respect to M. Since
M1 >, for ¢ = Iy, (¢, M~!) has a unique solution. This, alongwith M € @
implies that D € Q. We refer 4.9 of Murty [43].

If D has a row (and its corresponding column) of positive entries, we repeat
this argument, until we get a principal submatrix F = MY/, for ¢ # J C
{1,...,n}, |J| = k,2 € k £ n, such that F € @ and every row of F has a
negative cntry.

Since F' € @, v(F) > 0, and F~! is a P-matrtix of exact order 2 of the
first category, using Lemma 4.8. For § € Rﬁ_, lep(, F71) has a unique solution
from the proof of Theorem 4.5, which is given by (W = §,.Z = 0).

Now, define a vector ¢ € R" as

g ={(—Fg), forigld.

= 0, otherwise

The lep(q, M~1) has a solution, which is given as follows:

w; = 0 Z,"‘-:?L-.fGI‘E'EJ.

wy = Emﬁzj; AR 0, for s ¢ J.
Asm¥ > 0, fori ¢ J,j € J,(w,2) is a solution to the lcp{g, M~1). We claim
that lcp(q, M~') has no other solution. Suppose lcp(g, M) has a solution

(w', z') which can be written as

[ MLL Oﬂ[zlL“ rWGI'L}

wy || ¢z

}

where ¢ £ L < {1,...,n}, with LN J # ¢, and LN J # 4.
But ¢z, has a zero entry, corresponding to which M*" has a row of positive

entries; thus there does not exist a
z}; > 0 such that - MLin = qr,

Hence, (g, M) has a unique solution, which is nondegenerate. But this con-
tradicts Theorem 1.7 that lcp(q, M) has an even parity for all ¢ nondegenerate
with respect to M. Thus |L| # 1. This completes the proof. "
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Thus a complete characterization of exact order matrices regarding their

()-nature, can be stated as follows:

Theorem 4.9 Let M be a metriz of exact order 2 withv(M) > 0, Then M €
if and only if the cardinalily of the set L 13 even, where

L ={i:B; £0,B; is of the second category,1 <t < n}.

4.7 Some more examples of exact order

Here, we present few examples, to illustrate some of the results proved in this .

chapter.
Example 4.3: Let

—~5.3846 1.5385 1.5385 1.5385 —20
1.5385 —.1538 —.6538 —.6538 .1

M=/ 15385 -.6538 —.1538 —.6538 H
1.5385 —.6538 —.6538 —.1538 [4
—-30 2 2 . 4 -1

In this example of an N-matrix of exact order 2, B, is of the first category,
while B;, for 2 <1 <5, 1s of the second category; we find that

0025 —.1439 —.1439  .0418 —.0464 .
5732 .3918 —1.6032 —1.4688 —.0348
M =] 5732 —~1.6082  .3918 —1.4688 —.0348
5685 —.4941 —.4941  1.7564 —.0626
~.0051 —.0028 —.0028 —.1021  .0023

Note that v{M) < 0; Now since B; € 0, are of the second category, for
2 <1 <5, we find that m¥ < 0, for 1 # j, 2 < 4,5 < 5, as anticipated by
Lemma 4.5. Also, as asserted by Lemma 4.7, the first row and first column of
- M™1 each contains a positive entry.

Now, take D € R**4 to be the principal submatrix of M~1, leaving the first
row and first column. Clea,rly,. D is a Z-matrix, and it can be verified that D1
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is a P-matrix of exact order 2, of the second category, with v(D} < 0, as stated
in Theorem 4.6.

Example 4.4: Consider the matrix

| 1+e 2 3 4 5 ]
6 T4 ¢ 8 9.1 10
M™7t=]| 110 120 130+¢ 140 150
16 17.1 18 194+¢ 20
| 21 22 23 24 25+¢

- where ¢ is taken to be 0.0795766.
Now M = (M~')"}, can be verified to be an N-matrix of exact order 2.

In M, B, and Bj are of the second category, while By, B3, B, are of the first
category. As asserted by Theorem 4.8, we note that M € @, since M~ > 0.

This example also shows that, the converse of Lemma 4.6 1s not true. We
notice that though M™ > 0 and M > 0, B, is of the first category.

4.8 Exact order k, kK > 3

As we go up the hierarchy in the classes of exact order matrices, the results
we derive here, require more calclulations. In a similar manner as done in
Section 2, one can classify the exact oder k matrices k 2> 8, into three different

categories, based on the exact order one principal submatrices present in thern:

Definition: A matrix M of exact order k, is of the first category, if M £ O
and every principal submatrix of order (n — &k + 1), which is a matrix of exact
order 1, is of the first category; we say that it is of the second category, if all
order {n — k -+ 1) matrices are of the second category. M is said to be of the
third category, if there are at least two principal submatrices of M of order

(n — k + 1), such that one of them is of the first category and the other, of the

second category.

For proving results on general exact order k in a similar manner as in the

earlier sections, the size of the matrix under consideration needs to be greater
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than or equal to (k + 3). We can prove the following for the first category

matrices of order n > 3:

Theorem 4.10 Let M € R**", be a malriz of exact order k of the first cate-
gory. Then M is ¢ Q-matriz. |

Proof: At first, we observe, when M is of the first category, that v(M) #£ 0.
If, for k = 3, v(M) = 0, then the game has to be 'cm,npletely mixed and there
exists a probability vector z > 0 such that Mz = 0. But this is impossible
for M is nonsingular. Siinilarly one can prove that for any order & of the first
category, the value is nonzero. We will in fact prove, inductively over k, that
v(M) > 0. We know for k = 2 from Corollary 4.1, that v(M) > 0. If, for k = 3,
v(M) is negative, then the game is completely mixed and M~! < 0. But using
the determinantal expression given in (1.7), we see that the inverse of an exact
order k matrix (k > 2) has all the diagonal entries positive. By repeated use
of this argument, we see that v(M) > 0. As in the proof of Theorem 4.5, there
exists a nondegenerate ¢ with respect to M, ¢ > 0 for which lep(q, M) has an
odd number of solutions (in particular, when M is a P-maftrix of exact order k,
we observe that for ¢ € R, ¢ > 0, the lep(g, M) las a unique solution). This
along with the fact that lep(0, M) has a unique solution implies that M is a

(-matrix. | K

A subclass of second category exact order matrices will not belong to the

class Q. This is observed in the next theorem.

Theorem 4.11 Let M € R™*™ be a matriz of ezact order k of the second
category with each principal submatriz, of exact order one, having at least one

positive entry. Then v(M) < 0.

Proof: We give the proof for £ = 3 and for k > 3, the theorem can be proved

in a similar way. Let M be written in a partitioned form, as

- A B -
M=|d mui)n-1) Ma-i)n
| f Mn(n—1) Menn ;
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where A is a matrix of exact order one. Doing a principal pivot transform

with respect to A the resulting matrix M is given by

A1 A —A-le

A7 f (M/A)

From Theorem 4.6, we have —A7'b < 0 and —A~1¢ < 0. Since A~ < 0,
v(M) < 0 and hence the theorem follows. "

As the size of the matrix to be cousidered becomes larger, when we go up
the hierarchy, studying the classes of exact order & matrices beyond k¥ = 2
becomes difficult. In fact, the problems we looked at in this thesis, remain

open for the general exact order k& matrices.

4.9 Algorithms that process the exact order

In this section, we consider the question of finding an algorithm to compute a
solution to the lep(g, M) when M is a matrix of exact order 0,1, or 2. Algo-
rithms for some of the subclasses are already known. In this section we sum
up the known results and present some results new to the literature,

It is known from Chapter 1, that Lemke’s algorithm [30] will find a solution
to the lep(q, M) for any ¢ € R* when M is a P-matrix. It is also known that a
solution to the lep(q, M) can be obtained from a solution to lep{—M~q, M~1)
computed by Lemke’s algorithm when M is an N-matrix of the first category.
We refer to Saigal [59]. This result also takes care of the case when M is a
P-matrix of exact order 1 of the first category, since such a matrix is just the
inverse of an N-matrix of the first category.

For N-matrices of exact order 1 of the first category, we have the following

result.

- "~ Theorem 4.12 Let M be a matriz of exact order 1 of the first category, Let
the rth coordinate of M, be positive and let d = A;(—M4) + Z L;+pl, where

i1,
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1 <8< n, s#r A tsa fized number such that Ay(—m) +1 < 0 and
i 1s sufficiently large. Then Lemke’s algorithm initiated with the vector d in
the complementary cone pos(B) where B = {—-M;,1;,2 < j < n} computes a
solution to the lep(q, M) for any ¢ € R™,

Proof: Notice that the rth coordinate of d, d. is negative by the choice of A;.
Thus d & pos(I). Also, since I, & pos(—M), s s r, it follows that there is a.

tg > 0 such that for u > po, d € pos(—M): Thus for p sufficiently large by
Theorem 3.4, (d, M) has a unique solution and the theorem follows. "

Remark 4.4: Using standard methodology and the above theorem, we
can develop a computational scheme for computing a solution to the

lep(q, M) whenever M is an N-matrix of exact order 1 of the first category..

The following result can be easily seen for P-matrices of exact order k of

the first category.

Theorem 4.13 Let M be a P-matriz of ezact order k of the first category,.
Then for any ¢ € R*, a solution to the lep(q, M) can be computed by using

Lemke’s algorithm initiating 1t with any positive vector d.

Proof: This follows from Theorem 4.10. | X

We now restrict our attention, to matrices of exact order 2.

Theorem 4.14 Suppose M 13 a malriz of exacl order 2 of the second categary
with B; £ 0, for1 <t < n . Then a solution to the lep(q, M), if one ezxists,
can be computed by oblaining a solution to the lep(—Mtq,M™).

Proof: As v(M) < 0 from Theorem 4.6, it follows that M~! € Z. There are a
number of methods to solve the lep(—M~1g, M~') which will produce a solution
if it exists, or show that there is no solution. See Chandrasekaran {4], Mohan
[35] and Ramamurthy [56]. E

. Theorem 4.15 Lelt M be an N -mairiz of ezact urdar 2 of the second categary
Thf:n, Lemke’s algorithm processes the lep(q, —M).
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Proof: This follows from the proof of Theorem 4.7. m

When M is of exact order 2 of the second category, we proved in Theorem
4.7 that —M is a Q-matrix. For this class of matrices, we can notice that for
each ¢ € R", q nondegenerate with respect to M, the lep(g, —M) has more
than one solution; hence, Theorem 4.15 asserts the fact that Saigal’s result and
Todd’s condition for proving the @)-nature of a matrix are improvements over

the earlier known results.
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Chapter 5

GLOBAL UNIVALENCE OF
MAPS WITH EXACT ORDER

JACOBIANS

In this chapter, we present as an application, a univalence result for C*-
differentiable functions when the Jacobians are cxact order 2 matrices, This

result is well-known for exact order 0 (Jacobian) matrices, due to Gale-Nikaido
[18] and Inada [21}, and for exact order 1 (Jacobian) matrices, due to Olech et

al., [46] and [47]. Such results are quite useful in mathematical economics; see

for instance Inada {21].

5.1 Gale-Nikaido result for the first category

exact order k

We prove the following, for a C*-differentiable map with the Jacobian matrix

J(z) being an exact order k matrix for every z in the domain:

Theorem 5.1 Let F:Q C R* — R", be a C'-differentiable map where Q is a
rectangular region. Suppose the Jacobian J(z) of F, J = ((£i;)), 15 a mairiz of
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exact order k of the firsi calegory for every ¢ € Q. Then, for any a and z in
Q, the inequalities F(x) < F(a) and z 2> a have only one solution z = a.

Proof: Though this result follows immediately from Theorem 1 of [47], we

present here a proof by induction over n, Clearly, this theorem is true for

n = 3 from [51] and {57].

Let
X ={z:x € Qand F(z) < F(a), z 2 a}.

By definition of X, a € X. The proof is complete if we show that X contains
only a. So we at first we observe that a is an isolated point of X. As F is

differentiable, we have

lim || F(z) - F(a) - J(a)(z ~ a)|| = 0.

=24 ||z — al]

Since J(a) is a matrix of exact order k of the first category, there is a positive
number § > 0, such that for any & 2 a, some coordinate of J(a)pZ=ty 2 ¢ > 0.
Consequently, in any nelghbourhgod of a, some component of F(z) — F(a) is
positive for z > a in ). This shows that a 1s an isolated point of X, Suppose
b€ X with b # a. Clearly b > a. Define Y C X as follows.

Y ={z:a <z <band F(z) < F(a)}.

It can be seen that Y is compact and since a is an isolated puint, ¥ — {a}
is compact. Let 7 be a smallest element of ¥ — {a} in the sense that no other
element y of Y — {a} satisfies y £ F. As T € Y ~ {a}, only two possibilities can
occur, either ¥ > a or ¥ < a. |
Case (1): T > a. Because v(J(z)) = v(J(z)*} > 0, this ensures the existence of
a vector u, satisfying u < 0, J(Z)u < 0. Define z(¢) =F+tu. Asu<0, T>a
and {2 is a rectangular region, for sufficiently small ¢, z(¢) € 2. Moreover, by

- differentiability,
F(z(t)) — F(Z)

t|lu|] HHH
can be made as small as possible by letting ¢ approach 0. SincedJ(Z)u < 0, it
follows for small positive £, F(z(t)) < F(Z) £ F(a) and consequently z(f) €

J(&) i
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Y — {a}. But z(t) < T and this contradicts the minimality of . Thus case (i}

cannot arise.
Case (ii): ¥ < a. Now we apply induction, We will assume without loss of

generality, that &, = a; where T; and a; are the first coordinates of Z and a

respectively, We now define a new differentiable mapping G : () — R where
Q= {(x2,%3,...,%a) ¢ (Q1,22,...,2,) € )
and

g:‘(mQ*--:xn) = f:'(ﬁ:l:mﬂ:*-wmn): 322:1”

Jacobian matrix of G is plainly a principal submatrix of J(z) and hence it

is a matrix of exact order (k — 1). Further,

gi(F2...,Tn) < giaa..., ) | (5.1)

% > anfori=23... n

AN

In order to complete the induction, we need to prove that Jg(F) is also of the
first category. Define J(z,,...,2,) = principal minor of J zm) got by omitting
the first column and the first row where z = (ay,23,...,%,). Cleatly, J is
a matrix of exact order (k — 1), If J(z) is a P-matrix of the exact order
k of the first category, then so is J and we are done. When J(z) is an N-
matrix of the first category, it is possible that J is nonpositive. Due to the fact
that all the partial derivatives are assumed to be continuous throughout (2, if
f1:(Z1, Ty, Fy) > 0,for § = 2,..,,n, then fi; > 0 for every z € (. But since
Ty = a1, & 2 a;, 1 = 2,...,n, with strict inequality for at least one 1 > 2, we
“have fi(z) > fi(a) contradicting F(z) < F(a). Therefore f1;,(ZF1,...,Fn) <0
for some jg. Define a vector v = e;;. This vector would be a nontrivial solution
to J(F)v < 0 which contradicts the fact that J is a matrix of exact order k of
the first category. | | | |

Therefore, by induction hypothesis, in {§.1) we must have T; = ¢; for ¢ =
" 2...,n. Hence we have T = q, and this terminates the proof of the theorem. &
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5.2 Univalence theorem for exact order 2

We require KKM Theorem (Knaster, Kuratowski and Mazurkiewicz), to prove
our main result. We state a new version of this here, without proof, For more
details on this we refer to [47].

Let S be a closed simplex in R® with vertices s1,$3,..., 8,; that is

S:{&:::B=#131+#232+---ﬁn3n: prtpato ot pa =1, g 20, VZ}

and denote by F; the face of S opposite to s;; that is F; is the simplex with

vertices 81,...,8i—1,8i+1y.++,8n. We quote the following result, from [47];

Theorem 5.2 If Ay,..., A, are n closed sets such that

S = A;UA4,U...UA,
(Njerd;) N (N;erF;) = ¢VIC{L,...,n},

where I = {1,...,n}\[, then A; N...N A, is not empty.

Using the above stated theorem, Olech, Parthasarathy and Ravindran ([46]
and [47]) proved that a C*-differentiable map from R™ to R" with Jacobian
J(z) being a matrix of exact order one for each x is univalent.

We are now ready to state a univalence theorem, which is proved in similar

lines.

Theorem 5.3 Let F': R* — R" be a C*-differentiable function. Write F =
(f1, fay ooy Jn) where each f;: R* — R'. Suppose Jp, the Jacobian of F, is an
N -matriz of exact order £ for everyx € R*, Then F s globally one 1o one and

consequently is a homeomorphism of R® inio R".

Remark 5.1: Theorem 5.3 remains true when Jr is a P-matrix of exact order

2 also, for every z € R™.

Remark 5.2: For n = 3, Ravindran [57] has proved Theorem 5.3 and for n = 4
‘a similar proof can be given. So we shall give a proof of Theorem 5.3 when
‘n>85. | | |
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~ Proof{of Theorem 5.3): Suppose F(b) = F(a), b # a. We will assume without
loss of generality, that b > a because if b; = a; for some i, using induction, we
can conclude that b; = a; for all . So we let b > a, F(b) = F(a}). Now the

following four cases are possible,
(i) v(J) > 0 and v(J;) > 0 for every ¢, for every x
(ii) v(J) < 0 and v(J;) < 0 for every 2, for every

(iiiy v(J) > 0and v(J;) < Ofore = 1,...,k,and v(J;) > O for: = k+1,...,n,
for every z

(iv) v(J) < 0and v(J;) < 0fori=1,...,k and v(J;) > 0forz =k-1,...,n,
for every z

where v(J) = value of the matrix game J, v(J;) = value of the submatrix

obtained from J by omitting the i** row and the ** column.
If case (1) occurs, the proof follows from Theorem 5.1 and Gale-Nikaido [18].

If case (ii) occurs we proceed as follows: Since v(J) < 0, there is a negative

u such that the solution z(¢, u, a) of Wazewski equation [72],
z = F'(z) ', 2(0,u,0) = a
is positive for small t; that is it enters the interior of the cube C
C={z:a<z<b}

This solui.;i.on can be extended to the maximal interval of existence and it has
to leave the cube C. In other words, there exists a point z(s,u,a) € §C = the

boundary of C with z(s,u,a) = b; and
F(z(s,u, a) — F(a)) < 0.

This is possible as C is compact and v{J) < 0 throughout C. As the above
inequality is strict coordinatewise, we can without loss of generality, assume
that z; = by and x; < b;. From our assumption F'(b) = F(a), we have fi(z) <
fi(b) for every 1 = 1,...,n.

Let G = (f1,f2,- ) fi—1, fet1y - <+ fn). We have G(z) < G(b) where 2 = b;
and a; € z; < b;. As v(Jp) < 0, two subcases arise, viz., S
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(Cl’) Jip < 0, 0or
(B) J: is a second category exact order 1 matrix with a positive entry.

If () oceurs, G(z) < G(b) is impossible. If (B) occurs, we proceed as
follows, Without loss of generality assume that k = n.
Let ¢,d € R** be such that ¢; = z; and d; = b; forallt=1,...,n - 1. We

consider the following Wazewski’s equation,
y' =G'(y) 'z, y0)=d,ves (5.2)

where S is the space of probability vectors of dimension (n—2). We denote by

y(t, z) the solution of (5.2). It exists and has the property that
Gy(t, z)) = G(d) + t=. - (5.3)

In fact, the derivative of the left-hand side of (5.3) is a constant and equal
to G{d) + z. Since G is a local diffeomorphism (as F is assumed to be so),
the above equation defines y(, z) uniquely, Clearly, it follows that y(i,z) is
continuous in z. Since G'(z)~! < 0, y(t, 2) is decreasing in ¢ for each fixed 2.
Therefore, there exists a ¢(z) such that ¢ <y(f,2) <d,0 <t <t(z)and Jan ¢
such that x;({(2),2) = ¢;. Define |

A= {z: ¢ =y((z),2)}.

Since A; is closed, we have UA; = §. We shall now verify the conditions of
Theorem 5.2; we need only to check that N;erA; NN, 7F; = ¢ for every proper
subset I of {1,...,n — 1}, In order to do this, let us fix I C {1,...,n —1}.

Suppose NierA; N N,7F; # ¢ and let z be an element of it, Then

y(4(2), 2) = Bicqyi(t(2), z)ei + Liercie;
and z = Y¢ ;z;é,-. From equation (5.3) and above we have
ZierGiy((2), 2))ei = 0. (59

Consider the map H(y) = 2, 1G{(Z;cqviei + X cycie; ) ei, from a proper subspace
of R*™? to itself. The Jacobian matrix Jy(y) is an N-matrix since it is a proper
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principal submatrix of Jg(y) and the latter is an exact order one matrix. Thus
from Inada’s result, H is univalent and H (¢) = H(c) only if y; = ¢; for each
¢ € I. Thus (5.4) implies that y(t(z,,?),z) = ¢, Because of (5.4) this is possible
only if t(z) = 0 or ¢ = d. Since ¢ < d, MierA; N N, 7Fi = ¢ for every proper
subset I of {1,...,n—1}. Thus I"],-..__.!.lnh'lA; # ¢ by Theorem 5.2. Hence there
exists a z € A;, Vi, which implies th%t y((2), z) = c and by (5.4) it follows that
t(z) = 0 and ¢ = d. This contra.dicté the assumption that ¢; = z; < b; = d; for

allt = 1....,n — 1. This concludes f;he argument for case (ii).

Suppose case (iii) holds. That is, v(J) > 0, v(J;)) < 0 for i =
1,...,k, and v(J;) > 0 for every i > k. From Lemma 4.6 it follows that
J~Y == F'(z)™!) will have the first k columns and the first k rows filled up with

positive entries, for every x, as F is C!-differentiable function.

Write G = —F and we have
G(b) == G(a), b > a,as F(b) = F(a).

We will also assume G(b) = G(a) = 0,b > a as it entails no loss of generality.

As before, consider Wazewski’s equation for every v € Sy, where Sy = {v =
('Ul'.t oy Uk 0y :O): v; 2 0 and Eklvi = 1}1

2 =G (z) v, 2(0) =b, v € Sy.
Then the solution z(#,v) exists and it has the property that
G(z(t, v)) = G(§) + tv = to, (5.5)

Since G is a local diffeomorphism, it follows that the solution z(t,v) is unique
and z(¢,v) is continuous in v, Observe that z({,v) is decreasing in t for each
fixed v € Sy. Thus it follows that there is a {(v) such that a < z(3,v) <
b for 0 < £ < t(v) and there is an i with z(t,v) = a;. Such a {(v} is uniquely

defined and continuous, Define
A;={v:z;(t(v),v)=@q;} fori=1,...,n. - (5.6)

Then each A; is closed and U; A; = Sy. If A;, # ¢, for some g > k+1, we have
from (5.6) | | |
fi(z(t(v),v) < 0= fi(a), for everyi#iy
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where
2, (H(v),v) = a;, and z; 2> q; for 1 £ iq.

Since v(Jy,) > 0, from Gale-Nikaido [18], we have z; = a; for every i and
consequently {(v) = 0 or a = b, leading to a contradiction. So assume that
A; = ¢ fori=k+1,...,n In other words, UL, = Sk. Now one can proceed
as in [p 122, 46] and arrive at a contradiction.

If (iv) holds, then a proof can be given along the same lines as indicated
in the other cases to arrive at a contradiction and we omit the details. This

terminates the proof of Theorem 5.3. . E
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