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Chapter 1

Introduction

The purpose of this thesis is to explore some issues in social choice theory and
decision theory. Social choice theory provides the theoretical foundations for the
field of public choice and welfare economics. It tries to bring together normative
aspects like perspective value judgements and positive aspects, like strategic con-
siderations. The second feature which is our focus, is closely related to the problem
of providing appropriate incentives to agents, an issue of prime impbrtance in eco-
10OINICS. |
Consider for example, a set of agents who must elect one among a set of can-
didates. These candidates may be physical agents or they may be issues such as
various economic policies. A voting institution may be thought of as a procedure
which sélects an outcome or candidate for every profile of voter preferences over
candidates. It has long been recognized that a voting institution will typically offer
opportunities for some voters to behave strategically. A situation may arise where
some voter may find it in his best interest to vote for a candidate other than his
most preferred one for doing so changes the final outcome favourably for him, Let
us consider a second example. Suppose there is a set of agents whose m’eznbers

are to be matched to members of a second, disjoint set of agents all of whom have



preferences over the possible resulting matches. Examples include matching stu-
dents with universities, men with women, workers with firms etc. Agents report
their preferences over possible mates and are then matched toc a mate according
to some procedure. Here too situations may arise where some agent may find it in
hig/her best interest to misreport his/her preference. Incentives problems of this
nature are pervasive In economic contexts.

The first two chapters of the thesis are concerned with mechanism design issues
in two different settings. Chapter 2 considers the classical strategic voting model
where a voter’s preference ordering over a set of candidates is private informa-
tion. Chapter 3 considers the familiar two-sided matching model where an agent’s
preference over his/her possible mates is private information. In both moedels the
central issue is the design of mechanisms or procedures which provide appropriate
incentives for agents to reveal their private information truthfully. In the matching
model, an additional objective is to ensure that outcomes are always stable. There
is an extensive literature pertaining to these issues where attention is focused on
mechanisms where agents have dominant strategy incentives to tell the truth. This
requirement is strong; as a consequence most results are negative. In these two
essays we explore the implications of weakening the truth-telling requirement to
ordinal Bayesian incentive compatibility.

A notion that appears frequently in social choice theory is Maskin-monotonicity.
A social choice function satisfies this axiom if it is monotonic with respect to an
alternative which improves in a voter’s preference ordering, Not only is this axiom
normatively appealing but also the key to some important strategic properties. -
Moreover, it has been shown that if the domain of preferenc'es is unrestricted,
Maskin-monotonicity is equivalent to the property of strategy-proofness which in
turn implies that these properties are equivalent to dictatorship. In Chapter 4 of
this thesis, we formulate a version of monotonicity which is based on improvements

of sets of alternatives rather than an alternative. This allows us to identify precisely
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the monotonicity properties which precipitate dictatorship.

The final essay in the thesis addresses an issue in decision theory. A decision
maker is assumed to have beliefs over the possible states of the world. This is
a, probability distribution over these states, or geometric&lly, & point in the unit
simplex of appropriate dimension. Once new information is made available, these
beliefs have to be revised according to some revision rule. The main result of this
chapter is a characterization of Bayes’ rule as a revision rule, employing axioms
which are widely used in axiomatic bargaining theory.

We now discuss each of the essays in greater detail.

1.1 Ordinal Bayesian Incentive Compatibility and
the Strategic Voting Model

In the typical social choice problem there is a group of agents or voters, a “planner”
and a set of outcomes or alternatives. The role of the “planner” (who may not be
a “real” agent but simply represent a procedure or a decision making process) is
to select an outcome from the feasible set of outcomes. Thus, a collective decision
has to be made in a situation where each agent has some information about the
“environment”, not known to the other agents and to the planner. The latter
seeks to achieve certain goals which depends on the information of each agent.
This problem is known in the literature as the problem of ﬂiechanism design. The
literature in this area is huge.a,nd dates back to the work of Hayek, Lange and
Lerner in the 1930s. However it was the work of Hurwicz in the 1950s and 1960s
which formalized the insights of Hayek, Lange and Lerner and paved the way for
the body of work that followed his pioneering effort.

In the strategic version of this problem, each agent has a preférence ordering

over the set of feasible outcomes that is not known to the other agents or to the



planner. The agents report their preferences to the planner. The task of the plan-
ner is to pick an outcome given the reported preference profile. Thus the selection
of the cutcome depends on the information that the agents hold. The objective of
the planner is represented by a social choice function that associates a feasible out-
come with each profile of reported preference orderings. Since the outcome that is
selected depends on the reports sent by agents, they realize that they can influence
the outcome by changing their report. The mechanism design problem is one of
selecting a social choice function that will give the agents incentives to reveal their
private information truthfully. ‘The most appealing concept is strategy-proofness
which requires truth-telling for each agent to be a dominant strategy. If a social
choice function is strategy-proof, each agent does at least as well by misreport-
ing as by telling the truth irrespective of his beliefs about what announcements
the other agents will make. Unfortunately, while strategy-proofness is a very ap-
pealing requirement it is also very stringent and leads to an impossibility result.
This is the celebrated Gibbard-Satterthwaite Theorem (Gibbard (1973), Satterth-
waite (1975)) which states that under mild assumptions, a social choice function
is strategy-proof only if it is dictatorial. A dictatorial social choice function is one
which always selects the maximal element of a particular agent at all preference
profiles.

The negative conclusions of the Gibbard-Satterthwaite Theorem have inspired
research in several directions. Perhaps the most fruitful of these has been the
exploration of domain restrictions which permit the existence of strategy-proof so-
cial choice functions satisfying appealing normative properties (in particular non-
dictatorship). For instance, in a domain of single-peaked preferences, strategy-
proofness is compatible with anonymity and efficiency. (Moulin (1981)). If mon-
etary transfers are introduced in a quasi-linear environment, several interesting
possibility results emerge including the rich theory of Groves-Clarke-Vickrey mech-

anisms (Green and Laffont (1977)). If_sbcial choice functions are allowed to pick

4



random outcomes over lotteries and preferences over lotteries are required to sat-
isfy von-Neumann-Morgenstern axioms, the link between strategy-proofness and
dictatorship can also be broken (Gibbard(1977)). | .

We take the relatively less explored approach of weakening the truth-telling
requirement. Instead of insisting that truth be a dominant strategy for every agent
we require that truth-telling be optimal on average or in expectation. Expected
utilities are computed with respect to an agent’s prior beliefs about the preferences
of other agents and based on the assumption that other agent’s will tell the truth.
More formally, truth-telling is required to be a Bayes-Nash equilibrium of the
revelation game where an agent’s type is identified with his preference ordering.

There is a fairly extensive literature on mechanism design using Bayes-Nagh
equilibrium as a solution concept in the revelation game. However, inspired by
the work of d’Aspremont and Gérard-Varet (1979), almost all of it pertains to
models where there is money which can be transterred between agents and the
planner and where preferences are assumed to be quasi-linear, Since we wish to
apply this notion to voting environments, there is another issue which needs to be
resolved. Individual preferences are ordinal (rankings over candidates) so there is
no “pnatural” utility function which can be used for expected utility calculations.
We assume therefore that truth-telling dominates misrepresentation in terms of
expected utility where the latter is evaluated for all utility functions which represent
the true preference ordering. This notion was proposed initially by d’Aspremont
and Peleg (1988) in their study of committee representation and referred to as
ordinal Bayesian incentive compatibility. | '

The ord.inal Bayesian incentive compaﬁibility of a social choice function is ver-
ified with respect to gi#eu (prior) beliefs of each agent. Since strategy-proofness re-
quires this incentive compatibility condition satisfied for all beliefs, ordinal Bayesian
incentive compatibility is clearly weaker than stfategj—pmﬂfness. A priori, we may

expect a large class of social choice functions to satisfy ordinal Bayesian incentive
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compatibility. However, our main result demonstrates that this is not true. Ordi-
nal Bayesian incentive compatibility with respect to any belief chosen from a set
which is generic in an appropriate sense, implies dictatorship. On the other hand
possibility results exist if beliefs are non-generic. In particular, we show that if
beliefs are uniform, a wide class of social choice functions satisfy ordinal Bayesian
incentive compatibility.

We would like to distinguish our negative result from those which obtain when
robustness requirements are imposed on the problem (see, for instance, Ledyard
(1978)). Here, typically incentive compatibility of a social choice function is re-
quired for a sef of beliefs. Our result on the other hand holds for any beliefs in a

(suitably defined) large set.

1.2 Ordinal Bayesian Incentive Compatibility and
Stable Matchings

In the second essay of this thesis we look at two-sided matching model. Matching
problems refer to the whole gamut of problems which involve matching members of
one set of agents to members of a second, disjoint set of agents all of whom have
preferences over all possible matches. We concentrate on two-sided one-to-one
matchings, also known in the literature as the marﬁage problem. One set of agents
is then described as the set af.men and the other set is referred to as the set of
. women. In this context, the main interest is in finding stable matching procedures
which can be defined as a matching of agents such that no pair of agents would
prefer to be matched to each other than to their current partners,

Research on stable matchings has taken basically two separate courses, One
line has concentrated on t.he structure of stable m&tchings and the computatio;l

of efficient algorithms. This literature owes its genesis to the paper of Gale and



Shapley (1962) which showed that the set of stable matchings is non-empty for
any matching problem. Their proof was constructive — they provided an algorithm
called the deferred acceptance algorithm which always generates stable matchings.

The other strand in the literature on stable matchings is concerned with the
strategic issues involved in a matching game. Suppose that there is a. centré,lized
authority to whom the agents report their preferences. This authority then selects
a stable matching according to some procedure. A question of fundamental interest
is the following: does there exist a strategy-proof social choice function (which, in
this setting, associates a matching with every profile of preferences) which always
selects a stable matching? Roth (1982) answers this question in the negative.

Roth (1989) extends the analysis of Roth (1982) to the case where truth-telling
is a. Bayes-Nash equilibrium of the revelation game. However he assumes a partic-
ular cardinalization of utilities, We study the case where truth-telling requirement
is ardinaily Bayesian incentive compatible. We consider this more appropriate
because stable matchings only consider preferences of agents and not utilit}"spec-
ifications.

Our first result is that there does not exist any prior belief with the property
that there exists a stable matching procedure which is ordinally Bayesian incentive
compatible with respect to that prior belief. Our next step is to impose the mild
domain restriction that all agents prefer to be matched rather than remain single,
These restrictions are not sufficient to guarantee a stable, strategy-proof matching
procedure {see Alcalde and Barbera (1994))., However they are sufficient to ensure
that both man and woman proposing deferred acceptance algorithms are ordinally
Bayesian incentive compatible with respect to the uniform prior. Indeed the FGSlllt
follows immediately from and can be considered to be an equilibrium interpretation
of a result in Roth and Rothblum (1999). Our main result in this essay demon-
strates that this result is non-generic, Using techniques developed in the previous

essay we show the following: if each agent ¢'s prior beliefs are independently dis-
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tributed, then there exists a set of conditional beliefs C; which is generic in the set
of conditional beliefs (generated under the independence assumption) such that
there does not exist any stable matching procedure which is ordinally Bayesian in-
centive compatible with respect to any belief which generates a conditional belief

in C'i-

1.3 Monotonicity and Dictatorship

The third essay in the thesis (Chapter 4) takes a closer look at the relationship be-
tween the axiom of Maskin monotonicity and dictatorship. Let f be a social choice
function and let ¢ be an agent, Consider an alternative z. Let P; and P/ be order-
ings such that = beats all the alternatives in P that it beats in P; (i.e., zFiz — 2Pz
for all z £ z). Let P_; be a preference profile for all agents other than ¢ such that
f(F;, P.;) = . Maskin monotonicity requires that f(P/, P_;) = z. In other words,
[ satisfies a monotonicity requirement with respect to “improvements” of an alter-
native in the preference ordering of an agent. Maskin monotonicity is an appéaling
normative requirement. In addition, Maskin (1999) has established a fundamental
connection between the strategic property of Nash implementability and Maskin
monotonicity. It is however, a strong requirement, Muller and Satterthwaite (1977)
established the equivalence of Maskin monotonicity and strategy-proofness over the
complete domain of preferences. Applying the Gibbard-Satterthwaite Theorem it
follows immediately that a social choice function satisfies Maskin monotonicity if
and only if it is dictatorial,

In this essay we introduce a new monotonicity axiom. Suppose there are m
alternatives. Let ¢ be an integer lying between 1 and m. We say that a social
choice function satisfies Top t-monoionicity if the following condition is sat}sﬁed:

for all profiles (F;, P-;) and (F}, P_;) such that the set of the top & (where k is

an integer 1 < k < ) ranked alternatives in F; (let us refer to this_set as B),
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coincide with the top & ranked alternatives in P/, then f(F;, P.;) € B implies
f(P!, P_;} € B. This is a notion of monotonicity with respect to sets rather than
alternatives. The set B (weakly) improves in P/ relative to F;. Thus if the outcome
in (B, P_;) is in the set B, it must also be so in the profile (7}, P_;).

Our first result establishes that Top (m — 1)-monotonicity is implied by Maskin
monotonicity. The next result shows that Top 2-monotonicity (referred to as Top
Pair Monotonicity) in conjunction with the property of unanimity is sufficient to
force a social choice function to be dictatorial when there are only two agents. We
show by means of an example that if there are three or more agents, then there are
non-dictatorial, unanimous social choice functions which satisfy Top Pair mono-
tonicity. However, if Top Pair monotonicity is strengthened to Top 3-monotonicity
(or to Top Triple monotonicity), then we obtain dictatorship once again. Both
results illustrate the fact that conditions far weaker than Maskin monotonicity

precipitate dictatorship.

1.4 A Characterization of Bayes’ Rule

The last essay in this thesis (Chapter &) provides an axiomatic characterization
of Bayes’ rule. Bayes’ rule is a method for updating the beliefs of an agent.
This method is used widely in statistics and decision theory. There are several
existing characterizations of Bayes’ rule, However, most of them are from a no-
arbitrage perspective. The arbitrage principle has a long history. In the literature
on Bayesian statistics and decision theory, it was introduced as an axiom by de
Finetti (1974) for characterizing subjective probability. More recently the “ar-
bitrage principle” has been proposed as a foundation for non-cooperative game
theory through its dual relationship with the concept of correlated equiiieriUm

(McCardle and Nau (1990), Nau (1991)). McCardle and Nau (1991) tries to unify



decision theory, market theory and game theory by appealing to no-arbitrage prin-
ciple. However in all these settings money plays a crucial role. In environments
where money is available as a medium of exchange and measurement, no-arbitrage
is synonymous with subjective utility maximization in personal decisions. In this
essay, we axiomatize Bayes’ Rule without introducing money in the model.

Bayes’ Rule is viewed in this essay as a revision rule. The task for a revision
rule is to assign posterior probabilities given a prior belief and given some new
information. We characterize Bayes’ Rule by imposing axioms on the revision
rule. The paper which is closest in spirit to our analysis is Rubinstein and Zhou
(1999). They consider a general decision sifuation where an agent chooses a point
in a convex set S given some reference point e, In such a general setting they
characterize the choice rule that picks the point in $ that is closest to e. However,
since their environment is general, their axioms are strong and inappropriate for
the more specialized problem of belief revision. Observe for instance, that the set of
beliefs is not any general convex set but the unit simplex of appropriate dimension,

The critical axiom is Path Independence. This axiom requires that the posterior
belief should not be affected by the order in which new information appears. For
instance, suppose that the prior belief has placed positive probabilities over some
set 7', Some new information arrives that rules out say, the states ¢;,1; € T, The
revision rule then assigns probabilities over the elements in T\ {£,,%,}. Now suppose
a second new piece of information comes in that rules out #3,¢4 € T'\ {£1,%2}. The
revision rule would now assign the posterior over the set T'\ {#,, {2, 1, t4}. Suppose.
instead of the information coming in steps the initial information had ruled out
the states ¢y, %o, %3 and ¢;. Path independence says that the posterior distribution
over the set T\ {t1, ¢z, {3, 44 } should remain the same in both cases.

The other axioms are quite standard and have been motivated by the axioms
used in the axiomatic theory of surplus sharing, One is a symmetry {or anonymity)

axiom which requires that the names of the states of the world are not material

L]
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for the revision rule. The continuity axiom requires the revision rule to be contin-
uous with respect to the prior. The monotonicity axiom requires that the revised
probability on a state should not be less than the prior on that state. This axiom
is intuitive. A revision rule redistributes the probability weights on the states that
have been ruled out over the states that remain. So the probability weight on
any existing state should not go down after the revision. Finally a “no mistake
hypothesis” is imposed which requires that if an agent believes initially that the
occurrence of a particular state is impossible, then she continues to believe this
even after the arrival of new information. ( actually this axiom is required only
in the very special case where a revision eliminates all but only two states of the
world). Detailed discussions of the axioms can be found in the chapter.

The problem that we consider is similar to the structure of the so called “bar-
gaining problem with claims” (Chun and Thomson(1992)). The problem in that
context is a triple (9, e, ¢) with the interpretation that S is the set of feasible util-
ity vectors, e is the disagreement point and c is the “claims” point. Chun and
Thomson characterize the proportional solution whose tunctional form is the same
as Bayes’ Rule. Chun (1988) also characterizes the proportional solution in the
context of the bankrupicy problem using a stronger version of the Pareto optimal-

ity criterion — the No Advantageous Reallocation. Both the models emphasize

the utility interpretation of choices and as a consequence Pareto optimality .or its

stronger version, the no advantageous reallocation is imposed as an axiom. How-

~ ever, our model does not have a utility interpretation so that these assumptions

are meaningless in our context. Therefore our result, though similar in spirit is

very different from theirs, in interpretation and substantive details.
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Chapter 2

Ordinally Bayesian Incentive

Compatible Voting Schemes

2.1 Introduction

In the classical model of strategic voting, each voter knows his own preferences but
is 1gnorant of the preferences of other voters. The objectives of the social planner
are represented by a social choice function which associates a feasible alternative
with every profile of voter preferences. Voters are fully aware of their strategic
opportunities; by making different announcements of their preferences. they can
influence the alternative that is selected. The goal of the planner is to select a social
choice fﬁnction which gives voters appropriate incentives to reveal their private
information truthfully. It is clear the choice of equilibrium cmncépt is critical. The
concept which has been preponderant in the literature is strategy-proofness. This
requires truth-telling for each voter to be a dominant strategy. In‘other words,
each voter cannot do better by deviating from the truth irrespective of what he
believes the other voters will announce. This is clearly a demanding recjuirement.

And this intuitioh is con.ﬁrmed by the celebrated Gibbard-Satterthwaite The_orém
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which states that under mild assumptions, the only social choice functions which
are strategy-proof are dictatorial. A dictatorial social choice function is one :which
always selects the maximal element of a particular voter (who is the dictator). It
is quite clear that this is a powerful negative result,

Our objective in this essay is to analyse the implications of weakening the
truth-telling requirement from strategy-proofness to ordinal Bayesian incentive-
compatibility, This notion was introduced in d'Aspremont and Peleg (1988) in
the context of a different problem, that of the representation of committees. It is
the obvious adaptation to voting theory of the notion of incentive-compatibility
~ which is widely used in standard incentive theory (for instance, in the theory
of auctions). Truth-telling is required to maximize the ezpected utility of each
voter. This expected utility is computed with reference to the voter’s prior Emliefs
about the (possible) preferences of the other voters and based on the assumption
~ that other voters follow the truth-telling strategy. More formally, truth-telling is
required to be a Bayes-Nash equilibrium in the direct revelation game, modelled
as a game of incomplete information. Since social choice functions depend only
on voters’ ranking of various alternatives, truth-telling is required to maximize
expected utility for every representation of the voter’s true ranking.

Ordinal Bayesian incentive-compatibility is a significant weakening of the truth-
telling requirement. Note that whether or not a social choice function satisfies or-
dinal Bayesian incentive-compatibility depends on the beliefs of each voter. I.t sat-

isfies strategy-proofness only if it satisfies ordinal Bayesian incentive-compatibility

- with respect to all beliefs of each voter. However, we are able to prove the follow-

ing result. Suppose all voters have beliefs generated from a common prior which is
independently distributed. Then, for each voter 7, there exists a set of conditioual
beliefs C; such that, any social choice function is ordinally Bayesian incentive com-
patible with respect to any belief whose conditionals lie in the set C;,2 =1, -, N,

only if it is dictatorial. Moreover, the set C; is “generic” in the set of all conditional
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beliefs generated under the independence assumption, i.e., it is open and dense in
this set and its complement set has Lebesgue measure zero. Of course, we assume
- that there are at least three alternatives and that all social choice functions under
consideration satisfy the mild requirement of unanimity.

Our resuit underlines the extraordinary robustness of the Gibbard-Satterthwaite
Theorem. For “aimost all” beliefs { provided independence holds), the much weaker
requirement of ordinal Bayesian incentive compatibility is sufficient to force dic-
tatorship. The Gibbard-Satterthwaite Theorem is, of course, a corollary of our
result but the latter also provides a precise picture (in the space of beliefs), of how
pervasive the dictatorship problem is.

The negative generic result requires a very important qualification. A signifi-
cant non-generic case is the one where each voters’ beliefs about the preferences of
the others is a uniform distribution. This is an important case in decision theory
and is the so-called case of “complete ignorance”. A dramatically different picture
emerges here. We provide a weak sufficient condition for a social choice function
to be ordinally Bayesian incentive compatible and show that a variety of well-
behaved social choice functions do satisfy this condition (for instance, selections
from scoring correspondences). The overall picture is therefore complex and nu-
anced. Generiéally, ordinal Bayesian incentive-compatibility implies dictatorship
but in non-generic cases which are of considerable interest, significant possibility
results exist. .

The essay is organized as follows. In Section 2.2 we set out the basic notation
and definitions. In Sections 2.3 and 2.4, we consider respectively the generic case

and the case of uniform priors, Section 2.5 concludes. The proof of the main result

is contained in the Appendix.
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2.2 Notation and Definitions

The set N = {1,..., N} is the set of voters or individuals. The set of outcomes
is the set A with |A] = m. Elements of A will be denoted by q,b,c,d etc. Let
IP denote the set of strict orderings' of the elements of A. A typical preference
ordering will be denoted by F; where aP;b will signify that a is preferred (strictly) to
b under P;. A preference profile is an element of the set IP®. Preference profiles will
be denoted by P, P, P’ etc and their i-th components as P;, P, P! respectively with
i=1,---,N. Let (P;, P_;) denote the preference profile where the i-th component
of the profile P is replaced by P,

Forall P, € JPand k= 1,:-, m, let re(F;) denote the k th ranked alternative
in P, i.e., 7x(F;) = a implies that |{b 3 a|bPa}| =k — 1.

DEFINITION 2.2.1 A Social Choice Function or (SCF) f is a mapping f : Py —
A.

A SCF can be thought of as representing the objectives of a planner, or equiv-
alently, that of society as a whole. An important observation in the context of this
essay i1s that we assume SCFs to be ordinal. In other words, the only information
used for determining the value of an SCF are the rankings of each individual over
feasible alternatives. This is a standard assumption in voting theory.

Throughout the essay, we assume that SCFs under consideration satisfy the
axiom of unanimity. This is an extremely weak assumption which states that in
any situation where all individuals agree on some alternative as the best, then the

SCF must respect this consensus. More formally,

DEFINITION 2.2.2 A SCF f is unanimous if f(P) = a; whenever a; = r(F;) for

all individuals : € N.

1A strict ordering is a complete, transitive and antisymmetric binary relation
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We assume that an individual’s preference ordering is private information.
Therefore SCFs have to be designed in a manner such that all individuals have
the “correct” incentives to reveal their private information. It has been standard
in the strategic voting literature to require that SCFs are strategy-proof, i.e., they
provide incentives for truth-telling behaviour in dominant strategies. A strategy-
proof SCF has the property that no individual can strictly gain by misrepresenting

his preferences, no matter what preferences are announced by other individyals.

DEFINITION 2.2.83 A SCF f is strategy-proof if there does not existi € N, P;, P} €
P, and P_; € IPY~1, such that

f(F}, P-i) Pif (Pi, P_i)

The Gibbard-Satterthwaite Theorem characterizes the class of SCFEs which are

strategy-proof and unanimous. This is the class of dictatorial SCFs.

DEFINITION 2.2.4 A SCF f is dictatorial if there exists an individual 1 such that,

for all profiles P we have f(P) = r{F;).

THEOREM 2.2.1 Gibbard (19738), Satterthwaite (1975)

Assume m > 3. A SCF is unanimous end strategy-proof if and only if i 1s |

dictatorial,

in this essay, we explore the consequences of weakening the incentive require-
ment for SCFs from strategy-proofness to ordinal Bayesian incentive compatibility.
This concept originally appeared in d’Aspremont and Peleg (1988) and we describe

it formally below.
DEFINITION 2.2.5 A belief for an individual i is a jﬂrobability distribution on the

set PV, i.e., it 18 a map PN — [0,1] such that ENM(P) = 1.
_' | m | | PePN
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We assume that all individuals have a common prior belief y. Clearly p belongs
to the unit simplex of dimension m!” — 1 which we denote by A. For all ¢, for all
F_; and F;, we shall let 11(P.;|F;) denote the conditional probability of P_; given
F;. The conditional probability u(P_;|F;) belongs to the unit simplex of dimension

miV—1 1,

DEFINITION 2.2.6 The utility function u: A — R represents P; € IP, if and only
iof for all a,b € A,

aF;b 4 u(a) > u(b)

We will denote the set of utility functions representing F; by U/(5).

We can now define the notion of incentive compatibility that we use in the

essay.

DEFINITION 2.2.7 A SCF f is Ordinally Bayesian Incentive Compatible (OBIC)
with respect to the belief p if for all i € N, for all P;, P/ € IP, for all v € U(F}),

we have

Yoo u(f(P P p(PaulB) > Y uw(A(PLP. ) p(PaylP)  (21)

P_;elpN-} P_iclPN-1

Let f be a SCF and consider the following game of incomplete information as
formulated lariginally in Harsanyi (1967). The set of players is the set N. The set
of types for a player is the set IP which is also the set from which a player chooses
an action. If player 7’s type is F;, and if the action-tuple chosen by the players is
P’, then player i’s payoff is u(f(P')) where u is a utility function which represents
F;. Player i’s beliefs are given by the probability distribution g. The SCF f is
- OBIC if truth-telling is a Bayes-Nash equilibrium of this game. Since SCEF's under
consideration are ordinal by assumption, there is no “natural” utility function for

expected utility calculations. Under these circumstances, OBIC re'quires that a
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player cannot gain in expected utility (conditional on type) by unilaterally misrep-
resenting his preferences no matter what utility function is used to represent his
true preferences.

[t is clear that strategy-proofness is a more stringent requirement than QBIC
with respect to a particular belief system. We record without proof the precise

relationship between the two concepts below.

REMARK 2.2.1 A SCF is strategy-proof if and only if it is OBIC with respect
to all beliefs . ‘

It is possible to provide an alternative definition of OBIC in terms of stochastic
dominance. Let f be a SCF and pick an arbitrary individual ¢ and a preference
ordering F;. Suppose alternative o is first-ranked under F;. Let a denote the
probability conditional on P; that a is the outcome when ¢ announces F; assuming
that other players are truthful as well. Thus @ is the sum of u(P_;|P;) over all
P_; such that f(P;, P.;) = a. Similarly, let 8 be the probability that a is the
outcome if he announces P/, i.e § is the sum of u(P-;|F;) over all P_; such that
f(P!, P_;) = a. If fis OBIC with respect to p then we must have o 2> 3. Suppose
this is false. Then there exists a utility function which gives a utility of one to a
and virtually zero to all other outcomes which represents' P; such that the expected
utility from announcing the truth for agent ¢ with preferences P; is strictly lower
than from announcing P/, Using a similar argument, it follows that the probability
of obtaining the first & ranked alternatives £ = 1,.-.,m according to F; under
truth-telling must be at least as great as under misreporting via F;. We make
these ideas precise below, .

For all i € N, for any P, € IP and for any a € A, let B(a,P;) = {b €
 AlbPe} U {a}. Thus B{a,P;) is the set of alternatives that are weakly preferred
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to ¢ under 2.

DEFINITION 2.2.8 The SCF f is OBIC with respect to the belief i1 if for alli € N,
for all integers k = 1,--+,m and for all P; and P,

W{ P f (P P_i) € Blru(P), P)}|P)
> u({P=ilf(Pl, P-i) € B(rs(Fy), P)}|P) (2.2)

We omit the proof of the equivalence of the two definitions of OBIC. The proof
is easy and we refer the interested reader to Theorem 3.11 in d'Aspremont and

Peleg (1988).

2.3 The Generic Case

The main result of this section is to show that generically, OBIC implies dictator-

ship. However, we need to make a crucial assumption regarding admissible beliefs,

DEFINITION 2.3.1 Individual i’s beliefs are independent if for all k = 1,--- N
there exist probabdility distributions py : P — [0, 1] such that for all P

p(P) = Xy pik (P

An individual’s belief is independent if his belief is a product measure of the
marginals over the types of all the individuals, We denote the set of all independent
priors by AZ. The set A/ is the N-th order Cartesian product of unit simplices A,
~ where each A is of dimension m!—1. If it is the common prior for all voters, the con-
ditional beliefs for voter ¢ will be denoted by u_;, i.e., p_;(P-i) = Xppipn(FPr). We
denote the set +r:}-f~ conditional beliefs by A®! which is the N — 1-th order Cartesian
product of the unit simplices A, Clearly p_; € AT,

We can now state the main result of this section. -
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'THEOREM 2.3.1 Let m 2 3 and assume that all individuals have independent
beliefs. Then for allt € N, there exists a subset C; of A such that |

e C; is open and dense in AY!
o AY —(C; has Lebesgue measure zero

o if f is unanimous and is OBIC w.r.t the belief i where u_;, € C; foralli e N,

then f is dictatorial,

The proof of the Theorem is contained in the Appendix. Here we only describe
briefly the construction of the sets C; in order to clarify the nature of generic beliefs.

For any @ C P, let u(Q) = PZQp_i(P_i). The set C; is defined as the set
i€

of conditional beliefs p_; satisfying the following property: for all @, 7 C IP:""“I

(1-i(Q) = p—s(T)} = [Q = T]

For any belief 1 and agent ¢ the conditional belief u_; belongs to C; if it assigns
equal probabilities to two “events” ¢ and T only if = T, Ohviously the events
¢} and T are defined over the preference orderings of individuals other than 7. The
first, step in the proof is to show the sets C; are open and dense in A®! and that its
complement set has Lebesgue measure zero. Observe that C; is generic in the space
of conditional probabilities generated by an independent prior. It is not generic in
the space of all probability distributions. The next step in the argument is to show
that any SCF which is OBIC with respect to a belief 1+ where each individflal i's
conditional beliefs (generated from u) belong to the set C; must satisfy a certain
property which we call Property M, The final step in the argument consists in
showing that an SCF which satisfies Property M must be dictatorial. This is

accomplished by induction on the number of individuals starting with the case

N = 2.
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REMARK 2.3.1 The Gibbard-Satterthwaite Theorem is a corollary of Theorem

2.3.1. This follows immediately from Remark 2.2.1.

The result stated in Theorem 2.3.1 continues to hold if we assume “non-
common” priors instead of “cornmon” priors. Let u; denote the prior for individual
;. We shall let A denote the set of all beliefs ;. As before, the set of all beliefs A
is the unit simplex of dimension m!™ — 1. For all u;, for all P_; and P;, we shall let

ui(P_;|P;) denote the conditional probability of P.; given F;. We shall also refer

 to an N-tuple of beliefs {41, «, un) as a belief system.

DEFINITION 2.3.2 A SCF f is Ordinally Bayesian Incentive Compatible (OBIC)
with respect to the belief system (py,++, pn) if for alli € N, for oll P;, P/ € P,
for all u € U(F;), we have

> u(f(ByPo))m(PoilP) 2 3, uw(f(F,Po)) m(P-idP)  (2.3)

P_;ePN—1 P_;e]PN-1

In the case of “non-common” priors, a condition weaker than independence
is sufficient for our result. This is the condition of “free heliefs” introduced in

d’Aspremont - Gérard-Varet (1982).

DEFINITION 2.3.3 Individuals 1's beliefs are free if for all P.; and for all F; and

P! we have
pi( P3| Py) = pi( P—i] )

If a player’s beliefs are free, then his beliefs about the types of the other players
are indEpendent of the realization of his own type. Observe that if voters have
common prior, then free beliefs implies independence. We shall denote the set of
all free beliefs for individual Z by F;.

We can now state the result.
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THEOREM 2.3.2 Let m > 3. For alli € N, there exists a subset M; of A such
that

o M, is open and dense in A

o

o A — M,; has Lebesgue measure zero

o if f is unanimous and is OBIC w.r.t the belief system (pq, -+, un) where

i € M; 0 F; for alli € N, then [ is dictatorial.

The prof of this result is contained in the Appendix.

REMARK 2.3.2: We wish to point out a subtle difference in the “spirit” of
Theorems 2.3.1 and 2.3.2. In the former, we demonstrate the existence of sets
C; which are generic in the space of conditional distributions generated und?r the
independence hypothesis. Any SCF which is OBIC with respect to a conditional
distribution in C; for all 7, is dictatorial. In Theorem 2.3.2 we construct the sets
M; which are generic in the space of all beliefs, Any SCF which is OBIC with
respect to a belief system where each belief belongs to M; and satisfies free beliefs,
is dictatorial, Of course we can formulate a version of Theorem 2.3.1 along the

lines of Theorem 2.3.2 and vice versa. For instance, we have:

THEOREM 2.3.3 Let m > 3. There exists a subset M of A such that
o M is open and dense in A

e A — M has Lebesgue measure zero

o if f is unanimous and is OBIC w.r.t the belief i where p € M and p is

independent, then [ is dictatorial.

We make a few rema,rks about the proof of Theorem 2.3.3 in _the Appendix.
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Theorems 2.3.1- 2.3.3 make it emphatically clear that in “almost all cases”.
weakening the incentive-compatibility requirement from strategy-proofness to OBIC
does not expand the set of incentive compatible SCFs, However, the definition of
“almost all cases” above leaves out at least one very important case. This is the
case where an individual’s beliefs over the types of others, conditional on his own
type is uniform. Observe that in this case, the probabilities of events Q and T are
equal whenever () and 7' have the same cardinality. We analyse this case exten-
sively in the next section and show that the results are dramatically different from

the generic case.

2.4 A Non-Generic Case: Uniform Priors

In this section, we make the following further assumption on beliefs. (We continue

to assume independence)

ASSUMPTION 2.4.1 For all profiles P and P’ we have

p(P) = p(P')
Thus, all individual have a common prior which is uniform. We denote these

beliefs by fi. As remarked in the earlier section, [ is non-generic, Restating

Definition 2.2.8 in the present context, we have

PROPOSITION 2.4.1 The SCF [ is OBIC with respect to the belief ii if, for all ¢,

for oll integers k =1,++-,m, for all P; and P!, we have

{P_i|f(P;, P_;) € B(ri(Ry), Pi)}| 2 {P-:|f(P, P-;) € B(ri(B), B} (2.4)

We omit the (trivial) proof of this Proposition. It will be convenient to e:::press

equation (2.4) in a more compact way. For all P, € [P and z € 4, let
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(e, B) = {P_i|f (P, P-i) = o}

Equation (2.4) can now be expressed as follows. For all i, for all integers
k=1,--,m, for all P, and P!, we have

k k

Z’T(T&(H)r P’f) P Z'f?(?‘k(Pi);Pf) (2*5)
i=1 t=1

We now give an example of a non-dictatorial SCF which is OBIC with respect

wmldr

to fi.

EXAMPLE 2.4.1
Let A= {a,b,c}, N = {1, 2}. Consider the SCF defined by the array below.

abc ach bac beca cab cha

abc o a b a ¢ o«
acb a a ¢ b a ¢
bac b a b b b ¢ (2.6)
bca o & b b ¢ b
cab ¢ a b ¢ ¢ ¢

cha a C c b s C

In the array above, individual 1’s preferences appear along the rows and individual
2’s along the columns. The SCF is well-behaved; in particular it is anonymous and
efficient (for a definition of these terms, see Moulin (1983)). To verify that it is
OBIC with respect to [, it suffices to observe that for each preference ordering of
an individual, the frequency of occurrence of its first-ranked alternative is four and

of its second and third-ranked alternatives, one each respectively.

We introduce some definitions below which are required for the main result of

this section.
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DEFINITION 2.4.1 Leto: A — A be a permutation of A. Let P? denote the profile
(PZ,»-+, P§) where for all ¢ and for all a,b € A,

aPb = o(a)PPo(b)

The SCF f satisfies neutrality if, for all profiles P and for all permutation functions

o, we have
f(P?) = o[f(P)]

Neutrality is a standard requirement for social choice functions and correspon-
dences (see for e.g. Moulin (1983)). All alternatives are treated symmetrically in
neutral SCFs i.e. the “names” of the alternatives do not matter,

Let P; be an ordering and let a € A, We say that P/ represents an elementary

a-improvement of P; if
o forall z,y € A\ {a}, xPy < 2P}y
o la=re(P)] = [a=rea(P)), k>

e [a=1r(F)] = [a=r(P)]

DEFINITION 2.4.2 The SCF f satisfies elementary monotonicity if for all i, B, F;
and P_i

Lf (P, P_;) = a and P| represents an a-elementary improvement of P;| =

[f(P,{,P_i) == a’]

Let P be a profile where the outcome is a. Suppose @ moves up one place in
some individual’s ranking without disturbing the relative positions of any other
alternative, Then elementary monotonicity requires a to be the outcome. at the
new profile, This is a relatively wea.,k'axiom whose implications we will discuss

more fully after stating a,nd proving the main result, of this section.
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THEOREM 2.4.1 A SCF which satisfies neutrality and elementary monotonicity is
OBIC with respect to the beliefs [i.

PROOF: Let f be a SCF which is neutral and satisfies elementary mdnotonic-
ity. We will show that it is OBIC with respect to f.

QOur first step is to show that the neutrality of f implies that, for all 4, for all
integers k = 1,--.,m and for all B and P/, we have n(rx(FB,), B;) = n{ry(F)), P/).
Pick an individual ¢ and orderings P; and P{. Define a permutation function on A

as follows: for all integers K =1,--+,m,
o(ri(B)) = ri(F)

Observe that P = P!. Fix an integer k € {1,-.-,m}. Let P_; be such that
f(8, P.;) = r(5). Since f is neutral,

f(F;, PZ;) = olf (P, P-i)] = olre(F)) = ri( B (2.7)
Equation (2.7) above establishes that

n(re(F), Fy) < n{re(F), F}).

By using the permutation ¢~!, the argument above can be replicated to prove the

reverse inequality.

The next step in the proof is to show that for all 4, for all integers k =1,..-,m~—

1, and for all F;,

n(re(P) 2 Mrie1(F))

Pick ¢, k € {1,:--,m — 1} and P;. Let P! be an elementary ry..,(FP;)-improvement,

of F;. Since f satisfies elementary monotonicity, we must have

(Pl f(Py Poi) = e (P € {PoAF(PLP) = mea(POY (28)
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Equation (2.8) above implies that

N(ries (B, ) 2 nlres(F), £ (2.9)

But the LHS of equation (2.9) equals n(rg(F), P/} which from the first part of the

proof, equals 7{rp{F;), P;). This proves our claim. Observe that this claim implies

that
n(re(P;), B) = n(ri(F;), P;) whenever k < ¢ (2.10)

We now complete the proof of the Theorem. Let ¢ be an individual, let k¥ €
{1,--.,m} be an integer and let F; and F; be orderings. Let T = {s|r,(P]) =
ri(F;)}. From the first part of the proof we have,

t

k

> nlrdB), B) =) n(rP),P) (2.11)

=1 teT

But from equation (2.10)

k

Soa(rd ), P) < Y n(ru(By), P) (2.12)

teT t=1

Combining equations (2.11) and {2.12), we obtain

Ste1 Nre(B), Pi) 2 Tiey 1(re(F), P)

so that f is OBIC with respect to . | R

Theorem 2.4.1 is a positive result. Neutrality and Elementary Monotonicity are
relatively weak requirements for SCFs to satisfy. We provide an important class

of examples below,

| —

EXAMPLE 2.4.2 (Scoring Correspondences)
 Let s = (s1,82,**,8m) be a vector in R™ with the property that 81 > s >

', 2 8y and 8; > sy,. Let P be a profile. The score assigned to alternative a in
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P by individual i is sg if ¢ (F;) = a. The aggregate score of a in P is the sum of
its individual scores in P. Let W,(P) denote the set of alternatives whose scores in
P are maximal. The social choice correspondence W defined by this procedure is
called a scoring correspondence and is discussed in greater detail in Moulin (1983).
Important correspondences which belong to this class are the plurality and the
‘Borda correspondences.

We define a 3CF f which is a selection from W in the following manner. For

all profiles P, f(P) is the alternative in W,;(P) which is maximal according to A,

~i.e. it is the element in the set Wy(P) which is the highest ranked in individual 1's

preferences. Observe that f is neutral. We also claim that it satisfies elementary
monotonicity. To see this, suppose f(P) = a and let P/ be an a-improvement of F;
for some individual 7. Observe that the score of a in P/ increases relative to that in
P, while that of the other alternatives either remains constant or falls. Therefore
the aggregate score of a in the profile (P!, P_;) is strictly greater than in P while
that of the other alternatives is either the same or less. Therefore W, (F/, P_;)) =
{a} = f(P!, P_;) and elementary monotonicity is satisfied. Theorem 2.4.1 allows
to conclude that f is OBIC with respect to fi. Indeed any neutral selection from a

scoring correspondence will satisty this property.

Moulin (1983) contains a more extensive discussion of elementary monotonicity
(which he calls monotonicity). He shows (Chapter 3, Lemma 1) that in addition
to scoring correspondences, Condorcet-type correspondences (those which select
majority winners whenever they exist) such as the Copeland and Kramer rules,
the Top-cycle and the uncovered set, all satisfy elementary monotonicity, It is easy
; t_rj show that a neutral selection of these correspondences obtained, for instance, by
' breaking ties in the manner of the previous example (using the preference ordering

~of a given individual), generates a SCF which is OBIC with respect to .
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The next example shows that Theorem 2.4.1 only provides sufficient conditions

for a SCF to be OBIC with respect to the uniform prior.

EXAMPLE 2.4.3
Let A= {a,b,c} and let N = {1,2}. Consider the SCF f defined by the array

below.

abe acb bac bca cab cba

abc ¢ a a b ¢ o
acb ¢ a b a a ¢
bac b a b b b (2.13)
becae a b b b ¢ b
cab a ¢ ¢ b ¢ ¢

cha ¢ a b C s C

We claim that f is OBIC with respect to fi. To see this, observe that (as

in Example 2.4.1), for both individuals and for all six preference orderings, the
frequency of occurrence of the first, second and third alternatives is four. one and
one respectively. It is also easy to verify that f is neutral unlike the SCF in Example
2.4.1. However, it does not satisfy elementary monotonicity. For instance. observe
that f(abe, cba) = a but flabe, cab) = c.

Our final observation in this section is that there are SCFs which are not OBIC
With respect to . Consider, for example the SCF which always picks individual

1’s second-ranked alternative. It is clearly neutral. But it violates equation (2.5).

2. 5 Conclusion

- We have examined the implications of weakening the incentive requirement in

- voting theory from dominant strategies to ordinal Bayesian incentive compatibility.
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Truth-telling is no longer assumed to be optimal for every conceivable strategy-
tuple of the other players. It is only required to maximize expected utility given an

agent’s prior beliefs about the types of other players and the assumption that these

 players are following truth-telling strategies. The set of ordinal Bayesian incentive
compatible social choice functions clearly depends on the beliefs of each agent.
However, we show that for generic beliefs appropriately defined, the only social
choice functions which are incentive compatible in this sense are dictatoriai. We
are thus unable to escape the negative conclusion of the Gibbard-Satterthwaite
Theorem. However, a dramatically different picture can emerge for non-generic

cases. A case of particular interest is the case of uniform priors or “complete

'ignorance”. We provide a weak sufficient condition for incentive compatibility
and show that a large class of well-behaved social choice functions satisfy these

conditions.

2.6 Appendix

Proor ofF THEOREM 2.3.1: The proof proceeds in several steps. In Stepil1 we
define the sets C; and show that they are open and dense subsets of A’ and the
Lebesgue measure of their complement sets are zero. In Step 2, we show that if
f is OBIC with respect to the belief u, where u_; € C; for all ¢, then f must
satisfy a certain property which we call Property M. In steps 3 and 4, we show
by induction on the number of individuals that a SCF which satisties Property
M must be dictatorial. In Step 3, we show that this is true in the case of two

individuals. In Step 4, we complete the induction step.

STEP 1
Pick an arbitrary individual 4. We define the set C; below.
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For any @ C PN, let u_;(Q) = PZQ#_;,(P_E-). The set C; is defined as the set
— &

of conditional beliefs u_; satisfying the following property: For all Q,T ¢ IP¥-!

[1-:(Q) = pu—i(T)] = [Q@ =T

We first show that C; is open in A%!, Consider any p such that for all 1 € N,
t—; € C;. Let

¢(u) = S‘TCEI;I};I_I}’S#TIPJ-&(S) — p-i(T)]|

Observe that ¢(x) > 0. Since ¢ is a continuous function of p, there exists € > 0
such that for all product measures i € AT with d(, 1) ‘< €, 2 we have ¢(z1) > 0.
But this implies that fi_; € C;. Therefore C; is open in AY~1,

We now show that A¢/ — C; has Lebesgue measure zero. We begin with the
observation that A% is the Cartesian product of N — 1 simplices each of which is

of dimension m! — 1. On the other hand,

AT —Ci= |J {peAY|uu(Q) = pi(T))
Q.IcPN-1

Therefore the set AY! — C; is the union of a finite number of hyper-su;:'faces
intersected with AC?. It follows immediately that it is a set of lower dimension
and hence has zero Lebesgue measure.

Pick a product measure u such that for some i, u_; € A" — C; and consider
an cpen neighbourhood of radius € > 0 with centre x_;. Since this neighbourhood
has strictly positive measure and since A%’ — (; has measure zero, it must be the
case that the neighbourhood has a non-empty intersection with the set C;. This
establishes that C; is dense in AYT,

This completes Step 1.

?d(.,.} here signifies Euclidean distance
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STEP 2

Let f be a SCF which is OBIC with respect to the belief i where u_; € C; for all
i, Our goal in this step of the proof is to show that f must satisfy Property M. Let
P be a preference profile, let 7 be an individual and let £/ be an ordering such that
the top k elements in P; coincide with the top k£ elements of P;. Then Property M
reciuires that if f(P) is one of the top & elements of F;, then the f(F/, P_;) must

also be one of these top &k elements. We give the formal definition below,

DEFINITION 2.6.1 The SCF f satisfies Property M, if for all individuals ¢, for all
integers k = 1,2,:.+,m, for all P_; and for all P;, P] such that B(ri(F;), B;) =
B(rp(P!), P!), we have

[f(Pti-P—t)eB(Tk Fy), B)l = [F(F, P-i) € B(re(F;), F)]

Let 2 be an individual and let P; and P be such that B(ry(5), P;) = B(r(FP{), P}).

Suppose i's “true” preference is P;, Since f is OBIC with respect to p and u is

independent, we have, by using equatiml (2.2)

I-}’-—t({P—-Ilf RHP—:) S B(Ta'c( ) P)})
> el {PoF(PL Poi) € B(re(P), PY}) (2.14)

Suppose i’s “true” preference is P!. Applying equation (2.2), we have

p—i({ P-i|f (P}, P-;) € B(ry(F]), F{)})
> p—il{P-i|f(Pi Pi) € B(ri(F)), F)}) (2.15)
Since B(ry(F;), P;) = . B(ry(P]), P}, .equatlons (2.14) and (2.15) imply,
p—i({P~i| f (B, P-i) € B(re(BFy), P)})
= p({Pulf(P, P-) € B(re(F), F)}) (2.16)

Smce u_; € C;, it follows from and equation (2 16) that

{P_i|f(P:, P_i) € B(rs(P), P)} = {P=ilf (P P.;)eBm(Pf) Ny (@17)
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Now suppose for some P;, we have f(P;, P_;) € B(rx(P:), P;). Then equation (2.17)
implies that f(F/,P_;) € B(rg(E), P!), Thus Property M is satisfied and Step 2

is complete.

STEP 3
In this step, we show that in two-person SCF which satisfies Property M must

be dictatorial. Let N = {1,2} and let f satisfy Property M.

CLAIM A: For all profiles (Py, P,), either f(Py, FPo) = m{P) or f(P, P) =
71(P) must hold.

Suppose that the Claim is false. Let (P, P;) be a profile where individual 1’s
first-ranked alternative is a, individual 2’s first-ranked alternative is b and suppose
f(P1, P2) = c where ¢ is distinct from a and b. Consider an ordering P, where
a is ranked first and b is ranked second. By unanimity, f(P;, P») = a. Consider
an ordering P, where b is ranked first and a second. Observe that the top two
elements in the orderings P, and P, coincide. Moreover, f(8;, Ps) is one of these
top two elements. It follows therefore from Property M that f(P,P;) € {a,b}.
Now suppose that f(P, P;) = b. Since P, and F; have the same top element,
Property M implies that f(P, P;) = b which contradicts our supposition that the
outcome at this profile is ¢. Therefore f(Py, Ps) = a.

Let P{ be an ordering where ¢ and b are ranked first and second respectively.
Since P, has the same top element as P, (which is a), Property M also implies that
fAP{, B;) = a.

Now consider the profile (P}, ;). By considering an ordering P, where b
is ranked first and a second, we can duplicate an earlier argument to conclude

that f(P!, P,) is either @ or b. But if it is b, then Property M would imply that
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f(P{, P;) = b which would contradict our earlier conclusion that the outcome at
this profile is a. Therefore f(F], P;) = a. But then Property M would imply that
f(Ps, P») = a whereas we have assumed that the outcome at this profile is ¢. This

proves the Claim.

CLAIM B: If f picks 1's first-ranked alternative at a profile where 1 and 2's

first-ranked outcomes are distinct then f picks 1's first-ranked alternative at all

profiles.

Let (P;, P2) be a profile where the first-ranked alternatives according to 7 and
P are a and b respectively. It follows from Claim A that f(P, P») is either a or b.
Assume without loss of generality that it is a. Holding P, fixed, observe that the
outcome for all profiles where a is ranked first for 1 must be a, otherwise Property
M will be violated. By a similar argument, holding P; fixed, the outcome b can
never be obtained in all those profiles where 2's top-ranked outcome is . Now
consider an arbitrary profile where a is ranked first for 1 and b for 2. Using Claim
A and the arguments above, it follows that the outcome must be a.

Consider an outcome ¢ distinct from a and 4. In view of the arguments in the
previous paragraph, we can assume without loss of generality that ¢ is second-
‘ranked under P;. Let P! be an ordering where ¢ and o are first and second ranked
respectively. Property M implies that f(P!, P,) is either ¢ or ¢. But Claim B
requires the outcome at this profile to be either b or ¢. Therefore f(P], P;) = c.
Applying the arguments in the previous paragraph, it follows that f always picks
1’s first-ranked alternative whenever 2’s first-ranked alternative is b.

Let (P, P») be a profile where a and b are first-ranked in P, and P, respectively.
Pick an alternative z distinct from a and b. Applying earlier arguments, we can

assume that z is second-ranked in P,. Let P} be an ordering where z is first and
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b is second ranked. It follows from Claim A that f(P;, Py} is either z or a. But
if it is z Property M would imply that f{P;, P5) would either be b or = ;.vhich
we know to be false. Therefore f(P, Pj) = a. Replicating earlier arguments, it
follows that the outcome at any profile is 1’s first-ranked alternative provided that

2's first-ranked alternative is z. Since z is arbitrary, the Claim is proved,

It follows immediately from Claim B that f must be dictatorial. Therefore Step

3 is complete.

STEP 4
We now complete the induction step. Pick an integer N with N > 2, We

assume the following:
For all K with K < N, if f : IP® — A satisfies Property M, then f is dictatorial.
Our goal is to prove:
If f:PY — A satisfies Property M then f is dictatorial.
Let f: IPY — A be a SCF that satisfies Property M. Define a SCF g : PV~ —
A as follows. For all (P, Ps, Py,+++, Py) € PV,

g(P1, Ps, Py, -+, Py) = f(P1, P, Ps,- -+, Px)

The idea behind this construction is simple and appears frequently in the liter-
ature on strategy-proofness, for example in Sen (2001). Individuals 1 and 2 are

“coalesced” to form a single individual in the SCF g. This coalesced individual in

g will be referred to as {1, 2}.

It is trivial to verify that g satisfies unanimity. We will show that g sat-
isfies Property M, Pick an individual ¢ and suppose P; and P/ are such that
B(ri(P,), P)) = B(re(P}), P!) for some integer k which lies between 1 and m. Fur-
ther, suppose that for some profile P_; € PN=2 we have g(P;, P_;) € B(ri(F;), F).
We will show that g(P!,P_;) € B(ri(P}),P]). Observe th.a,t if ¢ is an individ-
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ual from the set {3, -+, N}, then this follows immediately from our assumption

that f satisfies Property M. The only non-obvious case is the one where 7 is

the coalesced individual {1,2}. In this case, observe that since f satisfies Prop-
erty M, f(P1, Pr, B, -+, Py) € B(ry(£), F;) implies that (P, P, Ps, -, Py) €
B(ry(F{), P!) which in turn implies that f(P{,P],Ps, -, Py) € B(re(F), P)).
Therefore, g(P/, Ps,-+-, Py} € B{ri(F), P/} which is what was required to be
proved.

Since g satisfies Property M, our induction assumption implies that g is dicta-

torial. There are two cases which will be considered separately.

CASE I: The dictator is the coalesced individual {1,2}. Thus whenever, indi-
viduals 1 and 2 have the same preferences, the outcome under f is the first-ranked
alternative according to this common preference ordering.

" Fix an N — 2 person profile (P, Py,++, Py) € IPY~? and define a two-person
SCF h: IP? — A as follows: for all (P, P;) € IP?,

h(P]_,Pg)=f(P1:P2:P3:”'1PN)

Since {1,2} is a dictator, h satisfies unanimity. Since f satisfies Property M, it
tollows immediately that h also satisfies Property M. From Step 3, it follows that
h is dictatorial. Assume without loss of generality that this dictator is 1. We now

show that 1 is a dictator in f. In other words, the identity of the dictator in h
does not depend on (P, Py, -, Py).

Let j € {3,4,.+,N} and suppose that there exists an N — 2 person profile
(P1,+++, Py) where j can change the identity of the dictator in A (say from 1 to 2)
by changing his preferences from P; to F;. We shall show that this is not possible

when F; and P; differ only over a pair of alternatives, This is sufficient to prove the
~ general case because the change from P; to F; can be decomposed into a sequence

of changes where successive preferences along the sequence differ only over a pair of
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alternatives. Assume, therefore that there exists a pair z,y such that re(P;) = =,
ri+1(F;) = y and rg(P)) = y, rep1(P]) = . Moreover for any alternative z
distinct from z and y, its rank in P; and P_,jf is the same. Consider the profile P =
(P, Pa, P3,+++, P;,+++, Py) where P, and P, have distinct first-ranked alternatives.
Then individual j by switching from P; to F; changes the outcome. Observe that
P; and P; have the same top s elements where s = 1,2, .-,k -1, k+1,--- m.
Since f satisfies Property M, it follows that f(P) and f(Pj, P_;) can differ c;nly if
f(P), f(P;, P-;) € {z,y}. But f(F;, P_;) € {z,y} implies that f(P}, P_;) € {z,y}.
The above statement again follows from the fact that f satisfies Property M. Now
pick P, and P such that the first-ranked alternatives in these two orderings is x
and z respectively where z is distinct from z and y. Since j changes the identity

of the dictator in A from 1 to 2, it follows that f(F;, P_;) = z which contradicts
our earlier claim that f(P}, P-;) € {z,y}. Therefore j cannot change the identity

of the dictator in h by changing his preferences. Therefore the dictator in his a «

dictator in f.

CASE II: The dictator in ¢ is an individual § € {3,::-, N}. Assume without

loss of generality that 7 = 3. Now define a N —1 SCF ¢' by coalescing individuals
1 and 3 rather than 1 and 2 as in g. Of course, g’ satisfies unanimity and Property
M. Therefore it is dictatorial (by the induction hypothesis). If the dictator is the
coalesceﬁ individual {1,3}, then Case I applies and we can conclude that f is
dictatorial, Suppose therefore that {1,3} is not the dictator. We will show that
this is impossible. We consider two subcases.

CASE IIA: The dictator in g’ is an individual § € {4, ..., N}. Assume without
loss of generality that § = 4.In this subcsse, when 1 and 2 have the same prefer-
ences, the outcome under f is 3’s first-ranked alternative but when 1 and 3 agree,

the outcome is 4’s first-ranked alternative. Consider an N person profile P where
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Py = P = F3. Let a be the first-ranked alternative of this ordering. Let the first
ranked alternative in P; be b which is distinct from ¢. Since 1 and 2's orderings
coincide, f(P) must be individual 3’s first-ranked alternative which is a. On the
other hand, since 1 and 3’s orderings coincide, f(P) must be individual 4’s first
ranked alternative which is b. We have a contradiction.

CASE IIB: The dictator in g’ is individual 2. Let P be an N-person profile
where P, = P; and aPbPicPiz for all x 5 a,b,c. Also let dPaaPocPsx fpr all
T # a,b,c and let P, agree with P, for all x # a,b,c Since I and 3 have the
same ordering in P, f{P) = b. Let P; be the ordering obtained by switching
b and ¢ in P3. Since P; and P; agree on the top and the top three elements,
Property M implies that f(Pj, P_3) € {b,c}. Suppose that this outcome is c.
Then observe that Property M implies that f(P, P, Ps,+++, Pny) = ¢ But since 1
and 2's orderings coincide, the outcome at this profile should be 3’s first-ranked
alternative a. Therefore f(Pi, P_3) = b. Now let P; be the ordering obtained
by switching a and ¢ in Pj. Property M implies that f(P,, Py, Ps,++, Py) = b.
A further application of Property M for individual 2 allows us to conclude that
f(Py, P, Ps,- -+, Py) € {a,b}. But 1 and 2 have the same ordering at this profile
so that the outcome here must be 3’s first-ranked alternative which is ¢. We have
obtained a contradiction.

.This concludes Step 4 and the proof cof the Theorem. S

Prooy or THEOREM 2.3.2: For all 1 € N, define M; C A as the set of

measures y; for which the following holds: for all Q, T C IPY
(11:(Q) = (7)) = [@ =T (2.18)

Replicating the arguments in the proof of Theorem 2.3.1, it follows that M is
open and dense in A and that A — M; has Lebesgue measure zero,

-~ Let u; € M;NF;. We now show that the induced conditional belief u; (defined
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unambiguously because y; € JF;) satisfies a similar property. In particular,we show

that, for all P,Q C PV,
|1-i(Q) = p(T)] = [@ =T (2.19)

In order to prove this suppose that equation (2.18) is true but equation (2.19)
is not. Suppose therefore that there exists i, P; and sets @, T C P¥! such that

p_i{Q) = pi(T)

Let p* be the marginal distribution corresponding to u;. Therefore,
p-i (@) () = pes(T) " ()

= 14(Q X {F;}) = w(T x {B})

Since ) and T are distinct, so are @ X {F;} and T' x {F;}. Since the latter sets

are subsets of IPY, we obtain a contradiction to equation (2.18) which we assumed

to be true.

Suppose f is OBIC with respect to (p,« -, n) with y; € M; N F; for all
4 =1,.+,N. Since u; € Fj, inequalities (2.14) and (2.15) hold, so that §2.16)
holds as well. Applying (2.19), we obtain (2.17} again. Therefore Property M
holds and Steps 3 and 4 can be replicated., _

In order to prove Theorem 2.3.3, define M to be the set of (common) prior

beliefs p such that, for all P,Q C PV-1,

(@) = p(M)] = (@ =TT

It is clear that the arguments in the proof of Theorem 2.3.2 go through in this
case with M substituted for M;. |
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Chapter 3

Ordinal Bayesian Incentive
Compatibility and Stable
Matchings

3.1 Introduction

In this chapter we explore issues in incentives related to matching problems and
the design of matching procedures. Matching problems refer to problems which
involve matching members of one set of agents to members of a second, disjoint
set of agents all of whom have preferences over the possible resulting matches. We
focus aﬁtentian on two-sided, one-to-one matching where each agent is matched to
at most one mate. A fundamental notion in this context is a stable matching which
can be defined as a matching such that there does not exist a pair of agents who
would prefer to be matched to each other than to their current partners. Such a
matching is in the core of the corresponding coopérative game which would result
if individual agents were able to freely negotiate their own matches. Gale and

Shapley (1962) show that the set of stable matchings is non-empty..

40



In the strategic version of the model the preferences of the agents are private
information. ‘Therefore any stable matching is computed on the basis of the re-
ported preferences. The agents know that by reporting different preferences they
- can alter the stable matching that is selected and hence change their mate. A nat-
ural question which arises is whether maiching procedures can be designed which
give the agents inventive to truthfully reveal their preferences, and which pro-
duce stable matchings. The truth-telling concept mostly used in the literature is
strategy-proofness, Under strategy-proofness it is & dominant strategy for all the
agents to truthfully reveal their preferences. The question is does there exist a
stable marriage procedure that is strategy-proof, Roth (1982} demonstrates that
there does not exist any matching procedure which is strategy-proof and which
also generates stable matching at every profile of preferences. This result is similar
in spirit to a number of impossibility results present in the social choice literature,
in the context of designing non-dictatorial social choice procedures which operate
in fairly unrestricted domains {Gibbard (1973), Satterthwaite(1975)).

In this essay we weaken the truth-telling requirement from strategy-proofness
to ordinal Bayesian incentive compatibility (OBIC). This notion was introduced in
d’Aspremont and Peleg (1988) in the context of a different problem, that of repre-
sentation of committees and analysed in standard voting environments in Chapter
2. Truth-telling is required to maximize the expected utility of each individual
where expected utility is computed with reference to the individual’s prior beliefs
about the (possible) preferences of other individuals and based on the assumption
“that other individuals follow the truth-telling strategy. Hﬁweﬁer, this truth-telling
notion has one important difference with the standard notion of Bayesian incentive
compatibility used widely in incentive theory (for example auction theory). Under
OBIC truth-telling is required to maximize expected utility for every representa-

tion of an individual’s true preference ordering. Roth (1989) applies the notion of

Bayesian incentive compatibility to the stable matching problem. He generalizes
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the Roth (1982) result to the case where truth-telling is a Bayes-Nash equilibrium
of the revelation game. However, he assumes particular cardinalization of utilities
and makes specific assumptions about priors. Since stable matchings only con-
siders preferences and since individual preferences are ordinal, a more appm%zriaté
equilibrinm notlon would be ordinal Bayesian incentive compatibility.

As we have noted in Chapter 2 ordinal Bayesian incentive-compatibility is a
significant weakening of the strategy-proofness requirement. We might therefore
expect a possibility result to emerge if ordinal Bayesian incentive compatibility was
used as the truth-telling requirement. However our first result states that there
~does not exist any prior such that there exists a stable matching procedure that is
ordinally Bayesian incentive compatible with respect to it.

Our next step is to look for possibility results by putting restrictions on the
set of allowable preferences of the agents. Alcalde and Barbera (1994) loiok at
possibility results by restricting the set of allowable preferences but maintaining
strategy-proofness as the notion of truth-telling. We restrict attention to the class
of preferences where each agent prefers to be matched than to remain single and
show that when each individual’s belief about the preferences of others is uniformly
and independently distributed then there exist stable matching procedures that are
ordinally Bayesian incentive compatible. In a recent paper, Roth and Rothblum
(1999) consider stable matching in an incomplete information environment where
agents have what they call “symmetric beliefs”. If beliefs are uniform then they
are symmetric. Roth and Rothblum discuss stochastic dominance of one strategy
over others in such an environment., They show that if the stable matching Pmce-
dure is the man proposing deferred acceptance algorithm then for any woman with
symmetric beliefs any strategy that changes her true preference ordering of men

is stochastically dominated by a strategy that states the same number of accept-

able men in their correct order. Ehlers (2001) gives an alternative condition to

the symmetry condition on beliefs that leads to the same result. However, none
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of the papers analyse equilibrium behaviour of agents. Our possibility result with
uniform priors follows immediately from and can be seen to be an equilibrium
interpretation of the Roth and Rothblum (1999) and the Ehlers (2001) results.

Qur main result in this chapter is to show that this possibility result is non-
generic, Following the analysis of the previous chapter we assume common’inde-
pendently distributed prior for all individuals and show that for each individual
7 there exists a set of conditional beliefs C; which is open and dense in the set
of all conditional beliefs and whose complement set is of Lebesgue measure zero,
such that no stable matching procedure exists that is ordinally Bayesian incentive
compatible with respect to a prior belief x4 such that the conditionals generated by
1 lie in C;.

The essay is organised as follows. In section 3.2 we set out the basic notation
and definitions. Section 3.3 deals with the case of unrestricted preferences. In
section 3.4 we consider restricted preferences, In subsection 3.4,1 we deal with uni-
form priors while subsection 3.4.2 considers_ generic priors. Section 3.5 concludes.
Appendix A contains the deferred acceptance algorithm while Appendix B briefly

discusses symmetric beliefs.

3.2 Preliminaries

We assume that there are two disjoint sets of individuals which we refer to as the
set of men and women, These sets are denoted by M and W respectively. Elements
in M are denoted by m, m’ etc and elements is W are denoted by w, w' etc. Let
I = M UW denote the entire set of agents. FEach man m € M has a preference
ordering P,, over the set W U {m}. Let Pp be the set of all possible preférence
orderings for man m. Each woman w has a preference ordering F,, over the set

MU {w}. Let P, denote the set of all possible preference orderings for woman w.

‘We denote by P = ((Pn)mem: (Pu)wew), a preference profile for all the agents. Let
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P = X;erP; denote the set of all such preference profiles. We assume that these
orderings are strict. We denote by P_; the collection of preferences for all agents
other than ¢. The set of all such P_;’s is denoted by P_; = X ,;+,P;.

We will usually describe an agent’s preferences by writing only the ordered set
of people that the agent weakly prefers to remaining single. Thus the preference

P, described below,
Py, = w Ppwe PymPp, -« -, Pwy
will be abbreviated to,

P, = u Ppwe Pppm

For reasons that will be obvious shortly, it will suffice only to consider these ab-

breviated preferences.

DEFINITION 3.2.1 A matching is a function v . I — I satisfying the following

properties:
e v(m) e WU {m}
e v(w) e MU {w)
e v(v(i)) =1 Vi e [

We now define a stable matching. Let A(P;) = {j € I|jPi} denote the set of
acceptable mates for agent 7. Obviously for a man m with preference ordering Frp,

A(Py,) € W and similarly for a woman w with preference Py, A(P,) C M,

DEFINITION 3.2.2 A maitching v is stable if the following twe conditions are sat-
isfied

o for all i € I, v(i) € A(F;) U {i}
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o there does not exist (m,w) € M x W such that wFPpv(m) and mPyv(w)

Let S(P) denote the set of stable matches under P. Gale and Shapley (1962)
shows that §(P) is always non-empty for all P € P.
Let M denote the set of all possible matchings. A matching procedure is a

mapping that associates a matching with every preference profile P.
DEFINITION 3.2.3 A maiching procedure is a function f : P — M

If f is a matching procedure and P is a profile, then f;(P) denotes the match
for 1 selected by f under P,

A stable matching procedure f selects an element from the set S(P) for every
P € P. The rest of the essay is concerned only with stable matching procedures.

We now look at strategic issues in the model. In the strategic version of this
problem each agent’s preference over his/her possible mates is private information.
A question of fundamental interest is the following: does there exist a stable,

strategy-proof matching procedure? The answer is negative,

DEFINITION 3.2.4 A matching procedure f is strategy-proof if there does not exist
v e I, P, P; c P, and P_; € X#{Pj such that

filP], P_i) P fi(F;, P_y)

THEOREM 3.2.1 Roth (1982}

A stable and strategy-proof matching procedure does not ezist,

In this essay, we explore the consequences of weakening the incentive require-
ment for stable matching procedures from strategy-proofness to ordinal Bayesian
incentive compatibility. This concept originally appeared in d’Aspremont and*Peleg

(1988) and we describe it formally below.
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DEFINITION 3.2.5 A belief for an individual 1 is a probability distribution on the

set P, t.e. it 1s a map p;: P — [0,1] such that 3 p;(P) = 1.
PEP

We assume that all individuals have a common prior belief p. For all 4, for all
P_; and F;, we shall let u(P_;|F;) denote the conditional probability of P_; given
P;.

Consider a man m. The utility function un, : WU{m} — Rrepresents B, € Py,
if and only if for all 4,7 € W U {m}, |

1Pl & um(z) > '”*(J)

The utility function u,, for a woman w is similarly defined.

For any agent i € I we will denote the set of utility functions representing 7,
by Ui(F)-

We can now define the notion of incentive compatibility that we use in the

essay.

DEFINITION 3.2.6 A maiching procedure [ is ordinally Bayesion Incentive Com-
pattble (OBIC) with respect to the belief y if for alli € I, for all P;,FP] € P;, for
all u; € U(F), we have

> PP UPARY2 T wlAPL PN MPAR) (0D
P_i€P..; P_;eP.; -

As iﬁ the earlier chapter it is possible to give an alternative definition of OBIC
in terms of stochastic dominance. For any agent ¢ € 7, let {; be the set of possible
mates for 7. Thus ifi = m € M, then I; = WU{m} and if i = w then I; = MU{w}.
For all P, € P; and k = 1, |I;], let 74,(P;) denote the k th ranked mate in F,
Le., ri(P;) = j implies that |{l # j|iPij}| = k — 1. For all i € I, for any P; € P;
and for any j € I, let B(j, P;) = {l € L|IPj} U {j}. Thus B(j,Pi) is the set of

mates that are weakly preferred to 5 under F;.
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The stable matching procedure f is OBIC with respect to the belief 1 if for all
i € I, for all integers k = 1,.--, |I;| and for all P; and P/,

u({ P-a| f(Fyy P-i) € B(r(B:), P)HP) 2 u({P=i|f (P!, P_;) € B(re(B), P)}|P)
(3.2)

3.3 The Case of Unrestricted Preferences

¥

The main result of this section is to show that there does not exist any stable mar-
riage procedure that is OBIC with respect to any prior belief p!. In an earlier paper,
Roth (1989) extends the analysis of Roth (1982) by weakening the truth-telling re-
quirement to Bayesian Incentive compatibility. - However, he assumes particular
cardinalization of utilities, The paper shows that there exists specific utility values
and probability distributions for which no stable matching procedure is Bayesian
incentive compatible. The paper therefore, does not rule out the possibility that
there may exist utility profiles and probability distributions for which there exist
Bayesian incentive compatible stable procedures. However, since stable matchings
are based only on ordinal preferences, it is possible to argue that QOBIC is a more

appropriate equilibrium notion. We have the following strong negative result.

THEOREM 3.8.1 Let M|, |[W| > 2 and assume that there are no restrictions on
the preferences of individuals. Then for any prior belief 11, there does not exist a

stable matching procedure f such that f is OBIC with respect to p.

Let f be a stable matching procedure. We first establish a lemma which says the
following: consider an agent 1 € I and two preference orderings' P; and P/ such

that 71(P;) = r,(P!) = j. However under preference ordering P; agent 1 prefers to

ey

1The result holds even if we do away with the assumption of common priors
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remain single than to be matched to any agent other than /. Lemma 3.1 shows
that if for some combination of others preferences P_;, f picks j to be i's mate
when 4 reports F;, then f should pick 7 as i’s mate when i reports P/, Formally

we show the following:

Lemma 3.3.1 Consider an agent 1 € I and two preferences P; and P! such that
ri(F;) = ri{F]) =7 and ro(P!) = i. Then for any P_; € P_,,

[fi( Py P} = j] = [fi P, P~i) = j]

PROOF: It tollows from the definition of stable matching that f;( P/, P_;) € {j.1}.
Suppose that f;(FP;, P_;) = 4. Observe that for agent j, 1 € A(P;)U {5}., Also
since the preferences for all the agents other than i have not changed, we claim
that any k such that kP;7 will not be matched to j under the preference pro-
file (P, P_;). Suppose that ﬁhe claim is not true and suppose that there exists
a k with £P;i such that, & = f;(P/,P-;). Since f is a stable matching proce-
dure it follows that fi(P)}Fg, otherwise (k,j) would have blocked the matching
selected by f under the profile P, Let | = fx(P). Replicating the arguments
above one can show that fi(P/, P.) P fi( P) = k. Otherwise £ and [ would block
the matching f(F, P-;). Let fi(P!, P-;) = k' # k. Observe that k' # 1 for in
the mat;ching f(P!, P_;), i is remaining single. Again by analogous arguments
it follﬁﬁs that fir (P)Pu fur (P!, P—;) = l. Thus there exists a sequence of, pairs
{(kn,ln)in = 1,2,3,+++} where any two pairs are distin_ct (i.e., for any n, and no,

kﬂ-] ‘_}é knz and lﬂ-l 75 Zﬂﬂ) such that f"i:]_ = i, 51 -":j and

by = ff-:n (P)Pfcn fﬁ:n (E’:P—f) = |p41 and
kﬂ'lf'l - fg"(P,;, P"‘i)PInﬁn(P) = kn

Since [ is finite there exists a n* such that,
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ln* = fkﬂ* (.P)Pkn* fk"* (P;, P_.m) and,

there does not exist a k € I'\ {k,}"_, such that fﬁPgn* fi..(P). Then (kpe, lpe) will
block the matching f(F], P_;). Therefore it follows that any k such that kP;i will
not be matched to j under (P}, P.;). Soif f;(P/, P_;) = 1 it implies that for agents

¢ and 7,

jP.;fi(P;, P._.i) —':'—-"3 &nd
1Py f1(P, Pi)

Then f is not a stable matching procedure. We thus have a contradiction, There-

fore f;(F/, P_;) = J. ™

PRrROOF OF THEOREM 3.3.1 Let f be OBIC with respect to pu. Pick 4 c I and
preferences FP; and P}, From (3.2) we get,

w{ P_il fi( Py P=i) = ri(B) YR 2 w{{ Pl fi(F}, P-i) = m (P} HE) (3.3)

Consider a preference profile P such that, B, = wPp,weFn,mu; P, =
Wo Py W1 P,y Py, 1= Mo Py, mi Py, w1y Py, 1= My Py,maPy,wn; also let P; 1=
j for all j € I\ {my,ma,wi,wp}. It is easy to check that S{P) consists of
two matchings 1 and vy where vi(my) = w1, ¥i(ma) = wq, vi{j} = J for all
i € I\ {mq,mg,wi,wn}, va(my) = wy, r(mg)} = wy and we(j) = j for all
j € I\{m1, ma, w1, ws}. Suppose f(P) = v;. Now consider P, := myF,,w,. Then
we claim that the only stable matching in the profile (7,,, P—y,) is 2. Suppose
F(Py,s P—w,) = v. Note that v(w,) is either m; or wy. Suppose v{wq) = we. Then
either v(my) = my or v(mz) = ma. If v(my) = my, then (my, we) blocks v. There-
fore v(m,) = wy and ¥(my) = my. Then (mg,w;) blocks v. Therefore v(wg) = m
and v(w,) = my. But then v = vy, Since fu,(P) = my, fun (P s Pessy) = my and

r1{Py,) = my, it must be the case in order for (3.3} to hold that there exists P_w2
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such that fu,(Pug, Pew,) = my and fy, (P, P_y,) # m,. But from Lemma 3.3.1
this will never be the case. Thus f(P) # v1. Therefore f(P) = vy, Now consider
Pl = w Py my. The only stable matching under the profile (P, Py ) i 11,
By replicating the earlier argument it follows that if f(P! , P ) = v, then f(P)
can never be v, But this is a contradiction. This completes the proof of the

theorem. | .

The result in this section assumes unrestricted preferences, i.e., each man m is
allowed to have any ordering over the set WU {m} and similarly each woman w is
allowed to have any ordering over the set M U{w}. Alcalde and Barbera (1994) put
strong restrictions on preferences to obtain strategy-proof stable matchings. In the
next section we put weaker restrictions on preferences to see whether possibility

results with OBIC can be obtained.

3.4 Restricted Preferences

In this section we examine the stable matching problem for a special class of prefer-
ences. We restrict our attention to the class of preferences where remaining single

is the worst alternative for every agent. That is, each agent prefers to be matched

to some other agent than to remain single.

Formally, the domain D consists of all preferences (Pr, , P,,) satisfying the fol-

lowing conditions:
o for all wy € W, wfP,m ,
e for all m; € M, m;P,w

In this environment a stable matching procedure is a function f: D — M with
the restriction that f(P) € S(P) for all P € D. We denote by D-; the set of all

P_;’s, where P_; is the collection of preferences of all agents other phan g,
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The man proposing and the woman proposing deferred acceptance algorithms
are ways to obtain a stable matching given the preference reports of men and
women. Both algorithms are discussed in Appendix A.

Let fP A(m) denote the stable matching procedure that uses the man pro[.?osing
deferred acceptance algorithm and let f”4() denote the woman proposing deferred
acceptance algorithm, Roth (1982) demonstrates that with the man proposing
deferred acceptance algorithm it is a dominant strategy for men to truthfully reveal
their preferences i.e., it is strategy-proof for men. Since men and women are
symmetric in this model, the woman proposing deferred acceptance algorithm is

strategy-proof for women.

THEOREM 3.4.1 Roth (1982}

The stable matching procedure fPA™  is strategy-proof for men. Similarly,

FPAW) i strategy-proof for women.

3.4.1 Uniformly and Independehtly Distributed Priors

In this section, we assume that the beliefs are independently and uniformly dis-

tributed.

DEFINITION 3.4.1 Individual i’s beliefs are independent if for all K = 1, |1 |
there exist probability distributions ye, @ Py — 0, 1] such that, for all P.; and P,

w(P_i|P;) = Xk;éiﬂk(Pk)

An individual’s belief is independent if his conditional belief about the types of
the other individuals is a product measure of the marginals over the types of the

other individuals. We also assume that the beliefs are uniform.
DEFINITION 3.4.2 For all profiles P, P' € P, we have
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W) = p(F')
We denote these independent, uniform priors by 2. Restating Definition 3.6 in

the present context, we have

PROPOSITION 3.4.1 The matching procedure f is OBIC with respect to the belief
ﬂ Ef, fﬂ?’ ﬂr” ?:, fO‘?' all 'I:TltﬁgGT'S k == 1, 't |Ii|, fOT {L” R and P:’ we have

(Pl fi( sy Poi) € B(ri(8), P)}) 2 U P-i| fi( P, Poi) € B(r{P), P)}Y  (3.4)

We omit the trivial proof of this Proposition.

Roth and Rothblum (1999) define a particular type of belief for agents which

they call “symmetric” beliefs. Symmetric beliefs are discussed in Appendix B. We
note that independent, uniform beliefs are symmetric. They show that if the stable
matching procedure is fPAM then for a woman with symmetric beliefs, a strategy
that changes her true preference ordering of men is stochastically dominated by
a strategy that states the same number of acceptable men in their correct order,
1.e., in the order of the true preference ordering. The same is true for men when
the matching procedure is f24), The following theorem can be treated as an

equilibrium interpretation of the Roth and Rothblum resulis.

THEOREM 3.4.2 The slable marriage procedures fPA™ : D — M and fP4) .

D = M are OBIC with respect lo the uniform prior.

PROOF: We give the proof for f240™, The proof for fPAW) i analogous. From
Theorem 3.4.1 we know that fPAM is strategy-proof for men. So we only need to
check whether fPA(M ig OBIC with respect to the uniform prior for women. Ob-

serve that if any w € W has uniformly and independently distributed prior belief
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then her conditional belief is {A}-symmetric. So Proposition 3.7.1 applies and
hence any strategy that changes her true preference ordering of men is stochasti-
cally dominated by a strategy that states the same number of acceptable men in
their correct order. However, when preference profiles are in D, for any w € W
with preierence order F,, the only strategy that states w’s set of acceptable men
in their correct order is P,,. Since OBIC is equivalent to the stochastic domination

of truth-telling this proves the theorem. K

3.4.2 Generic Priors

'The main result in this section is to show that the possibility result of the previous
section vanish if the beliefs are perturbed appropriately. We continue to assume
first. that the beliefs are independent.

For each agent i, we let A(i) denote the set of all beliefs over the possible types
of 7. If 7 is a man, A(%) is a unit simplex of dimension (|W|+1)—1. If¢ is a woman,
&(z) is a unit simplex of dimension (|M|+1) — 1. The set of all independent priors
A? = X;erA(1). For an agent ¢ and belief ;1 € A’, we shall let u.; ¢'s conditional
belief over the types of agents other than 7. For instance p_;{P_;) will denote the
probability under u that the preferences of agents other than ¢, is P_;. The set of
all such conditional beliefs will be denoted by A®’. Clearly, A“! = xp;A(k).

We now state the main result of this section.

THEOREM 3.4.8 Let {M| = |W| 2> 3 and assume that all individuals have inde-
pendent beliefs. Then for all i € I, there exists a subset C; of AC!(3) such that

o C; is open and dense in AY'(%)
o AY!(3) — C; has Lebesgue measure zero

e there does not exist a stable marriage procedure f : D — M that is OBIC
w.r.t the belief 4 where p_; € C; foralliel. |
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PROOF: The proof praceeds in three steps. In Step 1 we define the sets C; and
show that they are open and dense subsets of A®/(3) and the Lebesgue measure of
their complement sets are zero. In Step 2 we show that if a matching procedure
f is OBIC with respect to u with p_; € C; for all ¢, then f must satisfy a certain
property which we call Top Monotonicity(TM). In Step 3 we complete the proof
by showing that stable matching procedure violates TM.

STEPL:
Pick an individual 1. We define the set C; below.
For any @ C D_;, let pu_4(Q) = ZQ p-i(P-;). The set C; is defined as the set

P--ie
of conditional beliefs u._; satisfying the following property:For all Q, 7 C D_;

11-i(Q) = i) = [@ =T

By arguments similar to the one in the previous chapter we can show that C;
is open and dense in A“’(4) and that A®!({) - C; is of Lebesgue measure zero. We

omit the details here as the proof is provided in the previous chapter.

STEP 2:
Let f be a matching procedure that is OBIC with respect to the belief iz where
L_; € C; for all 7. In this step we show that f must satisfy property TM which we

describe below.

DEFINITION 3.4.3 The marriage procedure f satisfies TM, if for all individueals 1,
for all P_; and for all P;, P! such that r1(P;) = ri(F;), we have

fi(PfI P"i) — Tl(-ﬁ') = fi(ﬂf,P_f) - TI(P;‘!)

Let ¢ be an individual and let P; and P be such that r1(F;) = 71(F;). Suppose

i’s “true” preference is P,. Since f is OBIC with respect to u, we have, by using
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equation (3.2)

p({ Pl fi (P Pg) = r(B)}) 2 s{Plfi(PLPL) =ri(P)))  (3.5)
Suppose ¢'s true preference is F;. Applying equation (3.2) we have

p({P-il fi( Py, Poi) = ri(P)}) 2 p({P-ilfi(B;, Poy) = m(P)}) (3.6)
Combining (3.5) and (3.6) and using the fact that 7,(P;) = r(P!) we get,

p({ P-ilfi(Pry Pug) = 11(F)}) = u({ Pl i B, P=i) = m(PH}) (3.7)

Since p(P-;) € C; it follows from (3.7) that,

{P-il fi( Py, Poy) = m(BP)} = {Py| (P, Pog) = ri(P))} (3.8)

Thus, if for some F; fi(P;, P~i) = ri(P), then (3.8) implies that fi(P!, P_;) =
ri(P}). Therefore f satisfies T'M.

STEP 3: In this step we complete the proof of the theorem by showing that a
stable matching procedure does not satisfy TM.

Let |M| = |W| 2 3 and let f: D — M be a stable matching procedure, i.e.,
for all P € D, f(P) € S(P). Consider a preference profile P defined as follows:

Pﬂu ) "-Uﬁprmwlpmlwﬁpml y T Pmlml
ng = 1U1szwzpmg‘wspmm Yy ngmz
pma V= wlpm3w2p1rnawapmss oy Prama
Pwl » = m1Pw1m3P1u1m2Pwn' "y mel
Py, 1= mspwzmlﬂuzmﬁpwaa' voy Py Wo

Py = My Prys Mo PuyyMaPug, ' Py, ws

For all k # 1,2,3, Pp, = WPy Py and Py, 1= Mg Py, Fuy W
We claim that S(P) = {v, 5} where,
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vy = [, u), (Mg, ws), (ma, wy), (my, wy), k # 1,28

vy = {{my, un), (g, wy), (Mg, ws), (Mg, wy), k£1,2,3

L ]

Observe that , in any stable matching m, must be matched with ws; otherwise
either (any, wq) or (m3, w) will block. Given that, there are only two other possible
combinations: one where my is matched with w; and the other where m; is matched
to we. Both give rise to stable outcomes since there is no pair that will block the
matching. Let f(P) = ». Then fy, (P} = ms. Now consider the preference
ordering P, given by

[

Y v am I » s
le y - ?Illpwlmgpwlmapw” tery 1,U'1

W

We claim that S(Py,, Pw,) = . Observe that in any stable matching in
the profile { 3.,,, yDwy )y g must be matched to wy; otherwise, either (my, ;) or
(mg, wy) will block. Also, mq has to be matched to wy; otherwise, my and w, would
block the matching. Hence the only stable matching is va. Then fu, (Puy, Pew,) =
my. But if fu, (ﬁu,,P._wl) == 11 it follows from TM that, f,, (P) should alsc be
my. Hence [(P) s vy, Therefore, f(P) = 1. Now consider a preference ordering
for m,, f’,,” given by,

Pm; » = “J2Pm1wﬂpnuwlpm1: "y Pm1m1
Replicating the carlier arguments we conclude that S(Pmyy P-m,) = 1. Then

S (f’m;. P = But then TM implies that fm, (P) should also be w; i.e.,

ERHY

F(P) = 1. Bul this is a contradiction for we have shown above that f(P) # v1.

This completes the proof of the theorem. _

RIEMARK 3.4.1: The result in Theorem 3.4.3 is valid even when |M| 5 |W|.
Let M = {my, «,mp} and W= {wy, - 1wy }. Without loss of generality assume
nce profile P defined in the following way:
P, =

that m < n. Consider the prefere

for all k < m, P, is defined in the same way 88 above; for & > ’m,
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w3l P Observe that under the preference profile P any selecti
ion

from the set of stable marviages divides the set of agents into three groups
S men
m1, Ma and my and women wy, wy and wy form matchings among themselves: W
t Wh

is matched to my for all 3 < & < m and the remaining set of men are t;cnrced

to remain single. Now replicating the arguments above we obtain the

Theorem 3.4.3.

result in

REMARK 3.4.2: When there are only two agents on each side of the market

and preferences ave restricted to the set D, Alcalde and Barberd (1994) show
that the stable matehing selections obtained by the man-proposing and woman-

proposing deferred aceeptance algorithms are both strategy-proof.

3.5 Conclusion -

We have examined the implications of weakening the incentive requirement in
the theory ol two-sided one-to-one matching from dominant strategies to ordinal
Bayesian incentive compatibility. Truth-telling is no longer assumed to be optimal
for every conceivable strategy-tuple of the other players. It is only required to
maximize expected utility given an agents’ prior beliefs about the types of other
players and the assumption that these players ave following truth-telling strategies.
The set of ordinal Bayesian incentive compatible stable matching procedures c_learly'

depends on the heliefs of each agent. However, we show that when preferences

are unrestricted, there is no stable matehing procedure that is ordinally Ba;:esian |
incentive compatible with respect to any prior. When we put restrictions on the set
of allowable preferences, hy requiring that every agent prefers to be matched than B
to remain single, one obtains possibility results with independently and uniformly
distributed priors. Howoever the possibility result is non-generic. It we per.t'ﬂrb_ '

beliefs we get back the impossibility result.

o7



3.6 Appendix A: Deferred Acceptance Algorithm
Man Proposing Deferred Acceptance Algorithm

STEP 1: Kach man makes an offer to the first woman on his preference list of

acceptgble women. Bach woman rejects the offer of any firm that is unacceptable
to her, and each woman who receives more than one acceptable offer rejects all but
her most preferred of these which she “holds”, |

STEP K: Any man whose offer was rejected at the previous step makes an offer
to his next choice (i.e,, to his most preférred woman amorng those who have not
yet rejected it), so long as there remains an acceptable woman to whom he has not
yet made an offer. If a man has already made an offer to all the women he finds
acceptable and has been rejected by all of them, then he makes no further offers.
kach woman receiving offers rejects any from unacceptable men, and also rejects
all but her most preferred among the set consisting of the new offers together with
an offer she may have held from the previous step. ! |

STOP: The algorithm stops after any step in which no man’s offer has been
rejected. At this point, every man is either being matched to some woman or
his offer has been rejected by every woman in his list of acceptable women. The
output of the algorithm is the matching at which each woman is matched to the
man whose offer she is holding at the time the algorithm stops. Women who do

not receive any acceptable offer or men who were rejected by all women acceptable

to them remain unmatched.

3.7 Appendix B: Symmetric beliefs
In this section, we Efiéﬂy discuss symmetric beliefs. For the ensuing analysis some

definitions are in order, For a given preference profile, denote by Ps the preference

orders of the agents in the subset S C L Denote by P*™ the preference orders
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of the agents in S obtained from P by switching m and m/, i.e., each woman
in 5 exchanges the places of m and m' in her preference list and if m is in S his
preference is P,y and if m’ is in S its preference is P,,,. Note that if woman w's true
preferences are given by P, then P™“™ jg the preference in which she reverses
the order of m and m' (but otherwise states her true preferences), Similarly, P_,

and P™°™ are assessments by agent w of the preferences of all other agents that

are 1dentical except that the roles of m and m' are everywhere reversed.
We model agent w’s uncertainty about the about the differences in the prefer-

ences of men m and m’, and about the other women’s preferences for the two men

as [ollows:

DEFINITION 3.7.1 Given distinct men m and m/ we say woman w’s conditional

belief 14(.|Py) is {m,m'} ~symmetric if u(P-y|Py) = p(P™O™|R,).

Observe that w may know a great deal about m and m' ( for example w may
know that both men prefer w' to some w”. What w does not know about m and

m’, if her conditional beliefs are {m,m'}-symmetric are any differences in their

preferences, or in other women’s preferences between them.

DEFINITION 3.7.2 Ior ¢ woman w € W and a set of men U C M, we say that
w's conditional belief 11(\|Py) is {U}-symmetric if it is {m, m'}-symmetric for every

patr (n,m') of distinet members of U.

If U = M then woman w's belief is {M }-symmetric. We can similarly define

{W }-symuetrie boliefs for o man m € M.

PROPOSITION 3.7.1 ( Corollary I in Roth and Rothblum (1999))
For o woman with { M }-symmetric conditional belief, any strategy that changes
the true preference ordering of men is stochastically dominated by a strategy that

states the same number of acceptable men in their correct order.
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Observe that the uniform prior g is { M }-symmetric for the women and {W'}-

symmetric for men.
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Chapter 4

lTop-Pair and Top-Triple

Monotonicity

4.1 Introduction

An important part of social choice theory is the study of elections and committee
decisions. The central object of interest in these settings is a social choice function
(SCIF). A SCF is a mapping which associates a feasible outcome with every profile
of voter preferences. It can be thought of as representing the goals of a “principal”
or a “planner”. A typical question that is addressed is the following: what is the
class of SCEFs which satisfies certain “desirable” properties or axioms in a particular
envirmuﬁuut'?

An axiom that appears [requently in the literature is Maskin Monotonicity
(MM) or Slrong Positive Association (SPA). This axiom expresses a very natural
idea. If an oulcome is selected at a given profile of preferences and if it “impfpvea"
in some agent's preference ordering, the preferences of all the others remaining the
same, then this alternative must continue to be selected. More formally, consider

an alternative z, an agent 7 and preference profiles (P, P_;) and (F}, P.;) such
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that if F; ranks alternative z above alternative g, then P/ also ranks z above that
y. A SCF f satisfies SPA if f(P;, P-;)) = = implies f(P{, P_;) = z. For a more

extensive discussion of this axiom and several variants, the reader is referred to
Moulin(1983).

There is a deeper reason why MM/SPA is of great interest. It turns qut to
be of critical importance in the theory of strategic voting. For instance, Maskin
(1999) demonstrates that if a SCF is implementable in Nash equilibrium then it
satisfies SPA . Moreover, SPA is “almost” sufficient for Nash-implementability.
Similarly there is an extremely close relationship between SPA and the property
of strategy-proofness. In a situation where an agent’s preference ordering is private
information, a strategy-proof SCF provides each agent with dominant strategy
incentives to reveal their private information truthfully. Muller and Satterthwaite
(1977) show that if the domain of preferences consists of all linear orders over the
set of alternatives, then strategy-proofness and SPA are equivalent. Tanaka (2001)
analyses this relationship in the case where indifference is permitted in individual
preferences and Nehring (2000) considers the case of social choice correspondences.

What is the class of SCFs that satisfy SPA over a universal domain of prefer-
ences? An answer can be found immediately by combining the Muller-Satterthwaite
result with the classical Gibbard-Satterthwaite Theorem. If there are at least three
alternatives, a SCI' defined over a domain consisting of all possible linear orders
satisfies SIPA and unanimity only if it is dictatorial . In fact some proofs (e.g.
Reny (2001)) of the Gibbard-Satterthwaite Theorem proceed by showing directly
that SPA implics dictatorship and then exploiting the equivalence of SPA and
strategy-prooiness,

In this cssay we show that a much weaker requirement than SPA implies dicta-

IMaskin congidered the more general social choice correspondences (SCGs) which are set-
valued SCIE's.

211 indifference is permitted, an impossibility result obtains.
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torship. ‘The implications of this result are two-fold. First, it becomes clear that
“very little” of SPA is required to prove dictatorship. Secondly, it demonstrates
quite dramatically, the robustness of dictatorship results. Below we describe two

monotonicity criteria which we call Top-Pair Monotonicity (TPM) and Top-Triple

Monotonicity (TTM). Both TPM and TTM embody the same “invariance under
improvement” 1dea as SPA. However, the improvement is relative to a set rather
than an alternative. Let f be a SCF. Let ¢ be an agent and let (F;, P-;} and
(P, P_;) be two preference profiles where P, and P/ are such that the first k-

i

ranked elements in these two orderings is the same. We can then think of the set
of the first k-ranked alternatives in F; (let us refer to this set as B) “improving”
between (I, P_;) and (P}, P_;}. In the spirit of monotonicity we might require
that if f(I%, P-;) € B, then f(P,P.;) € B. The TPM condition is precisely
this requirement but only for the cases of k = 1,2. Similarly TTM is the same
requirement but for the cases k = 1,2,3. Thus TPM is equivalent to the follow-
ing two requirements:(i) if f(P;, P-;) = x where z is the top-ranked alternative
in P, and z remains the top-ranked alternative in P, then f(F;,P_;) = x (ii) if
f(P;, P-;} = x where {z,y} is the set of first and second - ranked alternatives in
P, and {w,y} remains the set of first and second - ranked alternatives in £, then
f(P!, P.) € {x,y}. On the other hand, in addition to (i) and (ii) TTM requires
the following third condition (iii) if f(P, P-;) = = where {,y, z} is the set of the
three top-ranked alternatives in P; and {z,y, 2z} remains the set of first, second and
third- ranked alternatives in P/, then f(P!, P-;) € {z,y,2}. It is clear that T'TM
implies TPM. We will show that SPA implies T'TM

We give two charvacterization results. One result is for the two-person case and
states that if there are at least three alternatives, a two-person SCF satisfies TPM
and unanimity only if it dictatorial. A striking fact is that if there are mora than
two individuals TPM does not imply dictatorship. We give an example to show that

there exist three-person SCIg that satisly TPM and unanimity and are yet non-
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dictatorial. This leads to our second characterization result for an arbitrary number
of individuals where we show that any SCF that satisfies TTM and unanimity must
be dictatorial. We think that the result is striking because both TPM and TTM
appear to be significantly weaker than SPA. It places restrictions on the SCF for
improvements which occur only “near the top” of the preference ordering of an
agent. It is clear that SPA, on the other hand, considers a much wider class of
improvements.

The essay 1s organised as follows. In section 4.2 we set out the basic notation
and concepts and illustrate our monotonicity criterion through some examples.

Section 4.3 contains the case of two individuals. In section 4.4 we consider the

pencral case of N individuals. Section 4.5 concludes.

4.2 Preliminaries

The set N = {1,..., N} is the set of voters or individuals, The set of outcomes is the
set A with |A| = m. Elements of A will be denoted by a, b, ¢, d etc. Let IP denote
the set of strict orderings® of the clements of A. A typical preference ordering will
be denoted by I where al%b will signify that a is preferred (strictly) to b under
P:.. A preference profile is an element of the set JPY. Preference profiles will be
denoted by P2, P, ' ete and their é-th components as P;, P;, P! respectively with
i=1, -, N. Lot (J% ;) denote the preference profile where the i-th component
of the profile 17 is roplaced by P;.

Forall I ¢ 1P and k= 1,..-, M, let 7(1%) denote the & th ranked alternative

in P, L.e., 7e{J%) == a implics that [{b # a|lbPa}| =k — 1.

DEFINITION 4.2.1 A Social Choice Punction or (SCF) f is a mapping f : IPY —
A

S LT Ll - s i

A strict ordering is a complete, transitive and antisymmetric binary relation
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Throughout the chapter, we assume that SCFs under consideration satisfy the
axiom of unanimity. This is an extremely weak assumption which states that in
any situation where all individuals agree on some alternative as the best, then the

SCF must respect this consensus. More formally,

DEFINITION 4.2.2 A SCF f is unanimous if f(P) = a; whenever a; = r((F;) for

all individuals 1 € N,

We now introduce some definitions which are well-known in the literature.

Let P; be an ordering and let z € A. We say that P/ represents a ﬂ;-improvément

of P; if for all y € A, 2Py = xPy.

DEFINITION 4.2.3 The SCF [ satisfies Strong Positive Association (SPA) if for
all i, P, P! and P_;

|f (P, P_;) = z and P represents o z-improvement of F;| = [F(P!, P;) = «

A SCF satisfies SPA if it is the case that whenever an alternative is selected at
a profile, it continues to be selected if the alternative “improves” for some agent.
The next definition is that of a strategy-proof SCF. Such an SCF has the property

that truth-telling is a dominant strategy for all agents.

DEFINITION 4.2.4 A SCF [ is strategy-proof if there does not ezist i € N, P, P| €
P, and P.; ¢ IPY-Y such that

f(PL P)YPf(P, Pos)

Muller and Satterthwaite (1977) characterized the relation between SPA and

strategy-proofness,

THEOREM 4.2.1 Muller and Satterthwaite(1977)
A SCF satisfies strategy-proofness if and only if it satisfies SPA.
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A special class of SCFs is described below.

DEFINITION 4.2.5 A SCF f is dictatorial if there ezists an individual i such that,
for all profiles P we have f(P) = r{(B).

A fundamental result which characterizes the class of strategy-proof SCF's is

the Gibbard-Satterthwaite Theorem which we state below

THEOREM 4.2.2 Gibbard (1978), Satterthwaite (1975)

Assume m > 3. A SCF is unanimous and strategy-proof if and only if it is
dictatorial.

The theorems above immediately lead to a characterization of the class of SCFH's

that satisty SPA and unanimity over the full domain of preferences. This is the

class of dictatorial SCFs.

Let ¢ be an integer, 1 < t € m. We now introduce the definition of Top-t
Monotonicily where 1 <t < m.

For all i € I, Py € IP and a € A, let B(a, ) = {b € A|bPe} U {a}. Thus

B(a, ;) is the set of alternatives that are weakly preferred to ¢ under P,

DEFINITION 4.2.6 The SCF f satisfies Top-t Monotonicity if, for alli € N, for all

integers k = 1,2, -1, for all P_; and for all P; and P! such that B(ri(P), B;) =
B{r (P, 1)), we have

(S (P P} € B((F), P = [f (P, P-i) € B(ri(P), PY)]

As outlined in the Introduction, Top-t Monotonicity embodies an “invariance
under set improvement” idea. Pick an integer & lying between 1 and ¢. Let F; and
P! denote two preference orderings whose set of top k, denoted by B coincides. If,

at the profile (%, I’.;), [ picks an element in B, then it must pick an element in

(0



B at profile (P, F_i) if it is to satisfy Top-t Monotonicity. The idea is that the set
B has (weakly) improved in P; vis-a-vis P},

We now introduce some special cases. If ¢ = 2, the resulting monotﬁhicity
property is TPM. For { = 3, it is TTM and if { = 1, we obtain Top Monotonicity
(TM).

REMARK 4.2.1 Observe that Top-t Monotonicity implies Top-t' Monotonicity,
where £ > ¢ and 1 < ¢,¥ < m.

PROPOSITION 4.2.1 If a SCF satisfies SPA then it satisfies Top-(m — 1) Mono-
tonicity.

PROOI: Let f be a SCT satisfying SPA. We will s.how that f satisfies Top-(m—1)
Monotonicity. Let P be a preference profile. Consider any k& € {1,.++,m—1}." Let 1
be an individual and let P/ be an ordering such that B(ri(5), P;) = B(rx(FP), F}).
Let f(P) = x where ¢ € B(ry(P), P). We claim f(P/,P_;) € B(re(F), P}).
Suppose that the claim is false. Let f(P/, P-;) = 2z where z € A — B(ri(F}), P}}.
Observe that 2 is ranked above z in P!, Let P, be another ranking such that
is the top-ranked alternative and z is the second-ranked alternative. Since P, is a
g-improvement of P; and f satisfies SPA, f(P;, P-;) = x implies f (151-._. P)=z
Again since I is n z-improvement of P/ and f satisfies SPA, f(P/, P_;) = z implies

f(P, P.i) = z. We therefore have a contradiction. n

REMARK 4.2.2 Since Top-(m - 1) Monotonicity implies TTM which in turn
implies TPM, it {ollows that SPA implies TTM and TPM.
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4.3 The N = 2 Case

The main result of this section is to show that for a two-person SCF, TPM along

with unanimity implies dictatorship.

THEOREM 4.3.1 Assumem > 3. If a SCF f: IP? — A is unanimous and satisfies
TPM then it is dictatorial.

PROOF: Assume m > 3 and let f : IP?2 — A be a SCF satisfying unanimity and

TPM. The proof follows from the two lemmas.

Lemma 4.3.1 For all profiles (P, P,), either f(P, Py) = ri(P) or f(P, Pp) =
r(Pz) must hold.

PROOI": buppose not. Let (P, P) be a profile where individual 1’s first-ranked
alternative is a, individual 2’s first-ranked alternative is b and suppose f(P, ) = ¢
where ¢ is distinct from @ and b. Consider an ordering P, such that aPybPyz for all
z # a,b. By unanimity f(P;, ) = a. Consider an ordering P; where b is ranked
first and a second. Observe that the top two elements in the orderings P and P
coincide. Moreover, f(Iy, %) is one of these top two elements. It follows therefore
{rom TPM that f(P, Py € {a,b}. Suppose that f(P, ;) = b Observe that B
and P have the same top element b, Applying TPM it follows that f (P, P) =
which contradicts our agssumption that the outcome at this profile is c. Thelrefore
f(P, Py) = a.

Let P! be an ordering where o and b are ranked first and second respec-

tively. Since P, and P! have the same top element (which is a), TPM implies
that f(P{, %) = a.
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Now consider the profile (P{, P»). By considering an ordering P, where b is
ranked first and a second, we can duplicate an earlier argument to conclude that
f(P, P,) is either a or b. But if it is b, then TPM ‘would imply that f(P}, P}) = b
which would contradict our earlier conclusion that the outcome at this profile is a.
Therefore f(P], P;) = a. But then TPM would imply that f(Py, Ps) = ¢ whereas

we have assumed that the outcome at this profile is e. This proves Lemma 4.5.1,

Lemma 4.3.2 If | picks 1’s first-ranked alternotive at o profile where 1 and 2’s

first-ranked ouicomes are distinct then [ picks 1's first-ranked alternative at all

profiles.

PROOEF: Let (P, Py) be a profile where the first-ranked alternatives according to
Py and P are a and b respectively. It follows from Lemma 4.3.1 that f(P, P)
is either a or b. Holding P, fixed observe that the outcomes for all the profiles
where a is th top-ranked outcome for individual 1 must be a, otherwise TPM will

be violated. By a similar argument, holding P, fixed, the outcome for all profiles

where b is ranked first for individual 2 can never be b. Now consider an arbitrary

profile where a is ranked first for 1 and b for 2. Using Lemma 4.3.1 and the

arguments above, it follows that the outcome must be a.

Consider an outcome ¢ distinet from a and b. In view of the arguments in the
previous paragraph, we can assumne without loss of generality that ¢ is second-
ranked under 1%, Let P be an ordering where ¢ and a are first and second ranked
respectively. Then TPM implies that f(FP, ) is either ¢ or ¢. But Lemma 4.3.1
requires the outcome at this profile to be either & or ¢. Therefore f (P, Pg)i = C,
Applying the arguments in the previous paragraph, it follows that f always picks
s first-ranked alternative whenever 2's first-ranked alternative is 0.

Let (P, ;) be a profile where a and b axe first-ranked in P; and P, respectively.

Pick an alternative z distinct from a and b. Applying earlier arguments, we can
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assume that x is second-ranked in P, Let Pj be an ordering where z is first and &
is second ranked. It follows from Lemma 4.3.1 that f(P,, P2) is either x or a. But
if it is z, TPM would imply that f(P,, ;) would either be b or z which we know to
be false. Therefore f(P, P;) = a. Replicating earlier arguments, it follows that the
outcome at any profile is 1's first-ranked alternative provided that 2’s ﬁrst-r:anked

alternative is z. Since z is arbitrary, Lemma 4.3.2 is proved. -

It follows immediately from Lemma 4.3.2 that f must be dictatorial. Therefore

Theorem 4.3.1 is proved. o

REMARK 4.3.1 The arguments above borrows from those in Sen(2001)

We now give examples to show that both parts of TPM ie., TM and k = 2

monotonicity are essential [or dictatorship in the two-person case.

EXAMPLE 4.3.1: We now demonstrate the existence of a non-dictatorial
SCFE satisfying I'M but not TPM. For an arbitrary number of individuals the
plurality correspondence is defined in the following way: for any profile P the
correspondence sclects all those alternatives (called plurality winners) which are
top-ranked by the largest number of individuals, Consider a SCEF f obtained
from the Plurality correspondence by breaking ties at cach profile according to an

n

ordering “>" of the clements of A,

Woe claim that [ satishes TM. To see this consider a prolile P where f picks an
alternative « which is individual #'s top-ranked alternative under ;. Let P be any
other ordering where « is top-ranked. Observe that the set of Plurality winners
at (P!, P..;) is exactly the same as at P. Since ties are broken with respect to the

same ordering >, it follows immediately that f(F;, P-;) = a so that T'M holds.



We now claim that f does not satisfy TPM. Consider the special case of N =
{1,2} and A = {a,b,c} with @ > b > c. In the profiles (P, ) and (P, P})
described below we have f(P;, P;) = a and f(P,, P;) = b. But TPM would require
f(P1, P} € {a,c}

P P ,
/a b
fle al|=a (4.1)
\ b ¢
But,
P B
¢ b \
fla a]|=b (4.2)
b c )

EXAMPLIZ 4.3.2: We now give an example to show that there exist non-
dictatorial SCI's that satisfy the monotonicity criterion for & = 2 but not for
k = 1. Consider a socicty with two inclividuals, N = {1, 2} and suppose that there
are four alternatives i.c., A = {a, b, ¢}. Define the SCIF in the following way: in any
profile I?, il the set of the {ivst and the second-ranked alternatives for individuals
1 and 2 are the same, {the orderings need not be the same) then the outcome is
s top-ranked alternative, Otherwise, it is 1's top-ranked alternative,

This SCE is clearly non-dictatorial. We claim that thig SCI° satisfies & = 2
monotonicity. For any profile where the top two alternatives are the same for in-
dividuals 1 and 2, the outcome is 2's top. So if we interchange the positions of
the alternatives in cither 1 or 2’s ranking, the outcome continues to remain 2's
top-ranked alternative which obviously is in the set of the top two alternatives.

Consider now a profile where the top two alternatives are different for 1 and 2.
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The outcomd in 1’5 top. 1 the positions of the two Lop-ranked alternatives in 1's

oreference ordering are interchianged, the outeome continues to be 1's top and thus

top-two monotonicity is satisfied. Consider now the case where the two top-ranked

Jlternatives in 2" preference ordering ave interchanged., If s top-ranked alter-

qative is distinet from the twa top-ranked alternatives for 2, k = 2 monotonicity

1o vacuously sabisfied.  Otherwise if 1's top is the same ag either 2% top or 2's

second-ranked alternative, observe that k& == 2 monotonicity js satisfied because

the outcome remaing unchnnged.

But now, consider the profile (14, 1) and (P{, %) deseribed below., We have

f(P}, Pg,) m o el f( jl'* ﬁi,) T
I
/ L
]

\b

Notice Lhat,
I-.Jll

{1

&

But TM requires f(1Y, Th) - a

44 The N >» 3 Case

1y

i/
(1 e 1 (£1.3)

[i

Py

b
(4.4)

We begin this section with an example to show that il there are more than two

Individuals, TPM no longer iraplies dictatorship.
EXAMPLE 4.4.8: Let [ = {1,2,3}, and let A = {a,b,c,d}. A SCF, f1s

deﬂned in the following way. For any profile P,
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(i) if the top-ranked alternatives for individuals 1 and 2 are the same then the

outcome is individual 3’s top-ranked outcome

(ii) if the top-ranked alternatives for individuals 1 and 2 are not the same then

there are two sub-cases to consider:

(iia) Suppose that the top-ranked alternative for individual 3 is one of in-
dividual 1 or 2's top-ranked alternative. Then, f picks the alternative

which is either individual 1’s top or individual 2’s top but not individual

3’s top.

(iib) Suppose that individuals 1,2 and 3 have distinct top-ranked alternatives.

Then f picks the (unique) alternative which is not top-ranked by anv

of the individuals 1,2 and 3.

Cases (i) and (ii) exhaust all cases, so that f is well-defined.,

It is clear that f is non-dictatorial. We will show that it satisfies TPM. In
order to do so, we will consider, in turn profiles satisfying cases (i), (iia) and (iib)
and examine the changes in outcomes which occur when individual preferences are

changed.

First consider the case of a profile satisfying (i). Assume without loss of gen-
erality that 1’s and 2’s top is a while 3’s top is b, The outcome is then b. If 3's
preferences are changed the outcome will remain 3’s top. It is trivial to verify that
TPM will hold for such preference changes. Consider now a change in 2's prefer-
ences (identical arguments hold for changes in 1's preferences). In order for TP\
not to be satisfied vacuously, it is necessary to assume that b is ranked second in
2's initial preference ordering. Consider a new preference ordering for 2 where b 1s
first and @ second-ranked. For the new profile, case (iia) applies and the outcome

is a, Clearly TPM holds.
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Now consider the case of a profile satisfying (iia). Assume without loss of
generality that 1,2 and 3’s top-ranked alternatives are a, b and a respectively. Once
again we consider changes in the preference orderings of 1,2 and 3 and show that
TPM is satisfied in each case. For changes in 1’s preferences, the only non-vacuous
case to consider is the one where b is ranked second in the initial ordering. Suppose
1’s preferences are changed so that b is ranked first and a second., Case (i) applies
for the new profile and the outcome here is a. It follows that TPM holds. A
very similar argument can be made for changes in 3’s preferences. The only non-
vacuous case to consider in order to check TPM is the one where a is ranked
second in 3’s preference ordering. In the changed preferences for 3, b is ranked first
and a second. Case (i) applies to the new profile and the outcome is a. Clearly
TPM holds. Finally consider a change in 2’s preferences. Assume without loss
of generality that in the initial preference ordering for 2, alternative c is second-
ranked while in the new ordering, ¢ is first-ranked and b second ranked. Case (iia)
applies to the new profile. The outcome is ¢ and TPM holds.

I’inally consider the case of a profile satisfying (iib). Assume without loss
of generality that 1,2 and 3’s top-ranked alternatives are a,b and c respectively.
Consider a preference change for 1. The only non-trivial case to consider for the
purpose of verifying TPM is the one where d is ranked second. Now change 1’s
preference so that d is ranked first and a second. The outcome in the new profile
is a (cash (iib) applies) and TPM holds. An identical argument holds for changes
in 2's and 3’s preferences. Therefore f satisfies TPM, We now show that f does
not satisfy TTM. Consider the profiles (Py, Py, P3) and (P, Py, P3) below. We have



f(P1:P2:P3) = b and f(‘P].!PEJ“P:;) = d.

P P, B
| /a b a
b a ¢
f = b (4.5)
¢ ¢ b
\ d d d/
P P, P
( a b ¢
b a a
f = (4.6)
c ¢ ¢
\d d d

However since the top three alternatives in P; and P} coincide and since f( Py, P, Ps)
is one of these alternatives, TTM requires f(P;, Py, P!) to be one of these alterna-

tives too, i.e., f(P1, P, Pj) € {a,b,c}. Clearly f violates TTM. In the next section

we show that it is T'I'M that guarantees dictatorship in the general N-person case.

Our main result in this section is to show that if TPM is strengthened to T'TM,

dictatorship is obtained once again,

THEOREM 4.4.1 Assume m 2 3. Ifa SCF f : IPY — A, N > 3, satisfies

unonimily and TTM, then it is dictatorial.

PROOTF: We will prove the result by induction on N, the number of individuals.
An important observation that we make at the outset, is that Theorem 4.4.1 is
valid for the case N = 2. This follows from Theorem 4.3.1 and the fact that
TTM implies TI’M. In order to prove Theorem 4.4.1, it therefore suffices to prove

- Statement A below.



STATEMENT A: Pick an integer V > 2, Suppose for all i, 2 < I < N, f:
IPK 5 A satisfies unanimity and TTM implies f is dictatorial, Then f : PV — A

satisfies unanimity and T'TM implies f is dictatorial.

We now prove Statement A. Assume m > 3. Let f: IPY — A be a SCF that
satisfies unanimity and TTM. Define a SCF ¢ : IPY~! — A as follows. For all
(P11P3;P41'”1PN) EEDN_11

9(P1:P3:P41”'1PN)zf(PerhPS:"HPN)

In this construction individuals 1 and 2 are “coalesced” to form a single individual
in the SCI' g. This coalesced individual in g will be referred to as {1, 2}.

It is trivial to verify that g satisfies unanimity. We will show that g satisfies
TTM. Pick an individual ¢ and suppose P; and P are such that B(?';,.(Pi),'Pi) ==
B(ry(P]), P), for some & = 1,2,3. Further, suppose that for some profile P_; &
PY-% we have g(P;, P_;) € B(re(P), ;). Wewillshow that g(P/, P_;) € B(r (P!}, P)).
Observe that if ¢ is an individual from the set {3,:-+, N}, then this follows immedi-
ately from our assumption that f satisfies T'TM. The only non-obvious case is the
one where 7 is the coalesced individual {1, 2}. In this case, observe that since f sat-
isfies T'IM, f(F, Py, Py, +, Py) € Blry(17), I7) implies that f(P), P, Py, o Py) €
B(ri (7)), P{) which in turn implies that f{I], [, Pa, . Py) € B(ri(P)). P}).
Therefore, (1], Py, -+, Pn) € B(r (%), P{), which is what was required to be
proved.

Since g satislies TTM, our induction assumption implies that g is dictatorial.

There are two c¢ases which will be congidered separately.

CASIE I: The dictator is the coalesced individual {1,2}. Thus whenever, indi-
viduals 1 and 2 have the same preferences, the outcome under [ is the first-ranked

alternative according to this common preference ordering.
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Fix an N — 2 person profile (Ps, Py, ++, Py) € IPY-2 and define a two-person
SCF h: IP? — A as follows: for all (P, P,) € IP?,

h(P]_,Pz):f(.Pl,Pg,Pa,"',PN).

Since {1,2} is a dictator, h satisfies unanimity. Since f satisfies T'TM, it follows
immediately that h also satisfies TTM. From Theorem 4.3.1 and Remark 4.2.1, it
follows that h is dictatorial. Assume without loss of generality that this dictator
is 1. We now show that 1 is a dictator in f. In other words, the identity of the
dictator in & does not depend on (Py, Py, « -+, Py).

Let j € {3,4, -+, N} and suppose that there exists a N — 2 person profile
(P3, -+, Py) where j can change the identity of the dictator in k (say from 1 to
2) by changing his preferences from P; to P;-'. Let us first consider the case where
ri{P;) = 71{F;) = z (say). Consider a P, and P, such that r\(P) =z #£ y =
r1(F). According to our hypothesis f(P;, P_;) = and f (P}, P-j) = v. But since
P; and P; have the same top elements, it follows from TTM that, f (P}, P_;) = .
So when P; and P; have the same top elements j cannot change the identity of
the dictator. The only other case to consider is where the top elements of P
and P; are distinct. Let r\(F;) = z and r(P]) = y (z # y). Pick alternative a
distinct from x and y and assume that 2 PiaPyw for all w # a, 2 and aPyPyz for
all z # a,y. Consider the preference ordering for individual j, P; where 2Py Pyu
for all w % x,y. By TTM, f(P;, P_;) = z. Let P; be an ordering where y is ranked
first and 2 sccond. It follows from TTM that, f(P;, P-;) € {z,y}. But y is not

the top ranked outcome for either 1 or 2. Therefore f (Pj,P,,j] = . Let P, be an

ordering where y and a are ranked first and second respectively. Since either 1 or
2 is the dictator in f, it Tollows that f(Pl,ﬁ’g,- o f”- v+, Py) € {z,y}. Butifit is
y, TTM implies that f(P;, P-;) € {a,y}. But by our earlier claim f(P;, P_;) = z.
Therefore, f(Py, Py, 1331l .. Pxn) = z. By assumption 2 is the dictator when
j's preference ordering is P;. Therefore f (Py, Py, +yPf, o+, Py) = y. Therefore
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TTM implies f(P, P, - ,E, v+, Py) = y, which contradicts our earlier claim
that f(P, 132, y ,ﬁj, +++, Py) = z. Therefore j cannot change the identity of the

dictator in h by changing his preferences. Therefore the dictator in h is the dictator

in f,

CASE II: The dictator in g is an individual § € {3,-.+, N}. Assume without
loss of generality that j = 3. Now define & N — 1 SCF ¢’ by coalescing individuals
1 and 3 rather than 1 and 2 as in g. Of course, ¢’ satisfies unanimity and TTM.
Therefore it is dictatorial (by the induction hypothesis). If the dictator is the
coalesced individual {1,3}, then Case I applies and we can conclude that f is
dictatorial. Suppose therefore that {1,3} is not the dictator. We will show that
this is impossible, We consider two subcases.

CASE ITA: The dictator in ¢’ is an individual § € {4,.--,N}. Assume with-
out loss of generality that § = 4. In this subcase, when 1 and 2 have the same
preferences, the outcome under f is 3’s first-ranked alternative but when 1 and 3
agree, the outcome is 4’s first-ranked alternative. Consider an /N person profile P
where P, = Py = P3. Let a be the first-ranked alternative of this ordering. Let
the first ranked alternative in Py be b which is distinct from a. Since 1 and 2's
orderings coincide, f(P) must be individual 3’s first-ranked alternative which is a.
On the other hand, since 1 and 3's orderings coincide, f{P) must be individual 4’s
first ranked alternative which is b, We have a contradiction,

CASE IIB: The dictator in ¢’ is individual 2. Let P be an N-person profile
where /7 = Py and aPbPicP z for all x # a,b,¢. Also let bPyaPocPyx for all
x % a,b, ¢ and let P, agree with P for all 2,y # a,b,c. Since 1 and 3 have the

same ordering in P, f(P) = b. Let P; be the ordering obtained by interchanging
the positions of b and ¢ in Py. Since f(Py, Py, Py, -+, Pn) = a, it follows from TTM
that f(P, P, P}, ++,Pn) € {a,b}. Suppose f(F, Py, P, +,Py) = a. Then fmm
TTM it follows that f(Py, P, Ps, <+, Pn) = a, which contradicts our earlier claim
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that f(P) = b. Thus f(P, P, P},  +,Py) = b Let B, be an ordering obtained
by interchanging the positions of a and ¢ in Pj. Since the top three elements
of Py and Ps coincide it follows from TTM that f(P), Py, By, - -+, Py) € {a,b,c}.
But f(Py, Ps, P, Py) ¢ {a,c} otherwise TPM will be violated. Therefore
f(Py, Py, Ps, -+, Py) = b. A further application of TTM for individual 2 allows us
to conclude that f(P, Py, Ps,- -+, Py) € {a,b}. But 1 and 2 have the same ordering

at this profile so that the outcome here must be 3's first-ranked alternative which

is ¢. We have obtained a contradiction.

This completes case II. Cases I and I1 complete the proof of Theorem 4.4.1. m

REMARK 4.4.1: We note that with only three alternatives, TPM suffices to
guarantee dictatorship even when there are more than two individuals. The reason

is that, with three alternatives TPM and TTM are equivalent, both being identical
to Top-(m — 1) Monotonicity.

4.5 Conclusion

In this chapter we introduced new monotonicity criteria, TPM and T'TM and
showed that they are sufficient to force dictatorship in conjunction with unanimity.
This generalizes the Muller-Satterthwaite(1977) result on the equivalence between
Strong Positive Association and strategy-proofness. In this context a paper of
related interest is the one by Aswal, Chatterjee and Sen(2001). They construct re-
stricted domains of preferences where strategy-proofness implies dictatorship. The
critical aspect of the preference orderings in these domains is the way alternatives
are ranked at the “top”. The approach in our essay may be thought of as “dual”
to theirs. We consider unrestricted domains but weaken the requirement on SCFs
from strategy-proofness (equivalent to SPA) to axioms (TPM and TTM) which

place restrictions on the values of SCFs when changes are made at the top of
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individual preferences.
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Chapter 5

An Axiomatic Characterization of

Bayes’ Rule

5.1 Introduction

Bayes’ Rule is pervasive in theoretical economics, its widest use being for the pur-
pose of updating beliefs. From the perspective of probability theory, Bayes’' Rule
can be derived as a consequence of the basic axioms of probability and the defini-
tion of conditional probability. This essay offers an alternative characterization of
Bayes’ Rule based on axioms inspired by those in the axiomatic theory of surplus
sharing.

The central notion in the essay is that of a revision rule. Consider a situation
where an agent has an initial or prior belief about the true state of the world.
This belief is expressed in the form of a probability distribution over the set of
“nossible” states of the world, or geometrically by a point in the unit simplex of
appropriate dimension. Now new information emerges which conclusively rules out
the occurrence of certain states. A revision rule formulates an updated or posterior

belief, which is a probability distribution over the states which remain “possible”.
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It is clear that Bayes’ Rule is a revision rule. In particular, it redistributes the
aggregate probability weight of the states which are eliminated, amongst the states

which remain, in proportion to the probability that is assigned to each of these

remaining states by prior belief,

Revision Rules are also sometimes described in the literature as “Evidence

based Rules”. Evidence based rules appear in a wide variety of related contexts.
In models of learning Stahl ((1996),(1998),(1999)) introduces a family of such ev-
idence based rules in the context of learning dynamics. Belief revision rules are
widely applied in other contexts as well, one prominent area being artificial intelli-
gence or more specifically computer simulations of autonomous agents (Bhargava
and Branley (1995)). Computer simulations form an important aspect of what
is known as decision support technology and is widely used in formulating com-
bat or military strategies. In such computer simulations there are several schemes
for representing meaningful information and various techniques for reasoning with
information (Pearl (1988), Sanchez and Zadeh (1988)). In such a computer sim-
ulated world, an agent has a previous belief (prior) and a set of information at
any instant. The agent combines the set of information with the previous belief
using some belief revision rule to obtain a current belief, Even generalizations
of probability measures such as Dempster-Shafer type belief functions (Dempster
(1967), Shafer (1976)) use Delief revision rules for combining ex-ante uncertainty
with cuirent information, There are many ways to formulate belief revision rules,
candidates being Bayesian methods and weighted combination of beliefs.

There is an extensive literature on characterizing Bayes' Rule. Most of these
characterizations rely on a no-arbitrage pevspective. The arbitrage principle has
a long history. In the literature on Bayesian statistics and decision theory it was
introduced as an axiom by de Finetti (1974) to characterize subjective probability.
More recently it has been proposed as a foundation for non-cooperative game theory

through its dual relationship with the concept of correlated equilibrium (McCardle
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and Nau (1990), Nau (1991)). It has been used in McCardle and Nau (1991) to
unify decision theory and equilibrium theory. However in all these settings money
plays a crucial role. In environments where money is available as a medium of
exchange and measurement, no-arbitrage is synonymous with subjective utility
maximization in personal decisions. The fundameﬁta,l point of difference between
these models and ours is that we do not introduce money in our model,

The main result of the essay is a characterization of Bayes’ rule in terms of
axioms imposed on revision rules. The most potent of these axioms is Paih Inde-
pendence, an axiom which has been employed in a variety of contexts such as the
theory of rational choice { Plott (1973)) and axiomatic bargaining ( Kalai (1977)).
The axiom requires that the posterior belief be unaffected by the order in which the
new information appears. In section 5.3 this axiom is illustrated by means of an
example. The other axioms in the characterization are relatively innocuous. One
is a symmetry (or anonymity) axiom which requires that the names of the states of
the world are not material for the revision rule. The continuity axiom requires the
revision rule to be continuous with respect to the prior. The monotonicity axiom
requires that the revised probability on a state should not be less than the prior on
that state. Finally a “no mistake hypothesis” is imposed which requires that if an
agent believes initially that the occurrence of a particular state is impaossible, then
she continues to believe this even after the arrival of new information. ( actually
this axiom is required only in the very special case where a revision eliminates all
but only two states of the world.)

A paper, which is related in spirit to the present one, is Rubinstein and Zhou
(1999). They consider a general decision situation where an agent chooses an
element from a set S given a reference point e. The set S is a suitable subset of an
ambient space X. TFor the case of updating beliefs X can be the set that includes
all possible theories (point beliefs) about the world. Assuming 5 to be a convex

subset of an Ruclidean space they axiomatize the choice rule that selects a point
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in 5 that is closest to e. Their paper uses a strong symmetry axiom that forces
choice decisions along the line joining the minimum distance point and e, This
essay considers choices on unit simplices and characterizes a different rule.

Other than the special structure of the feasible set in this model there is another
feature which distinguishes it from some other related models. This is the fact
that there is no utility interpretation of the model so that axioms such as Pareto-
optimality have no place here, The analysis therefore differs substantivelyl from
that in the “bargaining with claims” problem analysed in Chun and Thomson
- (1992). There a problem is a triple (5, ¢e,¢) with the interpretation that S is the
set of feasible utility vectors, e € S is the disagreement point and ¢ ¢ S is the
vector of claims that cannot be fulfilled. In such a setting, Chun and Thomson
characterize the proportional solution, which is similar in functional form to the
Bayes’ Rule. That model however emphasizes the utility interpretation of choices
and as a consequence Pareto Opﬁimﬂ,lity is imposed as an axiom.

A similar remark is also appropriate with respect to the analysis of bankruptey
problems (see O'Neill (1982), Aumann and Maschler(1985)). The issue here is to
divide the liquidation value of a bankrupt firm among its creditors. In this con-
text, Chun (1988) characterizes the proportional solution which is again equivalent
to Bayes” Rule. However he uses a strong axiom the No-Adwveniageous Realloca-
tion(NAR} (for a discussion of NAR, see Moulin (1987)), which is a stroger version
of the Parcto optimality criterion.

The chapter is organized as {ollows: In sections 5.2 andd. 3 we give the model
and the axioms. Section 5.4 gives the main result, while section 5.5 cheeks the

tightness of the axiomatic characterization. Section 5.6 concludes.
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5.2 Model

Let T = {1,..,t} denote the finite set of states of the world. Let P(T) denote
the class of all nonempty subsets of T. Generic elements of P(T) are denoted by

P,Q, R etc. For any P € P(T) define AP= conv-hull {e'},.p where €' is a vector
in R for which the i-th coordinate is 1 and the rest are zeros. Thus AF is the

|P| — 1 dimensional simplex.

Before proceedi'ng further some preliminary definitions are needed.

DEFINITION 5.2.1 (Revision Rule:) Consider any Q@ € P(T) and z € A9. Con-
sider any P C @ such that there is at least one j € P for which z; > 0. A

revision rule (P, Q, x) 18 a function that asstgns ¢ unique point F(P,Q, ) € AF

with the restriction F(Q, @, z) = z.
Now F(P,Q,z) is a |P| dimensional vector. The i-th element is F;(P,Q,z). Thus

F(P}Qi:ﬂ) = (E(PiQ}m))iEP (51)

DEFINITION 5.2.2 (Bayes’ Rule:) Consider Q € P(T), x € A®. Consider any
P c Q such that there exists at least one i € P for which x; > 0. Then Bayes’

Rule BR(P, @, z) is the revision rule having the following expression: Vi € P,

BR;(P,Q,z) = z; + ( fﬂ) = | (5.2)
| je%‘p J kEP:Bk

5.3 Axioms

We would like to characterize Bayes' Rule, To that end we consider the following

axioms
i] Path Independence (PI): Consider P,Q, R € P(T), P C @ C R and

z € AR, A revision rule satisfies PI if and only it

F(P,Q, F(Q,R,z)) = F(P, R, z) (5.3)
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The expression in (3) can alternatively be written in the following way: consider

P € P(T) and take @1, Q2 € P(T) such that @Q; D P and ()2 D P. PI then says,
F(P, T!ﬂ;) = F(PJ Ql:F(QI:T:m)) - F(‘PI Qﬁ:F(QE:Tix)) (54)

Path Independence is a consistency requirement. Path Independence implies
that the order in which information comes in does not matter. The axiom is
illustrated by the following example. Suppose that a person running a high fever
consults a doctor. Initial symptoms suggest to the doctor that the true disease 1s
one in the set { Dy, Dy, D3, D4, Ds}. His beliefs are represented by- a probability
distribution over this set. The doctor orders blood test B; which can correctly
identify D4y and Dy and blood test By which can correctly identify Ds. Both the
tests are negative. The doctor’s revision rule transforms his prior beliefs into a
probability distribution over {D;, D;}. Suppose the results on B, arrive before
that on B;. The posterior on {D;, Dy} can be thought of as passing through
an intermediate belief on {Dy, Dy, D3}, If on the other hand the report on B,
precedes that on By, the prior is first revised to {Dy, Dy, Dy, D5} and eventually
to {D;, Dy}. If a revision rule satisfies path independence the same posterior { on
{D;, Ds}) obtains in both the cases.

[ii] Symmetry (SYM): Consider any P,Q € P(T), P C @ and = € A®.

Consider any permutation function ¢ : @ — ¢} such that

i o{i)ePificP
ii] o(i) =iVi¢P

A revision rule satisfies SYM if and only if
Vi e P, Fory (P, Q,0(z)) = Ey(P, @, T) (5.5)

where, o(z) = (ﬂ:u(k]) k€0
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This is an anonymity requirement. It forces the revision rule to ignore the
names of the states of the world. In the disease example, the doctor shauid not
be putting more weight on & disease just because it carries a particular name, say
tuberculosis,

[iii] Continuity (CONT): The revision rule F(P,,z) is continuous in z.

The requirement here is that small changes in the priors should not lead to
large changes in the revised beliefs.

[iv] Monotonicity (MON): Consider any P, @ € P(T), P € Q and z € A9,

A revision rule satisfies monotonicity if for all ¢ € P,
F(P,Q,z) 2 z; (5.6)

'This monotonicity requirement says that, if a state is not ruled out by some
new information coming in, then the revised probability on that state is not going
to be less than the prier probability.

[v] No Mistake Hypothesis (INM): For all P € P(T) with |P| = 2, if

Ty = 0 for some 4 & P, then
FA(PTz)=1, j€P,j#i (5.7)

Let us consider the discase example again. Suppose that the prior belief of
a doctor about disease Dy is zero. This axiom says that if she believes that it
is impossible for disease [J; to occur and if the test conducted does not rule out
Dy, then, after the revision process, she is never going to put positive probability
weight on D;. The agent is therefore not allowed to make mistakes of a particular

kind.
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5.4 The Main Result

Let F be a revision rule and let z € A®, P C @ € T. Without loss of generality,

we can write

F(P,Q,z) = z; + ¢ %x), Vie P (5.8)

where ¢; Q. AQ — R is a real valued function with the restriction
—z; < ¢7%(x) € 1 -, for any z € AQ. Since for any Q € P(T), z € A

necessarily means z € A?, we ignore the second superscript in ¢~f @

THEOREM 5.4.1 Suppose |T'| = 3. A revision rule satisfies SYM, CONT, MON
and NM if and only if it is Bayes’ Rule.

Without loss of generality we can take T' = {1,2,3}. Before going into the

proof of the theorem let us consider the following lemma.

Lemma 5.4.1 Let P = {1,2}, T = {1,2,3}. A revision rule satisfies SYM,
CONT and MON if and only if there exists a continuous function g : R*y — R
such that Vi € P, and for all z € AT,

a:.
— {23 — 2g(z1 + 3, 73)}

F(P, T z) = x;
1( :I:) Ti -+ 1+ 7o

9(331 + L2, $3)

PROOF: As mentioned above, for each 7 in P, the revision rule can be written
as
F(P,Tz) = = + fﬁf(-’ﬂhfﬂzsﬂi‘a) ' (8.9)

where 21 is the first element of the vector, z, is the second element and so on. Using
MON we can say that ¢F(zy, z9,z3) > 0. Now considera o : {1,2,3} — {1,2,3}
in the following manner: ¢(1) = 2,0(2) = 1, 0¢(3) = 3. Then from 5YM it

follows,
FQ(P,T,:I?) = Fl(P,T,U'(‘JE)) == $2"|"¢){}($2,$1,ﬂ}3)
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Therefore, ¢f (1, 32, x3) = ¢ (zo, 1, 23). Since (P, T,z) + (P, T,z) =1, it
follows that
¢f($1:m2:$3) + ¢{:($2;$1,$3) = 23 (5.10)

Since (z; + 29,0, z3) € A?, it also follows that
éF (z1 + 22,0, 73) + ¢1 (0,1 + T2, 23) = T3 (5.11)
Combining (5.10) and (5.11), we have
6L (31, T, T3) + ¢F (20, 1, %3) = @F (21 +22,0,23) + B (0,2, + xg,23) (5.12)

Define the function f : % — R as follows:

Let 2 = (31,22,33) & ?RS,
flzy, 2, 23) = &V (21,20 — 21,23) — b1 (0, 22, 23). .
Then, f(z1, 2y + 29, 23) + f(@2, %1 + T2, 23)

¢f($11 L9, 3:3) -}~ f/J{J(ﬂ:g, :Ula:l::i) - 2(15{:(01 L1 +- L9, 3:3)

i

(p{)(ml -I- :EQ'I'O!:I:H) "" {br(olﬂ:l “t- :1:213-:3)

il

i

[(z1 29, 2y + 39, Ty) (5.13)

Thus f is additive with respeet to the first argument. Since f is continuous
(follows from CONT), applying the theorem on Cauchy Equation to (5.13), L it

follows that there exists a function i : R% — R such that,
f(mi: Ty -k 3;2!3:3) = wih(ml -+ X9, 3:3) | | (5'14) | |

Since ‘f){)(mlrﬂ::}}mﬁ) - fﬁ‘f(ﬂ,ﬂ;l ‘I‘iﬂg,mg) = f(:nl,ml +$2,$3), WE h&\f&,_ -

(5,15

L
.y -

1:-
Lo

2ih(xy 4 2o, 23) + 1 (0, 21 + 29,23) = qﬁf(muiﬁz:ﬂ?a)

S

L For a treatment of Cauchy Equations, see Elchhorn (1978)
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Similarly,
.T-;gh(:i!f] o Xy, ..'L':i) -}- (bIJ(O,{I}'l -}~ &}'2,.2}‘3) = ¢f($2:$11$3) (516)
Adding (5.14) and (5.18) and using (5.10), we obtain .
(:l:l ~{ ﬂ:g)h(&}; e {82,233) -+- 24){’(0, 2y - a:g,:u3) = I3
1
U1 - Ly
Substituting (5.17) in (5.14} and (5.15) we obtain,

=> () X9, T3) = {z3 — 207(0,z, + To, T3) } (5.17)

A DL L N T . & M ’
BT ) s o s {23 = 260'(0,21 + 23, 2)}
+ ¢ (0, 2y + T2, 3) (5.18)
i =1, 2.

Writing the function ¢{'(0, 2, - 23, 23) as the function g : 2, — R, we obtain

the desired conelusion. -

Proor or THEOREM 5.4.1: Without loss of generality let P = {1,2} and
T = {1,2,3) and © ¢ A%, Let 2y = 0 be given. Then by NM we have,
F(PyTy2) = 0. Now from the definition of g given in (17) this implies that
olzy =+ wg,my) = 0. Observe that g, ) is the same for all ¢ € P, Thus we have
F(PT,&) = e for all i ¢ P, Suppose now that v € A" and @ > 0Vi € T.

Consider another veetor y € A? dafined as follows:
= )y o = 8y - By, Yo = 0

Observe that g is the same for both @ and y. But g(yn + 92, 93) = 0. This implies

F(PT\2) = =2t for all i € P as desired. "

Now we consider the more general case.
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THEOREM 5.4.2 Suppose |T'| > 4. Then a revision rule satisfies SYM, PI, CONT,
MON and NM if and only if it is Bayes’ Rule.

The proof of the theorem follows from the given lemma:

Lemma 5.4.2 Consider T such that T} =t > 4 andz € A*. If F(P,T)z) =
BR(P,T,z) for all P € P(T) such that |P| = m (2 < m < 1), then F(Q,T,z) =
BR(Q, T, z) for all Q@ such that |QQ| > m.

PROOF: The following cases are considered.

Case I: Consider z € A? such that z;, > Ofor all £ € T. Consider P, Q € P(T)
such that @ = PU{j'}, 7 € T\ P.
Fix an ¢ € P. From PI we get,

Ii(P,T,x) = I{(P, Q, F(Q,T,z))

= ¢2(@) + o (27 + 69 (2))jeq)

z) '(5.19)

P
= 1(
Q . Q ﬂ:; + Qﬂ?(iﬂ)

=> ¢ (x) + (5 + ¢7 () ST @y ‘35?('17)
hEP
£ 3

= (n%j :Lm) o (5.20)

ke

The last equality follows from the fact that (P, T\x) = BR(P,T,z). Let 2 -+
(bﬁ(a:) = A, Then we get,

o7 () 4 Ay

.':1:-
- = (1= ) &)= 5.1
T ( E} )%ﬁmk (5.21)

‘The last equality holds for any j € P. So for any j € P we get,

69(z) = 24P (5.22)
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Now consider & > in which a §j € P\ i is replaced by state of the world .

Thus P’ = (P\j)U{j'}. And one geis,

#(2) = L8 (5.23)

Now, o ap == ¥ qSQ( ). This implies that for any i € (),

IEQ jeq
(WZQ fr:;) o (5.24)

JEQ

Case I1: Suppose that oy = 0 for some k € T, Consider a P with |P| = m such
that k € I?. Consider ¢ D P such that |@] = {P|+ 1. Proceeding as above one

can show thai
‘7&( ) - AM == )

= ¢ (z) =0
For any other ¢ € () such that z; > 0 application of Case A gives

(MEQ ’B;) z y (5.25)

j€q

Thus we have scen that given F(P,T,z) = BR{P,T,z), for any P with |P| = m,

PQ,Tyx) = BR(Q,T,2) whenever @ = P U {7} for any j € T\ P. Suppose
that J'(Q, T, 2) = BR(Q,T,z) {or any @ such that m < |@Q] < n < . Consider
Q = QU {j'} where 3/ ¢ T'\ Q. Applying the procedure used above we can show
that F(Q', 1" &) = BR{E', T, ). Thercfore we have the desired result. n

PrROOF OF THEOREM 5.4.2: Consider z € AT and P € P(T). Now take
P @ ¢ P, such that [P} = 2,1Q] = 3 Let P(Q,T,z) = y Nowy €
A®, From Theorem 5.4.1 we get F(P,Q,y) = BR(P',@,y). Now from PI
we get, F(P,Q,y) = F(P,Q FQ,Tz) = F(P Tz So, F(F, T,z)
BR(P',T,x). Now from Lemma 2 we know that if F(P" ) BR(P',T,z),

i
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then for any ) O P,
F(Q,T,z) = BR(Q,T,z). Since P D P’ we have F(P,T,z) = BR(P,T,z). =

REMARK b5.4.1: There is a possible extension to the model considered above.
Observe that the revision process analyzed in this essay always takes place from
one set to its subsets. A possible way to extend this model would be to consider
revisions that takes place from one set to another which is not necessarily a subset,
of the former, For the revision process to be meaningful the two sets should have
non-empty intersection. Consider for example P, @ € P(T), PN @ # ¢ and
z € AT, The choice rule for any such P, Q would be defined as F(P,T,z) € AP

with the additional restrictions:

F(P,Q,F(Q,T,z)) € AP (5.26)

In this extension let us consider an alternative version of the path independence

axiom, which is due to Rubinstein-Zhou(1999).

[vi] PI*  Consider P, Q € P(T) z € AT, PNQ # @, Then,
F(P,Q, F(Q,T,z)) = F(PNQ,T,s) (5.27)

Let T = {1,2,3}. Let P = {1, 2}, @ = {2, 3}. From PI* we get
P, QF(Q,T,x)) = Fp({2},T,2) = 1, This implics
n{{1,2},{2,3, 7({2,3},T,2)) = 0. Let F({2,3},7,2) = 3. Nowy, = 0.
ie, F1({L, 2},{2, 3},(0,y5,93)) = 0. Applying this to the expression in (5.17)
we get g{, ) = 0. Hence F(P,T,2) = BR(P,T,2). For T with [T’

follows from lemma 5.4.9.

> 4 the result

Thus we get an alternative characterization:

THEOREM 5.4.3 A choice rule satisfies SYM, MON, PI* and CONT if and only

if it is Bayes’ Rule. "
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Below we show that the five axioms are independent. For each axiom we give

an example of a function that satisfies the remaining three but fails to satisfies it.

5.5 Independence of the axioms

1. Ezample of a revision rule that satisfies PI, MON, SYM and CONT but not
NM.
Let T = {1,2,3,4}. For any R € P(T), define F(R, T, ) as follows:

LR, T,2) =1/rVieR

where r = |R).

Consider PP = {1,2}, x € AT, 2 = (0, o, B, ,) where a, 8, v € (0, 1).This
revision rule satisfies PI, MON, CONT and SYM but not NM as Fi{{1, 2}, T, 2) =

1/2 # 0.

2. Dzample of a revision rule that satisfies PI, MON, SYM and NM but not

CONT.
Again let 7' = {1,2,3,4}. For any It € P(T), define F(R, z) as follows:

F(R,T,n) =1/m if%;>0
== () otherwise.
{j € Mlz; >0},

il

where m

Let P = {1,2,3}, 2 € A", 2 = (0, o, 3, v,) where &, #, v € (0, 1}. Consider

2, = (3¢, ¢ —¢, B —¢ v~e); F({1,2,3},T,2;) =1/3

but F({1,2,3},T,x) = 0. |
. Example of a revision rule that satisfies NM, MON, SYM and G’ONT.'but

not PI ' '

Let T = {1,2,38,4}. Define,
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k&P

= 1/p (where p = |P]) otherwise.

Consider P = {1,2}, @ = {1,2,3}. Consider z € AT such that
z = (0.1,0.2,0.3,0.4). This revision rule satisfies NM, MON, CONT, SYM but
not PL.
4. Example of a revision rule that satisfies NM, PI, CONT, SYM but not MON.
Let T = {1,2,8,4}. Define the revision rule as follows:
If Re P(T) and |R| = 2,
2

R(Rr'Tr {B) = 'Em"m—k'ﬂ'

ke R

Otherwise,

E(Ri T, m) = _f_'m_k

kefl

Consider z € AT such that

% = (0.05,0.85,0.025,0.075). Take R = {1,2}. Then Fi(R, &) = 0.0034 < .05.
5. Fxample of a revision rule that satisfies NM, PI, MON and CONT but not

SYM.

Let T' = {1,2,3,4}. For any R € P(T) define F' as follows:

If |R| = 2
Fi(R,T,2) = im?fﬁm,- if ¢ = max{k|k € R} |
= mt;”;% ootherwise.
Otherwise,

F(R,T,z) = %

kER
Consider P = {1,2} and ¢{1,2,3,4} as follows: o(1) = 2;0(2) = 1;0(3) =
3, 0(4) = 4. Then Fyz)({1,2},T,0(x)) = mo/(z2 + 23) but Fy({1,2},T,2) =
229 /(2 + 229). This revision rule satisfies PI, NM, MON, CONT but not SYM.

05



5.6 Conclusion

In this essay we axiomatically characterized Bayes’ Rule by imposing axioms on
the revision rule. One important feature of the model considered here is that the
set of states of the world is finite. There are many economic problems where the
set of states of the world is not finite. In some cases, the set is not even countable.

An interesting extension of the present analysis would be to find axioms that

characterize Bayes’ rule in such situations.
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