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CHAPTER 1

INTRODUCTION AND SUMMARY

la. QGaperal Dbaervatiuns and Literature Reuisu'

Expsrimentation plays apn esssential role in most of the Etatiaticai
f inuastigatiqné carried out for drauing infaranéaa about certain unknouwn
paramsters of intarésﬁ; I1f the situation allows for Unly-pne experimsnt
to be axénuﬁs@’nut of a number of avallable alternative experiments, the
expefimsﬁﬁsrléhnuld aim at pexforming thé one whigh is " optimum ™ iIn
‘some sense. This is how the problem of choosing the 'beet! Experimant

comes up- -

| Tn Jjudge ths relative perfurmancas of vapious atatistical axperi—
mante, Blackwell (1951, 1953) and Blackwell and Girﬂhluk (l95¢) intrﬂdunad
tha_conmapt of 'aufficient experiments'. However, in the context uf deaign
Eettings fiiting into the usual Apalysis of Variance (RNDUR) models, it ia.
not atraightfurward to esttle the question of existenca dr non~-sxistaros
of aufficiant experiméntal design in general terms, aven thﬂugh,~in some
simple asﬁtiﬁga (such as.nnaway.ANOUR)-thE nohuexiatanca of a.auffinient
| experiment is readily aauertained; In such aituatinna, therefore, tha
choice of ‘optimum' experiments is guided by specific ‘optimality ariterman'
which ewaluea from different conaiderstione depending on tha particulan
problems of interast: I

The.aéfiyfuaﬁk of Smith (inE)Iiﬁtrcdﬁced.a faimal'définitinn'ﬁf

._deaign mptimality in the study of reapunsa aurface Funntion. Tha inéugural |

paper in the literatura on . uptimality of block dasigns ia due to Uald (1943).

r" '_In this papar,'ha posad a very impnrtant-optimality_criterlnn and astablishad |



optimality nf a difPerent kind of the LatiﬁISquara Dasigns. (LSD'e):
(vide also Nandi_(lQSD) in this context). But it was not until 1958,
when the theory was given a precisc and systematic formulations Cone
fining to tha'nlasa nf connected block daesigne Kiefer (1958) congldored

- the general problem of estimating a full set of ubthunurmal pontrasts

n = P, where .Pf is n-i><n Lower submatrix of an nxn orthogonal
matrix O having the first row as (-}-— ,-;-L-'-,.n} -L)_- He gave -pﬁaci&a
S o | Jfﬁ /A Jﬁ; T | 1
definitions and investigated the interrelations of a number of standard
ﬁptimqlity'criteria,.namaiy' A=y Dwy Ew, L~y Mn'mptiméiity orlteris for
judging the psrfurmanuaa of tha leaat.aQUare aeﬁimataa of the orthonormal
cﬁntrasta i  D. S50 far ag the nannréndcmizﬁd daaignélare annuarnad,”hia
fﬁndamantal rsaﬁlt ﬁstabliahaa sueh mptimalit? of Bﬁlannad Lnoomplets
Block Oasigne (B1BD's) in one way aliminatinh of hatarﬁganaity-aet-up-and
thet nf_thafLatin-Squﬁie-naaigns (Lsuls) and Ynu&an Square Designs (YD's)
in two way alimiﬁatiﬂn of hatsrngqneity sat-Up, mhanﬁuar such daéigna
exist. At the same time; again for sstimating a-fuil;aat uf untgnﬁunmﬁl
E;éatﬁéht contrasts, Mnbe.(lgﬁé) independently ﬁruued tﬁa Enaptimaiiﬁy of
BIBD's among Einary.daaigns'and Kahiréagar (1958) proved the A= ahd_D—
nptimaliﬁy of BIBD's and YSD's élsa among binary ﬁasigns.' Contémpnrarily,'
_qu (1958) came up with the following findings with respect to A=op timaldty
.criterian;f.Farnaatimﬂting-all alemsgtafg traatmeﬁt cnhtraats} in the aiaas
of”ppqpar, 1nadmplata.hlq¢k dEaigns,.a most afficient deaigﬁ, whenever it
'sxisté,'ia‘Nanasaarily-a BIBD.;;ﬂll thssa reaulta'partain tO thE.QPtimﬂlitY

nF_Bymmatrical_deaignsnllIn the ébaansé;uf,aymmatridal dasignaj(intuitiualy

,it;appaaf;:that ﬁhe design olosest (in some appropriata;aenSE) ko the



hypothetical symmetricael design is 2 ressonable design to uses Nith'ihis
idea, Shah (1960) introduced a nsw optimality nritarimn. Nntiuatad.hy
thiE§ Feoleston and Hedayat (1974) dsuElnped an optimality criterion
called (M.S) optimality criterion. Kiefer (1975) extended almost all of
the previcusly defined optimality criteria to a very generel class of
~oriteria by bringing in the nation of "’Uniuarsal optimality.” His
Pundamental raeult petablishes Balanuad Blook DEEigna (BED‘B), a8 gensra=
| lizatiqn of BIBD's for the cese when the blnqk size 18 largar than the
number of test treatments, to be uniﬁeraallquptimal. A useful aubfamily
of the general class of criterla, nmmély ¢:-nritaria which includes the
age old A=, D= and E-optimality pritariai uaﬁ aleo diauuaaad separa=
.tely in this paper. Besldes thia, a major part ﬁf the peper was desvoted
o the atudy (optimalihy;.charéctariéatinﬁ and unnétrunéinn (in briaf))nf
| _Ganeralized'Ynﬁdan Square Dsaigna.(GYD'a) in the £wa_way aliminﬁtion of
heterogeneity set-up. ,GenaralizinglﬂYD‘s.ta multivay aattingﬁ Cheng-
(lQ?Ba)-defined Youden Myperractanglea'and prnued tﬁeir aptimality
bahaU1ﬂr in g way very similar £0 thﬂse nf GYD's. Some of tha cnnatfuc--
tiaone of auch daaigns had heen tacklsd latarv {Cheng 1979 b) Cheng
(19793) praparad a list Df all De~optimal dasigna Fur V=4, and Gaffke
(1982)_extsnded tha-liat to Vv < 6 with a few Eignificantly ganeral
resulta.. In anmthar papar Chwng (198la) dsfined a class of Pseudo Youdsn
Beaigne (PYD'E) in the twu—wayeiiminatian of hataraganaity aetting undar
the special case whera number of lauels in hath the diractiona ia the
same and studied their nptimality behavimr. Extendlng thasa dealgna to

analugous MeddBy aetting, he ubtained similar rasults.- Cheng (1981b)



deals with construction of Pseudo Youdsn designs with row size lsss than
the number of symbols, In another paper, Cheng (198lc) discussed twﬂl
falated pfoblema in éraph theory and optimum design theory ¢ maximizing
the number of spanning trees in a graph and finding a D=-optimum incom-
plete block designe Gaffke and Kraf?£(1979) and Gaffke (1981) considered

general two~way models and characterized some classes of optimal designse

Apart'frnm the study of optimality of aymmgtrinal designs,
researches wsrs.alsn undertaken for exploring p09$ibla optimality pro~
perties of sﬁma mlaaaaa'uf.aaymmatrical designss Takeuchi (1961,1963)
was the firat to initiate such a study. With a neu slegant tedhniqua,
ha showed é~uptimality ﬁf iroup Diuisible.ﬂaaighs (GDDb)uith_ A2;=Alﬂ-i
whenever they exist (in the absesnse of BIB - designé). Sinha_aﬁd 5lnha
(1969) studied relative performances of verious PBIB designs with mespsct

tn-Awoptimality oriterions Conniffe and Stone (1974,1975) proved that
in the same situation, ﬁnylﬂost Balanced Group Oivisible Partially
Balanpced Incamplata Blbck-Daaign (MEGDPBIED) ﬁf type 1 is H-nptimﬁl gver
a restricted olass ﬁf aﬁmpéting-daaigna. Exploring . thelr tachﬁique,
Chsng.(IQTEE) dériued aome further nesults on uptimalify of asymmatfical
- "designs, namely, the aptimality.nf MBGDD of type L with respect Lo a
largs class of oriterion, caelled " wffwoptimality" which inciud531 in
particular, the cbmmnnly used Aw~, D=y E~y and the.¢:-nritari&n.
 @$-—0ptima1ity of another important class of ﬁsymmetrical designe,
.callad Linked Block Deaigns (LBD'E), mithin-thé glaaa of prupﬂr; cONNBc~

- ted equireplicate daéigna'héd bean Put'fﬁrﬁard"by Sihhﬁ'(lg?})‘and also



by shah, Khatri and Raghavarao (1976). Chepng (1981d) established
m?-uoptimality of GD designs with -%2 = hl + 1 along with optimality
of other designs within the claée of two assoclate PBIB designs. In
annthap paper by Cheng (198ls) it has_heen proved that quite often the
problem of finding optimum designs can be reduced to considering designs
of block slizes two. For block size two the problem can be further feduced
to consideration of Sinary-deaigna. Jacrﬁux (1983) wastablished GOD's

with h'=;z' n = v/2y N, = A, +2 as being E~optimal. Jacroux (1984)

also established D~optimality of GDD's with paramatara V.= mn, m = y/2,
n =2 and %2 = h1¢i'l' Removing the condition of equiraplinahility,
Chang {1980a) pfpued E-optimality of LBD's and duale of some GDD'a
within the same class. In this asymmetrical altuation, remarkable con-
tributions in respsct of E%nptimal designs nuer-tha class of ﬁun-equirsn
- plicate designs are alam dus to Jacroux (1980a, lQQUb) aﬁd Constantine
(;981) among others. Hedayat (1984) characterized éymmatrical BIBD as
universally optimal design within the class of ﬁonnented-binafy déﬂigna
mith arbitrary block sizés_and arbitrary.raplidatiuna.- In a recent
paper, Jacroux (1965.) derived a set of sufficient punditinné for type 1

optimality of block designe.

All the above diécussinné pertain.to the fixed sffects mudel'in
which tha.FFfects of traatmanta.and heterogeneity directions are sssumed
.tﬂu?ﬁ Fixed.  nder mixed effects models uhepa the Effects of heteroge-~
neity levels ;ra~aasumad.tc_ba'rahdom, aﬁtanSan nptimality Stﬁdy has baen

| mnda*by BagahﬂMukhupadhyay)(1982). Tha-mpt;mality_uf BBD'!s, LEDfB, .

- GYD's and PYD‘B have béén worked out under this modele In the multivay



heterogeneity context, concept of " balanced multiuaylaetting;' was
introduced in Mukhopadhyay and Mukhopadhyay (1984). The sﬁeciality

of such a type Qf_aeﬁting lies in the fact that the number of BxXperi-
mental uﬁits (which usually equals all possible level combinations of
the factnfs inuuluad)‘waa cunsidéfably reduced. in the light of Cheng
(1978a), Balanced Youden JHypenreﬁtangles (BYHR) and Baslanced Pasudo
Youden bssigns (BPYD) were defined and optimality studies cerried otit
Far-theéa designs by Mukhopadhyay and Mukhopadhyay (1984 ). -THE 88 Yl
metrical ocass pmaeé a raal.ﬁrnhlam and nptimality of NBGDD'E has been
praved munfininﬁ ta cerbtain ciaaaaa‘ﬂf déaigna.mith black size less than
the number of tEEatmeﬁta in Eaguhi'(lgﬁs). Optimality of MBGDD's under
mixed effecte model within the equireplicate designe and alau withih a
wider class of dasignalinnluding binary designe wers alsc observed by

Khatfi and Shah'(lQBd) and Bhatfacharya and Shah (1934) respectively,

A study of optimality in.ths cmhtaxt of weighing'daaigha involve-
ing the chémical ahd sprdng baianqa designs has recelved considerable
attentimn nf“aBUaral researchéfe- Wéighing pﬁoblems originated in a
__qﬁsual'illuétfatibn Fﬁrnishéd by Yates (1935) and a procise formulation
- af tﬁa,prablem was given by Hotelling (1944). Hotelling (1944) and
Mood (1946) also furnished basio uptimality results in thié area of -
Studf;: Datailed references are to ba faund in Raghavarao (1971) ﬂnd_' a
Baner jes (1975).‘ thngigﬁngg references mention may be mada_qf-Sinha
(lg?if 1972), Swémy (1980, 1982), Galil ahd Kiafer (l9$Dé,fi9EDb, 1951,
'iQEZa, 1982b),'ﬁhehg (1980b), Jacroux (1986), Daagﬁﬁ;f%ﬁ§ N§tzj(l?ﬁﬁ).T '.

- “gnd,Jacrﬂux, wnng_ahd Na&ahn (1983)-



Apart from the areas of block dasigns and weighing designs,
there ara a ‘number of recent contributions to ths atudy of optimality
in the ar9ainf Repeated Naasuramentsnssigna (RMD)s These designs have
been menﬁiuéad in the litératura under a variety of names such &s cross~
over, or ah;hga-nusr dasigns,.tima saries dasigns or befafs—aftar daaigna.
It was nmt until 1975 uhan a aystamatin study ln this ‘area was initiated
by Hadayat and Hfaarinsjadu This paeper glves cunatrustinn of SOME SpPORA«
dic familiﬁa of balannad RMD's, along with an axtensive list of referen=
case 50 fap a8 the optimaldty aspect is concernsd, the firet paper 1s
also dué éa tham.{i978), where they proved uniform balanced RMD to bhe
unqursally nptimum within the nlaea of non~cirouler uniform RMD's with
-number n? perionds (p) aqual to the number of treatments (t)¢ Apart from
thls result, the paper also gontains some cunatrumtiun- Canstantine and
Hsdayﬂb (1992) also - deuntad to tho construction of cyclic balancad and
. cmnnmnbsd RMD'as The mora important wnrk of Cheng and Wy (lﬁﬂﬁ) in this
arga ramnued the unifurmity cunditimn on the compeating dasigna and .
astahliahed universal aptimality nf strongly balancsd unifurm RMD's
(SBUHMD).fGr_ditant 89 wg;l as residual eFfanta within a very general
.nlaaafﬁflﬁmﬁ‘s. 'ﬁlnng-ﬁiiﬁ soma*uther results thia'pépar.aa also Cheng and Wu
-(1983) Prﬁﬁe universal aééimaliﬁy of balapced - RMD's  over tha'clasé'uf
designs which have na'paifa of consecutive identical treatments. Nagda
(IQSU) undertook a study;ﬁf' RMD's  under cirgular madel.- Hsdayat. I
(lgﬂla)_giﬁéé an:austviaw.bf theea_rééu;ta.sn Far.dasdribsd. Day, Guhta |
;and-singh:(1983) prDQéq yhiueréal'nptimality_aflbélapcad'déaigna within

@ subclaes of all possible designs for p'< te Kunert (1983) dealt with



the appraéuh of orthogonality ensuring squality of two infcrmatiun“.
matrices in the finer and simpler model, and usiné this tmuhniﬁue in
the special case of RMD!s, hé'dariued mptimality results. His result
shows that thara.ara designs in this context which ere optimal and
orthogonal but neither atrongly balancaed nﬁr halﬁncad. Morsovenr,
nearly strongly balanced dasigng were Ilntroduced and their uniuarsal
Uptimality was provade Hacant papars by Kunert (1geaa, 1984b) bring
in Dptlmality of balanced uniform RND s under circular and nun-circular
models respectively over the claas of all pﬂasibla deslgns lneluding
thosa whilch may have identical pairs of treatments. Mukerjee and Sen
(1984) studied the robuatneaa of thaaa optimality rasulta intruduning

in the modsl intaractinn terms fop dlract ahd rasidual affecta of

traatmanta._

Another important direction DF'study'and research is that of
apalyzing tha.data witﬁ refersnce to n;n—additiua mndals;i Euen.thmugh
we mainly work with additive models, thers is no dsnhying £he fact that
sometimes the aimpiicity-nf'ﬁhe underlying mmdals are criticaelly ques-
tiqnad.and.it.is"Falt thét_apprupriata madels are to ba'ﬂéﬁélcpgd,
épacifinaliy for the intaﬁactinna. Though it ia.ggg diffioult to build
up a mndel innnrporatihg suitable and relevant intaractimh tanma, of ten
the data may hnt be adaquata for a aatlafactury analysis. Tukey (1949)
was the flﬂﬁt ta suggest a nnnnadditlua mudal mith the apauifiﬂ farm nf
intarantlnn tapm, as a constant multlpllar- 8 of the product of corres-
ponding blook and treatment effects in the context of Randemized Block

Qgﬁigné_(HBD),with b blocke and v UériatiES. He provided an sstimate



of 8 and also a test for Ho ¢+ B = 0 under the usual assumptidne of
the lew of distribution OFIthE erTors. Sihce then several typss of nons-
additive models (Scheffe (1959), Gollob (1968), Mandal (1961, 1969),
milliken and Graybill (1970)) have boon developed and the work primarily
consisted of testlna the hypotheses regarding interaction terms and
pstimation of error uarianca_ (Gz); In this respect, mention may he
made also of later aﬁthara = Johnson and Graybill (1972a, 1972b),
Hegemann and Jﬁhnson (1976a, 1976b), Yoohmowitz and Cmrnall'(lQTB),
Marasinghe and Johnson (1981, 1982), Kshirsagar (1983). Surprisingly,

nothing practically is said about efficlent sstimation of the non-

additive parametar(s);

The above refersnces in the area of study of optimality are not
mexhaustiue; Howavery thoy give a strong visw of how exteneively apti-

mality studias have created interest among research workers in the field

of design of experimentss

In thé_p:asent disaertatinn-tha author héa made some further
studies on relative performances of Qarinﬁa désigns to find Dut_nptimal'
' designs,.uniuéraai-nr épacific, 1f anyy in ths Fbllowing fields 1
(i) Two wéy and threa way aliminétinn of hetaruganéiﬁy Sét up#withlggﬂr
nrthﬂgnnal base strucﬁﬁra,_(ii) Epringﬁbalanca weloghlng designs,

(1i1) Repeatsd Neasuremanté dasigns énd (iv) Tﬁkay’a non-~additive model
and its Extanded furm; - | .
in the sections balaﬁ,'wa prbuida adequate mutiuétiana for under-

| taking the different prcbléms as alab_briéf~$ummarias DF the main results



in the respective fislds of study.

The following section gives an account of different Uptimality

criteria discussed in the literature and cited in the thesis.

1be MNotions of Verious ﬂEtimélitX Criteria
e start with the basic linear model

B -
3

7]
Ay
A=
L
i
e W
>
R
=
. 1
oM
=B
N
St
| §
MT.IJ']___ID

cou(Y) =0°1_

where Y 1E.the nxi vector of obaeruétipna,'-xd ( 41 ¢ : X ) is

Fe

the nxpP design matrix with known entrice underlying tha deaigh dy

! I ' | - R
B = (9 + B ) is the 1lxp Uectur of unknown parameters. .In mﬁn}’ -

IEIJ_

_casas, We axe interaatsd ondy in linear combinations of the form ,(

of the components of B, Then the information matrix of 91 undsr |

| the design d is xdlxdl xdl d2 d2 d2) dZ dl whers (X )

stands for any ganaralizad inverse of xdzxdz

In any;daaign-sétﬁup, varietal cmntraata are of major concern,
and tha.réleuant'infofmatian matrix for variatél effects ls denoted by
the well knﬁwn C~matrixs The reduced normal equations for the vector
of uar;etéi (trestment) effects assume the form (QUFfix d belng used

in the ubﬁious_sansa)

t

- . -
Cyt =8y unere §, [ xdl xdlxd AUTRITE de] 1
Usually, rom sums andicﬁlumn sUma-uF'Cda-matrix are-zéru. (Exceptlon

"__is Dbsarvad in the case of rasidual affacts in HND Cheng anﬂ Wy (1983), |



- 1] -

howsver, again a restriction may bs impased on the paramstric space in
- order that this propsrty of Bd is retained.) Since estimabllity of a

. f
linesr function [ T £s ensured if and only if £ belonge to the rou

e

space of Cd, usually the only sstimable functions ars sssentislly cone-

trasts of trsatments agffects. |

Following Kiefer (1958, 1959, 1975) we deal with tha inferentiel
problemhihﬁnluing a full set of orthonormal contrasts of Te _wriﬁing

. the vector *nf

-

| . . :
as (nl Iﬂz AL ’nuﬂl) Elnd 'E £s (Tl"--l'?v)' thﬂ

problem 18 thus to infer about 7 = F-’f'_t; , Where P is a v~1xv matrix
| uf rank v-~1, whose rows are orthonormal and orthogonal to tha'nqnatant

vector --Jf:- ;' . To.anaure estimability of all these v =1 linsarly

J

independent orthonﬁrmél cdnﬁréaﬁé of E! involved in 1, one hae to
cﬁnsidEr unly-thnse déaigna d for which rank of cd is squal tn: V=1,
that is to say one Qastricts'ﬂnly to what are known as copnscted designs.
The usual least square eatimatap-mf PT is '(PCdP')”lP"gd' with uérim'

| ancancnuarianca,matrix Uz(PCdP')"l #152Ud (say). 'Thus it is natural

to spacify'anma uﬁtimality f@nctinﬁal y oh (uél)><(u-l) metréqas.and
_tuquéa_ﬁhe ﬁfo&lam as follows 3 Find d to minimize u'(fPCdP')"l).'
The:rﬁauiting deaigh may be said to be b ~oplimal with respect £o the
problem of Ipferring on D, Thelbommahly used optimality critaria ﬁra

defined helow ¢ (The word dafinitinn is ahbreviated es DFN and éa’

refers to the campating alass of daaigna)

Ao o e

OFN lbelel (D-—mp’cimalit!) : A design dﬂ' Bp%' is D-aptimal if‘f

dat(Ud*)_ min . dat(u )
Lo denfT o



Here 'det' stands for determinant. Under normality assumpition, the

statistical sense of this oriterion is the following
# ) | 3 *
If d ls D-optimal, d minimizes ?

a) The volume of the smallest invariant confidence allipsmid alp

nl_""’ﬂu-l for any cnhfidence coefficient (Kisfer 1958).

b) The generalized variance (as defined by Wilks) of the best linear

unblasaed aatimatara (blué'a) of the paramsters.

DFN 1b, 1.2 SPu-ﬂEtimalitx) ¢ A design d*‘é:c@ is A-Dptimél iff

A e S e LAY

eV o) = min tr(v ).
d*_-dsﬁ. d

Hore M tr " stands for the trace of a matrix and " A "™ —stands for

| % | -
average. Statistically, if d is A-optimal, it minimizes the average

variance of tha hlus of My 2Ty seseyM o)

V=l

OFN 1b.1.3 (E-cptimality) ¢ A design d“e & 4s E-optimel iff
%H*(U—l)f" N Agye1) *
Hexe " E " ~stands for sigenvelus. In statistical sense.it has the

following interpretations.

a) 1Inp thothesia testing tha'critarion.atatas that under normality
assumption an E~optimal dasign,maximizas tha minimum power Df.the AS80 -
clated F_-—tes't. of size -a. on the l_::f:i_ntmur_ fn"ﬂ = c., for .euéry ¢ and
euefy Co o . |

b) In point astimatiuﬁ, an E-ﬂptimél_dagign minimizgé-the maxi mum uapi—

Ay
L

| ‘ance of the hlue of &lz over all vx 1 vectors [ _mi_ﬁh' £ t/( =1, [ 1= 0.

el B



Remark ¢ We shall refer to two inferential problems 17} and jD* as

nonsingular transforms of ®ach other iff 5 a nonsingular M 27N = M_‘_!]*.'
If further M is mfthngdnal, N and ’D* aTe aéid to be orthogonal
.transfurms of each athé#. Than the following properties hold for the
three criteria s If _d*' is_D-ﬁptimum for 7T, then it is OU~-optimum for

| | " |
all nonsingular transforms of Tl. If d is A~optimum (Emoptimum) for

Ny, then it is A-optimum (Eﬁﬂptimum) for all orthogopal transfprms of 1.

. It is convenient (as polnted out by Kiefer (1975)) to define
uptimality oriterion as a clésa nof convex non=incresasing functionals @
on ths'sﬁt of infnrﬁation matrices Cd rathar than a class of conveX
nuh—decraésing functionals on the_aat of cqﬁarianﬁa matﬁicés Ud (whinh

depend on the nature of varietal contrasts cnnaidérad); sinﬁe'tha.farmer

is mors general'than the latter.

Notations used to illustrate éuma;sunh optimality criterias are -

listed below &

‘ﬁiu 5 = the class of all vXv non~negativa dafinite matrices
/g o |

with zero row and column sums.

| ﬁ = the class of designs under cﬂ_naideratitin-

< =_2ﬁd : dEe‘%}.

Also let .}‘cll 2 ?_\dzl-?*.“"z?\ci(u-l) > D. | ba. the non~-zero aj.genvalgea-‘i mf\

C'cl'-' N.pta .that Cd eﬁu,n and . ?\du-n‘ .D' Fa# _alJ. d Bﬁ. - D i \a -
| S P, o veell %/p | i'

CDFN 1b.1,4 (@ —fptimality) ¢ Let @ (C)) = (== & A)7",0<p<am,

' d



b e
A design d €0 is @ -~ optinel ire @ () = min cp *(c -
_Fll ch dsaﬁ’

Note that H-, O~y and Ee~optimality criteria with respect to 11 are

4

*
connectad with @p criterion as follouws ¢

' | Vel
1) UWhen p = 1, ¢l(ﬁ ) m*;%f 2 'h;i is equivalent to A~optimality

__criterion.

" .
ii) When p approaches 0, the limiting case of ¢p critezion ieg2.
1 |

V],
¢ (C } = {im. ¢P(C ) = ( ;l hfi)u"l iz egquivalent to D~optimality
R=? 0 i= .

criterion.

_ | . % ,
ii1) When p approaches o, the limiting case of ¢p eriterion, l.e.

¢ (C ) = lim ¢'(E ) = ;i 1) is equivalent to E#nptimality.

p~%>a:
criterion.

DFN 1b.l.5 Upiversal O timalit Klefer 1975).

PPl oo e e S el

A design d 809 ia & uniwraally optimal design if r::I minie .

mizes (P(E )y dEd‘B , for any ¢ 3 ﬁ ~% (= m, m) satiasfying

V0
(1) ¢ 18 convex .
(11) 9(bC,) is non-increasing in the scaler b 2 O (1beled)
(iii) ¢ is permutation lnvariant. . |
It is not inapprapriata to mention hera Proposition 1, and Proposition 2
of Kiefer (1975) as these arg impmptént'tuuls 50 fap eatabiiahad’in-
uarifyipg univarsal-apﬁimaiity and/or ¢§-—nptimality ﬁfla;lﬁrge ulaéﬁinf

designse



DFN lb.le6 A square matrix M of order v is callpd completely

symmetric (c.8e) 4f M is of the farm aIU + b3u1' where a and b ars

scalars,

- Proposition 1

* - .
Suppose for a design d € cﬁ/ the class @ contains ﬂﬂ* for which
| E) -Cd* 18 ©C.8.

b) tr L., = max tr C
a* de d
¥ | |
Then d is universally optimal infiyl(ainca - tr.Cd always satisfiss
(1b.1.1), it follows that copdition (b)'is alwéys'hacaésary fup-any Uni~

versally optimal dssign to axiat)}

| | | s
Clearly universal optimality criterion inoludes all '¢P criteria

I?nr' B 2> 0

Proposition 2

If 9,29, on _-ﬁ, with gquality for Cy and if C is 90
optimal, then ca* is ¢, ~optimal as well, |
As a conssequence of Proposition 2, if Cd* is _e;a. ang dﬁ is

r * *
@pf optimal, then d 1s ¢q- optimal ¥ q > P.

Apart from the problem of inferring on 11 = pt, ﬁha geneha1 linear
inferential pmblern' involving the parameters (Tl-,_ T,z. ,...-,"_F;) can be
locked upon as one of inferring on ¢ =11 uwhere L dsen ixv matrix,

tpi, tl=o.
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With reference to this problem, we call a design d as acceptable
1ff all the components of £ are sstimable under de We refer to this

problem as nonsingularly sstimable (full rank) problem iff renk (L) = i

(rank (L) =4 =v «~ 1), For rank (L) = y=1 < i, Wwe refer to thia

problem as a singularly estimabls full rank problem. As in_tha-case of

n="P1, here also all the various relevant optimality criteria refor

£, the blus of &.

to the dispersion matrix D(E) of

Cnnaidér again & general linear model Y = X8+ £ and this time
consider the problem of infarrihg ﬁh 8 as a whole, aéauming that the
dampanenta.uf B are also unrestricted (as in weighing dasigna, fnr
gxample ) All zeleyant design matrices are now nscessarily of full
column-rank and, as a result, tha infarmation matricaé X'X are positive
definite (p.dg). Universal optimality criterion undexr stch a full-rank
satéuplhaé been formulated by Kiefer (1975) and reoformulated, among -
others, by Sinha and Mukerjee (1982). We will‘usa.tha fulluuing result
due ta Sinha and Mukeérjee (1982 ). -

PrnEuaitiﬁn 1
- If a plass of matrices G = -Z/Cd $ d € 09} contalns Gd* which
is a multiple of the identity and whioch also maximizes tr(cd) for
d Eﬁ, Cthen d° s uriiuarsally optimum in 09 in the ssnse that d*
minimizes @(Bd) furlﬂgz_nonuax, permutatian;inuatiant criterion ¢
satisfying ®(al + b3) > ®(al) with @ > a+ be -
We refer Hadayat_(lQTB, 1981b) ahd Aah ahd'Hadayaﬁ.(lQ?B) for

further details on other GptimﬂlitY_ﬂritEPiﬂ;_



ul?m

lo, Chagterwiae.Summarx of the Work nf*ﬁha Thesis.

In Chapter Il, we take up the problem ﬁf characterization and
construction of optimel designs underlying twm-way.and thraanway &L w
hinatimn of heterogenelty set-ups with nch-arthﬁganai frameowork, .The
term " noneorthogonal Pramewmrk"_cnnnﬂtea the following ¢ For sliminat-—
ing hatsragsnaitlen two nrlmorm directions, " orthogonal framework 't
' ‘technically mesne that all passiblo level ggmgigggggggnuf avery pair of
directions parmit QXPErimentétiun and are innludadhin tha axXpariment
eqUélly'uften. That is to aay,:the levels of the axperimental unite

fnrm an arthogonal ﬂfrﬂy of strength two when the symbol in the iph

row and u®h nolumn GF tha array is idantifiad as the lavel of the ith

diractiun in u aanrimenta unit, which moans that the incidence
pattern of gvery pair of directionsis taken to be represented (except
for a mulﬁiplmr > 1) by the mateix 3 = ((1)) of all l'a. Howaver
in practica,-aitﬂatiuna may arise when the incidanma-strucﬁura of the

- basic framse nallahger remainajqrthugonalg -Qa*fhr"ﬂxﬂmpla, there ara-
aituatinns whsre a0me apnradic'nalla'may remain emply bacauae ﬁha

| _norraspnnding lavel cnmbinatiuns are infeasible. Rédently, Adhikary
and Panda (1983) brought out and explained some canareta phyaiaal
51tuatiuns in two-uay eliminatian of hetaerogensaity sat-up Where the
ﬂbGUG sart Gf paculiarity in rawncalumn structurs cannot be nverloakad.
Thia is that, Bome cumbinatians of rows and columne may-nut be feasible
when identified with-leuals of esome organic and inorganic mﬁnuraa in
the cuntaxt 0? agficultufai'axpérimenta. Nheﬁ-this:is'the Situatinn,

| _the usual uptimallty reaults 80 far ahtamnad fur nrthngnnal frﬁmaw@ﬁgﬂ
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break down and it necessitates a éapafata study of optimal desions with ?
non-orthogonal framework. Motivated by this idea, a study hes been:
:carriad out in this chaptern undérlying auah.twu-way and three~usay aiimi-
nation of heterogenslty set~ups with nongﬂrthﬂgﬂnal;incidenca struoture -
'.fnr.pairﬁ of directions. Speoifically, in two~way elimination of hatérnux
_ganeity:sst-ﬂp (aedtiun 2&),wﬁ work with the nunQorthogmnality iﬁ tha
sense of empty cells along the principal dlagonal of a bXb array,
- that is to say, the rnw-culumn innidancaﬂatruature 1o assumed to be
(]~ I) The cases mf b=1{(mod v) (su:;antion 2&.2) and b = 0 (mnd u)
(subsection 2a.3) are taken up separately. Ianaaa of b =1 (mod v)
-intﬂitiuely it appears that a dasign-&*, whfdh asalgns aﬁch troatment
.équally frequantly to aach uf the xows andféoiumna ahnulﬁ turn out td
- be aptimal, and indead thisfié uﬁiuaraélly optimal, as damqnatratad by
Theorem 2a.2-l; Emnstfﬂctinn of audh designs ia-alauluﬁdertakén in'thia_
sltuations The case af b = D (mod v) puaas a real prnblem- No uniuar-
aally optimal daeign cnuld be idsntified, ae Prnpaaitiun 1 nf Kiofer -
(19?5) turna out bu ba inapplxnabla. Thus spacific-ﬂ—, D—-and E-uptimﬁl
dssigna have bean nharauterizad4 Esasntially'KiaFar‘s tacﬁniqua (1975)'
nf‘”'Concaua anuelupa" used to prDUa spanifin mptimality of GYD'E,
haa baen appliad with necessary madiflcationa as required in thie parti-

cular nun—orthugunal set-ups  Theorem 22,31 giuea tha ralauant-resultr'

. Lr——— —
e —

Theorem 28+341. Supposa fnr’giuan b =mvy, m> 2, with b:(h ruw—culumn/
aﬁrunture as J=1, thera Exista a dasign d Fnr mhich |
(1) -tréatmant n'rou,incidanca pattapn_iS;a'“BBD- (incidanca;is”;mf_op
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(1) treatment = column incidenca pattern is a BBD (incidence is m
0r mel)
(iii) and, moreover, the b péirs of treatments denoted by

| (hi,hllﬁi = l,24y0e4 b  Where hi is the treatmsnt whiph accufs:
| !

(m-—l) times in the ith row and hi is the trsatment which

occure {(me~1) times in the i?h culumﬁ, are such that thay

(a) eatlisfy hy fihi ¥ 1 = 1y2y40eyb
and

(b) exhaust all pusaible (;) pairs of treatments equaliy.ﬂften.

o
Then d is D - optimal for all m22, v25
4

v

A - opbimal'Fcr all m>2, v

E ~ upﬁimal_ for all m-_:;»_ 2y v23.

l

It is to be noted that d* does not exist for m = l;““Gﬂhatructiﬁn of
ﬁptimal dssigné- d* has heenhuhdertaken Fdr the casas uf (i) u.= eﬁén
integer, (ii) v = odd prima'mr prime power (subsection 2a«4). These
-mptimal designs are cumhianﬂrially quite involved anﬁ load us to the
study of relative afficianﬂias:nf designa having nice simple structure
ﬁumparsd to the exact optimal designs d* characterized by thi# studye
A simple class of designhe proposed by Aggarwal (1966b) is soen to pﬁsaaaéh

lhigh efFiciahny_auan for moderate values of m and Ve

An analogous study for three-way E;iMinatiun-nF hatarogeniety has
algso been carried out (section Zb); Hére-nunnﬂrthUganﬂlity is undarf
- stood and utilized in the following sense ¢ Let E be an -Uﬁ-(bz 034D g2 )

such that the thres bpnatraihts haua'ﬁhs same leual“qubinaﬁidné in sach
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of the first b ocolumns, i;a.lthe first b . columns aré of thé tyﬁa
(1 £ 1), £ =1,2,00syb. Then the remaining b(b-1) columns of this
orthogonal array serve as-axperimanﬁal unite for us in the thréanmay
aliminatibn of heterogenelity set-up, where the entry in the ith.rﬂw of

th expsri-

the u™ column denotes the level of ith direction in the u
| mental, unit i_# 1,2,3% u = l,2,...,b(b-—l). That is talsay, the

- incidence structure is Eaken to be J~1 for svery pair of dirautiuns-'
The charactériiatinn'nf nptimal.designs for the case b = 1 (mod v) and

b=0 (mod v) are more or iess aimilar to those under tﬂo-may elimiﬁa-

‘tion of heternganeity set-uUps. In faot, for b =0 (mod u)1aptimal

" design 'd* 'is such ﬁhat, for ever direction, treatment =~ dirsction
incldence métrix is @ BBD, and for gvery pair af direotions, condition

(111) of Theorem 2a.3.1 holde. We alsc consider the dunatrunﬁian-of

stoh daéigna which are more involved thap under two~way elimlnation of

t

hatarmgensity set-~Ups Detalled cunstrubtinn for (1) v = 2 y L2 2 |

integer, and (ii) v = tk + 1, odd prime or prime power, k odd, tr> 2
integer has bean taken up (:aubsection 2bs4)e As in the cﬁ%e of two=way
aliminatiﬂh}ﬁf'haférﬂgansity set=-up, here alsc we construct highly
_affieiEnt simple designe appropriately generalizing Aggarwal'a (lgﬁﬁh).
designs fn tha threew-way elimination of hoterogeneity aat—upg(aubsﬂnﬁiﬁﬁ'
2be5). The cantonts of sections 2a and 2b are primarily based on thé'pﬁpe: ;
Sahaﬂay (1966 ) and the technical report Mukhopsdhyay and Sahaﬁ-éy '_'(198'5).

raspectivelys

. 1In Chaptex III wa_disuuas furthar aspagts of nptimél wéighihg-

.desigha. We f@rmulate the weighing.daaign prﬂhlem inftﬁé'1Ehguags»ﬁf'- . 
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measursment of distances among @ set of fixed objects along a line.

To bé apacific,.auPpose there are (nh+ 1) objects, serially numbsrad
ly2460e4n+ 1, fixed along a line and we are interested in mBaauring
distapces bstwesn any two objects (or some function thersﬂf)l by taking
N measuring npsratiaﬁsu The mathsmatical and cumbinatnrial aspects of

the prubiem can be desocribed as follows ¢ A seb of recordsd observe-

tions follow the standard regression model

&

WxnZhx1 ¥ '-E-"le_

Yyx1 ®
E(e) =0,

E(ze') = 021,

where X 18 a (0,1) matrix end g is the parameter Uantﬁr-ﬂf unknown
cmnsecutiﬁs distences between thé chjscts. An interesting featurs of
thié deéign mﬁtfiﬁ X is that sach row of X ocontains only ons rﬁn of
1's, as, in measuring distenoes betwoen any tWo points, we automatically
take account of the intarmediata:pnintS, if anye This speonial property
~of X has been tafmed ag string_bropérty" in this Eheaié1 this has
alao boen rafa:fad tn”aa " cunsecutiﬁa.une‘a property ' by afharsu The
probleme of interest here are inferences on B (as a whule) éhd'nn a
full set Uf urthanurﬁal contrasts § =P8 where P is ae usuel n~1lxn

.

lower submatrix of thes orthogonal matrix 0 with the firet row vector

as (“J"'“- | “1'-,.;: ,""J"' « Inocidentally the following intaréating combhina~

y
VOGN ) ,
torial propertiss of the nxn (0,1) matrices with string property haye'
been observed and made use of in deduﬁing'the.nptimality results ih the

*_sﬁeniél'naae N = e
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Property 1 ¢ X ] =+1 or D according as X 1is non=singular or not.

tihenover X 18 nah-aingular, the following proposition holds.

property 2 5 (i) The elements in X~ aro (D, + 1) and, in each

column, the non~zero elemants cccur with alternate signe.

(i1) The column totals (through all or eny subset of con-

spcutive rows) are (0, + 1) ~ pot all being 0O's.

(i4i) If a certain column total is + 1(~l) the first non-
zoro entry in that column fe + 1 (=l), if a oertain column total is O,

the first nonwzero entry in that column may be +1 or -l.

The main uptimﬁlity results are stated below.

Lot ﬁf},(N.n), be the class of dasigns with string property for N

observations with n objectsa

Theorem J8¢2s1e Any X in LT}_(n,n)’ e Dw=optimal for inferbing'unlg

* | , *
and, moresover, X = In is uniquely _@P-fuptimal pver the class

IT}.(H;N) fﬁr.ﬂ££ pn >0 (p=20 cﬁrraapmnda to Dmoptimality criterion)

Theorem 38e¢262e X = In is unidquely D-optimal over ths class ( 2 (nyn)

for inferring on & = PB.

—

Hpart Frumlthie-caam of N = n, we have also suggested an optimum
Way, uaing.D-.and_A-uptimality criteris, of choosing one/two additlonal
observations, given an optimal choice of the firet n cbservatians
..(aectihﬁ.ab); f(Thefﬁhoica of.Eunptimal'dEsign for.thé genaral masé

of (N,n) has besn recently solved by Jacrnux_(lged )). We also take up
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N thé gensral case of N > n éaparately (spetion 34). Haré choige of

the optimal " exact N- observation design ' as such becomes intractsahle.
Instead, following tha search of ™ approximate " ragraaainn dﬁaigna'
originally farmulated by Kiefer and Wolfouitz (1959) and used effentxuely )
by KiePer (1959), Fedorov {1972), Kiefer and Studden (1976), Studden (1975),
Silvey (1980), we formulate here the designlprublam as that of assessing

8 "'hrabahility maasupaf'11 an the design space aﬁ of all possible I
nxl {0,1) vectors with atring proparty. With this approach, Mg find

out A=, D, and E~ optimal prnbabilify haasuras and annurdingly-%hé-

" approximate ' optimel designs are derived whon N observations are
takan; (Ths.rasulta paftaining to E~optimality have bean independently
found out by Nukargaa and Sahaﬂay (1985) Fnr snmelpartisular cdmbinaf
tions of N and n, these “’appruximate" designs reduce to " axact'"

optimal dasigns._.' As for example, in caseofN = M,' t > 1 linteger,

2
it has basn demmﬁatrated in Corollary 3cs2.,1l that thu axast D-ﬁpfimal
design puts equal mass to sach of the = 2+l voctors uith.atnyng Pro~

perty. On the other hand, for N = tn (Emrullary 30.4.1) an Ennptimal
design puts equal mass only to the rows of identity matrix and nc mass

to other vectors with string property. The approximate Awmptimal design
measure is comparatively of more difficult natura_and doss nat reduga to
“any exact result as in the case of De or Eaﬁptimality,even furiparticular
comblnations pf N and Apart from these ppublamﬁ, We giué a brief
discussion on uptimal_ghnicé fo% meaauring the totsl length &uuﬂring the
~ set of ubjécta (hautianﬁﬁdd." ‘Thé ﬁﬁjar part ﬂf sentinns'Sa ahd 30 .
have bsan publiahed in Sinha and Saha (1983) and Mukerjee and SaheRay

-(1935) raapactiUnly.
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Gﬁaptsr IU.EEEEQEE the Gptimality results already sstahlished
in the context of Hepeatad Measurements Deaigne,(RMD (t,n,p)) assuming
totally fixed affants madel (Hadayat and Afaarlnajad(19787) Cheng and
wyu (1980 , 1983), | Magda (1980), Kunert (1983, 1984a, 1984b), to
the cass of pixed effects models In practice, often the situation
ariess when the experimental units included in the experiment constitute
a random sample from 8 population of edl auailahla pXperimental units.
.The present optimality study ie carried out asssuming an additive miXed
affaﬁts model where seffects due to perlods, as well aa_direat andlfirét
order.residual'affénta of tréatmanta are retalned .as Tixed effeots while
offects dus to unite are taken to be random; All the universal uptimaQ
lity peaults_ragarding strongly balanced or balanced daaighs both under
nnn—cirnulaf_and cirocular model of Heday&at and Aféarinpjﬁd(19785, Cheng
“and Wu (1980°, 1983), Magda (1980) could he extended to mixed
affects set~up {sub-sectiorssb.l, 4b'2§'&b'3 and section 4d) axoepﬁ‘that |
Theoram 4.4 qF Cheng and Wu (1980) was found to hold only under a .
suggested modifications The Formal proof of Lammé Ghe3s & is anew oney
and it is not explicitly mentioned in Cheng and W (1980 or 1963} *f - -
thGUthin the proof of the theorem they assume this result. Apart from
the so far established results undar fixed effects model, We indspens
dantly takp uﬁ,a study of nptimélity of Ealénced dasigns under_nan—ciraﬁlar
- model oue; the class uF daaigne Ln whidh no treatment prEQGdasxitself and
| he numbar of perinda is h2t+l, (subaactinn 4b-4) 'The.aﬁalugﬂﬁﬂ%#ésuita _':
af Thanram 4b.4.l Theursm 4b.4.3 under fixed eﬁfacta mndel are not pru-.:::

'_uided in Bhang and Nu (1980) Hagarding thE mptimal designa of Kunert (1983)



which are neither balanced nor strongly balanced but satisfy some
orthogonality conditions, we have shown that the carreapchding results
for the case (&/n, ﬂ/p) and (t X ny t/p) hold good under mixed
effects modsl (Thanrem 40;1;11 Theorem 4c.l.2) whereas the nurraépundu
ing mixed effects analogue for the ocase of t/n, t'X'P could not be
eatabliShadsi-Tha miXed effscts version of Theorem S.B'and Theorem 5«4
of Kunert.(lgﬂﬁ) haﬁa also been established. These results prove opti-
mality of nearly strongly balanced deaigns over a subclass of all possi=
ble designs under non=ciroular model (i;s.,_withuut preperiod)s But the
techniqﬁss developed and used in the present chapter are Fﬁund to be
inadequﬁte*tnlestahliah the mixed effeots analogue of Theﬁrem 548 of tha*
game paper of Kunert, whinh'ekﬁands'tha_ahouammantiunad results fon nearly
_stﬁnngly balénoad déaigns to the general class of all designs. Morsover,
the results of Kunert (1984a, 1984b) uhich ostablish optimality of
balanqed;unifurm designs for non=circular and circular models respectively
over the ciasa of all possible designs including theee which have pairs
of cunaacﬁtivé midantinél treatments , could aisu not be sstablished in
'tha mi&ed effects situétiaha Apant frum oxtending optimalily results to
the mixed sffects model, we have also undertaken hara~cnnsﬁpuati0n of
nearly strnngly balanced HND's taautiun 4te)s The major part of the contents
of subSEGtinnsdb.l,'ab;Z, 4be3, and section 4d of this chapter haﬁebaan”
publiahad in Nukhubadhyay and Saha (1983). |

In chaptén-u;_me'atudy'samg aspéqts of eaﬁimatian'ﬁrfnan;édditiué
pﬁrémétgr with special EEferahﬁe ko Tukey's'nonhadditiué'model as applied ;'
to a genshal b1GCR.de§ign-éet-up: (aubeactidn'5b¢i_ahﬁ aubBE§tiﬁn She2)e

_-Aygsha:él nanﬁa&ditiUE madel‘as ﬁakan Up by Milliken and Grayhill (1970),



as also discussed by Kshirsagar (1983), can he described aa
y = XY+ FB + €

where Y is the vector of unknown additive parameters, & 1s tha vasctor
of interaction ﬁaramatars and the elements of F are arbitrapy function
of sstimable parametric functions uf}ﬂMEStimablé ﬁndar the sdimple linear
model Y ﬁ.{}’+ E; The akiating liggrature gives emphesis on the tests
fnr'npn-additiuity.based on residuals ebtainadbhndsr the model asauming
-8 =20, and overlocks the problem df sfficient pstimation of interactigﬁ
paramater &, In the present wnik we make an attempt in the lattor
direction. ”Mainly with estimatlion of the.nonnadditiue paramater in view,
formal definition ﬁf eatimablility of  § in this nmﬁ—linaar mocdel has
been introduced in DFN Eb;;ili Theorem 5belel 8nd Theorsm Sbel.2
justify soms intuitiua Feélinga regarding estimability of & in the

giuen senges It turns out that under Tukay's non-additive modal app.lied

to the gaheral block design sst-up ie.e.

SV . - |
Yi,:] L+B +3T8, h’th-% Bﬁl(Féithh)l—aijl, 1833k, » 1815b,

hnt all designs provide estimation of 8. Precisely, we sstablish the

"'Fnllnwing :

Thenrem She2 e 1 Undar Tukey's model applisd to thé'ganaral block design
set-~up, 8. nmnnactad block clesign d(u,b,kdl jeeey kdb) will pmvida
astimation of & if at 1eaat one palr of treatmants (hyh' ) 88y, 0cnur

" 4n two different blocks simultansously. 3\

Theorem Sb,2.2 and Corollary 5b.2.2 charecterize a cless of designs from

which :B ia;ggg estimahie;.'
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Again, the problem of estimation of an iﬁtaractimn parameber
vector B under the above non-additive model generalized to involve up
to second powers of T, 's and B,'s has been foousod (subsection Sb.ﬁ);
As a matter of fact, it haa-bean.pninted out tﬁat whatever the bloock
design adopted in.a non-additive modol, the intaréctiah baramatare
corrasponding tnlhighar powers of Bi or Th alope cannot bhe aatimataq.
.Fn_r gxample, if the model inuulu.as terms like Glﬂi - Or E—zzéijh'ti ; El

or B, is not estimable and, as such, the multiparamater problem undar
conslderation involves te#ms ihc;uding both Bi aﬁd '?h- As in.tha

case of single non=additive parameter &, hersc also sufficisnt aﬁnditinn
~on designs providing ﬁsﬁimatiun of §4 has bean deriuedjin'Thenrém 5be3eds
Apart from judging astimﬂbiliﬁy of B and B, We fncﬁs oux attantiun to
the problem of Effiuiént estimation of single interaction parameter 6
undaf Tukey's non=additive modal1ﬁithin the class of all connectad blook
..deaigns providing estimation of & with fixed N (ﬁatal number of
experimental unita) and block ai#aslg_u- The relevant results are statad

below &

Let () (N,v) denote the class of competing designs.

Theorem 5¢.2,1 Whensver v/N, an RBD is the uniformly béat amothg all

binary designs in (T)_(N,u). k

Theorem 5&.3.2 An HED.-ia the minimax daaign_mithin'the c;aaa of

designs KT),(NI”) 1f non=binary deaigna are ﬂlso'allauad.tﬁ be juﬂgedq
| Ragarding multiparameter gruﬁléma iﬁ haéwbeangﬁbseryéd that an  "

RBD does nnt_bahaus nicely in the giﬁen aantaxt'and as such it is



difficult to establish ﬁny optimality result for multiple interaction
parameters (subsection 5ce4)s The contents of this chapter have been

taken from £he paper Sinha, SahaRay and Mukhopadhyay (1985 ),

ld. Dsfinigions and Notations.
In'this saction we give a brief description of the notations and

définitions'of some known designs widsly used in the present ﬁhEEiBf‘

ldel Notatinna.

X denotes a vector of appropriate ordern. ln’ Jn, In stand

e

respactquly for the nxl veotor of all 1l's, nxn matrix of all 1's

identity matrix of orden n. Sumstimas'we omlt the lowar suffix 'n' to

avoid complexity ih nﬁtation.

-Diag(rl,r2

r, in the (1,1)%  diagonal entry, 1.2 1,2,.4.,n.

,...;rn) danﬁtaa the diegonal matrix of order n with tho olemant

| (R)ij stands for the (i,j)th slement of the matrix A. Sometimes
We write A = ((aij)) tq denote tha matrixlﬂ with elements 8 4° hmin
and hmax stand ragpectively for the minimum end the maximum plgenvalue

of the underlying matrix.

tr(A), rank (A), and det(A) or |A | denote respectively trace,

rank and determinant qF the matrix Ao

j&t.(n) stands for the ventor space spasnned by the column vectors

of the matrixlﬂ. A and A_ denote raspectiﬁalthhé transpuea and a

generalized inverse of the métriﬁlﬂ.
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A B! denotes the Kronecker- product betwsen A and B (Rau 1965 ).

By the symbol " A > B uwe mean to say A~B is non-negative

dafinite (nened).

%] denotes the greatest integer £ X.
n
(xi)izl denotes the seguence Kq %o aees X o

A statement ™ £ is T (L) " means that the function T is
increasing (decreasing) in ite argumenty " £ is + ($) Y means that f

is non~increasing (non~decreasing).

The notations 'a/h# and a x b' mean faapectiualy that " a dividss

h* and " a does not divide b" . ™ (a,b) = k" means that the greatsst

common divisor of a and b is Ke

The standard symbols '¥', tet, tgt, 131, labt t&br, (|1, 'U'rlDt

_i:)‘, o ! étﬁ.. are used in thalr usual senses in this thesis,

the | o
'GF(v)! denotos/'Galois Field! containing v elements

(Chakrabart: 1962).

In gensral, for a design d, N, stends for the treatment ~ blook .
incidence matrix with elemsnts ndij andlrdi; kdj’-ndij’ hdij stand respac j

tively for replication of the ith treatment, size of the jﬁh-blunk, nuUmbe

uf_aucurrances of the ith trﬁatment in the jth block, and (i,j)th'elament

{
of Nde-
ld;i Deflnitions.

The terms and concepts used in one way slimination of heterogencity
setting i.6. when the Bxpﬁrimental uhiﬁs are aubjgctwtafhaterugeneityjéigng_.'
Dna'diractionaare described aé fnllows t'Fur-a ohe=uay daaignj'let-u.gtand S

_'Fdr the number nf'tréathents_and b fﬂr'thé:numbar of blocks.

i
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DFN ldeZel Proper Deaign

A block design d Is saild to be proper if the block sizes are

Equal =P kdl = kdz = sae = kl’jh - k (BQY)i

DFN lde2.2 Equireplicato Dosign ¢

R block dessign .d d8.-saild bo be equireplicate if all the treat-

=,-u=-rdv = (5&}’):

e
-y

ments occur equally often i.e. Ly T Fyo

DFN ldeZa3 Einarx Deaigna 3

A block deaign d is said to be bipary if ndij san taxke anly

two velues ~ O or 1 for all i,jo Naturally, then, Kdi <V

for all 1.

DFN 1de2.4 Randomized Block Design (RBD) i

A pfnber connected one-~way design with b  blocks of Kk plots

is said to be Randomized Block Design (HBD)IiF the following relations

holde
(L) v=k

(ii) ndij=l g iﬂl,z,-u,\}‘, j=l’2,¢-¢’b¢

DFN ldseZ2.5 Balanced Block Design (BBD)

A proper copnectsed onesway design with b blocks of Kk plobs
sach is said to be a Balanced Block Design (BBD) if the following
relétimna are satisfied $ |

| | T | o N
(i) U/hk and .rdi'= 4 ndij ='%%“: L= 1y24se0yv
o S T _ o



S

(ii) ' N l,Q’FHi’b’ i = l’nz,l-,- ’Ul

ERREETIE
b j
(150) Agsqe = 2 Naiglagry TNV Fi,lLi, i S

Balanced Incomplete Blook Desighs (BIBD's) form apeuial clagsses. of

BBD's whenever k < v and RBD's obtaip whenever K = V.

The torme and concepts used in tuwo~way eliminatioen of hetero-

| Qensity dosigns are described below

DFN lde2.6 Latin Squafe Easign (Lsp) ¢
An arréngsment of v ‘treatments in u2 plots of v rows and

v columns le said to be Latin Square Dasign nf'nrdér v 1f each ﬁreat— '

ment occurs once and only once in each row and in sach column.

 DFN 1ds2.7 Mutuslly Orthogonal Labin Squares (MOLS)

If two Latin Squares of the same orfder and with the same lettars
- be such that when the two squares are suparimpnséd, gach lettér'uf one
asquare pairs exadtly once wWith each letter of the nthar_aquﬂre,fthan_

they are said to be mutually drthagonali

DFN lde2.8 Graspo —Latin Squares

-

Graace_Latin Square i1s ancther nﬂma‘df.a pﬂir.a? orthogonal Latin
Squares superimposad on one anmﬁhar, the treatments béing'fapfaeentﬁd'hy
Greek letters in one square and Laﬂin lottere in the others In'ﬁhis
arrangement, every Greek lotter (Latin lottar) OCCUrS ané'in gach row,

once in sach cﬁlumn and once with each Latin letter (GrEER:Iattsr). |
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DFN 1de249 .Generalized Youden Squara Daaign'(GYD)

An arrangement of v treatments into a.réctangla of size bl><b2-
such that rows constitute blocke of a BBD as also the columns constitute

blocks of a BBD, has been termed as &sneralized Youden 5quare Dasign

(GYD) by Kiefer (1975)s

S

In the special casss of rectangular setting, when v edquals

alther b, or b,, & GYD Z1s simply called s Younden Square Deei (YSD N

1
‘Speeifically when v/b; and also v/b,, 8 GYD has besn taermed

as Ganeralized Latln Square (GLS) design by Kunert (1983)-

DFN lde2.10 Welghing Designs s
Supposs n objects are to be weighed in a chemical balance (in
which the dbjabts can be placed on either of the two pana) nf in a apxring

balance (in which the objects can bs placed on a slngle pan), involving
exactly N welghing operations. Then the design matrix will be & Nxn

matrix with each element equal to

a) +l, =1l ar 0 4in cess of a chemical balance

h) 0 or (+)1 in cass of a gpring balance.

| An§ arrangement of objects results in.a weighing design in general_tErma.

DFN 1de2,11 Repeated MeasurementsDesian (RMD).

~ An experiment in which sach unit is axpaaad,repeatadiyftu'at
Bequahce_qf-iﬂenti¢al or different traatménts:isidalléd'E'Répéated

| Neaauremants Design (RND)f
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DFN 1de2.12 Orthogonal Array (0A).

A kxn matrix A with slemants from a set of 8(>2) olements
is oslled an orthogonal array of aize N,'k constraints, s loevels,
strength t, and index A if any txn submatrix of A cpntains all
possible txl1 calumn vectors with same frequancy A. Such an array is
denatéd by GA(Nik;a,E);,N is aisa called the ngpp;r of assemblics.

In visw of this definition, trivially, wWe must have N‘=Jhst. '

Orthogonal arraye of strength two will be used in.SQma.chapters
of this thesis.

Now we guoke & Well known Lemma (without proof) which we will
frequently use Iin the derdivation ﬂf'aﬁtimal desighs in almoet all

chapters.

Lomma ld.2,1 For any positive inhegara 8 and %, tha minimum of

8 g | ; - |
2, ﬁz subJect to ¥ n, =t uwhere the n,'s =are non=negative
1=1 . {=1 Lo | i Bs |

‘integers is obtained when t~8| j‘l of the n;'s. are -aanh_ewal to

[ $£1+1 and the others ere each squal ta [ % 1, uhere [ ¥ | is

_tha largest integer contained in ;j;@.



CHAPTER 2

TWO-WAY AND THREE-WAY ELIMINATION OF HETEROGENEITY
SETTINGS WITH NON-ORTHOGONAL FRAMEWORK..

Introduction

Thera.ia a good deal of literaturs auailgblaiﬂn the cumbinétarial,
constructional and analysis-éspects of daaigns"éiiminating heteragenaity
in two or more dirsctions. IIn suoh set—ﬁpai usuallﬁ an arthogonel
framework is'asaumedj_that 1s to say, the incidence pattern of every
pai:c'uf‘ directions 1s ‘taken to be represented (axuepﬁx for a multiplier2 1)
rbf the matrlx J1= ((1)) of all 1i's. Techninally; this means tﬁat all
poséibie level combinations for every pair of directions permit experi-

mentation and is included in the experiment aqually often.

Avallable optimality results (studied by Kiefer (1958, 1975),
Cheng (lQ?EﬁD,Mukhapadhyey and Mukhopadhyay {1984)) deal exclusively
with this orthogonal framewocke The multiway heterogensity setting

considered by Cheng (19788)is o coinpletely orthogonal setting in the

sense that each one of all possible lesvel cnmbinatiuna of the hetero~

geneiﬁy directions or factors aﬁpears_a constant number . of times in the
experiments Realising that the complete set of ocbsaeryvations may not be
avallable (as alsa may not be necessary, since the usual fixed effeots
additiueimodel incorporates only the main af?suts for the different
héterbganeity directions or factors aaéuming ali intarac%inn,affacta

of the factors to be negligible),'Chang's.Clg?Ea)multiuay satﬁing has

basn;a#tandgd'tﬂ 8 bélanﬁg5 multimay satting by Nukhﬁpadhyay and
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Mukhopadhyay (1984)s The latter setting does not negassarily involve

all the lauela of the heterogenelty directiuns or factors, but those

present maka possible orthogonal estimation of the main effects of each

factor. Take, for example, a threewway nrthugunal sptting with b

levele for sach of the dirantiuns. Then & complete setting (Cheng({1978a))
involves all poséible bs axperimental units with inocidence structure
fmr.euary'pair-uf dirsctions as bJ whereas s balanced setting
(Mukhopadhyay and Mukhopadhyay (1984)) can hslaﬁsily ovonstructad with
only b2 gxperimental unite having incidence a£ruotura for paire of
directione as simplf Je In cthar.wards, the level comblnations of the’
experimentai units in th§ garlier sstting of Cheng (lg?aﬁ)Pmrm an .

Oﬂ(bz,s,b,z) whereas in the latter setting involving only b? UnLts

th

thay form an UR(bZ;S,b,Z),' identifylng the ith row in the u cﬂluhn

th th

of the array as the level of the i direction in the U axperimental

UNite

However, in practice, situations may afiae where the ihﬂidenca'
structure of various palruise heternganeity diractiﬂné no longer rehaiﬁ
mfthmgonal; ag for axémpla, thers are situations where some sporadic
bells remain émpty hénauae the cnrreapnhding level cﬁmbinétiuna are
infeaslbles In such casses, usual analyais for orthogonal set-up breoaks
down, and appraopriste mmdificatimné ara'neededi In the context of two
way eliminatiﬁn of hatéragenaity (ﬁummnnly‘khnwn ag rou—aulumn designs ),

'Hggarwal (lQEﬁa) dariuad tha diatributiﬂn of adjuated vow and column

sum of squeras and the canditlﬂna for urthugunality of esstimable rmw,

column and treatment nuntrasta for a ganaral rou-mnlumn 1nn1danca

strycture, allowing for sunh,ampty cells.' In subsequent pNBpe TS
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(ﬂggarwal (1966b, 1966c), Aggarwal and Sharma (1976)) ho prasanféd &
series of two-wey designs covering the situations whero the calls along
the principal diagonal are ampty. Recently Adhikary and Panda (1983 )
brought out and oXplalnhed some concrste physical sltuations uwhare the
above sort of peculiarity in the row-column atﬁucﬁure cannot be overs~
looked, This is that some comblnations of rows and columps may not ba
feasible when identified with levels of some organio and innrganin

manures in the context of agriloulfural expsrimentsa.

With this in mind, herc we inltiate a study on optimalldaaigna
underlying such two and three-~way ellmination of heterogeneity set ups |
mith non~orthogonal ihcidanca structure for pair of dirsctions.
SpEcifically, we work with non-othogonality In the sense of empty cells
| aluhg a_tranauaraall af'a bxb array for two-way layout. Uithout loss
of generality, the transvsrsal can be taken along the principal diagonal
and the incidancs'struﬁtura,Far the two directions ia.theh:aaaumad'to
be J-I., In case of three-way elimination of heterogeneity ssoteup, ue
consider a.aatﬁup whara feasible experimental units are thase for which

levels alanglﬂﬂz two directions are not the sames That is to say, for

- [ootnots ¢ Hero the term " transversal " is used in the following

sonse ! (vide Mukhopadhyay and Nukhupadhyﬁy (1981} ).

Ina bxb array, a transversal le & collection of cells (il,jl),
(iZ’jZ)""’(ib'jb)' Where (il,iZfr"’ib) .End. (jl?jziﬁi.tjb) :thh .
represent permutatione of the numbers (1,24e.4,b)s |



every two directions, lavel cumbinatiuns along thafprincipal diagonal
are infeasible. ' Let each of the three directions assume b levels.
Following Cheng (1978a), thersfore, if we assume the incidence structure
for svery ﬁair of diractinnsaé (b2 )(J=I) the number of feasible
experimental units for allocation of v. treatments heGaméa b(b~l){h~2)
which mey be too large tﬁ be available to the experimenter in practice.
On the uthérrﬂnd, following Mukhopadhyay and Mukhopadhyay (1984), the
number of experimental unite can be reduced to b{b~l) ‘as follows,
thefaby produclng the incidehca structure aa J~I for euary palr of
directions. Let E be an Dﬁ(bz,z,b,Z) such that the three constraints
haeve the same level combinations in each of the firet b oolumng, Lo

| b
the firet b oolumns of the OA ars of the typs (i). 1 = 1,2,400,be

Then the remaining b(b=~l} columns of this orthogonhl array . sbrve as

experimental units for us in tho three-way elimination of hetercgeneity

th th

sat~up, where the sntry in the i row of the U column dehmtea the

lavel of ith direction in the uth experimental unit, UWs will deal

with thie 1&ttsr incidence struoture for the three-way elimination of

| heterﬂgeneity designse.

With the above gart a? peculiaritiea_in the frameswork fdrfbuth
twcnuay_(sectiun 2a) apd threo-way slimination of heterogensiby a8 beups
(sectian 2b) wa initiﬂta a study ﬁn 80ms probleme of characterization
“and construction of nhtimal deslgns for ihfapsncs.un varietal cuntrasﬁa.

We have only studiéd the césas'of_ b = mv’ andﬂ_h_#_mu + 1.



2a. Tuo-way Elimination of Heterogeneit ﬂigﬁyih 9-with Row~Column
Ingidence Structure as  J~L. .

28,1 Preliminaries

]

1’1’

Let use conglder an arrangement of v treatments in a square
array of size bxXb: where the cells along the principal diagonal ara
supposed té be inféabihle, all other cells being feasible., The usual

fixed effaats,mudel;is :

Yajt(h) = [ + Cl'rjl + BJ’I + T:h + Ejjt 1 i s < vy 1 RN FE ‘j'ib

Wﬁﬂrﬂ ij;(h) is/ the observation ih (j,j')th cell recelving hth

tregtment and Uq;aj, Bj,.'t stand respectively for general effeoct,

jth T oW Effactj'fj‘th-

1§
column effect, hth treatment effoecty ajj,‘a .
are l.l.ds N(U,’Uz)-

Bs usual,'wa are interested in linear inferential problem lnvolving

a full set of orthonormal varietal contrasts. The familiar concept of

cnnnacted@ess also applies here and one can construct a largs class of

conneoted designs for the cases of b =mv or mv + l.

1F0r & spwoified design d, let L, = (@(dhj)), M, = ((mdhj))’
stand respectively for treatment —row, treatment ~column incidence
matrices. In the present nonﬂurthﬁgonai setuup; the row =ceoclumn incidence
'matrix, danﬁtad by N = ((”jj'))’ agsumgs the form J~-1I1. Lot

Eq T (I_‘dl ’rd2 gev ey rdu)' be the vector of treatm.ant"raplicatiuns for

.thelqasign d amd Drd= Digg(rdl,g-.,rau). Let further
b b .
N, ® L Nuuy 9 N 4= L Nyugo
Jde, j!-__-l- j:’_ s ] j=1 JJ



The following relations are fundamental ¢

Y] \
N = ) x ’ ¥ t = | '
j- h=1 dhj » ] - dh:]
B b
SR G R I
dh j=1 dhj s1=1 dhj

Following Aggarwal (1966a), the C~matrix of the design is given by

Cq = Byp = Xlzp‘llxlz
- (e | o Loy
where 822 - Diag(rdl y I?dz ,il-’rdu) Ld Dlﬁg(nl y ﬂ2 gs oy nb )Ld
o p 1 1y,
x '—""M t N Diag( § ¥ peegy T )L
12 . nln n2-' nh- :
s _ t o111
Rll - Dlag(n.l $ n..z 'l-llj-n'b) - N Dlag(nl y n2 gu e ey nb )Nl

Weg will deduce explicit expression for C, with N = J-€I, for

d

e = 0 or l. Let Kk depote the constant row and column sizes 1.0
1< j;j' £ be Note that for € =0, K =b, and

for € = 1, k = b=l. Then we get

LoL,
cd..nr-k-{m.* }{kx._ }{M }
o
'
L. - —E T
= ) _.-Q.E.ci‘__{_m +.Ld:] :.Q.........B__.._ I_...‘?..:..?_E.J
rd- K d K l42._”82% |-<2-E}2 }

Next we nots that
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1 B228 gl o |1ed 2122 forboth £=0 and € = L.
5D N 5 -
e '< “Eﬁ" — s— -
Hence,
t i
LL MM v e

B dd dd e v
Cd"'Dd k+e “%+re T 72 (Ly + ML, + )+ Tk-EYbK "ﬂﬁd

For € = 0, we get the usual Porm of Cd matrix under orthogonal set-up,

and for € = 1, we get

| | + ) Lt ) £ r
Lde O (Y ID (N I L

| — gy " ——— ---—-I L 2 Ill‘l
g = 0p = SR =) Rl Gy (28101

d

Let us define ( ) to be.the class of all conhnected designs with row
column incidenoe structure ss J=~I1. In our later dorivation we will

use the above C, matrix in (Ea;lal) and find optimal designs in _(il

d
for the cases of b #_mu and b=mv+ l. For b=nmvt+ 1, uniuanaally

i

optimal designs are obtained (subssction 2a8.2) whereas for b = mv, wa
como up with specific’ optimal designs (subsection 2a.3)s UWe also cone
struoct such optimal designs (subsection Zafd) and calculate efficiencies

of Aggarwal's designs and their generalizations relative to the optimal

designs (subsection 2a,5).

2802 Universally Optimal Designs for b = mv+ 1

In this section let ﬁ?). stand for tha.claas of ;unnected.daaigna
for bxb apraya.mith t =_mﬁ+*l and'rnw-unlumn-inéidanca structure
as Je~I1. Ue will”éaa.hmlnm that whenever b % mv+ 1, universally optimal
 designs (uidg DFN lb.l.5; Ghap£ar l) sxiat. We use Proposition 1 ip
Kiefer (1975) (vide Chapter 1) for tﬁia pupppsé._ In effect, wa'pfﬂué ﬁha

following.
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Theorem 2a+2.1 Let d € () be a design which assigne each treat-

e .
ment m times in esch row and In each columne Then d 18 universally
Dptimﬂl-

" The proof is atralghtforward. Moreover, since b = mv+ 1, such

*
a d always sxists.

- |
First we show that d maximizes the trace of Gd over the
class KT}, Referring to (2a.l.1)
Y v mvtl xz' v o mvtl EF
twCy= £oxy -2 3 Mo g Ty -
h=1 =l j=l h=1 j=l
2 2
Jyome Yoy mdhs]) . 3 —dh
h=l 4= mv+; my=l by TV my =,
v v 1 mvil I 2
= 5 Fah “'?ELT E]j 2 K m3+h1) ‘
=] == j=
mU+1'rFﬂ. 1= th my-t 1L |
v ookl 2¢ ., o |
T 5 | Lang * ey - D)
h=1 | j=1 J o
. |
L . | -
W) (L) e | e
h=1 .
vyl murtl S -
since % xdhj = § mdhj LS rdh’ | W h == 1’2,-_.-- sV » |
J= J=L
Clearly, % *y, assumes the least value for d &8 d la equiroe
ﬁlinata with -r_* = r:*' #1u-‘=.r_*: = m(mU+l)- Morsover, gach of the

dl o2 dv
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first three sum of squares in (2a.2.1) is > 0  for any competing

| W | ix
design and "“'=0" for d sipce in d "ﬁd*hjla and md*hjta are

et

gach equal to m = (mu+l)' This ssttles the part on trace maximization.

Neﬁt, it 1s also evident that Bd* is completely symmetric. Heance an
- 3
application of Proposition 1 of Kisfer (1975) asserbts that d is

universally optimal.

Such types of designs can be esasily construoted, We construct s
Latin Square with b = mv+ 1l symbols, say 0,1,2,...,mv such that along
the dlagonal the symbol O ucﬁurs. (Such Latin Squares exist for all orders
(vide 4 Denes and Keedwsll (1974))). Then we delete the diagnnal and

reduce the rest of the symbols mod v.

il

28.3 Speecific Uptimalitz Rasults for b = my

Hers IT]_ gtands for the class of conpacted desipns for bxb
arfayé with b = mv and row~—column incidence structure s J~I. In
cagse of b = mv, a8 completely symmetric C~matrix of é dasigh does not - .
necessarily pruduca.maximum trécg of Bd in IT), Take, for exampleo,

v=3,m=2, Bolow aro displayed two designs

] 'l"f ey,

~ 1 2 8 2 D - 01 0 1 2

1 ~ 0 2 2 1 1 -~ 0 1 2 0
4 =12 0 « 0 11 |2 1 - 1 00
1 =L

8 0 1 w 1 2 lo 2 0 -~ 2 1

0 2 2 1 = O lor2 0 ~1

12120 - 102 2 0 =

( treatments are represented by aymbols _0,152)



with tr 0, =32L, trp. = 484,
d 2 d 5
1. - 2
Cd is completely symmetric and will also be lataer demonstratad
1
to be E~optimale But it has smaller traces than that of Bd which is
- 2

neither completely symmetric nor E-optimal. Thue it is evident thatl
Proposition 1 of Kisfoer (1975) {which rests exoclusively on simultensous
realisation of complete symmetry and trace mgximiZation of . Cd—matrix)
is not applicable here as regards universal optimality., So we look for

spaﬁifin optimality below ¢t As & matter of fact, we ars able to enune

ciate the following results.

Thagram 280341 Suppose fmr given b = my, mWE.Z with the b}(b
rnwucalumn $ncidandéjatrunturé as J=~I, there exists a dasign ﬁﬂ for
whioh '

(1) treatment ~row incidence pattern is a BBD, (Xd*hj =m or m=1)
(ii) treatment - column iﬂpidence pattern is a BBD, (mdﬁhj'= m or mel)
(iii) and, mmraouer, £ha b pairgof treatments denoted by (hi’ hi),

i =.l'2 poer ’b Wharé f is the trﬁﬂtmﬁlnt which Dbcur.ﬁl'(m-l)

th

i

Tow and h;

(m=l) times in the ith column, &re such that, théy

times Iin the 1 iz the tréatmant which ococurs

(a) satisfy h, f‘hi v i_=’112!---:b

and  (b) exhaust all possible .(;) pairs of treatments squally often.

| 3# - S
Then d is D =~ optimal for all m2 2, v 25

(v

.2,.1! :"4

A - optimal for all m
E = optimal for all m > 2, v> 3.
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froof § Nﬁt to obscure the essential steps of raaaﬂning, we will

organize our proof as follcws &

First we turn to thé inequalities which can be used in the
- absence of uniUErsal optimality to obtain wnaker optimality rasults.-

We treat only ﬁa context (vide Chapter 1) here.

Suppose @ s df the form |
| " Vim]

P (?\d:!. ’ ?\dz r'--'}\du) = j_il f'(?*di) . -'*_'(2&'_3' l)
where f 4s convex on |0, ~m) and ?\dils. are th.a characteristic

roots of Ed-matrix.

Following sssentially the technique in Kisfer (1975) used to
prnué speclific uptimaiity_of nun—ragular IGYD'E, we then develop
arguments in gaharal terms for *ﬁw optimality (Step I, I1I, III, iU)
and astabliah D; and A~ optimality of d* assuming npecific'?urma of
Q* (Step V). E~optimality Gfl d* (in case where D=~ and/or R-dptimality
do not huld) le also QstébliBhEd in Stép‘U'atErting from the criterion

itself, Hﬂwauér"aomé modifications in the arguments are called for in

order tq tackle the peculiarities arising in this context of non-

A ey ol I Sy pinlipdpli gl el

orthogonal sgt=Up.

ét to the technical

This will be clear later as we

getailﬁ .

. +
Step I  Dilscussion on ¢ maptimality.

(L —

Using steps in Kiefer (1975) (( 8), (2,9))

- ysl
| | Cp (}\. l,}\zjl!l’?\ )"". 2

f’?\ >“"“"F"‘“'C 000 (28.3,2
£, 10w) 251G o) wenlieni)

-V



with equality if all XA . 's are squal, i.es if C, 1s ©,.s,

1
gi - d

Next, observe, from Kiefarn (1975), the following

Proposition 3

-

If ¢ is given by (2&.3;1), with f ocenhvex, and if there exists

: 1 . * ]
a design d In (.) 4 such that Cpe 18 G5 and d minimizes

Vel v * G .
E 'f(E:T thh) then d  is P -~ optimal.

. h=l
| We assume £ %o be non~increasing, (vide Kiefer (1975)) and let

the function g be defined as (vide ofr) as defined in Kiefer (1975))

g(r) = max Bdhh ---(2E13¢3)

{cl t rdh=1:~§._ |
where 1t is assumed to take non~negative integer valuas only.

Thus we get, Prom (2e.3.2) and (2a8.3.3),

| | | \
* s Y=k o el
O Ongahg e Ngy) 255 E R Cgpy)

h=1
Vel o Y | j -

wr;tlng T fon S

¥ *

Now, to establish ¢ woptimality of the design d as describad

in the statement of the present theorem, We assums the following two
' X - .

properties of d for the moment. (respactiue.prqofs will be given in
Step IV)
Property 1 ¢ Cye 18 oS -
| . | ' ' _. i.l(ZﬁlS;E)
_Pyapsyty 2 3--cd*hh.# g(n) |

wheres Ers m(mUs-l), the aquireplication sizea.
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Now making use of these two propertiss and (2a,3.4) the problem

then reduces to checking that

v
. V _ \ —
m;n hil F(uul g(rh)) = qu;:i g(T)) | seo(2843,6)

wherge H = i_(rl,rzg...,ru) :.rj non=~negative integer for

-

J :Iltzi'.'iyﬁg 2, I’j = ’u’i’- }-‘

In effect, we have to aestablish the validity of

V
. Elrh ; Vo
| qcr> = 0 T 2: -J E Q(I,‘h) ...(2&.3-7)
hel
whers q(r) 1s definad ag
_ q(r) = _F(;%i- Q(I")). | | i;-(ZEﬁ-ZrB)

Then, (28+3.7) would atpnoe follow if g(r) were concave, ie.e. if

o{r) were concave, but this is not the case always. This is what

motivakes further development of taools (vide Kiefer (1975)).

Suppose there sxists a concave function G(r) i.c.

G(r+1) =2g(r) + q(r+l) < 0 feor all =r, such that

eoe{28:7349)

q(r) > alr) fer all o
and A(E) = o). }

Then (28.3+7) will still hold.
Kiefer took q ﬁa-thé concave envelope of 'q_ ie8+ @ concava function

'§ uwhich heppene to be the minimum function > q with §(F) = q(F).

'But.in fact, it can be saslly seen that_this proof goaa_thrﬁugh if
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théra exists any concave function q with
a2 q and g(r) = g(r).

Now we study the behayiour of the g~function relevant to this
particular pon~orthogonal sat-up (ie8. row-column incidence structure
being of the form J=1I) and find a set of sufficlent conditions for
existence of E- aatiﬁfyihg (25.3.9). For this, we firet inuaaﬁigata

:the pruparties'uf the functinn g 'releuant to this set-up.

Step 11 ¢

Papuliar propartieé of the function. under the praseg&
nun-urthﬂganal sat~UpD |
| LE!t G = -{U’l|2'.:i 'mU(mv"'l)}‘ | .;.(2&1.3.10)

with G, = {n t n € 0, and n is a multiple of mu}..

Then for ahy deaign  d € LT]_, Lok & G;. ¥ h = l,2,...,u, and the
Funutinn"g. i8 defined over the range of ualues.inl Gs In what follows,
We wri.i.:.s | [C ,D] for an interval of (aucceaaiua) lntegers with C < D,
and C,0 being twu.cunasuutiue intagers in Gl' Thus whsneuer we mritg
r e [L‘:,D ], r is fas.*tricted to intsger -'ualuaa*’ﬁ]-r_ly,,._lda pall _['[:,D]
aﬁ-alamentarx interval (vide Kiefer (1975))s For T = m{mv~1) =I(m-l)mu |
Fmyem, e mriﬁe '?fe [:GD,Dﬁ J,' (say) with C_ = (m=l)mv and

D, = memve The interval '['CD,DD ] is termed ms basio interval by

KiePar (1975).

 Nou refercing to (2a.l.l) we get,

W, my
thh Fdh rn% 4 /‘Ehj B "n.TJ? '.E mzha 4
| =1 j=L K
S S N
1. - ) :dh o

T mu(mu-—ZSJEl ur:lhj * m.dhj'_) ¥ (-fn’ﬁ-—li(‘-mu-zi T
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We now derive the expraseion for g{r) i.e. maximum of Bdhh aubject

mu mv
to the condition . =1y, and I m, . =0T,
jﬁl dhj joy dhd
st pamv|E ] + b
o mv

= mvel + & (3ay).

This means thet we aessume r to belong to the u#h glementary interval

| | | | my |
[ umv, (u+l)mu:l¢ It le olear that the minimum of I xihj sibject to

J=l
my
P ] ' - KW

jil'xdhj r is stteinsd when ¢t of xdhj & ﬁre pach equal to u+ 1
and the rosat are saoh Equal to u. A aimilar reault holds for the
2
)

n, .'s. Now in order to atbain minimum of E Qxdhj M3 such

dhd | | gl

that z (

dhj ) = 2T, wé arqus as followa

Case (1) £ < gf

Clsarly, [%‘%] =2[F}%] = 2y

and hence, the minimum is attained when 2t of (th; + mdhj)'s are

sach aqual tm 2u4—l and tha rest are sagh equal to 2u leee Whenevar

*‘dhj dhj) = U+l Fnr somg J, the corraapﬂnding mdh Q(dhj = U e

V

Casa (i1) t_>_-r-"§—.
Here [-2-2 =2lv-£-]+l=.2u+l.
| mv } L mv

Hence the minimuﬁ is-attained'whan*'Zt-umu of '(Xdﬁj + m .J)’é are

aanh.equal to 2u+—2 and tha rast are sach Equal to 2u+ 1l i.e. whan-

BV thj dhj) = For some J, tha.cmrrespanding mdhjg(dh' = U 1.
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It can be chaﬁkad that

under Case (i) ¢ t < %U |
. 2 2 - 1':2
g(r) =r+m{muu u(ermU)u-rJ-+W
+ oy ;u-z { (4muu2 -EIL_m) - (2r-2muu)}~
and
under Case (i1) ¢ ¢ Z %y_,
- 2
g(r)=r+m{muu ~(2r—mu)u-r}+m
+ m {(dmuuz—aur} -- (6r-6muu-2mu)}
80 thét_ | |

B T N I
9, () =A(z)+8y(z) 4f &< 7 Leee 4f o5 - [W:l <5

g(r) = '
' gy (r)=A(x)+8,(r) iF £ 25 dee, iF == - '{ﬁli}'] 2_%.
ﬁhﬂrﬁ P\(.I‘) = I‘ + uuz ~ (22 mmv)u~nf+ . '-r"z I
| o oM } (mu=d( mv=2 }
| 1 2 __ -
¥ RmiZy (A - 8 |
.,

Cp mguz - Ay = Gumy + 4

= Ty (mozs + p i .
(my=l)(mya2 r{. mUZmU-Z'i } | My ~= 2

= . 20 ~ 20U
MV MY =

NN D - 6rnuu.-'-2mu
=
BE(P)_ T T av(my =2)

In other words,

&%)
I....l
P
-
e
{

eae{28:3.11)

2rnuu2 o 2u(rnu' Y Z
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Fr

4 gl(r) if umv £ r < umv (%—“i
g(r) = )I - | ) " ' -11(25;3112)
([ 9,{r) 4f umy + lj%”] + L < e < {ut L)my | |

L] = U’l’z ,inl ,m’d "'"2

Note at this stege, that, the bahauiuﬁr of the function g(r) is quite
different from the nné discuaééd by Kiefer under nane~regular GYD set-up
in the sense that within sach elementary interval, this time g(2)
assumes two different functional forma unlike one single Funﬁtinnal form
assumed earlief. To get rid of the difficulty-aﬁising out of this, ws
may argue a8 follows«. Since our problem is to find a concave funotlon

| 'ﬁ'z;q"satisFYing'(2&.3-9), it suffices to find a concave function

Epzlql' where 94 is a function which is.still.largar than. q. However,
for (2843.9) to hnld,'it 1ls necessary that tha.ualua of - 9 must femain
uﬁbhangad.at T i¢af 94 should coincide with g et 2 Sincé -

ls non-decreasing, the above argument justifies that instead of wnrking.
with two different expressions for g(r) in the two halves of each
slementary interval, we may work with fha larger of the two et some or
all points of the intervals except for the point T 4in the interval

[ CD,DD.J. Projacting gl(r) beyond the first half of any such interval,

using (22.3.11), ws obssrve that

. " Ay = 4myy = 2
gl(r} - QZCD) = mﬁimuifzﬁ .
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> 0 for +t >
_ 4t ~=2mu / |
. - mufmv~2§ o= 0 for ¢

<0 for t<

l-i(ZQlStLSJ

i
o2 niE N2

L

This suggests us to work mith_ﬂgdifiad E(r) defined as follows ¢

A N LA
g(r) = : .ill(2513114)
my 3 | q
g, (2) C, 3 28D -1

as T = (mel)mv + m(y=1) > BU.+ %E-;

 Accordingly, modifisd q would be defined as q(r) = “'F(ﬁif g(r))

with g as in {28.3,14).

(In other words, wa_décide to usa.ths funotion gl(r) also in the
aecqnd-half of éll.the intervals except [:Em’Do ] for which We ratain
the exact functicﬁal form gz(r) itself., 0One could as.wmll use only
one functional fpfm gz(r) for the entire range of valuss of r. That
way, one might anhiéue simplicity in the analyaialbut.pnsaibly with soms
weaker rosults, becauss of distortion in the sxact Punctional form
g4(z) in first half of the basic interval [jGO,DD:] containing 55,
On £hé.otharhand, sama-numplaxity in the analysis mnuld”preuail if in

the interval [:CD’DU:] exaut.QXpresaiun for g(r) was undortaken along

with gz(r) slsewhera. )

Now we study some properties of the function g{r) through those

of gl(r) and ”gi(r) aver the entire rangs of ualuéﬁ of I



L

e have for an slemsntary interval I“ Umy (urt1) my J and an

intermediate point n, satisfying "n% = %] = (]

By l(:‘) = gl(I“i'l) - Ql(r)

33 .22 :
. 2myrt (my ~5my +7mu~222—4£m3_{mu~12 oo (2003, 15)

. “fﬁmm- ™

For fixed U, as T, thie diffevence 1 . Further, at the lsast

value of » viz. mvu, ons has

_ 33 _22 |
\ My =5my +7my=2) = 2umvimy=2)
ff..l(mUU) = | m(my =13 my - . --#(2-’;'3'3'15)

and this is positive

33 _ 22 | | o
myV =8my + 7Tmy=-2 FY |
1ff Zmu(mv =2) >.u.> 0 (% mw >2)

bl

m v =3my -t L [ _ |
1leBe iff u < .].‘ - By _J = LJD (Bay) - ...(2.53.3-17)
the -

( [x} means Agreatest integer < X, (vide Chapter 1))

| g ] - |
Again at the pshultimate valus of » din this uth slamentary interval
U.f ,‘ "'r"% ] = U.'l" ‘1?

Ll

Lefe 8 p = (Lr!'_l)mu-l, using FHEJJ

) 33 20 |

M v Ty -2 ~2umulimy ~2 |
. l — i i v il'l ' & ud e
_I,.él((u+ Ymy=l ) mm—————-)——)-——f——)-u(w_l TP e (22.3.18),

which is the same as (2843.16) and so this ls puai.tiue iff ugu..

This is precisely the condition (2a.3.17) stated above. Thus the above
Pacte imply that gl(r) “[‘ right from the start (iege T = 0) to
r = (I._JD'i" Lymv, nwaring_ tharleby'_@}_l; tha ihtermadiate pointes in f.hr.a

intervals cnrraapunding: to u=0 to u= ”cﬁ' | \



A similar behaviour of the fupction gz(r) pan also be observed.

Moreover, it is inféreatihg to note that the interval {;En’na,l
is to ths left of [:uﬂmu, (um+~l}mu'] for all combinations of - {(m,v)
except for certain cases like v =3, m=1 and v =3, m =2, where
the tﬂa inﬁeruala colnclide. A atgdy of the functions g, and o9,
ineide tha senand helf -of the interval [:GDjDﬁll_ revaeals the following 1
(The verification immediately follows using (22,34 13) - (Za;H.lf) and |

the above facts)
(1) 5 integer ¢ 9,(C, + 5 = g, (C +37) & gy(C + %+ 1)

s m ;. . . m.u--l | My e, ' myt.l
(:L,l) 5 71: integer s gl(EG . 3 ) < QZ(CD + 5 ) $g2(l30 . s )

< 0,(C, + BE2) <.iu g g)(D, ~1) S g (0, ~1) & g;(0,)

From the assumed funtional form of q(r), as given in (28.3.14), it is
now evident from the abuué study that g(r) T right from the stazt
lege =0 to p = (uﬂ+*l)mu. It remaiﬁa te study the pattarn of

g{r) beyond (uc+'l)mv' in which case we écﬁually work with gl(r).,

Taking P = (ui'l)mu-E, we get uaihg (2&.3.15)

3 3

3m2u2+3mu-2 - 2umv{my -2
muimy = 1)(my =2

ﬂl((u-l-l)my ~2) =

and this is < o
22

ipp u>RUSIMEL. L (2a.3.9)



Moreover, our earliier analysié with reference to the penultimate point
= (uFllmv ~1 (vide (Z28.3.18)) ahoﬁa that whenever (2a@.3418) holds,
[El((u+l)mu-lj < 0, Thus it finally follows that go(r) | in © fos
2;(UD4-2) iegse for rlzl(ugi~2)mu. In the interval | (ueﬁ-l)mu,
.(uni-Z)muI] we cannat infer about the specific behaviour of ol{r) as

auches (This,'hdweuar, dogs not pose any difficulty Fof our later

analysis since we are not really concerned as such with signs of thess

differences 1in thiauintarual, mnly_the sXprassions of g(r) will suffice).

To finalise, we ses that the function ¢ oexhibits the following pattern.

~ Graph_of the function g(r) as defined by (2a.3.14)

—nature is unspecified

e . o 'R NI

gl/ 1

"%
i.gz

;.—]-4-._..--.:,_. N— [_ Tr - [ —
N
(ud+l)mu (ud+3)mu (uﬂ+5)mg.

* my ’ T |
o [ e 4- p
Co [2 ] B (uD :? )rm.{:_ . (_uq-f.d)mu

R v : - Figure 1 | |
Naw follnwing Kiafer (19?5), We deriua a set of suf?lclant cmnditlnns

for (23.3 9) tU hnld uaing prupertias af g. |
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Step 111 ¢ Osrivation of a aat of Eu?fiaian£ ¢onditions for (ZE:E'QI

to hold.
Let 0 € G (vide(22+3.10)) be the first integer whers g attaine
its absoluts meximum on G. By the above derivation, and from Figure 1,

D < (ug%*l)muls_siﬁl(ubi—Z)mu.* Since «f is monotons (vide page ( 46 ))

it is enough ta prove pxistence of concave g, § >q (g as defined by
_.f(;EE'g(r))) satisfying (2a.3.9) uitﬁ the domain G replaced by

G =ir : v € G, T 5_5}\ (vide Kiefer (1975)). Again possibly in the
slsmentary interval [:(uuﬁ-l)muf (unﬁ~2)mu T thers may exist points

r', r¥ , rf <_r" such that g(r")lﬁig(r'). Then beoausa of the ron-
danreaéing nature of «~f, Wo have q(r')< ﬁ(r').- Sin:a wg are concernsd

t

with a conceve function § > 4, G oen be replaced by its subset G

obtained by axciﬁding such points as domain of ¢ 4in defining ¢, so
that for any two points r, and 1, in c" , we Have q(rl) < q(pz)
whenever £y < R e an a sufficisent cqhditiﬂn qu;axiatanpa”uf CONDAavS
function § > q, with H(F) = q(r) is lacal cahcauity.ﬁf q at T

(vide Kisefer (1975))s That ie

| Q(rli-l) - q(rl) z_q(rz) - q(rzr-l).. o ...(2&.3.20)-

- whatever I

I

| . 1t
mhe o mm B
We may note that .32-1 need not belong to G" « As in Kiafer (1975),.

one can establish (2a.3.20) by proving (i) to (iii) stated below 3
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(1) min _ {a(ea) - e} = aF) - a(F-L)

'U<rl<5
(11) ijzaﬁ;,{q(rz% 9z, 1) } : A(F1) - o(F) .+ (22:3,21)
(11i) Go(F) - q(F-1) 2 q(F1) - q(F)

Now making use of the properties of g Wwe will establish that in the
present non-orthogonal sat-up, a set of sufficient conditions for

(2a.3.21).ﬁ0 hold is
g{r+l) « g(r) i[' in r» for ED <L r < Dn-l

lea 0 3is concave in CD f._ r < DD - ]

and moregover, I S o eea(28.3.22)
q(¥+1) = a(F) 2 o(p_} ~ a(D_=~1)

Remark 1 3 At this stage it may be noted that the above condition
(2a43422) is slightly different from thase in Kiafeﬁ (1975). .Nhilé in
Kiefer's formulation Qnder nﬁn;megulér GYD aatmup, tHelfunctian v

- may admit'df_candauity.Fnﬁ. C,, ﬁirlngG, in the present framawark, it
turna out tﬁat q faila to be s8¢ at the end pminﬁ D iﬁ visw of fhia,_
we need an sxtra oondition to be satisfiesde This is pramiaaly.tha seoond

condition in (2a2.3:22) statod abovo.
Remack 2 ¢ It has heen pointed uﬂt-lﬁtar-(in the pages to follow) that =
(28.3.21) (111) is pot satisfied when m = 1,
We take up bélnwra.prpﬂf of éuf?iaiéncy_nf_(zagS;ZZ) assumlng

 then m 2.



Cloarly the first condition in (28,3.22) directly implies

(25.3.21) (iii) for m >'2 as in such cases @+l < Dn"l" )

To prove (22.3.21) (i) take », in [c,07] where

| c,D ] ['urnu, (wtl)my 1 ie an elementery intsrvel to the lt—‘sf"l: of

)

.[_ c,s0, ] 80 that D < o
By (2a.,3.,15)
B (x> D(e) ¢ c<ry < Ct -2,

- Again for rl'= C+mve=1y By sarlier study of penultimate point (vide._

(28.3.18)),

Also by (2a.3.16),

m3 3-.5 2U2+ TN - 2 -Zumugmu-z)
muimy =1} (my =2

so that B,(cHmv=1) = D, (C).

| 'AI(E) =

Hence, ﬂl(rl) 2_~£31(E;) ¥ Ty A [C,D ]’,_::}l E_DA;-I..'

| Lat Dy = uymv anhd D2 = UV, U, > Uy

1

N

By (2:’3-3- lﬁ)’

ﬂl(Dl) -&1(02):: _ Zmu-ls > IU -. (e H;U g _2, "2 > ul):
This impl'ies Al(Dl)‘) ﬂ'l(DZ)", | o . . .

Thus f‘inelly ,"

l(:: ys A (c) > ifi (c ) >0 for all "y S c ;'-__..;_'.__(za;s;z's')
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2
. | - o+
Tha last ilnequality follows from (282.3.17) as m-1 i[mwu] for

U_?-S, mZZI

Set now g(r+l) =y, o(r;) = y,, 9lC 1) = yg, alC)) = y,,

so that vy, <'yl S Yy < Yne Than.'&a(rl) > iil(cﬁ) > 0 means

Since ~f is non~doorsasing apd concave, by Mean-Value Theorem,

~P{y ) + £y,) . ~F(yq) + f(y,)
Iyl - }'2 = }'3 =~ }’4

Yl "‘"Y

> (*f%) *£(y,)) [ Y17 V2 2 Y3 "‘3’4]

1e6. q(rl-*-l) -q(ry) 2 q(c_+1) - g(C_)

5o Ti;ﬁﬂ{q(rfl) - a(s) } = ate ) - aley)

This, tngather with the first cmnditianfof (2843422), is8s, concavity of

g within C.2r < D -1 impliﬂa

L ") - Az, >1 = q(F) ~ q(F-1)

U<:rl

!

80 that (2a.3.21) (1) is settled.

Ma_naxtlpfnua.thaﬁ-(Qa.ﬁ 22) impliea (Za.E.Zl) (ii)

For this, t'a'k"e any 1, & (Cy0] = [ umv, (u+1)mu ] to the r:l.ght of

,D ] so that C 2D, D & (u +2)mu._
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| l | PR PR B
By (2a.,3.15), for any rs such that [ﬁ] = [..........J o= .%:!,‘2_] =y,

2

\ -

=oq(ghl) - &1(5.)," “vpey ) vaes ) A

‘Again, when = (utl)mv~2, by (22.3.15) and (2&.3,18)

A (z1) = & (n'_) = 44 (u+l)mu-- - A f(ur1)my ~2)

W
"'(’.ET?:T)"‘ 0.
Hence, o4 (r ) & A (D-z) for G < 7, £ D-lLe

Aleo when D, = ulmu, Dy = U,Mvy U, > Uy, by (2a.3.15)

1(0p ~2) ’Ql(nlf‘z) =

sa that O (D, 2) < All(ol-z). . _

| | ) oy
Thus 0O < Al(rz) < .Al(D-‘Z) < le(Dﬂ+ m 2)
by :apaatéd application of the preceding ihaquality' for Dmic_f_rz'f_D-—l- |

| an, aé befors, we want to i:'alata the pniht 'DD-I— mv=~2 to a
point within the sscond half of [c ,a "‘]. We- defina
A(r) = g(r+l) ~ g(r) and ubaerue, ua:mg {28.3+13) and (22.3.14), that
A(D_=2) = g,(0_~1) = g,(0_~2) =al<nn_2>- *m%m

and &(Dn-l) = 91(0;) - ,92(% 1) = Ql(uﬂ-l)-+_-§;'-

Further, we may verify divectly (using expreseions for A ((ukl)my~2)
0, Imy-1) derived earlier) that S



o (O -

so that we come up with

0 ¢ () < A(D_-1) for all D_ <, & {u42)m -1

(It may be noted that the subset G" may not include the whole of
[ (ud+1)mu, (uﬂ+2)mu_]. However, the above argumente carry through to

~validate the specific inequality
0 < Alcrz) < (Mp_-1) for all 0_g 1, £ G-l
which ie nesded with reference to G" .)

Now as baefore, an esppliocetion of Mean~Value Theorem yislds
- - - | | . ",
q(D,) = a(d,=1) 2 a(x,t1) = alr,) ¥ =) 2D, r, & G",
Also, concavity of g for Gﬂ Lr< l:)‘D -1l eneures

However, the above two inequalities cangut be linked tﬂgether”as it now

. |
e - S
1 f' . i _I' '

turns. .out

A(D -2)-A(D -l {A D-E)..A s D_l)} “m_%

-2

- m&s <0
which impliaar q(D -J.) - q(D -2) q(D ) - q(D -l).
This straightwuy qxplaina_ﬂamark l made sarlisre Remark 2 is aslso clear
nating that P+l = Da-‘FQr m=l. As 5u§h, We require an additional con- |
ditiqn to.ba'verifiédﬁl Thiﬂ1is_that
---_t::(?-f-l) - q('i'.*.')'_' i_?_jq('DD)'__- q(D;_-.-li_

_'which-ia p:éciaely the second réquirement uncer (Za.S.fZJ;  Thua,*whenevar1
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condition (2a.3.22) obtains, we gst

max {ﬁ(:z) - q(rz-l)}7 = q(r+l) = q(r)

F<rzse"

vhich is (28.3.21) {(ii).

| %
To summariss, ln-the present non-~orthogonal set-up, ¢ ~optimality

of d* (deseribed in the statamsnt of the‘ﬂhenram) Follows from & veri-

fication of (22.3.22) slong with 1ts two propertles displayed in

(2&.345). The subsequent discussion does these verificationse.

Step IV 5 Verification of Praoperty l and Property 4 guida{ia.3'5)!nf d .

| 3 | .
For the design d , for every h = 1,2,.ee,v let *Kd*h- ond
Td*h denote the two rokeyoctors with elements !ld*hj and mﬁ*hj
(vide subsection 28.1) written in the order J = 1,2,00.,mv 18SPac-

tively. Thon, xd*h and m ~ are represented as follows

| (( = ( m'm,i.-i-,m, | MoeeeyM m-l;m-l,--—-',m-l)
~&h NN
m{u=-1) times . m times
md*h = (fﬂ-—l,m“l,*-i ,m-—l,m,-u g M | MTgMyawaayil )
el ety i . ’ .
m times

Elaarly, this configuration failﬁws from the fact that for .dﬁ, with
mv~l feasible cells in each rou (cmlUmn), traatment—rmﬁ incidence
pﬁtterh is a EBD,'and traatmantﬁcﬂlumﬂ'incidenca pattarn.isiﬂ BBD«
Morénﬁa#, frnm cﬁndiﬁimn'(iii) (aj’aa éﬁaﬁed:ih'tha thaurém' |

" 1f the treatment h'_mccﬁrar.m—l times in jth rou (cdlumn).it:muEt_.



occur m  times in jth qulumn (row )., Now, noting that for
F = (meL)mv + m(v-1), u = nel, £ m(y-d) > =~ for m22,v23, our

arguments in subsection 2a.3, Step II, rogarding minimization of

2 2 2, : .
E-fdhj’ ; mdhj and ? g(dhj + mdhj) in the process of dorivation of

N _ |
expression for -g(r) clearly reveals that

Copn = 9(2) = L e S dhh *
B LA

- To amhiaqa complete symmatry of Cd*’ we first note that oondi-
tion (1) and (ii) stated in Theorem 2a.3.1 “nhamely BBD structure inr
treatment-row dncidence as well as treatment~column inecidence readily
~ lead to complste symmetry of L . Lﬂﬁ and md*md% (Uida(Za.lil)h+Thus
it remeins %o vﬂrify_(uida(Za.l.l))nnmplate symmatry of

_ r _ |
(Ld*-+ Nd*)(Lﬁ* . Nd*)- as ﬁ*' is equireplicate. Consider any pair
of treatments say (h,h'), h # h' and look to tha amnfiguratiun of-
Lpn * Maer? 80 (L gepe + M) which follous from the above dis-
cussion regﬁrding ssparate configuratimnasof "d*h and M 'F0r ﬂnY-h-.

Fotn * Doy ‘EWlWZ““l et S i 2

2m  btimes | m(u~2) timos

Kd*h' "'I' md*h' '(Zm-l Zm-l,u; ,Q.I'l"t-l 2m,..¢-,2m, 2rn-l,'n- ,Zm-lg 2[‘11,--- ,ZIT!)

x timaa | 2 ¥, Limas 2m-x% times

| For any trsatment h, mccurranca nP 2m-1  in any pasition say § of

th

(Xd*h + md*h) 18 due to thﬁ Fact that h treatmant ﬂncupa_ mf;.timga:ﬂ*

in either._jth-_rnw on Jth cnlumn. Eartainly thé ahove twﬁ”nchFiguratiqns_-
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represent (upto permutation). hth anc htth_ rows of the matrix

th !
)7 entry dn (L Mg (Lt M)

)2

(Lye + My )e Ue note that the (h,h'
will take the form X(Zm-l)z + 2(2m=x)» 2m{2m=1) + {mu~&4mtx)(2m and
so complete symmetry of (Ld* -+ Nd*)(Ld% + Md*)ﬁl requires constancy of
x which is the freguenoy of (2m-l, 2m-l) for svery pair of rows in

(Ld% + Nd*); Consider then a third row of (Ld* + Nﬁ*) say h"fﬁ1 rouw,

h“!f h # h', which represents nothing but the diatributinn of 'h"tﬂj
treetment over the rous and culumns'df o jnintly. Since In any row
'''' ‘or column of the design, only one treatment can ooour (m=1) times,while
sach of the rest occurs m timos, it is svidont that in tha.ﬁepreaantatinn
a_f’-u (/(d:*h’l' + _nld_f;.l'_l" ) the first x posdtions cannot be i2'm--l.' This | .
clearz;“;;plainslthat in urdsﬁ.tc'achieue Ce8» property of Edﬁ the total
fraquendy 2m of tha'alamentl (2m~1) in the representation
(éﬂfﬁ.+ Egiﬂ?. should get equally divided among the rest v~l rows bP
(Ld* + Md*)- in other words, denoting by {3,3) the jth diagonal cell
in the deéign and by hj (h£)- the_t;aatmgnt having Eaplicatinn. Ml in
jth T Ow (jth cﬂiumn raépéﬁﬁiualy)_ma deménd for CeBa pfﬂparty nfﬁcdé, Ehat
in d¥, for the b = mv cells of the typa  (3,3), £ha corresponding m
treatmant péira of the type (hj,hS) should get eﬁually divided among
all (;) ‘paire of trestmente. This is precisely the condition (iii) (b)

of d*, as mentilonsd in tha atatement of the theorem,
Now it.?amains to verify nmndition (2@-3.22) assuming specific

LT S | $+
functional forme of f 4in @ .
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Step \ 8 Spanific optimality results for d*

Wa now adopt spscific nﬁtimulity criteria assuming specific
functional forme of f in ¢% (vide{2a.3.1)), For Duﬂptimélity.
(vids Ehahtar L) f assumee the form f(x) = ~logx, and for
Amoptimality (vide Chapter 1) we take f(x) = x™. Thus ¢ is A-,
and D~optimal provided (28.3422) is satisfied for qf(r) = «f(g(z)),
the facturl-;E— in the original definition of q(r) (vizs
g(r) = -f(;%z-g(r))) oanh be nnnuaniantly dropped as with this form of

q and the above tuo forme of f it makes no sasentlal differsncs In

the verification of (22e¢3.22). So in our caloulations from now onwerds

we adopt

| q(x) = -f'(g(r))'. ' ' - I...(Za.S.N) |

anptimalitz 3
Hore f(?xdi) = f’lmg?_\di

and q(r) = - f(a(r)) = logg(r) (vide (28.3.24), and the discussion
| o - | . abnﬁe)_
Thus with thls Farm_uf' g (2ﬁ.3.22)'raada

log g{r+l) = log o(r) & log g(r) = log g(r=l) veo(2803425)(1)

. for all r 3 rel z-cb, rt+ l < D;-'l |

and |

log g(F+1) = log o(7) ¥ log ofD_) ~ log g(D_=1)  ...(2a.3.26)(iD
Recalling the expression for g(r) (vide (28.3.14))we reurits

_(2a;$;25)(ii) a8
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| 92(5'1"1) gl(DD) '
- > S - oo (28,3.25)(1d)
gz(r) QZ(DD“l)

it

Nou ue define g (r) = mv(mv-1){mv-2)g,(r) )

&:(r) = mU(muwl)(mu-z)Ai(r} > i=1,2

A¥(z) = mu(mu=L)(mv-2) A (z) )

Direct calculations vield, writing x for mv,

. - | . |
gz(r+l) = " = ><3(m2+4m-1) + 32(4m2 t mel) =~ x(3m2 wburbl) - (2m=-2)

il

msus(u-l) -4mau2(u-l)+ mgu(uz‘lvu-ﬁ) -mzu(u-ﬂ) - m(vt2) +2

.9;(00-?1) = mx xS (0% 3+ 1) x2(2m2+ At 1Y wX(4m w3 ) -2
= msus(u-l) -mauz(&'u-z) -msuz(u-ci) ﬂ;.'m_zu(u-d) + 3my ;-2
9:(-5) = 9&2"(;'1‘1) -X3+ (%ﬁ'l))ﬁz -#(Zrn-—l)x ~2
= mSUS(uhl) _'&n;auz(wl) + Smgu(u-—l) + 2m21,} - 200
40 ) = mx4-x3(zm'+ m2)+mx2(2m+.2_)
= {mzu{u-l) - m(:ﬁu-—-z)"-l—'.z'}'
50 tha£ .

- 9:_(;*1)9:(55“1) ~ 9:(5)9‘1(%)

= xﬁ(m-lj mx5(6m2 ~hm =2 + xa(ﬁ'mz'-l' llmz_ ~20m+ 3)

- x7(18m° = 15m° ~ 1lm+ 8) + x*(12m° ~33n + 200+ 1)

4 x(14m° =22m+ 8) + (4med)
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i

2 o
71;4(1: ~ButB) - mﬁuﬁ(us --auz - 1ly 4 18)

+ msuz_(QUS -2E]u2 +15v+12) + rn&mrz(ﬁu2 + Lly ~33)

- Emgu(duz ~ 10y 7)) + m?'u(u-22) + 4m(2v+ 1) ~ 4

and this is non~negative for all v > 5, m > 2. Also this is negative
for v = 3,4, m> 2. This verifios (22.3.25)(11)' for v > 5 m> 2,

Now to check (28¢3+25)(1i) we have to show that

(1) Qi(r’)- (r-l)gl(ri*l) for C L r< l: + [%“i]
(11) gyle, + [mu bz HOE: [ 3 ]-Dgyle, %?']"‘1
“MJ9§C+[lq+” .N5+'?]mw:+ ?]+2?

my

(J.U) gz(r) pd gz(ﬁl)gz(r-;) fcrr I >"Ec:1 ‘s [? ]+ 1«
0f courss, when %\L is an :l:n'te_ger, (ii1) and (iv) above can bs Com~

bined into & single statement since in such a case

RS V) | mv
gl(cﬂ + "”2“) = Qz(cn- + "'2""

Recall that
2 2 2 2

g;!:('r) = v my + p(muv=-L)(m“v" - 4m u+2}+2(m-l)(mu-l)( uzumu)

80 that
=}y (r) "Ql(r“l)gl(r+l)
= r%zmzuz + r.2mu(mv-l)(m21r’2 "'4'?”2“’ 2) "'mz""'?

" (mu—l)z( z 2 -4rn2'u+2)

.“ 4(m_l)(mu__l)(m UZ -- mu)mu .. | ' ”.-._'--'_(2;3':;-‘.25) -



Thus, in order to verify (i) ebove, equivalently one has to achieve
non-negativity of (2a.3.26) for IED <1< DU'+*%%u 'Diffarantiaﬁing
(2843.26) with respect to r, we gat,

2 2 2 |
Amy ot 2mv{mu=1)(m uz-amzuﬁ-z)

which is positive for all v > 5. Thersfors, replacing r by

il

C, + 1 mu(m=1)+ 1 in (2a.3.26), ue get

Yy | - - .
gi (r)-gi(rml)gi(r+l)2;Emdu&(mml)zﬂ-m2u2i~dmzuﬁ(m-l)

2 2 2

o+ 2m2u2(mu-l)(mil)(m Vo ~Am vt 2)

-+ 2mu(mu-—l)(m2v2 - 4m2u+ 2)

b (ed)A R0 - 4P 2)?

~ 4(m~1)(mU-l)mu(msu?-mu ere(28,3,27)

In (28.3427), a part of the right hand sida'axprassidn ﬁiz,

2 2

_'2m V (mu?¢>(m—1)(m2u2-4m29~P2)a-a(m~i)(muél)mu(m3u2

-V )

2

eimplifiss to "2mv(mu-d)(m~l)(m3u (u~6)%?4mu) and this iz non-negative

for all v 2 6 and m2 2. The remaining part of (22.3.27) is always -
non-negatives Hence (22.3,27) is non-negative for all v 2> 6, m 2 2,

Apain, note that (28.3427) can be rewritten as

2,y Wy
gy (2) = gy (z=1)g] (x+1)
= 20" (ma1)® # 0V 4oy (el ) + (mv-1)P (02 - dmv+2)F

ok 2mu(mu~l)(m2ﬁ2-4m2u4r2)1*ZmU(mU-l)(m*l)(WSUSf45m392*'ﬂm”)

eee(2003.28)
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It can be checked that for v = 5, (2a,3.,28) is always non~fiegative FB:

any m > 2., Thus (i) holds for sll v 2 5, m > 2,

Remark 3 ¢ It may be noted that in chocking (i) we did not make use of

the upper bound of »s So it still holds as an algebréic inequality for

c +& < pr<Dp 1.
0 2 == " 37

met, we proceed to check (ii). Recall that the inequality in

(22,3.13) ensures that
gz(BU-i- [2 ]—1-1) J.(r: + ~§-]+1)
Hence, by (1), and the above romark, the claim in (1i) is verified.

Ae regards (1ii), we have only to look to the case of %F'f‘intager;

For this, using the relation (2a,3.13), we have,

%2 mu+l % mu~Ly 3% my+3
QZE(CE * 2- ) #.gl(cc} T 2 )92(80 U 2 )

I Y mytly muTl 3
. <c+2)gl(r:+ =)g) >

T v, - . |
+ 2(mu-1)(gf(c_ + ML) -3 AT(_ + -“-‘-’*-’2-;')%1- 4(my=1)>

.g.(2a.3-29)~

In visw of the above remark,

2 myt1 . Myl | mv+3
G v2+ ) ~gp(c, + 55 ):L(': + 5=)

ia.nan—nagatius fﬂr'all V25, m2 2,_and 80 (25;3.29) unuld-be non~ -

i

#*, | . ~ -
| negatius whenever gl( mu+1) u-SﬁS (B +-meéJ is so.

Now writing EIU t ;J‘. ‘a8 T,
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2 | )
gi(r) -,-SAi(r-ul) = rzmv+ T -[(rw----l)(m'“ur2 -4m2u+ 2) ~ GmY }

22

+ 3(5m v ~-T7mv +2)% 2(m-l)_(mu-—-l)(m3u2+5mu)

u-ZmEUEﬁ-ﬁmu

and this is clearly non~negative for all v 2 5, n 2 2.
Thus it remaine to verify condition (iv).

Using the relations (22.3.13), (2a.3.27) and expressions of
gl(r)_ (vide (22.3.11)) we get,-nn simplificatiun,

42 () m g (pe1)g(2el) = 22 2020 4 n2my (mo-Dn2y? - 4nv-2)

- mzug + (mu—l)? : 2-dm2u4-2)

| +_4mu'('mu-l)(ﬁm2u+ Imy = 8m)

- ATV (=L Yoy = oy = m+ 2my + 1)

veo(2843.30)

As in Case (i) (2a8.3.30) is also an increasing function of r. So

putting the least valus of =, nama;yﬂ (m~1 )y +_%¥?+ 1, ons.can sea

that (2a.3.30) is non-negative for v > 5, m > 2.
K | |
~Hencey d  is D-optimal for v 2 5, m 2 2.

A-optimality 3

Hore PN, )=-ﬁ-1-~

and q(r) = -f(g(r) =_n'“(“7 (vide (22.3.24), and the discussion

 just above (2a.3.24).)
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Thus, with this form of q, (2a.3.22) reads,

g{e ) (g(etl) + g(r=1)} > 2g{r~L)g{rt+l) for all C, << DE-;l
. .-(2&.3.313(5_)

and
i eeel2a.3.31)(41)

i} 1 1
- < - el
QEDn—ls gZDGS - QZI.'S g(f-{'-l)
Recalling the expression for go{r) us rewrite (2a.3.31) (ii) as
Sy | e : vt | - . 1
0, (F+1)a, (F)A(D_~1) < 9,(D_)g, (D _-1) A(F)  eee(28.3.31)(d4)

Since d% is completely symmétricg D~optimality of d* for v 2 5,

m> 2, will automatically imply its A~optimality for v > 5, m > 2.
'Fﬁr V=4dym> 2, .buth the relations (2a.3.31)(i) and (Za.S.Sl)(ii)j.
and , cﬂnaequantly, R&thimality of d* haid. For v =3, m 2_2 .
(2&.3-31)(i). fails to hold. (We omit the details). So we canndt

o | -
infer about A«~optimality of d for v =3, m > 2,

t-optimality £

Sinca ﬁ* is. completely Symmatric, E~aptimality of d* for
v > 4, m‘2‘2' wili autﬁmatically.Fﬁliﬂw from its A-~gptimality. So it
remains to check E~optimality for v =3, m > 2. We déualup below
| arguments to establish E~optimality of d*. The taeklnf proving .
E~optimality is so fascinating that by now théra have appeared in the
. literature a canaiderabla'numbef of articles dealing e%nlusively with
.Euaptimality.l In thse éama sﬁirit We also pruuida a'uefy genaral result
on E-mpti_mality of - -cl* _. for all m 2 2,v>3. Tha_ proof does .hm‘_,c_ requirs
__kndwlédge of ualidity'af Dﬂrand/ur-ﬁ-ﬁptimality_fﬂr eny combihatinn ﬂf ..-

m and v .
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First note that (vide Kiefer (1975))

| | o
g . .
min eigenvalue of (PC P ) < == min  Cg  +ee{(2a43.32)
he §1,2ye.0,vt

'I‘:{' .
So it suffices to verify that d maxXimizss {Lmin Edhh}ﬁ We do the
- h

verification below

For any design, there exXists a treatment say ho’ guch that

Ly 5_5; Recall that ¢ = (m=l)mv + m{v-l) belongs to second half
w . | -
of the elementery interval _[(m-l)mu_,m. mv T« We now distinguish

betwesn the following casaes

Casg (1) 5 umv 5_ rh < umy + %i, U= 0yly2y0eem=L (rh covering all
: D O ' .

r values in the firet halves of the'alamsntary'intaruals upto and

including the one containing T ).

Case gi 2 'E.) umy + %y'i I‘h < (Ll"l"l)m'h', U = D’l’iil ,m-.'Z
. 0 |

(rh covering all r values in the second halves of the slementaxry

O | .
“intervals upto but excluding the one containing T).

b) (mel)my + %‘L < I‘h < T
(rh covering all the r valuss in the sscond half of the slementary

' |
interval [;CD y 0, 1 containing _r).'

‘Under Case (1) It is enough to establish that
T < gqr )5_. (r) = C
dhohy, = 91°h, KAL)
Also under gase (ii) (a) and (b) it is snough to verify

C <ot )< g () =C o
dh h = %2Yh /=% d*hh *
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| o
Clearly, these in their turn establisnh E~optimality of d « Us proceed

through the followlng stops.
‘ .
Step I : For T belonging to the first {second) half of any interval,
0 | .

uﬁtn and including [:BG,DQ 1y wo find upper bounds 'to 'gi(rh ) (respat-
0

tively gz(rh )) involving g-values at points in the firat (respectively
0
seoond) half of the (basic) elementary interval [:CGI,DD T econtaining T o

Step I ¢ Us eatablish that (1) g,(z)T &n r in the second half of

[C_ sD, 1 and further that

myvtl My el
(ii) 92('::: + 7] ) Z, gl(cn + ) ") in case mv is odd.

{

Step II1 4  Once we are through with the above two steps (verification

given below), we argue as follows

| K
Cage (i) ¢ gl(rh ) s_gl(Cm o+ [.%E']) ( by Step I )
@ - |

& gz(CU + ]:--‘-*5-_' + 1Y (by Step II'(ii)_)

R

<o f)  (bystep II (1))

~ Case (i1) (e) gz(rh ) ﬂ_gl(rh'): ~{using (22.3.13))
0 o .
<g (e + [B]) (uide Figure 1)
5_92(57 (by steps fnllowadlin Case (i))
Case (11) (b) o,(r_ ) g, (F) (by Stop II (1))

Verifications ¢ (Step I-z Figure 1 supports the claim that

-Ql(rhn) .S. gl(CU- + [2]) _whenguer Ry ls :Lp tha first half of any

Q
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interval upto and including [:CQJ,DD ]a As regards Qs 5 the property
(28.3.13) together with the increasing nature of 94 at least upto

- | my
[CD ' Dn ] justifises the oclaim that gz(rhu) < gl(cu + [ 5 ]) for

any T, in the second helf of any dnterval upto but sXcluding [ED ’ DD].
20 |

A

! _ a
(Step II1 (4))s Referring to (2a.3.13) and (2a.3.15) we got

*, *
&2(1:) = ﬁl(r) -~ 4(my~1)
. _ AL* L my .
which is increasing in r with R(Eo e ) >0 forall v23,m22.

Hence the claim.

", * myt.L * M =,
(Step 11_(1;._)'): a,(C_ + =3 ) - gl(c0,+ )

simplifies to mzu(muzF-Zmu-;Zuﬁ-a) which is non=negative for v > 3,
m 2 2.
| . . _
Thus, finally E~optimality of d 1is settled for eny v 2 3, and

all m 221

Z2a.4 Dnnétruﬁtian of DEtimal Dasigns

In this section we develop mathﬁds of oomstruction of some serias

| S R
of such optimal designs d .

The discussion regarding complete symmetry of d iIn Step IV of
subsection 28.3 = in other words, condition (iii) {(b) in the statemsnt
of Thoorem Z28.3.1 yielda'

b=m = hL;), for some hﬁz_l. - eee(280441)

This mears that for m =1y, d does not sxist unless v = 3. In fact,



o Tl -

it is clear that d does not exist sven for v =3, m=1l. UWe will

.ﬁ.
present here construction of d

for the least possible value of m,
since for any other multiple of this valus (=m (say)), dencted by
ﬁ% = km, the same design for the glven m ocan be insertad as blook

diagonals Kk tlmesg DFF;-diagonals being filled up sultably by appro<

" priate Latin Squaress or F Squaraa.z

For v =3, 1t is sufficlent to consider d for m =2, and
m =23 = the designs for all ﬁ > 3 following from them sasily. These

designs are shown below 3

V=73, m=2 ' V=3, m=3
- 12 0 2 0 - 00122 101 2
1 « 02 2 1] 2 - 012 2 001
2 0 - 0 1 1 1 2 « 012 1 0860
d = {00 1 - 1 2 & ={0 12 - 102 2 1
0 2 2 1 - O 0 1 0 2 -0 1 2 2
12 1 2 0 = 1 0,012 -0 12
- 2 2 1 012 =~ 10
12 2 08 12 - 0}
D12 10012 -

We mow proceed to the case of general v.

Case (i) Y. aUen'intager

For v even, a v=l resolvable BIBE!almays.exiéta with numbex

1l

* | | | o
of blocks b = (;), and block size Kk = 2« The blocks of the BIBD

zﬁggt-nqte ¢ Here we USB'EpﬁdiEl tyﬁﬂ.ﬂf Fnequaras viz, F(n,\) which is

- an ar#ahgament of t aymbnla”(say)nin_a nxn array auch thét sach symbﬂl'
‘appears in each row and in esch column X{>1) timsa-
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~can be split into v-1 sets of '%‘ blocks sa that each set contains
sach of the v treatments exactly onca. Let one of ths represesntative

agts say tth set compriges of the blocks (il’jl)’ (12’32)"“"(iu ¢ J )

NN
| 2 2
ao that il,iz,_.u,iU g jl’jﬂ"f"ju together exhaust the v treat-

2 2
ments. Consider the square

B "3

- U-—l 1 U"z U"G L l
£ a Loyl VmZ 204 2
R = l 0 """ U"f"'l L 3

EE Y EEEE R EE E R R R T

1 & & 2 b & bR oS 4o 0 Fe AR g oo

U""G U-‘a U"E U""E oEy Unl
LU'*-?- U.—G U-4 U-E sae [J - y

]

In A, the haira missing sach twice in the same row and column numbers
ars preﬂisaly (D, V-l)'(l, U”Z)gnl-,('% "'l"g')- CDII‘EBPDﬂding t'D thE

tth sat of the given BIBD now construct the square Ht from A by

permuting the symbols (Q,l,Z,...,Uml) to (il,izgf..,igi,j!-,JHH‘l,g..,jl).
- 2 2 2

, the pairs missing (mach twice) in the same row and column

t
numbers ars precissly glven by the blocks of the tth sat of the BIED),

Thus Iin A

Each set of blooks thus gives rise to a similar square At, t = l,Z,i..,u-i.

The resulbant desigm with m = vwl (which is its least value) is thus

given by

e .
Hl L [ soe L
" | L. Az - -- ‘e .

] .
d - ] ® 84 udas & sdod e saNsed

AT TN EE SRR DR

L L L ees A
| Ve

1

"

L

where L's are Latin' SQua:Es with v treatments.
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Q0 .
m

m

.

XN

L Y- :
<

)

odd prime or prime power > J .

L.Et qﬂ:ﬂ, Cf,l'-'-"l, %,';u,agi,a}!;ﬂ}#%-lﬁ -th.lg “U—l+2== -‘-(121
2 2 | 2

i

ooy @ o= =q , be the v distinct elements of GF(v)a

2

Let ue assume that 1t is possible to construct 2 vXxXv sqguare A
with missing diagonals such that the ith raw {column) contains all the
\ afmbula of GF(U) _except ai
0#aceGF(v), 4 =0)1,2,000,v=ls Lot Ay = @A or ~a.h,

(raspactiualy (ai -+ aJ) whele

i =.l’2,l.I, %:'1;- Thang

L Ay Loeee L

-iaaiiru--niﬁi-ii-iy

8 S F 0 8RR A NG s

_L L L oeoe RH:&,

o | 2

is_ths roquired desigh with m ==H§én, whexs L is any Latin Square
with v symbols of GF(v).
Example 8 Vv = 54

G = 0rGy =1y G =2, 0y = =0y =4 0, = -Gy =3, ere the
elamenﬁa of GF(S)-' |

A can be chosen as

S _i__m‘- 1 2 4 3
o g - 4 3 2 S
A= 13 4 = 1 0| (with a=1)
2 3 0 - 1N I
4 o 1 2 -
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Balow ws prﬁsant the forms u?_the matrix A for v =7 and v =29

as well.
(v 3 4 2 6 5 11
3 - 6 2 0 4l
§ 5 ~ 0 4 1 3 |
v=T7,A=14 1 0 -~ 5§ 2 6 (with o = 1)
5 0 1 3 = 4 2
2 4 6 1 - 0
0 6 2 5 1 3 =]
v =9,
T . wtl xt2 1 2 x 2% 2x¥2  2xHl
X+2 - 2 x+tl — 2X 2 x+2 0 2x+l X
Cf2xtl 2%42 - 2 1 xbl  xH2 0 2x
0 2% 2x+1 - 2x+2 2 1 % xt2 | |
A= [2x¢2 0 1 2%l -~  2x X ¥+l 2 | (with e=1)
[ 2% 2%+l 2%42 X ) - x+1 0
X 1 D 2x+2 - 2%+l  xt2 - 2 )
X+l xk2 % 2% 0 2x+l 2 - 1
L2 X 2 0 xtl 1 2xt2  xt2 - J

2865 Effidiahcylﬁf'ﬂggarwal'a Designs.
From thé diaquaainn'in subsection 2a.4, it is clear that the
construction of such optimal designs is comblpatorially rather involvad.
This leads us to a study;uf the relative efficlencies of Aggarualls

" (1966b) designs and thair,gﬂharalizatiuns having certain nice simple

structurses cﬂmpared.tu the actual Dptimal'desigﬁrchsractmriZQd hereine

Aggarwal (1966b):praséﬁtﬁd a series of two-way Latih Squara_ 

designs with all distinct_elaments'missing_alung the"diaganal; These



| e

degsigns d can be generalized to dﬂ, in the case of mvXmy érraya
(for m?_ 2) by placing such vXv designs CT along the diagopal
block matrices and ordinary Latin Squares L along the off-diagonal |
blockes It fs not difficult to verify that d_ doss not maximize

thh and is hot optimal, hﬁwavar, dm as qlven by

8 L oees L

) asavdossshossn by

E L Lll-l Li'
L.

lliil‘f‘ﬂlliﬁi#ii
o~

L L L ... d

=

possesses & high degrse of efficiency .as is demonstrated below with

- raspect to the Hwaptimélity oriterion.

" | |
- Note that for the optimal design d as well as for the above
mantimned"design 'dg, the Cehatrices are completely symmetric. Hence,

one gets for the effiuiancy af do, the expresaion

) .V (‘fi -1 ) ‘uslng d*

_ x 100 %
9D o u(*‘c‘i-.?j) using d_

11

o= ' 2.” . = a¥| _;Q
- =a (I U) and C a.(I V)' |

Using the raﬁrﬁsehtations'bd g%
_ = 0

- The difference in the diagonal elementa of Cd# and qu arises out of
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the difference in the diagonal slements of (Ldﬁ-+ Nd%)(Ldﬁ T mdﬁ)

|
and (Ld + M, )(Ld + M }  only. Recalling now the expressions

o O 0 0
Por G p o A(r) and gz(f) (vide subsoction 28.3., Step II), we gat

- 2 2 -
. T - "y w mu(m=1)" + (27 = mv)(mel) +

+ 2 “ffﬂ(%:i)_%ﬁﬂﬂif
(mv=1 (mv=2) MY IV =2 -
4\ ],
ME) = ST = £ ey,
-

| now simplifies to -—--—(—-)—-—-— X 100°%/.
0 | E(r) -+ GTE;:ET

Calculations indicaﬁa that_euén for small valuas of ﬁ and m

1
(1 -~ =)a

Il

and (1 ~ -\J-;-)a*

Thus Ed

(Gege VvV =4, m=2) d_ has an efficiency es high as 99*/a ..

~ 2he  Thres~way Ellmination of Heterogeneity Sattings with Incidance

Structure ae J=I1 for Every Pair of Dirsctions .

2 be 1 Preliminaries

In this section, we take up & study of optimal designs in &
set~up admitting ﬁf threa-way alimiﬁatiuﬁ of hetarugeneity Mhara:incié
dence structure for every palr of ﬁirantians is nanorthogonal in the
sanse that ;aual combinations along the prineipal diagonal are infeasi-
ble, all other level combinations being foasible, Lot sach of tho
.dlractiana assume b lsuals, and (1 ,12 i ) ~danote the lauel cnmhl--

_natinn fq:'anylexperimantgl unit. 1 S il j_b, 11_# ;z.f irps Thus, .
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as it étandsjth@ numberlnf feasible experimentad -units for.allocation of
v treatments is b(b—l)(baz) which may be too largs to be available

for experimentation. So, following Mukhopadhyay and Mukhopadhyay (1984),
wp deal with a reduced set of experimental unlts, suitably arranged such
that the incidence struoture becomes J~1 for every paiﬁ of directiona.
Let E be an. Uﬂ(bz,ﬁ,b,Z)' auch that the three cunstraints have the
same Jlevel cumbinatiahs in each of ﬁ?a Firﬂt b columns, i;a. the

first b_-cﬂlumnﬁ are of the type [1] , 1 = 1,2,e00ybe« Such an 0OA
| | | | i |

can always be conetruoted (Denes and Keedwsll (1974)). Then the remain~

ing b{b~l) ocolumns of ﬁhia orthogonal array serve as gxperimental units

for us 1n three=uay alimination of hétarngmneity sat-up, Whare ﬁha entry

th th

lh ths ith row of the o~ column denotes the level of i diractiun

-in the uth 'axps'riman'tal unity, 1< 1 <3, 1< u<b(b=l), By non-

orthogonality of the seteup, We mean thie sort of restriction in the

incidence structurs.
The usual fixed effects modsl is

h) = I+ a, + ﬂj-, + D 4+ T 4o

RATIIN N Ll

1<hgvy 1ESiFIFKkED

wWhere yjj'k(h) is the observation in the (j,j',k)th level combina-

tion receiving hth treatment and U,.ad, Bj”?ﬁ'.th sténd_raspsu-

tively fmr'ganaral_effsct, sffect of the jth_ leﬁél_alnng_tha. 1%

divection, effect 6f 3'°" level along the 2"° direction, effect of

th d th

k™" level alﬁng the 37 direction, and h tbaatmehﬁ sffect,

R Y |
Ejj'k’s are ii;.d N(ay0 )_._.
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For a specified design d, }et Ndi = ((ndhx)) h = LlyZyeesyV

L = 1l,..e,b stands for the treatmant-with direction incidences matrix,

1= 1,2,3,
As in the case of two way nonorthogonal set=-up (section 2a),: we

~ars interested in llnear inferential problems involving treatment contrasts

“only and as such we refer to the underlying C-matrix of the design ds Lset

I
Z, = (rdl""’rdu) be tho vector of treatment replications foxr ds. Then

it can be easily sean that with incldence structure ea J~I foxr svery pair

of directions, for any design d,

| ) (b-_.J.)I Jo1 N0

Jel a1 (b-.-l)I/ ' \N'ds/

and with a particular cholee of g-inverss, uWe gst

4 =P, (B3 N1 My Vs [(b2)I-py g - | I=F /Ndl\
- - g | . w [N A N
l I-% (b-.?)(l_-b);r I-b-T N
- . ] / '
\, Ie% I - (b_-z)(x-b) \NCB
After simplification, Cd becomas
C D b=d % NN L ) (N + N, N, + N )I
d g b(be3 121 di"di ~ b(b-3) 1< 3 di di’ ¥ di d3j
| | Lpd=1,2,3
."l' 2 I i‘t :--(Zb-l-l)
(bel)(b=3 ) “d°d ot

As before, let 2  be the clasa-afqall_conneﬂtad.dasigns ﬁith incidence
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structure aé J~I for every palr of directions. In our later deriva-
tion, we make use of the above Ed matrix and Find optimal desiqgns for
the cases of b = mv aﬁd b = mutle  For b = mvtl, uﬁiuarsally optimal
designs are again available (subsection 2b.,2) whersas for b = mv, ue
come up with specific optimal designs (subsection 2b.3). we omit the
details of the pruofa ﬂf.cpﬁimality results as tﬁay are sssentially
similar to those obtained in the two way elimination of heterogensity
set-up (section Za) and poipt out only the major differences in the
arguments. WYe mainly consider the construction of optimal designs for

the case of b = mv (subsactinn Zb.a)_and calculats efficienaiaa of* & clasn

of designs by'suiﬁably-ﬂxtending Aggarwal's designe (subssction 2be5 )e

2be2 Universal Optimality Results for b = mv+ 1l

Here f ) stands tor the class of connected designs for the
typical OA's with b = mwtl and with the incildence structurs as J=I
for every pair of directions. As in the case of two way elimination of

heterogensity set-up, ma'haue-a_similar'rasult here $

| | . | . |
Theorem 2be241 Lt d € f:l be & design which assigns each treatment

o | * R |
m times to each level of every directlon. Then d  is universally
optimal.
'Follﬁming_the.aamé steps as in two way heterogeneity setfuﬁ, it
nan be éaﬂily'yaﬁified.that hare-alsu:
(i) Cge 8 ces.

'ahcj-i'_-_-j__ | (31) tx(C,) 5_ -tb(cd*--)'-" ¥ d ED
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. | |
Thus d  is universally optimal.

Such types of designs can be easily constructeds UWe can always

conetruct (vide Oenes and Keedwsll (1974)) an OA{{mv+ 1)
such.that the firet comstraint is arranged in the order 0,...,0,
Lyeaogly 24000)2 eveg MV oese MV, each aymbal being repeated {mv+ 1)
times. Further each of the remaining threa constrainte has the same
symbol imn aach of the first (mu+l)_ calumné- Us identify first con-

. straint as denoting the treatment, and the remaining thrss cnnBtraihta
I as three direotionse Then by canatruotiﬁn- thé level qdmbinatiqn
(i,i41)y 4 = 0,1,2,04.ymv receives treatment 0. Ua delete these '
first (mw+l) nqlumna from ﬁhis DA and reduces tha raat-ﬁf the

symbols mod v in rnm'numbér 1. Tha resulting array pbmducéa the

| e
required d «

2b.3 Specific Optimallty in the Case b=my ¢ A Briaf Discussion

af'ﬂptimality Reaults Major Differances with Twﬁyway

AL A S R e il el ’ .

Hsterﬂgenéity'Sateup.

Here (T}; atahds for Ehe;cmllectinn of connscted designs for
the typiaall dﬁts with b = mv and with thé Lncidence Structu:e as
J=I for every pair of diractiohﬁ; As in the-caaa Gf tWwo-way hetero-
genhelty aatEup, tha_c-matrix wf.an Am, D~, and E~ npéimal deosign hsere |
is-camplaéély'symmstriu but it doss ndt_necasaariiy.prudqu maximuﬁ
| tﬁaga of C _iﬁ ;ftlai Taka._fur egamplé b.= 9? m = 3;'UT=_3 : Tha-
dgaign dl haé_iafgaf.tfaﬁa thah: dz, ﬁhich_miilfse éhouh.ﬁﬁ ba ,.

| E;aptimal,thér93 -
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(In d s the three directions are given by Lous

1 as well aa_in d2

columns, and the Roman letters A,, A,y A;y Cyy Coy CoyBiy Bry By,

and the treatments are denoted by 0,1,2.)

Thus we fail to apply Proposition 1 of Kiefer (1975) as regards universal

optimality. So we look for spegific optimality results.

Theorem 2bs3.l Suppose for given b = mv, m 2> 2 with incidence struc~
turs for every pair'uf directions {in a thres~way heterogensity set~up)

#*
as J=-1I, there exists a design d- for which

(1) tresatment ~ lst direction incidence pattern is a BHED

(ﬂéi%x = m Oor mﬂl)

(i1) trestment - 2Nd direction incidence pattern ls a BED

(ngiéx =m or mel)
(iii) treatment =~ Srd direction incidence pattern is a BBD |
(ngi%x =m oOr mel)

(iv) and morsover, for svery pair.uf_diraﬂtiona (3,3%)s 3< 35
l_ﬁ.j; 3’5_3, the b .péirs of treatments of the typa'(hji, hé,i)

i=1,2,see,b where h,, 1is the treatment which occurs .m—l

i
th

timeé in the 1 level of jth direction and h;..i is the

g

treatment which ocoure (m—l) times in the 1%0 isvel of jlt

direcﬁiun,_are such that they
(a) satisfy -hji fvh;ii '_#- 1= 1,2400e,b

(b) axhauat all ﬁﬂgsible (;) paifs_of treatments equally often.
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* - | o
Then d is D ~ optimal for all v > 7, m > 2

A - optimal for all v YA

A4

6y m

v

E ~ optimal for all v >3, m2 2,

| 24

The proof goes through following essentially the technique in
Kiefer (1875) and the mﬂdiFicatiun of tools developed in fha case Of
two way hetserogensity set-up (vids subsection 2a.3, Step 11, Step IIi).
Wa omit the detaila o avﬁid a langthy repatitlon of analogous steps and
only highlight below the functional form of g(r) and the differencs in
the set of sufficient conditions required to snsure exXlstenhce of a copcavs

function q satisfying (2a2.3+9)e Referring to (2bh.1.1l) it can be easily
sean that for I

¢ = mu[:ii-} + &

' my

=mvu t+ t  say,

fe@s for v in the 'uth giemantary interval | umv, (uw+l)mv |
_ _ g,{r) =A(x)+ 8, (x) if &< 3
| | - T | ) . N
Q(r) = | MaX thh:: lecs Af H\T — [m]<2
(vide 2243.3) _icf: rdh=:r:} N

" see(2bhe3.l)

is defiped over the range of values {D-,l,z,...,mu(w-ul)}

*For v =5, d*-may be HQGptimal for m'g,mg' where mﬁ_ﬁ 30, So for all

W - . - |
practical purposes, d 1is not A-~optimal for v = 5.
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where A(r) = m—m“j .ﬁ%‘l‘iﬁ% -[-—- u mu+ o Zur-muu}

- {
- mUmS LBur 4muu )
: z 2-Emu-u6umu4-12}+ amuvy 4-3§mu—4}u

27
My =3

r...._ . m \
" T T e

B (J:') 2 -WE’F (Zru-ZmUu)
le(r) T mn?u'_--’o’-f (6r-ﬁmuu-2mu)

In other words,

( gl(r) if umyf_rﬁ_umu + [%EJ

g(z) =< . o _  eee(2ba342)

L gz(r)_ if umy + [%—”—J + 1< r < (u+l)rnu

= 011’2 TEY ,H'IU'-?-

NoreaUer, as in the two way hetarngenamty sat-up, prugacting gl(r)

beyond the firat half of any elementary interval we get, here,

3

91(?) —'QZ(P) ”'“‘T“;:Eﬁ'(4(r-muu) w2my)
| >0 if t> %;-
- 3 Fen ' - . =M
== musgy-(dt _ZmU) 0D 1if ¢ 5
<0 if t<-"-‘§*'—

" eee(2ba303)
Hence fallnuing-fha same érgﬂments glven in_subsﬁctinn 283, Stap II,
to find a concave fuﬁﬁﬁi@h E'Z;q 'satisfying (28.3.9) wa_wqu with ths -

modified g ae follows 3 (vide(2a.3,14))
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1’91(1'), e L C_ +5, 2D
[_:](I-') =< ' ....-(2-[3-3-‘—'})

v '
. QZ(E)’ “0 T2 iripu_l

whers ;[:CG ,DD"] is the elementary intesrval containing r = m{mvel)

= (m=L)mv + m(y-1) > C_+ & .

Hers also the behaviour of the fﬁnctiqn q{r) has bsen similafly atudied
(vide subsection 22.3, Stép II)e It turns out that for the case

-%F'= integer, g(r) T right from the start (r=0) to r = u_mv =1, then
deoreasgs at the point quU, again increases upto (ug+l)mu-—l, cnuaring

thergby all the intermediates points in the Lntervals corresponding to

u=0 through u=u_  uhere

.uu 2

=:[jmuf4‘J | o oee{2be345)
Then‘again g(r) decraases starting from (u§+3)muu The exact hehaviour
of tha funntiuh g cannot bs épeci?iad'for (uD+l)mU-5rr < (u0+3)mu-
Also whenever '%ﬁ*}' f-‘intagar, mv > 6, g(r) T right from tho atar.t upto

r o= (ua+l)mu-l, covering all the intermadiats pninta.in the interﬂais
carreapnnding.tn u=0 through u= U and_again starts dacraasing.
From (ud+3)mﬁ. The exact functional behaviour cannot be specifisd for
(uﬂ+l)mvIg_p_<=(u0+3)mu.. Carrying out similar calculations as in the

two way heterogeneity set~up vide Step 11 end Step III, it tuzns out that
with this form of g (uidé(2b.3.4)) a set of sufficient conditions fox
existence of a nﬁnaavé.runctiﬁn q sétisfying -552 q _énd_'E(E) = (%),

in other words,a set of sufficient conditions for {2a.3.21) to hold is
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(i) consavity of q within CoSr D~ )

(11) o(c ) ~qlc 1) 2 a(F) - q(F~1) ) o+ (2:346)

(1i1) q(f+1) - o(r) 2 q0_) ~a(p_~1) )

At this stagé, it may be noted that the abdua.cunditimn is slightly
different from those under the two way heterogensity sst-up. We nesd
an extra condition némely condition (11) here bescause of peculiarity
of the functlon Al(r) = gl(r+1) - gl‘(r) at the point C_~1. It has

been observed that in the presant'cﬁntsxt,

&i(r)_:;\_ Al(cﬂ) >0 forall r < DU-? }
| - oee{2be3.7)
and.&l(cn-—l) <. (c) '
Recall the analugnua caluulatioﬁ in_£MU way.hateruganaity set~up (vide
(2843.23)) where wé nbﬁéinadﬁ&l(r) ?._-Al(cg) >0 for all 5_'1:0-1.
Thus apﬁlying Mean-Valua Thedrem, (uiﬁe discussion of proof of sufficiecy

of (23.3.21) (i) Iin paga. (58)) we obtain from (2[3.3-'?)

.min «[q(r +l --q )} -'q([: + 1) a--q(E ).

This tugethar uith concavity of q within C_ ElglghDD—l' implies

nin dale; +1) - oz )} a(T) ~ gq(F-1).
D<rl<r | | |

r, #C_~1

So to achisve (25#3-21)’(1) we require the extra canditioh (2b.3;ﬁ) (ii)

to ba satisfied by g.
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The other two conditions in (2b.3.6) follow as in the tuwo way

heterogenelty sat-~up.

&

3
Thus in the three-way heterogeneity set-up, ¢ ~optimelity of d
Will follow from a verification of (2b.3.6) along with two properties

S |
of d namely,

Property 1 ¢ Cd* i8 Ces.

Prupgrty 2t Cppn = a(r).
As iﬁ the two way haterngenaity smtnﬁp,'uarificatians-ara ddne heré for
D~ and A~ optimality of d (vide subsection 2a.3, Step _iu, Stap V).
E~optimality Fullaﬂa along a direction very similer ta.thgt-in thanl

earlier set-up.

In ths fullﬁwing, We concentrate on construction of such optimal
dasigns which i1s rather involved and mors complicated than'in the caso

of two way hetarﬂgenﬁity'set-up.

2b.4  Construction of Optimel Designe

(0 o ST T R ST e TR

Cﬂnditipn (iv) (5) as stated in Themrém Zbﬁﬁfl yiﬁlds, my = hJ(;)¢
for some _h,.a pﬁaitive integor. Ue Haua already.ubsarﬁed-that for tuo
way éliminatiﬂn of haterﬁganaity,-in such casée, the reqﬁirad d% does
not exist for m = 1, Ma.will present here cahatructiun of _d% for

t

(i) v = 3, m=3, (ii) v =2 ,jt_>,l Iintager,f m=vel, (iii) Uéétki-l,_

odd prime or prime power, t >3 i'ntager ,  k}_ 3 _r.ndd int’agar; and m=vel.:
We also exhibit how these d can be employed to get optimal designs for

| thﬁfﬁultiples GFT"m' ﬂlready’chééEn-:,
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whene Al’ Rz-, AS’ El,-cz, GS’ El’ 63. B.Z denote the 9 levele of the
3rd direction, the firet two dirsotions bedng the rows and the caolumns as

usual, and 0, 1, 2 denocte the three troetments.

t

1

In the following two cases v =2 and v =tk + L, we use soms

common hotations. Let L be & Latin Square written with v symbols of

GF(v) such that the ﬂymbnla.appaaring along the diagonal are all distinct.

Let (L + xi), xi_B GF(U)- denote; the Latin 5quare obtainsd from L by
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replacing each symbol y of L by the symbol (y + xi). L is

obtained from L after deleting the diagonal {i.e. the diagonal posi~
# Yot

tions of L are all empty) and (L +-xi) is obtained from (L + xi)

by only replacing its diagonal by the diegopal of L.

t

(ii) v =27, t > 1 integer, n =yl

Define Xy = i+ g+ azﬁu..ﬁwmi_l, L = Ly240esymy where @ is-a
primitive element of GF(v)s Obviously, xi's are all distinct elements
nf GF(v), and X = 0. VWe define a set of mv symbnla diuidad into m
sets, tha; ith sat writtsn as Ai(x), X & GF{v), 1= 132,006 ,m Lot

Ai ba a Latin Square written with the v symbula. Ri(x), such thatl
along the diagonal of Ri,_511 tha éymbols'ara distinct. Eaﬁh ﬂi’ 80
ponstructed when auparimpnésd on L is assumed to form a Grasco Latin
Square. Let 't' be any other Latin Square with elsments of GF(U),
which need not have distinct elements along ths diagpnal and will form
a Grasco Latin Square when superimposed on Ai' Now d* Gan be cofe

structed as followa.

First make & mxm Latin.Square-tpsating dﬁifs* 1 = 1ly24e0eym
as m distinct symbole, such that'almng the principal diaéonal and
along the second dirsct diagonal (i.e2., just above the principal diagonal)

%
the symbols are all distipcte Since m=v~l is odd, a cyclic Latin Squars

2% | | L
(vids Denes and Keedwsll (1974))
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of order m with symbols xigl‘l, J5’}r2},, srey -Afm will possoass thess two pro- .
pertiss. Now in plaoce of symbal'iii, insert the Latin Squars &i. The
symbols ﬁi(x}, L= 1y2y4eeayy X € GF(v) in the urda# now they occur

along ths ﬁrincipﬂl diaqgonal of thisaraaulting my X my square will form

the dofinite order of the levals of the thind direction. Now arrangs V

treatmonts in this mvxmy square es follows &

Originally we started with an mxm Latin Square with m
aymhulé ;Ai, then uAi'a are roplaced by VXV sQuanres *Ri's as
already indicated. Considering the mriginﬂl mX m squaré, its diagonal
has m distinot slements .»Arl, *A‘Z,...,'-Afm ,. in some nrdtar.. Supsrimpose
the treatment squareg L* non sach oé the Hi'a (written in place of
J&i's) In the principal diagﬁﬁal. Then aupefimpmae. (L + xi)**, in the
giqen order i.? 1,2 4000 ,m ©ON _Ri's  along the sscond direct diagnﬁal

o~

of tha mxm originael squars. Superimpose L on the remeining ﬂi's

of this mxm squarse Then d* ~looks like this.

r——p——————r—-————-
A

Hl Fiz - ﬂg 4 . son o Am-—l | F'tm
- Ny, p- o~ . ™ : il
W (TS 1t IR I A P [ r
Ay | A, A, Ao | e oo AL
i | iy ind oy ot :
N O il I A T |
d= . | o L n .. .
F ¢ ¢ b a0 ‘+ ad +# L o : _
“mei ] "1 Ry e " ﬁm-ﬁ .
~ o o~ o ¥ . W%
A A A, S A o Aoy |
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Clearly, from the construction procedure, d satisfies condition (i),

(ii) and (iii) in the statement of Theorsm 2b.3.1. A#s xi’s i=1, 2,

s
cesym=l are non-null distinct elements, d satisfies condition (iv{a))

alsc. To verify condition (iv(b)) we introduce vector notations d(L.),

and d(L+xi), 1 = Ly24ees,m=Ly to denote the v distinct treatmant

Wt 2, il o3l Wi

symhols along the diagonele of L and (L+xi) respectively. The mv
treatments (not all distinct) soecurring with (m—l) replications along

the mv levels of row and scolumn directions ere given by the two veotors

(d(Lxy )y d(ltxy )y diltx,) yoevey (L))

[T, A
L o T

end
(d(L), d(Ltxy ) d{Ltx,) yaeeoy d(ltx 1))

raspactiuély. As each of d(L+xi) i = 1,2;‘..,m cdnaists of v dis~
tinct treatment symbols and (xl’xé"kl’ xz-xz,--.,xm_l-xqu,f-xm_l)
consists of all non-null elements of GF(v) each éppearing exactly once,
the mv treatment pairs occurring (mel) times almhg the (i,i)

1 = 1yZ,e00ymv leyel combinations of row and column direptinna respec—
tively axhaﬁst ali posslble '(;) pPairs, eauh bccurringequal numbgr of

‘times. Verification of this property for row vs third direction and

column ve +third direction is immediate.

(iii) v = tktl, odd prime or prime power, k odd, (> 1) t > 2 inteqer,

e, sl —

let X be a primitiUE slement of GF(v). Let _Ai, 1= l,QL{,t,_'

J = lyewe,k be Latin Sguares of size v uwith symbols Rg(q); o€ GF{v)
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such that almng the principal diagonal,, the symbols appearing are dis-
tinct and L. and Ag's when superimposed,form Graeco Latin Squares.

Lot A,'s & =1l,...,t be Latin Squares of sizo Kk, formed uith symbols
Ai y J = lyees,k, such that the symbols Ai's appearing along the prin-
cipal diagonal and alsu the second direct diagonal are distinct. Since

k 1s odd, this type of configuration is always possible. T be any
Latin Square of size v, with symbols from GF(v), such that Ag SUPED-

el

. #*
imposed on L, 18 a Graeco Latin Square. Now d can be constructed as

follows.

First make a. txt Latin Square with symbols nAE, i==l,...§t
such that along.tha principal diagonal the symbols are diB£inct. (Rs t
is even, we can almayaJcnnstfuct a Latin Square hauing this property as
Pollous s Firast we cﬂnsfruct ﬁ cyclic-Latin Sgquare LD (say) ufléize
t~l with symEula “Ai’"gz"'“’ A%—l' Then we add one more row and.cmlumn
to LD to form the raeult;ng tx't Latin Square: Fmo (say) aelfulluwe.-
The (t,t)th cell in Lun 1s filled in by the aymbnl.f%t, the first

th

t~l ocells of the tth column as,wéll as t row of Lum are filled

in by ths cérraaponding elements in the second direct diaguhal of La’

and all the elemente in the second dirsct diagonsal df 11111 LD, aps nou raplaﬁed
by the symbol J&t') N aw in-plane.nf symbols lii's, put the Létin S guares
Hi's with symbols Jﬁgfa, j= l,;f.,k. Then in place uf symbulajii'a
_put.the cn?raspunding Latin Squaréa Ag's. Now the order in which.the
symbals Rf(m), L= Lyee0pty § = Lyees,k, @ € GF(u), ocour along the

principa.l diagﬂnal'mf this’fasulting"muicmu saquare répresant:tha'defim

nite order of tha'lauala of the third-diréctiun-'

*(yide Franklin (1984))
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Wig can now arrange v treatments on thls square as follows. In

the original txt Latin Square, the symbols .Al'a are replaced by the

lLatin Sguares Hi'a' of order kX k with symbols J&i'a. Superimpose
L% on each of the Latin Squares ng'e (wrltten in place of ‘42'3)
pcoureing in the principal diagunﬁl of the resulting tkx tk squarss
Coneider the second diraot_diagohal of each of the kxK sguares,
oocurrirgin the prineipal diagonal positione of the original txt
squara. Take a representative KXk square, say Rij._' Then éuparm
impose the treatment squares

,(L-l-:vcilml )H ' (L+x(il-l)+t )*"“‘

in that order on the Latin_Squaras written cnrraspandihg to the elements

yevey (L+x(il_l)+t(k“‘l) )‘?H#

occurring on the semond direct diagonal of the sguare specifisds The

asams 1s done for sach such Kkxk square in the principal diagonad.
Superimpose L on.each of the remaining vXv Letin Squares, written

corresponding to the slements of the tkx tk square. The method is

illustrated bslow

Lﬂt Bi — | FY | | N | Y li.'l .
) K
A AE Hi:
’E. _ | ’E’ : rev (L+xiﬂ-l+ 'b.( k-2) )*'H"
K | 1 T kel
¥ - ni N
i~l+t(kel)j**_ | a

(Ltx
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Tha_sats{; xig-xi+t,...,xi+t(k"l) §; i = 0,lyeeeyt=l have the following -

property s The sets

1 i+2t i+t itt(k=1) -xi+t(k42))

- + |
(Xi Xi+t(k l)’ Xi t""x ) X x ,--.-,J{ i i=D-’.l’ii ,t""l

oxhaust all the distinct non=null elamants.nf GF(U), sach occurring exactly
once. This snsures the prgperﬁy' (iu(b)) uf Id* along rouw ve column
diroction. Autnmatically the same ﬁruparﬁy holds far row vs third and.
nalﬁmn_ ve third direction. The other properties (ﬁii,_cﬂndiﬁihﬁ_(i) _f_‘

iv(a) in the statement of Theorem 2b.3.1) are obviously satisfisd.
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In each of the ahove three cases, suppose the design is con-

structed for some m and ws want to construct it for a multiple of my

m 3
say m = pmy, p > 2, The (mvxmv) optimal d oan then be used %a

* #
construct  mv X Mty optimal designs. Let dl ’ dg, souy dp be p

optimal designs of size mvxmv constructed in the above mapner with

Cxio

. *
p different sets of mv eymbols, di are deaigns obtained from di‘a

’,.--.l“

| i o | e
by replacing L and {L+x) , x & GF(v) of d, by 'L or L simply.

36 e
v)

% |
Then d (m-vxm oan be constructed by making a pxp Latin Square

.H. ' : |
with symbols d, such that along the diagonal the symbols appearing are

1
1 K
distinct. Then replacse all the off diagonal di's by di ta, and in

* i |
place of d, or d, symbols, put the corresponding (mv x mv) squares.

Z2De5 Efficiennz of a Simels Class of Designs in the Line of

Aggarwal (1966b),

The above discussion reuealé.that construction of thess optimal
dosigns d*_ are highly involvede So in ﬁhﬁ Follaming we give a simple
design_whiuh ts a trivial goneralizatlion of Aggérwal's dasigns unnéie
dered in the case uf twm.way elimihatiun of heterogsneity and compute

its efficiency mith.respant to the actual optimal designs.

Lat us define a set of mv symbols divided into m  sests, the

1*0 sot uritten es a%, 3= Lyeessv 1= Lyaeayme Lot GL, boa vxv
Grasco Latin Square formed with two sets of aymbula_;il,Z,-.-gu} and
(i i 1 | e FES R | L
-}'O:l y Oy povey cxu j— such that along .-the. diagonal {l q’.l y 2 oy, seeey v }
ocours in the same ordar;_-EEi be any Graesco Latin Square formed with

| - * |
the above two sets of symbole,. GLi is obtained from GLi' after deleting
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its diégnnal. Then a new mvxmv design dD can be formed as follows.
First make a mxm Latin Square treating GLi, i = l,...,m,_as. m
symbols such that slong the diagonal the symbols appearing are distincte.
Then replace the diagonal GLi symbols by the Graeco Latin Square Gti,
and off diagonal GLi‘s by the cnfresponding Grasco Latin Square faii'

For m odd, one reprﬁﬁentatinn of dD can be

% oy "y ,-ﬂ--'_“*_“1
GLl GLZ Gl |eee GLm
i 1t e st P Pl a1l A PR
= * s | o~
GLZ : GLS GL4 i*I GLl
d _— W&W
0 soe - ¢ o ¢ ¢4 ' XK
v weéa o9 s e e .[--
i e ey
e e prmet 1
GLm ‘ELl GL2 eos Gngl

In qﬂ, the symbols aé, J = Llyseegby 1 = Lysneym denote the

lovels of third direction, the other two directions are represented by
rows and columns as usual., Clearly dD does not maximize thh’ and
is not optimal. Hnwﬁuar, it pmssaaseé a high degree of efficiency as

is demonstrated belew with respect to A ~optimality criterion.

| ¥ |
Note that for the optimal design d as well as for the above
mentioned extended Aggarwal's design clO , the C~matrices are completely

symmetrice Hence we get for the efficiency of d, the expression,

73 u('t -1 ) using d"

S RO V)

o 25 U(’E -7, ) using d_
if;j
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i
X
I_I
o
S
h‘l“"i-.

AL

—
*
a

| * —e ":‘E" _'_:1 e - -:1 :
uslng the representations Ed* = a" (I U) and CdD a_ (1 U).

Recalling now expressions for thhl,g(fj, A(r) (vide subsection 2b.3)

we get |
1y * ~ Emi 2 V=3
(lhﬁ) a =Alx) - mv { my =3
.]-‘., o _ o 1Z2m U::l
and (l-u) a = A(L) = m_‘é{&_&.

E(E) Sﬂy-

Ed . nom aimplif‘:l.as to —-—(-=)-——— = lDG /

0 E(r) + m

Calculations indicate that even for moderate values of v and My Ed

is clogse to unity.

Conaluding Remarks 3

In this chapter, our primary concern was to initiste a study of
(analysis and) optimality of designs in situations whers the " data-base "
is non~orthogonals. The smphasis was on layouts for. which sach pairﬁise

directional incidence pattsrn corresponds to that ﬂf aEﬁBIHD- In general,
hnueuar, the infeasible cells would correspond £0 any pDSltiﬂnﬁ in the |

square, thereby randoring the uptimality prublem raally intractable. We

hope further researches in this girection will add_lnterasting contribue

tions in future yea:S.



CHAPTER 3

OPTIMAL WEIGHING DESIGNS WITH A STRING PROPERTY

Intrnductiun |

Weighing problems were first posed and discussed by Hotelling

(1944) and, aubsaqHanﬁly, by Mﬁud (1946). Over tha pest thréE-dEﬂ&d55,~
uarinueraapacta'uf suych problams heve bean extensively studieds We refer
‘to Raghavarao{1971) and Banenjaa_(l975) fnﬁ all the besic resulis on
this topic. An important pﬂintutq~bé-nntedaregatdiﬁg_thgaa«prdblamazia
that'“ £ha designs are applicable to a great variety uf prnblams_bf |
méaauremant not only of welghte, but of langths; voltagses and‘raaisténoaa, |
-concentrations of chemioals ;n sqlutinns, in féat any maaauréhent.'aunh
that thé measure of a cﬁmbinaﬁion is a Rnawn linear function of thé_
separate measures with numerically equal coefficients " (Mood 1946).
 Uhereas the atatiatinians have discussed such prhblems a3nluaiUEly in
the frameucpk of meaaﬁremént_nf weights, the génaral tauhniqué_sas¢§ to'
 have recgived attention of researchers in uﬁher fields as wells Fulkerson
and Gruss‘(léﬁs) and R;aér (1969) hauehstudied some Iinterssting nomhinae
torial p;bblems inumluing some classes of  (0,1) matricaa'with biclﬁgi-
cal applinatidna. Tha.applicatiﬁn of welghing deaighé fa nptics_aaéha-
:' ﬁu have been fi#st pointed out by Marshallxahd Eumisérum {1976) and .
'.indepandantly by Sloane and_Haruit-(197ﬁ).._Harmit.anﬂ Slaana.(197§}.haua

;nicely'axplaihéd how the_pfﬁbiém of deaigning_Hadamapd.encudéd-gﬁtiﬂal .

 instruments is related ﬁo“ths"thgary ¢f Wﬂighing'desigﬁs.'"-
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In thié chapter, me.intend to study one special type of weighing
designs with possible scopes of application to optics anﬂ alsewhere as
well. UWe formulate the problem bslow in the language of measurement of
ﬁiatandes among a set of fixed objects along a lins. To be specific,
suppose therﬂ'are (r+l) objects, serially numbered l,2,...,n4*l,
£heir positions are Pixed along a line and we are interested in meaauriqg
cnnaedutiua distances bstween them (or snmé FunntiunslthereufJ by, undex-
taking N measuring nperationa.. Clearly, in any sﬁch‘oparation, we nﬁh
measure the distance batmeah any two objects along the line. Houwever,
the interesting point to be noted is that in doing so, wo are automati-
cally'taking acnauﬁt of the intermediate abjects, if-any. .Thia_meéns
that 1n svery rou DF tha rasulting design matrix thera will appear
pxactly one run of 1's (the rest of the plements being D‘a) We may
call such deaigns spring balance dgsigns with string property. Fulkepson
aﬁd Gross (1965) have callad them (U,l)_matnicesjmith tha cmnBE¢utqu -
1's pruparty- The prab;em studiadfby tham aé well as by Ryser (1969)
can be stated as Fﬂlluﬂa 1 "Hﬁ@fmuch inFurmatiﬂn about é (U,i) matrix'.
is neesded to decidé whethér it_haa.chSEcutiua_ 1's propsrty or not 7
(Da_we need to know the uhmla Qf 1t nr $umathing_las§ wiii euffina_?)_“
We propose to study in this chapter.aums'inferential_aspscte DF-thé-
underlying design prqblam and discués-uariuua rasulta ralating'tn_ﬁptimél
-deﬁigne. ant of the Findinga mf this chapter haue besn publishad in

: Sinha and Saha (1983) and Muker jee and Sahaﬁay (1985)
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Assume that the recorded observations follow the standard regres-

sion modesl

ileﬁxanghxl*'Ele’

E(E) = O
e(ee') = 0%, .
i ity N
whare XN><n is ‘a (D,l) design matrix with the string property, and

g = (Eil ' B, ,...,Bn)' is the parameter veetor of unknoun consecutive

distances betueen the objects.

The particular case of N = n has bsen axtenaiuély'studiad and
¢p-optimﬂl designd obteined for the two familisr probleme of inferrinhg

on 8 (as a whole) and & = P8 where P (n~lxn) is as usual the

lower submatrix of an ﬂrthmgnhal matzix © with the firet row vector as

,...,-—0 Incidentally, some interesting features of the (U,l)

f/" J/n

- matrices with the string property have baen Dbsaruad and made use of in
deduclng the optimality results. The caaa_uf N >n seams to bs com~

| piicatad and only the hfoblsm of inferring Dﬁrlﬁ- hés bean atudiéd. In
partiaulér,-?ur the casgs of N = ntl, and. N =mt2, A~ and D-optimal
designs have been derived withiﬁ the subclass of relevant designs formed
by inclUsiun of the ﬂptimum deéign for n bbséruatiﬁnﬁ,uiz,_the identity
matrlx of order n as a aubmaﬁrix of the whols deaigﬁ métrix (sentiun.Sb).
For general N>n+2, to deal with tha more intractable d551gn problem,
appruxlmate dasign thamry cﬂmas Upy and the tnnl of Frenhat-darluatiua-
(Ulda_ Siluey 1980) has been employed to ﬂbtain approximate A and

D~ optimal designse E— Uptimal daslgna ars alsﬂ Uhtained using some
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ather technique {8ection 3c)e  Incidentally, for some combinations .of
N and n, these approximate O~ and £~ optimal designs lead to gxact

optimal designs.

38, Optimal Deaigna'fnr N = n

Z3asl Preliminaries 1

Throughout this spction, our investigation relates to the cass of

N =n, iegs tuhtha square matrices X having string propertye The

AN
optimality results here are based mainly on the very structural proper-~
ties of the dasign matrices and £heir inverses. Eq bafors going Lnto

the discuéainn_mf optimality results, ws first demonstrats some stnuptural

!
matrix to avoid unnéceésary numplicétiﬂna in the nutatinna). |

propertles of Xn v (We aamatimaé omiﬁ the lower suffix n of thie

Prngertz 1. x| =+ 1, or 0O, according as X is'uf'fﬁll rank or not.

Proof ¢ By slementary operations (of row permutation and row differsnc-

ing) one can reduce eny (0,1) square'nanaingulap ‘nxn matrix with the

Etring'prnparty to an identity matrix. Hence the resulis

Property 2. For a square full rapk (0,1) matrix X with the string

property, the inverse matrix K"l exhibits the following structure s

(1) The slements in X™ are (0,+1) and, in each column, the non-
zero elements ocour with alternate signs.
o (44) uThe'cmlumn'tntals.(thqugh_all or any subset u?;bdnsEdut;gg_ruwa)

are (0,%+1) = not all being 0's.
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(1ii) 1If = certein column—total is + 1(~1), the First nope-zero entry
in that column is + L{~1l), if 2 sertain column -total is 0, the

Pheet-non=zero entry in that column is either + 1 or -« L.

Proof ¢+ The proof is by inductian an n, the order of the square matrix Xe
The result is easily verified for n % 1,2. Assume the properties to

hmld good for all sych matrices of order n and let xn+l be a full

rank (0,11 squara matrix of order (n+l) with the stated string propertys
Since the properties (cleimed) rslate to the columns of X;il, we may

conveniently convert Xn+l to xn+l by necessary rou permutations such

that the first (last) row of X°

rtl
among all rows starting (Ending} with 1 in the first (last) pesition and

has the smallest etring - length

these rows are arrangsd in”inaraésing order of the string lengths from

the top (bottom). NansingularitQ of xn+l guarantees sxistence of
| as :

these two rows in X§+1 /distinct from one anathers For example,
0 0 110 0 '1]1 0 o oo
 all ol
0 1 1 1 0 0} {111 1 0 00|
Xﬁ =t 1L 1 000 is acnuartéd to XZ = {Op 1 & o
1 1 0000 olo 1 1 040
00 00 11 0{0 0 1 11|
00 0 1 1 1 0ofo- 0 0 111}

We will nmow deduce Ll the structural p?ﬁpartiea of X§+l by induction

- argument.
Lot (1B ) be the first row vector of xn+l and .suppose the
 first column of 'XE+1 _uuntaihs (t+l) 1's (t;zuﬂ).  Then.ma pramultiply

_X2+1. by the matrix
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1 0 0 0 .00 0
1 0 o©
!
Moo ol & 0 1 0
kL Xl . ] .
] L EInmt
5
and convert xn+l to one with the first column vector as (l,D,...;D)'.

This yields,

D —
L

| .il(zailll)

Cartﬂinly,' An is a (D,l) matrix of order n Mith the string property

| . ' - » -]
and hence, all the structural results apply to Rnl- Now, X§+l has
the following reprasantatidn,
. “1
1 [ -g'a™
NG -1 - N -
1 = O -, '__l f'] o | . .--(3&1.1.2)
% |
| .. n. 1

The effsot of post multiplication by M would be to change dnly the
First column vector of the matrix on which it acts and thus the following -

arguments will “demonstrate the structural results for all the columns
o -1 | .

of xn+lﬁ except for the first ﬁna; from the structural properties of
‘ | | | | o B!A“l -'-. | _.' | |
the ¢olumns in the submatrix '-—llﬁfl- . Suppose _Ej'has unity
t =1

in the first 8 positions (s » U)-_ Then B-Hn 1s a uaﬂtmr';umprisihg‘



. 107 -
of tﬁe first s ﬁuu_ﬁums of A;l.' Consider a specific column in R;l.
If the column total is 1{-1), tﬁen the partial aumé from the tnp.afe
1 or 0O (-l or Q) and hence it mili contribute -1 or 0 {1 or O) to
the vector -E}R;;' and the feeult will be in aceordance with the claimed

structure. The same is true for other columns havlng the totals in

[

An 28 Z8T0e

Finally, to deduce the strustural results for the first column of

"y
W O |
| xn+l y thile t;ma wve premultiply 'xn+1. by a matedx N___ ___ of the
. bl %kl
form |
™ - | | | -
el |00 O3
N &= '

, . - i-i(SE.liz)
1 0O 0 ese D-—l o |
0 0 0 ase 1=l
R 0 0 aasw O l
KN‘_\J
l | .

(aEsLirnihg that last uolumn_ of X;_”l contains - (,(-i-l) 1'5, ,(3_0) S0 th-at

xﬁ+l changes %o
NXU _ ---(Sa.luil)
-l 0 eos U l.'li.l‘l_ J..J

where 'Eﬁ is agéin a (0,1) matrix of order n with_ths'étring propertye. |

Lat g' | 1) be the last_ rﬁw-'uéc:tnr in -thé re;jrt-fé'éﬁgﬁation N X . in

rrt L
(3a.144), then -



- -
gt | 0
o -1 r . | |
Xy = R N . eeo(3a.1.5)
_ 'IB"'.‘ } l
.. i [i -

and,y, hence, by induction argument, we are through with regard to all the
-1 | |
slements in the first culumn of X§+l except for the last element (in

the (rmrtl, l)th position). IFS&' contains 1's in the last DOSie |
tions (r. > 0), then g_." E‘i;l is a vector conaiating. of the last = rdw-—_
aume in 8;1.  Nuw we argua as fnllomE aa'ragarda the first column of

B;l. If this column total is 1(~l), then the partial totals from the
bottom are llnr 0 (-1 or 0) and hance.tha last slemant in the first
column of Xz+zl ts ~lor D (1 oer) and this ls in accordance wi?h .
the structure indicateds Similar considerations apply_if this column

total is zero. Hence the claim.
Lemma Fe, Ll Whatever be the design matrix X (of full rank)
_.1_' (Xt)()"l _J_._'m <p  with "= for X9 = In (and possibly, for other

matrices as well).

Proof s Property 2 of the matrix X readily settles this.

Ta,2 Optimal Desagns for Inferrdng on & and £ =fH§.

We nnw'praceed in a s?atematic manner to establish the optimality
results using the abovs two properties uf;tha matpix Xe

Let -ﬁfll(n,n) be the class of full_rank (0,1) matricés'with
String.pruparty of ordeX ny N 2;3; An appeal tﬂ_uniuaraélﬁubtimqlity

critErimn fur_fuli;rank'maﬁala-(Kiafa: (1975); sinha and Mukerjes {1962),
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vide Prnpmsitinn 1 in Chabtar 1) would spttle the problem of inferring
on 8 provided X* = In would maximize tr(x'x) among all design
matrices X in LT]_(n,n); However, as a matter of fact, tr (X'X)
attalns its minimum value for Xﬁ = Ina. S50 we look for specific

optimality for inferrzing on 8.

Theorem 38.2,1 Any X 4in ﬁf}_(n,h) is D=~ optimal for inferming on
B8 and moreover - X =_In is uniguely @p-—mptimal over the class
{ ) (nyn) for all P > 0., (p =0 corresponds to D«-ﬂptimality

critariqn).

Proof ¢ D-uaptimality follows from Pruperty l(uids' subsactiun Jael).
Unique '¢p*~ﬂpt1mality for all p > 0 follows from an applicatlnn of

Proposition 2, Kie?er (1975) (U1da Chapter 1)a

As regarda inference on & we first deduce the following lemma.

ik

Lomma 3a.2.1 & 4is estimable if and only Lif rank (X}

Proof s Since £ is a vector of n-1 independent orthogonal sontrasta,

_——

aatimability t::-F E requires rank (X) > n=l, and =" laads to a con—
tradiction, as then M(x')_(; My end conssquentiy 1'x'= 0 which
is impnsaible. Thus X has to be of fFull rank. ; . o

Regarding inference on _{_;;-, D(?) = UZP.(X'X)-lPt.: and as in the .

- 3#
case of inference on &, X = In', does nnt maximizs the traua nf

P(X'X)“:LP' - ovarn ‘bhE clasa Q (n,n) For Examplej for np = 4’

br (3 08|, =3, uwheress tx(d D(E)] =325, where
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)
o S s S ey N Y
0O O OO
O O OO OoM
- = 0O o

et -

Thus Proposition 1’ ':EQarding universal optimality for full ranpk models |

is “inﬂpplicahle_hera; and we look for spacific optimality result agaline.

Theorem 38,22 = X = In is uniquely D -optimal over the class () (nen)

for iInferring on & = P8,

Progf ¢ L =10(X'X)"*8" | = _%_:g._'(x*x)-'l_::; A )
" o
| p(xx)“ty p(x'x)~Lp'

< ( p(}('x)"lp | (using L.emma B3aelel)

so that | D(g)l < D(’E)l‘ ' - - | :
R B G — X |

and $=1 holds if and nnly if
(1) P(X'X)71 =0
and  (ii) ;'.(X'X)_ll =n are simultananuély'sati_sfied.
Howsver (i) _1'm_p11as_ (X-‘X)“ll o 1.
| leee (X'X)1 < L
Now set '(X'X)'}_ = k_J; _"_Fbr; 80me '. k (k is nﬁﬁ-aasarily"a. pusitiue‘i-ntagar) |

Then, X1 = k(') .ll- and this is impossible unlass (x')™1 = 1 _(in
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view of Property 2, vide subsection 3a«l). This'means
X1 =kl for some positive integer k.,
lece X has constant row sums.

Cortainly a matrix can have at most (n~kt+l) linearly indspendent rous
with sach rouw aum?aqual to Ke Hence, because of full rank of Xj it

| ¥ -
turns out that k=1l and X = In (up to row permutation). This.

sattles the clalme
* | | S .
Uslng the notiops of ¢p-—ﬂptimality criteria, we readily have 't

| | K. 3% |
Curﬂllarzlﬁaaﬁ.l. X = In is uniquely ¢I-Dptimal over the claag

() (nyn) for inferring on &

= Pg f‘nr_g__ p >0, (It is yet a

stronger result than that regarding 79).

Proof ¢ It is esnough to note that D(@),% is a multiple of the identity
_ ¥ |

matrixe Hence THsnranlza.Z.z and Proposition 2 in Kiefer (1975) (vide

Chapter 1) justify the claim. -

3 b. Choice of Additional Observatipns

Th.1 Preliminaries t

In the context of meighing designhe the problem of selecting
additiqnai' welghings so as to make the overall . design optimum in gome
sense has récéiuad'attentinn of pasearchers from tims to time. Réghavaran
I(197l) géUe a nice diSﬁuéainn on this'tﬁpic;  ip thialseﬁticn_wa congidar
a similar pruElam in ﬂur présén£ sst—up;'and try tb~f1hd_tha“gpfimum way;.

using D~ and A~ optimélity,_nf choosing ﬂnq/twu'additinnal ﬂbsaruatiﬁns,.
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glven the optimal choice for n observations. The problem of charac~
terization of E ~optimal designs for general (N,n) has ﬁementl; been
solved by Jacroux (1986)..

From section 3a, 1t is known that for n observations, In is
wz*wuptimallfnr setimating & ovor ﬁ?}_(n,n). So our problem here is
to obtaln optimal forms of a' ,E} (bﬁth heving string pfﬂparﬁy) 288 UM~

o - 1
ing the form of the design matrix as X = i » Let -ffll(N,n)

gl

TR

.

stand for the general class of Nxn design matrices of rank n having

string property.

3b.2 Optimum Choice of One Additional Observation .
Taking the form of X as X = (EFO , in the following We obtain

D- and A~ optimal dssign, where 5;' s a nxl vector with étring

PrﬂpﬂrtYH

D - opbtimal Cholce

It can be ﬂhecked'that,

I x'x =11 +agg 1=11 W1+gg),

and this is a maximum for the choicse 9_;." = (11 40e 1 1)
1
1

a' whera Xi can be

As a mattar of faet, for an arbitrary X, as XH

taken to be a Full rank matrix wlth string pruperty,
' - . t N | FIVLIVE -1 .
| x'x | = | xlxlfg_g__l = | Xlel-(l+g_(Xle_) a )

Now. referring to Prapérty l.(uide-subsantiun Sa.l), we get
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and, again by Property 2 (vide cubssotion 3a.2), we have

VIR -]
a, (xlxl) ¢ < n
"=t holds for X, =1 and g'=(11...11).
W | In. 1
Thus X = T is D ~optimal for N = ntl within thoe

general class of designs ,ﬁf}i(n+l, n) having string property.

A ~optimal Choice
' ' v.l..‘ I- -
Sinca (X* X*) (X* as dascribed in the discussion of D -optimal
choioe just above) is nmt-a multiple of the identity, Ppupnsitinn 2 of
Kiefer (vide Chapter l)_uannot-be applied here to obtain A —optimal

design % however,.the D« optimal design also turns out to be A =gptimal..

It can be easily verifisd that

1 |
toy=l aa - ey
tr (X X) --_t_r(In- Tt oa ) =n T ag

and this is a minimum for the choice of o as g = (1 1 .40l _l).

3b.3  Optimum Cheoice of Two Extra Observations

-

Here, We asstme the Fform of X as

f v

>
!

0:,4 ( both _g_,_', E_' having string 'structum) ver(3ha3al)
.E-rla - . |

R o 0y 1y L
and further that the 2x1 column vectors of the type (3)y (5)s (7)

- . o | o g
and (2) cnpu: as columns in tha twu-ruwed aubmatrlx (%ﬂ)_ with -
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frequenclies Fl, Pz, FS’ F4 -respectively. Obviously, -Fli-inrfzﬁ*f4==n-

In the following we display D= amd A= optimal choices of .gf and B'-

D*~nptimal Cholce

MO Do . gl e P e S

Taking the form of X as indicated above, it turns out that
| , _
XX = (4 L)(Py+ 1) & Fa(fy+F,+2).

Writing 'fzi-l = X, f41~l =y, and fS =z (say) one has to maximdze

xy + z{x+y)

subjsct to x-t y-i*z'f_ nt2, x21, y21, z2>40 intagam.

Now it can be verified gaglly that for fixed x+y =+t (aay),
2 <t<nt2 and arbitrevy z, 0< z £ (n+2«t), the function xy+ z(xty)

attains its maximum when X,y differ by at most one and for given x,y

Nt2 wx =y, The following table sum=~

fl

the function is maximum when z

mariess the final result obtained by applying the usual tachhiqua for

handling maximization problem.
Table 3!:3:311 |

Values of - Values of |

From this, one can eaaily;deduna:thé optimal atruﬂturaﬁ uf. gf and Eﬁ

in any specific cese.
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ﬁ;;ggtimal Choice

Mmmm

Afteor some algebraic simplification, it turna out, for ths form

of X as in (3b.3.1), that

o, T4
F foy b e et

toy=l
e (XX)T =) Pk iyt ey

2 il
Fr 1 1
i (=2 Ly ( ) " -+1)2)
1+ f's('i';;-_ri-'l*'iﬁ) (f’2+l (f‘4

Setting as before f,+1 = x, Fotl =y, and f, =2 (say), this time

one has to minimlzo

11 7 1 1.
N =2 S e (2+ 2)

4 l+z(%+-$-) Xy

subject to x+_y+ zANt2 4 x> 1L,y > 1l, 22> 0 integere.

It can he checked that for Fixed_ xﬁ-y = t, (say}, 2 £t < n+2, and
arbitrazry 2,1 0L Z 5‘(n4*2-t);'the'abmﬁe FUnctiDn is the least whesn
X and y differ by atmost one, énd; Furthﬂr,-fdr fixed X and vy,

the function attéins its minimum when z = (n*-2-x-?y). Thgs applying
the uaﬁal technigre of minimization it'tﬁrns'uut'that for minimization

of the above funﬁtion,'nne should try only with the values of t in the

lr- e

ﬂ__n'l'_Z_l] “2< %< MJ + 2. The f‘nllaﬁring table gives
3+ /3 _. L 3+ /%

the final result for some values of n vize, 7 < n < 15.

range [
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Table 3he3.2

J AT L & PR S LT A AL T o Y g M . e Yl

Valups of Ualuasm;F - iﬂm_mmi~

7 0 3 1) 3

g 0 3 2 3

) 0 3 yi 4

10 0 4 2 4

11 | o 4 2 5
|12 0 5 2 5
13 0 5 2 :

14 0 5 2 5

15 0 5 3 5

( :) (l.l 111000 E)'

Thus for n = 9, the A ~optimum choice of {001 1111

Unlike the case of one extra observation, thié is differsnt from the

! T
D ~ optimum cholce of (%,) VizZe, (D :é é Z}‘ i i E g J[_]).

30 Optimal Designs for Geperal N > n, for Inferring an ,g'

In the previous sections, we have dealt with the N-observation

| | |
design problem as one of choice of N vectors 5{1) ,..-,ﬁEN) from the

relevant design space % - 8 c;ollentj.can of all p’uaaibla E.(.%tl‘). vactors
with slements 0 and 1 and with the string property. For the nass

N > ny the ssarch For-nptimal exact "Na-ﬁbsé:uatiun dasign" as such
becomes intractable (as ia'pﬂintéd out in cass of N =_n+l, N_= 2 ). .
Instead, we ﬁnnsidsr a broader class of daéigns where  N~ is_ﬁﬁ lohger

oxplicitly present, and 't.he’-dea.ign- is given as a " probability measure ™ __
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on the design spacge % » dame Justification for this formulation
e given by Kiefer and Wolfowitz (1959), Kiefer (1959), Fedorov {1972),
Kiefer and Studden (1976), Studden (1978), Silvey (1980) in the context

of approximate pegrsession designsa.

3c.l Preliminaries ¢

be a (0,1} vector with the string
th

For 1< u<v<n, let h
- - ~ UV

property having the run of 1l's starting at the u and snding at the

¥ positions (both inclusive). Here, g5 , the design spece, is the

aét of all such ﬂ&%;&)_-ﬁactnra Dwn;.' Fmilmming Silvey (1980, p.l15),
lot H be the class of prnbability_distributions Dn1the Borel sets of 36,
Any ’_ns' H will be naliacl_a design _m'aasure. Since cf is Fini'ta (compact)
any such ‘ﬁ defines a discrete-distﬁibution'Duar ié-asaigning a8 mass,
8aYy ﬂ'. at h (L<u<v<n) For 'ﬂEiH, under ﬁhelstandard

HY i 01Y, - = -
Gauss Markov linear modsl with homoscedasticity and independence of errors,

the nXxn information matrix is giuén by
mn) =e(xx')
; e . . .\Eh
X being s random vector with distribution M. Denoting the (iy3)

sloment of M(N) by mijGT), it can be chsckad'that,

| - . ili. olel
m (M) = Im,, . (3c.1.1)

where the summation axtends over u <1 and V2 3 (1 i i N)e

Hence, it follows that

- — ' -. ‘ . -'.-. | . | '. | l< -. < V < N saw 33&1-2 |
JTuu - muutn) mujuflcn) muel,uﬁq)#'mu-l,q+lcn) - 93- = ( ).
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ny k1M Mg M)y (L€ v n) and " kt$M) (L€ u g n) being

intorpreted as zoro.

tf

N !\«‘
Lat ,}\\,#{E_W(ﬂ) ¢ N €HLY then the set L is convex. In fact,
it is the convex hull of -i;_t__:::_' ¢ X & ]{:1 » In particular, choice of

n" as assigning probability 1 +to the point x gives x x' as a

moember of M_ .

Suppose that @ is a functional defined on kxk symmetric

matrices and bounded above on )\L such thait
(i) ¢ is concave

(ii) (P(Pfil) _:?_(P(Nz) Lf Nl«---rl\‘]2 18 non~nagative definite.

(4ii) We allow ¢ to take the value -~ ® on all singular matrices

in M..

Then the problem is to determine 7 which maximizes ¢{M{(N)) over H.

¥ .
Any such N will be termed as @ «opiimal,

In the sequel, wa quote the daf‘initj.uh of a directional deriva-—
Live namely ! Frochet~derivative W and tuwo key theorems without proof
(5ilvay, 1980, Theorem 3.6, and Theorem 3.7) which play a basic role in

the approximete design theody.

DFN 3o.1el
Frechet derivative of ¢ at M(N,) in the direction M(n,) ie
definod as ' '

nn), M) =, HOC-omay) venn) -emap
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| .
Neorom 3celel N is P ~optimal if and only if
' % |
Fo(MN )y M(N)) <0 for all 0 & H.
Since j\/t is convex, the essence of this theorem is in fact

Thoorem 3c.1.2 If ¢ is differeptiable at m(n*), then ﬂ* is

P ~optimal if end only if
3 ; .
F¢(M(n ), X X ) < 0 for sach X € ﬁ .

In the following we use this theorem to obtain D- and A «~optimal designse

3ce2 ' Dw~optimal Designs

s e T, el

For D =~optimality,
O(Mn)). = log [ mn) | if m(N) is nonsingular
= - AP MM) is singular,

With @ so'defined,if M is nopsingular, it can be ssen (Silvey, 1980,_-

ne21) that
. g () +e x x|
)y 2 x) = Lin o 100 1 mn) | }
= ¥ {nn)} g - n (oo (30.201)

after some slmplification.
Let 8 he a matrix of order n with elements 2 aiﬁng the prinﬁipal
diagonal, -1 along the diagonals just above aﬁd,halam'tha_p:ihcipalfﬁiagmn

nal and 0 at each ather position, é-'g. with . n =4,



e

It can be readily sesn that
29X =2 for each _:-5_8%

i-Bu E'ﬁs X = N = 0 | | y -11(3‘3-2.&2)

Thus it follows by Thoorem 3cel.2 and sxpression (:3;.—;_.2.1)' that if n*

: % ~
be such that MmN ) = %, 8 1 then ﬂ* is D «optimal. As

| - | .
"""l 1- n f'l-l I‘:-2 a"aaee 2 l
> WL -
n=l 2(n-l) 2(p-2) cer 4 2
2 4 6 wee 2(n=l) n~l
" R Y 2 T wee nel . n
. I , J —
' k2 o=l .
by (3c.1,2) it becomes svident that mmn ) = ;.5- holds if and only -

if N assigns & probability mass at sach member of % .

ni{ nal

Hence the U - optimal design measure assigns equal mass to all members

of ¥ . . '
If N is a myltiple of E-(-:?nﬂ-)- s W8 roeadily hau.ea ﬁﬁe following

exact optimality result.

Corollary Jc.2,1 ~If N = f.- m;—ll for some Integer t 2 1, than.'the |

design matrix X" in which each b . (1 5..“. fvs ”) _':jr;.:curs. t timE_IS )

is D ~pptimal within the class Q (_N',n)-
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In particular, regarding sxact D -nptimaliﬁy anather result is
antlcipatad. ‘-_Uith N observationa let Ny he the number of times
_}_1”” (LLugv<n) ooours as a row of i:he design 1matri3. The
findings above lead to the conjecturse that when N 1s pot & multiple
of 5-(-2@1-2 y In & D-—-uptirnum design every two nw'a should differ by
at most le A complete enumeration of the possible situations confirms
the uﬁn}jantum for n= 2; or. 3 and numkarical- a}éamplas suggest that
this possibly holds for gsneral n¢ however, an apalytical proof
is likely to lnvolvs qcmplicated 'u::mbinatn.rial techniquaes. At this

stage we have besn able to establish the following result on restricted

Deoptimallity.-

Theorem 3ce2.2 Lat N=t--n—(%+-:|‘l+,(, J._{_,(i[-—r%-];],- and X be

tho exact D ~optimal design for N = L Tl + Assume X _ls of thes form

B

o ™

> 't copies
| |

TP e wa D
b

>
H
[

ol N

ﬂ(ﬂﬂ'l veotors, a

Then given this spescifioed choice of first t. 3

"D ~optimum * choice of y,'s is as follouws ¢

' '
Y, is any member in & ;

and y_;(x*'x*)”l_gj =0 for 1&d, &0y LT
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Proof ¢+ Tha proof follows by induction on {.

Definlhg Xk as
;
Yl
. Y t coples
vt |
X o t
Kk
21
.l
v
=K A
| X' f= | x!x #lyity=l 1
% 1 and. (X" XY™ = TS

Thus for [ = I,

t | iyl | |
. xlxll_= (_1 + Y, ﬂif_gi). V)l B(X* x*) |
::{l + ‘Ez%f)-}l t(X*'K*) l )

using (3c.2.2) whatever be the choice of U

| iﬂﬂy"'-

1
For [ =2,
) | - l _l
' _ t, - v(x® X*
| %%, 1= 1 x;x, 14 1+ v, i——-—l_ oY,

U LEPURE | togt ! =l

“%92 (X" XY™ 0, 8 (X XT) 32%
| b, ot -l .

£+, (x* x¥) Ch

o B - ' \ .
and olearly this is a maximum when EZ(X* X*) l‘,P_ = {J as HQ(X% X*} ql..".‘?.z

i again a constant ec.q. squal to -T‘%f' |

Now, we assume that the result h_ﬁ}lds for ,( 5_'5 . Then_,
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, |
| Rot1 s+l | = | Al | i L Us-i-l( sl-l}

!
Now, | >( f( | is maximum for choices of Yy ,”-,U specified (by

induction) and

....1 ]
-1 ~l, (X lxsul) 2oV (xsul ami)
(x X ) = (X “lxa_l) e S S
l+Ua(Xa lxau-l> Vg
which lmplies
t L e | )
U1 (X X )" =0 (X X )R ﬁja*“l(xa“lxa”l) o |
""E‘i"l =gtl  =st+l'"gel gl B+l .
1+ (x )T
-l 8wl &
Reopeated arguhants yield,
1 gx‘ﬂ“xﬂ'l-l
VX e ¥arn 1 8 | XX, ‘i“”—rl = Yo f
and " =" holds for the stated choice of Yowy

and hencoe the\nléim.

An application of this theorem ylelds a partiocular ochoice of _t_)_t'a

as follows with the rssﬂlting design & D ~optimum one.

__1._:_1=(111-... 1.1 1)
!
£2=(Dllr-l llD)
Hl = (DD--- 01l 10D sas U)

]
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Remark 1 Alsg for N = t.ﬂ-(--%m - L l-(X < [Q_’k_l;.]’

2
it can be sasily checked that given the choice for t.DLDZiJ*-l voectors as
- * '
X ] .
VL o , , )
= | } t coples | , the desigh matrix X, obtained from X by
}‘. -
X

| _ . |
deleting th_e same set of vectors 'P"l"”"E){ (as specified in the above

theoram) would be D - optimal in the restriocted set-Up.

3063 A~optimal Daaigna

For A «optimality,

(P(N(T'i)) = -tf{l‘l(ﬂ)};l 1f M(ﬂ) is nnﬁsingula.r

= e _ - if M(N) 4s singular,

With 9 so defined, if m(n) 1s nonsingular, it can be ‘shouwn that

qu(f"l(ﬂ); X x') =81g10+ -é‘-g_- tr] (1-€)M(M)+ex 51' I +trf m(n) 1 _lJ' |

= 3" [ mmnn) 1™ = to [ (M Y™ ] oo (30030 1)

after soms simpliication.

Defining S as before, let hj'a be the eigenvalues of S . anpd

&.'s be the corresponding eigenvectors 1 £ j 5_ ne Since for each

.

kL
x€% ,x5%x=2 (vide(3c.2.2))it follows by (3c.3.1) that if N  be

a design measurs such that

n _' n wl/? | | o |
m(n*) =2 (3 .J:/z).:L 5 ?x.J’/ §.§!.  eee(30e3.2)
VR - S -

then F.(p(N(ﬂ dg Xx X') =0 for E;ach.'ﬁegf; N
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Consequently by Theorem 3c.l.2 such an N gives an A «optimal desigh

MEasuUro.

%
It remains to abtain the ﬂuu'a corresponding to the above 1 .

For this we need the expressions for N,'s and &,'s as defined above.

]
L-ﬂ_ﬂmﬂ 3(3&3-1 0 < ?\j < 4& for all j - l’i-l $ll o

Proof ¢ It can be'aaaily chacked that 5 and 41 -5 arog both peds

matrices and hence, the result.

Now, to determine the aigénualuas, lot ue denote | 8 =AI |

by Un(h),' then we get

Un(?\) ~- (2 -?\)un_;l(?\-) - un___z(m.) =0 forall n2>2

along with VU (A) = 1
Ul(k) = 2~h
. il i,
Thus Un(?u) = %:E—Q“'

wherea

- . i) | - - (2 &
g = 2 ?x + / NAN=§ and B = 2 =N ) ANLA .
2
- | . ntl
so that for any slgenvalue A of b5, g—-&-:ﬁ—g— = 0.

It can be checked diroctly that
¢ = (1, ¢ =B o =By o _ oo (30a3.3)

ia_an(rmal) slgenvaector ﬁf 5 cnrreéphhding to the aigenualuQ_'h.:
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Let Y be such that

cos Y = 220 50 bhat sin ¥ = NINCEAN

2 2

Then it turns out that

€ = cos Y +1i E:Ln)’ ; and P = cos) ~i sin}' o ees{30e344)
el 1l | __
go that g—&—_ﬂﬁ;@- = 0 impliee  sin(ntl) )’ = 0
and, hennﬂ)’ =ﬁ—+1", P =0, +1y42 g000as - ;..(SD.S.E).,..--

Thus, N = 2(lut:qs y) = 2(] - uoa(%))

whore p de such that D < A< 4, fwee =1 < d=$< 1 ieee -

=l < nus(%gi-) < l. So one should take p = 1,2,3,4.0,n, to determine

the sigenvaluss of S. The eigenvelues are

]

N
J

.Tc ‘ . .
2 %l - cns(-ﬂ-—il)} 3= 1eZyeeayn
1 7F )
il )’

[}

2
4 sin (2

4 Sin2(_j2_&) 98y, - -*-(30'3-5) ’

| o e
where & = gl

1t can be checked that, (recalling (ED-S.&), (3ce3e5))
N

(P - BPY = - 4 2)
<5 7Y o o ey

0
i3
[

sin(2m1) Y.
-(2n+1)+—,———-——~'L:iny !

i

1l

-2(nfl)

after simplification,so that the nmrmalizad_eigenuectur_curragpanding
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to the eigenvalue ?\j is (recall (3c.3.3))

o 9 ]/2 | | . 5 |
é‘j - -rr-ri') (Sln JB" Ein 2jﬂ',nqn,ﬁin njE'), lijinn .“(513-3-7)
Now, from (3ce3.2),

' ' " (0 - B (a® - By
0 ") = =2 3 A PP P

p=], P g= P P
L AN | g
- 2 > n(ip Za;nkaE}!
n . i
(n+l) sin(%%) p=1 sin()
p=l |

using the expressiom for .?\j‘s ((3'0'.3.'6)) and §.'s ((30.3;7)). above. |

Honco, by {3cele?) and using the identity,

D],
n ot o
2, ain(%g) = %’- [cnt .Ff. - (=1) 2 ] where r is an odd integer

tha 'F.‘w's corresponding to 7 are given by, say,

o = : . 22 éi( .é)'-si ( ( +1)e) ::.n (p(2u=1)2)
- (n'l‘l)(cnt%-ul) nz=1 {' MPY AP ” } s(plZ2u-1)3

9 -~ n & ol B
- ) { sin(p(2w2u-l)-§') + Ein(P(ZU"ZU’*l)E')

(rtl)(cot % -1) p=l

- sin(p(2ut2vt1)E) ~ sin(p(2v-2ut3 >-§-)}

- {oot((wru=5)2) + cmt((u;._u-i'-l)ﬁ)'-—cu_{:((uﬂ-wlﬁ)
(rrl'l)(m:}t%-l-) {-Bﬂ 272 272 o 279

L]
il

- CREEN
_-cc:-t((wu+2)2)l‘ _,liu.iﬁuin..:_.
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X
It can be chscked that RUU >0 (L<u<vin) and % 5 M =1

- which guarantees the existence of ﬂ% satisfying (3ce3.2).

iy
For example, for p = 4, the nuu‘s turn out to be as follous 3

T, =M, =2, N, =70, =,0546915, W

12 = taq4 T, ., = 0316769,

13 24

. 1769854, T, = 0481535, T

=
i
|
i

4 = (0251389,

Thié apprikimate A-~optimal design measure is of comparatively more
involved nature and does not feduce to any exact result as in the cass
of Dnuptimélity, sven for particular combinations of N and n. For
reasonably large N, an approximate design is closely approximated by
an exact deosign with N observations where aach nuu,'tha numher.af
timos the row veoctor 'huu occurs as a ROu In the desigh matri# is taken
a8 an intaegor oclose to NTﬁ;J (Fedorov (1972; Chapter 3), Silvey (1980,
pe3))e This is of particular relevance when the available resources
permlit a falirly large numsar of observations and the problem is to take
these observations in an efficient manner. It is known that such exact

designs which ﬁra_in a sense close to bast approximateo designs have only

alightly reduced performance.

3ce4d E~optimal Dasigne

For E~optimality,

o(nn)) = inf = (me)i
y!y#D LY

| |y . | | *) - 1 |
and let N be a design measure such that M(M ) = n e
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Now it 1s to be noted that P(M(N))} is not differentiable at

_ .
Mm(n ), and therefore, the technigue of Froechet derivatives cannot be
employed in obtalning the E~optimal designs. However, the following

* | |
ergumente eatablish 7  as the E~optimal design messure.

. 1 .
For any y = (yl',.-..,yn) and N € H, by (3e.l.l),

non
' .\
! N(ﬂ)_}: ) uEl u=2=u (YU T Yy Teee yu)lffuu

| o I o
In partioular, with y = (1, 1, 1, «L ..y, (=1)" J‘) =y

S8\
Lo S8Y

we observe that in no set of consscutive elements of Y, the corres-

ponding sum oan exoeed unity in magnitude and hence the above yields

- non
!
y M)y < % g ono=1
=0 =0 u=L v=l Y
so that for each 7 € H,
' .
y MMy
o(M{n)) < ..-**ET._.::Q =0 e
Ao,
T TR ' * -
Since clearly @(M(N ) = n -, 1t follows that 7N  gives the E~optimal
deslgn measurs. As N(ﬂ%) = n-lI, by (30-142): 'thﬁ. Ttw'a ~corresponding

il
t0 n are,

T o=p™ (Lgugn), B, =0 (Lgu<vgn).

Thus we have arrived at the following exapt E-optimallty requﬁ:-

Corollary 3c.4.1 Lot N = tn, t2 1, say, then the design matrix XA

- in which buu (15_ L f.. n) -gcqura as 8 .row. t times ls E.-aptimal design



"'"13[}-#

within the class () (N,n) of all relevant designs.

Vory recently Jecroux (1986 ) independantly studied the E~optimaw
lity problem and derived goneral results for all values of (N,n). Soms

results of Jacroux and Notz (1983) are also to be found here.

An overall revieW of D, Amy E =optimal design measurses developad
here in thq unrestricted sot-up reveals thet the E~optimal measurs puts
the entlre mass on huu (L& u<n) and no mess on h . (1<u<v<n),
while the A~aptimel design measurs puts greater mass on those Qu‘;g with
(ve1}) 8mell and loss mase on thoso _lpu;g, with (v~u) lacge. The

D~optimal measure le " flattened M in this sensc and puts equal mess at

£
a Gh -h-LJU‘

dd. Further Inferential Aspects

Suppose we are lnterested in estimating parameters of the form

| J | |
8(1,])) = Zli BD vy 1 £1i<3%£ny, retaining estimabllity of ths indivi-
L= | | |

dual longthse In other words, this means that our interest is to esti-~
mate the lmngth(a) botween varlous pairs of pﬂ.funts. 0f particular intarast
ls the problom of sestimating the -tatal.langth (.th.a case i=1, 3 =n)
(vide, Banerjee {1975), Sinha (1971, 1972), Penda (1976) for ﬁarimus .
aspecte of this problem in the Pramework of spring balance weighing

dosigna)s The results of subsection 3a.l ere useful for settling this

pProblem complotoly Whean N=ne

To start with, let us fix (i,3), 12123 & ne We write

| ( . J 5 .. S | I |
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. {
whore 9,4 = (040 4000y 0151 yuuay 1,0 400y 0) with 1's in the
nositions 4 through J. (Note that ?Hij is wall~defined for every (i,3))

Wo havo

. - 2 f t "":LI | 2-
Vie(i = 0% |
(8(1,i)) Uij(x X) Uij > 0

in view of (ii) of Propoerty 2 DF X“ll
I ! -
Hore Y'= " holds AiFfF Y5 ==_1_{th for eome combination of X and ha It is

(vide subsection 3a.l).,

gasy to verify that given eny (1,]) we can have a choice of X Ffor

avary he (IE ls onough to choose the hth row of X as 1}3.). Such

=1 ]
a nonsingudar X 18 then apﬁimal.‘_Claarly, this is true for any (i,j)e
Likowlse, minimum possible variarnco 032) is attainabia.Fnr gach compo=
nent of a simulteneous inforence problam:un*ia{il,jl}, B(iz,jz),...,a(ik,jk)} .
provided they are linearly independent (eince we are dealing with the aﬁae
where lndividual estimability of the Bi's is to he-ensufad using Jjust |
n measuring operations). Thaaé results are highly interesting. and are
pasuliﬂr too tu.thia sat up ! (It may be racallad Ehat the bsst unbiased
spring balance welghing design for matimatihg the tﬁtal welght of a sst

of n {>3) objects in exactly n welghing operations is provided by
| o2

X Irl and the minimum varience ie giﬁén-by-

oo~ Yln Q:an "
(S:tha, (1971, 1972) . This quantity is smaller than o° and XDD doas
not enjoy the string property. Ue refar-tﬂ Sinha (1971, 1972), Panda
(1976) and Swamy (1980), for further aspects of these problems under a

restricted sot-ups Analogous results are derivable in the prosent frame-

work as well).
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Coneluding Remarks

We have investigated in this chapter a specific pfnblam in
welghing designs framed in the language df measurement of consscutive
distancas of & sot of objects placed alﬁng a rectllinesr line ssgmente
The problom ls supposed to héﬁe'raleuanna in some cﬁnnréte physical
gituations as Eaxplainéd in the int.mduc:tian; Exact optimal designs for
all valuee of N > n could g_gs_t_ﬁu bé, dsxived, 'HthEuar, it is strongly
falt that the results discussed hove might he.uaeful in exploring

further researches along this direction.



CHAPTER 4
REPEATED MEASUREMENTS DESIGNS

Introduction

So fary ln the precedling Ghaptara, we dealt with optimality
studies for certain classes of designs assuming fixed affects.mndels.
In the present chapter we take up a study of optimality under mixed
effects model in the context ﬁf Repeated Measursmenis Designs (HMD);
These designe have been discussed in the literature under various names,
viz. cross-—over designs, nhangé—nuer designs, tima seripe designs, bafore

~af tor dESiQnE ’

a1
5

Such RM expesriments (Uida DEN ld;Z.ll, Chapter l) are pecyliar in
. that any traatment applied to a unit.in & certain period influences the
rosponae of the undt not only in_tha”nurrant periad but alaa leaves
residual sffects In the follouing periods. In practice, nnly-the first
order residual effect (carry-over offect) i.ef, raaidual:effant of any |
treétmant upto Jjust the next peripd is of importances for a ganaral
review of such designs, including practical'applicatinns,'refaranca is

- made to Hedayat and ﬁfﬁarinajad (19?5); Thé pidneering murk in tﬁe aroa
of optimal RMD's is.dua to Hedayat and'ﬁfsarinejad (1978) and further
significant contributions have bean made by Cheng and Wu (1980 , 1983},
Magde (1980) and Kunerxt (1983, 1884 a ,-lQBA'b e All these authors con-
aidarad the problem of charantarizatiﬂn and monstructlun of Uniuaraally
Uptimal designe under lead e?faota additiue linear modele, lncorporating
offecte due to unibs, pariada, and dirent and first urder residual af?acts_

of troatments. Eut 1n praotime, it is pot uncommon Lo face situatiana w:' |

wharg the sxperimental und.ts includad in the axparlment cunqtituta a
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random sample from a population of a large number of guailﬂbla OXPBD 4~
mental units. In such a casg, a model incu:quating raﬁdnm sffects due

to units has to be sought oute In the present chapter we assume ah

- additive mixmd'affacts model where period effects and direct and first
order residuel eoffects of traﬁtmenfs ars retained as fixXed whilse unit
affecte ars takmn to be random, and attampts ars made to exXtend the
optimallty results alraadyEﬁtablishad in tﬁa.cuntext ﬁf complatmly Fixed
affecte model to the abovo mixed affsc.ts mndalr. I wiii constantly

rafer to Cheng and Wu (1980) and also éamwtimaa to Hadﬁyét and Hfsarinaj&d
(1978) herea_ftar abbra__vi.atcad as C % W (1980), and H Qfﬂ (1978) .

respectivoely.

4as Description of the Model, Defipitions and Notatiuna

An éxparimant based on t treatments;'n' expmrimental units and
P Pperiods, wsach unit.baing'giuen one treatment during each period is
abbreviated by HND.(t,ngP)- Lot d(i,j) be the treatment assigned by a
design d in the :Lth paerlod to the jth experimental units Tha

lincar model assumed for the rospopse obtalned under the design d is

Modal 1

1 % ly2yeeeyp

j —3 l,_?.'&u g{ls

B~ N(o,aix),_ﬁ ~ N(0,0° 1) _

B and g are uncorrslated.
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, P .
Here K, A 3 BJ, d(1,5) énd pd(ifl,j) represent respectively the
gensral effect, the effect of the ith period, the (random) effect of
t , . ' . :
the J n experimgntal unit, the (divect) eoffect of treatmsnt d(i,J)_

and the first order residual effect of trsatment d{i~l,j).

Wea diatingmiéh batueen,(a) designs with no residual effscts on
the first period i.ae., with pd(mj) =0 for 1< j<n (vide H} A
(1978), ¢ W (1980, 1983), Kunert (1983, 1984a)), and (b) designs with
residual offects on the first period i;e., with a prepstiod or condie
tionlng treatment which means pd(c;j)1%'u for 1 < j S.”- (vide
sampPord (1957), Sinha (1975>, Sonnemann (1982), Magda (1980), Kunert
(1983, lQBdbﬁu Usually the residual effects in tha.First period are
dariuad.using those in the last.pariud és'tha'prepaﬁiod or onhditiuning'
tfaatmants (vide Sampford (1957), ﬁagda (1980), Kunert (1984b) etce)s
We call tﬁs model (4a,1.1) for designs withing_rasidual_effacfa ih the

first period iees., the model with
Pi(o,5) = 0. Por 1234 . - ....(aa.l.z) _

3 nmn-aircular model. Lat- ﬁ?}rtﬁjﬁj derote the collaction of all such
designs which are connected in the sense that all contraste belonging td
difaat and residual treatment affécts are estimable. fulluwing Kunsrt
(lQBS), the set of all connected RMD's -Eéﬁﬂ_ﬂgggggéggris denoted by

r

s ' |
( !t,n,p o In parti{?ular, Whenh

. — \ W A . +es 4@.11-3
pd(ﬂrj} pd(P:'J) 1 | ( | )

following Magda (1980) and Kunert (19845), the model is termsd as a |

ciroular model.
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In veotor notatione, for a dosign o
» . d € '(:11311'1,[3 U ‘Cvl‘l'},n,[_'l y

the modol (48.1.1) can bs rowritten for pp observations erranglng

sorially unltwise aa

Y= HLt Pagt UB+ T T+ F D+ e oo (Gaeled)

2 2

£(g) = 0, 0{g) =071, ¢ > 0 (unknown)

() = 0, D(B) =051, 0% > 0 (unknoun)

€ and B  uncorrelateds

Lot 5 denote the verlanoo~coverionce matnix of Y. Then

2 2 2 2
5 = Ding(o I ”:an’”‘ ) IrJ ) Ul:JIJ).
! ‘-l L*:'n-f-ﬂ:}.'
with b} A Inp bt "-"'"-"""""p D,‘LEJQ(D'_J, :]p per ey :]p) .-;('{\'ﬂil«-S)
where "Jﬂ"‘%iw"" 2,1'2 il
0 o) rbG].p

In the dorivotion of optimality rosulte, bosides the above model ( 48 La4),

o sometimes moke uso of the following modols as and when necessarnye
Model 2

1) RN VAR 3. 4 0

)y a(1y3) " Py Vs

(assuming no diffaerontial poriod effects opd no differential resldual

treatmont effocts) /
P (ﬂ-ﬁpll ﬁ)

(11.) Viy = u.+pd(i___l,j) s f}j s U

(assuming no differsntisl poriod offucts ond no difforential direct

treatment offeots, ) o
contide e e
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Model 3
i . = Mg, T 0 v BL oG, {
(4) Yig THET A Y Ty, TPy T gy
(assuming no differential residual treatment effocts) voe(fia4146)

i L. =M
(4D ygg =My Pogaa gy * Byt oy,
(assuming no differential direct treatment offoects)

Model 4

=M T . kO . '+' 4+ g, .
Vi3 =T Ta(i,9) Y Pagaen,) Y P T 8y

(assuming no differentisl period effects.)

It may be noted that in all the sbovemsntioned modals, unit 'i_

offects arse taken to be random. Ye use the symbol Cél)(zlim) (respoctivas
regsidual

Ly Eél)(E | M)) to denote the C ~matrix of direct {(respectively/)treat-

d
ment effects under model i, &L = 1,2,3,4, The letter 'Nf roflocts the

. fact thet we are working under s mixed effects model., Model 1 (vide
(48.1s1)) is most gaheral and, for the mpst part, we deal with it., To

avoid unnecessary complications in notetion, we omit the upper suffiXx (1)

far the corresponding C-matrices under Model l.

Whatever the model adopted, the joint information matrix of direct

and residual treatment effects has a general representation as

iy

M) EdlE(m) .

gl

Cdll(

grer 2 |
LCdBl(m) C oo (1)

s (f-'l-ﬂ. ln?)

A
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and for direct effscts, CdCE.iWJ assumes the form
C T m) =,y () = C pp (MIC 5, (11 o (M)
while for residual sffects, Wwe geb
Cal2 M) = € (M) = By (M0 535 (MIC gy (M)
with Bdij(m)fa appropriately derived under tho model assumead.

Dbviously, cd(

the term due to rosidual effects aor whenaver for a design d, Edl2(m} =

T|M) = Cdil(m) whenever the modesl does nat contain

(a null matrix). A similar observation applies to the cass

CdQE |m) = Cdzzfﬂ)-

For the design d& (), _ ; U'Dt,n,p , We adopt the Pollowing
AR

notations from C9% W (1980) and Kunert (1983).

Ny, = number of appearances of treatment i on unit u in the

periods 1 to p,

-ﬁ;iu = number of appearances of troatment 1 on unit u in the
periods O to p~l,
Laan = number of appearances of treatment i in pericd k over

the units 1 tq My

4 _ 5
xdik:= number of appearances of treetment i in period k-l

over the units 1 to My

My 3 = ' number of appEErancea”ﬁF treatment i pﬁacadsd by theat-,;

‘ment i on the same unit and summed over all unitﬂﬁ
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Lay = number of appearances of treatment L in the periods

1l to p over the units 1 to n,

f;gi = humbor of appearances of troatment i in the pefiuds
0 to pfl over the upits X te n,
841 = number of appearancos of treatment i in the periods

2 to p over the units 1 to n,

where L L ugny, 1<ksp,1<£i, i<t

Then the following relations are immediate.
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Further, the following matrices are defined with the matrix elements suit-
ably shown using the earlier notations. (Recall (4a.1.4) in this context).
D, =TT, = ﬂiag(rdl ,---,rdt) -

- Dd ::FdFd =] Diag(rdl go e ey I'dt)
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M, =TF = ((m, .)), L<i, 3¢
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