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Chapter 0

Introduction

0.1 Introduction

Recall that for a function f € L'(R"), its Fourier transform f is defined

J?(E) — .R" f(ﬂl)ei'{f.i)dm | ( 011 )

where (.,.) denotes the standard inner product on R" and dz the Lebesgue measure
on R". A celebrated theorem of L. Schwartz asserts that a function f on R is

‘rapidly decreasing’ (or in the ‘Schwartz class’) if and only if its Fourier transform

is ‘rapidly decreasing’. In sharp contrast to Schwartz’s theorem, is a result due
to Hardy ([18]) which says that f and # cannot both be "very rapidly decreasing'.

- More precisely, if | f(z) | < Ae=2*" and | f(§)| < 'Bes‘ﬁ‘f2 for some positive constants



a, f and aff > ;}, then f = 0. Hardy’s theorem can also be viewed as a sort of
uncertainty principle. Roughly speaking, various uncertainty principles, including
the celebrated Heisenberg uncertainty principle, say that a non-trivial function and
its Fourier transform cannot be simultaneous.ly ‘concentrated’. Depending on the
definition of ‘concentration’, we get a host of uncertainty principles (-see [2], [3],
4], [7], (9], [24], [25], [28], [29), [30], [33], [38], [40] etc ). Clearly, Hardy’s theorem
belongs to this class of results where ‘concentration’ is measured i]:; terms of rate
of decay of f and £ at infinity. Some of the uncertainty principles seem to be valid
even in very abstract situations. For instance, in [5], M. F. E. De Jeu has shown
that the uncertainty principle due to Donoho and Stark ([7]) is ﬁalid whenever one
has an integral operator for which a "Plancherel theorem” holds. For an account of
uncertainty principles and their connections with physics etc see [§] or [34].

Since the theorem of Schwartz is of fundamental importance in harmonic anal-
ysis, there is a whole body of literature (-see for instance [35], p.151 and [43]-)
devoted to generalizing this result to other Lie groups. However, as far as we are
aware, until very recently no systematic attempt was made to generalize Hardy’s
theorem in the context of harmonic analysis on Lie groups. In this thesis, we shall
give generalizations of Hardy’s theorem to the Héiseﬁberg group, thé n-dimensioual
Euclideaﬁ motioﬁ grc:-ﬁp and a sub class of 'nc:-ncompact semi-simple Lie groups.

Let G be a locally compact, unimodular group satisfying the second axiom of



countability. Moreover, assume that G is postiliminaire. (For the precise definitions,
the reader may refer to [6], pp.303 and [23], pp.196.) Let dm¢ denote the Haar
measure on G. Let G be its unitary dual, i.e. the set of equivalence classes of

continuous, irreducible, unitary representations of G. Given f € L!(G), we define

the group Fourier transform f of f by :

]

) = m(p) = /G flz)r(z)dmg(z), nel. (0.12)

(For o« € G, let H, be the underlying Hilbert space on which G acts. The above
integral is to be interpreted suitably as an element of B(H,), the collection of
bounded linear operators on H,.) Then, by the abstract Plancherel theorem, there

exists a measure structure and a unique positive measure g on G such that for

fe LY(G) N L*G),
f\f | dmg(z) ftr Jdu(r). (0.1.3)

Implicit in the above is the fact that for f € LY(G) N L¥Q), #(f) is of Hilbert-
Schmidt class for p-almost all 7, 7 € G (-see [44] for details), The main goals of

- basic harmonic analysis on locally compact groups are the following :
(a) To describe G as explicitly as possible; |
(b) to give an explicit formula for the Planch_erel measure z and

(e) to investigate the _felationship between the behaviour of the function f aﬂd that

o cjf the group Fourier transform f “



In the case of many locally compact groups (abelian or non ab'elian) we have an
explicit description of the unitary dual and the Plancherel measure u. So we can

ask ourselves whether an analogue of Hardy’s theorem holds in this set-up :

Subposa f€ LY(G) is such that both fand f are "very rapidly decreas-

ing". Then is f = 0 a.e.?

We have been able to answer this question for a wide class of Lie groups. In

Chapter 1, we take up the case of the Heisenberg group, in Chapter 2, the motion

groups, and in Chapter 3, noncompact semi-simple Lie groups and symmetric spaces

of the noncompact type. Ofcourse, in each case, the meaning of “very rapid decay”

has to be made precise,

Before ending this section, we give below the precise statement of Hardy’s the-

orem -

Theorem 0.1.1 (Hardy [18]) Suppose f is a measurable function on R such

that

| flz) | < Ce™,| f(6) | < Ce™, 2, E€ R (0.1.4)

where o, B8 are positive constants. If aff > % then f=20 ae. If aff < ?];' there
are infinitely many linearly independent functions satisfying ( 0.1.4 ) and if

r::t:ﬂ = 1 then f(z) = Ce™",

‘A proof of this theorem is also found in [8], pp.156-158. In [3], Cowling and
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Price proved an "LP — L?" version of Hardy’s theorem. The theorem of Beurling in
[25] is similar in spirit to Hardy’s theorem, although far more general, and indeed

Hardy's theorem as well as the result of Cowling and Price can be deduced from it

as special cases.

0.2 Hardy’s theorem for R"

-~

Hardy’s theorem continues to be valid for R", n > 1, and although this
fact is probably well known to many experts, we have been unable to find a reference

in the literature for the higher dimensional case. In this section, we present a proof

of Hardy’s theorem for R", n > 1 as an application of the Radon transform. The
proof proceeds by reducing the n-dimensional case to the one dimensional case,
using the Radon transform. We continue to denote the standard inner product on
R" by (-,-) and dz is the Lebesgue measure on K", n 2 1. Denote the n{;)rm on

R" by || - ||. The following is an analogue of Hardy's theorem for R", n > 1 ([32],

section 2) ;

Theorem 0.2.1 Let f be a measurable function on R" and o, two positive

constants. Further assume that

. . ‘ f(m) l S O-e-cr”E“z‘[ J?(E) | S C E“ﬁ“ﬂl?j z, E € Rn. .- (021 )



IFaB > %, then f =0 ae. If aff < 3, there are infinitely many linearly

independent solutions for ( 0.2.1 ) and if af = 1, f ¥s a constant multiple of

6""'“”1:”?_

Proof : In view of Theorem 0.1.1, assume that n > 2. Recall that the Radon
transform Rg of an integrable function g on R" is a function of two variables (w, s)

where w € 5"~ and s € R and is given by

Ry(w,8)= [ glz)dz (0.22)

{zw)=s

where dz is the Euclidean measure on the hyperplane (z,w) = s, Actually, for

each fixed w, the above makes sense for almost all s € R which may depend on w.

- However for functions with sufficiently rapid decay at infinity it makes sense for all
s. For details about the Radon transform we refer the reader to (11) and [21].

From equation ( 0.1.1 ), the Fourier transform of a function fon R" is given by,

1) = f flz)eEAda. (0.2.3)
Here dx denotes the Lebesgue measure on R", Then it can be easily seen that
f(sw) = ﬁ}’(w, $) | (0.24)

where s € R, we § and Rf stands for the Fourier transform of Rf in the
.s-variable alone. From the definition of the Radon transform X f and relation

(0.2.4), the conditions on f and f translate into conditions on Rf and Rf. For

6



each fixed w, we therefore get

| Rf(w,r)|<Ce™, reR (0.25)
| Rfw,8) | < Ce®, seR (0.2.6 )

By appealing to Hardy’s theorem for R we conclude that, for a4 > I, R f(-:m, ) =0
for almost all w. Since f+ Rf is one-to-one we conclude that f =0 a.e.

When af = 1, Rf(w, 8) = f(sw) = A(w)e ™, where A is a measurable mgﬁtion
on the unit sphere §*71. Because f € L}(R"), fis continuoﬁs at zero and by taking
s — 0 we obtain A(w) = f(0). Hence f(£) = f(0)e#IEF so that f(z) = C e~l=l’ for
some constant C.

For each multi-index p = (p,p2, * *, #n), let @, denote the corresponding

Hermite function on R". (For the definition and properties of Herl::iite functions,
we refer the reader to [41]). Finally, if af < %, suitably scaled Hermite functions

®, satisfy the conditions ( 0.2.1 ).



Chapter 1

The Heisenberg group, H™

In this chapter, we first describe the unitary dual of the Heisknberg group
H", and then prove an analogue of Hardy’s theorem for functionlsl on H", We

also show that though the exact analogue fails for the reduced Heisenberg group, a

slightly modified version continues to hold.

1.1 The Heisenberg group

. For the material covered in this section .and the next, the reader may refer

to [12] and [41]. We follow closely the notation of tﬁe latter.
Recall that as a set the Heisenberg group H “..is just'tﬂ "x R. M_ultiplicatiou on
H™" is given by ' .

(at)(w,s) = (z+w, t+s+5Im z@) (1.1.1)

8



where z,w € ", t,s € R and 2 1% denotes the usual inner product on €". With
this multiplication, H" is a two step, simply connected nilpotent Lie group with
Haar measure dzdt. In order to define the group Fourier transform we need to
recall some facts about the representations of the Heisenberg group. For each A in

R' = R\ {0}, there is an irreducible unitary representation 7, of H" realised on

L*(R™) and is given by

(ma(2,£)$)(6) = eMePEtti=g (e 4 y), (171.2)

where z = = + iy, ¢ € L*{R") and ‘-’ denotes the usual inner product on R". A
theorem of Stone - von Neumann says that all the infinite djrﬁensional irreducible
unitary representations of H® upto unitary equivalance are given by m,A € B,
The Plancherel measure p is supported on R' and is giveﬁ by du(A) =1 A |* dA.

(There is another family of one-dimensional representations of ™ which does not

play a role in the Plancherel theorem.)

Given a function fin L'(H"), its group Fourier transform f is defined to be the

operator valued function

= [ fmtymi(atdade  (113)

The above integral is to be interpreted suitably and for each A € R, f()\) is a

bounded operator on L2(R"). As shown in [12] and [41], f(}) is an integral operator



with kernel K7 given by

K?(E,T]) =_'¢‘13.’c (%(A(£+’?)): f""h )\): ( 114)

where we have written f(z,t) = f(z,y,1), and Fi3 f stands for the Euclidean Fourier
transform of fin the first and the third set of variables, For fin L}(H")n L*(H")

a simple calculation shows that

s =C A" [ | FRfaNFd (115)

h"i

(for a suitable constant C), where |.|| us is the Hilbert - Schmidt norm. {For more
details about integral bperators the reader may refer to [17].) From this and the

Euclidean Plancherel theorem, the Plancherel theorem for the Heisenberg group

follows :

1£2 = Cu [ IFO)Ersdu(N), (1.16)

Ri
where du(A) = [A|* d) and C,, is a constant depending only on the dimension.

We now state and prove the following analogue of Hardy’s theorem for ™ ([32],

section 2).

Theorem 1.1.1 Suppose f is a measurable function on H" satisfying the es-

timates

| f(zt) | < g(z)e™, zeC™, teR, (1.1.7)
|A0)as < CeF, Ae R 0 (118)



where g € L'(C") N L*(C") and o, are positive constants. Then, if aff > i
f=0ae;tfaf < :} there are infinitely many linearly independent functions

satisfying the above estimates.

Proof : For a function f on H", define f to be the function f(z,t) = f(z,—t) and

let f%3 f stand for the convolution of f and f in the t - variable. Then, a simple

calculation shows that
[ (Fra o t)edadt = | Fo(fxa HnNde= [ | Faf(z ) [ dz (119)

which, in view of ( 1.1.5 ), equals C' | X |* || f(A)[|%s for some constant C. Define a

function A on R by

A(t) = [ (Fx Pz t)dz (1110)
Then one has from ( 1.1.5 ) and ( 1.1.9 )
Fh) = C A" 1N (1111)

where ‘Fh’' denotes the Euclidean Fourier transform of h. Now the conditions

(1.1.7) and ( 1.1.8 ) on f and f translate into the following conditions on h and

its FKuclidean Fourier transform Fh :
h(t)| < Ce 3 | FR(N) | <C | AP e tc R, AeR. (1112)

Now it is easy to see that, for any ¢ > 0, | A | e~ < Clem¥B-OM )\ e R*, for
- some constant C' depending on e. So we can choose a §' such that aff >31or <y

11



according as af > ‘}i or < ‘fi and the following estimate is satisfied by Fh :
| FR(A) | € Cle™#P, X e R*. - (1.1.13)

Thus, if af > -11-, then af > ;, and hence Hardy’s theorem for R together with
(11.12 ), ( 1.1.13 ) implies that A = 0 a.e. This means ]]f(k)”%s = ( for
all A € R' and consequently f = 0 a.e. by the Plancherel theorem for H". If
afl < ¢, then any function of the form g(2)hs(t), where hg is a suitably scaled

Hermite function on R, satisfies the hypothesis of the theorem.

By abuse of notation, we denote the norm on €" also by || - |I.

The following is the exact analogue of Hardy's theorem for H", which follows

immediately from the above theorem.

Corollary 1.1.1 Suppose f is a measurable L' - function on H" and

| fz,t) | < C el 2o, te R (1.1.14 )

IF\)|lys £ C e X e R (1.1.15 )

for some positive constants o and 8. If aff > 3, then f=0 a.e. Ifaff < 1,

then there are infinitely many such linearly independent functions.

12



1.2 The reduced Heisenberg group

In this section, we prove an analogue of Hardy’s theorem for the reduced

Heisenberg group. By and large we continue to use the notation introduced in
section 1.1, but with slight modifications.

As a set, the reduced Heisenberg group H" , is just €" x §". The multiplication
law on H', is defined as in ( 1.1.1 ) except for the understanding that ¢ is a real
number modulo 27. The reduced Heisenberg group H,, is also a two step nilpotent
Lie group with Haar measure dzdt, where dt denotes the normalized Lebesgue mea-
sure on S*. For each m € Z' = Z\ {0}, there is an irreducible unitary representation
T, of H,, realised on L*(R"), and defined exactly as in ( 1.1.2 ). As in the case of
H", we get (upfo unitary equivalence) that all the infinite dimensional irreducible
unitary representations of H" , are given by @,,,m € Z'. Apart from t]::us there is a

class of one dimensional representations, m,;,a,b € R" given by
Tap(2,t) = et for  (2,t) € HE,. (1.2.1)

Thus, the dual H can be thought of as the disjoint union of Z" and R™. The
Plancherel measure is the counting measure on Z' with a weight function C' | m |"
(for a suitable constant ) and the Lebesgue measure on R* (This is in sharp
contrast to the case of the Heisenberg group).

Though it ié pro.bab'ly well known to Iﬁﬁny experts, a_s. we have beeri uﬁable to
find a reféreuce in the litefature tﬁ .the Pian{:herel theore_m“on iy We present a

13



sketch of the proof below.

Given fin L'(H!)), we can write

00

flz,t) = D Wi(z)e™ (1.2.2)
k=00
as a Fourier series in the central variable ¢ ( Here f can be thought of as the L' -

- limit of the Cesaro means of the right hand side of { 1.2.2 }). Hence, as in the case

of H", if we compute the group Fourier transform f(?rm), also denoted by f(m),

L. .

m € Z' we see that it is an integral operator with kernel K7 given by

KPEn) = Fil (G +n), e-n) (123)

b =t

where F1W¥_,, stands for the Fourier transform of ¥_,, in the first set of variables.

Therefore, for f € L} (H}) N L?( ,f‘ed),'a; simple calculation shows that
| fm) s = | m |7 | F1U ) faeny, m € 2. (1.24)

On the other hand, we have

1

Frag) = [ Sl t)maslzt)dadt

-[Rﬂn % Sl f (ﬂl, Y t) E{(ﬂm-'-by')dmdydt

I

I

«7:12‘]?0(&': b): | 2 ( 1.2.5 )

where F, ¥, denotes the Euclidean Fourier transform of ¥, in the first and second

set of variables. Now using the Plancherel theorems on R*™ and S! we get the

4



Plancherel theorem for H/,, :

178 = G X Im I Ifm)ls + Cuf 1 flnas) Pdadb (126

meZ’

where C, and C; are constants depending only on n.

We now show, by an example, that the exact analogue of Hardy’s theorem on

H" . is not valid. Since ¢ varies over a compact set in this case, one might be tempted

-.'H-

to consider the following analogue of Hardy's theorem :

Suppose f is a measurable L' - function on H", and f satisfies the following
estimates :
| f(z,t) |< CeWl® ze @™, te &,

| f(m)llns < Ce™™, m € Z',| flmap) | < CePeH) a be R* (1.2.7)

for positive constants «, 8. Then if of3 is sufficiently large, is f=0 a.e. 7

However, the following demonstrates that this is not the case,

Observe that as f satisfies { 1.2.7 ), f belongs to L'(H™ )N L?(H" ) and the
series in ( 1.2.2 ) converges to f in L?- sense. Now take f(z,1) = e l#l'ei%! for

some k, € Z'. Then for m € Z*, and ¢ € L*(R"), it is easy to see that |

Fma)© = [, [, Fo8) (i D) Ot

f 2 ] e-—&(mz-[-yz)eikﬂtefmtefm(?-f+%m-y)qb(&- + y) dzdydt
RJ Sl .

1o



/mn8_“(m?”’?)ﬁ"“"’(“*%“""qﬂ(E +y) dzdy, m = ~k,

0 m # —k,.

Therefore |]f(m)|\§;5 = 0 if m #£ —k,. Further,

fimap) = fR N fs V)it er ) syt

0,

as k, € Z'. Hence for a suitable constant C, we can see that f is a non-trivial

function satisfying the estimates ( 1.2.7 ), with af as large as we please.

However a slightly modified version of Hardy’'s theorem still holds(-see

Remark 7, section 2 of [32]) :

Theorem 1.2.1 Fiz t, € S' and let d(-,-) denote the standard metric on S'.

Suppose f is a measurable L' -function on H®, satisfying

| f(z,t) | < Ce Ml e mmar | ze @, te s, (1.2.8 )
|7 m)||us < C ™, me Z', (129)

for some positive constants o« and B. Then f = 0 a.e.

Proof : For each z, f(z,-) has the expansion as in ( 1.2.2 ). From ( 1.2.4 ) and
the Euclidean Plancherel theorem, we have |Fy¥_n|l2gmy = |¥-mlizzery. By a

similar argument as in the proof of Theorem 1.1.1, we can choose a positive constant

16



r

f3' slightly smaller than g such that
(¥ _mlls2eny < Ce~#im, (1.2.10)

Take an orthonormal basis {¢};c v of L*(€") such that each ¢, is a Schwartz

class function (-eg. the Hermite functions). Then consider the function Fi(t) given
by

F(t) = | é(2) f(z1) da o (1.2.11)

-

The Fourier coefficients of F(t) are just
ay) = 02 Ul(2) ds, ke Z (1.2.12)

By Cauchy-Schwarz inequality it follows that | af) | < Ce #M, One can show that,
because of this very rapid decay of af), F(t) is a real-analytic function. (In fact,
considering 8! as a subset of @, Fi(t) will be the restriction to S' of a complex
analytic function in an annulus containing §'.) Using ( 1.2.8 ) it can be proved
that F; and all derivatives of Fj att = {, afe zero and hence, by real-analyticity,
- Fy = 0. This shows that for each fixed ¢, m"r,zf;;(,te:) f(z,t) dz = 0 and hence since

{#1}1c nv is an orthonomal basis of L*( €"), f(z,t} = 0 for a.e. 2 for each fixed t.

Thus fis the zero function.

Remark 1.2.1 (i) Actually an examination of the proof shows that we can replace

the condition ( 1.2.8 ) by

 f(zt) | < a(yt), zel", teS

17



-~

where a is any function with reasonably rapid decay af infinity and ~ is any function

that vanishes to infinite order at some point £, € S".
(ii) Since S! is compact the point #, can be "viewed" as the point at infinity and

therefore condition ( 1.2.8 ) can be thought of as the analogue of the decay of the

function at infinity.

18



Chapter 2

The Euclidean motion group, M(n)

In this chapter, we prove an analogue of Hardy’s theorem for the n-
dimensional Euclidean motion group, M(n}, n 2 2, An analogue of Hardy’s theo-
rem for the special case of M(2), the Euclidean motion group of the plane, has been
proved in [32). While the proof in [32] for M(2) proceeds by reducing the theorem to

the Euclidean case, the proof of the geﬁeral case presented here is more direct and

involves some simple estimates of the SO(n)-finite matrix coefficients of irreducible

representations of M(n).
In the next section, we give a complete description of the unitary dual of M(n),

and in section 2.2 we state and prove the main theorem of this chapter. We denote

the standard inner product on R" as well as on T* by (-,+) and the corresponding

norm by || - |I.

19



2.1 Description of the unitary dual of M(n)

The group G = M(n) is a semi-direct product of R* with the special
orthogonal group, K = &§0(n). A typical element of G is denoted by (a, k)
where a € R™ and k¥ € K. If da denotes the Lebesgue measure on R” and dk the
normalized Haar measure on K, then the Haar measure on G is given by da dk.
The natural action of K on R™ is denoted by kv, k € K, v € R". (Since the
‘natural’ action is left multiplication by the matrix k, " should really be théught
of as the space of column vectors.) For any unexplained terminology and notation
in this section, the reader may refer to [16],

We now describe G, the unitary dual of G.

Let v € R"™ and v # 0. Let U, denote the stabilizer of v in K under the

natural action of K on R", Then U, is conjugate to the subgroup
{ : A € S0(n-1)}. We identify this subgroup with SO(n — 1), Fix
0 1

an irreducible unitary representation A of U, acting on the Hilbert space H,(i.e.
Ael, = SO(?—-» 1)). Since U, is compact, we can identify H) with €% where d,

is the dimension of H,. Let

B(KA) = {9: K- ;¢ measurable, y(uk) = Mu)(y(k)),u € U,

ke Kand [ [(k)]?dk < oo},

where || - | denotes the norm on &'®. It is easy to see that H(K, A) is a Hilbert space

20



with respect to the inner product defined by

(¢1:¢2) — dAL(%b](k),tbg(k) > dk

where < .,. > denotes the usual inner product on €, and ), ¥ € H(X, A). Define

T, on H(K, A) by
(Tox(a, k)Y (ko) = €<% "> ah(k k), e H(K,N) | (2.1.1)

fora € R", k, k, € K. We also use < .,. > to denote the inner product on R". One

can easily verify that 7)) is a unitary representation of G on H(K,A). Further, it

can be shown that (-see [13], [16])
(a) T}, is irreducible for all v € R", v # 0, A € SO(n—1)(=T,).

(b) Every infinite dimensional irreducible unitary representation of G is equiv-

alent to some T, ,, v and A as above.

(¢) For two non-zero vectors v, v} € R", A € U, M\ €U, T, is equivalent
to T, », if and only if v, v; belong to the same K-orbit (i.e. v, v1 have the same

Euclidean norm) and the representations A, A; are equivalent under the obvious

identification of U, with U,,.

21



If v = |la]l = 7, r € R¥, then by abuse of notation, we denote the n-tuple
(0,0, -, 0,7)' also by » and write U, for U, and the representative of the equiv-
alence class of T, as T, Here | - || denotes the Euclidean norm on R" and ¢
denotes the transpose. Apart from these infinite dimensional representations, the
finite dimensional unitary representations of K also yield finite dimensional unitary

representations of G, but these do not enter into the Plancherel formula(-see [16]

for details).

o .

The Plancherel measure u is supported on the subset of G given by {7}, } \eSHmm1)?
reRY

and on each "piece" {T}1},c r+, for a fixed A € SO(n — 1), it is given by C,r"dr,

where C,, is a constant depending only on n,

Before we end this section, we state the following lernma, from complex analysis,

that plays a crucial role in the proof of our main theorem :

Lemma 2.1.1 Suppose h is an entire function on € such that h(z) = O(et,

2 €@ and h(t) = O(e~*) fort € R where ‘a’ is a positive constant. Then

hz) = Const.e ™, z € (.

This lemma follows from the following result in [42], pp.175 (-see the first half

of the proof of Lemma 3.1.1) :
Let A be an entire function on € such that h{z) = O(el) for z € € and

h(t) = O(e~) fort € R, where ‘a’ is a positive constant. Then h(z) = Const.e™,
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2.2 Analogue of Hardy’s theorem for M(n)

Given a function fin LY(G) and 7 € G, the grbup Fourier transform f of

f at 7 is the operator

fr) = n(f) = / ,, /K f(a, k)n(a, k)dkda, (2.2.1)

as discussed in earlier chapters. Then, by the Plancherel theorem, we know that for

f e LNG) NL¥G), §is a Hilbert-Schimdt operator for almost all 7 (with respect
to the Plancherel measure), and we denote its Hilbert-Schimdt norm by || f(r)|xs.

We now state and prove an analogue of Hardy’s theorem for the motion group &G
([37]) :

Theorem 2.2.1 Suppose f 18 a measurable function on G satisfying the fol-

lowing estimates :

| fla, k)| < Ceelel’, (a, k) € G (2.2.2)

[fTa)llws € Cre™®,  reR (2.2.3)

for some positive constants C,, «, B and C, where C,, depends only on A. If

aff > ; then f = 0 a.e.

Remark 2.2.1 Since functions on R" can be thought of as functions on G invariant
under right action by K, Hardy’s theorem for R" shows that 1 is the best possible

constant,
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Proof : Observe that by identifying —r with the n-tuple (0, +,0, =)t for » ¢ R*
we can define T..5. Now, T_,, and T}, are equivalent as representations of G.

Hence || AT ) lms = |f (T2l 7s and we thus have

[ATa)llms < Cie™', reR (2.2.4)

- i e )

Forr€ Rand A € SO(n—1)(=U,),let § = { &

i

. ¢+ € N } be a basis of
H(K, A) consisting of K-finite vectors. (For fixed ), notice that the ‘representation
T, restricted to K is just the right regular action of K on H(K, A).) Note th;t- if ¢
is a K-finite vector then ¢ € C°(K, €™), the space of smooth functions defined on

K taking values in ¢'®. It is enough to show that if af > % then for all 4,5 € N,

(F(T.,)e, ej}) = () as a function of r and A. Fix 4,, 5, € IV and consider for r € R,

(FTaedse)) = [ [ o K)(Ta(aklel,e})dadk (225)

—————

Let &7°(a,k) = (Ta(a,k)el,e}) for r € R, X € SO(n—1), in,5, € N, and

a’

(a,k) € G. Then by definition of T;.,, we have

(L

Diedo(a, k) = dy fK < (T (a, k)ed) ko), €} (o) > dk,

d, f}{ ei<ke > < ed (k,k), €} (ko) > dk,

d, ]K el <> < e} (kok), €3 (ko) > dks _( 2.2.6 )

Here the real number r is identified with (0,---,0,r)* and < .,. > denotes both

inner product on R" as well as ¢'%. Notice that the integral on the_'right hand
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side makes sense even when r € €' where we identify » € € with (0,--+,0,7) in ™"
and < .,. > now denotes inner product on € also. Hence @iﬁf‘“(a, k), for a fixed
(a, k), as a function of r extends to the whole complex plane. We will also call these
functions @iff"(a, k), z € € and from ( 2.2.6 ), one can easily see that for fixed (a, k),
2 D2 (a, k) is an entire fﬁnction on I. (Note that if {.,) denotes the standard

inner product on O, then for a fized a € R", z (2,a) 15 an entire function

on C". In the final tntegral in ( 2.2.6 ), z is always in the first position and
the second position ts a vector in R". Hence @i‘:f"(a, k) as a function of z is

entire.) Moreover, for z € ,

| @af@k) | < dy [ € | ) (kok) || €] (ko) | dk,

< C f;{ g=<Um enkoa> gp. (2.2.7)
~where e, = (0,--+,0,1)" in R* | (a,k) € G, and C is a constant which depends on
A, %o, Joo (Notice that e;"ﬂ and ej‘n are smooth functions on K and hence bounded.)

Since f satisfies { 2.2.4 ) and 8 > ﬁ., we have

Che? < Oy, reR (2.28)

FAN

l (fﬂ(Tr.l)Ei:ei) l
By definition of & (a, k) we have from ( 2.2.5 ),
(Taehe)) = [ | faRof(aRdadk.  (229)

" Since f satisfies ( 2.2.2 ) and from ( 2.2.7 ), | @i"_’f"(a, k) | < CeFlliel) we conclude

a7 Jo

that the function 7 + ( f(Tn e, er) can be extended to the whole of € and indeed
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it can be proved that z — (f(Ty,)e},e}) is an entire function. Further, & simple

to? T ip

calculation using ( 2.2.2 ) and ( 2.2.7 ) shows that

|(ATelel) | < [ [ | Flak) || @5(a,k) | dadk

< C_/};,f“ e—ﬂ*”ﬂ"?(-/}f a"ﬂ(fm z)Emka*n‘:»dka)dadk
~ O / / e-ellall g=<(Im 2enkoa> g0t

}'{ n
= O e-—cr“a“ze-—{(i‘m Z)en,a> da

Rﬂ
= Ol el / o~ <VoatiB i ol
< Cle i

Y.

< (e (2.2.10 )

for z € ' and some constants C, C’,

It is clear from ( 2.2.8 ) and ( 2.2.10 ) that the function z — (fﬂ(fl}z,,}k),g?L e} )

! "

-

satisfies the hypothesis of Lemma 2.1.1. Hence, it follows that ( (ﬂ‘:*)eivei)
— Const.e%. So | (fﬁ(Tnk)ef;, e;) | = | Const.e™ & | < Cye ™ from ( 224 )
and since §— = > 0, it follows that ( f(T,,A)ef‘#,e;‘D) = 0 as a function of », Since
io, jo and X were arbitrary, f(T}.,) = Oforallr€ R* and X ¢ SO(?" 1). Hence,
by the injectivity of the group Fourier tranéfqrm, we get that f = 0 a.e. This

completes the proof of the theorem.

Remark 2.2.2 Actually an examination of the proof shows that we havé proved

the following stronger result ;
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Let &, b2 € K and x5 and x5 the corresponding characters.  Then
Tor(x6 ) Tea () Toa(Xs;) is 8 finite rank operator{ with rank bounded by a constant
depending only on &y, 6, A) which is zero on the orthogonal complement of a sub-
space whose dimension 1s again bounded by a constant depending only on é;, 8, A.
If | f(a, k) |< Ce=M and |T,x(xs ) Ta (A Tia(xs) s € Crpse™, where C, a, A

are positive constants and Cy 4 5, is a positive constant depending only on &, &, A,

then f= 0if af > 3.
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Chapter 3

Semi-simple Lie Groups *

We establish an analogue of Hardy’s theorem for a sub class of non-compact
semi-simple Lie groups and all symmetric spaces of the non-compact type in this

chapter.

In the next section we set up the required notation and describe the support of
the Plancherel measure for those semi-simple Lie groups for which we present an
analogue of Hardy’s theorem. In section 3.2, we give the proof of the main theorem,
and as a consequence we give an analogue of Hardy’s theorem for all symmetric
spaces of non-compact type in section 3.3. In secfion 3.4, we prove an analogue
of Hardy’s theorem for SL(2, R). Further, we show, by considering the 'particular

case of SL(2, ), and with the normalizations used in this thesis, that 1 is the best

possible constant in Hardy’s theorem.
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3.1 Notation and Preliminaries

Let G be a connected, non-compact, semi-simple Lie group with finite
centre and K a fixed maximal compact subgroup of G. Let §, X denote the Lie
algebras of G and K respectively. Suppose G = K@ P is a Cartan decomposition
of G and B is the Cartan-Killing form of §. It is known that B restricted to P is
positive definite, Therefore B defines an inner product on the real vector space P,
Let P = exp ’P Then G is diffeomorphic to K x P under the map (k,u) — ku for
kc KandueP, Therefore each g € G can be uniquely written as g = gggp with
gx € K and gp € P. Since P and P are diffeomorphic under the exponential map,
gp = exp X for a unique X € P. Define ||g|¢c = B(X,X)?. .

Fix a maximal abelian subspace A of P, Let ﬁhe dimensiﬁn of A be Il.{ ‘I is
called the real rank of G.) The restriction B| 4, 4 gives an inner product on A
and we can identify A with R’ under this innr-;r product., Let A denote the set of
roots for the adjoint action of A on G. Fix a Weyl-chamber A" of 4 and let A
be the corresponding set of positive roots(-see [20] for details). Let A = exp.A4
and A" = exp Af". If A% denotes the closure of A* in G then it is known
that G = KATK, the polar decompnsitioﬁ of G’Ji.e. each ¢ € G can be writ-
ten as * = kyaky, for ki, ko € K and a € AF. If Qﬂ' denotes the root space
corresponding to a € A, then we can choosé a Haar measure dxr on G such that

relative to the polar decomposition it is given by dx = J(a) dky da dk, where
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J(a) = H (e“(]"“) — B"'“(]"’g“))"(“), n(a) = dim§@, and ‘log’ is the inverse of the
acAt

map ‘exp’ on A ie. [; flz)de = /;{&/Kf(k]akg) J(a) dkydadky, where da is the

Haar measure on A, Let G = KAN be the corresponding Iwasawa decomposition
of G(-see [20] for details). The Iwasawa decomposition gives rise to the projection

mappings Kk : G — K,a: G — A,and n: G — N. Then we have
s = K(z)exp Hz)n(z),

where k(z) € K, H(z) € A, H(z) = loga(z), n(z) € N.
If M denotes the centralizer of A in K then P = MAN is the minimal parabolic

subgroup of G. Fix £ € M and let H¢ be the finite dimensional Hilbert space

on which £ acts, d(§) = dimH,. For A € A'( the real dual of A), define a

representation (&, \) of Pby :
(&, A)(man) = &(m) exp((X + p)(loga)),

where log : A — A is the inverse of the map exp: A — A and p = 2 Y n(a)a,

acAT

m € M, a € A, n € N. From this representation we get, by induction, a represen-

tation 7r£'};i of G acting on the Hilbert space

H; = { g: K — H; measurable : g{km) = E(m‘l)g(k),k cKmeM

and [y ||g(k)[[*dk < oo }

where || « || denotes the norm on H;. The induced representation 7 acts unitarily
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on Hy by the formula
(mea(@)g) (k) = e A+eNHETR o5 1k)) (3.1.1)

for z € &, k€ K, g € H;. Note that the action of K on Hj is just the left regular

action.

Given £ € M, it is known that one can find a dense open subset O¢ of A" such

that e is irreducible for all A € O¢(-see [26], pp.174 for details). Let W be the

Weyl group of the pair (G, A) . Then there is a natural action of W on M-x A’
and the only identifications among the irreducible representations in these series
of representations are the identifications given by the Weyl group action(-see [26],

Pp. 174 for details).

For the remaining part of this section we assume that & has only one conjugacy

class of Cartan subgroups. Given f in L'(G), we can define the group Fourier

transform on M x A* by
&) = fings) = ma() = [ fla) meals) do (3.1.2)

for (€,A) € M x A", where the integral is to be interpreted in a suitable way. If
f € L}(G) N L*(G), we have the Plancherel theorem for such G :

There exists an explicitly computable measure p on M x A* such that

fc; | (=) | dz = fHHA‘tT(ﬂf,A(.f)W{,A(f)*) du(lf,,i) . (3.1.3 )

For fixed £ € M, this measure is of at most polynomial growth on A'(-see [26], _
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pp.511 and [19] for details). Let Ay = A'® €. Since B is positive definite on A,
it defines an inner product on A, Hence there is a natural inner product on 4', and
 the corresponding norm on 4* will be denoted by ||+ ||. This real inner product can
be extended in a unique fashion as an inner product on the complex vector space

A and the corresponding norm on Agy will also be denoted by | - ||. By abuse of
notation, the norm induced by B on .A will also be denoted by || - |.

If 1 is the trivial representation in M, then we denote 71,5 by 7. The set of

-,
‘.._‘

Tepresentations {m)}, ¢ 4+ are called the class — 1 principal series representations of
G, and they are realized on the Hilbert space L*{(K A1). Let @, be the "elementary

spherical function"(-see [14] for details) corresponding to A € Ag.. Then for A € A",
By(z) = < my(z)1,1 >, z €@ | (3.14)

where 1 is the constant function 1 on K/g. Also one has ;

Oy(z) = jK e ~(NHAHE 1) g

= f pA-P)XH(=k)) 11, (3.15)
K

for A € An(= €'). Moreover for A € A'( E!) and any a € A*, we have the

following estimate :
| d,5 () ‘ < o> (loga) ( 3.1.6)

where A% is the element in the fundamental Weyl chamber correSponding to A(-see

[15] for details).
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IFinaHy, we end this section with a lemma from complex analysis that is crucial
for the proof of our main theorem in this chapter, We shall also denote the standard

Euclidean norms on R" and €™ by || - |

Lemma 3.1.1 Let n> 1. Let h be an entire function on @" such that

| h(z) | < cetll,  zeam (3.1.7)
|h(t) | < Ce ¥, te R, (3.1.8)
for some positive constants a and C. Then h(z) = Const.e ™At ta) » =

(51,' ' ,Zn) GQ’J'”.

Proof : To prove this, we will need the following result ([42], p1;.175) that has
already been stated in Chapter 2. For the sake of convenience, we shall recall the

statement of it here :
.

Let h be an entire function on € such that i(z) = O(e?) for z€ €

and h(t) = Ofe ™) fort € R, where ‘a’ is a positive constant. (%)

Then h(z) = Conste™, 2¢€(.

We shall prove Lemma 3.1.1 in two steps, First, we prove the lemma for the
case n = 1, and then proceed to prove it in general.

Let h be an entire function on € satisfying the following estimates :

|h(z) |< Ce, ze, (3.19)
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| h(t) IS Ce™™, teR, (3.1.10 )

for some positive constants a and C. If h is e;.ren, then by applying (*) to ¢(2) =
h(v/z), the result will follow imme.diately.( Note t:,hat sinf:e h is even and entire
#(z) = h(+/z) is an entire function and wi]l satisfy the assumptions of (*).)
Suppose h is an odd, entire function and h satisfies ( 3.1.9 ) and ( 3.1.10 ). Then
the function ¢(z) = h(z)/zis an even, entire function on € satisfying the estimates
( 3.1.9 ) and ( 3.1.10 ). Therefore, by the even case, we have, ¢(2) = h(z)/z =
C'e~*", z € [, for some constant C'. In particular, h(t) = C'te~*, t € R. Then by

( 3.1.10 ) it will follow that :

| Cte™ | < Ce, te R,

which is impossible, unless ¢’ = 0. Hence A = 0.

If 1 is an entire function on € satisfying the estimates ( 3.1.9 ) and ( 3.1.10 ), then
write h(z) = (h(2) + h(=2))/24+(h(2) — h(—2))/2 = heven(2)+ hodd(2), as the sum
of even and odd entire functions. Since h satisfies ( 3.1.9 ) and ( 3.1.10 ), it is easy to
see, in view of the expressions for Aeyen and heqq, that they also satisfy (3.1.9 ) and

(3.1.10 ) respectively. Applying the even and odd cases to Ry, and hoqq respectively,

we conclude that h(z) = Const.e™*? , 2 € C. This proves the lemma in the case
when n = 1.

Now consider the case n > 1. For ﬁxed (ul,---,u,l;l) in R"_]: let g(z) =
h(uy, -+, uy_1,2), 2 € €. Clearly, g is an entire funcﬁiﬁn on U in the variable zf
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Since A satisfies ( 3.1.7 ) and ( 3.1.8 ), for fixed (uh . auu—l) = R"'_l, we have

L g(2) | = | AMuy, s Uny, 2) | < C’Eﬂ(’ulF"I'""'"I'-‘n—-llﬂjeﬂlzlzj 2

| 9(t) | =] Alur, - uney,t) | & Cemolhultthanleet 4 ¢ R,
Applying the one dimensional case to g we can conclude that

g(‘z) - Gﬂ(uli"':urt—l)e_mz, 36@, (Ul,"',un"I)ERfl_l?_

"'--..__lI

I

where C,, depends only on uy, <+, u,—y. Setting z = 0, we have C,(z1,++, 20-1) =

g(O) == h(zlj 't Ezﬂ"-li 0) for (z].! T 1.311—-1) < Rﬂ.*-l* Thus

2

h(zla oty Ry zﬂ,) — h(zls ttyZn—1; 0)6“-“3" ( 3.1.11 )

for all (21, ,2n—1,2n) € R™. However, both sides are entire functions on €™ and
hence ( 3.1.11 ) must actually hold for all (z,---, 2,-1,2,) € €. Here we are using

the fact that two entire functions on €" which agree on R”™ have to actually agree

on €". Now from ( 3.1.7 ) and { 3.1.8 ) it follows that

h(z_h oo 2oy, O) — O(eﬂuzlli“'""}"lzn-llg))1' (31: raon :zﬂ—-]) & @“—1!

and

h(tl, oo b 0) — O((ﬁ_:.‘—'i*"(itlF“-h----i-\f'n:--l\ﬂ))1L (fl: e :tu-—l) - _R”“‘l:l

and applying exactly the same argument as before we will have

h(zla iy Anel, 0) = h(Zl, Cr 22, 0, O)e_ﬂzf:-—l}
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and so

h(zh v ‘zn) — h(zlj e 29, 01 D)E*H(zﬁ_ﬁ*zﬁ)*
Repeating the above, we finally have
h(z]! 'o ,.3'") == h’(Oi 0, Ve ’0)6-—:1(2?-1----*?23‘), (31, R :zrt) c gﬂ‘

and the proof of the lemma is complete.

In the next section, we state and prove an analogue of Hardy’s theorem for a

class of 'semi-simple. Lie groups.

3.2 Semi-simple Lie groups with one conjugacy

class of Cartan subgroups

We retain the notation introduced in section 3.1. However we assume that

(- bas only one conjugacy class of Cartan subgroups. Thus, throughout this sec-

tion, G will denote a connepted non-compact semi-simple Lie group with finite
centre and having only one conjugacy class of Cartan subgroups. For such groups,
as described in section 3.1, the Plancherel measure is entirely supported on the
various principal series representations'assolciat_ed with the minimal parabolic sub—;
group. Examples of such groups include SL(n,L) (-in fact all complex semi—simple
Lie grﬂupS-) and SO,(n,1) with n odd. -We now state and prove an analogue lof
Hardy's theorem for such groups ({31]).
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Theorem 3.2.1 Suppose f is a measurable funection on G satisfying the fol-

lowing estimates !

| flz) | € Ce°lFle, ze@ (3.2.1)

1AM s = lmealAllns < Cee™™, (X eMx A (822)

where C, C¢, a and B are positive constants and C; depends on §. Ifaf > 1,

then f=0 a.e,

(Note : (i) The very rapid decay of f implies f € L'(G). Hence m¢,(f) is defined

forall e M, Ae A

(ii If ¢ = kjak,, a = exp H, then |[z]l¢c = ||H||, where || is the norm on A as

described in section 3.1.)

Proof : For £ € M let { e§ . J € IN } be a basis of H{ consisting of K-finite vectors.
( As observed earlier the action of K on H is just left regular action.) Let (-, )¢
denote the inner product on Hy. Weshall show that ifaf > 3§, (mea(fef,,el)e = 0,

for all A € A*, m,n € N. Fix m,,n, € IN. We have by ( 3.1.2 ) : .

(Tea(f)eh, €5, )¢ - Lf(ﬂi)(?ff.h(m)ﬂiﬁaﬂﬁa)edm (8.2.3)

37



Let &3 (z) = (mer(z)el, , €8 )¢ for z € G. Then it can be shown from the

definition of m¢x(z) acting on H that :
¥ (a) = e HAUETO el (s(z k), e, (k))dk (3.24)
I

where (-, -) inside the integral is the inner product on H,. Thus

(mea(f)ek, €h,) f f(z) D™ (x)dx (3.2.5)

The basis vectors eﬁlﬂ, efh being K-finite, actually belong to C=(K, H,) and hence

-,

are bounded as functions into H;. Therefore it follows easily that for each 2 € G,
the integral defining ®;3"™ makes sense even for A € Ajpy and in fact, for each fixed
z, the function A - ®73™(z) extends as an entire function of A € Ap(= .

Writing A = Ap + iA;, one has the following easy estimate from the above

integral :

| @™ () | < Const. /Ke(*f“f’)(ff(f”‘ndk (3.2.6)

where the constant depends only on m,, n, and £ The integral on the right is

just the elementary spherical function ®,, and hence we have the following easy

estimate
| @3 (2) | £ Const. @i}‘f(._m) (3.2.7)
Using the K-biinvariance of ®,,, one therefore finally has, if = is written as
= kyaks, ki, ky € K, a € AT,

| o 5™ (x) | £ Const. e loga) (3.2.8)
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where AT is the element in the fundamental Wey! chamber corresponding to A 1(-see

(15] for details). Now define
GO = [ @f™(2) flz)da, Ae A" (329)

(mea (el , €8 )e for A € A'. Also observe that as f decays very

Ma? "t

.

Then G(A)

rapidly ( 3.2.1 ), the analyticity of A — &5 (z) on Ap(= @) for each fixed
r € G, the estimate ( 3.2.8 ) together with ( 3.2.5 ) will imply that the integral
defining the function G(A) makes sense for A € Ay and in fact defines an entire

function, Moreover, for A = Ap+id; € Ap,

GO < [ | f=) || @f5™(z) | da. (3.2.10)
Now using polar coordinates, ( 3.2.8 ) and the fact that if x = kiaky, |lzllc = |a|lc,

the integral on  the  right hand side s majorized by
Const. A_ e~lelle AT (o8a) | 75} | da, where da denotes the Haar measure on A.
If H € A is the unique element such that exp H = a and dH denotes the Lebesgue
measure on A, then it can be easily seen that there exists a constant C such that
| J{a} | < Const. eAVHl and the integral on the right hand side is majorized by
Const. [, e I X (NCIHIGH, where now H | is i_;he norm on .A induced by the
Cartan-Killing form.

Now let H), be the unique element of A such that AJ(H) =" (H H,,) for

all H, where (-,:) is the inner product on A induced by the Cartan-Killing form. -
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Then there exists 0 < @ < o such that we continue to have o/ > 1 and

o~cIHIP+CIHI < Congt.e M, So .

/ e~ oMHIE AT(H) O g ;T — f o=l HIP +{HH)+CIHN 1 11
A A

I

Conast. / e~ NHI +{HHy) g by
A

I

Const.eIHyIF f e~ (H=g Hap H=sh Ha ) g oy
A

Const.ei 1l / Pl W
A

e,

(by translation invariance of Lebesgue measure). But by the choice of inner product
on A, ||H),|| = [|A7]]. Further the action of the Weyl group preserves the norm

on A*' and hence ||AT]] = ||Az] < |[Al. So finally we get the estimate
|GV | £ Cew') A A2
for some constant C. But for A € A" by ( 3.2.2 ),
G) | < G

Since &/ff > 7, —f < —-5 and so we have | G(}) | € Cewl' for X € Ap and
| G(A) | < C’gﬁ”ﬁ"")‘”z for A € A’. So by Lemma 3.1.1, we have G(A) = Const.e”w A

A € A'. Therefore we have for A € A,

| Const.e~ i M’ = | G(A) | < Gfeﬂﬁ”}‘“?.

But 8 — ;{? > 0 and hence we would have

| Const.e® @ | < ¢, xed’
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and this is impossible unless the constant on the left hand side is zero i.e. G{(A}) = 0
i.e. for arbitrary £ € M, m,,n, € NN, (Wg,z(f)ﬂf;ln, el )¢ = 0as a function of A, Hence
it. follows that m¢(f) = Oon Mx A and since the Plancherel measure is supported

on M x A", it follows that f = 0a.e

3.3 Arbitrary semi-simple Lie groups

We continue to retain the notation introduced in section 3.1. In f.’-h.lS sec-
tion, G will denote an arbitrary connected noncompact semi-simple Lie group with
finite centre i.e. we drop the assumption that G has only one conjugacy class of
Cartan subgroups. Instead, we impose some restrictions on the kind of functions
being éonsidered; we will consider only right K-invariant fum_::tious.. For the har-
monic analysis of such functions, only the class-1 principal series representations
are relevant. Let {m,}, . denote the class- 1 principal series representations of
G( ie. m, = w1y where 1 is the trivial representation of M). These can all
be realized on L*(K/Af). Let v, be the constant function 1 on K /1 ie. v, is the
eslsentially unique K-fixed vector in L*(X/pq) for the representation my. Then one

‘knows that if v is any other K-finite vector in L2(X /p4) which is not a multiple of

Vo, then 7y ( flv = 0. Thus 75 (f) is completely determined by my( f)u, and moreover

[ma(H) s = "’?Tz(f)”a", where (| - || denotes the usual norm in Z?(KAf). Thus the_-_ .f':

group theoretic Fourier transform can be thought of as a function on A" alone, tak- .

41



ing values in the Hilbert space L*(K /). Keeping these considerations in mind, an

examination of the proof of Theorem 3.2.1 immediately yields the following result

([81)) :

Theorem 3.3.1 Suppose f is a measurable right K-tnvariant function on G
(t.e. f(zk) = f(z),z € G, ke K), satisfying the following estimates for some

positive constants C, a and 3 :
| fz) | € Ce¥le,  geg,
s f)v;l[ < Ce M xea
If off > 1, then f = 0 a.e.

(One can view the above as a theorem about functions on G/, which is a
symmetric space of the noncompact type; the group theoretic Fou;ier transform can
be reiﬁterpreted as the Feurier. transform on the symmetric space, as introduced by
* Helgason(-see [22]). A brief discussion from this point of view can be found in [28].

A sketch of the proof of a special case of Theorem 3.2.1 can also be found in [28].)

3.4 Further remarks

3.4.1 SL(2,R)
Thus in s”ect‘.ion' 3.2, we have established an analogue of Hardy's the-
- orem for a class of semi-simple Lie groups which include all compléj; groups and
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real rank - 1 groups without Discrete Series representations. However we would like

to conjecture that a result of a similar nature is valid for all noncompact semi-

simple Lie groups. For instance, in the case when G = SL(2, R), we shall prove

the exact analogue of Theorem 3.2.1. For this we need to recall some facts from the

representation theory of SL(2,R). The reader can find the details of the material

covered in this section in [10], [27] and [35].

In this section, we shall continue to use the notation introduced in section 3.1

-y
‘i

except that the norm defined on A* in section 3.1 is denoted by || - || 4.

For the time being, let G = SL(2,R). Then X = §0(2)(~ §'), A =

t O - 10
{ . te Rland M = { =& }. Therefore A =
0 —1t 01
e 0
{ a = .t € R }. The polar decomposition of an element ¢ € G
0D e
cos @ sin &
can be written as g = kg, a;ks, where kg = . In this case, there

—sinf  cosf

are only two irreducible representations of M. Corresponding to the two irreducible
representations of M, one gets two sets of principal series representations denoted

by w1, m-1, of G, defined exactly as in section 3.1, Each set of principal series

representations is parametrized by A* o~ R. The series 7y, 18 irreducible for all

A € Rand 7_y , is irreducible for all A € R\{0}. There is another set of irreducible,

unitary representations of G called the Discrete series. Foreachn € Z, | n |> 2, de-
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note by D, the corresponding discrete series representation of G. For details about
the K-module structure and the spaces on which these representations are realized,
see [27], [35] etc. (Apart from these, there is another collection of irreducible, uni-
tary representations of G, called the complementary series, which do not play a role
in the Plancherel measure.) The Planchere! measure p is supported on the set of
principal and discrete series representations (-see [27] for details).

For n € Z, define x,, on SO(2){~ §) by xn(ks) = e, Let = be. an irred_ucible
unitary representation of G on the Hilbert space H,. If 0 # v € H, is such fhat
n(ko)v = xi(ke)v,l € Z, ky € K, then we say "v transforms according to x;". If such
a non-zero v exists then it is unique upto scalar multiplication (-see [10]) and we say
that "x; occurs in #". If m and n are fixed integers such that x,, and Xn OCCUT in 7,
let v,,, v,, be the essentially unique unit vectors transforming according l.to Y and
Y» respectively. Denote by &™" the functioﬁ defined by ®7"(g) = (w{(g)v,, Um) -
this is the "elementary spherical function of type (m,n) corresponding to n". Here
(-,+) denotes the inner product on H,. If D; is a Discrete series representation of
G and xm, Xn occur in Dy, then explicit formulae are available for 7" (-see [10]
and [35]). Denote ®7" by @*". It turns out that for a, € A, ®;""(a,) is a rational
.function of et such that as t — oo, ®""(a;) — 0. (Note that e = 0 ast— oo !)

Now we are in a position to state and prove the exact analogue of Theorem 3.2.1

for G = SL(2,R) ([31)):
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Theorem 3.4.1 Suppose f is a measurable function on G satisfying the fol-

lowing estimates :

| flz) ] < Celle,  zeg, (3.41)

Imea(Allns < Ce™Mu £e B, A e A, (3.42)

where U, o, B are posttive constants. If aff > i—, then f = 0 a.e,

Proof : Any f € L'(G) can be written (in the sense of distributions) as

f~ ) Xm*f*Xn = Y fan Note that each f,, has the property that

mnes mmnea

| fwz(kﬂ;gkﬂg) = X‘I'H(kﬂ})f(g)X‘ﬂ(kﬂj)! | (343)

ko,, ko, € K. One can easily show that if f satisfies estimates { 3.4.1 ) and ( 3.4.2),
then so does each fp,. Clearly, if each f,, = 0, then sois f. Hence, without loss

of generality, assume that f satisfies ( 3.4.3 ) for some fixed m, n € Z. Then'exactly

O

as in the proof of Theorem 3.2.1, it will follow that 71 ,(f) = 0 and w_1.()
as functions of A. Thus by the inversion formula(-see [27] and [35]) for functions
that satisfy ( 3.4.3 ), it follows that fis a linear combination of elementary spherical

functions of type (m,n) of finitely many Discrete series representations.{ Note that

for fixed m, n € Z, there are only finitely many Discrete series representations in

et 0 .
| €G,

which ¥, and x, occur.) Since each ®;"" evaluated at a;, =
0 e
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t > 0, is a rational function of e™, it follows that f(a,) is a rational function of e™.
Also as noted, when ¢ — oo i.e. €™ — 0, each ™" — 0. So f(a;) = 0 as e~ — 0.
Suppose f(a;)} ¥ 0 as a function of . We will arrive at a contradiction. Since
f(a;) is a rational function of e™, f(a,) = (e™*)'g(e™*) for some positive integer I,
where g{e™) is also a rational function e~* and coverges to a finite non zero limit +

as t — oo (i.e. e™* — 0). On the other hand

| fla) | € Ce™*,

where o' is a positive constant depending on « and the way the norm is defined on
A. Hence we would have

1,2

1(eMgle™) | < Ce"

as t — oo. But since g(e™) — «, and « is non zero, this clearly leads to a contra-

diction. This completes the proof of the theorem.

3.4.2 The sharpness of the constant ;

For the group G = SL(2,T"), using the normalizations in this chapter, we

will show that $ is the best possible constant ([31]). First, we recall a couple of facts.

If fis an L'-function invariant under the right action of K, then m¢(f) =0 urﬂess é '

is the trivial representation of M. Thus, for such functions, it is enough to consider

{m12}re4+. As before, denote m; 5 by mx. Now let v, be the essentially uﬁique---_ -
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K-fixed vector in L*(Kfyj) for the representation ,.( v, is the constant function
1 on K/p1.) Then, as observed in section 3.3, for such f, |my(Hllgs = [mr(fHva],
~ where || - || denotes the usual norm in L*(KAf). Further, if fis also left K-invariant
i.e. fis K-biinvariant, then my\(flv, = (m\(f)v,, vo)v, and hence ||my(f)|lus =
| (72 (f)Vo, V) | Now (my(fvo,v,) = L(m(ﬂ:)vﬂ., vo) f{)dz, where dz is the Haar
measure on G. So, as before, if we denote the function z +— {m,(x)v,, v,} by ®5(z),
we need to consider only the integral fe flx)}®a(x)dz. The collection { @)}, c 4+ form
a subset of the set of ‘elementary spherical functions’ and we are actually looking
at the ‘spherical Fourier transform’ of f. So let g(A)} = /C; f(z)®,(z)dz. Since fis
K-biinvariant, fis completely determined by its restriction to 4. Thus to prove our
assertion that :11" is the best possible eenstant, it is enough to produce a function f |
which is

(8) K-biinvariant
(b) for every € > 0, | fla) |< Ce(w~Male, 4 € 4, and

(c) L g(A) | = e~ M where | - ||.4+ is the norm on A" induced by the Killing form.

Each A € R can be identified with an element in A" via the identification
e 0
A3 — AL,
0 —=z |
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With this identification the elementary spherical functions are given by

e 0 2 sin At
2l ) = ,\;zlh%
0 e
| e 0 \
(-see [39], Vol. 2, pp. 313-314). Also [A|lx = 4 and | tlle = 4|t
0 e“},

Let g(A) = e“‘?‘, A€ R~ A" Inview of the "rapid decay" of g, by appealing
to the Trombi - Vamadarajan theorem ([43]), there exists a unique K-biinvariant f
such that the spherical Fourier transform. of fis precisely g.

Since in this case (i.e. G = SL(2,L) ), the Plancherel formula and the inversion

formula can be explicitly written down{-see [39], Vol. 2, pp.313-314), we have

et 0 231::1 At
= Const. [ g(\ 2 g
Al t ) e /\smh2t ' 4
0 e
Const.
= =22 [ de ¥ sinxtd)
tv:?,"t'2
which is equal to Const. Sinkop using routine Euclidean Fourier transform calcula-
tions. Clearly, | f “ O ) 2 Constotoe M < Ce-Gh-olath, or each
ions. Clearly, | f( ) | = Cons -Snhote < Cee , for eac
D e |
A e 0
e >0and | g(A)|= e ""A where a; = . Thus the fact that ; is the
0 e

best possible constant has been established.
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Concluding Remarks

In this thesis, we have mainly focussed on one particular uncertainty prin-
ciple - namely Hardy's theorem for Fourier transform pairs, For various uncertainty
principles and their generalizations see (1}, [5], [7], [36] etc. The investigations in
[28], [33] and [36] also show that uncertainty principles are not just associated with
Fourier transform pairs, but actually with more general eigenfunction expansions.
However, in this thesis, we have restricted ourselves to the group Fourier transform.

Finally, we conclude with a couple of open problems :

(a) Formulate and prove an analogue of Hardy’s theorem for all simply connected
nilpotent Lie groups.

(It is possible to show that an analogue of the theorem is valid for a sub class
of simply connected two-step nilpotent Lie groups, called H-type groups [38].)

(b) Formulate and prove an analogue of Hardy's theorem for all connected non-
compact semi-simple Lie groups with finite centre,

( The results of Chapter 3 strongly suggest that such a result should be true.)
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