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Notations

[n] Greatest integer less than or equal to n

h The one dimensional torus {z € €' : |z| = 1}

¢ The set {¢*2:k € Z,z € S'}U {0}

Ce(X) Space of all continuous functions on X having compact support

Co(X) ~ C™-algebra of all continuous functions on X vanishing at infinity

Cp(X) (*-algebra of all bounded continuous functions on X

¢ The operator e, - ex—1 on Ly(Z); the operator e; v+ ex_1, -
k>1, e 0onéy= Ly(Zy) |

N ~ The operator e; + kej on {3 as well as on Lo(Z)

H, K etc. Hilbert spaces

‘A, B etc. (C*-algebras

M (.A) Multiplier algebra of A

anA The element a is affiliated to the C*-algebra A
B('H)' Algebra of all bounded operators on H
Bo(H) ('*-algebra of all compact operators on H
S, T etc. Operators on Hilbert spaces

dom T Domain of the operator T

a(T) Spectrum of the operator T

u, v, etc.  Elements of a Hilbert space

Ju){v| The operator w +— (v, w)u

(1] The functional v — {u, v}



Introduction

The theory of quantum groups has become a very rapidly growing and active area
of research in mathematics and mathematical physics over the last one decade. But
“the origin can actually be traced back in mathematical literature much earlier, in
connection with the in#estiga.tion for a good duality theorem for locally compact
groups. In the early thirties, Pontryagin proved a duality theorem for locally com.-
pact abelian grnups. If G is a locally compact a.ble]ja-m gr'qup, then the set G of
characters (tih:@t is, homomorphisms into the circle group 5‘1) is a group in 1ts own
right, With a suitable topology, it becomes a locally compact abelian group, which
we call the dual group of G. Puntrya.gm s theorem says that if we start with this
dual group G and pass on to its dual G',_ what we get is nothing but the original
group (G that we started with-...Ever since then, mathematicians ha.d been trying
to prove something similar for general locally compact groups. Success came, but
vefy slowly. In the late thirties, Tannaka proved one dua]ity theorem for compact
- groups. In 1959, Stinespring succeeded in proving a duality theorem for unimodu-
lar groups Fmally, in 1965, Tatsuuma was able to prove a duallty theorem for ali
locally compact groups None of these duality theorems, hnwever, could achieve the
desired symmetry, essentially due to the fact that the space of Jrredumble unitary
representations of a nonabelian group does not have a natural group structure, so
that while passmg on to the dual of a nonabelian group, one gets out of the category
of groups So the search was on, this time, for a b:gger category containing locally
compa.ct groups and their duals, and for which a symmetric ddality result holds. To
this end ‘Kac in the 60 s introduced the notion of a ring-group, Takesaki in the 70's |
laid down the theory of Hopf- von Neumann ulgebms, and more recently, Enoch and

Schwarz mvestlga.ted what they called Kac algebras. These nb jects are very close in

spirit to what we know as quantum groups today.
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These theories all suffered from one very serious drawback, namely, that apart

from locally compact groups and their duals, no good examples were known (perhaps

one of the reasons why not many people were working in this area). The situation

changed drastically in the early eighties. Fadeev, Sklyanin and Takhtajan were

working on the quantum inverse scattering method (QISM), which is a method of
constructing and studying integrable quantum systems. They encountered a certain
kind of Hopf structure that naturally arise there. Drinfeld noticed the eennectien
with Lie bialgebras, and made all the notions rigorous in his talk given in the meeting
of the ICM in Berkeley. Around the same time, Jimbo published his papers on g-
deformations of universal enveloping algebras, which is another way of getting lots
of examples of such structures. On one hand, one had lots of examples of the kind
of ob jects whose theory had already been developed by Kac, Takesaki et a.l.; on the
other hand, many more examples of a ei_mila,i- nature were now available that were
not covered by these theories, as th"ey were not sﬁfﬁeiently general in nature. As a
result, lets of mathematicians and: physicists etarted gettlng interested in-this area,
Slewly, connections were eetebhshed with various other epparently diverse areas
in methematlce and phyeles, for exmnple the theery of knet and link invariants,
invariants for 3. menifelde g-special functlene repreeentetlen theory of Lie elgebre.e
in characteristic p, ‘conformal and quantum field theories, soliton theory, solvable
~ lattice models, to name a few. Thus quantum groups has aiready evolved as a very

#

busy area of research in present day mathematics.

- To underetend what is a qua.ntum group, let us start wn;h a Lie group G. For
cenvemence, take it to be an open connected subgrcmp of GL(n) Let A(G) be the
space of coordinate functions on thle group G. This is a commutative algebra, being
a space ef functlens The group structure ef the underlymg space G makes it a Hopf
algebra, which, unless the under]ymg group is ebehe,n is non eecemmuta.twe Now
. Suppose we drep the commutativity restriction from the algebra. The reeultmg ob} Ject
then behaves like the algebra of coordinate funct:ens on a group, but is not quite so,

because, 11; deee not cens:st of functions On any concrete space. Se we pretend as if

| there :s seme kind of a space underneath on whlch thje is the space ef ceerdma.te

functxens Crudely speaking, th:e is whet a quentum group is all ebeul.: It should be
stressed here that it is the hidden ¢ spece that is the quentum group, that i is the ebJeet
thet ene is pnmerﬂy interested In, A(G') or rether the nencemmutatwe version of

| It is merely an associated eb_;ect threugh Whlf:h we study the underlymg quentum
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group. In the C*-algebra approach to the theory of quantum groups, starting with
this Hopf algebra A(G), one tries to build the C*-algebra Co(G) of ‘continuous
functions on (' vanishing at infinity’, and extend the comultiplication map there.
Though these involve technical and mnce;:utua.]difﬁculties, usually they give us more
information and insight about the quantum group G under ﬁnnsidﬁfation. It is this

approach that we shall follow in this thesis.

Associated to the group G, there is another Hopf algebra, namely, the universal
enveloping algebra U(g) of its Lie algebra g. It is noncommutative, but cocommuta-
tive, and once we know U{(g), it is possible to recover the group G from it. Again, as
before, we are interested in the,nonqnﬁlmutative version of it. This time, one gets
the noncommutative version, or, what is known as a quantized universal enveloping
algebra (QUEA), by drnppmg the cocommutativity restriction. The prlma,ry obj _]ect
of interest, like in the earlier case, is not this QUEA, but the underlying ‘quantum
group’, which one studies using this associated Hopf algebra, This constitutes yet

'a‘nnther apprua,ch to the study of quantum graups

Of course there is a deﬁnlte connection between the two _a,ppraaﬁhes described
above. It wquld become very transparent once wé understand the connection in the
case of a classical group. Let us again go back to our group G. It is easy to see that
.L{(g) is isomorphic to the space of generalised functions on & with support at the
identity. It is clear intuitively that Z( g)* contains all the coordinate functianS, and
possibly much much more. The Hopf a]gebra of coordinate functions is, therefore, a .
‘reduced dual’ of U/(g). For quantum groups also, one observes the same phenomenon.

For a. dea,ta.lled account on this, see the papers of Russn([45]) and V.:—m Da.ele([ﬁl])

| Let us now come to the content of the present thesis. The ongm of quantum
groups, as we have mentioned, lies in the study of (classma.l) groups. In fact, in-
many ways, the two are strikingly smular Many concepts and results from group
theory admit generalization to the case of a quantum group. However, at the same
time, quantum groups sometime exhibit behavmur that is very much d:ﬂ'erent from

a group. We ta,ke up same such CDHCEptS a,nd results and try to see wha.t happens
for a quantum group. | |

In chapters. 1 and 2, we examine the notion of-an'induced representation, which
plays a very 1mportant mle in the reprasenta.tmn theory of classical groups. an,

the class of all quantum groups is yet to be fully characterized. However, a fairly
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satisfactory theory for a smaller class, namely the class of all compact qguantum groups

has been laid down rigorously by Woronowicz et al. Here we develop the concept of

an induced representation for this subclass.

In the rema.ining'chapters, we take up noncompact quantum groups. Unlike in
the earlier case, here the existing theory is far from satisfactory. A unified description
of a locally compact quantum group is yet to be found. Various examples are being
studied in order to be able to reach an appropriate definition. We deal with one

specific example here, namely, the ¢-deformation £,(2) of the group of motions of

the plane.

 The first two sections of chapter 3 contain a brief description of the quantum
group Eq{2),. and some key results of Woronowicz on the topic, We then introduce
what we call the g-analogues of Bessel functions, present an explicit computation
of the cnmultlplmatmn map i, and describe a feature of Eq(2) that is special to

'quantum groups

| In chapter 4, we handle the ha.a: measure fur the group Eq(2) Firsf we pfove"t'h.e
existence of an invariant measure, the form of which is fairly easy to ZUESS once we
'kncm_f the haar measure for SU,(2), and the fact that £,(2) comes from §¥,(2) via
‘the ‘contraction procedure’. The proof, 'hﬂwever,; is a bit involved. Next, we prove
a few identities involving the g-Bessel functions using the invariance properties of
the haar measure. Making use of these identities, we next prove the uniqueness of
the haar measure. As an apj)licatinn of some of the identities proved in the second

section, we pmve the existence of a left invariant and a right invariant measure on
the dual grou;) Eq(2)

In the last chapter, we find é.H the irreducible uﬁitary re;;resenta.ti&ns of the quan-
tum group E o(2). According to a theorem of Woronowicz, umta,ry representations
are described by a pair of closed (unbounded) operators. Finding irreducible uni-
taries amounts to ﬁndmg lrredumble representations for this pair of operators. Using

~ the 1dent1tle3 proved in the previous chapter, urthogonallty relations involving the
| ma.l;nx entries of the lrreduclble umtanes are proved We also give a formula express-
mg a tensor product as a dlrer:t sum of lrreduczble ones. The regular representatwn
is introduced in the second section. Section 3 contains a very general identity from
| #_v_}jich one can derive a lot of identities involving the ¢-Bessel functions. Finally a
brief description of the quantis'ed complex plane is given. £;(2) has an action on
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this noncommutative space, We describe this action in detail and show how it splits

into a direct sum of irreducible representations.

We shall need the basics of the theory o'f-C""-algebras,-'a.s_ can be found, for
example, in the book by Pedersen{[38]). We shall also need some familiarity with
the concept of a multiplier algebra, morphisms and the concept of an affiliation
relation in the context of (*-algebras. We give a brief description of each of them
below and present some more relevant material in the appendix. References for these
topics are [70] and [75].

Let A be a C*-algebra, acting nondegenerately on a Hilbert space H (meaning
au = 0 for all @ € A implies v = 0), then the multiplier algebra M(A), the left
multiplier algebra LM (A) and the right multiplier algebra RM(A) of the C*-algebra

A are defined as follows:

M(,A) = {be B(KH) :bal,ubE.A Va € A},
LM(A) = {beB(H):ba€.4 VYace A},
RM{A) = {beB(H):abe A Va e A}.

Let A and B be two C*-algebras. A C*-homomorphism ¢ from A to B is called
a morphism if ¢{A)B is dense in B. We denote the space of all morphisms from .A

to B by mor(A, 5).

Once again, as before, let A be a C'*-algebra, acting nondegenerately on H.- A
closed operator T' on H is said to be affiliated to A if the following two conditions

are satisfied:

T(I+T'T)" Y% ¢ M(A),

(I + T*T)"IﬁA is dense in A.

We would alwﬁ.ys be dealing with complex separa,ble'Hilb_ert spaces. The inner
product of a Hilbert space will be assumed to be linear in the second argument and
antilinear in the first. Let us explain here a convention regarding notation that we
shall follow in many places in this thesis. Let Hy, Ha, Ha etc. be Hilbert spaces.
Sup_pﬁse {€a}acr,s {fa}acr, and {ga}seca, denote respectively orthonormal bases for
the above Hilbert spaces. While dealing with tensor products of these spaces, we

shall denote, imlless there is any chance of ambiguity, the basis {e; @ fo }ap)e _A';.x. A,
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for Hy 20 Hy by simply {€q}a,6)ea, xay» the basis {ea @ fo @ Gc}abo)eaixraxas fOF
Hy & Ha & Ha by {€ase)(ab,c)ehsxdsxaqs and 50 on. o

Throughout this thesis, g will always denote a real number between 0 and 1.



Chapter 1
Compact Quantum Groups

As has been mentioned in the introduction, Welshall deal with tnpu_logical qua,nt'urﬁ
groups. In other words, we shall study quantum groups using the ‘C*-algebra of
continuous vanishing-at-infinity functions’ on them. In this chapter and the next,
we shall be concerned with those quantum groups whose ‘underlying spaces’ are
compact, Of course, there is no underlying space really. So what one means is
"~ the class of quantum groups for which the carresponding C'*-algebra of continuous
vanishing-at-infinity functions that one typica.lly constructs out of the algebra of
coordinate functions, has an identity. It turns out that it is possible to characterize
--the-C*-algebra.s. associated with such quantum groups among the category of unital
C*-algebras, and also to describe the comultiplication map without any reference
whatsoever to the Hopf algebra A(G).- The theory of such quantum groups has been
laid down rigorously by Woronowicz (see [67, 68, 72]). In this chapter, we mainly

review some of the basic features of the theory.

1.1 Representation Theory

We start with the definition of a compact quantum group and a few examples.
Definition 1.1.1 ([72]) Let A be_d separable unital C*-algebra, and p : A — A®A
be a unital *-homomorphism. We call G = (A, ;) a compact quantum group if the

following two conditions are satisfied:

L (id@pp = (b @ id)p, _ '
. Linear spans of both {(a ® Du(b) : a,b € A} and {(I @ a)u(b) : a,b € A} are
dense in A® A. o | |
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st is called the comultiplication map associated with G. We shall very often denote
the underlying C*-algebra A by C/(G) and if situation demands, the map g by pg.

Example 1.1.2 Any compact group is an example of a compact quantum group.
To see this. notice first that for a compact group G, there is an obvious identification
between ()@ C(G) and C(G' X ). Define a map u from C(G) to C(G)®C(G) by
the prescription: sif(z,9) = f{zy), f € C(@), z,y € G. Then it is trivial to verify
that (C(G), ) is a compact quantum group, Conversely, if for a compact quantum
group G, C(G') is abelian, then it has to be of the abave form. Thus classma] compact

groups are precisely the ones for which C(G) is abelian.

Example 1.1.3 ([24)]) ‘Take A to be the C”-algebra C @ C €' B € D Ma(C'). Let

e = 51.;;@{52.;;@5:'3# B dgp B ( sk Ogk ) , k= 1,2',.'..:,8,'
- - Orp Dy . -
where § denotes the Kronecker delté,. Ther {61., ..., €g} form a basis for A. Define
o map i A~ A‘@ A as follows: o |
pler) = EIQ?JE: +e2 .62 +63®83+E4®84 -
| +3(es ®€5+€ﬁ®€ﬁ+€7®8?+€3®68),
"_-#(52)'-—51@5362-!-62@61+€3®E4+Eq®ﬂa' . -
| +3 (EE®ES+€5®€5+15?®EB“‘333®E’?)
u(83]~51®ﬂa+€3®€1+62®64+ﬂ4®€2 |
| 4 (85®Eﬁ+ﬂe®£’5"3€7®EB+‘138®57)
| (E«:)—-81®34 +eq®£1 +€2®£3+53®ﬂ2
| 2(55®E5+66®Es*6?®6?-'33®63)
(Ea)—~61®€5+65®f31 +62®Eﬁ+86®62
. +ﬁ‘3®€6+eﬁ®€3+84®65+e5®e4,
_-P(fﬁ)-31®66+€s®€1+€2®E5+85®62 |
| - _ | +63®E5+65®€3+ﬂ4®66+66®34:
(37]-—6-’1@'371‘-&'7@61 =€2®83+ﬂﬂa®62 |
| | +1€3®€3"163®63-64®€7“67®6m |
!*(ﬁa)-—f?l@ﬂs-l-ﬁ.s@e]+1Ez®ﬂ'7-te?®62 | | | |
- “‘if-’-a@ﬁ?+i€7®€3-64®€s“€a®€4 .
It isa matter of stralghtforwa,rd verlﬁcatmn that iisa un;_tal *.—homomqrphlsm é.nd |

= (A, pj is a t:t:-mp&ct quantum grﬂup
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Example 1.1.4 ([6.7]) SU,(2). Take A to be the canonical (C*-algebra generated

by two elements a and g satisfying the following relations:

d"‘a +0*8 = 1, crﬂ:."‘ + g°fp* =1,
of — ¢fa =0, af” — ¢f*a =0,
g = P
Define a map g on the linear span of o and 3 as fulluws:

pla) = ﬁ@&-—_qﬁ"‘@ﬂ,
wWpB) = A@ata’ ®p.

It extends to a unital *-homomorphism from A to A ® A, and one can now verify

that (A, u) is a compact quantum group. This is known as the ¢-deformation of the
SU(2) group. For ¢ = 1, we get the classical SU(2) group. |

The C*-algebra A in the above example can be described more concretely as
follows. Let {ei}i>o and {e;}icz be the canonical orthonormal bases for £, and
Ly(Z} respectively. We denate by the same symbol N the operator e; — ke, k > 0,
on {3 and e — kek, k € Z, on Ly(Z). Similarly, denote by the same symbol ¢ t'h_é
nperatnr e Ek;l, k.z 1, eo — 0 on ¢, and the operator ¢; — ex_1, ¥ € Z on
Ly(Z). Now take H to be the Hilbert space &y ® La(Z), and let & and G be the

fnllﬂvéing operators on H:

a=H/I-¢NQI, f=¢" @t
Then A is the C*-subalgebra of B(H) generated by v and §.

Example 1.1.5 ({69]) SU,(n). Let (¢1,42,...,%,) be an n-tuple of Idistin;t natural
numbers. Let I(iy,1,...,1,) denote the number of inversions in (¢1,¢2,..., ), Wwhich

is the cardinality of the set {(iryis) 1 7 < 8,4y > i5}. Let

illqil,‘n _.

0 if ¢, = i, for some r # 3,
(—q)‘r(il""*""") otherwise.

Let A be the C*-algebra, generated by the n? generators {ui; 1 1 < 4,7 < n} satisfying

the following relations:

o vk = Guly
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tH)
Z’IL,;J;IIL = Ol
J
5 i i e = Bnvoial
J‘lt"'tjn

The map p defined by: u(u;;) = ) uix 6 tg; extends to a unital *-homomorphism
to the whole of A, and (A,u) is a compact quantum group. As in the preceeding

exanple, for ¢ = 1, one gets back the classical group SU(n).

Other examples of compact quantum groups can be found in the papers of An-
druskiewitsch ({3]), Andruskiewitsch & Enriquez ([4]}, and Tiraboschi ([58]). Re-
cently, Van Daele and Wang have constructed a class of compact quantum groups,
which are universal, in the sense that any compact matrix quantum group can be
shown to be a subgroup of one belonging to this class. See Van Daele & Wang([62})
and Wang([63]). | | |

Let G be a -::t_::m'pa.ct group, and U : g = Uy, a strongly continuous representation
acting on a Hilbert space H. O.I:IE.C.I.ELII _thén view U as an element of the multiplier
algebra M{(Bs(H)® C(G)), and the prdper.l:y' U,Uy = U,y then reads, in our present
language, (id @ ;ug)U.:_ t;ble(U)iﬁm(U), where $12 and ¢3 are C*-homomorphisms
from M (Bo(H)®C(G)) to M (Ba(H) ® C(G)® C(G)), given on the product elements
by: | |

br(a®b)=a®b®1, ¢13(a®b)=a®/®b.
Moreover, the repreSentatiﬂn U/ is unitary if and only if, viewed as an element of
the C*-algebra M(Bo(H) ® C(G)), it is unitary, This 'déscriptinn of {/ does not use
elements of the underlying group G explicitly, and makes sense even when (C(G), u¢)

Is a compact quanium group.

Definition 1.1.8 A reprfse.ntatinn of a compact quantum group G = (A, 1) acting
on a Hilbert space M is an element 7 of the multiplier algebra. M(Bo(H) ® A) that
obeys (id ® pu)}r = myama, where 7;; = ¢i(7), and ¢q, ¢13 are as described above.

It is called a unitary representation if, in addition, we have x*r = [ = r7*.

. Unless stated on the cnntrafy, we shall always deal with unitary representations,
and will often omit the adjective ‘unitary’, o | |
Let m) and 7, be two representations of a compact quantum group acting on two

. Hilbert spaces H; and M respectively. A bounded operator T from Hi1 to H2 is
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said to intertwine my and mo if (T'® [)m = m(T ® I). Denote by Z(7y,m2) the set
of intertwiners between m; and w3, Two representations my and 73 are equivalent if
there is an invertible intertwiner between the two. A representation 7 is said to be
irreducible if T(x,x) is one dimensional. One also has the notions of direct sum and
tensor product of representations, As before, let 71 and 7, be representations acting

on Hj and Hy respectively, Let i, and i denote the following inclusion maps:
1'1 . Bn(Hl) — Bﬂ(H] & Hz), i‘:g . B[}(HQ) R Bn(Hl @Hg)

i1 ® td (respectively 12 ® id) extends to a morphism from M (By(H,) ® C(G)) (re-
spectively M(Bo(H2) ® C(G))) to M(Boa(H1 P H2) ® C(G)). The direct sum 1y By
is defined to be (i1 ® id)m; + (32 ® id)xe. For defining the tensor product, we
use the natural identification between By(H;) ® Bo(H2) and Bo(Hi ® Hz2). De-
fine ¢13 : Bo(H1) ® C(G) = Bo(H1) ® Bo(Hz) ® C(G), and ¢q3 : Bo(Hz) ® C(G) —
Bo(H1) ® Ba(H2) @ C(G) as follows:

$13(a@b) = a®I®b, ¢o3(c®b)=T®c®.

Then ¢;3 (respectively ¢,3) extends to a morphism from M(Bo(H1)®C(G)) (respec-
tively M(Bo(H2) ® C(G))) into M(Bo(Hy) ® Ba(H2) ® C(G)). The tensor product
T (D w2 of w1 and w9 is defined to be the representation ¢y3(ry)Pa3(ms), which acts

on the space 1 ® Ha.
As in the case of a compact group, one can prove that any uniiary representation

decomposes as a direct sum of finite dimensional irreducible unitary representations.
Let G = (C(G),ug) be a compact quantum group. Let A(G) be the unital
¥-subalgebra of C((G) generated by the matrix entries of the finite dimensional rep-

resentations of G. Then one has the following result (see [72]).

Theorelﬁ 1.1.7 ([72]) Suppose G is a compact quantum gmup.' Let A(.G'-) be as
above. Then we have the following: .
(a) A(G) is a dense unital *-subalgebra of C(G) and p(A(G)) C A(G) R, A(G).
(b) There is a eémplez homemorphism € ; A(G) — @ such that

(e®id)pu = 1id = (id @ €)u. .
(c) There exists a linear antimultiplicative map A(G‘) — A(G) obeying
| m(id @E)p(a) = €(a)] = m(k ® id)p{a), _r.i.nd__ E(ﬁ(a"‘)*).: a

Jor all a € A(G), where m is the operator that sends a @ b to ab.
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The maps ¢ and & in the above theorem are called the counit and coinverse

respectively of the quantum group (7.
[t i5 easy to see that, for a finite dimensional unitary representation n,

-

(id® e)r =1, (Id®K)r = =", (1.1.1)

One can check that (A(G), i, K,¢€) 15 a Hopf algebra. It is an analogue of the Hopf
algebra of ‘representative functions’ for a compact group. For a compact lie group,
it can also be called the algebra of coordinate functions. In examples 1.1.4 and 1.1.5,
it is really this Hopf algebra that has been described. Constructing the C'*-algebra
C{G) from this is a fairly straightforward matter. Later (chapter 3) when we start
dealing with noncompact quantum groups, we will see that this 1s not so simple any
more — it involves difficulties, both of technical as well as conceptual nature.

1.2 'The Haar Measure

Let G be a compact quanturﬁ group. A linear functional on the C*-algebra C{G)
plays the role of a measure on G. Using the comultiplication u, one can define a

convolution product between two linear functionals gy and ps:
p1* p2(a) = (; @ p2)u(a), a € C(G).

One also has the notion of a convolution product between an element of C(G) and

a linear functional on it:
axp={id®plu(a), p*a=(p®idu(a).

It is easy t'n check that if (G is a group, these notions reduce to the usual convolution
praduct of two measures and that of a measure and a function respectively.
A bounded functmna] A is sa.ul to be right invariant if for any continuous func-

‘tional p on C(G), we have Axp = p(D)A. Slmllarly, is left invariant 1fp=+=A p(I)
for all p- As before, one can easily check that these cmnmde wath the usual nntlons

if G is a group.

| One of the main achlevements of the C*- algebrmc approach is that, starting
from a snnple set of axioms (cf. definition 1.1.1) one can prove the existence and
uniqueness of a state that is both left and right inva.rié.nt We call this the haar

| measure on G. Here we present only a brief sketch of the proof. For further deta,lls,
the reader should refer to [72]. |
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Theorem 1.2.1 ([72]) Let G = (A, p) be a compact quantum group, There exisis

a unique state h on A such thal

hep=p+h=p(I)h (1.2.1)

for any continuous linear functional p on A,

Sketch of Proof: One first shows that if (1.2.1) holds for a faithful state p, then it
holds for any continuous linear functional p, One has to make use of axiom (ii} of
definition 1.1.1 here. Now, since the ('*-algebra A is separable, there exists a faithful
state p. Write h,, = (1/n) S %_, p**, where p** is the k-fold convolution product of
p with itself. The set of states on A is compact with respect to the weak topology.
Therefore {h, : n > 1} has a weak limit point. Let i be one such, Then it is easy to

see that hxp = px h = p(I)h. The theorem now follows from what we have observed
|

in the beginning.
Example 1.2.2 Let (A, 1) be as in example 1.1.3. Let p; denote the functional
Z?ﬂ oie; — o, Let h be the state %(pl + p2 + p3a+ ps) + ;}(p5 + pg). Direct
computations .shﬂw that h * p; = p; x h = p;(L}h for all 7. Since the p;’s span the
space of all functionals on A, we have hx p = p* h = p{I)h for any functional p on
A. Thus & is the haar measure for the quantum group (A, ).

Example 1.2.3 Consider the quantum group SU,(2). We have seen that C{5U,(2))
is a C*-subalgebra of B(£2® L2(Z)). Let h be the state a = (1—-¢2) T2, ¢*{e;0, ae;o)
on C'(SU,(2)). Then h is the haar measure measure for SU,(2). For a proof of this
fact, see [68]. |

We have seen that compact quantum groups resemble their classical counterparts
in almost all the aspects that have been described so far. We now mention one feature
that 1s unique to them, For a compact group (even for locally compact groups, for
that matter), haar measure is always faithful. But the same thing can not be said for
a compact quantum group. It is faithful when restricted to the dense #-subalgebra
A(G) (df. theorem 1.1.7), but is not, in general, faithful on the entire C(G). Another
thing to notice in this context is that the haar measure, which is actually a state

on (/(G), is not tracial. The following theorem qf Woronowicz gives the modular

properties of the haar state.
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Theorem 1.2.4 {[68]) lel G be a compact quantum group. There exists a unigue

one (complez-) parameter group {f. : z € €'} of linear multiplicative functionals on

A(G) such that for any a € A(G),

1. z+ f,{a) is an entire function of exponential growth on the right half plane,
2. [:(k(a)) = f-z(a), f(a*) = f-z{a),

3. k¥(a)= forxax [,

4. h(ab) = h(b(f xa* f1)) Jor all b€ C(G).

1.3 Subgroups and Homomorphisms |

" In this section, we generalize some of the concepts for groups to our present context.
Notice that if ¢ and H are two compact groups, then a group homomorphism from
H to ¢ induces a C*-homomorphism from C(G) to C(H). With this in mind, we

give the following definition,

Definition 1.3.1 Let G = (C(G), ug) and H = (C(H), un) be two compact guan-
tum groups. A C*-homomorphism ¢ from C(G) to C(H) is called a quantum group
homomarphism from G to H if it obeys (¢ ® Pl = pu9.

H is said to.be a (quantum) subgroup of G if there is a quantum group homo-

morphism ¢ from G to H that maps C(G) onto C(H).

Proposition 1.3.2 Suppose ¢ is a homomorphism from G fo H. Then it maps
A(G) inlo A(H), and the following diagrams commule: |

A(G) - A(H) - AG) - A(H)
kg N7 | \ l CH
AG) ————Am) Tec

PM[ : Observe that A(G) is the #-subalgebra of C(G) generated by elements of the
form (p® id)x, where 7 is a unitary representation acting on some ﬁnit_e dimensional
- -space H; and p is a linear functional on B(H ). Take an element a of A(G.) of the
~form (p @ id)r. Then ¢(a) = ¢((p ® id)r) = (p @ id)((id ® ¢)r). Now it is easy to
. gée that if risa unitla.ry_. re‘pr'eaenta.tiunj. of-G,;‘(id ® @) is a,.'unitalry répfeéentation

~of H acting on the same space. Therefore the right hand side of the above equation
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belongs to A(H), which implies that ¢(A(G)) C A(H). Also, using (1.1.1), we get
bro(a) = drol(p®id)r)
= $p®id){id ® kg )7)
= ¢{p®id)r*
(p ® id)(id ® ¢)7*
(p ® id)((id ® $)7)°
(p ® id)(id ® kp)(id ® P)m
kud(a),

H

}

[

1l

and

e d((p @ id)r)

(p ®id)(id ® ey d)m
(p & id)] |

(p ® id)((id ® ég))

ec(a).

end(a)

]

Thus both the diagrams commute.,

Corollary 1.3.3 IfZ = ker ¢, then TN A(G) C ker e and xag(Z N A(G)) C 1.

Example 1.3.4 Suppose Z is a closed ideal in C(G) such that pg(Z) CZQRC(G)+
C(G)Q®ZI. Let Ay = C(G)/Z, and let p be the canonical projection of C{G) onto
A1. The above condition then implies that (p ® p)ug(a) = 0 whenever p(a) = 0.
- Therefore if we define amap p1:A1 — A1®A; by pi(p(a)) = (p®p)uc(a),a €
C(@) , it is well-defined. It is in fact 3 unital *-homomorphism and
(m @id)up = (w1 ®id)(p@plic
= (p®p®p)(Hc B id)ic
= (p®p®p)id® ug)pc
= (i@ p)(p®pkc
= (1d®m)p. ' | T

HEIlCe (,(L] ® t'd)m = (td X 151 )}L1 On Al. Next

{(a® Npr(6):a,0€ A1} = {(p®p)a® pa(b):a,beC(G)}
= (p®p){(a® Nug(b):a,b e C(G)}.
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and similarly {(/ ® a)pi(b) : a,b € A} = (p® p){( ® a)ug(d) : ¢,b E C(G)).
Therefore {{a @ 1) (b) : a,b € Ay} and {( & a)pq(b) : a,b € Ay} both are total
in 4, ® A;. G = (Aq, 1) is thus a compact quantum group. Check that this 1s a

subgroup of G.

Example 1.3.5 Take the group # = {e, z1, #3,23}, the group operation being given

by the following multiplication table:

r3 | &3 Iy ¥ e

il

Verify that C(H) = COCHC ®C, and if ¢ denotes &, ® 8o D bar Dbk, k = 1,2,3,4,
then the comultiplication u is given by |
ule1) = e1®@e +€.2®Ez+63®ﬂ3+64®~941-..
p(e2) = e1®erter®erte3®estesReg,
#(63) = eje; + e3®erter@est+eq@eq,
pleq) = e ®ey #If,ed Qe+ e ® es +_83. & €2

It is now trivial to see that this is a subgroup of the compact quantum group ap-

pearing in example 1.1.3,

Example 1.3.8 The circle grbﬁp Slisa subgroup of SU. (2). It is ea.sy' to see
that C'(S1) is a C*- a.lgebra. generated by a single unitary element u with spectrum

o(u) = S1. Define a map ¢ from C'(.S'U ( )} into C(5') by ¢(a) = u, ¢(f) = 0. One
can check that this is a quantum group homomorphism from C(S5U,(2)) onto C(S1).

Example 1.3.7 SU (n) is a subgroup of SU,(n + 1). Denote the generators of
C(8U,(n)) by v, and those of C(SU, (n + 1)) by u{**"). Define a map ¢ on the
generators as follows: - a

5;1} if 1 < i,j.g.n,

(H( +1))_ f ]fi:j.:n.ﬁ-j,..

0 ﬂtherwme -

Venfy that gb is the required hnmnmnrphlsm
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As in the case of a classical group, one also has the notions of quotient spaces,
normal subgroups and quotient groups. Let H be a compact quantum subgroup of

G, and let P be the homomorphism mapping C(G) onte C{H ). The right coset space

of H in G is given via the C*-algebra of continuous functions on it which is defined
to be | |
C(G[/H)={a e C(Q): (PR idug(a)=1Q a}. (1.3.1)

Let hjy denote the haar measure for H. It follows from the above that

C(G/H) = {a€C(G):hyP*a=a}
= {hyPxa:a€ C(G)} (1.3.2)

In a similar manner, the ('*-algebra of continuous functions on the left coset space

of H in G is given by

C(G\H) = {a€C(G): (id® Plg(a) = a® I}
= {aeC(G)iaxhyP =a} o
= {axhgP:a€ CG)}. (1.3.3)

From the definition, it is clear that both C(G/H) and C(G\H) are unital C™-
algebras. In the language of noncommutative topology, G/H and G\ H are compact |

noncommutative spaces.
It follows from (1.3.2) that ug(C(G/H)) C C(G/H) ® C(G). Let us denote

the restriction of ug to C(G/H) by v. Then v is a unital *-homomorphism from
C(G/H) into C(G/H) ® C(G), and satisfies (v Q@ id)v = (id @ ug)v. We say. that v
is & right action of G on G/H. More generally, we have the following definition.

Definition 1.3.8 Let B be a unital C*-algebra. A unital -homomorphism ¥ from
B to B® C(G) is called a right action of G on B if (v ® id)v = (id ® pa)v. A
left action of G on B is a unital *-hbmumorphjsm v from B to C(G) @ B satisfying
(id® v}y = (id ® ug)v. _ -

If v is a right action of G on B, then the subalgebra {¢ € B : v(a¢) = a ® I} of
B is called the fixed point subalgebra for this action v. For a left action v, the fixed
point subalgebra, is {.a € B:v{a)=1®a}. An action v is called homogeneous if its
- fixed point subalgebra is . | |

We have seen that G has a right action on G/H. Similarly one can verify that

G has a left action on G\ H. Both these actions are homogeneous.
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If for any a € C(G), we have C(G/H} = C{G\H), then we call H a normal
subgroup of G. In this case, ju¢; maps C(G/H ) intoe C(G/H)® C(G/H), and we have

the following proposition.
Prupnsitiun 1.3.9 If H is a normal sﬁbgroup of GG, then (C'(G’/H)', pale(a)my)
a compact guanlum group.

Proof: All we need to show is that condition (ii) of definition 1.1.1 holds. Notice
that B ;= {AyP +a:a € A(G)} is dense in C{G/H). It follows from the equality
C(GfH) = C(G\fl) that B = {axhy P :a € A(G)}, and hence x maps B onto itself.

Using this, it is easy to show that the linear span of both {(a ® Nu(b) : a,b € B}

and {{(/ ® a)u(b) : a,b € B} are B ®qy B, Whlch is dense in C(G/H) @ C(G/H).

The proof is thus complete, a

We denote the quantum group (C(G/H) p.(;lc(gfgj) by G’/H and call it the

quotienl group Of G over H.
Remark. All the notions introduced above coincide with the already existing ones in

the case when C(G) is commutative,

Example 1.3,10 Take (- to be the quantum group in-example 1.1.3, and H to be
the group appearing in example 1.3.5. Verify that

C(G/H) G\H)“{a E1+Eg+53+€4)+b(65+65) a, bE(ZI}

Thus # is a normal subgroup of GG, and from the above, one can check that G/H is
actually the group Zz. One remarkable thing to notice here is that both H and G/H

- are groups, although G is not.

| Example 1.3.11 We have i::-b'sefved in examplé 1.3.6 that S is a subgroup of
 SU,(2). The homomorphism ¢ mapping C(SU,(2)) onto C(S') was also described
there. It follows from there that C(SU,(2)/8') is the unital C*-subalgebra of

C{5U4(2)) generated by the elements of and §*8. Similarly, C(SU,(2)\S") is the
“unital C*-subalgebra ganerated by af* and [3' ﬁ ‘Thus §! is not a normal subgroup

of SU,,(z)

Let ¢ be a real number, and A be the canonical unital C'*-algebra generated by

two Eler_nenlﬁs §1 and §3 obeying 't_he'folltjwing relations:

Ga=b-Ete, 68 = o -G+, b6 =d6b, =6
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The underlying noncommutative space is known as the Podles sphere .Sfc (see [40}).
The C*-algebra C(S5U,{(2)/5") in the above example can be shown to be isomorphic
to §5%. The C*-algebra C(8%) can alternatively be described as the unital C™-
subalgebra of B(£3) generated by the two operators £; = g /1 — N and &, = 2V,

Let
L=60ar—gff @+ (1- (L+¢%)62) @ af,

L=6@Ba+80a*f+601+(1-(14¢%)&)®B*B.

Then v : £ +— &, & — & extends to a unital *-homomorphism from C(.S'gn) to
C(S%) ® C(SU,(2)) satisfying (v & id)u = {id @ p)v. That is, v is a right action
of §U,(2) on Sgu. Check that this action is homogeneous. Let A denote the state
a—+ (1—g%) 3.2 ¢* (e, ae;) on C(S%). Then one can show that (A®id)v(a) = Ma)]

for any a € C(S3). Thus A is invariant under this action.

1.4 A Counterexample

In section 1.2 we have come across some properties of classical groups that lose their
validity in the quantum situation. Here we describe yet another. If G is a locally
compact group, and v is an idempotent measure on @, that is, if v satisfies the
equation v+ = v, then the support H of v is a compact subgroup of G, and moreover,
v 1s the haar measure of /. This no longer remains valid if G is a compact quantum
group. 1o see this, take &' to be the quantum group of example 1.1.3. Let us first find
all the idempotent measures on G. Let py,p2,..., 08 bé as in example 1,2.2, Then it
is not too difficult to show that D1y 025+ - 2 P8, albng with ¥ = %(pa +ps+ p7r+ps) and
g = -;-(ps + ps + ip7 — ipg) are all states, and they span the space of all functionals

ot A. Therefore any state p will be of the form

] |
p = ) _cipi+ oy + esdn

t=1
~ 1 1
= ) cipi+(cs+ 5(67 + ¢g))ps + (¢ + "2'({37 + ¢8))pe
i=1 | |
| 1 . 1 . -
+ 'i-(ﬂ? +tcs)p7 + §(C7 — icg)ps,

where ¢; > 0 for all ¢, and =y ¢; = 1. Evaluating the two functionals p* p and p
at the basis elements and equating them, we get a system of equations which lead

to the following possibilities:
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a) p = pr1,

b) p= (g + p2)s

¢} p= g3(p + pa)s

dY p=3{m +p4)s

e} p = 3{p1 +p1+p3+ pa)s

[) p = 3oy + p2+p3+ pa) + (s + ps),
g) p = o1+ pa) + 305,

h) p= X1 + pa) + 306 |
These are all the idempotent states on .A. We now prove the following,.

Proposition 1.4.1 The state p = %(p1 + p4) + *Pe is not the haor state of any
subgroup of G. | | |

Proof: Suppose, if possible, I = (C(H),py) is a subgroup of G and p is the haar
state of H. This means that there is a unital *-homomerphism ¢ from C(G) onto
C(H) obeying (¢ ® ¢)u = py¢, and p = he, where h is the haar state of C(H).
Let T = {a € C(G) : p{a*a) = 0}. Usifng_-_thé modular properties of the haar state
(part 4 of theorem 1.2.4), we find that 7 is a closed two-sided ideal. Now, observe
that e; € 7, but ex & T, which contradicts the fact that 7 is an ideal. | 0
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Induced Representations

The concept of an induced representation plays an extremely important role in the
representation theory of classical groups. For a large class of locally compact groups,
for example, one can obtain families of irreducible representations as induced repre-
sentations of one dimensional representations of appropriate subgroups. Quantum
groups, just like their classical counterparts, have a very rich representation theory.
Therefore it is natural to try and see how far can this concept be developed and
exploited in the case of a quantum gmup. In this chapter, we attack this problem
for compact quantum groups. The way we proceed is as follows. In section 2.2, we
give an alternative description of a unitary representation as an isometric comodule,
hoping to make things more transparent this way. Using this comodule description,
we then introduce the concept of an induced representation in section 2.3, and prove
an analogue of the Frobenius reciprocity theorem followed by an application in the
last section. We shall need a little bit of the theory of Hilbert C"*-modules, which is

presented in the first section,

2.1 Hilbert C*-modules

The notion of a Hilbert C*-module was introduced by Paaschke ([33]) and was later
developed by Kasparov ([25]) in the context of his KK-theory. For details, the reader

~should refer to Jensen & Thomsen ([19]).

Definition 2.1.1 Let A be a unital C'*-algebra. A vector space X having a right
A-module structure is called a Hilbert A-module if it is equipped with an .A-valued

inner product that satisfies

21
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L {z, )" = (v, &),

i, (z,z) > 0,

i, {z,2)=0= 12 =0,

iv. -(:r.,yb) = {z,y)b for z,y € X, b € A,
and if |jz|| := {|{z, z)||'/* makes X a Banach Space.

A few examples are in order.

Example 2.1.2 (a) Any Hilbert space H with its usual inner product is a Hilbert

¢ -module.
(b) Any unital C*-algebra A, with (a,b) := a*b, is a Hilbert A-module.

‘Example 2.1.3 Take X to be the Banach space B(H, X) of bounded operators from
H to K and A to be the C™*-algebra B(H). Then X has a na.tural" right A-module
structure, Define an inner product on X by: (5,T) := §°T. One can check that the

‘natural norm of X coincides with the norm arising out of thls inner pmduct and X

15 a Hilbert A- mudule
~ The next example is a rather crucial one for our purpose.

Exarﬁple 2.1.4 Let H be a Hilbert space and A be a unital C*-algebra. On their
algebraic tensor product Xy = H ®alg A, define a right A-module structure and an

A-valued inner product as follows:

_(Z; Uy @ai)ﬁ s Z, u; @ aa, u; € H,a,a; € A, ('2 1.1)
(E;u;@u;,Z_;v;@b;) = (u,,ﬂj)a. iy H”‘IJJEH u,,b (-:,A o

It is easy to see that || 3y w ® af] := {1 ® a;, T 4; ® a;)}1/? defines a norm on
Xo, and both the right A-module structure and the A-valued inner product extends
~ to-the completion X of X, with respect to this norm, and they make X a Hilbert
A-module, We cal] X the extemal tensor pmduct of H and A, and denote 1t by

'H@A

- Remark. For A = C(G), G being a compact quantum group, H & A will pla.y' the
tole of the space of M-valued continuous functions on G,

Example 2,1.5 The construction in the above example can be generalised a little

| further. Instead of A and A, we take a Hilbert A-module X and a unital ('*-algebra
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B, then on their algebraic tensor product X ®qy B, one can define a right A @, B-

module structure, and a A ® B-valued inner product by:

Pz ®5:)(a®b) = > zia® bib, (512)
(@b, Tzt ®b) = Y(ziz))® (bi,b)), -

where z;,2; € X, b,b;,b; € B and a € A. As before, if one defines now || 3> 2; ® bi|| =
(3" z:®b;, Zm;@b;)”lﬂ, then this gives a norm on X ®,(, 5. Denote the completion
with respect to this norm by X ® B. The inner product extends to X ® B and the
right A @,y B-module structure also extends to give X ® B the structure of a Hilbert
A ® B-module. We call this the external tensor product of X and B.

Let us now state a couple of lemmas involving the Hilbert A-module H® .4 which

we shall need subsequently.

Lemma 2.1.8 Let {e;} be an orthonormal basis for H, and z be an element of HQA.

Let z; = ({e;|®id)x. Then 3 z;*xz; converges in norm and z = liMpeo 1= €5 R T4,

Proof : Straightforward.

Lemma 2.1.7 Let Hy be a closed subspace of H and B, a C*-subalgebra of A. Let
z € H® A. Then we have o |

i If((u|@id)ec e BVu€E H, thenz e H® B ; and

il, If (I Q p)z € Hog for all continuous linear functionals p on A, then z € Hy ® A.

Proof: Choose an orthonormal basis {e;}; even for Ho. Extend it to an orthonormal

basis {e;}ien for H. Now if ((v| ® id)z € B for all 4 € H, then each z; belongs to B,
so that z € H @ B. - |

For the second part, notice that for any continuous linear functional p on A,
p(((uv] ® idjz) = (4, (I ® p)x) = 0 whenever u L Ho. Therefore ({u| ® id)z = 0 for
% 1 Ho. Hence z; = 0if { is odd. This means that all the summands 377 e; ® =;
belong to Ho ® A. Hence z € Hy ® A. | | O

We have seen that both B(KX,H & K) and H ® B(K) are Hilbert B(K)-modules.
We now establish an isometric module map ¥ from H ® B(K) into B(K,H @ K)
through which one can embed H ® B(K) in the latter. | |

Take )" u; ® a; € H ®aly B(K). Define an operator (3 u; ® a;) from L to HRX
by the pres.criptionl T ui®ai)(v) = T ui®ai(v), v € K. A simple calculation shows
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that (d(z), )(y)) = {z,y) for all 2,y € H Qayy B(X), and consequently ||19(m)” = ||z]]
for all z € H ®atg B(K). The map 9, therefore, extends to a bounded operator from

H® B(K) to B(K,H®K), and we have

(3(z),9(y)) = (=,9) Vz,y € H® B(K), (2.13)
Hzb) = J(z)b Ve € H® BK), b € B(K).

Observe two things here: first, if H = ', ¥ is just the identity map.- And, 9 is
onto if and only if H is finite dimensional, The following lemma, the proof of which

is fairly straightforward, gives a very useful property of .

Lemma 2.1.8 Let Hy and Hy be 'two'Hi.lbert sﬁaces -Let 9; be the map 9 canstru&ted
above with H; replacing M, 1 =1,2. Lei S € B(Hl,’){z) and z € ’H1 @B(KZ) Then

D{(S Qid)z) = (S ® I)t'h(:r)

We now use this map .9 to introduce another map ¥ and study'. a few of its

prop erties.

Prnpnmtmn 2.1.9 Let H, K be Hilbert spaces, and 0, be the isometry from H ®
B(K) to B(KJ HRK) as mnstructed above. Then there is a unique, linear, injective
contraction ¥ from the left multiplier ulgebrﬂ_ LM(B{](H) ® B(K)) of Bo(H) ® B(/C)
to the space B(H,H ® B(K)) of bounde_d-bpératﬂrs from H to H @ B(K) satisfying
the following: . | | .

: HU(T)(w)(v) =T(u@v) Ve e H,w €K, T € LM(Bo(H) @ B(K)).  (2.1.4)

Proof: Take a T € By(H) ®aiy B(K), Bs(H) being the space of all finite-rank op-
erators. Such a T' can be written in the form ¥ |e;}{e;] ® Ti;, where {e;} is an
orthonormal basis for H, LT,J’SE. B(K), and all but finitely many of them are zero.
Consider now the map e — Y e ® Tix from the hnea.r span of the ¢;’s to H @B(}C)

The followjng calculatmn shows that it is bounded;

g E(Zkiakm(v),Zmﬂf(WDI

2 {vii £l
Ein I <t s
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= ' 15 ) ' {£1
b fip (0 o Do Zomiw)

SUP{KT(E are, ®v), T() _arex ® w))‘ : Hu"2 S Lllwli® <1, jagl* < 1}
< T

Fal

Observe that all the summations involved here are finite, so that convergence prob-
lems do not arise.

The map therefore extends to the whole of H, Call this map ¥(7T"). The above

calculation shows that | |
)] < 177 | - (2.1.5)

Also, it is easy to see that for u € H, v € K,

9 (¥(T)(w)(v) = Tw®v). C(2.1.8)

It is clear from (2.1.6) that ¥(T") does not depend on the choice of the partlcular
basis.

From (2.1.5) it follows that the map T + ¥(T') extends to the closure Bo{H) ®
B(K) of By(H) ®at, B(K), and (2.1.5) and (2.1.6) still hold.

Finally, take a T € LM(Bo(H) ® B(K)). Let P, be a sequence of finite-rank
projections strongly converging to I. Then T .= T(P, ® I) € Bo(H) ® B(K), so
that J(¥ (7)) (u))(v) = T (u ® v) Yu € H,v € K. For an operator $on H®K,
and v € H, let S, denote the operator v = 5(u ® v) from K to H ® K. Then we
have (¥(T)(w)) = 75", Now

IT-T2) = sup IT(u@0) ~TMu@ )]

= nshl P |IT((n — Pau) ® W)
< iITH | — Pl

Hence Ty, is the norm lmut of T, Since T .’ € ranged for all 7, T also belongs
to range 9. Define ¥(T') by the following: |

WT)w) = 97Y(TL), uek.

One can verify now that ¥ is well-defined, linear, injective and satisfies (2.1.4) and .
(2.1.5). Uniqueness follows from (2.1.4). | | O
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Proposition 2.1.10 Let ¥ : LM (Bo(H) ® B(K)) — B(H,H ® B(K)) be the map
construcled in proposition 2.1.9. Then we have the following: :

i. ¥ maps isometries in LM (Bo(H)® B(K)) onto the isometries in B(H,H® B(K)).
ii. For anyT € LM (Bo(H) ® B(K)) and S € Bo(H),

YT(S® 1) =¥(T)o 5, V(S®NT)=(S@id)o ¥(T),

iii. If A is any C*-subalgebra of B(K) containing ils identsty, then T € LM(BD('H)®
A) if and only if range ¥(T) C H ® A.

Proof: i. Suppose T € LM (Bo(H)®B(K)) is an isometry. By (2.1.3), (¥(T)u, ¥(T')v)
= (0~ (T, 9" YTY)) = (Tu, Ts) = (u,v)1 for u,v € H. Thus ¥(T') is an isometry.
Conversely, take an isometry 7 : H — H @ B(K) and define an epereter T on the
product vectors in H® K by T(u ® v) = ¥ (u))(v), 9 being the map constructed
prior to lemmma 2,1.8. It is clear that T is an isometry. It is enough, therefore to show

that T'(|u}{v| ® ) € Bo(H) ® B(K) whenever 5 € B(IC) and - u,e are unit vectors in

H such that (u,v) =0or 1. |
Choose an orthonormal basis {e;} for H _sueh_thet e1 = U, & '-—?_ v where

- { ) w21
| 2 if {u,v) = 0.
Let mi; = ({e] ® id)#(ej) ‘Then T(|'u)(1.r| ® .S')'. Z'le,)(er] ® m;1 S where the right
hand side converges etrengly Since 7(e1) € H ® B(K), lemma 2.1.6 tells us that
>>; Ti1* T converges in norm. Ceneequently the rlght hand side above eonverges in
norm, which means T{ju){v| ® ) € Bo(H) ® B(K). |
ii. Straightforward, from (2 1.6) and proposition 2.1.9.
iii, TakeT = lu}(ul@e, u,» € H,a € A. Forany w € M, lI’(T)( ) = (v, w)u®a €
H ® A. Since ¥ is a contraction, and the norm closure of all linear combinations of
such 77 is Bo(H) ® A, we have range ¥(T) CH ® A for all T € Bo(H) ® A.
Assume next that 7' € LM(Bo(H) ® A). Then T(ju){u| ® [) € Bo(H) ® A for
all u- € H. Hence W(T(Julu] @ )(u) € H ® A, which means, by part (11) that
"I’(T)(u) € H® A for all u € H. Thus range ‘I’(T) CH ® A.
- To prove the converse, it is enough to show that T'(Ju){v] ® a) € Bo(H) @ A
- whenever a € A and u, v € M are such that (u,v) = 0 or 1. Rest of the proof now

_: goes along the seme lmes as the preef of the lasl; part of (i). -~ - O

Before going to the next propesn tlen, let us make the fel]ewmg ebeervetlen
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Let K1, K2 be two Hilbert spaces, A; being a C*-subalgebra of B{X;) containing
its identity. Suppose ¢ is a unital *-homomnrﬁhism from A; to Az. Then id® ¢ :
- S®ar §Q ¢(a) extends to a *-homomorphism from By(H) ® A; to Bo(H) ® A,.

Moreover the linear span of { ({id® ¢)(a))b: a € Bo(H) ® A1, b € Bo(H) ® Az} is
dense in Bg(H) ® A,. Therefore id @ ¢ extends to an algebra homomorphism from

LM(Bo(H) @ A1) to LM(Bo(H) ® A;) by the following prescription: for all a €
LM(Bo(H) ® A1), b € Bo(H) ® A1, ¢ € Bo(H) ® A:,
((id® ¢)a) ((id ® $)b)c := ((id ® #)(ab))c.
Proposition 2.1.11 Let ¢ be as above, and ¥; be the map ¥ construcied earlier
with K; replacing K. Then for T € LM(Bo(H) ® A1),
(I ® $)¥1(T) = ¥a((id ® $)T).
Proof: 1t is enough to prove that

({(u] ® id)((l ®.¢’)‘I‘1(T)(ﬂ)) = ({u| ® id)¥, ((id@ ¢)T)(v), v u,.v e H.

Rest now is a careful application of lemma 2.1.8. O

Consider the homomorphic embeddings ¢12 : Bo(H) ® A1 — Bo(H) ® A1 ® Az
and ¢y3 : Bo(H) ® A2 — Bo(H) ® A1 @ Aq given on the product elements by

¢12(ﬂ®b)=ﬂ®b®1,_ $13(a ® ¢) = a®I®c,

Each of their ranges contains an approximate identity for Bo(H) ® A; ® Az, so that
their extensions respectively to LM (Bo(H) ® ./41_) and LM(Bo(H) ® Az) are also

homomorphic embeddings.

Proposition 2.1.12 Let ¥y, ¥y be as in the previous proposition, and let Vo be the
map ¥ with A1 @ Ap replacing A. Let § € LM(Bo(H)® A1), T € LM(Bo(M)®Az).

Then
' o(¢ia(S)dra(T)) = (¥1(S) @ id)¥a(T).

Proof Observe that for ug,...,u, € H, __ | |
_ ((@1(3)@.) wl(S)m)))) < ISP (i us) ) -
Therefure ¥ (S)®idis a we]] deﬁned bounded operator fmm 'H@.Ag to H®A1 @Ag

Take an orthonormal basis {e;} for H. Define Sii's and T;;’s as follows:

Sii 1ve ({6 ®@ NS(ej @ v), Tij: v ({ei| ® 1)T(e; ® v).



28 Chapter 2. Induced Representations

Let P, =Y.~ ,|e;}{ei]. Then

(U1(5) @ id)( Py @ id)¥a(T)(e) = (Wr(S) @ id)(}e; ® Ty)

jgn

Z(Z er ® Skj) ® 13;.
k |

j<n

i

Hence for v € K1, w € Ky,

ﬂ((wl(S) @ id)(Py ® id)¥(T)(ei)) (v ® w)
= 2.2 ek ® 5ki(v) ® Tii(w)

jsn k

(E E lex){er| ® Sk.r ® TJ!)(E: Qv ’tD)

i<n k,r |
= 01 SW P ®I® NP13(T)(e: @V ® w).

|

This cnnverges to ¢12(S)¢13(T){Et 8 v @ w) as n — oo On the other ha.nd

lim (92(5) ® id)( Py ? zd)'Ilg(T)(e,) = (\1:1(3) ® zd)‘I'g(T)(e,)

00

.whlcll implies llmn_{,mﬁ((‘]? (S)@td)( ﬂ®td)‘1’2(T) €;)) = ﬂ((‘P](S)@td)‘I’g(T)( e;))-
Therefore - | |
¢12(5)¢13(T)(é£ Qv w)
(‘I'u(¢12(5)¢13(T))(e=))(v ® ).

!

19((‘111(5) ® id‘)"IJg'(T)('Eg)) (v & w). '.

{l

Thus (w (.5') ® :d)‘Fg(T) ~ wﬂ(¢,2(5)¢13(T))

22 'Isometric. Co'niodul_es

~ Let .G (A, ) be a compact qua,ntum group, Throughout this section we shall

“assume that A acts nundegeuerately on a Hilbert space K, i.e. Ais a C* subalgebra,
of B(X) containing its identity, We call a map = from H to H ® A an isometry
if (r(u),.?r(v)_) = (u,- v)] for-all u,v € H. If 7 : H - H @ A is an isometry, then
T®id : uQa — 7(u)®a extends to a bounded map from H®.A to ’H@.A@A 7 is called
an isometric comodule map if it | is an isometry, and satisfies (w@ad)n‘ = (IQu)r. The

pair (H, ) is called an isometric comodule. We shall often just say 7 is a comodule,

omitting the H.
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A closed subspace Hy of H is said to be invartant under 7 if 7(Hp) C Ho® A, =
is called trreductble if it does not have any nontrivial invariant subspace. If 7 is an
isometric comodule, so is its restriction to any invariant subspace.

Let 1 and 72 be two isometric comodule maps acting on H; and Hz respectively.
A bounded map T : H; — H; is said to inlertwine 7y and my if myT = (T @ id)my.
my and mp are equivalent if there is a bounded invertible intertwiner. They are called
disjoint if there is no nonzero intertwiner, It is easy to see that any two irreducible

isometric comodules are either equivalent or disjoint.
We have seen in section 1.1 that any unitary representations decompose into a

direct sum of finite dimensional irreducible unitary representations. The following

proposition is a similar statement about isometric comodules.

Proposition 2.2.1 Let (H,n) be an isometric comodule, Then H decomposes into
a direct sum of fintle dimensional subspaces H = @®H, such that each H, 15 ©-

invariani and w|x, 1s an trreducible isometric comodule.

Proof: By proposition 2.1.10, there is an isometry 7 in LM(Bo(H) ® A) such that
¥(#) = . Using propositions 2.1.11 and 2.1.12, we get 71213 = (id ® p)f where
‘ﬁ'lg = (ﬁlg(ﬁ'), 'ﬁ‘13 = qﬁlg(ﬁ'), ¢12 and Qﬁm b-ElIlg as In pI‘Dp{)Si_tiﬂI‘l 2.1.12 with ..A] =

Az = A.
Let Z = {a € ./-'l h(a*a) = 0}. From the properties of the ha.a,r state, Z is

an ideal in A, For any unit vector u in X, let @Q(u) = (id @ h)(#(|u){u| ® I)7*).
Then Q(v)* = Q(u) € Bo(H). If Q(u) = 0, then |#(|u)(u| ® NF*|*/? € Bo(H) ® T.
Therefore #(Ju){u] ® I)#* € Bo(H) @ Z. It follows then that [u)(u|® I € Be(H)®I.
This forces u to be zero. Thus for a nonzero , @(u) # 0. Choose and fix any

nonzero unit vector ©. Then -

7(Q(u) ® )7
= (d® 1d®h)(flzﬂ13(|“>(“‘ ® 1 ® I)fish 2)

= (id®id®h)(Fafa(lu)ul © 18 I)(fatu(ul @8 D))

- (deide (64 ® u)()Cid @ u)(lu) el ® 1) | T
' « (@ m@ids wit e 1))

(d®idah)(den) (#(ju)ul & D) (¢ 8 1) (#(lu)ul & f))) ) '

li
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}

(id ® id ® h) ((id @ 1) ((fu(ul ® 1)) (id ® ) ((lu){ul @ f)ﬁ"))

= (id®id®h)((i[d® ) ((lu){u @_J)fr*))

= (id@ (id® ) (#(lu) (| ® D)

= Q[H) ® 1,
Thus #(Q(x) ® I} = (Q(u)® [)#. If P is any finite dimensional spectral projection
of Q(u), then #(P ® I'} = (P ® I)#, which means, by an application of part (ii) of
proposition 2.1.10, that P = (P ® id)r. Standard arguments now tell us that r can
‘be decomposed into a direct sum of finite dimensional isometric comodules. Finite
dimensional comodules, in turn, can easily be shown to decompose into a direct sum

of irreducible isometric comodules. The proof is thus complete. »

Using the above proposition, we can now establish the equivalence between uni-

tary representations and isometric comodules.

Theorem 2.2.2 Let 7 be an wometrtc camoduie map acting onH. Then ¥~ Yr) is

a unilary representation acling on H C’onversely, if * 1s a untlary representation

of G on I, then (H,¥(%}) 1s an isometric comodule.

Proof: Let # be a unitary representation. By proposition 2.1.10, ¥(7) is an isometry
from H to H @ C(G). Using Propositions 2.1.11 and 2.1.12, we conclude that ¥{#)

15 an isometric comodule,
‘For the converse, take an isometric comodule #. If 7 is finite dimensional, it is

éa.sy to see that ¥~1(m) is a unitary representation. So assume that = is infinite
dimensional. By the lemma above, there is a family {P,} of finite dimensional

projections in B(H) satisfying
PuPy=lagPuy Y Pa=1, 1Py =(Pa®@id)r Va (2.2.1)

such that #]p, = wF, is an irreducible isometric comodule. rlp,n is finite di-
mensional, therefore ¥~'(x|p,3) is a unitary element of LM(By(P,H) ® A) =
B(F,H) ® A. Let us denote ¥~ 1(':r) by #. Then the above 1mplles that in the
_btgger space B{H ® K), o

(:'r(P @!)) (:ar(P @I)) _P @f (ﬂ'(P @I))(:rr(P @I))

| The second equa.llty 1mphes tha.t ?r(Pﬂ@I) =P, for all &, so that ##* = I. We

.ﬁ-*ﬂ-

already know from proposition 2.1.10 that #*% = J and from propositions 2.1.11 and
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2.1.12 that #1273 = (td®@u)f. Thus it remains only to show that # € M(Bo(H)® A).
It is enough to show that for any § € By(H) and a € A, (5 ® a)f € Bo(H) ® A.
Now from (2.2.1) and proposition 2.1,10, # (P, ® I} = (P, ® I)7 for all . Therefore
(S®a)(Pe®I)E = (S®a)ft(Fa®I) € Bo(H)®A. Since (S®a)t is the norm limit of

finite sums of such terms, (5 ® a)7 € Bo(H)® .A. Thus 7 is a unitary representation

acting on H. D

Next we introduce the right regular comodule. Denote by L,(() the GNS space
associated with the haar state A on . Then A is a dense subspace of L2(G). One
can also see that A ® A can be regarded as a subspace of L2(G) ® A. Consider the

map 4 : A = AQ A.
(1(a), 1(8)) = (h @ id)(u(a) (b)) = (h ® id)u(a"B) = h(a"b)] = (a,8)]

for all a,b € A. Therefore p extends to an isometry from Lo(G) into Lo(G) ® A.
Denote it by ¥. The maps ({ @ p)R and (R @ id)}X both are isometries from Ly(G)
to L2(G) ® A ® A and they coincide on A, Hence (I @ )R = (R ® id)R. Thus
R is an isometric comodule map. We call it the right regular comodule of G. By
theorem 2.2.2, ¥~1(R) is a unitary representation acting on Ly(G). This is the right
regular representation introduced by Woronowicz ([72]).

Following is the Peter-Weyl theorem for compact quantum groups.

Theorem 2.2.3 There is a Jamily { Py} of finite dimensional projections on Ly(G)
obeying |
RPy = (Py @ id)R Vy, PyPy=8,9Py > Py=1
If ", denotes P,(L3(G)), then R restricted to H., decomposes into irreducible

comodules of only one type. Moreover, if H ts any closed R-invariant subspace of

Ly(G) then H = @(H NH,).

Sketch of proof: Let f, be the one parameter family of multiplicative functionals
introduced in theorem 1.2.4. Let w;:} denote the 1) th entry, in some fixed basis, of the
irreducible representation of type 4. Let x7 := }_; 7. Note that x” does not depend
on the choice of the basis, Denote by p, the functional a = f_i{x")h{ak™ l(x'f*f__ ))
defined on C’(G) Then P, =%, are the required pmjectmns O

As an application of the above theorem, we give here a small lemma that will be

needed in the next section,
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Lemma 2.2.4 { v € Ly(G) : R(u) € La(G) Balg C(G) } = A(G).

Pmaf' R coincides with g on A(G). Therefore by theorem 1.1.7, A(G).is.cnntajned
in the left hand side of the above equatlon | |

To prove the reverse inclusion, take an u € Lg(G’) such that R(z) € Lg(G’) Daly
C(G). R(u)is then a finite sum of the form 3 i ® ai, where u; € L2(@), ai € C(G).
Let M be the subspace of Ly(G) spanned by the u;’s. Then dim’H < oco. For any
continuous linear functional p on C(G), R, : v = (id ® p)R(v} is bounded, and
®,(1) = ¥ pla;)u; € H. Therefore the smallest R-invariant subspace Ho of L2(G)
containing u is contained in A and hence is finite dimensional. By theorem 2.2.3,
Ho = @&4(Ho N ”H_'.-,.) Since Hp is finite dimensional, there are only a finite number
of summands, so that the elements of Hg are finite linear combma,tlons of the :rr 's.

In particular, u is a finite combination of the TS, Therefore u € A(G), whu_:h
o w

completes the proof.

| _2.3_' Induced Representations -

In this section, we shall introduce the concept of an induced representation for a
compact quantum group. We shall see that Frobenius reciprocity theorem remains
valid in the noncommutative setup also. Throughout this section, H = (C(H), ux)
‘will denote a subgroup of the compact quantum group G = (C(G), ).

We start with the following lemma concerning the boundedness of the left con-

volution operator.

Lemma 2.3. 1 Let G = (A, ) be a compact quantum group. Then the map L,
A.—~ A given by Lp(a) = (p & zd)p(a) eztends to a bounded operator from LQ(G)
inlo itself. | |

~ Proof: Let us first prove the following inequality'
(((Pe ® “f)ﬂ) (P2 @ tf-'f)*‘l) < (P2 ® p1)(c” C): c € «4 & A (2.3.1)

| Take c= Ea, ®b; € A @.ﬁg A. The matrlx ((p1(b *b; ))) is pus:twe Hence for
any rea.l t, E(a, tpg(u,)f) pl(b b, )(a_, — tpg(aj)f) > 0. Applylng P2, we get

_ZPI "b.:)m(ﬂt ﬂ:)+52LP2(ﬂt)P2(ﬂ:)Pl(b "b;) 2*LP2(G=)P2(%)P1(5 *b; )> 0
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for all real ¢. Therefore 37 pa(ai}pa(a;)p1(bi*b;) < 3 pa{ai®a;)p1(bib;) which means
(2.3.1) holds for ¢ € A®4i, A. By continuity, the same thing holds for all ¢ € A® A.

Putting ¢ = p(a) in (2.3.1), we get the following:

p1((p2 % a)*(p2 % a)) < pa*p1(a®a) Va € A

The proof now follows by writing p1 = h, p3 = p. O

Let # be a unitary representation of A acting on the space Ho. 7 := ¥(7) is

then an isometric comodule map from Hy to Hy ® C(H). Consider the following

map from Mg ® L2(G) to Hy ® Lo(G) ® C(G):
QR :u® v u®RE(v)

where R is the right regular comodule of G. It is easy to see that this is an isometric

comodule map acting on Wo ® Lq(G). | |
Let ¢ be the homomorphism from G to H (cf. definition 1.3.1). Let H denote

the followmg Hilbert space:

{u € Ho®Ly(G) : (I@LP st = (7,1 )u for all continuous funotlonals pon C(H)}.

Then I RRC keops H invariant; the restmctlon of IT®RC to H is therefore an isometric
comodule, so that ¥~1((1 ® R¥)|x) is a unitary representation of G acting on H.
We call this the representation induced by #, and denote it by ind%# or simply by

ind # when there is no ambiguity about &G and H.
Let 71 and 7 be two unita.ry. representations of . Then clearly we have
i. ind#; and ind 3 are equivalent whenever #; and %, are equivalent, and
ii. ind (71 & ﬂg) and ind #; @ ind 7y are equivalent. | . |
Before going to the Fi'obemuo reciprocity theorem, let us brloﬂy describe what
we mean by the restriction of a representation to a subgroup. Let #F be a unitary
representation of (G acting on a Hilbert space Ho. We call (id @ ¢)#© the restriction
of #% to H and denote it by #%|H, To see that it is indeed a unitary representation,
observe that ¥((id ® $)#C) = (I ® #)¥(#Y) which is clearly an isometric comodaule.
Therefore by theorem 2.2.3, #9117 is a dnitary representation of H acting on Ho.

Denote ¥(#%) by #% and ¥(#%|H) by »&|H

Theorem 2.3.2 (Frobenius reciprocity theorem) Let #% and #H be irreducible
uoitory representations of G and H respectively. Then the hzuitiplicity of #¢

'md #H is the same as that of #7 in #C |4,
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Proof: Let Z(#C|" ,#H) (respectively Z(fiﬂ, ind 7)) denote the space of intertwiners
between :WGIH and #H (respectively #G and ind 7). Assume that 4 and # act

on Ky and Hyp respectively. Ky ® C(G) can be regarded as a subspace of Ko ® La(G)

and hence 7%, as a map from K into Ko ® Lg(G).r Since 1€ = ‘I’(ﬂ'G) is unitary, we

have for u,v € Ky,
(), 78 (W)orLaia) = BT (u),7 G(ﬂ)):uec(e)) = h({u, v)I) = ('—fﬁr’#)-

Thus 7% : K — Koy ® Lz(G) is an isometry. Let § : Kg — Hp be an element of
I(#C)H #H), (8 @ )7 is then a bounded map from Kp into Ho ® Lo(G). Denote
it by f(5). It is not too dificult to see that f(5) actually maps Ky into H, and
intertwines # and ind#9. f: S+ f(S) is thus a linear ma.p from Z(#%|7,#7) to
I(#%,ind 1), o - | |

We shall now show that f is mvertlble by exhlbitmg the i inverse of f. Ta.ke aT:
Ko — H that intertwines #C and ind #. For any u € Hp, T% := ((u] ® )T is a map
from Ko to Ly(G) mtertwmmg #% and the right regular representation RC of G, i.e.
RETY = (T*Rid)r, Now, 7€ is ﬁnlte dimensional, so that 7%(Ko) C Ko ®ai, A(G).
Hence .%GT“(ICO) C L2(G) ®aty A(G). By lemma 2.2.4, T*(Kp) C A(G). Since this
is true 'fer all u € Ho, T(Ko) C Ho Qalg A(G). Therefore (I @ )T is a bounded
operator from Ky to Hg. Denote it by g(T).

‘For a comodule 7 and a linear functional p, denote (1d® p)m by m,. Let p be a
linear functional on C(H) Then =, g(T) =ri(I®eg)T=(I® ea)(r? ® id)T =
(I ® fg)([ Q@ L,4)T = (I@ po an)T On the other hand, since 7 intertwines 7
and ind #¥, we have g(T)(%|¥), = g(T)(I ® P11 = o(TY(I ® p)(I ® $)2C =
(f®fG)T?Tp¢, = (I ® Ec;)(f & ?r? ¢)T (I@ po qﬁ)T Thus Ho(T) = g(T)(x% 1),
for all continuous linear funetienals p on C(H), whleh implies ¢(T") € I(w GIH,WH)
The map T — g(T} is the | mverse ef f Therefere I(?rGIH,':rH) A I(?r , ind ?rH),

wh:ch proves the I:heerem | - 0

Cerollary 2.3.3 Fer any umtary mpresentet:en #¢ of G’ and &4 ef H the spaces
I(?ral‘”,?rH) and I(ar ,mdfrH) are :semerphtc

Cerel]ary 2.3 4 Let H be a subgmup of G and K be a subgreup of H. Suppese i

is d umtery representet:en of K. Then md # and ind$; (lnd i) are eqewelent.



2.4, An Application | 35

2.4 An Application

We have seen in section 1.3 that SU,(2) has a homogeneous action on the noncom-
mutative sphere §%. This action has been decomposed by Podles (see [40]). Here
we give an alternative way of doing it using the Frobenius reciprocity theorem.

For any n € {0,1/2,1,3/2,... }, if we restrict the right regular comodule & of

SU,(2) to the subspace H,, of Ly(5U4(2)) spanned by
{a*'f® : {=0,1,...,2n}, (2.4.1)

then we get an irreducible isometric comodule. Denote it by u{™, It is a well-known
fact ([67]) that these constitute all the irreducible comodules of SU,(2). If we take

the basis of H, to be (2.4.1) with proper normalization, the matrix entries of u(m)

turn out to be

(Zn~)Ai /. .
(v) _ [ An) ) n)\1/? 1 2n —1 v (Zier ) () (20 =)
bij = (dt /4; ) Z (r) , (r +7 - i) q__?( 2

r=(i-7}v0

X o Tn T T grhaTiger

where

k | 2
(n) _ k r r(2k-r41 1-g¢ _
=3 (1) oot
-

'r_=0 r

and (), -, are the ¢~>-binomial coefficients given by

(k) | (k)g=2(k = 1)g=2 ... (1),

B (r)ga(r =12 ... (W)g2 (k= 7)g2(k~ 1 = 1)2 .. (1),-2 ,
(k)g=2 = 14+q¢*+qg+...+ g~ 42,

We have seen in eiam;:»le 1.3.6 that S' is alsubgmup of SU,(2), Now the restriction
of ul®) to §1 is w5 = (J ® ¢)ul®), Therefore the matrix entries of w(")|" are
given by

w21} if § = g,

. fids - (2.4.2)

.. (™) = {

Therefore if 7 is an integer then the trivial representation occurs in u{™|5" with

™

multiplicity 1, and does not occur otherwise. |
Consider now the action v of SU,(2) on 5% Recall (cf. example 1.3.11) that
C(8%) = {a € C(5U,(2)) : (¢®id}p{a)=T® a)} and the action is the restriction
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of 1 to C(S§%). From the above description, C(S52) can easily be shown to be equal
to {a € C(S5) : Lyg(a) = p(I)a for all continuous linear functionals p on C(S') }.
~ Therefore when we take the closure of C(Sjn) with respect to the invariant inner

product {arising out of the v-invariant state) that it carries and extend the action
there as an isometry, what we get is the restriction of the right' regular comodule ¥
of SU,(2) to the subspace H = {ue La(SU(2)) : L,.4(u) = p(I)u for all continuous
linear functionals p on C'(S')}, which is nothing but the representation # of SU,(2)
induced by the trivial representation of §1 on €. Hence the multiplicity of «(*) in #
is same as that of the trivial representation of 1 in u(®|%', which is, from (2.4.2),
1 if n is an integer and 0 if n is not. Thus the action spllts into a direct sum of all

the integer-spin representations,



Chapter 3
Noncompact Quantum' (Groups

We have so far dealt with compact quantum groups only. We have seen that it is quite
easy to characterize the category of C*-algebras associated with such objects among
the class of all C*-algebras. Unfortunately the same thing cannot be said in the
noncompact situation. C*- algebras associated with noncompact quantum grnups
often exhibit very strange behaviour and are, in general, much more difficult to

handle. For instance, éuppﬂse (: is a noncompact locally compact group, Co(G) being
the (™*-algebra of continuous functions on G vanishihg at infinity; and let i denote |
the comultiplication map. Then ;L(CO(G)) Z Co(G) @ Co(G). As a matter of fact,
1{Co(GH)N(Co(G)RCy(G)) = {0}. While dealing with noncompact quantum grﬂﬁﬁs,
this is a major source of discomfort. Ome has to introduce the comultiplication p
very carefully — which in this case is a homomorphism from Cg(G’) to the multiplier
algebra M (Co(G) ® Co(G)) satlsfymg certain properties. But unlike in the case of a
classical group, one can actually have u(Co(G)) € Co(G) ® Co(G) in certain ca_ses.
Another problem that one often faces is_thé_fbllowing. "I‘hel anf' algebra A(G) of

coordinate functions usually not contained in Co(G'). Not only that, it may not have -
any nontrivial intersection with it at all. In concrete exﬁmple that one ericounters,
often A(G) is given via a set of generators and relations. One has to construct the
C™-algebra Cy(G) out of it. In the noncompact case, it is not .it_ all clear what
should be a canonical way of doing this, or _wheth.er this C"-algebra contains all

the information provided by A(G). Th_erefqré normally one has to study both the_"
Hopf algebra A(G) and the C"-algebra Co(G). For a detailed discussion on various

problems that arise when treating noncompact quantum groups, we refer the reader

to the papéfs of Woronowicz (see [41], [70], [74]).

37
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For the rest of this thesis, we shall restrict ourselves to a couple of well-known

examples of noncompact quantum groups — £,(2), the g-deformation of the group

of motions of the Euclidean plane, and its unitary dual £,(2).

3.1 Preliminaries

In the treatment of both the quantum groups F,(2) and its dual, an extremely
important role is played by the set €9 = {¢*z:2z € §',k € Z} U {0}. In the present

section, we present a few results, due to Woronowicz, on normal operators having
their spectrum in @7,

Westart with a definition. But before that, some notations. For a closed operator
T, denote, by V7 and [T, the partial isometry and the positive self-adjoint operator
appearing in its pu_la,r decomposition, i.e. Vr and [T'| are such that T' = Vp|T|.

Deﬂmtmn 3.1.1 ([73 76]) Let R a,nd S be two normal apera,tors a.ctmg on a
H]lbert space ’H The pa.lr (R .S') is called a (g~ ~2 1) cammut:ng pmr if the following

cﬂndxtxnns are satlsﬁed

le and | 5| strongly commute,
2. VRVS = VsVR, |
3. ValSIV = ¢71] 5] on (ker R)*,
4. Vs|RIVE = g|R) on (ker §)*.

Let T be a normal operator on 'H Pr( ) bemg the cnrrESpondmg spectral mea.-
sure. A vector u in  is said to have compact T-support if the support of the measure

(u, dPT( )u) is compa.ct The follow:ng theurem g:ves an easier way of cher:.kmg in

a Just:ﬂcatlon for calling such a pa.lr ek 1) commutmg

Theorem 3.1.2 ([76)) Let R and S be normal operalors acting on H. Then (R, S)
is a {g~*,1)-commuting pair :f and only if there exists a dense domain D consisting

of vectors with compact R- and 3 -support such that D is muarzant under the actions
ﬂfRSR*ands,ﬂndfﬂranyueﬂﬂnehas R | |

| _RS’H. =  “2.5'}311.

RS*w = S$*Ru, (3.1.1)
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Proof: For the proof, we refer the reader to [76]. | =
Let us next introduce the following function on ¢'7:

2r3
2o ifze @~ {-1,-¢"2,—¢4,...},

Fy(z) = { r=0 T4g

~1 if ze {~1,—¢7%, —¢4,...}.

(3.1.2)

This defines a bounded continuous function on €9, For a positive real ¢ and for
g # 0, let us denote by (t), the number (1 — ¢*)/(1 — ¢). Let n be a nonnegative
integer, Define the g-factorial (n),! by: |

(ﬂ) | — HE:I(A:)'J If n 2 ]‘1
! 1 if n = 0.

One can now define the g-exponential function as follows:

This function can be shown to have the following infinite product expansion for

qg > 1: N
exp,(z) = F (1 - ¢ *(1- q):u) ;
=1
from which it follows that _
' Fo(z) = Py (iq) - (3.1.3)

expy—2(72r)

For (¢~?2, 1}-commuting pa.irs of normal operators having their spectrum in €7, this
function K, behaves like the usual exponential function. Before we make this state-
ment more precise, let us state, without proof, two extremely useful results due to

Woronowicz that deal with the sum of two unbounded normal operators.

Theorem 3.1.3 ([76]) Let(R,S) be a (¢”?%, 1)-commuting pair of normal operators.
Assume that ker R = {0}. Then the following are equivalent:

1. R + § admits a normal eztension.

2. The closure R+SofR+ S is normal. S
8. The spectrum o(R~15) is contained in ¢°. o

If any of the above conditions hold, then R™1S is a normal operator and one has

R¥S = F(R™'S)RF,(R™'85)"
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Theorem 3.1.4 ([76]) Let(f,S)bealqg™?,1)-commuting pair of normal operators.
Assume that kerS = {0}. Then the following are equivalent;

[, R4+ 5 admits a normal exlension,

2, The closure R 4+ S of R+ 5 is normal,

3. The specirum o{RS™') is contained in ¢'7,
If any of the above condilions hold, then RS is a normal operator and one has

R+ 5= F(RS™'ySF(RS™),

Suppose now that (R, S)is a{g~?% 1)-commuting pair of normal operators, with

both their spectrums contained in €% Then one can show that the third con-

dition in the forgoing theorem is satisfied, so that B+ S is a normal operator
with o(R+ 8) C @7 Therefore F(E+ S) is a unitary operator and we have
Fo(R + 8) = Fo(R)Fy(S).

From here onwards, whenever R and.S are two normal operators satisfying any

of the conditions listed in theorems 3.1.3 or 3.1.4, we will denote R + 5 by simply
f+9. |

3.2 The Group £, (2)

The quantum group £,(2) has been studied by several people (see [10}, [59], [71]).
Here we give a very brief description of the group and describe a few salient features
of it. Let us start with the Hopf-algebra of coordinate functions on £ (2). Let A,
“be the unital +-algebra generated by two elements v and n satisfying the following

relations:
_. * — - . . ) . . - . )
v’ =vv =T, n'n=nn", vnv* = g¢n. (3.2.1)

Define a map g from Ay to Ag® Ag by prescribing
M) =v®v, pn)=v@n+n®v".

Here Ap ® Ap means their algebraic tensor product. The map }t extends to a unital
+-homomorphism from Ag to Ag ® Ap. Similarly, define a complex hnmomnrphi'sm

€: Ag — € and a linear antimultiplicative nia,p K : Ag — Ap by requiring that

E(‘U) = 1, f(n) =0,

K(v) = v, K(v*) =0, 'h:(n) =~¢"'n, k(n*)= —qn*
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(Ag, ity €, k) is a Hopf*-algebra. It describes the group structure of F,(2) at an
algebraic level, | |

Let us now try to build the C*-algebra Co( £,(2)) of continuous functions on F4(2)
vanishing at infinity. We shall follow the following scheme. First we represent Ao
faithfully as an algebra of operators (not necessarily bounded) on some Hilbert space
H. We next try to get Co(F,(2)) as an appropriate C*-subalgebra of B(H). First
step, therefore, is to get irreducible representations of the pair (v, n) as operators on

a Hilbert space. For technical reasons, along with the relations (3.2.1), we add the

following spectral condition: |
o{n) C 7. (3.2.2)

Roughly speaking, this condition ensures that gu(n) is a ‘continuous function on the
cartesian product E (2) x E,(2). For an explanation of how this condition arises,

see [70], [73] and [75]. Now once we assume (3.2,1) and (3.2.2), it is easy to see that

the irreducible representations are the following:

v L
Ty y on Lo(Z),
n o 2q .
2 57, (3.2.3)
v 2
€; on @',
n+— ( ,.:

Nowlet v = 6Q I, n = ¢ ® ¢* on Ly(2) ® L2(Z). Let A denote the *-algebra
generated by v and n (we are being slightly sloppy here -~ one has to take into
consideration the domains of the operators; but on an appropriate domain, one can
form the algebra A). It is easy to verify that v — v, n ~ n is a Hopf*-algebra
isomorphism between Ag and A. Moreover, we have o(n) = @9,

Take the norm closure of finite sums of the form . v* fr(n), where fi € Co(€9).
This is a C*-algebra without identity. Denote it by Cp(F,(2)). It is easy to check
that v and n are affiliated to Co(E,(2)), and moreover, it has the following very

useful ‘universality property’.

Theorem 3.2.1 ([71]) If & is a representation of Co( E,(2)) on some Hilbert space
K, then w(v) and n(n) satisfy the conditions (8.2.1) and (3.2.2), with w{v) replacing
v.and w(n) replacing n. Conversely, if 7 and 7 are two closed operators on a Hilbert

space K and satisfy (8.2,1) and (3.2.2), then there is a unique representation © of
Co(E,(2)) such that r(v) =¥ and n(n) = 7. | . |
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~ Moreover, in the above siluation, if A is a (""-subalgebra of B(K'}, then ¥ and &
“are affilialed to A if and only if # € mor(Co( £,(2)), A). |

Among other things, the above theorem helps in establishing the comultiplication
map',u.at the C*-algebra level. Consider the operators n®v* and v®n on Ly(Z)®4,
They form a (g™%,1)-commuting pair, and a((n ® v*)" (v ® n)) C €9. Therefore
by theorem 3.1.3, the closure of ¥ ® n + n ® v* is the unique normal extension
of v®n+n®v’. By abuse of notation, we continue to denote it by the same
~symbol. v®v and v @n-{—n@ﬁ* obey {3.2.1) and (3.2.2). Therefore by the theorem

above, there is a representation u of Cy(£,(2)) on Lo(Z)®4 such that p(v) = v ® v
and u(n) = v ® n + n @ v*. From the last part of the theorem, it follows that
p € mor (Co(£4(2)), Co(£5,(2}) ® Co(£,(2))). The coassociativity of p also follows
from the above theorem, The following lemma gives an explicit formula for x4 that

will be useful for computational purposes.

Lemma 3.2,2 LetV be the unitary operator on Ly(Z)®* given on the basis elements
by €k €ijititrt Let W = Fy(n~lo @ vn)V. Then u(a) = W(a ® W™ for
ﬂllﬂEC (E,(2)). |

Proof: For ¢ € Co(E4(2)), write v(a) = W(a ® W*. Then both u and v are
representations of Co(£q(2})} acting on the satne space Ly(Z)®*. Using theorem 3.1.3,

it is easy to see that p(v) = v(v) and u(n) = v(n). Hence by theorem 3.2.1, y = v.
E

Let P denote the projection onto Lz(Zy ) ® Ly(Z). C(5U,(2)) can be thaught of
as a subalgebra of B(L2(Z) ® Ly(Z)) via the identification a <+ PaP. We shall very
often write sy for this projection P. Let f, and fg be the following functions on

&9 -

f - \/1— I$l2~[{li‘:l{]}1 fﬂ I EI{]II‘(]}

One can see that, via the above mentmned 1dent1ﬁcatmn o = vfa(n) and /3 fﬁ(ﬂ)

Therefore C(SU 2(2)) is a C*-su balgebra of Co(£4{2)).
Definea C*- hnmﬂmnrphlsm T 1 Co(Eq(2)) — Co( E4(2)), where k € Z, as follows:
r*(a) = vkav"k, a€ C.;.(E (2)). | : (3;2*4)
™ is a.ctually a C*- a.utnmorphisln and moreover, we have (7* ® %)y = ur* and

I R
*'. This means that {r*),ez i is a one parameter group of quantum group
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automorphisms of £,(2). It is quite easy to see that 75(C(SU,(2))) is an increas-
ing family of unital C"*-subalgebras of Cy(E,(2)), and Uyr*(C(SU,(2))) is dense in
Co(E4(2)). Urt*(C(8U,(2))) plays the role of the algebra of compactly supported
functions on E,(2). We denote it by C.(£,(2)). Denote by psy the comultiplication
map for the quantum group SU,(2). The following formula tells us how the two

maps i and pugy are connected.

p(a) = lim (7% @ ¥ )psu(r7%a), a € C(E,(2)). (3.2.5)

Observe that for any a € Co(E,(2)), 7=%a € C(SU,(2)) for all sufficiently large k.

The above phenomenon is referred to as the contraction procedure. For a discussion

on this and a proof of (3.2.5), see [74].
Let ¢ = [I52,(Isy — ¢**8*B), X = Yo ck(—gf* ® B8) (v ® v)~* where ¢}, =
Mi_1(1 — ¢¥) . For a € Cy(E,(2)), write A for pgy(t~1/2at=1/2). Then one can

prove, using (3.2.5), that
pla) = X*(t@ t)2A(E@ )/2X, a € C.(E,(2)).
By continuity a,rgume.nt, it follows that
wa) = Xt ) 2Nt @ t)2X, a € Co(E,(2)). (3.2.6)

From now on, we shall denote T%(C'(5U4(2))) by Ax. For any a € Co(E,(2)),
define p.(a) := 7" (Isyt " (a)lsy). Then p, is a projection onto A,, i.e. it maps
Co(E,4(2)) onto A,, and satisfies the following: pZ = p,, and ||p,(a)l] < |la]| for all
a in Co(E4(2)). Also, for any positive element a, one has 0 < p.(a) < pr41(a) < a.
Notice that an element a of Cy( E,(2)) is compactly supported if and only if a = p,(a)
for some 7. We can therefore define a functional p on Co(E,(2)) to be compactly
supported if there is an 7 € Z such that whenever p,(a) = 0, p(a) is also zero.
In section 3.3, we shall give one example to illustrate that unlike for a classical
group, the convolution product of a cuinpai:tly supported element wi th a compactly
supported functional may not be comapctly supported. | _- = | .

We end this section by stating a theorem on unitary representations of the group
E,(2) due tg Woronowicz. A unitary representation 7 acting on a Hilbert space X
18, by definition, a unitary element of M(Bo(K') ® Co(E4(2))) satisfying (id ® p)r =

f12M13.
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Theorem 3.2.3 ([71]) Let 7" and b be two closed operators on a Hilbert space K

such that the following condilions are satisfied:

i. T is self adjﬂinf,
ii. b is normal,
ifi, T and b commute strongly, (3.2.7)
iv., V2TVy =T+ 21 on (kerb)t,
v. joint spectrum of (T',|6]) is conlained in lhe
closure of the set {(r,q**"/?) : r,s € Z}.

Then 1 = F,(¢7T2b® vn)(J @ v)T®! is a unitary representation of E,(2) acting on
K. Conversely, any unilary representation 1 of E,(2) is of the above form.

In the above situation, T' and b are uniquely delermined by n, and for any C*-
subalgebra B of B(K), 1 € M(B®Co(E,(2))) if and only if T’ and b are both affiliated
to B, o | |

3.3 Some Computations

Let {e;} be the canonical orthonormal basis for Lo(Z). Define an operator U on
La{Z)®* by Uei ikl = ki ik It is easy to see that U is unitary, and n v ®@ vn =
U*(¢" ' @2®¢® ¢*)U. Combining this observation with lemma 3.2.2, we find that

for any a € Co( E,(2)),
pla) = U R 9 L@ L0 YUV VU F (™ 8 0 @t g t)U.
Hence

(ﬁ.;kh {a) r,atu) — |
(VU Fy(g™t! @ﬁ*@f‘@f)Ue, J,H,(a@.r)v U*F(qN+1®f*®e* ® O)Ue, s 4),
(3.3.1)

- Let us next compute q(qNH ® £* @f*@ OUe; ; k- Denote by /P the kth Fourier
coefficient of the function F (g™ ). |

F(" '@ @ @0)Ue 4
= .F( "R e gk
- E (em,mP{ra F‘I( N+l @ f* @ f* @ E)Ek"' sJ:k f)em:"ﬂp:f

n.n.p,r
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>, (b k~i(/F 0" 212973 )] My P2 don dzg d2g) e mp s

m.n,p,7t

Z (Jm, '(/(Z fk—-t-l'l J"ﬂ+-! k"P‘i"ﬂ f——r a)dzl dlg dz:})em.n,p.r

m,n,mr

k—it1
E Fr M i fmjdmibion

1

Therefore
VR @ e 0 ¢ @ OUe; s,

— k—i41
_- Z fﬂ l+ V*El“j'i‘"l"ik_j"“t'!'{"j“n
— k— 1

Now from (3.3.1), we get

(ﬂi,j,k fs 1 (ﬂ‘)er s -t u)

k=t41 pt—r+1
= Zf_bl- f r+ (E:-—J-i—n,n k—t-—-ﬂ H-J-*ﬂi(a@'j)er stnfnl t—r—n'uts— “)

— i1 pt~-r+17 . )
En fn+utl<el+ﬂd+ﬂ! aef+ﬂ—f+fh3+u—1+ﬂ)
if t—r—s—u=k—-1—7-1,

H

0 | otherwise,
(3.3.2)
In particular, denoting u(Igvy(|n|)) by a., we have
ft:r-H fp“r+1: if 1 - J =T — &,
| J+i=s8+u,
(€i,5,k,0s (G ) er,s,6,0) = , - (3.3.3)
k—1=1-r1
| 0 | ~ otherwise.
Therefore |
ﬂ(au)er,a.tu - E - r+] t“r+let,:+s-—-r i4-t—rrdu—i- (3'34)

We are ready for the fo]lowmg example.

Example 3.3.1 Take the element agp = [4y)([n|) of Co(Ey(2)), and the functional

p:awrs (ep,aego). It is obvious that both are compactly supported. However, from
the above calculations, we get
ap*¥pers = Y (€500, 1(00)ers00)€i5
' ‘ij
757 Rers.
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All the numbers fI can easily be shown to be nonzero. Therefore ag * p is not

compactly supported,

Let us next define a fa..mily of functions J,(+,:) on €9 X Z as follows:
Jo(z, k) = F(zuyu™*du, z€ @%k € Z, (3.3.5)
'3
where F, is the function we have already encountered in section 3.1. We call them

g-analogs of Bessel functions. From equation {3.1.3), we find that for real values of

z, and for u € 57, |
exp, -2 (ﬁ(%)qz u"'l)
Fo(zu} = - YAFRE ,
exp,-2 (-—-;—q( 5 )2 u)

which is an analog of the function exp(5z(u~"! - u)). Recall that the classical Bessel

function Jy(z, k) is the coefficient of t* in the expansion exp(—%z(t )
Let us describe here another mm:la.rlty w1th the classwa.l Bessel functions. Let

A, denote the q—d:ﬂerentlal operatnr gwen by

Define a function Bq(m,ﬁ) as follows:
By(z,n) = Jo(¢"*(1 = g)z,n), @< q ™} (1-q)".

One can see that this function B,(z,n) obeys the following ‘g-differential equation’

12?02 f(z) + 28, f(z) + (2 ~ (0)2q™) fgz) = 0,

which is a g-analog of the classical Bessel differential equation.

 Remark. There are several Q-ana.log.s of Bessel functions in the literature, the earliest

‘one dating back to Jackson. The ¢-Bessel functions defined here are very closely
related to the ones studied by Ex'tﬂn. (Bq(a:,n) is, upto a constant factor, equal to
Exton’s g-Bessel function J(q;n,x); see p. 181, [16]), and seem to be the most natural.
We'havea.lready t;i_-te_d_ two ‘reasons’ above, In chapter 5, we will mention another

“quantum g-rnup-th'éﬂrel;ic_ reason,

Let us list some prﬂpefties of these functions.

Proposition 3. 3.2 The functwns Jo(oy ) obﬁy the folaw:ny identilies:

[ Jo(2,k) = Jg(Z, k). In particular, J (2, k) is. real wheneuer z 18 real
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2. J(z,k) = (2/|2])*Jg(|2,k). More generally, J (z,k) = whJ (7w, k) for any
we S, |

3. Jo(—z k) = (~1)*J (2, k).

4 Trez Jolz, k) Jo(2,k + 7) = bjo.

5 Jo(g7™ k) = J(¢",n+ k4 1) |

6. Jo(q™,—k) = (~1)*q=*Jy(q"t*, k) for n > 0.

Proof: Proofs of 1, 2 and 3 are immediate, To prove 4, observe that for u € §!,
2 € Q% Fy(zu) = ¥ Jo(2,k)u*, and I Fy(zu) = 34 Jo(z,k + j)u®. Also observe
that both, as functions of u, are in Lo(.S?); and | Fy(#u)] = 1. Now compute their
inner product in Lg(S'). To prove 5, use (3.3.5) and the equality: F,(¢ "z) =
z"“"‘ll Fo(g"*%z) for all z € §'. For the last identity, we find bj,' direct computation

that 1) (r—1)rt
_ 3qr r1),rts |
Jo(z, k) = . : jz| < 1. (3.3.6)
“ Z T-@rrmalega
O

From this expression, 6 is immediate.

Notice that the Fourier coefficient f]! introduced earlier is nothing but Jy(q", k).

Therefore equations (3.3.2) and (3.3.3) will now read as follows:

(€ijkt (@ )€rstu )
Zm'Jq(qk_H-] ) m)Jq(‘?t_rH , M+ U — l)<el'+m1i+m& I'~wr'+'u!—f+l'1rt.-*f'-l-u—af+m)
ft-r—-—s—~u=k—-2t—73—1

il

0 | | otherwise.
(3.3.7)
Jq(q"‘ 1y~ D (g v -r) il i~ = r—s,
I+l = s+ u,
(et’jkf:ﬂ(ﬂfu)erstu) = - | ' .
k-1 = t—r,
0 | otherwise,
(3.3.8)

Before we end the section, let us present here two identities that can be proved
using equation (3.3.7) above, | o _ |
SR ] if & =0, S

oG @ (P i k) = @ k=, (3.3.9)
| € | | 0 otherwise. = . -
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(14 g2 if k=0,

@ g if k=1,
0 otherwise.

For the proof of (3.3.9), compute the quantity (Crak,st1—h 1 —kyubk s (T )€r 5.8 0 )
in two ways — first, using the fact that pu(n) = v ® n + n ® v*, and then us-
ing (3.3.7) and equate the two. Proof of (3.3.10) is similar. This time compute

(Er 4k b bitbseks KM )ers 00) i tWo Ways.



Chapter 4
Haar Measure on Ey(2)

The role of measures on a noncompact quantum group are played by -weights on the
corresponding C*-algebra Cy(G) of ‘continuous vanishing-at-infinity functions on G".
Recall that a weight A on a C*-algebfa,_ A is a mapping from the set A, of positive
elements in A to [0,00] such that A{az) = aA(z) for @ € Ry, and for z € A,; and
Mz + y) = Az) + A(y) for 2,y € A,. We shall very often use the terms ‘measure’
and ‘weight’ interchangeably, Let A} = {¢ € Ay : A(a) < o0}, and let A% be the
linear span of Aq‘_. It is easy to see that A extends to a positive linear functional on
e | |

“A measure A is called left invariant if whenever an element ¢ and-its left con-

volution product p * a with a continuous functional p are both in 4%, we have
Alp * a) = p(I)A(a). Similarly, A is said to be right invariant if A(a * p} = p(1}A(a)
whenever a a_,nd a*p arein A Tt is called botl.]-s_ideld. invariant, dr'just invariant if
it is both left and right inva.ria.n_t-_. - . o .

We shall prove in the first section that the group E,(2) admits an invariant

measure., Uniqueness of this measure is established in the third section. In the rest

of this chapter, we deal with snme-applicé,tinns;

41 | ExiStence

We have seen in t_hé previous chapter that C’(SU@(Z))' is embedded in C‘G(E;;,(Q)')_ as
a subalgebra, 7*(C(SU,(2))) is an increasing family of C*-subalgebras of Co( E,(2))
and Ukr"‘(C’(.S'Uq_(Q])] is dense in Co( £,(2})). We also know that SUy(2) has a unique

invariant measure hgy such that hsy(fsy) = 1. Let us now try to extend this to

49
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a weight on Co( Lq(2)) with the help of the automorphism group {'r“"‘}. A natural

candidate would be the following:
ha) = ir&lim (hSU(T“k[SU))_1hSU(fsU(T"k“)ISU)- (4.1.1)
4 GO
Of course. one has to show first that the right hand side makes sense, i.e. the limit
exists. We show below that {4.1.1) indeed defines a weight on Co(E,(2)}, and it is

invariant with respect to both the right and the left convolution products. We have

seen in section 1.1.2 that hsy is given by the following:

hsu(a) = (1 - ?2) Zflﬁ(ﬂiu: aeio).
120

Substituting this in (4.1.1), we get |

ha) = lim q"”‘(l——q) thU(ISU(T “a)Isy)

k—00

= lim }: qm(E‘g,{Iﬁ'ﬁ) |

kqw 1> K

> g% {0, atio). - O (41.2)

tEE

-Ob#inusly, for any positive a, the right hand side limit exists. It is easy to verify
now that & is a faithful weight. Also, one can see that Co{Ey(2)) C Co(E,(2))".
- Thus & is a densely defined weight on Co{£,(2)). The following theorem describes

the invariance properties of this weight.

ThE_uréfn 4.1.1 For ﬂnéj a€ C'U(EQI(Q))_‘F‘ Iar_ld any bouﬁ.dedfuﬁctionﬁlp on Co( E,(2)),
both a+ p and p+ a are in Co(E,(2))*, and the following equalities hold:

Cami S . (a *p) h(a)p(!) h(p xa) (4.1.3)

e

Proaf W& break the proﬁf into several parts. To begm w1th observe that C’g(Eq(2))_
is a type [ C'"-algebra, so that any representation is a direct integral of the irreducibie
“ones, Therefore any representation of the C*-algebra Co(F,(2)) can be written as a
direct sum 7y & v, where U and V are two unitary operators acting on the Hilbert

spaces H and K respectwely, and 7y and ¢y aTe representatmns acting on Ly(Z)QH
'a,nd LQ(Z) ® K given by: | |

N {wm - {«:Hw

n— ()
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Denote by p,u the functional a — (u,7y(a)u). Let {fi} be an orthonormal basis
for H. Denote e ® f; by eg;. |

Step I : Take a € (Ao)y, and p = p,,,_u.

s (a % p) = h (1 ® p)(r* ® " pesu (r~a))
= | X e (exp= (" @ pr* usu(r " a))eal|

= , Z 92£(£iﬂm " (“i@ ﬂ‘U) (ﬂ(ﬂ,) — (TSr ® Tar)ﬂSU(Tnara)) Ei'ﬁmn)

t> ~3r

(4.1.4)

Suppose for the time being that the right hand side above tends to zero as r goes to

infinity. Now,

h((id ® p)(f"’" ® " sy(r™% a))
= hr¥((id ® pr® sy (=T a))
= ¢ h((id® pr* Yusy(r™% a))
= (1-¢)7¢ " (hsy @ pr*Npsu(r™a)

2)-—-1q—-ﬁrhSU(T—Srﬂ)PTSr(ISU)

- (l—g
= (1= ) hsu(a)pr®(Usv)
= ha)pr* (Isu).

Since pr3" (Igy) tends to p(I) as r — 00, limy oo hpa-(a * p) = h{a)p(]), Therefore
a*p € Co(Ey(2))} and
| hia* p) = h(a)p(I). S (4.1.5)

- We now proceed to show that the right hand side of (4.1.4)) indeed goes to zero
as 7 tends to infinity. It follows from (3.2.5) that

{€iomn,(1d ® my)(p(a) - (Tar ® Tar)PSU(Tnara))Eiﬂmn)
6 .
= Z(Ei{]m ny (ld X T['U)Euel'ﬂm n): | ' (416)

=1

where.

B = XNtet)/Atet)/? (X - S a(-a8" @B (v 8 fu)-*) ;
- | | s=0 | -
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Ey = (‘i - ics(ﬂ 9 v)*(—q0 ﬁ"‘)’) (t o t) 2A(E® t)}3

s=0

X Y ey{—qf" @B (vev),
=0

IS
H

(j: cs(v @ 0) (—af ® ﬁ")’) (t@t)2A(t® t)'/?

s=0)

(S oess)

2=0 |

.; (Z (v ®v)*(~qB ® ﬁ")") (t@t) /At @)/

J:D

X (E di(—-gf" ®B) (v @® 'v)""') ;

=0

By = (E (v ®v)(~f 8 ) (t @ O — (v @ 0)* psu(a™™ )

J:ﬂ

AE@ )Y d(~aB" © B (0 ® v),

J:ﬂ
Es = (v@v) psy(e™ A
X ((t ® )2y di(—.‘i'ﬂtﬁ AY(v@v)™* - psu(e’)(v ® ‘“)"Br) ;
3=0 - . .
Bs = (" ®™) (usu(@™t a1 %6™) - psy (o™ a0®))

d: _ (3?‘)
5 ) 2

Assume, for the time being, that

r]ll-ma qhﬁr iug I(ﬂi[}mni(id@ WU)ER_El'ﬂmnH =0 forv= 1:2: - (417)
12 -~dr | |

e lim | 5" g% (eiomn, (id® 7u)Eveiomn)| = 0 for v =3,...,86. (4.1.8)
(> —=3r -

These, tﬂggther with (4.1.6), will then enéﬁre that the right hand side of (4. 1.4)-tendé

to zero as r approaches infinity. So let us now prove (4.1.7) and (4.1.8).
v = 1, For any integer_k, .

g~ supll 3~ ey(~98" ® 1 (B)) (v ® Ty(v)) eiomn
- T2t | |
= f?_.'k'-'ﬁﬂ_P" Yo a1 Q IR @ U*) eirssmton
8 s>xr4l | | o . S .

14 s >0 :
mEazh
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1/2
< q"k"sup( E §q23(1+a+1}+2s{m+s))

b et
i+a20
m+s20
28-+4-a(2m+8)-+a% —2kr 1/2
< (E ciq \
s>r+1

and now, clearly the right hand side tends to zero as r goes to infinity. Using this

for k = 6, we get (4.1.7) forv = 1.
v = 2, Similar to the previous case,

v = 3. In this case,

, Z qﬁ(EiUmn:(id@ﬂ'U)ES'E:'UmnN
1> ~3r | |

< 3 df(eio . L(c,c,, £d5)(v @ 1y (0)) (a8 ® 7y (B° )’

12 —r a==0) .s':ﬂ

x (£@ my())/2(id © my)A(t @ 7/ (1)/* (98" @ my(B) (v © m(v)" e,m)l

| | r r
Z qﬂi‘ Z | z (cm, B dr d, )qs(i+m+23—|—1)+s (t+m+25'+1}
t2—r - s=0V{—i)V(—m) & =0v{-i)V(-m)

X ((I®I®I® U*)sei+um+sn: |
(d @ mr) (@ )AL )T QT QIR U*) eipststmisin)|

< const.q™? sup (c, - d7),
| 0<s<r

and the right hand side here goes to zero as r approaches infinity.

v = 4. We shall need the following lemma.

Lemma 4.1.2 For any £nteger k,

im, g™ sup | S a qﬂ*mu( ))*(a@w(a))af ’(vwv(v)) * ei0mnl] = 0.

Tt 00
s=r+1

Proofs g™+ [| 53, 41 (=48 ® u(8))*(® 7u(2))* (v ® my(0)) "V eiomnl

| 3r | - . 1/2 :
< const. ( E (d:)2q23(|+m+25+1]—2kr)_ o
=(HV=OVEm)

3r
' 1/2
const, z N .png"("**"'f'l)f”(?'”+’)+32"2kr) f

A

..sz(r+l)?('—i]‘~f(-—m)

const. ( Z q25.+3(2111+3}+.57—2kr) / .
s>r+1 | |

I
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O
It is clear now that the required limit is zero. a
Now, using the binomial expansion for nsy ("), we get
' Z q2i<5':'{] m ru(id@?rUJE;leiﬂm ﬂ}
12-=3r
= [ Z ‘?h(ﬁlﬂm ru(*d & WU (Z d-r('u ® 1’) ((t &t )lﬂ (1’ 0 ﬂ)armﬁ(ﬂ' & )Srh")
e =0
X (~aB® B Y AL )1 Y du(~a8" @) (v ® )™ )eiomn)
| $'=0

+, Z qZE(eiﬂmﬂi(id®WU)( Zr: d:(‘v'@’v)af'(a#@a*)Sr—a(_qﬁ®’6#)a

i> =37 s=7+1

—

X AE® )2 Y di(~qf" @ B) (v @ v)™ )eiomn)

< const. 7% sup (1 — Hipar-sia(1 - q%)lﬂ)
0<s<r |

| +cnnst q" su;)”(td®ﬂ'u ( Z dT qﬁ ®8)° (ﬂf@ﬂf)ar a('v®1’)_3r)ﬁtﬂmn
L s=r+1

The first term ubwuusly gﬂes to zero as r approaches infinity, By lemma 4.1.2, the

same conclusion holds for the second term also. Therefore (4.1.8) holds for v = 4,
v = §. similar to the prévinus case.
v = 6. Let us denote by P, the operator Mysarr1(1 — ¢*V+25)=1/2 Then

i Z qgl‘(eiﬂmﬂ}(fid@_ IU)EﬂeiﬁmnH”

iD~3r
= I E q < €i+3r,0,m+43r,1,
t>—3r - |
(td@ T ) (ﬂ U(a VApsy(a®) - usu(v"a" 3")) €437 U,m—|—3r,n>,
Y { Z 2 <€,+3rﬂm+3r,n,(td®ﬂu)#su( —ST{P abP, — a)) € 43r,0 ,m+3r,n>
| 12 —3r
= ¢ - )" |hsy (r¥(PraP, -a))[

= (1-¢*)hsy(P,aP, ~a)}.
| Therel'ore (4 1 8) holds for v = 6
| Step II : Ta,ke a€ (An)+, a.nd p pwy. W € Ly(Z) @'H

- Going a.lung the same lmes as m step I, one. cnuld show that h(a * p) = h(a)p(])
'when_ever a € (_A“)*‘ and p = pw,u, @ being of the form 2izm Aisei5. Let @y, denote
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the projection ) ;s lei){eil on Ly(Z). For w € Ly(Z) @ H, write w,, = (@ ® I)w.
Then pw,, u increases to py,y. Therefore if ¢ > 0, then a ¥ Pw, U iNcreases to
a * pyu. From what we have observed, h{a * py,, 1) = h(a)pw,, v{I). Using now
equation (4.1.2), left hand side above increases to h(a * py, 1y) whereas the right hand
side increases to h(a)pw,r(f). Thus (4.1.5) holds in this case.

Step III : Take a € (Ao)4 and p to be a — {u,ey(a)u), where u € K.
It is easy to see that in this case, axp € Ag and axp = (1d® p)usy(a). Therefore

h(a + p) = (1 - ¢°) ' (hsu @ p)psu(a) = (1 - ¢*) *hsu{a)p(I) = h(a)p(I).

- Step IV : Take a € (A, )+, and p to be any state.

From the observation made at the beginning of the-pr_nuf and from what we
have done so far, it follows that (4.1.5) holds if a € (Ag); and p is any state.
Observe that r~"a % pr’ = T="(a % p). Since 7" "a € (Ap)4, we have A(r"a
pr7) = h(1r7Ta)pr"(I) = q”"_h(a)p(f).. On the other hand A(m="(a* p)) = ¢“"h(a*p).
Therefore h(a * p) = h(a)p(f).. | |

Step V ta € C'U(E(;;(Z))f;, p any state. '

For such an q, lim, o [|pr(a) — a]| = 0. In fact, p.(a) increases to a. Therefore
p.(a)*p increases to a*p. Now h(p,(a)xp) = 3: ¢* (e, p (@) xp €0}, and {e;o, p,(a)*
peio) increases to (ejo,a * pej) for each 7. Hence lim,_, . h{pr(a) * p) = h(a* p).
On the other hand, h(p.(a) * p) = hp,(a)p(I) and this converges to h(a)p(I). So
h(a * p) = h(a)p(]). '

Since any continuous functional is a finite linear combination of states and
Co(E,(2))" is the linear span of Cy(E,(2))1, for any a € Co(E£,(2))" and any con-
tinuous functional p, a % p € Co(E,(2))* and h(a* p) = h{a)p{1). | |

Proof of the other equality, namely, h(p.* a) = h(a)p(]), is exactly similar. O

" Let M he the von Neumann subalgebra of B(L:(Z) ® Lo(Z)) generated by
Co(E,(2)). Equation (4.1.2) actually defines a normal semifinite weight on this von
Neumann algebra M. Let M*% denote {a € My h{a) < oo} and let M?" be the lin-
ear span of MM i _.One;ca.'n see from lemma 3'.2.2'.that 1 ex'tends“tn &_h_nmomn-rplh_ism
from M to M@ M Hence for an element a of M and a continuous functional p
on M, the products a x p :;—__(id@r plu(a) and pxa = (p ® id)p(a) are well defined
elements of M. Now Qbs'erve that the proof of theorem 4.1.1 actually tells us the

fnllnwing:
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Theorem 4.1.3 For any ¢ € M" and any bounded functional p on M, both a  p
and p +a are in M"*, and the following equalitics hold:

| ﬁ(n *p) = h{a)p(l) = h{p * a).

4.2 Some Identities

We now derive a few identities involving the functions J,(,) using the computa-

tions done in section 3.3 and the invariance properties of the weight described in

| theorem 4.1.1.

Proposition 4.2.1 The functions J,(-,-) satisfy the following two identities:

D a" (" =i - ) Jola" FHL i) = b0, (4.2.1)
i€l |

ZQEIJ I+k (ql‘{'k’,j) . 6.{&; qﬁ(l—}v'l'.?) (4‘2-2)
¥/

~ Proof: Let p be the functional a (ek—1,0, @€j1k=1;5), and let b = vig(n), where g

is the functiﬂn q z I{u}(r)z“-’*, r€ 2Z,z¢e 8. Using (3.3.7), we get |

h{b* p) = Z '?21(‘-‘3: 0 k-—l U,ﬂ('ng(ﬂ))ﬁ 0,5+k—1 1,5)

teZ
B 9 - ey N |
— Z: q IJII(q li?n)']?(q& l+J&m+.?)(ei-l-m.ﬂis”Jg(n)ei+j+m,j+m)
tmEZ
= qu‘Jq(-?" Y—i—5)J, (q" i),
. IEZ | ,

Therefore by theorem 4.1.1, we get
20 =i = (e i) = hwIg(n))p(1) = 630,
=y - | . | | |
as reqmred

For the secnnd ldentlty, ta.ke: g to be the function ¢"z — Ity grpjy(r)e* b o
be the element 'v"' &' (n), and p to be the functional @ v (el k0> B€1 k*—k) Now,

as before, use (3. 3 7) and thenrem 4.1. 1 tn get the requlred identity, O

The fallﬂwmg ulentltles are strmghtfnrward cunsequences of the above. proposi-
tion, -~ |

fo“u’q(q*" i = qﬁf Vk € Z, (4.2.3)
€7 | |
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S @ (¢ F L~ k)2 = g% Yk eZ, (4.2.4)
1Y/
2£J(k—:' e DY AaF T o Y — 2.
Zq g\qd 7 1) q(q 7 i'f"j)—-q 53[} vk e Z. (4.2.5)

i€Z
We end the section with a lemma that will be useful later on. Notice that for any
pair of integers s, 1, the function z = J,(¢°2,1) is a bounded measurable function

on €'?. Therefore J;(¢°n,t) is 2 bounded normal operator on La(Z) @ Lo(Z).

Lemma 4.2.2 Let Ly(h) denote the completion of {a € M : h(a*a) < oo} with
respect to the inner product (a,b) := h(a*b). Then {v"J,(¢°n,t): 7,5, € L} is a

complete set af orthogonal veciors in Lg(h).

Proof: Let us first compute the inner pmduct (v"Jy(g'n, ), v" J,(¢* n,t"). From
the deﬁmtmn of J; and the cnmmutatmn rela,tlcm between v and n, it follows that

v J(¢*n, t) = J (q‘"“”"n,t)u Therefore |

h (Jq(q‘-’n,-t)*ﬂv"-""r.fq(q’!n,t"-)) |

h (Jq(q"’;n, t)*.fg.(qr“r"“;n, t")ﬂ"_”,)
broth (Jo(g'm, 1) Jog m, 1)

e 3 4% ( Jolg'ms )eio, Jo (g7 m, t')eio )

<u"Jq(q’n,t),'v" .]',,;,(e:,r1 n,.t )>

1) H

€7
— 5,.1‘16531 Eqﬂqu(qi+’, t)Jq(qi+3',t)- |
i€Z | |
From (4.2.2), we conclude _tha.i
(v 1r'Jq,(q n,i), " (q 'n,t VW= bpprbyg S 1otY), - {4.2.6)

Hence all we need to prove now is that {*‘u"Jq(q’n, t): rs,t € Z} = {0}.
Take an operator a € Ly(h) such that (v'J(¢’n,k),a) = 0 for all 4, # and k in

Z. This implies
| > a (@t k) er—ikraero) Vi g,k € 2. (4.2.7)

Write ug(2) = T, ¢"{er—ig, aer0)2", £ (2) = 3, q’*f“*"l.]q(q-f.f'f,k)z". It is easy to
see that u;. and {?"-"are in Ly(S!) for all ¢, j and k. (4.2.7) says that (u;k,ff> = (} for
all ¢, 7 and k. Therefore if we can show that foreach fixed & € Z, {E;"} jez is complete
in Ly(S'), then it follows that uy = 0 for all ¢ and k, which, in turn, implies that

aerg =0 for all r € Z. Tllis means h(a*a) =0, i.e. a is zero in Lg(h)._ -
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So we now prove that {E_‘;*} is complete in Ly(8'). Fix any & € Z. It follows

from (4.2.2) that {5;*}_, is an orthonarmal set of vectors. Observe that zsff(z) =

_(2). Therefore {(€5,65) = 6;0 implies that £§(z) # 0 almost everywhere. If P
is the prﬂjectmn onto {f" j € Z}*, then P commutes with all the multiplication

operatnrs, and hence is itself a mu|tlpll{:&t10n by an indicator. Since an = (0 and

Eo # 0 almost everywhere, P must be zero, .

4.3 Uniquenessof h

We shall establish the uniqueness of the weight A in this section. Before going to
the proof, let us first find the modular group associated with h, Let If be the -

subalgebra of Co(E,(2)) generated by {v*Jq(q’ﬁ,t) . 1,8, € Z}. It is easy to see
that &/ is contained in Ly(h) and it follows from lemma 4.2.2 that it is dense there.

Let P, denote the projection }_, |ey;){ers|. For an operator a on Ly(Z) ® Lo(Z),
denote by a™ the operator P.aP,. Then any bounded operator can be written as a.
strong sum of the form 35 3", a™*?. Observe that for a € U4, the first summation

is finite. Define an operator A’ on Y as follows:
Afﬂ - Z q2r(z ar-f-s,a)' (4‘3‘1)
T 5’ '

[t is straightforward to verify that A’a = (n*n)a(n* n)~!. One can now check that
the closure A of this operator A’ is a positive self-adjmnt operator, and is in fact the
modular operator associated with the weight A, That is, we have h(ab) = h(bAa)

for a,b € Y. The corresponding modular automorphism group A' is given by
:_ﬁ_”a':: Ufﬂ-Ug*, ) | - | (4.3.2)
whéré.Uf = (n*#)“ = |n|*. One can check that
| 'A“q = €, it fu.# €,~it, t € R, . | (4.3.3)
where e, is as in (3.23). -

Theurem 4 3.1 Let h be the we:ght defined in section 4.1 and let hi be a nor-
mal sermﬁmte weight on M- sattsfymg the invartance properttes described in thea- |

:rern 4.1.3. Then hy = coh for some ¢g € R+
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Proof: It is easy to see from (4.3.2) that the fixed point subalgebra of M for the
automorphism group A% is {f(n): fis a bounded measurable function on . It
follows from (4.3.3) that h A" = hy. Thus hy is a {A"},cp invariant semifinite
weight. Therefore by a Radon-Nikodym theorem for weights due to Pedersen and
Takesaki (theorem A.4.1), there is a positive measurable function f on @7 such that
hi(a) = h{f{n)a) whenever the right hand side makes sense.

By the invariance properties of k and hy, it follows that h(f(zn)a) = h{f(n)e)
for all z € S!. Fix any z € 8. Let ¢ be the following function on €'° : glgtw) =
f(w) = f(zw), w € €% Then g(n) = f(n) — f(zn), and hence h{g(n)a) = 0 for all

a for which the left hand side expression makes sense. Let

4|r| r
ey ¢'Mg(gTw) 1

Now choose ¢ = go(n) and make use of the faithfulness of A to get g(n) = 0, ie.

J(n) = f(zn). From this we can conclude that there are positive reals cg, for &k € Z,

such that

hi(a) = E g“"c-(er0,ae0). (4.3.4)
- rek - |

Our claim now is that each ¢, is s'trictly positive. | Suppose, if possible, ¢, = 0 for
some v. Let pp denote the functional @ + (€00, aegn). Then using (3.3.2), we get
hi(po * ay) = ¥, ¢¥ e, Jo(¢"t!,v)?. Therefore from the invariance properties of hy,
it follows that 3, ¢ ¢, J (g™, v)? = 0, which forces each ¢, to be zero.

Next, observe that if we use the weight hy instead of & in the proof of proposi-

tion 4.2.1, we get the following identities:

2 qeido(657 =i = 5)g(d" T, —i) = joco, ~ (4.3.5)
(€L - o | -
> qPeido(¢*, )a(a™ ) = ST eg gy (4.3.6)
i€z S o

Denote v" q(q"n,t) by Cty 5 fdr the rest of this proof. Using the above equations in
place of (4.2.2) in the proof of lemma 4.2.2, we find that {o., : 7,8, E'_Z'} form _é.n
ﬂithqgunal basis for La(hy) also. Simple computations using the identity (4.3.6) éive

i ' 2(1-~s+t)
h](&rr,rgl*ﬂ”;) = OrprbsarbiiC1si1q (1~st ]:

o g 2(1—adi—
hy (ﬂ’ratﬂ'r"a't'*) - 6rr"5sa'6tt"c1—-a+t—-rq S r]'
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Denate by Ay the modular operator associated with hy. Then hy(@rsirrgp™) =

hy{ep o™ Apyy(Qrst) ) From the above computations, we get

| | C].*".!'I'f;"f -2 e
hl (ar’a’t‘*ﬁ(ﬂ(&r.ﬂ)) = ( et —H—)q hl(ﬂfr'.!’t' ﬂ'rﬂt)
—3

LI B T T

for any ', &' and t' in Z. Hence Aqy)(@rst) = (ELI“':L") ¢ “"a,se. Consequently,

z _ ,
for any z € S', &(1)(:1,.,;) = ('::":_:") ¢ a,q. It is easy to see from (4.3.4)

that Ayg(n) = g(n} for any compactly supported function g on €7, "Therefore

Afyg(n) = g(n) for all z € S'.
Take any s', ¢’ € . Let {Qk }kez bea sequence of compactly supported functions

‘on ¢ converging uniformly to J,(¢*'+,t"). Then

‘:‘fl)(a”"_;) = lim 5[1](1’ gk( )

k=00

i o (;22205)

k00 q( e, 3)

gx(n)
kl-l..n.;:a &(1)(31-51! ):ﬁ(n ( . (q’n, t) )

] TRV | (
i (22 )

| Ci— g_
llm( 1ot r) q 2'*‘“1’1;"'5{&( )
L-"-I-Cﬂ C1—s41 : |

Clogbf—r _
( -5+t ._’) 7~ .
CI-—a+t

|

f

i

‘Therefore —;_,'I'—:':-i—f is mdependent of 8 and Z, whlch means ‘that there is a positive

real ¢ such that ¢, = coc”. Now it remains only to show that ¢ = 1.

If we use the weight hy instead of h in the proof of (4.2.5), we get

Eq?"w (q*’"" k- r)J( o k'- r) = gt (4.3.7)

" Let us riow treat the following two-ca;ses separately.

Case . c< e

Let. E,L(z) g “"*‘J.;.(a;,r‘*‘f r k- r)z Then z’&(z) = £€xys(2) and from (4.2.5),
' {fk,fkr} = bppre ‘I‘herefare {{;,};;53 form a complete orthonormal basis for Lg(Sl) |
- Let u u(z) = 3. ¢ Jy(g™ ,—1)2". We claim that u € Ly{S1). Since q¢ < 1, it

is enough to shnw that Erqoq "e¥ Jo(g™", ~7)? < 00, or which is the same thing,

L ._.-2,_)0(@) J.(¢",r)* < 00. Let m be a Pﬂsitive'.ilflteger such that (ge)™*% < ¢~™.
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Then
2 (g0) ™ do(q" s < Y g™ (g, ).

r>0 >0

Now using the expression (3.3.6) for J,(-,'), we get

(1) gtlk—D4r(i+k)~mr

c)2r r 2 < | .
E(q ) q(q_ ) os ,.;,,ZJ j%ﬂ (1~ q2)3+k(j)q?!(k)qg!

r>0

J—k=r

g (k=1)+r{2ktr)—mr

k{k—1) #(r—m)
q- q
{ .
< Yyl

r>0k2>0
< ©Q,

E»>

r>0k>0

Thus u € Lp(S'). From (4.3.7), (u,&) = 0 if k # 0. Therefore u € ¢.&, which

implies ¢ = 1 for all r. Hence ¢ = 1.

Case II. ¢ > ¢1. _ o
In this case, let éx(2) = Zq""kaq(qk”r,k — r)2". Then, as b'efore, 26i(2) =
£r1s(2), and from (4.3.7), {&,&:) = gt So {£} form an orthonormal basis for
L2(SY). Let u(z) ='Eq’\/c—'?Jq(§!"", —7)2". Since g¢™! < 1, one can show just like
in the earlier case that u € L(S'). Now from (4.2.'5), (u,€k) =0 for k ;-5 0, so that
u € €.y, which is impossible since ¢ > 1.

The proof is thus complete. B

4.4 Haar Measure for the Dual Group E,(2)

As an application of the identities proved in section 4.2, we shall establish the exis-
tence of a right- and a left-invariant measure for the dual E;&) of E,(2). Before going
into that, we need to have an explicit formula for.cumputing the comultiplication ji
of this quantum group.- . |

To fix notation, let us first recall very briefly the basic facts about E:(E). Denote
by £, the set {(r,q¢**"/%) : r,5 € Z}, and by £, its closure. Write H = [2(¥,). Let
{EE,A : (i_,/\)' € 3, } be_' the canonical orthonormal basis for H. Denote by b and T
the following operators: | | | | | |
' b 1 eix s Aeigza,

T B,']_A_Hfﬂg_,g.
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The pair (b, 7'} then satisfies the conditions listed in (3.2.7). The algebra CU(ER-Q'))
- of vanishing-at-infinity functions on Eﬁ) is the norm closure of all finite sums of
the form ), Vlffk(T,fbl), where k& € Z, V}, is the unitary appearing in the polar
decomposition of b, and fi’s are continuous functions on ¥, vanishing at infinity

~ such that fi(s,0) = 0 whenever & # 0.
There is a unique map ji € mar(C‘g(E;ﬁ)), Co( E,(2)) ® Co(F4(2))) such that

. . 17 _ i
;U(b) = g2 @b‘l'b@q 27 | (4.4'1)

AMT) = ToI+TeT.

This is the comultiplication for the dual group Em). The following proposition is
similar to lemma 3.2.2 for E,(2) and tells us that the comultiplication is unitarily

implemented.
Proposition 4.4.1 Define an operator V: H@M - HO®H as follows: Ve py =
CitkAg k2 ko Then V is unitary, and we have fi(a) = W{a @ )W* for all a €
ColEy(2)), where W = Fg(b“lq;T g: T BV,
Proof: It 15 enough to verify the equah_li_l;y. for a = qT and for a = b.
Notice that (b @ ¢~ %T)(Q%T ®b) = q"‘g(q%'T ® b)(b® ¢37), Therefore by
theorem 3.1.3 and (4.4.1), it follows that |

ab) = BT @ gt Th)b @ ¢ 3T ) (57 1¢3T @ 3T by,

Now a straightforward computation shows that b ® q“%T = V('b ® I )V"‘ Therefore
A =Wbe )W, '
 Next, observe that (g7 @ qT)(b”lq: ® qub) (b'“lan ® qin)(qT ® qT).
Therefﬂre __
| . .

_ 16T) = R~ @ ThyeT g qT)F(b ‘ T@q Toy.

Smce (qT ® qT) = V(qT® nNv*, we ha.ve p(qT) = (q ® YW+, o a
‘We shall now use this praposntmn to derwe an equation s_imila.r to (_3..3.2).

*Let U he-an operator on H ® H given on the basis vectors by U Cirky =
€irkuw/rke U lsthen un:ta.ry and U(b 'an ® anb)*U*e. Xk = ,\q”‘ﬁe,,; k=2, v

- _It is easy to see from this that

F*il'(jb_j.lqi_ Tb) €, \ku =EJ ( H- )e:+2r,lk —~2ryy
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and hence
v 1+—i-
E‘ Ak = Z J ( ) CithAgr=k2 —k42r 0 (4'4'2)

Therefore
(eqr ket vty f1(@)€0 2 k)

I, f
EJ ("" T+, )Jq (;-q“l'%*‘",w ; > "’)

X <eif+k',qu""f“ aet‘+k,}.q."—‘kf2> 6}11"61111" (4'4‘3)

Writing A = ¢# T2, N = '+ = g+K12 g ! = gl +R'12 ye get

(eiqotsirs gty Ba)es gisir g granrs

3 Ja(g IR ) (¢ TR e 1 - 1)

B X <E,—:+k:,q1+r+(i-k}maﬁ;+k,¢,j+r+(i—~wi> if 14+25 = 427,
= _ - - E4A = Kol
0 - otherwise,
(4.4.4)

Remark 4.4.2 If in the proof of proposition 4.4.1, we use theorem 3.1 4 instead of

theorem 3.1.3, we get fi(a) = W3 (I ® a)Wy, where Wy = W F,, (bq”FT ®q ETb_I),

and Vp is the umtary operator tha,t maps €; ) kv O €; ) i3k pois2+ Using the above

expression for i, we get
Woe;, Mk = ZJ (A 1-(#4k)/2 ) €;12r A itk vgttil2;
and consequently,
RGN (T3 k) __
ZJ (A 1 itk ) J, (Sql_ﬂ.y:’r 4 1';;*)

x <6£f+kllyqr+if‘2'} ae;+k,uqr+if2> 6‘1‘1,6””’* (4-4-5)

(Ei;,qu_]..‘ff? 'k.,’q'f,_l,kffg y ﬁ(a)ei‘lqj+|'!2!k1ql+k;2)

T T @R (@K 4 57 - )

3 X (61';+kf‘q£+r+{i+k}ﬁ-_.a€;+qul+r+[i+h);"2) if 14+27 = ¢¥4+24,
kE+20 = k420,
0 | S | - otherwise, o

(4.4.6)
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We are now ready to prove the existence of a left and a right invariant measure

on E’m)

Proposition 4.4.3 The weight he : a - tr(q"Tb"‘ba) is a left invariant weight for

the quantum group FE,(2).

Proof: Any representation & of the C*»aigebran(E;H(_ﬁ)) acting on a Hilbert space
Hy is uniquely determined by the pair (v(b),7(I')} which satisfy the relations (3.2.7).
T is irreduﬁible if. and only if the pair (w(b),7(T)) is irreducible, in the sense that
there is no proper closed subspace of H, invariant under both m(b) and w(T). Simple

computations now yield that the following are all the irreducible representations of

C'q( Eq(2)):

lm) ._ : : b-H "¢ on LQ(Z), meE Z,
T — 2N |
o b s g™ e |
Cplm) | on LQ(Z), med+ 5y (4-4.7)
T 2N 4171
lm) b= 0 } on {', rﬁEZ_.
- - Tr=m - |

| It is easy to see tha.t Cu( ( )) =@ mel z‘ﬂ'(m)(C{](E (2))). Therefore any positive
functional p on C‘u( q(2)) will be of the form

- p(a.) = (u_,(a. ® I_)u} + Y ame™(a), _ (4.4.8)
_ meZ

where u € Ly(Z,)® K, K being a Hill:uert51:'1.?-1,1":.&1r and ay, are all nonnegative real
. numbers, with 3"  ay, < 00: 'Let {fe}rez be an ﬂrthbnorma.l basis for K, and let
Pirjup denote the functional a ~ {e;,ae;,) on C'U(E (2)). Then from (4.4.8) it
fallows that there are scalars f; ) ., (i, A) € T4y 7 € Z, such that i 1Biarl? < o0,
and

(a') Zﬂl, ,rﬂ:' A',rp: ,:" }J(ﬂ + Zﬂmfim) : (4.4.9)
| Therefﬁre it is enough to shnw tha,t . .

hf(ﬂtj,l.l"’,a{" * ﬂ) : hz(@ﬁi.ﬁ.i*.ﬂ(”:
he(e™ v a) = hy(a)elm(r).
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Let j and j/ be such that ¢/ = Ag~#/? and ¢ = Mg~V'/2, Then using (4.4.4) and the
identity (4.2.2),

_— 2 y
hf(,o‘-' A gl A K a) = E q < 6,~'qj+i;9,;¢‘q1+m ,,U-(ﬂ)el':‘qj'+i’!2}qul+k.f:>
kit

- I |
Z qzqu(gi J+k+l’T)Jq(qf 3 "'I"f'l,r)
klr

I

X (E{f.;.jg‘quHf-i‘}f? ’ ﬂﬂf.;.k,qi—tvrﬂl'"kﬂ?) %Y,

2k |
Y gtk <Ei+k.qi+r+(i—klﬁ y B€; L 54T 4(i—k)/2 > Ojir b »
k,r

P/
Y q7 e potriz, @y ot )BistBar
k,s

= he(a)pipie x(T).

[i

I

For the other equality, notice that if I/ is the unitary operator on L,(Z,) given
by Uein = €;_., \,~m/2, then _E(_’"] ¥a = Ual* for all a. Therefore he(el™) % a) =
he(UaU®) = tr(g~Tb"bUal") = t(U*¢Tb"bUa) = tr(g~Tb*ba) = hela) =
h(a)etm)(I). ' .

The proof Is thus complete. O

A similar proof, using (4.4.6) instead of (4.4.4), shows that the weight A, : ¢
tr (qu*ba) is a right invariant weight.

~ Remark. Existence of invariant measures for the group E,(2) and its dual have
also been treated by S. Baaj ([5]). He worked with a different realization of the C*-
algebra Cp(F,(2)). The advantage of using Woronowicz’s realization of Cg(Eq(Q))
(which is what we have used here) is that the relation between the haar measure for
E,(2) and SU,(2) becomes very clear (see equation (4.1.1)), and suggests a possible
generalization to the class of all noncompact quantum groups that are related to

some compact quantum group via a contraction procedure.



Chapter 5
Representations of Ey(2)

.In this chapter, we continue our study of the quantum group E,(2). In section 1, we
find all the irreducible umtary representations of E ¢(2), and give a Clebsch- Gﬂrdon
demmpnsltmn formula, Orthogonallty relations among the matrix entries of these
| ulrredumble representatmns are also computed In the next section, the right regular
representatmn is introduced. It is described in terms of the pair of closed operators
(b,T') associated with it, which makes its direct sum decomposition very clear. In the
previous two chapters, we have seen examples of how to get identities involving ¢-
functions (in this case, ¢-Bessel functions) using quantum group methods. Section 3
illustrates yel; another technique. The identities in chapter 4 were used to prove the
uniqueness of the haar weight and also for proving the existence of a left- and a right-
invariant weight for the dual group E (2) The identities presented in this chapter
are likely to be very useful in calculations involving 5'Ly(2, '), the double group over

E4(2). The la.st two sections are devoted to the dESCI‘lptan of the quantum complex

| plane as a quﬂtlent space for the group E,(2), and to the study of the action of E,(2)

cm_Jt

5.1 Unitary Representations

Tensor product of two representations has been defined in section 1.1 for compact
quantum groups. The same definition works in the present situation also. That is, if
W and wy are two unitary representations of E, (2) acting on the spaces H; and H,
respectwely, then their ten sor product w; ) w, is given by r,ﬁw(wl J23(w), where ¢13
and @'323 are mnrphxsms from M(Bu(Hl) ® Co(Ey(2 ))) and M(Bo(Hz) @ Co(E,(2)))

66
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respectively to M(Bo(H1) ® Bo(H2) ® Co(E,{2))) given by
$13(a®b)=a®I®b, ¢u(a®@b)=IQa®b. (5.1.1)

By theorem 3.2.3, there is a pair (b;,7}) of closed operators on H; and another pair
(bz,Tg) of closed operators on Hy, both satisfying the reqmrements (3.2.7), such that

= Fy(q i/2h; @ vn)(J @ﬁ)T*@I, : = 1,2, Let 5D by and T1®T2 be the operators
a,ssoclated with the tensor product w;@ wy. Let us express b, by and TID T, in
terms of the b;’s and the T}’s. From the definition,

w1® Wy = ( Tlhbl@I@vn)([@f@‘v)ﬂgfﬁ‘!ﬁ' (f@qﬂ/zbg@ﬂﬂ)([@[@ﬂ)fﬂﬁ@f
- (5.1.2)

From the commutation relations between v and n, we get

(I® I®v)18®I(1 g ¢T3/, @ vn)(I @ ] @ v*)T1®/@1 = N ® ¢72/%b, ® vn,

so that

(IQI1I® v)T"@_‘r@.IFq(I @ qu.ﬁbg Qo)1 *ur"‘)T‘@"r@‘r = :Fq(qT‘ ® ¢12/%hy @ vn).
Substltutlng these in {5.1.2), we get

w D we = F (qT1/2b1 ®RI® 'vn)F (qu ® qT?/"zb ® ‘H‘H-)(I@ I@ )Tlﬁ'f@f-l*f@?‘:@f

By the remark follnwi'ng theorem 3.1.4, it now follows that

w1 wp = Fy ((QT‘ 2@ ¢ /) (b @ g2 + ¢ P ® by) ® ﬁn) (I@Igv)T1@I+eT)e]

which means, . . | | | S
O bk = hee ek, (5.1.3)
T = TT1eiI+19T:.
“Let us next find all the irreducible unitary representations of E,(2). Let (4,7}
be a pair of opgrators on X satisfying (3.2.7_).' ‘We call (b,T) irreductble if H does
not have a nonzero proper closed subspace which is kept invariant under 4, 6" and

T. Thanks to the following proposition, ﬂndmg lrreduclble representatmns of E4{2)
is equivalent tu ﬁndlng irreducible copies of (b T).

Prnpnsitiun 5.1.1 _Let_f_iu' bc ﬂ_unitary_ repré.?entatian".af E,(2). Then w z',é irre-
ducible if and only if the associated pair (b,T) is irreducible. |
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Proof: If the associated pair {4, T) is not irreducible, then clearly w can not be
irreducible. We shall now prove the converse,

 From (4.4.7), {x™ :m € 12} together with {¢l™) : m € Z} constitute all the
irreducible representations of the pair (§,T). Now w(e™(b), MN(TY) = w(0,m) =
v™ € Cy(E,(2)), which means that it is a one dimensional represein.tation and
hence obviously irreducible. Denote w{n{™)(b), #(™)(T)) by w{™). It is enough now
to show that each w("‘)_ is irreducible. To this end, let us compute the quantity

(e,.;j,w("‘)e,“). For m € Z, we have

Jq(q'"‘*‘l"-“""",j-— H o ift=k—r—~s8,)=14+1r-25,
0 otherwise,

leyis, wMe ) = {
(5.1.4)

and f(}rmEZ-{-%,

Jq(q’""'%'“‘""’,j—l) fi=k~r—~s-1,7=l4+7r~3s,

(Efijv w(M)esH)_= { 0

otherwise.
(5.1.5)

Let P be a nonzero projection on Ly(Z) such that w(™{P&I) = (P® Nw™), Then
for any continuous functional p on Co( E,(2)), (id ® p)w'™) commutes with P. Take
a nonzero vector u = 2. tises € P(La(Z)). Then u; # 0 for some t. Take any p € Z.
Case I m € Z. Let p be the functional a ~ (eo0, @€14p,1~p). Then (id® p)w(™)(u) =
?J,:Jq(!}’m+p+l,p ;-t)ep.'

Case Il: m € Z + 3. Take p to be the functional a (€0,—1,0€t4p41,t~p—1). Then
(id @ p)wim)(u) = uJy(q™+P¢3,p ~ t)e,.

Therefore in both the cases, €, E_P(LQ(Z)).; The choice of P being a,rbi{;rary, we
have £ = [, Thus w{™ is irreducible. | 0

Notice that the proof above supplies all the irreducible representations of E,(2),
Using (5.1.3), we can now prove the following Clebsch-Gordon type decomposition -

formula.
Pmposiﬁan 5;1.2 Let w(m) be as aboﬁé. .'-Then

. ’w‘"‘)é wl™ = Drez v : ifm--ne Z,
Orezsy v ym-nezyl
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Let wpf), r.8 € Z, denote the matrix entries of w{™} with respect to the basis
{e;}, i.e w,ET) = (p ® id)w™), where p is the functional b s {e,,be,). It is easy to
see, from (5.1.4) and (5.1.5), that

- vt (gt o if Z
wim) = { o(q 3) if m € Z, (5.1.6)

ot (¢ i, —8) meZ+ L.

This gives yet another justification for calling J,(-,-) the g-analogues of Bessel func-

tions.
Since J,(¢'.,7) € Co(€7) for all 1 and 7, we have wi™ ¢ Co( £4(2)) for all r and

s in Z, and for all m € 1Z. From (5.1.6), one can see that
'ufJ,;.(q”n,t) _ wg["), ) o (_5-1‘7)

where m = s — 1+ (r —1)/2, i = [(r + 1)/2] and j = [(r - t)/2]. We are now in a

position to prove the following proposition.

Proposition 5.1.3° The malriz eniries w:f-ff) safisfy the following:

i, ws'f) € Ly(h) Vr,s€Z,Yme 2.
ii. (orthogonality relatinns)'(w,(-s J, E":,’) = 6mm:6,.,;:6”;q2("—[m1)’
i, {gml-rwis" i ¢ 5 € Z,m € LZ} form an orthonormal basis for La(h).

Proof: Follows from (4.2.6), lemma 4.2.2, (5.1.6) and (5.1.7). O

Remark 5.1.4 Though the matrix entries in the given basis are all in Ly(h), thisis
nﬂf, in general, true; that is, there are vectors u, v such that ((ul® i_d]w“ﬂ_(v@ -} &
La(h). One could, for example, take # = 35,5, r€-n and v = eo. Thus each w(m)
has both square-integrable and non square-integrable matrix entries. This situation

can never arise for a locally compact group with a two-sided invariant measure. For

a proof of this, see Robert({43]).

5. 2 The Regular Representatmn

Denﬂte q[’"]”rw,(,f,“) by f,,(-., m) Deﬁne two nperators b and T on Lg(h) fnlluws :

bf*“:}) = f,(-?:i}: . D .
Fem = - 2s68) ifmez, (5.2.1)
B (254 1) ) i meZ+ '8
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b and f’ are then closed operators on Ly{h) and they satisfy (3.2.7). Therefore
w(b, I‘) is a unitary representation of E,(2) acting on La(h). We shall denote t]lﬁ
representation by . Notice that the restriction of ® to the closed span of {f

s € Z} is equivalent to w{™. By a slight modification in the proof of lemma 2.3.1,
one can show that for any bounded linear functional p on Cp(F,(2)), the operator
@ +— axp, when restricted to the dense subspace Ly(A)NCo( £,(2}), defines a bounded
operator on Lq(h). Let us denote this operator by R,. We shall now show that for
any bounded functional p on Cp(£,(2)), the expression £, := (id® p)R makes sense,
and is precisely the operator R, on Ly(h}. The way we proceed is as follows. First
we show that for p belonging to a dense set D of continuous linear functionals, ¥,
defines a bounded operator on Ly{h), and is equal to R,. Next we observe that
the association p + R, is continuous. Take now any continuous functional p on
Co( £,(2)). There is a sequence p, in D such that ||p, — p|| converges to zero. Define
$, to be the limit limp . ®,,. This limit is independent of the particular sequence
chosen, and since ®,,, = R,,, it follows that ®, = R,. The key step, therefore, is to
show that there is a dense set D of continuous linear functionals on Co(F4(2)) for
which (id ® p)R = R,. |

We have observed in the course of the proof of theorem 4.1.1 that any continuous

functional p on Cp{FE4(2)) is of the form
p(a) = (w1, T (a)uz) + (1, evp(a)02),  (5.22)

where Up and Vg are two unitary operators acting on the spaces  and K respectively,
and uy,uz € Ly(2)® H, v, v2 € K. Let us first show that if p = (v, ey, (+)v7), then
(id ® p)R is same as the operator R,. In this case, (id ® v, ) R = (I ® VU)TW.

Therefore

a

S

(d pmdm) = (18 (m)(id® e RE™ @ w)

(v, Viuo)els?  ifme 2,
o V)Y ifmeZ 4 L

H

On the other hand, since (id ® fvn )p(‘v) =v® VD, a.nd (id ® fyu)p(n) n®Vy, we
have, for m € Z, | B

ey
" (e mm( "+=J a1 = 9))) (- ® )

Il

p(E""))

i
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— qm’_r(f @ (1]1 l)(‘ﬂ @ Vg)rfs.}q (Q'nﬁ"-{_l(ﬂr @ VD*)\)T - 3) (' @ ,‘UZ))
= "o (g 1 — ) (01, V3 0n)

= {1, V025”2)§£:1}-

Similarly, for m € Z + 3, Rp(ff-g‘)) = (v, V2t }5:(-‘:1). Thus £, = R, in this case,
Let {f;} be an orthonormal basis for the space H on which Up acts. Denote, as
usual, e; ® f; by ei; on Ly(Z) ® H. Take p to be the functional

ple) = <Ei'j'=”Unta)E"j>'

Now, (id ® ry, )R = F (qfﬂﬂ Q" QUo)IQLRU ')"ﬁ@"'g"' Therefore, denoting
ﬂ[’“)(T) a,nd r{"")(b) by T("‘) and b("'“) respectwely, we have

- (E(m ) X ey 3’ :((“i ® WUﬂ)%)g(m] ® EU)
= ﬁmm-’é‘rr’ <83'1 ‘7' E (qET ™ b{m) Q f'}’ oy UU)(I ®{® Us )T i ®!®IESU>

- —if—23
6mm’§rr"5a,iui'-—-s'-}q( met1ti-a y P 1 "'23)(6: ,Uﬂ EJ)

. ifm e 4,
T} Gt pmite st Jo(qY IS i = i = 25— 1)(ej, Uy T )
HmEZ+%-
That 1s,
T2, = 1 = 28) e Up™ el
. fmei,
e ) = - .\ —1/—25— |
o(&r5 ) Jq(‘?fn_*'%%_’:i — i — 28— 1){e;,U5"° 251 )E,.(T)';_a._
. ifme Z + 2 *

On the nther hand, observe that (id ® u)(w("‘)) = qﬁlg(w("‘])qbw(w(m)) where ¢2
and ¢;3 are as in (5.1. 1) Hence, if m € Z, then | |

. (ewnf(’"’) *pew) |
= " " <ek:pi:jr,(£d®wﬂ_) (w m))ﬂkhj>
= ¢ (g (id ® 10,)(id @ ) (0™ esssis)
= lq”"“”' <e,.k:;r,-rjr,(£d ® 1d & Ty, ) qfiu(w(m))fﬁ (th))ﬂskﬁj>

= Q""_'TIZGT-W, w!’ l)fpﬁ.f) <ﬂPI (“i 2 “Uu )( (m))e*“'-’“>
P |
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m—* Z(ekrh w( )EH <E:J a(?dm?rifu (w(m)){?;j>

- Z(ek*ru&-p ﬁkf)<e='rin(fp+" & [)Jg (qmmﬂl(qh’ ® Uo),p - S) Ef—f)

141
Z(Ew S ext)bp i-i-s(ej, UG i) o(gm 0 p =)

il

—tl I+: ] oo
(ew, ﬁf?-}.-r_aekr)(ﬂfif” % )q(‘?"’+ Thi— v - 28)

il

Similarly, for m € Z + é—,- one has

I g 25— L | —5 } :
(exir, €™ xp ey =‘-(€k*mfr(,;?i:_,mlﬂki)(ﬂjr,Uﬁ' 2 lEj)Jq(q""+?+' ,i—1 —28—1),

Therefore #, = R,. Extending by linearity, the same conclusion holds for any
p :of.the form (uy,my,(-)uz), where u; and up are in the linear span of the E;J-fs.
‘Combining this with our earlier ohservation, we find that ®, = R, for any p of the
form (5.2.2), with «; and 4y coming from a dense subspace of Lo(Z) ® H. The set
D of all such functionals is dense _ili norm topology in the space of all continuous: -

functionals on C'O(Eé(Q)).- Therefore, as remarked earlier, one can define (id ® p)¥

for any continuous linear functional p, and we have
{d@p)R(a)=a*xp Yae Co(E,{2))N La(h).

We call R the rz'ght regular representation. From (5.2.1) it 18 immediate that in

the direct sum decomposition of R, all the infinite dimensional irreducibles appear,

and each one appears countably infinite number of times.

5.3 _Some Furt_her Idéntities |

We shall now use the computations done in section 3.3 and the observations made in
- the previous section to generate some more identities involving the ¢-Bessel functions.
Let us take p to be the functional ¢ s (eirir j+i12 @ €ij) on Co(E,(2)). Then
. 3 (s—14 555
R0 J(g'mat)) = R, (w W [,--tl) _ _
— q[—g'—-]_-.s-{-.l——i-geé(E(a—l-{-r-i:i_))- -

[

= T Z(Epa*wff ), n-ﬂ1>f{(:—;:1::r—?

p
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After simplification, this yields
Kolv" Jo(0*0:1)) = Sterina jr o (6, Y0 o (g" ' m b — 5. (5.3.1)
Hence for any u € Ly(h),

f,u = R, (Z g2(e=t=1) (v" Jo(g'n, 1), u) v" I, (¢ n, t))

.t

D 2‘”“‘"”<v“~fq_(q*n,t), u) Jo(g™*, it~ o (¢ m 1 ~ )

ra,l ' - :
t—-r-l"-{*,j*'

Z‘i’m"‘ D (o1 ) (g, ), u) Jy(¢+, 7)ot dolg* I m,t = ),

so that
(Eﬂ:"f': éRpu 6;;[) | |
= Z qz(a_t_1)Jq(qi+3:f)l}q(qsnf+k:t -7 <”tni'"jl-fq(§'an, t), u) Okt f—titOptpga—ji-
' ' (5.3.2)

Let us _n.ow compute the quantity {exy,R,uey) in another way, using equa-
tion (3.3.7). Take a u in La(h) N Co( E4(2}). Then

(qur,%pu EH) = _{Ek"f'!u *pEH)
= (er 1 idit it H{0)ER i )
= Z Jq(qifi’-k'+l ,m)Jq(qi'k+1, m — jf)
m

(ektdm ' 4ms Y €kmj i im i m ) O it — ot kOl imj kel
| (5.3.3)

Ta.ke k' = k -I-c a.nd l" = ! c+ i/ —j" ‘Then from (5 3.2) and {5.3.3), we get

z J (qi =kt 1m)J (ql k.Ham* = )('Ek+c+m.f-—c+i’-—j'+m1uek-—-j'+m.f—-j’+m)

Zqz(d_‘-;.i_ﬂ_]}Jq(q.H-i,jf)']q(q.s 31+k J’ . j - C)< —~J -{:Jq(q 11,, C),ﬁ) :
(5:3.4)

Taking various choices for the element u and the integers ¢, j, ¢/, 7', &, / and ¢,

one can generate a whole lot of identities involving the g¢-Bessel functions. As an

illustration, we prove a few .identities below.
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Proposition 5.3.1 For any inlegers i, J, v and 3, we have

Y Jlq s m = o) ylgh m = $)g(g ™G = m ~ 1)

ni

= J (g — s = 2(q %~ + 1). (5.3.5)

Proof: Take u = v'f‘"“.fq(q’n,i’ — ¢} in equation {5.3.4), use part 5 of proposi-
tion 3.3.2 and make some change of variables to get the required identity. 0
[fwetakei=7=71=1and s = ~1in (53.5) and use part 5 of proposition 3.3.2,

we get the following,

Z Jo(gsm = 1) Jo(g, m + 1)Jo (g™ F'50) = Jq(lj(])?_ (5.3.6)

mi

Pfﬂpnsitiun 5.3.2 For any integers a, b, 1, 7 and k, we have

> qtbmem TR (gt 0) o (671 e — 6)J, (¢ a)

= J(g" I R (g k- b), (5.3.7)

Proof: Take u = v~ ~¢g(n), where g(¢%z) = I{;,__;:H}(d)z"’“‘:, d€Z, z€ S Now

use (5.3.4}) and make some change of variables.

The following identities can all be derived from (5.3.7) by taking appropriate
choices of the integers a, &, ¢,  and k.

20Ty (g*, )y (° b))y (" a = b)
- Jq(ql'—j-f-u-b-l-l‘ ""j)']q(qi&'?:“bfl: —j '_" b): - (538)
> a2 o (g, 0)0,(q"*, 0)J,(¢°H,0) = ¢*J, (¢~ +1, — )2, (5.3.9)
2 ENLG 000 (07, 000, 0) = U (gL R, (5.3.10)

D080, 0)J,(¢* 002 = J, (¢, 0)2, (5.3.11)

R0 = 0,02 (53.12)
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5.4 The Quantum Plane

- The quantum complex plane in the (™-algebra set up was described very briefly in
[70]. Here we shall give a more detailed account, and alse describe how one can look
at it as a quotient space of the group F,(2).

We start the section with a lemma on affiliation relation.

Lemma 5.4.1 Let T be a normal operator, affiliated to a C*-algebra A. Lel o(T)
denote the spectrum of T. For a bounded operator S, if there exisis a go € C(o(T'))
such that go never ﬂﬂnishes_ on o(T) and S go(T) € M(A), then § f(T) € M(A) for
all f € Co(a(T)}. | | | |

- Moreover, if there is a map ¢ : C(a(T)) — C(a(T)) such that for all g € C(a{T)),
S(og)(T) = g(T“)S and $(g) never vanishes for nonvanishing g, then S*f(T) €
M(.A) for all f € Co(o(T)) and for all k € N.

Pmaf Take an f € CE(J(T)) go being nonvanishing, (g[,]f) also belongs to
C.(o(T)), 50 that (g f)(T) € M(A). Therefore S (T) = S go(T) (g5 INT) €
| M(A) .Using' the norm density of C.(o(T )) in Co(o (T)), we find that S f(T) € M(A)
for f € Co(o(T)) as well. o o

‘The second part will be proved by induction on L Assume S¥f(T) € M(A)
for all f € Co(a(T)). As before, take an f € Cc(o(I')). Observe that SEHFT) =
S go(T) 5%((¢*90)~* f)(T).. Therefore using the conditions of the lemma, we get
SEHE(TY e M(A) for all f € C(o(T)). Since C(0o(T)) is norm dense in Co(o(T)),
‘the same thing therefore holds for any f € Co{a(T)).

Let w = £ and p = ¢ be operators on L2(Z). Then u and p satisfy the
following: ' -
B 4 js unitary,
p is positive, with o{p) CC NR,, - (5.4.1)
wpu* = ¢~ 'p. |
Denote by CG(G' ) the norm closure of the linear span of {u”fi(p) : k € Z, f;,
Co(@IN R, fe(0) = Dlor k # 0}, Coldy) is then a nonunital C*-algebra. The
multiplier algebra of Co(&)) can easily be shown to be the closed linear span of
{u* fi(p): k € &, fi. € Cy{€INRy)}. Denote this by Co(€y). We call Co{ @) the
algebra of continuous vanishing-at-infinity functions on the quantized complex plane

4y, and Cy(,), the algebra of bounded continuous functions on &y.
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Write ¢ = up. It is a closed operator affiliated to Co(€,), and satisfies:

dom(¢) = dom(¢"), - |
Crc qﬂcc*, __ (5'42)
ao(lc]y & CTNR4.

Proposition 5.4.2 If (o is a closed operator acting on some Hilbert space K, end
satisfies (5.4.2) with (g replacing ¢, then there is a unique representation 7 of Co(C;)

on H such that w(() = (o.

Proof: Define 1 as follows: m(¥"u* fi(p)) = L Vi fe([Col), where ¢ = V;,|¢o] is the

polar decomposition of (o, and for & <0, VC‘:‘] means V. -k, 1

Proposition 5.4.3 Let (o and r be as in the previous proposition. Then, for a
C*-algebra A of B(H), (o nA if and only if m € mor (Co(C;), A).

Proof: Assume that (gn.A. Let us first show the,t'VC‘:;f(I(,'ol) e M(A)forall k € Z
and_f € Co(@" nRy). For k > 0, use lemma 5.4.1 with § = V¢, T = (o,
go 1z~ (1+22)"1/2, and ¢ to be the map ($1)() = fl@™ 1), 5 € Z (6£)(0) = f(0).
Fe)r_ k < 0, use lemma 5.4.1 taking 5 = V@, = |Co|, go: 2 (1 + 32} 1/2 and ¢
to be the map (¢f)(¢7) = f(¢FY), 7 € &, (¢f)(0) = f(0). Next, notice that e'in_ee
Con A, (1 + CGCo) Y%A is dense in A, so that 7 € mor {(Co({,), A).

The converse follows from theorem A.3.3 in the eppendlx._ O

Define 0.(a) := €. % a, a € Co(Fq(2)). {02} is a group of quantum group au-
tomorphisms of E,(2). Let A = {a € Co(E,(2)) : 0.(a) = a Vz € §'}. The
‘operator (o = qv™n is then a closed operator afliliated to A and satisfies (5.4.2).
Therefore by propositions 5.4.2 and 5.4.3, there is an ¢ € mor (Co(C}),A) such that
'(C) = qv™n. Clearly |jz(a}|| = |laf for all a € Co(€;). So % is injective, Let us show
that 2(Co({,;)) = A. First observe that a.(a) = (z”@ zN)e(zN@lzN) A elmple com-
putation now shows that a finite sum of the form 5~ v* fi(n) will belong to A if and
only if for any j € Z, w € S, fi(¢?w) = gi(¢)@*, gx being a function on 7 N R,.
- This means fk(n) can be wrltten as V= ‘“gk(n), Vo being the unitary appearing in
the peie.r deeempuettlen of n. Thls, in turn, lmphee that 2(3° ngfk(ld)) € A, if
-f;,- € Co(CINRy) e.ncl fk( ) = 0 fnr k # 0, Therefere z(Cg(di' ) C A, Next, te.ke
an element z € A. There is a sequenee Ton = Ek v"ff‘(n) eenvergmg m norm to z,
| Then |

| eu;y ”erz(e:m) Zaml| - 0 as m — 0. - (543)
2€ L - | -
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Let g;* be the following function on €%: gi*(¢?z) = ([ (¢’ w)w® dw)z—*. Write

Ym = Yo v* g7 (n). Using the condition (5.4.3), one can show that limuy—eo | Tm —
Ym|| = 0, so that limy,_,0 ¥ = T. Since each y,,, belongs to 2(Co((,)), = also belongs
to 1(Co(€,)). Hence t(Co(€,)) = A. ¢ is thus an isomorphism between Co(Z,) and
A. From now on we shall identify these two C*-algebras via the isomorphism t.

Let P be the spectral measure associated with the multiplication operator on
Lo(S1). Define, for a € Co(E,(2)), ¢(a) = [ €,(a)P(dz). Then ¢ is a C*-homomor-
phism from Co(E,(2)) onto C(S'). Moreover, we have pgi1¢ = (¢ ® ¢)p. Thus §' is
a, suhgraup of F,(2). . |

Proposition 5.4.4 Let ¢ be as above. Then we have the following:
i Co(€@,) = {a € Co(Ey(2) : ($@ id)u(a) = [ ® a),
i, Co(Cy) = {a € Cy(Ey(2)) : (¢ ® id)pu(a) = [ ® a},
iii. anCo(€,) if and only if anCo(E,(2)) and (¢ @1d)ula) = 1@ a.

Proof: i, Notice that
(9 ®id)u(a) = / P(dz) ®a;(a). _(5.4.4)

Hence.cléarly, if 0,(a) = a for all z € §7, then (¢ ® id)u(a) = I ® a. This means
A C {a € Co(E(2)) : (¢ ® id)p(a) = I@a} Now let §, : C(5§') — @ be the map
[ _f(z) Then ¢ (¢>) = €. Therefore - | | |

(63 ® td)(qb & td)p, =, | (5.4.5)

which means {a € Co(E,(2)) : ($® id)p(a) = I ® a} C A.

i, It is easy to see that A contains an approximate unit for Co{F4(2)). From thls
it folluws tha.t M(.A) = {a € Co( &, (2)) : 0.(a) = a Vz € §'}. The proof now is a
consequence of (5.4.4) and (5.4.5). | | S
iii. Take an operator o affiliated to Co{ E,(2)), such that (¢ @id)p(a) =1 ®a. Then
ze = a(l + 4:1"'.*:1)"‘11'2 e Cy(E4(2)), and (¢ ® id)p(2.} = [ ® 2a. From part {ii},
zq € Cp(€,). Hence § = (1~z2 C2 )Y € Cy(€,). Since a5 Co(F2,(2)), .S'C'G[E (2)) is
dense in Co( E,(2)). By theorem A.3.2 (see appendix), n(5)Hy is densein “H for any
irreducible representation 7 of Co( £;(2)) on Hx. Now any irreducible representation
of Co(C,) is the restriction of some irreducible representation of CU(E_‘Q(Q)). Therefore - -

n(S)H, is dense in H, for any irreducible representation « of Co(C,). Again by
theorem A.3.2, S.A is dense in A. Therefore m;.A. |
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Conversely, take an a pCo(C,). Then z, € Cy(€y) C Cp(E4(2)), (¢ @ id)p(a) =
[ © a and SCo(€,) is dense in Co(€,). We have already observed that Co(&y) con-
tains an approximate identity for Co( £,(2)). Therefore Co(@y)Co(£4(2)) is dense in
Co{-Eq(2)). Since SCo(€,) is dense in Co(€;), and SCo(€q)Co(L£q(2)) C SCo(£,4(2)),
SCo{E,(2)) is dense in Co( £4(2)), so that anCo( £,(2)). O

Remark 5.4.5 Recall the definition of a quotient space for quantum groups from
chapter 1. If G is a compact quantum group, H, a compact quantum subgroup of
G, ¢ beihg a quantum group homomorphism mapping C(G) onto C(H), then the
right coset space G/ H is given via the C*-algebra C{G/H) of continuous functions

on G/ H, which is defined to be
{a€eC(G): (¢® zd)ua(a) I8 a). (5.4.6)

If G and H are locally ﬁt:}mp'a,ct, but n‘nnwmpact, then one has to deal with Co(G)
and Co( f } instead of C(G) and C(H), which are no longer C'*-algebras. But simply
replacing C(G) by Cp(G) in (5.4.6) leads us nowhere — it neither describes Co(G//H ),
nor does it give us all elements affiliated to it (indéed, (5.4.6) may not have any
element other than 0). Theorem 5.4.4 gives us a clue as to how one can define a
quotient space in this noncompact situation, | |
Definition. Let G and H be two noncompact locally compact quantum groups, and
let ¢ be a quanium group homomorphism mapping Co(G) onte Co(H). Then the
Cr -ulgf:bm Co(G/H) of continuous functions on G/H vanishing at mﬁmty is the
unique C™*-subalgebra of CB(G) = (CU(G')) such that |

TnCo(G/H)  if aﬂd only if T nCo(G) and (¢ ® id)u(T) = I@T. (54.7)

For this definition to be satisfactory, bne has to ensure that Cp(() has a unique
- ("-subalgebra satisfying the stated property; which is not reatly possi.ble at the
| momént-, since we do not even know the definition of a locally compact qua'ntum
| group. However, one should note in this connection the fnllowing' (i) if we assume
that Cy(G') has a C*-subalgebra. sa,tlsfymg condition (5.4.7), then it must be unique,
| (u) If G and H are loca.lly compact groups, then this definition does describe the
quotient space G/H, and (iii) if we take ( tobe a specific locally compa.ct quantum
- group, for example F,(2) or the {lnuble group built over 1t this deﬁmtmn seems to |

be satlsfactory
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One natural question here is, why do we use just part (iii) of theorem 5.4.4 in
defining the quotient space and ignore the first two parts? The reason is, part (ii)
is a consequence of part (iii), and part (i) is a properly very special to this group |
E,(2), which cannot be expected to hold in general (it fails to hold even when G is

an ordinary locally compact group).

Let 7% be the automorphism of Co(£4(2)) introduced in (3.2.4). We saw in
chapter 3 that 7*(C(SU,(2))) is a family of C*-subalgebras of Co(Eq(2)), and the
union UT*(C(SU,(2))) is dense in Co(L4(2)). The next proposition is a similar
statement about Co(7y).

b

Proposition 5.4.6 {T‘E(C’(S;*’u)}_}kez is an increasing famtly of C*-subalgebras of
ColE4(2)), and Co(€y) = Upr*(C(S%))- '

H

Proof: Observe that r=1(m) = ¢~ YJ = M M/2(I = g*)" 12y and 77 ()
g i (] _.qzﬁg)—l,‘/?m_ Hence T"‘](C('Sgg)) C C(Sh), which implies T‘:(C'(Sgﬂ)) C
1"“1(0(533)) for all k. | | |
~Let us now show that Co(€;) = UpT*(C(5%,)). Clearly, n1, 92 € Co(@y), so that
C(8%) € Co(Cy). For a € Co(Cy), 7.(T%(a)) = (a). Hence 7¥(Co(T,) C Co( ).
Therefore rk(C(S(?U)) C Co(@,) for all . For the reverse inclusion. it is enough
to show that elements of the form V f(|(o|) belong to Uj_-Tk(C(Sg[}))w where [ €
Ce(NRL).
Case I: » = 0, f has to be of the form

(¢ = {

g(k+n) if —n<k,

0 “otherwise,

where n € N a.nd-g'is a bounded function on N, Then we have 77"(f(|(o]}) = g( V),
which is a bounded function of 5. Therefore f{|(o]) € T™{C(S5%)).

Case I1: 7 # 0. f must be of the form |

L glk+n) if —n<k<m—n,
flg°) = _ ,
0 ~ otherwise,

where m, n € N and ¢ is a bounded function on {0,1,...,m}. We have TV JU¢ol)
= (ui'*(l-—- g )" 2y gV r D20 N), Here g "Nttt NY §5 a bounded

function of 7y. Therefore, as in the carlier case, V(LIUCUU € T"(C(.S'gn)). 0
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5.5 KE,(2)-action on the Quantum Plane

[n chapter 1 we have seen that SU,(2) has a homogeneous action on the Podles

sphere 330-. We shall see in the present section that F,(2) has a similar action on

the q"ua,ntum plane &,. We start with the following proposition.

Proposition 5.5.1 There exists a morphism v from Co(€,) to Co{Cy) ® Co(£4(2))
such that (v @ id)v = (1d @ p)v. |

Proof: Let ¢ be as in the previous section. Let (o = I ® gv*n + ( @ v**. Then (g
is a closed operator acting on [2(Z)%®3, It is easy to see that (z ® id)(o = u(gv*n)
and p(gv™n) is affiliated to A ® Co(E,(2)). Also, it is clear that (g satisfies (5.4.2).
Therefore by propositions 5.4.2 and 5.4.3, there is a v € mor(Co(C,),Co(@y) &
Co(F,(2))) such that ¥(¢) = (p. Consider now the two morphisms (v @_id)u. and
(id ® u)v. They coincide at (, and the value at uni(iuely determines a mﬁrphism.
Therefore we get (v ® id)v = (id ® p)v. | | 0
~[lenote the right action of SU 1(2) on 5% described in section 1.3 by v.. Pro-
ceeding exactly like in the proof of (3.2.5) (see [74]) one can show that for a €
UkT (C(S50))s | o
via) = lim (Tk (% Tk) ve(T _"‘(a.))
from which it follows that v(Cyg( @'g)) C C’g((f )R Co(E4(2)).

We call a welght A on Co{€,) invariant under the action v if for any continuous
functional p on Co(E4(2)), whenever ¢ is in the dumam of A, sois (1d® p)v{a), and
we have A((id ® plu(a)) = )\(a)p(f) | |

Consider the weight A ;: a — 2 qﬂ'(e,,ae,) on Co(€,). Observe that ,\(a)
g*h{(i(a)), and v{a) = (: '®@id)u(i(a)), where t is as in the previous section. There-

fore from the proof of the i invariance property of the haar weight on F,{2), it follows

that®A is invariant under the action 73 |
Define L3(A) in the obvious way. It is easy to show that {¢*'u"J (¢"tFp,T) :

1.k € Z} form an orthonormal basis for Ly(A). Define two operators b and T on

L2(A) as follows: | |
b(‘llr.] (qr#!—..‘cp1 1‘)) — '_qkur—l‘]é(qr-l-j;_'.]p,f; 1)’
T(w' Jy(q+*p, 7)) = ~2ru"Jy(¢"p, 7).

| Then (b T) is a pair of c]used nperators satisfying (3.2.7). Therefﬂre mi= P (q .T”b@

on)(/ @ v)T®! s a unitary representation actlng on Lg(A) ThlS representatlnn s
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induced by the action » in the following sense. For any functional p coming [rom
D. where D is as in section 5.2, (td t p)7 defines a bounded operator on Lo A}, and
coincides with the operator a — (3d & p)r(a).

Let Hy be the closed linear span of {u"Jo(¢"**p,r) : 7 € Z}. Then La(A) =
Dz Hr. The operators b, ™ and T keep each Hj invariant, and bly, = bk),
T3y, = T} Thus 7 splits into a direct sum of all integer-spin representations, each
one appearing exactly once.

It is interesting to compare this situation with the classical case where Lhe group
E(2) acts on the complex plane €. For E(2), the equivalence classes of infinite
dimensional irreducible unitary representatiﬂﬁs are parametrized by Ry, and the

action on €' is a direct integral of all such representations.
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A.1 Multiplier Algebras

Definition A.1.1 Let A be a C*-algebra acting nondegenerately on a Hilbert space
H. The mulliplier algebra M(A) of A is defined to be the following C*-subalgehra
of B(H): -

| M(A)={be B(H); abba € AVae A}.

Notice that ,4 is an ideal in M(A). Also, if A is unital, then M(.A).: A. If one takes
A to be the C*-algebra of continuous vanishing-at-infinity functions on a locally

compact space X, then it is easy to see that M(.A) is the C*-algebra of all bounded

continuous functions on X ;

Remark. M(A) is the closure of A with respect to the almost uniform topology; that

is, with r'espect to the tnpnlﬁgy generated by the following family of seminorms: .
lalle := llab]| + |lba]l, &€ A.

“There is yet. another Equivéleﬁt deécriptinn of a multiplier algebra, which is given
bélt}w_. | . | . S . | |
Let B(A) be the algebrz;, of all bounded linear maps on A, Let § € B(A). We
say that 5 has an adjoint T if thereis a T e B(A) such that for any « and b in A,
one has | - | -
b(Sa) = (Th)"a.
béﬁnitibh A12 For a C':’"—a..lgebra. A, the mliltiplier algebra M (A) is the subalge-
bra of B(A) consisting of all elements that admit an adjoint. Norm of M(A) is the:

one that it inherits from B(A).
It is easy to show that the two definitions A.1.1 and A.1.2 are equivalent.

B3
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A.2 Morphisms

Definition A.2.1 Let A, and A; be two (""-algebras. A C*-homomorphism ¢ from
Ay to M(A;) is said to be a morphism if {¢(a1)ez : a1 € Ay, az € Az} is dense in
As. The set of all morphisms from Ay to Aj is denoted by mor(A1,.Az).

Any ¢ € mor{A;, Az) extends uniquely to a C*-homomorphism from M (Ay) to
M{(As3), as follows. For T € M(A,), ¢(T) is the unique element of B(Az) for which

fﬁ(T)(ﬂfJ(m )ag) = qb(Tﬂl)ﬂg, Vﬂl - .141, iy € Ag.

A.3 The Affiliation Relation

Definition A.3.1 Let A be a C*-algebra and let 7' be a linear map defined on a

dense subspace D(T) of A, We say T affiliated to A, and write T'n A, if there is

an element z = zr in M(A) such that [|2|| <1, and the following condition holds:

a € D(T) and Ta
a-(]-—-—:-: z)”ﬁd andb_.zd

Ml

b if and nnly if there e:-usts an element d in .A for which

If A acts nﬂndegenerately on a Hilbert space H, then one can show without much
difficulty that the definition given in the introduction is equivalent to the one given
above. | | | | o - _
If A is unital, then M.(A) = A, and any element a.,ﬁilia.ted_ to A must itself be an
element of A. If we take A to be CD(X), where X is a locally compact space, then
“elements affiliated to A are precisély the continuous functions on X.

~ The element 2 in the above definition is uniquely determined by the map T', and
is called the z-tmnsfdrm of T. It can be shown that .any.element z uf M.(.A) is the
-~ z-lransform of an element T' affilialed to A if and only if ||2}| < 1 and (I — 2 *z)12 A
is dense in A, Because of this fact, one is often required to check conditions like,
whether for an element d of M(.A) d.A is dense in A or not. The followmg theorem

comes in very handy in such situations.

Theorem A.3.2 Let A be a C‘*-ﬁlgebra and let d € M(A). Then dA is dense in A
if and only if for any zrredumb[e representation of A actmg on a Hilbert space Hp,

| mnge of n(d) is dense in M.

| For' the proof ,f.-%wg..___re[er -._th__e'_. r_ga,d__;_er; to [70]. o
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The following theorem tells us that although, in general, affiliated elements are
neither elements of the C*-algebra under consideration nor of its multiplier algebra,

one can talk of their image under a morphism.

Theorem A.3.3 Suppose A, B and C are three ("*-algebras. Lel TnA, and let
¢ € mor(A, B), y € mor(B,C). Then there exists a unigue T'nB such that ¢(D(T))B

is a core for T', and
T'(d{a)b) = $(Ta)h, Ya € D(T), bec B,
Denote T by ¢(T'). Then we also have

iy = Plar),
P(S(T)) = (o d)T).

We again refer the reader to [70] for the proof.

A.4 A Radon-Nikodym Theorem for Weights

Let ¢ be a faithful normal semifinite weight on a von Neumann algebra M. Suppose
{A¢}ier Is the modular automorphism group associated with the weight ¢. Denote
by M® the fixed point subalgebra for this automorphism group, i.c. M ={ac
M:Aja=aVie R} Then we have the following Radon-Nikodym theorem, due to

Pedersen & Takesaki.

Theorem A.4.1 Let ¢ and {4} be as above. Let v be another normal semifinite
weight on M such that v, = ¥ Jor all 1. Then there is a unique posiltive self-adjoint

operator d affiliated to M® such that () = $(d).

For the proof, the reader should refer to [39].
 Notice that the affiliation relation mentioned here is in the context of von Neu-

mant '&Igébras, which is standard in the literalure {see, for example, [47]). The

affiliation relation discussed in the previous section differs slightly from this.
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