ON LEXICAL AND SYNTACTIC PROCESSING OF
BANGLA LANGUAGE BY COMPUTER

Probal Sengupta
Ileetronics and Communication Sciences Unil,
Indian Stalistical Instilute,
208 B. T. Road,
Calcutta 700 035,
INDIA.

A thesis submitted to the Indian Statistical Inslitute
in partial fulfillment of the requirements
for the degree of -

DOCTOR OF PHILOSOPHY

A cknowledgments

At the very beginning, I would like to thank my supervisor Prof. B, B. Chaudhuri-
for introducing me to the topic of NLP, his advise, guidance and his insistence
on being meticulous in different aspects. This being a sort of ploneering work in
the field of NLP on Bangla, naturally, I could not get many authorities to fall
back upon. Prof. Chaudhuri filled the void to the best of my advantage, advising,
 discussing, providing counter-examples to my earlier and less mature hypotheses.
He was always alert regarding the quality of our publications and even scrutinized
minute typographical mistakes with utmost care.

During the early days of my courtship with Bangla-NLP, Prof. D. Dutta Majumder
lent me considerable moral and technical support. He would occasionally summon
me to his chambers, only to point out yet another new book or journal or another
call for paper from some conference including NLP in its purview, Under his
stewardship, the Electronics and Communication Sciences Unit (ECSU) of the IS]
reached the pinnacle of glory, predominantly in vision research, Nevertheless, he
was for ever ready with encouragement for me working in virtually a perpendicular

line of study.

The room adjacent to the computer lab I used to work in houses the speech and
music processing lab of the ECSU. Prof. A, K. Dutta has been diligently working on’
speech mainly and on music of late, in this lab, Ior speech analysis and synthesis,
he and his colleagues mostly considers Bangla as the target language. Naturally,
there are quite a few areas of mutual interest between my type of work and that
of Prof. Dutta and his colleagues. We have had frequent discussions, debates and
fights on these areas to the benefit of everybody. I have endeavored to pick up
from Prof. Dutta his knack of visualizing cognition related problem in a top-down

manner. .

Many colleagues, friends, students helpjad me in many ways in the course of my
work. A few years ago, Mr. Paresh Banerjee helped me a lot with initial devel-
opment of the morphological processor. Prof. A. M, Ghosh, the previous head
of the computer science and technology department of B. E. College, my earlier
place of work, supported me with valuable suggestions and adjusted my teaching
routines in such a way as to provide me with enough working time for my research
interests. I thank the CST department of B, E. College for loaning me impor-
‘tant reference books for long duration from the departmental library. I thank my
friends Mr. Amarnath Gupta and Dr. Aditya Bagchi and Mr. Sabyasachi Basu
for their encouragement and advise. I thank Dr. Partha Pramanik for scrutiniz-
ing my research papers. Ms, Maya Dey has occasionally helped me typing the
present manuscript. I thank Mr. Debaprasad Bandyopadhyaya and Mr. Abhijit

1

Majumder for providing me with the required linguistic insight. Being linguists by
background, they helped removing some of the obvious linguistic omissions that
otherwise would have escaped my notice. I thank other members of the language
group, that includes Ujjwal Maulik, for periodic discussions.

I reserve special thanks for Dr. Mary Dalrymple of Xerox PARC, California, with-
out whose timely help, the survey of LIFG and related works carried out in the’
 present thesis would have been delayed considerably. Upon request through e-
mail, Dr, Dalrymple not only sent me a thick package of LI'G related materials
but also took the pains to buy and send me the book The Mental Representation of
Grammatical Relations, that too by courier post and advised me to “forget about

money”,

I express gratitude towards every member of my family — my mother, aunt, brother
and others, for their encouragement. I thank my uncle Dr. S. Sengupta, a liguist
of repute, for constant encouragement. I reserve special acknowledgment for my
wife Chandreyee for enduring the last phase of the research, especially the thesis
preparation stage. The same goes for my two-year old daughter Jhimli, However,
I note with great regret that I could not make it possible for my father to enjoy the
thrills of knowing his son has received his doctorate. My father left this world for
his heavenly abode on the 25th of October, 1992 and with due respect, I dedicate
this thesis towards the memory of my late father Anil Chandra Sengupta.

August 30, 1993 PROBAL SENGUPTA
[5CSU, 18]

Calcutta.

i

Contents

1

Acknowledgments

Introduction

Lexical Division

The Lexical Sub-System

2.1

2.2

2.9

General Background, [e
2.1.1 Morpho-Syntax of Indian Languages

2.1.2 Related Works . . . v v 0 v v 0 e e e e e e e e e e)

2.1.3 Overview of Proposed Formalism C
Lexical Speci'ﬁ{;a.tien e e e e e e e e e |
I2.2.1 Specification of Morpheme Classes o v o4
2.2.2 Specification of Rules of Morpho-Syntax
2.2.3 Speciﬁc.ation of Spelling Rules oo
2.24 Morpheme List Specification . .« . . v v o o v o e
Lexical Representation v v v v v v o v e e e
2.3.1 T'he Comprehensive Lexicon « o' v v v v v e e e e

i1

20

21

22

2.3.2 Introduction to the AFSA
2.3.3 Formal Definition of the AFSA
234 Parsinginthe AFSA
2.3.5 Automatic Generationof AFSA
2.3.6 Later Modifications
2.4 Implementation Notes . ..,
2.0 DIscussions i vt e e e e e e e

8 The Supra-Lexical Level

3.1 The Need for a Supra-Lexical Level,
3.1.1 Some Examples of Multi-Worded Lexical Units in Bangla . .
3.1.2 Problems With Traditional Approaches
3.1.3 OQutlines of the Proposed Solution ,
J.1.4 Requirement Specification ., . .

3.2 The Proposed Supra-Lexical Formalism
3.2.1 The Tools for Supra.*-lLexica,l Specification oL L
3.22 OSupra-Lexical Rule, .o

3.3 Generalion of the Supra-Lexical Analyzer. e

3.4 Discussions

II Syntax Division

4 Syntactic Analysis

4.1 Introduction . . . v v v v v v e e e e e e e e e

1V

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

63

G4
G9

70

71

4,2 Background of LEG ¢ o oo o e e 72
&.2.1 Syntactic Encoding of Grammatical Functions 73
4.2.2 Syntactic Encoding in Actual Non—Conﬁgurat.ional Languages 75
4.2.3 Implemént&tion Semantics of an LFG Parser 76
4.3 Outline of Proposed Solution,, 17
4.3.1 Solution Part-I, Initiation of Forward Reference 79
4.3,2 Solution Part-II, Pre'cipitation of Forward Reference . . . , . 80
44 TImbedded Clause and Complex Sentences, 8%
4.4.1 Operational Semantics of Locate and Search 88
4.5 Implementation Notes , v v v v oo E;U
451 Object Design e e e e e H0
4.5.2 Actual Parsing 0 e e 93
4.6 DISCUSSIONS + v v v v v vt e e 93
III Application Divisilon 96
5 The Verbal Paradigm of Bangla '97
51 Introduction, e 97
5.2 The Ontology of Bangla Verbs R 08 .
5.2.0 Classification of VErbs . . v v v v v v oot 98
5.2.2 Tormal and Colloquial Form o 99
5.2.3 The Verbal Inflection System e e 99r
594 Tense and ASPECt » » + « v v v e e 100

5.2.6 Verb Forms with Infinite Declensions, 101

0.3

5.4

The

0.1

6.2

6.3

6.4

The
7.1
7.2

7.3

B.2.06 Volce . . v o e e e e e e e e 102

some Common Bangla Verb Forms 103
5.3.1 One Worded Finite Verb B 104
5.3.2 Tnfinite Verbs v v vt 106
5.3.3 Multi-Worded Verb Forms , 108
5,34 Negative Verbs, . . . 113
Discussions B 117
Bangla Case Phrase 120
The Noun Phrase PR 120
6.1.1 The Nominal Inflections 122
6.1.2 The Different Modifiers of the Head Noun 123
Internal Structure of NP Modifiers 125
6.2.1 Demonstratives and Qualitatives 125
622 The Genibive v\ v ve it 126
Empty “Heads” and Affix “Hopping” 127
Post-positional Phrase o 130
Discussions v v v v v v v i e e e e 132
Sentential Parédigm of Bangla 134
Types of Sentences 134
Simple Sentences . R e e e e 135
7.2.1 Sentences Withouht a Finite Verb oo o 135
G-a,rden-Pa.th SenteICES » v . v . e e e e e e e e 137

Vi

7.4 Complex Sentences . . . v . v o v v v v e e e e 139

7.5 DISCUSSIONS « v v v v v vt v e e e e e e e e e e e e e 143

Conclusion 146

The Bangla Character Set 166
Some Spellling Rules and Morphologically Parsed Words 169
B.1 Spelling Rules o v v v v i e e 169
B.2 Some Examples of Morphological Parsing of Verbs 171
The Unification Function 176

Vil

List of Figures

2.1 Conventional Lexical Interaction, 48
2.2 Lexical Interaction with Morpho-Syntactic Analysis 48
2.3 The AFSA After First Pass of Compilation 49
2.4 The Final Compiled AFSA v, 51
3.1 Lexical Interaction with Supra-Lexical Analysis 53

Vil

List of Tables

4.1

5.1

0.2

5.3

) |
LSy

Case Marker Versus Possible Grammatical Functions 77
The Thirteen different Tenses-Aspects of Bangla, 118
The Five GNPH attributes of Bangla . .,, 118
The Verb-Declension System of Bangla 119

The Infinite Verb-Declensions« . . . v v v v o v v v o o v v 119

1X

Chapter 1
Introduction

A distinctive intelligent trait of human beings is the ability to carry out meaningful
communication through language. The communication may be direct as in spoken
conversation or indirect as in written form, through the audio-visual media, etc.
Linguistic ability in humans have fascinated scholars ever since man first learnt to
use language, Linguistics, the branch of study involved in studying the nature of
human linguistic communication, is perhaps as old as language itself. The invention
of the computer added a new dimension to linguistics. Making the computer emu-
late human linguistic behaviour was taken up as a challenge by computer scientists,
Branches of study like Cybernetics, Machine Translation (MT) from one language
to another, Natural Language Generation, Natural Language Processing/ Under-
standing (NLP/ NLU) developed as a result. During the mid-1950s, a branch of
modern linguistics known as Computational Linguistics (CL) came into existence.
CL is dedicated mostly to develop more realistic models of cognition. MT, NLP,
NLU, etc. were adopted by the artificial intelligence (A} community of computer
scientists as domains of research towards making computers more intelligent. Al
workers in the above lines had to work in close association with computational
linguists in this regard. There is however one major distinction in the viewpoint of
CL and a NLP/ NLU. CL is more concerned about gaining insight into why and
how human beings display cognitive behaviour as seen around us. NLP is more
concerned in making the computer emulate such behaviours with implementation
(as computer programs) of the linguistic theories, albeit only for a workable sub-set
of the target language. The present work is primarily implementation motivated.
~ However, at times certain linguistic conjectures have also been suggested.

ELIZA of Weizenbaum [174] was an early attempt towards making computer be-
have intelligently. However the treatment was quite superficial. Chomsky (37, 38]
first proposed a formal mathematical theory of human cognitive behaviour. Subse-

quent refinement in the original Chomskian principles led to a major sub-discipline -
called the Government and Binding (GB). At present, there are many other impor-
tant computational linguistic theories, some quite close and some quite distant from
GB-theories. The Generalized Phrase Structured Grammar (GPSG) of Gazder et
al [70], the Tree Adjoint Grammar (TAG) of Joshi [85}, Functional Unification
Grammar (FUG) of Kay [100, 109] and the Lexical Functional Grammar (LFG)
of Kaplan et al [88] as some of the modern formalisms. In the implementation
scenario, the Augmented Transition Network of Woods [181, 183], Marcus Parser
of Marcus [121, 122], Slot and Modifier approach of McCord [126] and Definite
Clause Grammar of Pereira [138] are a few important syntactic techniques. The
GPSG, the UG, the TAG and the LI'G formalisms also come with associated im-
plementation semantics, The mathematical properties of linguistic theories have
been analyzed by Perrault [140]. Kay [110], Kaplan et al [87] and Koskenniemi
[116, 117, 118] have proposed important formalisms for morphological processing
at the lexical level. There are quite a few reported works on application of th above
principles in lexicon design, as discussed later.

History of Indian hinguistics dates back to more than a thousand years before
Christ. Grammarians like Panini, Katyayana, Patanjali, etc. have left behind
minutely detailed treatise on the Sanskrit language. Modern linguistic works in.
Indian languages have been mostly on prosody and comparative philology. Pio-
neering work on tracing the origin and development of Bangla has been carried out
by S. K. Chatterjee [34] in the earlier part of the present century, More recently,
a few CL based works have highlighted on certain special aspects of Bangla, How-
ever, no large scale work on Bangla, either in the CL domain or in the field of NLP/
NLU has come to our notice. NLP research appears to be in the formative stage
throughout the country, Some isolated works in the line have been reported in the
last few years (see later). MHence, to the best of our kriowledge, the present work.
is the pioneering concerted effort in NLU with Bangla as the primary target. Our
goal is to bridge the gap between existing linguistic knowledge and NLU vis-a-vis
Indian languages, Bangla in particular. We would like to unify available knowledge
on Indian languages with some state-of-the-art NLP techniques.

Different Levels of Natural Language Processing

NLP analysis of a natural language is conceived of in few different levels which
have considerable mutual overlap.

Lexical Level: Responsible for extracting meanings and lexical categories (like
Noun, Verb, etc., which are terminal symbols in syntax analysis) of words

2

considering them as primitive vocabulary items. Ior inflectional languages
constituent morphemes of a word are extracted and the meaning and category
of the word is derived from them.

Syntactic Level: Responsible for compartmentalization of the different meaning
components of the sentence. Usually the analysis is based on a context-free
grammar (CFG), or, as in the modern formalisms, on more powerful versions
of grammar like GPSG, LFG, etc. Syntax analyzers are called parsers., The
output of a parser is in a form amenable for semantic analysis.

Semantic Level: Responsible for extracting meanings of sentences where “mean-
ing” or “semantics” of a sentence could be logical forms, formulae of higher
order predicate calculus, graphical representations like semantic nets, con-
ceptual graphs, etc. A model of the knowledge about the world of speakers.
should be incorporated,

Discourse Level: This level is an extension of the semantic level where tempo-
ral, causational, anaphoric, etc. relationships between different clauses of a
discourse are modeled.

The ideas described here span across the lexical and syntactic levels, At the lexical
level we are more concerned with morpho-syntactic analysis of words. At the
syntax level, we would suitably augment and modify some existing techniques
(mostly LFG) to suit Indian languages in general and Bangla in particular,

Review of Related Works

The review is categorized according to the different levels mentioned above. How-
ever, the domains of immediate interest, namely, lexical projection through morpho-
syntactic analysis and unification based syntactic parsing, have been further re--
viewed in greater detail later in this section, Towards the end of this section,
certain aspects of NLP and CL research in India relevant to the ideas introduced
here, would be reviewed.

Most Natural Language Understanding systems are built around some linguistic
formalism, Presently, quite a number of linguistic theories are available, Conse-
quently, as noted in [10], there has been considerable duplication of work. Many
of the existing formalisms cover only a few aspects of the entire problem of NLU.
Some even focus upon specific areas of interest within a sub-domain of NLU. For
example, the present thesis describes formalisms to cover the lexical and syntactic

aspects of NLP with Indian languages, especially Bangla, We would concern our-
selves mostly on the aspects of morphological processing in the lexical sub-domain
and syntax specification for certain types of sentences of Bangla everyday use, It is
therefore appropriate to carry out the present review under a few topics of interest
of the present thesis.

A. Lexicon Related Works.

“Lexicon” is the component of a NLU system which contains lexical entries as-
sociated with phonological, morphological, syntactic and semantic information.
The lexicon has assumed the role of a major player in the recent years, such that
“Lexical Representation” is presently a fundamental issue of most computational
linguistic formalisms. The lexical analysis stage of an NLP system must provide
systematic encoding of a variety of information about words that must minimally
include: |

i. The basic part-of-speech of the word.
ii. Other co-occurring and complement words.

iii, Certain syntactically inherent properties like tense, person (of verbs), etc.

Farlier NLP systems looked at the lexicon with little theoretical interest. These
systems, for example, SHRDLU of Winograd {L77], Sager’s system [146], etc., gen-
erally used a CI'G as the central syntactic formalism with the lexicon implemented
as a collection of relatively unprincipled programs. Words were considered to
contain monadic lexical knowledge and none other than the essential syntactic in-
formation was stored in the lexicon. However, since the 1980s, there has been an
upsurge in interest in lexicon organization, lexical analysis/ representation. This
coincided with the advent of feature based syntactic formalisms which conceived
lexical knowledge encoded in the lexicon as a complex set ol polyadic features
covering domains even beyond the immediate needs of parsing. These modern sys-
tems, which includes the GPSG, the FUG, the Categorical Unification Grammars
(CUG), the LFG, etc., use simple and compact syntactic rule-bases, pushing con-
siderable grammatical facts into the lexicon. The importance of the lexicon has
been given the proper stress even while choosing a nomenclature for the LFG. As
a result of delegating a portion of the burden of recognition to a more complex
lexical component, the overall system becomes more powerful without complicated
syntactic manipulations being necessary. Modern textbooks on NLP like the ones

by Gazder and Mellish have provided detailed tutorial material on lexical represen-
tation {71, 72][Chap-7}, providing analytical justification for the same. The issue of
the nature of lexical representation was taken up in [53, 66] etc., while organization -
of lexical databases was discussed in [10, 56, 83}, etc. Machine-readable dictionas-
ies have been the concern of [21, 27, 30] etc. A phrasal lexicon with self-extending
properties was taken up in [186).

Morphology and Lexical Analysis

We would concentrate mostly on inflectional morphology as a means of obtaining
lexical projections of words as a result of unification of lexical knowledge of con-
stituent morphemes. Gazder has pointerd out [69][pp604], that until recently, there
has been relatively little work on morphology compared to syntax, The reason for
this, according to Gazder, is that most CL based works dealt with English whose
inflectional morphology is “impoverished”. Formal aspects of morphological pro-
cessing was first taken up by Kaplan and Iay [87) in 1981, Here, the suggestion
was to have a ‘cascade’ of finite state transducers (IFST's), each taking care of one
aspect of morpho-phonemic, morpho-graphemic irregularity. The cascaded ST
networks can next be converted into an “equivilent” network using well-defined
principles of formal language theory (1, 2]. Subsequently, Kay [110] has worked -
on non-concatenative morphology where the above principles do not hold, i.e. the
processor can not be formulated as a FST network. Carden [31] has argued about
general inadequacies of finite-state devices in word formation, Koskenniemi [116]
has argued that the resultant equivalent automata in Kaplan and Kay may become
prohibitively large. He suggested a mechanism where the transducers are simulated
in “paralle]”. The central theme of Koskenniemi’s work, generally known as the
“two-level” morphological analysis technique, is formulated as: |

A £ - Y
<=

a, X y

or

A X _ Y =
=>

d 3'. y

The first form says that a lexical ‘A’ in the context ‘XAY’ (‘X?, ‘Y’ are lexical)
may be realized in the surface as ‘a’ when *X’ is realized as ‘x’ and ‘Y’ is realized

5

as ‘y’. The second form suggests ‘A’ in the given context must be realized as ‘a’.
Other abbreviative devices have also been used by Koskenniemi. Strength of the
formalism is in the fact that the rules may be realized as F'ST networks as has been
-demonstrated by Koskenniemi. The size of the overall network incorporating all
the two-level rules for a language 1s also not expected to be very large. The notion
of the boundary between morphemes is expressed through a diacritic symbol ‘+°.
This way, it is logically possible to have one entry for each word in the lexicon, -
even though the stem may be subject to various deformities during inflection. This
property leads to considerable reduction in the space required to store the lexicon
of an inflectional language.

Two-level morphology was originally proposed for Finnish, Koskenniemi’s native
language., It has received wide acceptance in the following years. Koskenniemi
later proposed techniques for automatic compilation of a two-level “specification”
into a finite-state automaton. The KIMMQO system of Kartunnen et al, IChan et al
{08, 112] is a complete development system for two-level morphology, including a
compiler for two-level morphological description, Two-level morphological analyz-
ers for various languages are available in literature — [120, 73, 111, 4, 18, 119, 105].
Two-level rules with negative rule features has been described in [14]. Ritchie et
al applied the principles in the design of a rugged front-end lexical processor for
a GPSG based NLP system in the form of a tool that may be applied to any
language, rather than being language specific [144], Our ideas on morphological
analysis have been considerably influenced by Ritchie et al. The LILOG system
[81] also talks about two-level morphological description [149]. A good review
of finite-state morphology in general and Koskenniemi’s formalism in particular
may be found in [69]. Textbooks or reference books dealing with the two-level”
approaches in depth have not come to our notice. However, Gazder et al {71, 72]
have made passing references to the two-level formalism .

We would like to make a particular reference on morphological analysis related
work carried out in the LILOG project that have come to our notice quite recently.
Various aspects of the project are described in [81], of which, we refer to the pa-
per [149] here, This work uses two-level specifications (called LILOG/2LM) for
morphological analysis as part of the linguistic development environment (called
LEU/2). It is mostly based on the two-level analyzer of [13]. The interesting point
of note is the similarity between the concepts described in the above paper and lex-
icon handling principles discussed in the present work, LILOG/2LM is partitioned
into two layers — one containing information relevant for higher level processing,
and another where morphological and higher level description are related., We
have used a similar approach where we have a “Comprehensive Lexicon” of mor-
phemes that store higher level information an an augmented finite state automata
(AFSA) and a built-in unification component for establishing relationships. While

in LILOG/2LM they talk of “morpheme lexicon”, “morpho-syntax” rules, “lexical
rules” and “two-level” rules, we talk of almost similar concepts. The cdifferences
are, first in LILOG/2LM they have two-level rules while “Spelling Rules” described
here are somewhat different. Secondly, morpho-syntax rules in LILOG may be re-
cursive while we propose non-recursive rules. Finally, in LILOG, lexical rules serve
to produce the feature structure of words while in our formalism, the features of
morphemes are explicit in the comprehensive lexicon. Unlike the rule-based feature
structure generation, in our formalism, the feature structure is obtained through
straightforward unification of the features of constituent morphemes.

Although our morphological formalism has similarities with the two-level frame-
work, there are some fundamental differences. We have made a reasonable assump-
tion that morphological deformation during conjoining of morphemes propagate
(either or both ways) from the conjoining boundary. This permits us to do away
with the diacritic symbol ‘+’. Moreover, we can do with an augmented version
-of a classical finite automata unlike (for example) in LILOG/2LM, where three
sets of automata — “lexical tree”, two-level automata and “morpho-syntax” tree
have to work in tandem. We possibly pay the price by being less general and also
keep open scopes for backtracking. However, our system is inherently much sim-
pler, takes less storage space and presumably would run faster if backtrackings are
intelligently handled,

There have however been works on morphological processing of languages not us-
ing the two-level philosophy. Blank et al [19, 20] have experimented with a new
kind of finite-state automaton. Nearer home, reports of morphological analysis
of Sinhalese [80] are available, Kay’s work on Arabic morphology [110], which
is non-concatenative, is based on principles apparently beyond the scope of the
two-level approach. Our technique is somewhat intermediate between Kaplan et
al and Koskenniemi, where we tackle inherent parallesims in the individual net-

works of Kaplan et al by augmenting the capabilities of finite-state networks (see.
Section-2.3.2). |

B. Syntax Related Works

Perhaps the earliest attermpt towards introducing a mathematical structure to lin-
guistic analysis was provided by Chomsky [37, 38]. His ideas influenced the de-
velopment of a branch of computer science under the banner of Formal Language
Theory. The central theme of most earlier NLP systems was the context-free gram-
mar (CFG). As a technique, the CFG is very popular even today, partly due to its
closeness to intuitive human understanding of the linguistic apparatus and partly
due to certain interesting computational properties of the CFG. The theory of

parsing with CI'Gs was developed at length by Aho et al [1, 2] and Hopcroft et al
82]. Early [60] developed one of the first parsers for natural languages based on
.a CI'G. He used a data structure called the “Active Chart” for the purpose. Use
of the active chart in parsing, or “Chart Parsing” strategies were quite popular
in the 1970s. The MIND system of Kay [106] is one example of practical chart
parsing. Tutorial introduction to chart parsing is available in most text books
on NLP including [6, 71, 72, 178]. Some more earlier systems based on context-
free approach may be found in [175, 146, 177]. More recent efficient context free
parsing strategies/ formalisms have been suggested by [7, 68, 167, 161}, etc. A
Japanese sentence analyzer based on CI'G has been investigated in [123). We must
however point out that all the above strategies employed additional techniques of
varied complexities to take care of some of the non-context-free properties of the
respective target languages. Continued interest in finite state devices for syntactic
parsing have been shown in [19, 28, 62]. A deterministic parser for Inglish us-
ing three symbol “lookahead” was proposed by Marcus {122]. Iorn clause based .
parsers were introduced by Pereira [138]. Petrick [141] has presented a NLP per-
spective of parsing issues. Some of the above approaches have found their place in
text books like [33, 179, 178], etc.

The standard form of the CI'G has some obvious inadequacies vis-a-vis natural
languages. For example, the concept of “subject-verb agreement” can not be en-
coded in a CFG. Also, capturing certain straightforward linguistic generalities like
a selectional restriction on the nature and number of complement of the verb (with
respect to an English like language), require a many fold increase in the size of the
required grammar. Some linguists believe that a theory that hypothesizes a simi-
larity with human linguistic behaviour, must also take care of certain other factors.
Such theories must propose identical internal representation for similar meaning
utterances, irrespective of their actual surface forms. In this regard, the case of
Inglish active and passive forms of similar meaning sentences has been a popu-
lar benchmark. Clearly, classical CI'G is quite incapable of abstracting the above
factors. To overcome the various inadequacies of the CIFQ, linguistic and NLP
research has diversified in the quest for a reasonable solution. A school of thought
known as “transformational syntax” introduced the concept of different types of
transformation as the mechanism that relate a context-free internal or deep struc- -
ture and the surface or s-structure, Since the early 1980s, the transformational
school led by Chomsky have reasonably stabilized. This school, characterized by
the components like X-bar syntax, Extended Projection Principle, Government,
Bounding theory, etc., currently propose a single “movement” operation called
move-cr, All transformations are proposed as manifestations of this single move-
ment operation. The above principles are currently known as the “Government
and Binding” (GB) theory. A description of the theory may be found in [39]. Re-
cently, the NLP researchers at the MIT have shown interest in developing NLP

systems based on the GB-theories. Berwick et al {15] believes that such systems:
based on “Principle Based Parsing” would be the state-of-the-art of NLP research
in the 1990s. To prove the universality of their approach, they have also provided
analysis of Warlpiri based on their formalism [102].

A major procedural technique for augmenting the power of contexi-free based
parsing strategy is the “Augmented Transition Network” (ATN). The ATN is a
systematic extension on the concepts of the recursive transition network (RTN)
which is the graphical representation of the CFG. The ATN mechanism, first pro-
posed by Woods [181], is perhaps the most popular parsing strategies that still
evokes interest among NLP researchers. The main contribution of ATNs is the
introduction of the notion of “register”, assignment and tests into network nota-
tion, much like programming languages. Registers are defined for each constituent
and using them, general tests on acceptability (e.g, gender, argument) and flexible
building of output can be made, These aspects make ATNs as powerful as Tur-
ing machines, A good survey of ATNs may be found in [12, 33, 178, 71, 72], etc.
Further extensions on ATNs were suggested in [183].

A parallel school of thought to transformational theories did not accept transfor-
mational principles and hence came to be known as “non-transformational syntax”.
The main distinction between the transformational and the non-transformational
school is that in the latter, different forms of even similar meaning sentences (for
example the active and passive versions of the same sentence) are considered to be
different entities. Identical internal representation (of similar meaning sentences)
is achieved through other mechanisms. Most modern non-transformational tech-
niques share two comnmon properties— feature based representation of key aspects
and an underlying unification component. A corollary for being feature based
is conceiving of a more organized and complex lexicon and pushing down of a
considerable part of recognition burden to the lexical stage. The syntactic com-
ponent usually is simpler and more compact. The GPSG, the I'UG, the CUG
and especially the LI'G are some of the more important of the “unification-based”
formalisms. The difference among the above approaches lie in the relative degree
of complexity between lexicon design and syntax rule design. In GPSG, the distri-
bution is about even, The syntactic component employs a context-free formalism,
strengthened with the use of complex “slashed categories” and unification princi-
ples are introduced through a type of meta-grammar constructs, In CUG, slashed
categories of different types lends the essential power to the method and unifica-
tion is carried out on them. In FUG, the categories are themselves complex feature .
structures and syntax rules have a built-in feature unification semantics encoded
in them, Since the work described in this thesis is modeled on LI'G, the features of
LFG are described below in more detail, followed by a general review of unification
and its use in NLP.

The Lexical Functional Grammar

The Lexical functional grammar is a popular syntactic formalism based on fea-
ture unification. In FUG [108], unification is an integral part of syntactic rules
and in GPSG, HPSG and more recently, CUG have meta-rules to direct the uni-
fication process. In LFG on the other hand, the concept of “syntactic structure”
of a sentence has been sub-classified as a c-structure and an f-structure. The ¢-
structure is in general a CI"G. The f-structure of a (major or minor) syntactic
category enumerate its properties in terms of feature pairs, which may be quite
complex. The c-structure rules are annotated with f-structure “schema” of vari-
ous types. A schemata is used to establish logical relationships and dependencies
among various constituents of a sentence, Metavariable are used in a schemata
to denote f-structures of constituent(s) categories or the category dominating the
constituents. Long-distance dependencies are established through a separate class
of metavariables. The implementation semantics of LI'G is best explained through
operators Locate (a type of high-order search), Merge (a {eature-unification com-
ponent) and Include (for set operations). Further description of LI'G relevant for
the present work may be found in Chapter-4.

The best introduction to LFG and its different aspects are found in [23]. This book
contains three parts dealing with lexical representation, syntactic representation
and cognitive processing respectively. Interestingly, discussions on languages other
thall English (Icelandic, Russian, Malayalam, Romance, etc) have also been taken

. The popularity of LFG is evident from the bulk of reported work on various
aspects of the formalism. In addition to Bresnan’s account on lexical description
[24], Zaenen et al [184] have provided an excellent overview into feasibility study of
‘nolytheoretical’ approach to lexicon-development. Attention has been primarily
on the problem of “sub-categorization” and a comparison between GB-theory and
'LFQG in this respect, has been provided. An implementation of LFG in PROLOG
has been discussed in [61], Use of LFG in MT has been discussed in Klaus et al
114] and Kaplan et al [96]. Incidentally, the use of FUG in MT has been considered
by [108]. Semantic analysis in LFG has been taken up by [76, 77, 78], Constituent
co-ordination in the LFG environment has been considered in {92, 94]. LI'G usage
in syntactic constra.lnts on anaphoric binding has been the topic of interest of
Dalrymple et al [41, 42, 43, 166}, The formal architecture of LF'G has been taken
up by Kaplan [93] and Fenstad [63]. “Functional Uncertainty” is one recent sub-

topic of LFG and has been taken up by Kaplan et al (89, 90,.91, 97]. Functional
uncertainty concepts have led to the incorporation of regular expressions in place

of single feature names in schemata.

10

Unification in NLP and Implementation of Unification

Unification as an operation in automatic theorem proving was introduced by Robin-
son [145]. It was first used in CL/ NLP by Kay in FUG. LF'G is another important
unification based approach. A good review on use of unification to NLP may
be found in [115]. There has been a rapidly growing literature on categorical
grammars with unification formalism like [22, 29, 180, 185}, etc. The underlying
syntactic formalism in the LILOG project is also based on categorical grammars
with unification which the designers call STUF (Stuttgart Unification Formalism).
The GPSG is based on DAG unification. Teature unification concepts were in-
troduced to augment GPSG to HPSG [142]). Various workers {139, 103, 132, 127]
have investigated into the underlying mathematics and logic of unification based
formalisms. Barton [11] et al have analyzed the complexities of LI'G: and GPSG
and Ritchie [143] has done the same for FUG. The formal semantics of unification
formalisms have been taken up in general by [63] while [93] has discussed the formal
architecture of the LI'G in greater detail. | ‘

A good survey of unification implementation stralegies may be found in [115]. The
unification process in FUQ has been described by Kay [109]. The PATR/PATR-II
framework, which is the basis of GPSG/ HPSG based implementations, has been
introduced in [161, 162] and extended in the D-PATR system in [101], A graph-
unification based representation is one of the central themes of STUI' employed
in the LILOG project. The ‘language’ of STUF, based on a version of categorical
unification grammar [169], has been taken up in [22, 57, 58] while the issue of
parsing of STUF grammars have been taken up in [150]. As have been pointed
out by most researchers, the complexity of the unification problem with disjunctive
constraint satisfaction is in general exponential, Methods of performing disjunctive
constraint satisfaction in a more eflicient manner have been considered by Kasper
[104] and Maxwell et al [124]. An interesting innovation used by Maxwell at al is
based on using the conjunctive normal form (CNF) insteacd of the more commonly
used disjunctive normal form (DNF), Maxwell et al [125] have discussed the inter-
face of the phrasal and functional constraints in an LI'G environment where they
have discussed about various techniques like ‘non-interleaved pruning’, ‘factored
extraction’, ‘factored pruning’, etc, as some eficiency enhancement strategies.

C. (A Brief) Review of Semantics Related Works

Conceptual Dependency by Schank et al [148], is an elegant tool of graphically
expressing sentential semantics through a set of eleven primitive actions. Semantic

Grammars [79], were attempts at semantic interpretation directly from the sen-

11

tence. Allen [6] has concentrated more on “logical forms” — a variation of first
order logic. Fillmore {64, 65] and others suggested an alternative philosophy in
Case Grammars which is mostly rationalization of traditional syntactic ideas with
classical theories of case. GB-theory [39] in its present form proposes a three-tier
semantic description based on morphological case (morphological feature), gram-
matical function or gf (syntactic level feature) and thematic or theta-role (seman-
tic level). This three-tier definition is the currently accepted notion of sentence
analysis. Wilks [176] laid the foundations of “preference semantics.” Allen [5] is
interested in the analysis of intention in utterances, Semantic analysis of natural
languages is closely related to knowledge representation studies of AL The “seman-
tic network”, whose foundation was laid by Woods [182} and later formalized by
Minsky {129], is a formalism widely used for the purpose. A review of knowledge
representation vis-a-vis natural languages may be found in [173]. The Tense of the
main verb is known to have considerable importance in semantic analysis. This
was highlighted in papers [130, 133, 136, 172] appearing in Compulational Linguts-
tics 14(2), which was a special issue on tense. There exists an alternate school of
commputational linguistics that concentrate on verb centric parsing as the central
strategy.. The main consideration here is on the different “types of processes” de-
scribed by verbs, Types of process have been extensively studied by Halliday [75],
while Kholdovich [113] considers one aspect of verb-centric parsing.

D. Review of Some Relevant Works on Indian Languages

Tradition of linguistic research in Sanskrit dates back to millennia. There had
been references to grammar even in the Vedas and the Upanishads (10th century
B.C to 4th century B.C.) . However, Panini (5th century B.C.) is considered
to be the father of Sanskrit grammar. The Sutres or the Ashtedhyayi (so called
because it contains eight chapters; Ashta=eight and Adhyaya=chapter) are suc-
cinct aphromisms of Sanskrit grammar which are attributed to Panini by universal
consent. These are the first attempt in the history of the world to describe and an-
alyze the components of a language on scientific lines. They are not only foremost
specimens of Descriptive Grammar but also acclaimed as a notable manifestation
of human intelligence. Certain inaccuracies in Panini’s works were corrected by
Katyayana (around 300 B.C.). A voluminous commentary called the Mahabhasya,
meant to elucidate the text of Panini and other grammarians, is ascribed to Patan-
jali (150 B.C.). A good collection of works by well-known researchers on Sanskrit
grammarians from Tth century A.D. (like Hiuen Tsang, the Chinese pilgrim who
visited India during the time of Emperor Harshavardhana) till a couple of decades
ago, may be found in [165]. A treatise [170] on Panini's Ashtadhyay! in English
makes interesting reading. Relevance of Paninian principles in Universal Grammar

12

was considered by [164]. A survey of research on Panini may be found in [32].
Recently, there has been a spurt of interest in Paninian principles and Sanskrit
vis-a-vis NLP and knowledge representation as is evident from [26, 86].

The ideas described in the present thesis has been greatly influenced by S. K.
Chatterjee, one of the greatest linguists of modern times. His compilation on the
origin and the development of Bangla [34] is a must read for anybody involved
with linguistic study of Bangla. His text on the essentials of Bangla grammar [36]
and for learning Bangla as a foreign language [35] have been two major sources of
information for the present work. In the field of modern computational linguistics,
some work have been done on different sub-paradigms. P. Dasgupta has published
works on Bangla nouns [51], a class of nominal inflectional classifier [50], verb
phonology [49], gerundative noun phrases [46], compound verbs[45], and Bangla
relative clauses [47]. P. Dasgupta has also written a book on the importance of
grammatical functions [52], which has influenced the present work to quite some
extent. His works on phonology have been followed up by Dey [54] and Paul [137].
The spelling rules in Chapter-2 have mostly adopted from [137]., Recently Dasgupta
M. [44] have considered certain aspects of Bangla composite verbs. A good study
of negation in Bangla in general may be found in Singh [163]. A colleague from
our own group has investigated linguistic aspects of verb-centric parsing of Bangla,
centered around the concept of the “valency” of verbs [9].

The National Centre for Software Technology, Bombay, has been assigned with
developments in the field of NLP under the “Knowledge-Based Computer Systems”
project. The issue of a common core grammar for Indian languages was taken up in
[151] A report by the Dept. of Electronics, Govt. of India [55] indicates government
interest in the field, The IIT Kanpur has undertaken projects on MT between
Indian languages. Reports on their work may be found in [16, 17, 147]. They have
used a Paninian model for parsing Indian languages. An LI'G implementation for
an Indian language (Telugu) has been discussed in [160]. Various aspects of NLP
with Indian languages were discussed in seminars [171] and [40].

To the best of our knowledge, the present work is the first concerted effort towards
morphological and syntactic processing of Bangla.

Motivation for the Present Work

The importance of Natural Language Processing for Indian languages is justified by
the sheer numbers of people speaking these languages. The term ‘Indian language’,
covers the entire Indian sub-continent, i.e. India, Pakistan, Bangladesh, Nepal,

13

Sri Lanka, Bhutan and the Maldives with total population exceeding one billion!
Moreover, the languages of many Pacific and South Asian countries like Indonesia,
Kampuchea, Mauritius, etc. are very similar to the Indian languages. Even the
one chosen as a case study, namely Bangla or Bengali, has a speaking population
exceeding two hundred million. It is the state language of Bangladesh and the.
dominant language of at least two provinces of India — West Bengal and Tripura.

The work described in the present thesis is a part of a more fundamental project
of proposing and implementing a computational model for comprehending modern
Indian natural languages. The present work is directly concerned with the de-
velopment of sub-systems for a)Lexical and b)Syntactic levels of analysis. The
intention is to make the models independent of the target language. To this end,
rather than proposing actual models, the approach has been to devise formalisms
that lead to direct implementation of software tools for automatic construction
of analyzers at different levels, from some basic specifications, Bangla has been
chosen as the immediate target and the fundamental capabilities of the tools have
been decided upon from examples in Bangla. To highlight the effectiveness of the
tools, lexical and syntactic specification for a workable sub-set of Bangla has been
carried out.

An O-vervie“w' ofl 'I.ndian Languages and Bangla

All ethnic Indian languages (except perhaps Urdu, which has considerable Arabic
influence) have in some way ot the other originated from Sanskrit. However, the
modern versions of almost all the languages have deviated considerably from the
parent language and have developed their own idiosyncrasies, Nevertheless, being
originated from a, single source, certain basic philosophies of Sanskrit language
have been retained. Sanskrit is an agglutinating language. Words tend to form
conglomerates, It is highly inflectional. The grammar of Sanskrit has a strong
semantic bias. The basic philosophy behind the concept of “grammaticality” of a
Sanskrit sentence is:

o A sentence conveys a colherent piece of communication, i.e., every entity of a
sentence satisfies mutual expectancy. :
o The essence of communication is established by the verb or Kriya-pad.

o A rigid system of inflection establishes a near one to one correspondence
between a nominal inflection and the functional role that the noun inflected
plays in a sentence. ‘The mapping from grammatical functions to thematic

role (Karaka) is quite simple.

14

o Well-formedness of a sentence in almost never altered by a permutation of
the entities.

Modern Indian languages have lost the agglutinating property of Sansknt to quite
an extent but have retained the strong inflectional characteristic and the basic
philosophy behind grammaticality. The participating entities are in their most
general form a sequence of words. The basic semmantics of a participating entity is
carried by a noun (or pronoun) that acts as the “head” (in the sense of X’ syntax) -
of the entity. The inflection on the head noun may be an affix /declension, or it may
occur as a separate “particle” word immediately following the head. In most Indian
languages, the separate inflection plays the role of a “positional” case marker. Due
to clear similarity with English prepositions but to signify its position vis-a-vis the
head noun, such a particle is called a post-position. The qualifier(s) for the head
noun in Sanskrit usually precede the head in order, but may be agglutinated. In
the modern languages, this order criterion is maintained. A participating entity in
a sentence in a modern Indian language is therefore:

o In general, a sequence of words
o Is case marked by an affix or declension or a post-position (or even both)

o Has a rigid order of occurrence of the constituent words,

A participating entity without a post-position will be called a Noun Phrase (NP)
and one with a post-position will be called a post-positional phrase (PP).

Just as in Sanskrit, where word order is not important in grammaticality, in most
Indian languages, phrase order is considerably free. Again, as in Sanskrit, the
grammatical function (i.e., Subject, Object, etc.) of a phrase is mostly determined
from the inflection on the head in an NP or the post-position in a PP.

The language of Bangla is normally used in two forms, The first form, called Sadhu
Bhasa (Sadhu in the sense of “better” or “pure”), or “IFormal” version, is more
traditional. The Chalit Bhasa (Chalit meaning “common’) is the more commonly
used form. At present, the use of the formal version is resiricted to sombre texts
and sometimes editorials of newspapers. Actually, the line of difference between
the two forms is quite fuzzy except in the inflected form of verbs, “Sadhu” forms
of verbs are normally formed out of straightforward concatenation of morphemes.
“Sadhu” verb declensions are generally longer in length, The “Chalit” form de-
clensions are simpler, generally shorter in length than corresponding formal forms.
Also, different types of spelling deformations, mostly due to phoneme (vowel) har-
mony, take place during morpheme conjoining. In the present work, we have taken

15

up “Chalit” forms of verbs in addition to the “Sadhu” forms, An eflicient morpho-
logical analyzer is therefore necessary and has been proposed in the form of the

ATSA (see Chapter-2).

Design/Programming Platform Used

Throughout the thesis, we have attempted to provide an object-oriented design
of the various analytical components. This way, a “top-down” view of the entire
system is immediately visible. Various “objects”, abstracting different facets of
the design, have been introduced. In some cases, the description of the objects
have been minutely detailed to highlight their significance in the design. However,
aspects of behavioral design of certain objects have been kept at a more abstract
level. Inter-object interaction has been assumed to be of procedural, rather than
of functional nature.

During implementation we have used C++, an object-oriented programming lan-
guage with growing popularity, Most aspects of our design have corresponding
C4+ constructs, with the result that implementations carried out are easy to
comprehend and extendible with minimal effort.

Organization of the Thesis

The contents of thg thesis may be broadly divided into three major parts. They
are;

Part I: Lexical Division. This part consists of two chapters, Chapter-2 and
Chapter-3, : -

Part II: Syntax Division, This part consists ol one chapter, Chapter-4.

Part IIT: Application Division. This part consists of three chapters, Chapter-
5, Chapter-6, and Chapter-T.
Lexical Division:

This division is concerned with the development of a formalism that is useful for
building an LFG specific lexical sub-system for an Indian language, particularly

16

Bangla. The idea is to create a software tool that may be used by a linguistic
expert to systematically specify and guide the building up of the lexicon.

Chapter-2 . This chapter deals with the development of a formalism for the
creation of a word-level parser for Bangla, Words here are assumed to be
concatenatively constructed out of morphemic primitives. It is expected that
the linguistic expert would specify the lexicon in four levels:

i, Specification of different morpheme classes.
11. Specification of rules of morpho-syntax.
iii, Specification of a set of spelling rules.

1v. Specification of a list of morphemes (constituting the vocabulary),

~The different specifications would be temporarily stored in different flat files
and a “word-level” lexicon would be generated or compiled, from the knowl-
edge stored in the files. The said lexicon would be represented at two different
levels — a comprehensive lexicon containing all possible information for ev-
ery morpheme specified, and a recognition/generation system for words in
the form of an Augmented Finite State Automata (AFSA). The AFSA
would parse an input word into the constituent morphemes and perform
LFG-type lezical projection of the word as a union of the lexical projections
of the constituents,

In this chapter, various aspects of the specification formalism and the process
of lexical compilation has been described in depth. An object-oriented design
of the different components has been provided.

Chapter-3 . In this chapter, it has been observed that there are a considerable
number of lexical entities in Bangla common usage that span across multiple
words. The classical LFG based techniques for handling multi-worded lexical
items in English-like languages has been shown to be unsuitable for Bangla
in many cases, A formalism has been suggested in this chapter for handling
lexical entities spanning across any number of words (trivially one). The:-
suggested analysis technique is called “supra-lexical” level of analysis. The
basic philosophy in this chapter is similar to that of Chapter-2. Hence, a set of
tools meant for the linguistic expert to provide supra-lexical specification has
been described and compilation of the specifications into C++ code fragments
discussed. |

17

Syntax Division:

This division is concerned with a syntactic formalism suitable for Bangla that-is
primarily based on the LFG formalism. There is a single chapter (Chapter-4) in

this division.

- Chapter-4 The traditional LFG has a well-defined implementational semantics

through the operators Locate, Merge and Include. However, there are cer-
tain built-in assumptions in LF'G regarding syntactic encoding of grammat-
ical functions for non-configurational languages. It has been shown in this
chapter that the assumption “inflectional case marking is strong and non-
ambiguous” is quite valid for Bangla. An excessive use of “alternations”
becomes necessary as a result, causing a rapid degradation in the perfor-
mance of the parser, It has been farther noted that if syntactic encoding
of grammatical functions of participating noun phrases of a sentence/clause
be sufficiently “delayed”, the number of alternations could be reduced to a
manageable level. A technique has been proposed in the chapter whereby:

1. An “under-specification” meta-variable has been introduced, that serves
to “delay” encoding of grammatical function of participating noun phrases.

ii. A “Symbol Table” as an additional data structure aid for the parser has
been proposed.

111, A lexicon-driven “meta” functional structure or m-structure has been
introduced.

iv. Certain alterations and additions in the semantics of the traditional
operators have been suggested and a new operator called Search has
been introduced. The modified operators systematically inter-relate the
c-structure, the f-siructure and lexical projection of words.

The basic idea of the proposed formalism 1s “delaying” evaluation of syntac-
tic encoding till enough lexical information (in the case of Indian languages,
the lexical projection of the verb) has been projected such that the encod-
ing can be done with less ambiguity. The symbol table serves the purpose
of delaying the evaluation. The under-specification meta-variable stores un-
evaluated functional forms in the symbol table while the m-structure guides -
belated evaluation of the stored unevaluated forms. The described formalism
has been given the name Generalized Lexical Functional Grammar (GLFG).

In this chapter, Bangla “simple” (i.e. with one verb) sentences have primarily
- been studied while building up the formalism, However, to demonstrate the
general nature of of the techniques, a class of complex Bangla sentences has

18

also been analyzed. The resulting formalism for Bangla clearly highlights a
“verb-centric” approach. A systematic object-oriented design of the various

operators has been taken up.

Application Division:

 This division is concerned with the actual application of the formalisms devel-
oped in the first two divisions to Bangla. Three aspects have been studied in the

following three chapters:

Chapter-5 . Since verb is at the kernel of a verb-centric approach, this chapter
has dealt with the study of the verbal paradigm of Bangla to a reasonable
.depth. After providing a brief introduction to the classification and ontology
of Bangla verbs, it has been pointed out that the analysis of different verb
forms of Bangla is primarily providing their supra-lexical specifications, A

few commonly used forms have been considered case by case accordingly.

Chapter-6 . This chapter in concerned with the analysis of Bangla Noun Phrases
and Post-positional phrases. Not much state-of-the-art (i.e. computational
linguistic based) research material on Bangla NP and PP is available in litera-
ture. In this chapter, certain amount of linguistic insight into various NP and
PP forms of Bangla has been provided. The necessary lexical, supra-lexical
and syntactic specifications have been given,

Chapter-7 . In this chapter, some commonly used sentential forms not consiclered
in Chapter-4, has been discussed, The syntactic specifications of the forms
discussed have been provided using traditional LFG tools as well as tools

proposed in Chapter-4,

19

Part 1

Lexical Division

20

Chapter 2

Thé Lexical Sub-System

The Lexical sub-system constitutes the basic building block of our proposed GLFG
based syntactic system described in Chapter-4. The success of such a system de-
pends very much upon an eflicient lexical projection mechanism, including pro-
jection of m-structure (see Chapter-4) schema by verbal lexemes of the languages
under study. The proposed lexical sub-system for inflectional Indian languages is
primarily concerned with parsing surface forms (i.e. the form in which the words"
are spoken or written) of words into its constituent. morphemes so as to obtain
lexical projections of words as a union of the projections of the constituent mor-
phemes. However, the proposed design is also capable of generating of surface
forms of words from a sequence of lexical morphemes or lexemes. A major achieve-
ment of our formalism 1s near maximal compactness of lexical representation. We
have proposed a lexical specification scheme which leads to a compact lextcal rep-
resentation for an Indian inflectional language. The representation scheme is an
easy to understand formalism meant to be used by a lingwstic expert fo specify
the morphological structure of an inflectional language that automatically leads to
the building up of efficient automate for parsing of words. The automata in turn
produces lexical projection in the form required by GLF'G. Although the formalism
1s specially tuned to a GLFG based platform, it 15 general enough to be adapted
to other models of syntactic analysis.

In English-like non-inflectional languages, words are considered as atomic lexical
units. The lexical sub-system, or Lexical Analyzer, of an LFG based NLP system
for such languages may be described by Fig-2.1. A word ‘pumped in’ by the
syntactic component may be checked against the vocabulary of words by a Finite
State Automata (FSA). A well-formed word always leads the finite control of the
automata to a ‘terminal’ state. The terminal states of the automata are ‘indexed’
to the lexicon proper from where the lexical category of a word and its f-structures

21

may be recovered and ‘projected’ back to the syntactic component.

For inflectional languages, words are constituted of more elementary lexical units
called morphemes. Usually, the overall lexical projection of a word in an inflectional
language result out of union of the projections of the constituent morphemes. Just
as ‘syntactic’ rules govern the formation of sentences from phrasal units, morpho-
syntactic rules govern formation of words from morphemic units. In languages like
~ Arabic, a morpheme may get embedded in other morphemes during word formation -
(Kay [110]), leading to non-concatenative morpho-syntactic rules. However, most
Indian languages have concatenative rules for morpho-syntax, i.e. the constituent
morphemes of a word occur side by side. Nevertheless, there are no obvious de-
limiters indicating ‘morphemic boundaries’ 1n words. The automata for parsing a
word in an Indian language must therefore be capable of identifying morphemic
boundaries. However, due to the concatenative nature of the morpho-syntactic
rules, the ‘power’ of such an automata remains in the order of an FSA. Lexical
Analysis for inflectional languages is best explained by Fig-2.2.

2.1 (General Background

2.1.1 Morpho-Syntax of Indian Languages

Morphological structure of words in modern Indian languages mostly follow the
tradition of classical Sanskrit grammar.The morphemes constituting a word are of
two types: |

Stem: The essential or root form of a word that provides the meaning.

Affix: Morphemes which in isolation do not convey any meaning but provide
proper linguistic perspectives for the stems or other suffixes to which they
are conjoined. Depending on position of conjoining, an affix is a prefiz, an
internal affiz or a declension.

Words are produced as a result of several conjoinings:

a. Between a stem and an aflix or vice versa.
b. Among two or more affixes.

¢. Between two stems, thus producing compound stems.

22

d. By some combinations of the above.

A word 1s constituted of an optional prefix (acting as an adjectival particle for a
nominal or adjectival stem), a simple or compounded stem, zero or more internal
affixes and an optional terminating declension. Every constituent morpheme of a
word contributes to its overall linguistic property. The rules of morpho-syntax
~determine which stem can be followed by which affix and/or declension. For

this purpose, the morphemes are partitioned into several classes. The morpho-
syntactic rules restrict the conjoinings among the various morpheme classes. In
most Indian languages including Bangla, there is another class of rules of gener-
ative morphology called spelling rules, that are concerned with morpho-phonemic-
or morpho-graphemic restructuring of symbols at the boundaries of two conjoining
morphemes. The spelling rules makes the job of detection of morphemic boundaries

more difficult.

The major affix classes in Bangla (as well as most other Indian languages) are
verbal and nominal declensions called bibhaktis, verbal and other internal affixes

called pratyayas, nominal prefixes and suffixes called anusargas and upasargas,
etc. The stems are also classified into several basic clusters like verb-stems, noun-

stems, etc. The morpho-syntactic rewriting rules are based on these classes, as
n.

a) VERB — Verb-Stem [Caus-Affix] Verb-Decl
b} NOUN -~ Noun-Stem [Def-Affix] Case-Decl

where Caus-Afhx is the verbal causational affix class, Verb-Decl is the verbal de-
clension class, Def-Affix is the nominal definiteness affix class and Case-Decl is
the nominal case declension class. The items in brackets are optional. The entity
on the left side of — represents the lexical category of the word. Thus, in rule
a) above, the word is a VERB. The basic meaning of the word is provided by the
verbal stem, The causational affix, if present, makes the verb a causated verb. The
declension provides information about the tense, gender, number, person, honorific
value, etc,, of the word. In rule b), the word is a NOUN., The definiteness affix,
if present, makes the word a ‘definite’ noun. The case declension determines the

‘case’ of the noun (like DATive, POSSessive, LOCative, etc.).
Rules may be more complex rules like rule ¢) given below:
c¢) Noun-Stem — Verb-Stem Causational-Affix

which indicates that Noun-Stem itself could be a derived morpheme, formed from
a verb stem conjoined with a causational affix. However, we would not permif

23

such rules where derived categories may be used on the right hand side of the —.
Rather, we would require that rules like ¢) be “multiplied out” in all other rules
where the {derived) morpheme class (Noun-Stem here) occurs on the right hand

side. Thus by combining rule ¢} with rule b) we get rule ¢’:
¢') NOUN — Verb-Stem Caus-Affix [Def-Affix] Case-Decl

For example, khel (play) is a verb stem and a’ is the verb causational affix. The
form khela’ (game) may be used as a nominal stem and may be conjoined with a
definite- affix t’a’ and a case-declension ke to get khela’t’a’ke (game-DEF-DAT).

In many cases, a declension may be NULL, i.e. with no overt manifestation in
the surface form of a word. Depending upon what the remaining morphemes are,
a NULL morpheme projects its own lexical properties. For example, in Bangla,
a NULL declension on a VERB, indicates second person, imperative mood with

casual honorific value.

As a result of the spelling rules, the surface form of a word is not a simple joining
of a morpho-syntactically consistent list of constituent morphemes. Indeed, some
of the spelling rules for a particular language may be quite complex. Often, one
spelling rule may affect (or be affected by) the decision of the rule at some other

morpheme boundary.

2.1.2 Related Works

Finite-state approaches for morphological processing are not uncommon {73]. Ka-
plan and Kay [87] proposed a series implementation of finite state automata for
translating the lexical form (i.e. a sequence of lexemes constituting the word) of
a word to its surface form (and vice versa). Although the algorithmic feasibility
of their model was discussed, it leads an uncontrolled multiple sub-path genera-
tion in the equivalent automata. Koskenniemi [116, 117, 118] has argued that the
resultant automata in Kaplan and Xay's model may become prohibitively large,
He proposed a two-level approach towards word form production and detection, -
where the automata will run in parallel. A review of the two level approach may
be found in [69]. A rugged framework for lexical description using the two-level
approach as the kernel, was suggested by Ritchie et al [144]. A recent description
on morphological processing from LILOG scheme [149], with an approach similar
to ours, has come to our notice. The above approaches have been also reviewed 1n

Chapter-1.

In the Indian context, despite the fact that many reported NLP formalisms make

24

extensive references to a lexical sub-system, the real problem of tackling lexicons of
reasonable size have not been seriously tackled, As a result, the work presented in-
this chapter appears to be a pioneering concerted effort of its kind. A description

of the ideas described here may also be found in [154, 155].

2.1.3 Overview of Proposed Formalism

In our proposed formalism, the basic idea is to unite the lexicon, the lexical de-
scription and the surface description into an integrated system. The major aspects

of the formalism are;

¢ A stored lexical knowledge base for morpheme classes and their inter-
-relationships. |

o A stored knowledge base for spelling rules.

o A Lexical Specification (or Lexical Description) phase during which the
lexicon writer imparts linguistic knowledge to build up the above knowledge

bases.

¢ A Representation phase in which the knowledge in the knowledge bases is
used to generate the following two levels of lexical representation:

— A Comprehensive Lexicon for every morpheme. The comprehensive lex-

icon contains every relevant lexical knowledge (in the form of f- or m-

- structure schema) for each morpheme in the assumed vocabulary of the
~ language. |

— A formulation of the rules of morpho-syntax and derivational morphol-
ogy in the form of an Augmented Finite State Automata (AFSA).

The major problem for an automata for parsing words is the detection of morpheme
boundaries. There are two interacting regular grammars governing word formation
— one for morpho-syntactic rules and another for formation of morphemes from
alphabetic symbols. An overall automata for parsing words must incorporate bhoth
the above grammars. In our proposal, the AFSA accomplishes that, with a built-
in capability for detecting morpheme boundaries, The AFSA can not only parse
words into constituent morphemes but can also generate the corresponding surface
form from the given lexical form of a word. Special nodes called active nodes of
the AFSA have pointers leading into the comprehensive lexicon, using which all

25

relevant information about the constituent morphemes of a word are recovered
during parsing. |

The proposed recognition system is intermediate between the approaches of Kaplan
et al and Koskenniemi. Here, during lexical specification, the underlying automata
are conceived as in Kaplan et al but during representation, the inherent parallelisms
are taken care of by extending the power of finite state network. As a result, the
size of the overall automata is kept within manageable limits, which we claim to
be lower than what is required by Koskenniemi's formalism.

The formalism is presented as a software tool to be used by a linguistic expert for
specification of the lexicon of the target language. These specifications are to be
‘compiled’ into the proposed representation scheme,

2.2 Lexical Specification

We describe here how the linguistic expert should specify the lexicon for a tar-
get language. While introducing the specification process, we shall systematically
specify a lexicon for a subset of nouns and verbs in Bengali with only the relevant
attributes for every morpheme class. A practical system will incorporate many
such attributes. “

The linguistic expert would provide lexical description in four levels:

1. Specification of different morpheme classes.
ii. Specification of rules of morpho-syntax.
ill. Specification of a set of spelling rules.

iv. Specification of a list of morphemes (constituting the vocabulary).

2.2.1 Specification of Morpheme Classes

In this level of specification, the lexicon writer provides the names of different
morpheme classes for the language. All morphemes of a single morpheme class
project I-structure and m-structure (the m-structure is a GLFG feature described
in Chapter-4) consisting of an almost identical set of attribute names, differing
only in the attribute values. However, individual morphemes may project special
schema which mark some special characteristics of the morpheme.

26

While specifying each class, a set of attribute names, along with a list of permitted
attribute values, is provided. If the attribute name begins with a ##, it indicates
an m-structure and in the place of an attribute name, a two-place path (¢f p),
where gf is a grammatical function name and p is an agreement feature, must be
mentioned. See Chapter-4 for details of the relevant terms. One of the permitted
values of each attribute/ path is enclosed within brackets to indicate it to be the
default value. The permitted attribute value could also be the character *$”, which
indicates that the actual value could be any string of characters. The default value

of such an attribute is the null string. A STEM or PREFIX directive may be given
to a morpheme class to indicate that a morpheme of the class can be the stem or
prefix of a valid word. An END directive may be given to a class to indicate that a
morpheme from this class can terminate a valid word. The morpheme class NULL

has a special meaning and must not be specified.

The declaration syntax is:

(((<Morpheme Class> <Directive>) ((<Attribute Name> <Attribute Namei>
~ (<List of attribute valuaes>)

)
(<Attribute Named> <Attribute Namel>

(<List ot attribute values>)

)

.-
)

((<Morpheme Class> <Directive>) ((<Attribute Name> <Attribute Namel>
(<List of attribute values>)

)
(<Attribute Name> <Attribute Nameld>

(<List of attribute values>)

)

1. <Directive> could be either empty, one or more from STEM, PREFIX and
END.

il <Attribute Namel> is present only if <Attribute Name> is # followed By a,
grammatical function (gf) name like, SUBJ, 0BJ, IOBJ, etc.

27

iii. <List of attribute values>enumerates all possible values of <Attribute Name>
or of (<Attribute Name> <Attribute Namel>), as the case may be. One
itern of the list is enclosed within [and] to indicate the default value.

An Example Specification (for morpheme classes VSTEM, NSTEM, VDEC, VCAUS,
NCASE and DEF):

" (C(VSTEM STEM END) ((VALENCY ([0 1 2 3))
(PRED ($))
(#SUBJ CASE ([NOM] DAT LOC POSS))

(#SUBJ ANIM ([+] -))
(#0BJ CASE ([NOM] DAT LOC POSS))

(#0BJ ANIM (+ [-1))
(#I0BJ CASE (NOM [DAT] LOC POSS))

(#I0BJ ANIM ([+]1 -))))

((NSTEM STEM END) ((CAT ([material] abstract instrument place))
(ANIM (+ [-1))
(PRED ($))))

((VDEC END) ((TENSE (PAST [HABIT] PRESENT))
(GNPH (0 1p [2p-Oh] 2p-1ih 3p-1h 2/3p-2h))

))
((VCAUS END) ((caus (0 [1]1 2))))
((NCASE END) ((CASE ([NOM] DAT LOC OBLQ POSS))))

((DEF END) ((DEF ([YES] NOY)))

2.2.2 Specification of Rules of Morpho-Syntax

Rules of morpho-syntax, also called Word Grammar rules, are concerned with
the formation of words from morphemes. These rules lead to restrictions on a
morpheme of one class following a morpheme of some other classes in a word that
must be reflected in the AFSA. (For example, a morpheme of class NCASE may
not follow a morpheme of class VSTEM. A morpheme from class VCAUS may
follow a morpheme of class VSTEM and in turn may be followed by a morpheme.
from class VDEC or class NCASE.) For this purpose, we introduce here the notion
of a feasible pair of morpheme classes that will be used later during representation.

Feasible pairs: A pair of morpheme classes (M, M,) is a feasible pair, if any
morpheme of class M, can follow any morpheme of class M; in a word. A sequence
‘of morphemes.my + my is a feasible pair of morphemes if m; € My, my; € M; and
M, M, is a feasible pair of morpheme classes. Thus, if m; 4+ my 1s a feasible pair
of morpliemes, m; and m, may appear in order in (the lexical form of) a word.

98

A major assumption in our design s that between any different morpheme classes
M; and M;, at most one pair out of (M, My) and (M,, M) is feasible. This ensures
that during formation of words from word grammar rules, no cyclic reference of

morpheme classes are made.

Word grammar rules are specified in the usual manner of specifying syntactic LFG
rules, 1.e. a lexical category is constituted of (denoted by —) morphemes of some
classes. The rules may be annotated with f-structure schema. However, the rules
must not be recursive, i.e. a lexical (i.e. word) category may not participate on
the right and a morpheme class may not be on the left side of the — of any rule.
An artificial morpheme class called NULL may be used as a mechanism to project
lexical information when certain morphemes are missing (i.e. they are null). The
destgn rule checks associated with the specification of word grammar rules are:

o Out of pairs (My, My) and (M,, My) of morpheme classes, at most one is
feastble

o A NULL class must be the last (i.e. right-most) class in rules where they are
used. |

¢ The class immediately to the left of a NULL class in any rule must have an
END directive specified.

The syntax for rule specification is therefore:

W — M M
- LFG f — structures

Here, W is a lexical category like VERB, NOUN, etc., and M;-s are morpheme
classes. There may be multiple rules for the same lexical categary.

The LFG f-structure schema normally refer to only those attributes belonging
to the morpheme classes under which they appear (local attributes). But other
atiributes (global) may also be referred. These rules project lexical information of

morphemes into a higher level GLFG based parsing system (see Chapter-4).

An Example Rule Specification:

i. VERB -~ VSTEM NULL
(t TENSE)=IMPER
(1 GNPH) = 2p— 0h

i. VERB —— VSTEM VDEC
iii. VERB — VSTEM VCAUS VDEC

29

iv. NOUN —+ NSTEM NULL
(1 CASE)= NOM

v. NOUN — NSTEM NCASE
vii. NOUN — NSTEM DFF NCASE

viih. NOUN — VSTEM VCAUS NCASE
(] CAT) = gerund
vii. NOUN — VSTEM VCAUS DEF NCASE

(T CAT) = gerund

2.2.3 Specification of Spelling Rules

An initial assumption of our formalism was that morphological conjoining is sirictly
concatenative. In reality, this assumption happens to be too strong. In Bangla,
especially in the common dialect (Chalit Bhasa), deformation of symbols around
the boundary of morphemes occur in many cases. For example, when the two
morphemes dhu (Verb stem “wash”) and ben (A future tense Verb declension)
conjoin, the resultant ‘surface’ form is dhoben. Note that the deformation of u
to o in the example i1s very near the conjoining boundary. To take care of such
deformities in our formalism, we assume that words may have two different levels
of representation. The representation that we write, read, speak and hear is the
surface level representation. We also conceive of a lezical level of representation
in which morphological conjoining is strictly concatenative. Thus the lexical form
of the above example would be dhuben. A special class of morpho-syntactic
rules called Spelling Rules govern morpho-phonemic (in spoken form) or morpho-
graphemic (in written form) restructuring of symbols at boundaries of conjoining

morphemes.

Note: We shall express the lexical level representation of two conjoining mor-
phemes Ly and L, as I + La.

Paul [137] has closely studied spelling deformities in Bangla, especially of the Verbal
paradigm. From their observations, backed up by some of our own, we may list
the following salient features of spelling deformity:

1. Any deformity may be characterized entirely by the following ‘atomic’ oper-
ations: |

(a) Addition of a symbol.
(b) Deletion of a symbol.

(c) Replacement of one symbol by one or more symbols.

30

(d) Replacement of more than one symbol by one symbol.

We assume a special symbol @ to denote the ‘absence’ of a symbol. Using 9,
all the above atomic operations may be expressed by (possibly multiple uses
of) a single operation — replacement of one symbol (which can be §) by one
other symbol (which can also be §). Replacement of @ by § is superfluous.

ii. Although there are innumerable individual instances of deformities, they can
be reasonably generalized. Some of these generalizations have “global” impli-
cations and are applicable during a conjoining between any two morphemes.
Some of them are however “local” to conjoining between pairs of morphemes

from certain particular morpheme class pairs.

In light of the above observations, we introduce the concept of Spelling rules and
specifications thereof in the following paragraphs.

Alpﬁabét: The set of all characters that can constitute a lexical form (resp.
surface form) of a word constitutes the alphabet ¥; (resp. Zg). Although most,
characters of Xy, and Ly are identical, in general, Xy, and £ are not equal.

An l-r pair; We define a : b, where a € B, U and b€ TrUB, to be an I-r pair
or simply pair. A union ay|ag|...|ak : by[bs ... [b; of pairs represents a disjunctive
choice a; : b;, 1 £ ¢ £ k, from the £ possible pairs. We shall call & the length of
the union.,

An R-Expression (RE) is defined as a finite string of unions of pairs. For
example, RE = (alb) : (z|z)® : yc: @ is an R-Expression. If there are n unions
in an R-Expression R¥, it represents all distinct l-r-pairs of length n obtained by
opening-out the disjunctive choices of the unions. If the strings represented by an
R-Expression 5 be listed in a list L, we call L the string list of RE. In the
example taken above, {a:x@ :yc:0,b:20:yc: 0} is the string list. The name
R-expression has been used in the present context to highlight the similarity with
reqular expressions.

LEX and SURF of an RE: Let ! be a string of pairs. We define LEX(!) (resp.
SURF(1)) to be the string formed by taking only the left hand (resp. right hand)
symbols from pairs a : b (collapsing all § symbols) of I. LEX(RE), for an R-
Expression RE is defined as the ordered list of strings formed by taking LEX({)
(resp. SURF(1)) of all] € L, where L is the string list of RE. In the example of
the preceding paragraph, LEX(RE) = [ac, bc] and LEX(RE) = [zy,zy). There
1s an one to one correspondence between individual members of LEX(RE) and
SURF(RE) for a given RE. Thus, in the example, ac and bc correspond to zy
and zy respectively. Subsequently, whenever LEX(RE) and SURF(RE) will be

31

co-referred, it will mean that such a co-reference ranges over corresponding pairs
from LEX(RE) and SURF(RE). The notions of LEX and SURF will be used

in later sections. In the ensuing discussions, we would use the notation RE” and

RE” to denote LEX(RE) and SURF(RE) respectively.

String Matching: A string ¢ is {ail matched by a string s if | £ |>| s |= n , and
the last n symbols of ¢ spell out the string s. A string s head matches a string ¢ if
-5 is a prefix of ¢,

Spelling Rule: A spelling rule is a template of the form RE; + RE,, where RE,
and RF, are R-Expressions, The character + represents the abstract morpheme
boundary. Intuitively, a rule Bl + RE, means the following. At the boundary
between two morphemes, let the left morpheme tail match and right morpheme .
head match RE¥ and RE; respectively. In the surface, the matched portion of the
morphemes get translated to the corresponding symbols from RE;* and RE;. In
other- words, a feasible pair of morphemes (a notion introduced earlier) ml + m2
matches a rule BE; + RE; and gets translated to surface sit;¢555 if and only if
My = 817, Mg = TS89, T € RE{‘,tl € REf, re € RE%’, tg c RE&Q and Tl,tl ancl
re, 12 are corresponding pairs,

Often, as a shorthand, a spelling rule rule template may be written as: ..,S5 :
T...+4 ..., where S and T are strings of identical size. This representation is a
shorthand for | S | different rules formed by taking members from S and T in

order.

Arule @ : 0+ 0:0 called & trivial rule, is never explicitly mentioned.

Local and Global Rules: Rules may be defined to be applicable at the boundary
between only some specified pairs of morpheme classes. In such cases, the rules
are adorned by the pairs of morpheme class, Such a rule will be called a local
rule, All unadorned rules, called global rules, are applicable at the boundaries of
all morphemic pairs. In the event of a rule clash between a local and a global rule, .

the local rule prevails.

Specification of spelling rules consist of a list of local or global rules in the format:

<Spelling Rule Template> { at (My, M,)]

where, M, and M, are morpheme classes, If the “at” clause is present, it indicates
a local rule; otherwise it is a global rule. The null symbol is represented by ‘0.
Additionally, the symbols ‘V’, ‘C’ and = represent the sents of all vowels, set of
all consonants and the entire alphabet set, respectively. Specifications are given
in our phonetic code described in Appendix-A. However, during storage, symbols

32

are stored in ISCII.

In Appendix-Bl, we have listed a set of some spelling rules we used for our system
for Bangla. The global rules have been adopted from [34] and [35]. The rules
applicable at the boundary between verbal stems and verbal declensions have been

taken from [45] and [137] with suitable augmentation and modification.

Storing Spelling Rules:

" The Spelling rules specified by the lexicon writer is stored in a temporary text file
SPELL.IN for use during generation of AFSA in Sec-2.3.5.

2.2.4 Morpheme List Specification

As the final level of lexical specification, the lexicon writer provides a list of mor-
phemes belonging to the subset of the language being considered. A morpheme is’

specified on the following format:

<Morpheme>: ((<Morpheme Class> {<Attribute Name/Path <Value>)
(<Attribute Name/Path <Value>)

)
(<Morpheme Class> (<Attribute Name/Path <Value>)

(<Attribute Name/Path <Valued>)

This format permits a morpheme o be a member of multiple classes. The list of
attributes specified for every class may include all or some of the attribute specified
for the class, As mentioned in Sec-2.2.1, if an attribute is omitted in the above
specification, the default value of the attribute in the specified class is assumed to.
be included. The list may also include other attributes/paths not included in the
specified class but belong to some other class,

Example:

i) pa’: ((VSTEM (VALENCY 1) (PRED ’get’))
(NSTEM (CAT instrument) (PRED ’foot’)))

33

ii) pa’t:

iii) mar:

iv) ma’r:

vi) t’a’:

vii) er:
viii) ke:

ix) e:

xi) te:

xii) ten:

(

(

(VSTEM (fALENCY 1) (PRED ‘lay’)))
(VSTEM (PRED ’die’) (CAUS 0)))
(VSTEM (VALENCY 1) (PRED ’kill’}))
(VCAUS))

(DEF))

(NCASE (CASE P0SS)))

(NCASE (CASE DAT)))

(NCASE (CASE LOC) (CAT place))

(NCASE (CASE OBLQ) (CAT material))
(VDEC))

(VDEC (TENSE CONTINF) (GNPH 0)))

(VDEC (GNPH 2p~1h))

(VDEC (TENSE CONDINF) (GNPH 0})
(NCASE (CASE LOC) (CAT place))
(NCASE (CASE OBLQ) (CAT material)))

(VDEC (TENSE HABIT) (GNPH 2/3p-2h)))

A few words on the above example specification:

o A morpheme may belong to multiple classes as in i), ix), xi).

o Even while belonging to the same class, there may be alternations in the

lexical specification as in ix) xi).

¢ A morpheme may be specified only with its class as in v), vi), ix). In such

cases, all default attributes are assumed.

e There is no harm in re-specifying a default attribute value as in xii).

e An attribute not included in the default attributes of the morpheme class of
a word may also be specified, as in iii) where CAUS is not a default attribute

specified for the VSTEM class.

2.3 Lexical Representation

As discussed in Sec-2.1.3, there are two levels of lexical representation:

34

o A Comprehensive Lexzicon for every morpheme.

e An Augmented Finite State Automata (AFSA).

2.3.1 The Comprehensive Lexicon

- The Comprehensive Lexicon is basically an indexed database of morphemes. The
specification of an individual morpheme is first completed by copying the default
specifications from the class it belongs. From this, tuples of the type:

< Morpheme Class > (< Attribute Name/Path >< Attribute Value >)(...)

are created and stored in the database entry for the morpheme. There may be
multiple tuples for the same morpheme, One implementational bottleneck is that
the size of the tuples are different. Standard relational database management tools
do not provide facilities for storing variable sized records. We have overcome the
difficulty in the following manner. We maintain an auxiliary file (SCHEMA file) for
storing schema constructs of the type (< Atiribute Name/ Path >< Attribute Value >
)(....). Now, we have observed that the size of this construct for a standard lexical
specification for Bangla is at most three (3). An extra flag must be incorporated
for coding constraint schema (existential — code E, negative existential — code
N and constraint -— code C). The schema database can thus be maintained at a

reasonable storage efficiency. Actually, further compaction has been achieved by
encoding the morpheme class names, attribute names and attribute values in a
master database file (MASTER file). Furthermore, character strings have been
encoded through still another code file (STRING file). The main comprehensive
lexicon file (LEXICON) has the record structure (M, s,n), where M is the code for
the morpheme class of the morpheme indexed to this record. s is the record num-
ber in SCHEMA file of the first schemata in the projection of the morpheme and n
is the number of schema in the projection of the morpheme. Thus, if a morpheme
points to the k-th record of LEXICON file which is (M, s,n), then the projection
of the morpheme consists of n schema stored in record number s through s +n—1

in the SCHEMA file.

A database file called MORPH, which is a temporary access file to Comprehensive
Lexicon, is also created. This file is required during automatic generation of AFSA
described in Sec-2.3.5. This file consists of pairs (m,7), where m is a morpheme
and 2 is an index into the LEXICON file for m. There may be multiple entries for
the same morpheme in MORPH file. The file may be discarded after generation ot

the AFSA.

The actual generation of the database files is quite straightforward if utilities like

35

Lexical Analyzer Generator (Lez) and Compiler Generator { Yace) are used.

Example: Consider the morpheme te specified in ix) of example morpheme spec-
ification 1 Sec-2.2.4, There are four entries for this morpheme in the LEXI-

CON file (and hence four entries in the MORPH file), Of them, let us consider
the one in which te is a finite verb declension. The complete lexical specifica-
tion for the morpheme consists of two schema. The relevant entry in the LEX-
ICON file would be (Code(VDEC),s,2) and entries of record numbers s and
s+ 1 in the SCHEMA file would be (Code(TENSE),Code(HABIT),§,0) and

(Code(GNPH),Code(2p — 1h),0,8) respectively, where ¢ indicates blank entry.

2.3.2 Introduction to the AFSA

The Augmented Finite State Automata (AFSA) is our proposed tool for parsing
words into constituent morphemes. In the normal mode of use, the AFSA ac-
cepts the surface representation of a word as input and ultimately generates index
pointers into the comprehensive lexicon for the morphemes constituting the word.
The lexical projection of the word can be recovered as a result of unification of
the lexical projections of the constituent morphemes. The lexical representation
of the word is trivially obtained in the process. In a less used mode, the AFSA
may also be used to generate the surface representation of a word from the lexical
representation given as input. The AFSA is automatically compiled out of the
various specifications provided by the lexicon writer described in Sec-2.2

We have made a major assumption in designing the AFSA, It is assumed that
Morphological restructuring takes place only at the boundaries of conjoining mor-
phemes and spelling deformations propagate continuously away from the conjoining .
boundary. The application of a rule at a boundary is contezt-free, neither affecting
nor being affected by an earlier or later application of a rule at some other bound-
ary. Our observations from Bangla show that instances of rule context sensitivity
are very rare. They sometimes occur when three or more morphemes conjoin and
a sandwiched morpheme, being of very small length, is deformed, both from the
right as well as from the left. It then becomes necessary to judge in which order
the deformations need be carried out since the effect of one deformation may alter
symbols ‘at the other boundary as well. In Bangla, there is one major instance
of the phenomenon where the verbal causational affix a’ is deformed at bound-
aries with both the preceding verb stem and the succeeding verb declension. This
situation has been taken care of by a minor manual fine-tuning of the AFSA.

The AFSA consists of a forest of Directed Acyclic Graphs (DAGs). Each DAG

represents a finite state recognizer for a class of morphemes. However, there is a

J6

single DAG for all STEM type morphemes. The DAGs consist of two types of edges
— lexical or l-edge and surface or s-edge. Transition along l-edges only from the
root node to a terminal node of a DAQG recognizes a lexical morpheme. Transition
along s-edges however, recognize one surface form of some lexical morpheme. The
different DAGs in the system are also inter-connected by 1- and s-edges. However,
the inter-DAG edges are qualitatively different from intra-DAG edges. We call
inter-DAG edges active and intra-DAG edges passive. The active edges encode the
morpho-syntactic restrictions applicable for the language specified by the lexicon

writer as described in Sec-2.2.2.

2.3.3 Formal Definition of the AFSA

The AFSA consists of a forest of DAGs, where every DAG consists of:

a. A set of nodes representing siates. Nodes are labeled as passive, l-active
and /or s-active.

b. A set of l-passive edges between a pair of nodes in the same DAG.
c. A set of s—paésive edges between a pair of nodes in the same DAG,

d. A set of -active edges linking a (terminal) node of one DAG to the root node
of another DAG. The word active node will be used interchangeably with

terminal node.

e. A set of s-active edges linking a terminal node of one DAG to a root node
of another DAG. Every s-active edge has a disjunction of one or more index
pointers into the Comprehensive lexicon. Every s-active node is associated
with one or more s-active edges. Additionally, if the DAG to which an s-
active node belongs represents a morpheme class with the END directive,
the node has one trivial s-active edge. Unlike normal s-active edges, a trivial
s-active edge does not link to any node in a different DAG. However, it has
an index pointer into the Comprehensive Lexicon,

f. A set of associations connecting an l-active and one or more s-active nodes.

Every DAG has a unique root I-node and one or more root s-nodes, The root I-node
i8 also a root s-nodes.

37

2.3.4 Parsing in the AFSA

Input: The surface representation of a word — s

Aim: To recover pointers into the Comprehensive Lexicon of the constituent mor-
phemes of s, The Lexical representation is trivially obtained as a by-product of

the analysis.

"Data Structures: The AI'SA and a Steck of quadruples (dag,node,indez, k),
where node is an active node in DAG dag, tndex is an index pointer into the
Comprehensive Lexicon and latest morphemic boundary is at the & — 1-th symbol

of the input.
Driving Routine of the AFSA:

Step-1 dag « STEM; node « root l-node of the STEM DAG; k « 1. (Here &

points to the character in s currently being scanned). Clear the Stack.

Step-2 If the end of string has not been reached, proceed to Step-3. Otherwise,
check if node is an s-active node. If not, proceed to Step-5. Otherwise, let
p « p;, where p, is the trivial index pointer for node. Push (dag,node, p, %)
in stack and ezit with success.

Step-3 If node is an s-active node, non-deterministically decide whether fo make
an active transition. In the event such a decision is taken, let the chosen non-
trivial s-active edge lead to node n in DAG d and let p be the index pointer of
the chosen edge. Push (d,n,p, k) onto stack. Make dag +- d and node + n
and repeat step 3. If active transition is not taken, proceed to Step-4. An
active transition is not possible from an s-active node if all s-active edges
from the node are trivial edges (i.e. they lead to nowhere).

Step-4 If there is an s-passive edge in DAG dag from node node to node n on the
k-th character of s, make node «— n; & «— & + 1 and go to Step-2.

Step-5 If there is no s-active or s-passive transition possible in DAG dag from
node node based on the k-th character of.s, or if k points beyond the last
character of s, pop (dag,node, p, k) from steck (where p is a dummy variable)
and resume in Step-2. If the pop operation fails, exit with failure, i.e. declare
the input word to be ill-formed.

Output Pointers to Comprehensive Lexicon:

38

If the driving routine terminates successfully, the steck contains v, r 2> 1 quadruples
(d1, 1,01, k1), (dyynigy pay k), -+ (dyy 0y, Py k). The lexical projection of the word
is the union of the r sets of schema obtained from the comprehensive lexicon by

following the pointers p;, ps, -+, pr.
Obtaining All Possible Word Parses:

In the form presented above, the parsing algorithm obtains one parse of a well-
formed word. However, with slight modifications in Step-2, it is possible to get el
parses for an input word. After a valid parse has been found, control must return
to Step-2. No success exit 1s carried out but instead the top-most stack enfry is

popped outt and discarded and a branch to Step-5 is taken.
Soundness and Completeness of the Parsing Algorithm:

The parsing algorithm guarantees that a well-formed word will be correctly parsed.
However, some non-well-formed structures may still be accepted. To reject such
inputs, the lexical structure obtained as output may be fed back to produce the
corresponding surface structure. The original input structure is well-formed if and
only if it i1s identical to the surface structure obtained out of the feedback process.

Computational Complexity of Parsing Algorithm:

The worst case time complexity of parsing in AFSA is of exponential order, pri-
marily due to the non-determinisms at various stages., Let there be n DAGs in
the system corresponding to n — 1 non-STEM morpheme classes and one common
STEM DAG, The worst case first level non-determinism occurs at an active node
(which is also a passive node) of the STEM DAG where the next symbol has active
transitions to every n—1 non-STEM DAG as well as a passive transition, This gives
rise to an n level non-determinacy. The worst case second level non-determinism is
of order n — 1 and may occur at an active node of a non-STEM DAG, where there
may be n — 2 active transitions to the remaining n — 2 non-STEM DAG (active
transitions from a DAG to itself are not possible) as well as a passive transition.
Similarly, k-th leve] non-determinism is of order n — k< 1. Of course, while parsing
a given word, there may be at most n levels of non-determinism, since otherwise
there must be a cyclic active transition. As all non-determinisms are multiplicative,
the worst case scenario during parsing could lead to n! non-deterministic choice for
every single symbol of the word, hence giving a O(k™) worst case complexity for a

word of length k.

Now, it i1s generally observed that while there may be many active transitions from
an active node of the STEM DAG, active transitions from an active node of a.
non-STEM DAG is much fewer. This is because, a non-STEM morpheme class

39

may be followed by only a few other DAGs in morpho-syntax rules. For example,
in the rules for Bangla specified in Sec-2.2.2, only the VCAUS morpheme class has
more than one (actually three here) following morpheme classes (VDEC, DEF and
NCASE). Thus there may be at most three active transitions from an active node
of the VCAUS DAG. We may safely conclude that higher (than one) level non-
determinisms do not affect computational complexity in an appreciable manner.
Pragmatic worst case complexity is therefore (k") — still exponential!

- Focusing entirely on first level (i.e. localized in the STEM DAG) non-determinism
only, it is possible to reduce it further by associating a set of lookahead symbols
with active edges. An active transition is taken only if the next symbol belongs to
the lookahead set. A non-determinism is then encountered when all the following
conditions hold:

¢ The present node is an active node.

o Total transitions (both active as well as passive) possible from the present
node, with the next symbol as “lookahead”, is more than one.

- While worst case complexity still remains exponential, since non-determinism is
now governed by two independent events of moderate probability, the practical
complexity is quite low. It is difficult to analytically compute the average case
complexity since it is not easy to estimate the distribution of words being fed to
the AFSA. We made the following short study for a moderate lexicon consisting
of 565 stems of different classes. We identified the nodes in the STEM DAG that

cause non-determinism, along with the offending characters. The results are shown

below:

Total number of stems = Hbd
Total number of nodes = 764
Total number of active nodes = 551
‘Total number of oftending active nodes = 124

Of the 124 offending nodes (less than 17% of all nodes), in as high as 84, the
offending symbol was 1. Invariably, these nodes recognized verbal stems and the
non-determinism was between active transitions to the VCAUS (since by the effect
of some spelling rules, the causational affix i becomes 1y, if the following verbal
declension is E realized as e in the surface) and VDEC (since there are many
declensions like i, ite, ila, etc., that begin with i. We fine-tuned our recognizer to
lookahead to the second lookahead character at active nodes, if the next symbol
is 7. This leaves us with 60 isolated offending active nodes in the AFSA. The test

runs show near linear (with respect to word length) run time complexity.

40

2.3.5 Automatic Generation of AFSA

The specifications provided by the lexicon writer (as described in Sec-2.2), are
compiled into an AFSA. The compilation proceeds with two passes over the list of
morphemes {Sec-2.2.4), along with an intermediate pass over the list of spelling
rules (Sec-2.2.2) stored temporarily in file SPELL.IN. The compilation process is
pre-processed by a pass over the list of morpheme classes (Sec-2.2.1. The second
pass also consults the set of spelling rules. The morphemes are assumed to be
~existing in the database file LEXICON (and its auxiliary files) and the temporary

access file MORPH (see Sec-2.3.1).

In the ensuing discussions, the compilation process will be explained with reference
to the examples cited in Sec-2.2.4, The AFSA obtained after the first pass of
compilation has been shown in Fig-2.3 and the final AFSA produced is shown in

Fig-2.4.
Pre—pm cessing Stage:

Here, one skeletal DAG (i.e. DAGs with no transitions and a root node only) for
every morpheme class without STEM directive is created along with one common
DAG for all morpheme classes with STEM and PREFIX directives. The morpheme
class specification of Sec-2.2.1 need only be consulted. The example specification

in Sec-2.2.1 creates skeletal DAGS STEM, VDEC, VCAUS, NCASE and DEF.

First Pass:

In the first pass, morphemes are entered into the automata resulting in step-wise
increase in the sizes of the respective DAGs. An attempt is made to recognize
the next morpheme in the DAG specified for it, till a node is reached from where
no further transitions are possible on the next symbol of the input morpheme.
Thereafter, new nodes and edges are created so as to incerporate the morpheme
in the specified DAG. The last node visited/created for every morpheme is made
an l-active (and hence also s-active) edge. No spelling deformities are considered
in this pass and as a result, l-passive and s-passive edges are identical. By the
above process of creating DAGS, the path from the root to an l-active node in a
DAG traces out a unique morpheme. Suppose the next morpheme incorporated is
m and it traces out a path upto a l-active (hence s-active) node n in the relevant
DAG. Let there be & entries (m,?1), (m,43), -, {m,4) in the MORPH file for m
Let the indexes 1,15, - - - indicate morpheme classes My, M5, -+, A trivial s-active
edge e from n is created such that the index pointer of e is i, V 2, V -+, where
M., M, are classes with the END directive,

Intermediate Pass:

41

An intermediate stage of compilation generates lexical versus surface structure
association for all morphemes that can follow other morphemes by consulting
the spelling rules one by one from the temporary file SPELL.IN Sec-2.2.3. As
output, this stage creates a symbol table of quadruples (< MorphemeClass >
, Node, LexString, Sur f String), which means that the actual start node of the
DAG (for surface representation) for < MorphemeClass > is Node, provided the
morpheme (in lexical structure) begins with LexString, which gets deformed to
Surf String by the spelling rule. This stage in general needs to split hitherto iden-
“tical 1- and s-edges and may also need to create new s-active nodes and s-passive
edges in the following manner:

Let RE,+ RE; be a spelling rule applicable at boundary between morpheme classes
M; and M,. Let REY and REY differ first at position 1.

Case 1. ¢ =1 i.e. even the first characters of RE{ and RE; are different.

Take for example, therulea’: ¢’ +0:00:y a’ : &’ at VSTEM, VCAUS. The
strings o’ € {0:00:ya':d} andoya’ € {§:00:y o’ :a'}° differ at the
first position,

A new sub-DAG consisting of s-passive edges only is created for all strings
of the form RE5w, where REZw is a morpheme, w being the part of a mor-
pheme unaffected by the rule. All final nodes of the sub-DAG thus created are
made s-active and associated with the corresponding l-active nodes, paths to

which have REY as prefixes. (M,, < Root Node of SubDAG >, REY, RE3)

is entered into the symbol table.

_ In the example, a sub-DAG for oya’, with VCAUS/1 as root, is created. The
terminal node of this sub-DAG is made s-active and is associated with the

only node which has ¢’ as a prefix. (VCAUS, VCAUS/1,d/,d’) is entered
into the symbol table.

Case 2. 2 > 1 A process similar to the above case is carried out, but the root
of the sub-DAG is same as the root of the original DAG. Hence, the part-
of the sub-DAG recognizing RE; upto the zth character is a part of the
OI‘lglIlELl DAG. As before, (M, < Root Nodeof original DAG >, RE;, RES)

is entered into the symbol table.

In our example, for therule C : CV1: R(V1)C: C+1:tat VSTEM VDEC,
t € {t: 1} is identical to ¢ € {t:#}". So no new sub-DAGs are created for

morphemes /tef and /ten/ which has ¢ as prefix. However, (VDEC,VDEC,t,t)
is entered into the symbol table.

Second Pass:

42

In the second pass of compilation, at first every lexical morpheme of a given class is
associated to all possible following classes by constructing l-active edges. Next, the
surface structure of the morpheme is woven into the same automata by associating
s-active nodes with root nodes of other DAGs in the following manner:

Let the current morpheme m belong to class My and let there be a spelling rule
RE, + RE, applicable at boundary between morpheme classes My and M;, The
morpheme pa’t and therule C: CV1: R(V1)(: C 411t generates an example.
~ As a result of the first pass, m (pa’t here) traces a path upto some l-active node !
(say) in DAG M;. From this node RE] (pat here) is backtraced to node n (say).
So, there must be a bundled l-passive/l-active transition out of n (root of STEM
DAG in the example) on character ¢, where ¢ is the first symbol of REF {p here).
Starting from node n, an attempt is made to create a branch of the DAG M;
consisting of s-passive edges only, recognizing RE?. Suppose that the process can
be continued upto node n'. Note that »’ could be the same as ! (if RE = RE?),
or it may be a different node. In the example, two extra nodes are generated
to recognize pet. The node n' is made an s-active node and associated with /.
The symbol table is searched for an entry of the form (M,, R, REZ, RES). The
intermediate pass has ensured the finding of such an entry. In the example, the
triple (VDEC,VDEC,t,t) is obtained from the symbol table. Starting from n', an
s-active edge e is generated upto the node R in DAG M,. Let (m,ix,), (m,i,)," "
be MORPH file entries such that the morpheme class indicated by entries of the
LEXICON file indexed through ¢, ,%,, ' are all M;. The index pointer of ¢ is
made the disjunction g, Vi, V- . The whole process is repeated for all applicable

spelling rules.

The final AFSA for the example morpheme specification from Sec-2.2.4 is given in
Fig-2.4. |

Let us take up some examples of words parsed by the AFSA of Fig-2.4

pa’y: This word has multiple parses -— NOUN: pa’(NSTEM, “foot”)+e(NCASE)
and VERB: pa’(VSTEM, “get”)+e(VDEC). In both cases a global spelling rule
(ala’|o) : (ala’jo) + e:y is applicable across the morpheme boundary.

peye: This word is parsed as VERB: pa’(VSTZﬁM)+E(VDEO). Note that E, the
colloquial form of the CONTINF verb declension, is a symbol from the lexical

alphabet only. The spellingrule V : V + E :y 0 : e local to the boundary between
VSTEM and VDEC is applicable here. The set V is the union a|d’|z}i" |u\u’|ﬁ\e’|o|o’),

i.e, the the set of natural vowels.

pa’yer: Parsed as NOUN: pa’(NSTEM)+er(NCASE). The spelling rule V : V +
D:y e:elocal to boundary between NSTEM and NCASE, is applicable.

43

pa’oya’: Parsed as NOUN: pa’(VSTEM)4a*(VCAUS). The spelling rule {a}a'|o) :
(ala’lo) + B:00:ya’:a local to boundary between VSTEM and VCAUS, is
applicable. Note that the word is a NOUN. |

pa’te: Will have multiple parses NOUN: pa’(NSTEM)+4te(NCASE) and VERB:
pa’t(VSTEM, “lay”)+e(VDEC). Both are by normal concatenation.

pe’te: Will have multiple parses VERB: pa’t(VSTEM)+E(VDEC) by spelling
rule o’ ;e C : C 4 E : e (where (' is the set of normal consonants) and VERB:

' pa’(VSTEM)+te(VDEC) by rulea’ : e +1¢: 4.

mara’y: Will be parsed as mar(VSTEM “die”)+a’(VCAUS)+e(VDEC) by the
AFSA. However, the word mara'y is ill-formed because in Bangla, there is a verb
stem ma’r “kill® meaning the causated of mar and thus mar itself can not be
causated. The AFSA as such does not detect the error. The error is detected
when an attempt to unite the schemata (T CAUS) = 0 projected by mar with
schemata (T CAUS) = 1 projected by a’ fails.

2.3.6 Later Modifications

A modification in the structure of the AFSA in the form of lookahead symbols has
been suggested earlier. The lookahead set may be generated without difficulty in
the second pass of compilation, A non-trivial modification in the control program
of the AFSA would be suggested in Sec-6.3 to take care of “affix-hopping”, an
idiosyncratic feature of Bangla.

In the next chapter (Chapter-3), we would extend the concept to lexical items
spanning across more than one word.

2.4 Implementation Notes

The major object (also known as classes in C+4 parlance) used are:

PassiveNode: This class represents a passive node of the AFSA. It contains
lexical and surface back passive edges to the previous node. There is a
container of pairs (c,lp), where ¢ is a symbol from the lexical alphabet and .
Ip is a pointer to another node. Thus the items of this container are I-
passive edges. There is another similar container for s-passive edges. Member
functions includes forward/ reverse lexical/ surface transition procedures.

44

ActiveNode: Is inherited from PassiveNode, There are two additional container
for 1- and s-active edges. Each contained item of these containers is an Active
Edge. There are member functions for making I- and s-active transitions. An-
other important member data of ActiveNode is pLex List, which is a pointer
to a linked list of pointers to the Lexicon class. All members of the list are
assumed to be disjunctively pointing to different lexical entries.

ActiveEdge: Is a pair (pLook,pN ode) where, pLook is a pointer to a sef of “looka-
head” symbols and pNode is the root of the DAG to where the active tran-

sition 1s taken,

Lexicon: This class does not have any important member data. It serves the
purpose of interacting with the lexicon through database management rou-
tines to draw lexical projections of morphemes.

Other classes used are FStructure, Pair, etc., along with member functions to
perform Locate and Merge operations of LFG. These classes will be discussed in

more detail in Chapter-4.
Object Returned by the Lexical Sub-system

As shown in Fig-2.2, there are two major contents in the object returned by the
lexical sub-system — Word category of the input word being parsed and the f-
structure, In practice, the structure of the object returned by the lexical com-
ponent is not exactly so. The reason is that in our proposed system, there is
an intervening supra-lexical layer (described in Chapter-3) between the syntactic
component and the lexical component. The components of the object actually

returned is as follows:

e The mput word itself.
¢ Word Category. Indicating the tentative word category of the input word.
o A List of constituent morphemes.

o A List of (codes for) Morpheme Classes My, M, <« for the constituent mor-
phemes of the word. Thus, the details of morpho-syntactic composition of
the input word is also returned. |

o A List of (pointers to) f-structures Fi, Fy,: - - for the constituent morphemes.

o A (pointer to) the unified f-structure of the word.

e A List of (pointérs to) m-structure schema of the word, if any.

45

o A (pointer to) the semantic clause of the word.

The class corresponding to the return object is called LexPrimitive. This class
has member functions to extract the following:

¢ The word

¢ The (tentative) Word Category.

¢ The constituent morphemes,

o The Morpheme Class of the 7-th morpheme.

¢ The f-structure of the i-th morpheme. As we shall show in Chapter-4, it is
possible to extract out the (sub) f-structure corresponding to any attribute of
an f-structure. Using similar techniques, it is possible to extract the (sub) f-
structure corresponding to any attribute of the f-structure of any constituent

morpheme of the word.
¢ The number of arguments in the semantic clause of the word.

o The i-th argument of the semantic clause. If 2 is zero, the semantic predicate
is returned.

o The m-structure schema.

Interaction with the Lexical Sub-system is carried out through the following func-
tion:

int primitivelexAnalysis(char ¥word, \\ Input word
LexPrimitive *lexPrim \\ Returned object

): // Returns TRUE if parse successful,
// FALSE otherwise |

2.5 Discussions

The formalism proposed here has been tried out for a medium sized lexicon in
Bangla consisting of about three hundred verb stems, one thousand nominal stems
and a few stems of some other classes. There are about forty verb declensions
and about ten case declensions capable of generating 2,400 VERBs (causated and

46

non-causated) and 10,000 NOUNs. The results of parsing obtained were very
satisfactory, with near linear recognition time complexity.

The rules that govern conjoining between one the thirteen mono-syllabic (one to
three characters in length) prefixes and a noun in Bengali, are semantic in nature.
The lexical projection of a prefix does not provide any advantage in syntactic
processing of sentences, Moreover, since the noun stems and the prefixes reside
in the same DAG (STEM), the active transition from an active node recognizing
~a prefix leads to the root of STEM DAG itself, causing self loops. Too many self
loops lead to a rapid degeneration of efficiency. In our system, we have stored both
the prefixed and unprefixed versions of nouns as distinct stems.

The lexical projection of a compound stem produced as a result of euphony of
two stems can be derived from the conjoining stems. As a result, euphony is a
more attractive subject of study than prefixes. If an AFSA is used to perform
rule-based de-euphonization, it may have too many self-loops, resulting in reduc-
tion of efficiency. However, at the level of sentential syntax analysis, considerable
advantages may be derived from rule-based de-euphonization. We have made some
initial studies [135]. However, it is too early to report any major achievement.

The biggest advantage of our formalism is the compactness and lucidity of repre-
sentation. The recognizers are finite-state networks — a well-studied formalism.
The representation scheme is easy to understand and quite flexible. The underlying
LFG formalism permits a broad generalization across morpheme boundaries as in
the last example taken up in Sec. 2.3.5 (i.e. mara’y). Comparing our formalism
with Koskenniemi’s two level approach, we find that the latter does not incorporate
morpho-syntactic restrictions in the automata itself. In the framework proposed by
Ritchie et al [144], atternpts have been made to include morpho-syntactic rule as
extensions of Gazder’s GPSG [70] formalism. However, adapting such a framework
to suit a LF'G based system appears difficult. Moreover, morpho-syntactic pars-
ing in the above framework involves complex manipulations of rules unlike simple

pointer tracing in the proposed formalism.

47

el Egay —— s e LEr e ek g

e Bkl ey awm e AR s sk [oy s e

Lexical Component

Syntactic Category

Lexical
Analyzer

F-lStru ctures

Figure 2.1: Conventional Lexical Interaction

Syntactic Category

Fistructures

Word
Syntactic Component
‘ Lexical Component
Aut%:g;lata Conjoined
Morphemes

Parsing Words

.| Morpho-Syntactic

Encoder

Figure 2.2: Lexical Interaction with Morpho-Syntactic Analysis

48

DEF o)

Edges are both l-passive and s-passive, Numbered circles are active nodes. Figures on
terminal nodes indicate entry number of Morpheme Lexicon (Sec-2.2.4) indexed by the.
nodes. | |

Figure 2.3: The AFSA After First Pass of Compilation

49

To VDEC/2
To VDEC || VCAUS

—* Ty VDEC || VCAUS
' _To VCAUS || VDEC || NCASE
- To VCAUS/1 || VDEC/1 || NCASE/1 || VDEC || NCASE
.m@n@ To VDEC || VCAUS
l |

To VDEC/3 || VDEC

t e To VDEC/2

STEM

...contd(Fig-2.4)

a0

* k
l-active Node 4+ s-active Node — |- Edge
— 5~ Edge

Figure 2.4: The Final Compiled AFSA

51

Chapter 3

The Supra-Lexical Level

(Quite often a lexical item spans across more than one word in many Indian lan-
guages, especially in Bangla. Often, the overall projection of a multi-worded lexical
item may not be trivially determined from the projections of the individual words,
thus violating the principles of “Direct Syntactic Encoding” (a primary concept on
which LFG is based). In their article on LFG [88], the authors demonstrated how
similar problems in English could be tackled by the use of constraint schema or
functional control schema. We shall show that these approaches are not attractive
enough for Bangla, because either they lead to manifold increase in lexicon storage
requirement, or because some basic assumptions of LFG are violated. We propose
a Supra-Lezical level of analysis, which forms the actual interface between a syn-
tactic component and the morphological {or hitherto known lexical) component.
The primary responsibility of the supra-lexical component would be:

i. Detect co-occurring words forming a lexical item and in the process provide
feedback to the syntactic component to “pump in” more words.

ii. Obtain normal projections of individual words using the existing lexical com-
ponent as described in Chapter-2.

1ii. Generate the projection of the word-group from the projections of the in-
dividual words in the group using some specified supra-lezical rules to do

S0,

The lexical interaction scheme with an intermediate supra-lexical level of analysis
is explained in Fig-3.1.

In this chapter, we would establish the necessity of the supra-lexical level for Bangla.
by first giving a general solution outline and requirement specification in Sec-3.1.

02

Word(s) FI.EEdb&Ck | Syntactic Category

r
| F-Structures
r o _: Syntactic Component ,
L | Supra-Lexical Component
WGI'(]. — -
Co-Occurrence
Analyzer ¥ .
|— Supra-Lexical Component)
Lexical Component
AutE)Tata Conjoined | Morpho-Syntactic
Morphemes Encoder

Parsing Words

Iigure 3.1: Lexical Interaction with Supra-Lexical Analysis

Next, in Sec-3.2, a complete formalism that may be used by a lexicon designer for
supra-lexical specification would be introduced and its implementational aspects

discussed,

3.1 The Need for a Supra-Lexical Level

We begin by citing some of the more common instances of multi-worded lexical
items in Bangla. The examples chosen are mostly from the verbal paradigm as
most multi-worded entities are either verbs or of categories derived from verbs. A
more comprehensive discussion on Bangla verbs may be found in Chapter-5.

3.1.1 Some Examples of Multi-Worded Lexical Units in
Bangla

We give in here some interesting examples of lexical entities constituted of more
than one word. Although the list is not exhaustive, the basic idea is to highlight
the situation that guides us to a solution technique described in this chapter. For
more example from the verbal paradigm of Bangla, see Chapter-5.

A Verb.in Perfect/Progressive Future Tense: Here, the future tense mark-
ing auziliary tha'k (stay) follows any participle verb, The participle has

53

either the CONDitional INFinitive or the CONTinual INFinitive declension.
The verb is either in future or habitual tense depending upon whether the

declension on the participle is CONDINF or CONTINF respectively. Also,

the aspect of the verb is either perfect or progressive, depending on the inflec-

tion on the auxiliary. This form has considerable similarity with the English

“be” auxiliary usage.

Compound Verb: In this form of multi-worded Bangla verbs (also quite preva-
lent in other Indian languages) a verb lexeme consists of a pole which is
a verbal stem taking a continual infinite (CONTINF) declension, followed
by a wector which is a tensed verb with a stem from a well-defined set of
about thirteen stems, The general meaning of the verb is generated from the
pole while the inflection of the vector provides the tense and agreement fea-
tures of the verb. The stem of the vector provides a finer perspective to the
meaning of the verb which may have very little correlation with the actual
meaning of the vector. As an illustration, in compound verb base parla =
sit+CONTINF faoll+(PRESENT-PERF-3p-1h), the overall meaning
18 sat down. The vector meaning fall provides a perspective of locus to the
pole. However, the overall action has very little relationship with the action
of falling. It needs to be mentioned that any pair of consecutively occurring .
verbs with an CONTINF declension on the first word does not constitute &
compound verb. This form is peculiar to many South Asian languages and

has no paralle] in English,

A Verb in Neuter Voice: In this multi-worded verb form, there is a for infini-
tive declension on the first word and the second word has the copule Ha.
Although the overall meaning of the verb is still derived from the first stem,
the syntactic requirements for the other entities in the sentence (where the
verb occurs) get non-trivially modified. This form has parallel in English.
However, unlike English, here the syntactic repercussions are not localized.

3.1.2 Problems With Traditional Approaches

Here we review some of the techniques used in [88] for English. Other uses of the
techniques may be found in [24] where the main focus is on a consistent lexical

theory for passivization.

One suggested method is the use of a set of constraint schema in the lexical pro--
jection of one of the words of a word-group. Constraint schema are used to enforce
the other. words of the group to be of a certain pattern. This method is very
suitable for word groups representing a “figure of speech”, like the English verb

54

‘to keep tabs on’, One lexical entry for ‘keep’ has a projection meaning ‘maintain
watch’ along with a constraint function that ensures that the following two words
are ‘tabs’ and ‘on.” The method is quite suitable if number of similar instances of
word groups is reasonably low but gives rise to too many alternations in the lexicon
if some words (for example ‘keep’ here) take part in hundreds of similar groups.

The other method suggested was the use of “Uniqueness Condition” together with
appropriate functional control schema, With the English auxiliary-participle pair
is handing’, the suggested solution is to treat ‘is’ as a finite verb and let it take
a single COMPlement verb phrase, The complement verb phrase accounts for
functional attributes for the remaining phrases in sentences like ‘The girl is handing
the baby a toy’. Also, the subject of the complement VP of ‘is’ is unified with the
subject of ‘is’ (“The girl’ in the above example) by means of a functional control
schemata (] SUBJ) = (T VCOMP SUBJ). The semantic formula of ‘is’ is
expressed as a single argument predicate ‘PROG’ whose argument is made the
complement of ‘is’ by the projected schemata (T VCOMP SUBJ) = (1 SUBJ).
The details may be found in [88] (Art-4.5). Unfortunately, this method of enforcing
word co-occurrence is not feasible in Bangla as is demonstrated below.

Bangla is a non-configurational language. The constituent phrases and the verb of a
sentence may permute rather freely. Thus, there may be many well-formed surface
forms for a single semantic form. The grammatical functions (gf-s) of participating
noun phrases in a sentence are predicted from the case markers on the head nouns
of the phrases. Co-occurring words however appear side by side in all the surface
forms of a sentence. Let us consider a sentence (3.1). Any permutations of the
underlined phrasal units in (3.1) could also be considered.

(3.1) a’mi ra’mke galpat’a’ balte tha'kba
I-NULL Ram-DAT story-DEF-NUL tell-COND-INF stay-FUT
“T shall go on telling the story to Ram” ,

The verb balte tha’kba in (3.1) (will go on telling) is a multi-worded verb in
FUTURE-PROGressive tense, consisting of a bi-fransitive participle bal (say).
The overall tense-aspect of the verb has been derived from the inflections on both
the auxiliary and the participle and not directly inherited from either of them.
The three noun phrases a’mi, ra’mke and galpat’a’ can freely permute without
changing the meaning of the sentence. If Bangla had a concept of a verb phrase
VP, (3.2) could be the c-strucure for (3.1) and functional control schema might be

used to obtain the f-structure (3.3).

(3.2) s[vpla'mi] ve[venplramke] npelgalpat'd] v[balte]} v[tha'kbal)]

89

| [ANIM + ' .
CASE NULL
SUBJ GNPH 1p
PRED 'I'
i T ANIM - -
DEF YES
OBJ CASE NULL
GNPH 3p-—-1h
| | PRED 'story’
(3.3)
COMP T ANIM + -
CASE DAT
1087 GNPH 3p—1h
 PRED 'Ram’
SUBJ
_ PRED 'tell < (SUBJ),(OBJ),(10BJ) >
TENSE FUTURE
' PRED 'PROG < (COMP) >* _

However, due to the non-configurational nature of the language, there is actually
no evidence of a VP node and as Mohanan has suggested [131], the c-structure rule
for a sentence should rather be like (3.4). Indeed, (3.4) is the starting point of the
GLFG formalism described in Chapter-4.

(34) §—s NP*V NP*

Although (3.4) can correctly generate a sentence like (3.5) or any phrasal permu-
tations, it fails to generate (3.1) or its permutations.

(3.5) a’mi ra’mke galpat’a’ balba
“I.-NULL Ram-DAT story-DEF-NUL tell-FUT”.
I shall tell the story to Ram.

In fact, it is not possible to find a set of context free rules which will ensure
that in the c-structure of any permutation of phrases of (3.1), the subject a’mi
maintains a sibling relationship with the auxiliary tha’k. Hence, the functional
encoding approach can not be used effectively to solve our problem. From similar
considerations, functional control is not the proper approach for other multi-worded -

lexical forms described earlier.

56

3.1.3 Outlines of the Proposed Solution

A plausible solution to the problem at hand (for multi-worded verbs) could be:

o Use the flat structure (i.e, S — (NP)"V (NP)") for a sentence.

¢ But, treat the node V in the above structure not as a pre-lexical node but as
a phrasal node (i.e. a node which may derive a form consisting of more than

one word).
The above solution is unsatisfactory because :

¢ It unnecessarily complicates matters in case of a vast number of verbs which
consist of a single lexical word only.

e The approach is not general enough to be extended to the few cases of word
co-occurrence outside the verbal paradigm.

¢ Most importantly, the principles of direct syntactic encoding of LFG prevents
non-trivial derivation of the projection of the word group from the projections

of the individual words in the group.

A viable alternative is to strengthen the lexical sub-system. However, since lexical
entities occurring as word groups is an exception rather than a rule, from efficiency
considerations, non-trivial modifications in the already existing lexical sub-system
is not quite attractive. As a compromise solution, we propose a layer of analysis
“sandwiched” between the syntactic and morpho-syntactic layers. For the sake
of continuity, we shall go on referring to the morpho-syntactic unit as the lexical
sub-system and call the sandwiched layer the supre-lezical sub-system. '

3.1.4 Requirement Specification

Some of the complex manipulations that are required to be carried out by the
proposed supra-lexical component are:

e The individual semantics of the co-occurring words may be altered and/or
may be totally eclipsed. Non-trivial procedures are therefore required for

generating the semantics of the word group.

o7

¢ The rules governing co-occurrence may not be simply syntactic, i1.e., the co-
occurring words may need to satisfy certain non-syntactic constraints. For
example, the verb stems for a (prospective) compound verb need to be tested
for a valid pole-vector pair.

¢ A lexical feature of a word-group may be a function of the fype of co-
occurrence and may not be simply derivable from the words taking part in
it. For example, the TENSE feature of a Progressive-Future verb is obtained
as result of the type of co-occurrence and not from the projections of either

the participle or the auxiliary.

o The syntactic requirement of other entities in a sentence involving a word
co-occurrence may get changed as a result of the grouping. Neuter verb
is an example of the phenomenon. In our proposed syntactic formalism,
this necessitates changing the m-structure of the co-occurring words, See
Chapter-4 for a description of the m-structure.

3.2 The Proposed Supra-Lexical Formalism

For the proposed Supra-Lexical sub-system, it is envisaged that:

e There would be an “off-line” specification phase during which the lexicon de-
signer would specify a set of filters and a set of supra-lexical rules. The filters
would be specified directly in the syntax of C++ programming language.
The syntax for specification of supra-lexical rules is introduced later in this

section.

o As the supra-lexical rules are being specified, there would be a interpretive
tool that would directly create C-++4 source files from them. We would call
the resultant code fragment (which would also include reference to the filters)

the Supra-Lezical Analyzer.

o After compilation of the entire system, the supra-lexical component would act
as a layer between the syntactic and the morphological (lexical) components.

See Fig-3.1 for clarification.

58

3.2.1 The Tools for Supra-Lexical Specification

Filters

A major component of the supra-lexical level is a set of functions which check
the validity of occurrence of various primitives in specified relative positions, The
primitives could be morphemes or morpheme classes, words or lexical entities.

Such a function will be called a filter. A filter is identified by its name. A filter
takes one or more arguments, returns values TRUE or FALSE. A particular filter
is specifically designed to check a particular validity. Some of the most common

(and hence built-in) filters are:

exists(e): Checks if the primitive e exists or not.

aquals(e,f): Checks if primitive e is equal to primitive £. Succeeds if both e and
f do not exist.

equalsFrom(e,f): Checks if primitive e exists' and is equal to any one of the
primitives from a set £ of primitives.

New filters may be composed from existing ones by using boolean connectives:
&& (&Hd): | | (Or): | (HGt),

etc.

Also, entirely independent filters may be constructed using the syntax of the C++
programming language.

Word Co-occurrence Expression

A Word co-occurrence expression is a primary selector for co-occurring words. The
syntax for a word co-occurrence expression is:

59

Here each item X, Y, etc., is a word category (NOUN, VERB, etc.). An item may
be detailed down to constituent morpheme classes (NSTEM, VSEM, etc.} using
the format M; + M, + .-, where each M; is a morpheme class. A morphemic
primitive M; may be parenthesized to indicate its optional presence. If an item is
detailed down to the morphemic level, care must be taken that the detail conform .
to at least one morpho-syntactic rule (as described in Chapter-2) for some primary
word class,

Example: Consider the word co-occurrence for any Verb-Verb type multi-worded
verb. Such verbs have been treated in more detail in Chapter-5.

VSTEM+(VCAUS)+VDEC VSTEM+(VCAUS)+VDEC

Here, VSTEM, VCAUS and VDEC are morpheme classes corresponding to verb
stems, verb causational affix and verb declensions, respectively.

In the context of any word co-occurrence rule, the items X, Y, etc., may be logically
referred to by positional arguments $1, $2, etc. Individual morphemes of an item

may in turn be logically referred to using the scope resolving operator . (dot). A

logical reference of a primitive (whether of type $i or $1 .M, M being a morpheme
class in the detail of the i-th word) encompasses all its attributes — the character

string for the primitive, the f-structure for the primitive and the m-structure (the

primitive must be a verb). To distinguish among the three, a string reference is
made by enclosing the primitive within square brackets ({1). The m-structure of
the i-th word has a special notation ($i #). In itself, a logical reference is assumed

to refer to the f-structure of the primitive. Thus, in the above example $1.VCAUS

logically refers to the f-structure of the VCAUS morpheme of the first word, while

[$1.VCAUS] refers to the character string for the same morpheme. Also, ($1 #)

represents the entire set of m-structure schema of the first word.

Mapping Operators and Mapping Function

The ultimate objective of the supra-lexical level is to obtain the proper lexical
projection for a word group. The projections could result out of:

Assignment(s) from other projections or new schema, The operator << will be
used to denote an assignment.

Unification of an existing projection with another. The operator = will be used
to denote unification.

60

The assignment and unification operations are associatedswith a word co-occurrence
expression (see later) and may have the usage:

Name << Value or Name = Value

Here Name is a slot name in the f-structure of the lexical entity formed by the
word group and Value is either a constant (scalar quantity or symbol) or a value
obtained from the f-structure of the co-occurring words using $i indirection. The
G (or C++) string concatenation function strcat may be used to compute Value.

Example: TENSE << ($2 TENSE)
Another usage of the assignment/ unification operator is of the form:

= M, where, # represents the m-structure of the word group and M is an
expression of involving m-structure schema. The expression M may be a constant
set of m-structure schema or the set of schema for the i-th word in the group
expressed as ($i #). M may also be recursively defined using expressions like
M'+m and M’ —m, where m is a single schemata. While the expression M’ +m
unifies the schemata m with the set -M’, the expression M’ — m removes the
schemata m from M’ to give the resultant expression. In the expression M’ — m,
only the left hand side of the schemata m must be mentioned. .

Example: Consider the case where the CASE feature of the SUBJect of the clause
headed by a verb in neuter voice must change to DATive. The required mapping

function is:

= ($1 #) - (# SUBJ CASE) + (i SUBJ CASE)=DAT

The first “” operator removes the schemata (# SUBJ CASE)=... from the m-
structure schema set of the first word of the group, while the next “+-” operator
adds the schemata (# SUBJ CASE)=DAT to the resulting set.

A mapping function may have the following forms:

i, Simple assignment funification operation.

Example: TENSE << ($2 TENSE)
ii. Filter?A; : A, where Ay, A, are lists of assignment/unification operations
terminated by ; (semi-colon). If the Filter operation is successtul, the A; op-

erations are carried out, otherwise the A; operations are carried out. Com-
pound statements in A; and A, are enclosed within braces.

61

Example:

- equals(($1 TENSE), PresentSimple) 7
{TENSE = PresentPerfect; NEGATED = YES:} : :

iii. Filter; which simply demands a successful Filter operation, failing which the
word co-occurrence being tested is unsuccessful.

Example: compoundable($1.VSTEM, $2.VSTEM);

Semantic Function

The overall semantics of the word group is a function of the general form of co-
occurrence expression as well as the semantics of the words that are actually taking
part in the co-occurrence. The LFG tradition does not permit reference to internal
arguments of the semantic clauses of lexical items. However, such references are
essential in the present case. The notation “7, ¢ > 0 is used to denote the ¢-th
argument of a semantic clause. ~0 denotes the predicate of a semantic clause.
Thus, $2.~3 refers to the third argument in the semantic clause of the second

word 1n the group.

The form ~7 refers to the number of arguments in a semantic clause. Thus, $1.77
refers to the number of arguments in the semantic clause of the first word.,

A semantic function is a specification having the form {n; Fo; Ea;+ - En; } where
n is an integer denoting the number of arguments in the semantic clause of the
group, F; s are string expressions (i.e. character arrays or character arrays operated
with string concatenation operator + of applied with substring or other character
array transfer functions) which may freely refer to names and arguments of the
semantics clauses of the individual words of the group. FEy denotes the predicate
of the semantic clause. The overall semantics of the word group 1s therefore 1s
Ey < By, ++,F, >, where < and > enclose the arguments in the tradition of LFG. .
An F; can be any gf name like SUBJ, OBJ, etc. An E; 1s a semantic function can
also be @$;. In this case the next n-$j.”7 arguments are copied from the $J.77
arguments of the j th word, Normal § indirection may be freely used in a semantic

clause.

Example: As an example, consider the semantic clause for a compound verb.

{$1.77; $1.70 + vector($2.VSTEM); @$1; }

62

In the above example, the operator + concatenates two strings and vector is
a transfer function returning the finer semantics of the verb as provided by the
vector (the 2-nd word). Thus, the semantics of the compound verb has a) as many
arguments as the semantics of the first word (pole), b) the predicate is derived
by concatenating the predicate of the pole and the vector-meaning of the stem of
the second word (vector), and c) the arguments of the constructed predicate are
exactly the arguments in the semantic clause of the pole.

- In case a semantic function is null (i.e. entirely omitted), the semantic clause of
the first word of the group is returned as the semantic clause of the word group.

3.2.2 Swupra-Lexical Rule

The tools described above are used to describe rules that govern the formation
of different multi-worded lexical entities. A supra-lexical rule is a 4-tuple <

LWG,M,S >, where:

L 1s a Lexical Entity,

WG is a word co-occurrence expression,
M is a set of mapping functions and

S is a semantic function.

The ﬁraposed syntax for specifying a supra-lexical rule is:

Here, m; is a mapping function belonging to M and S is a semantic function.

Example (Compound Verb):

VERB => VSTEM+VDEC VSTEM+VDEC where {
equals(($1.VDEC TENSE), CONDINF);
compoundable([$1.VSTEM], [$2.VSTEM]);
TENSE<<($2 TENSE);

- GNPH<<($2 GNPH) ;

#=($1 #);

H .
$1.%7: strcat($1.”0, vector($2.VSTEM)); @§1;

3

)

In the above example (simplified), the filter compoundable checks whether the two

63

stems may be compounded. See Chapter-5 for further discussion on compound-
ability.

Example (Verb in Neuter Voice):

VERB => VSTEM+(VCAUS)+VDEC VSTEM+VDEC where {
equals(($1 TENSE), FORINF);
“equals(($2.VSTEM, COPULA));
TENSE=($2 TENSE);
GNPH=($2 GNPH);
= ($1 #) - (# SUBJ CASE) + (# SUBJ CASE)=DAT;

a8,

Note that in the above example, the S clause is null and hence the semantic clause
of a neuter verb is identical to the semantic clause of the first verb in the group.
Also, the first stem is required to be the copula through use of the exists filter.
Only copula stems project a COPULA structure.

Any number of supra-lexical rules may be specified. More than one rule may refer
to-as the same lexical category for the L part. For example, both the rules specified
above refer to VERB as the lexical category.

3.3 Generation of the Supra-Lexical Analyzer

There are two aspects of supra-lexical specification:

i, ppecification of a list of filters.

if. Specification of a set of supra-lexical rules.

Filters are specified in the C++ syntax directly into a header file FILTER.H and

implementation file FILTER.CPP. Care must be taken to properly overload the
filters for the various types — atom, string, f-structure, m-structure, efc., of the
expected inputs. For example, consider the built-in filter equals(e1,e2). The
parameters e1 and e2 may be any of the above types. Hence, the filter must be

overloaded for different pairs of types of el and 2 — {atom,atom), (atom,string),
(string,atom), etc.

64

The interpreter program that generates C+-+ source from supra-lexical rules is not
very difficult to design. As discussed earlier, the syntactic component performs
lexical interaction via an intervening supra-lexical layer. The function called by
the syntactic component has the following form:

int lexﬂnalysis(LoxPrimitive *lex):

// Returns TRUE if a lexical entity is found,

// FALSE if no lexical entity found,

// EOF if trying to read beyond of sentence,

// If TRUE value returned, lex points to a LexPrimitive structure
// for the next single or multi-worded lexical entity.

This function refers directly to a list of words for the input sentence. It maintains
a static pointer to the next word of the sentence to be read. The function may

be explained by the following pseudo-code:

int lexAhalysis(, LexPrimitive *lex)

{

static int inputWordPosition = 1; // Initially points to first
// word of sentence |

if (inputWordPosition is pointing beyond last word of sentence) {
return EOF;

}

Invoke all supra-lexical rules, including the default rule, in
parallel, If at least one succeeds, return TRUE, else return
FALSE. The successful supra-lexical function adjusts
inputWordPosition and f,

// Actually the above invocation is indirectly through pointers to
// supra-lexical functions

The LexPrimitive object (class) has been introduced in Chapter-2.

A few points must be noted:

¢ The function lexAnalysis is the primary interface between the syntactic
and the lexical component.

69

o The function lexAnalysis invokes all supra-lexical functions in parallel.

o Hence, there is a default supra-lexical function.

The Default Supra-Lexical Function returns the f-structure and lexical category
of a word as refurned by the lexical component. If a word is well-formed and no
other supra-lexical function runs successfully, at least the default supra-lexical

function succeeds,

Supra-Lexical Functions:

All supra-lexical functions have an identical header structure. The default supra-
lexical function has name supLex0, The other supra-lexical functions have names
supLex1, supLex2, The ¢-th function in the order of specification has name
supLexi. The names are actually not important since they are never directly
used. Pointers to the functions are stored in a list that is invoked by the function
lexAnalysis. The header structure of any supra-lexical function (for example the

3-rd one) is:
int supLex3(LexPrimitive *lex, int & wordPosition);

Note that wordPosition is a reference parameter, i.e., its value may be changed
from inside a function, The pseudo-code of a supra-lexical function reflects the ac-
~ tions specified for the corresponding supra-lexical rule. Every function interacts in-
timately with the lexical component through the function primitivelexAnalysis
described in Chapter-2. As an example, consider the supra-lexical function for
Compound Verb specified in the previous section. The supra-lexical function (say
supLex21} corresponding to it would have the pseudo-code:

int supLex2i(LexPrimitive *lex, int & wordPosition)

{

// The Supra-Lexical Function for Compound Verb.
// lex carries back lexical information for the lexical entity.

~// wordPosition indicates the position of the input word pointer
// when this function was called, and may be altered within
// Return value is TRUE if this function succeeds, else FALSE

LexPrimitive *lexi, lex2; // Pointers to lexical information for
// the two words of the Compound Verb

Get memory for lexi, lexZ;

66

int oldWordPosition = wordPosition; // Save wordPosition

// Global variable sentence, which is an array of *char, the i-th
// entry being for the i-th word, is assumed

if (!primitivelexAnalysis(sentencel[wordPosition], lexi))
RETURN_FALSE;

// RETURN_FALSE is a macro that un-allocates memory for
// lexl and lex2, sets wordPosition back to oldWordPosition
// and returns FALSE,

wordPosition++;

if (!primitivelexAnalysis(sentence{wordPosition], lex2))
RETURN_FALSE:

wofdPosition++;

// Satisfying Word Co-Occurrence Expression which is
// VSTEM+(VCAUS)+VDEC VSTEM+(VCAUS)+VDEC

int wce = FALSE;

if (morpheme class of first morpheme of lexl is VSTEM &%
((morpheme class of second morpheme of lexl is VCAUS &&
morpheme class of third morpheme of lexl is VDEC)
| | (morpheme class of second morpheme of lexl is VDEC))

) wce = TRUE;
if (!wca) RETURN_FALSE: // Co-Occurrence Test Failed for first word

if (morpheme class of first morpheme of lex2 is VSTEM &&
((morpheme class of second morpheme of lex2 is VCAUS &&
morpheme class of third morpheme of lex2 is VDEC)
|} (morpheme class of second morpheme of lex2 is VDEC))

} wce = TRUE;
if (lwce) RETURN_FALSE; // Co-(Occurrence Test Failed for second word
// Filter Opseration equals(($1.VDEC TENSE), CONDINF)

Let 1 be the position of the VDEC morpheme 1n lexl;

if (tequals(TENSE slot of i-th f-structure of lexl, CONDINF))

67

RETURN_FALSE; Filter operation failed
// Filter Operation compoundable([$1.VSTEM], [$2.VSTEM]);

Let 1 be the position of VSTEM morpheme in laxi;
Let j be the position of VSTEM morpheme in lex2;

if (fcompoundable(i-th morpheme of lexi,j-th morpheme of lex2))
RETURN_FALSE; // Filter operation failed

// Filters successful. Performing TENSE<<{$2.VDEC TENSE);
Let j be the position of VDEC morpheme in lex?2;

Unify TENSE sub-structure of lex with TENSE sub-structure of lexZ;

// Perfnrming GNPH<<($2.VDEC GNPH)

Let j be the position of VDEC morphems in lex2;

Unify GNPH sub-structure of lex with GNPH sub-structure of lex2;
// Performing #=($1 #);

Assign m-structure of lexl to m-structure of lex

// Performing Semantic clause evaluation.

Let n be the number of arguments in the semantic clause of lexi,

char sam01ause[HAX_SEH_SIZE];
int g=0;

Set number of arguments in semantic clause of lex to n;

char templ[MAX_SEM_SIZE];

strcpy(templ,0-th semantic clause argument of lexi);
char temp2[MAX_SEM_SIZE];

Let j be the position of VSTEM morpheme of lexZ;
temp2 = strcpy(jfth morpheme of lex2) ;

char temp2[MAX_SEM_SIZE];

temp2 = vector(temp2);

strcat (templ,temp2) ;

68

semClause = tempi;
Copy semClause as s-th semantic clause argument of lex;
g4+

while (s<=n) {
strepy(semClause,s-th semantic clause argument of lex1);

Copy semClause as s-th semantic clause argument of lex;
S++

iy
by

It is not difficult to generate supra-lexical functions of the above type automat-
ically from supra-lexical rules. Indeed, it is done in our system through a yacc
specification, |

3.4 Discussions

Some of the filters that are required in an actual implementation may require
considerable linguistic research of the target language. One example is the filter
Compoundable. Some linguistic study on which pairs of verb stems may be com-
pounded was carried out by P. Dasgupta {45]. However, subsequent studies by us
revealed certain weaknesses in Dasgupta’s theories, especially from computer im-
plementation viewpoint. At present we are involved with a feature based solution

for the problem., We expect to develop a solution technique, that would do away
with the maintenance and look-up of a table for il all pairs of stems and instead,

work with an m x m table with m not exceeding 10.

In this chapter, we have considered in detail only a few representative examples
from Bangla that require supra-lexical specification. Many others instances, in-
cluding the ones taken up here, have been taken up in in other chapters, primarily

Chapter-5.

As mentioned earlier, the implementation of the different software aspects described
in this chapter is quite straightforward, needing nothing more than a parser gen-
erator tool like yacc to construct a parser for a supra-lexical rule,

69

Part 11

Syntax Division

70

Chapter 4

Syntactic Analysis

4.1 Introduction

In the preceding two chapters, the necessity of having an efficient morphological
parser for lexical interaction has been established. The natural choice of a for-
malism for the syntactic component would be one which can be best interfaced
with the morphological component and also has some inherent ability for parsing
a language like Bangla. The LFG (Lexical Functional Grammar (88]) formalism
satisfies almost all the requisites because:

o LFG has a built-in control structure equally meaningful for both configura-
tional and non-configurational languages.

o The inter-relationship between grammatical function (gf), configuration (in
configurational languages) and morphological case marking is clearly defined

i LI'G.,

¢ Most of the grammatical formalisms of LFG have direct implementational
connotation, In particular, the operators Locate, Merge and Include In-
troduced in [88] have unambiguous semantics.

In spite of the above positive aspects of LI'G for the problem at hand, the formalism
does have certain drawbacks vis-a-vis implementation of actual parsers tor Bangla.
We shall show that a parser for Bangla based on pure LFG formalism may have to
take care of too many non-deterministic choices. We shall also show that if certain
implementation motivated additional features are added to the original formalism,

71

the above mentioned non-determinism comes down to a manageable level. In the
present chapter, we shall establish the need for the extensions and enumerate them.
The resultant extended LFG formalism will be called the Generalized Lexical
Functional Grammar or GLFG. |

4.2 ‘Background of LFG

LFG is characterized by a two-level description for a sentence called the c-structure
and the f-structure. The c-structure is a context-free description for the surface syn-
tax of the sentence. The f-structure functionally inter-relates the various syntactic
components of a major category with respect to the semantic component of the
head of the category. The f-structure of a category consists of pairs of attribute-
name and attribute-value where the attribute name is an atomic neme and the
attribute value could be an atom or another f-structure. The functional pairs are
either instantiated through lexical interaction, or through syntactic encoding. In el-
ther case, functional schema are introduced into the derivation system. A schemata
could be of various types, the most common being < Left >=< Right >. The =
operator has an operational semantics of unification. Either or both of < Left >
and < Right > is an atom or a function application of the form (f v), where f
refers to (points to) an f-structure and v is an attribute name in f. The result of an
application (f v) yields the attribute value of the pair for which v is the attribute
name. The notation (f ¢ ...k v) is a shorthand for (((... f g) ...v). A unification
| = r succeeds if either both ! and r are identical atoms, or if [has an undefined
value and r has a value (in which case [is made to have the same value as r), or if
both [and r are undefined, in which case, both [and r are made to refer to iden-
tical structures. The semantics of the above operations are best captured by the
operators Locate and Merge. Locate performs function application (if required) to
evaluate a descriptor (an evaluation may produce an uninstantiated placeholder).
Merge performs the unification. The operational semantics of a schemata [= r 1s
Merge[Locatell], Locate[r]]. A more detailed semantics of the LFG may be found

in [93].

Lexical interaction project functional descriptions into the immediate pre-lexical
nodes of the c-structure of a sentence. Other nodes may be annotated with any.
number of schema. In the syntax rules for the c-structure, two types of metavari-
ables are used to indirectly refer to the f-structure of other nodes. We are not inter-
ested here about the bounded metavariables ff and |}, The immediate metavariables
1 and | refer to the f-structure of the parent category its own f-structure respec-
tively, The immediate metavariables are freely used in annotating c-structure rules
to capture various linguistic generalities of the target language. The annotating

72

schema are introduced into the system during the construction of the syntax tree
for a sentence, whence the metavariables get instantiated with actual f-structures
(placeholders returned by Locate and Merge). Thus, the annotated LFG rules
perform syntactic encoding of grammatical relations. What makes LFG interesting
to us is that a uniform representation scheme is permitted for both configura-
tional and non-configurational languages in the paradigm, as has been argued and
demonstrated by Bresnan [24].

4.2.1 Syntactic Encoding of Grammatical Functions

Power of LFG is derived from its ability of syntactic encoding of grammatical
functions (gf-s). The LFG formalism permits efficient encoding of gf-s in both
configurational and non-configurational languages. In our work, we are mostly
interested about non-configurational languages. The theory of syntactic encoding
of gf-s'in non-configurational languages is primarily due to Bresnan. An outline of
the theory is given below.

Bresnan’s Theory of Non-Configurational Syntactic Encoding:

The theory of syntactic encoding of grammatical functions in the context of the
LFG has been described by Bresnan in [23][Art. 5.4, pp 296-303], i.e. in [25].
The following discussion has been adopted from the same. While examples in
the original were cited from the language Warlpiri — an Australian aboriginal
language, in our description, we would consider Sanskrit because it closely conforms
to the basic assumptions of the theory.

In a non-configurational languages, the c-structure has the basic form ¢ — X*,
where C is a major non-lexical category and X is a lexical or non-lexical category.
For example, in Sanskrit, the c-structure for a sentence S 1s of the form:

§ —s NP* V; NP*

where, N Ps are noun pllfases (non-lexical category) and V is the verb (lexical
category).

According to basic principles of non-configurational encoding, there could be two
types of schema annotating an arbitrary category X.

In one type, the encoding schemata has the form T=|. There can be only one
category associated with this schemata due to consisiency rules of LFG and the:

category is called the head of the major category 5. In Sanskrit, the schemata 7=
annotates the verb V, making the verb the head of a Sanskrit sentence.

73

In the other and more common type, the encoding is in the form of a series of
alternations of pairs of function and feature assignment equations of the form:

(1 F) V
(1 G) l

In the above equation pair, (7 is a function selected by the value V of a feature F.
For example, the fact that the OBJ function of an noun phrase NP in Sanskrit is
selected from the ACCusative case marker on it, may be expressed by:

ACC
l

T'he two equations above may be combined into a single one if the feature names
are not bound by extraneous conventions. For example, one may choose the call
the ACCUsative case marker an OBJective case marker and associate the feature
OBJ with it. Substituting OBJ for ACC in the above equation pair, we may get:

(| CASE)
(1 OBJ)

0o

OBJ
!

Now, eliminating the term O BJ from the above equations, we get a single equation:

(| CASE)
(T OBJ)

il

(1 (| CASE)) = |

‘The equation obtained is now independent of the function name & in the original
palr. It expresses the notion that the grammatical function of an NP in a language
like Sanskrit is selected uniquely and non-ambiguously from the CASE feature of
the phrase. Under such an assumption, the alternation in the original form of the

schema 1s no longer necessary since each alternating ferm becomes identical.

In most real natural languages (as we shall see later), the selection of grammatical
functions from CASE features of the NPs of a sentence is not non-ambiguous. A
particular CASE feature F; may select more than one functions Gy, ,G;,, -+ G;.. If
there are § possible values vy, v, +,v; for the CASE feature in the language, the

general form of the schema under NPs would be:

74

(L CASE) = v,
Gy,

(19 G) = |
VI cAsE) = w]
Gy,

R ECE R

S |
Although the above schema looks formidable, it is not really so. A particular NP
has a unique case feature (say v;). Hence, only one choice from the outer alternation
is valid, namely the one having (| CASE) = v; as the feature assigning (and
hence testing) schemata. The inner alternation ranging over grammatical functions
is language dependent, Languages like Sanskrit have lower occurrences of them
and are hence more ideal. In most modern Indian languages (including Bangla}
however, there are considerable alternations at this level. We shall show later in
this chapter, how the projection of the verb introduces another set of schema that
picks only a few (trivially one) alternate values for grammatical function from the
inner alternation in the above schema.

4.2.2 Syntactic Encoding in Actual Non-Configurational
Languages

Attempts have been made to use syntactic encoding of grammatical relations in
non-configurational languages like Malayalam (Mohanan {131]), Icelandic ([8]) and
Russian ([134]). In most cases, extensive and tedious language specific study about
the phenomenon is necessary. Notational tools like alternation, situation dependent
order of unification evaluation, etc. are freely used. However, the refinements used .
in the above works, were not mapped onto the Locate and Merge operators. In
fact, implementation of the notations used could lead to non-trivial problems in
schema evaluation ordering (LFG claims that schema may be evaluated absolutely
in an order independent manner) as well as satisfaction of too many disjunctive
constraints. As we shall discuss, even efficient disjunctive constraint satisfaction

algorithms are NP-complete in the worst case.

For Indian languages, most of the non-determinisms arise due to that fact that the
gf of a noun phrase or post-positional phrase is not encoded by the morphological
or post-positional case marker with sufficient certainty (some of which Mohanan
(131] has taken care of by complicated situation dependent control schema). Under
extreme cases a case marker may encode almost every gf. It is therefore not always

73

possible to determine with certainty the functional role of a phrase form its case
marker alone. The degree of uncertainty however reduces drastically if an a-priori
knowledge of the verb is available.

4.2.3 Implementation Semantics of an LFG Parser

‘The implementation semantics of LFG is defined in terms of the three operators
Locate, Merge and Include. While Locate is an advanced form of list search,
Include 1s a set manipulator. The most interesting operator however is Merge,
which 1s primarily a unification procedure of an advanced type. An overall LFG
parser may be visualized as a context-free grammar combined together with a
unification process.

The efficiency of an LFG parser depends mostly on the efficiency of the unifica-
tion process. Performance of any unification process degrades rapidly with added-
non-determinism, a fact that has been underlined in (115}, which is a good sur-
vey of unification algorithms of various types. Kaplan [91] and Knight {115] have
shown that non-determinism due to disjunctive structure specification leads to a
unification problem which is NP-complete. There have however been attempts
like [91] and [124] towards developing unification (permitting non-determinacies)
algorithms with better average case behaviour. These modern methods are rele-
vant in cases where non-determinisms are otherwise unavoidable as in instances of
unbounded uncertainties investigated in {89, 90, 91, 97). For Bangla, the “uncer-
tainties” are quite bounded, in the sense that syntactic encoding of grammatical
functions of even the matrix can only be practically expressed with a large number
of alternations. While such a lavish use of alternations may retain expressibility
of the grammar, it leads to a very inefficient parser implementation. It therefore
pays to have a formalism that leads to a lower degree of parser non-determinism,

while maintaining the other advantages of the LFG.

76

4.3 Outline of Proposed Solution

Using Mohanan’s approach, the syntax rule for a sentence in an Indian language
like Bangla may be given by (4.1).

S — NP* Pp* g’
1) (1 (I CASE)) =] (1 ({ PCASE)) = (} COMP) =]

V ‘ NP PP*
(T (| CASEY} =} (1 (] PCASE)) =/

Rule (4.1) represents a “flat” constituent structure for a sentence S and suggests
that the constituent phrases (NPs and/or PPs) may freely permute among them-
selves. The .57 category represents an “embedded clause” as in complex sentences.
Embedded clauses have been discussed in Sec-4.4. Using Bresnan’s approach, syn-
tactic encoding of gi-s is carried out in (4.1) using the schemata (4.2) under the

NPs,

(4.2) (T (I CASE))=|

4.1 1s of course based on Bresnan’s postulate of non-configurational syntactic en-
coding of gf-s described earlier.

Table 4.1; Case Marker Versus Possible Grammatical Functions

Marker Name SUBJ { OBJ | IOBJ | ADJUNCT

None NULL o o . .
+ ke, 4re | DATive ¢ o .

+e, +te | OBLique ’ o . .
+er GENitive o

Note: The GEN case marker normally marks a genitive qualifier
of a noun, However, for certain verb forms (for example, ones in

pseudo-passive voice), it alsc marks the subject.

The underlying assumption in (4.2) is that a case marker so strongly predicts a
function that mapping from case marker to function is nearly one-one. However,
from Table-4.1, it is clear that in Bangla (and also other modern Indian languages)
almost every marker has many-to-one mapping. Thus alternations must be used
in (4.1). The parser would accept only those choices that are consistent with the

lezical projection of the verb.

(i

Use of alternations obviously adversely affects the efficiency of the unification com-
ponent. It may be easily demonstrated in Bangla (and most Indian languages) that
if a-priori lexical knowledge of the verb is available during parsing of a constituent
NP, the number of disjunctive choices drastically reduces — to nearly one (the
ideal situation) in a large number of cases, For example, if it is known that the
verb (stem) is di (give), the case marker ke predicts uniquely the function Indirect .

OBJect (IOBJ). The formal treatment is as follows:

Let G = {g1,92, '} be the set of relevant grammatical functions and let ¢ =
{c1,¢9, -+ } be the set of case markers for NPs for the target langnage. Let cToG be
a mapping from case markers to grammatical functions such that ¢ToG{c), c € C
is (are) the function(s) predictable from ¢, In the scenario described, cT'0G(c) is
actually a finite disjunction g;, V ¢;, V - - of functions. Let fy be the f-structure
of an NP which is a child of a sentence (or clause) S with f-structure fg. Let the
case marker on the head noun of the NP be ¢, Under these circumstances, the
implementation semantics of the schemata (4.2) that annotates the NP may be ex-
pressed as (fs ¢T'oGlc]) = fw, where “=" denotes unification. With c¢T'oG|c} being
in general a disjunction, the above form effectively “multiplies out” to |¢T'0G(c)
non-deterministic choices for the functional role played by the fy in fg. If in the
ultimate analysis the NP is found to play the functional role ¢ in fg, the constraints
set (4.3) projected by the verb must have been satisfied.

(fs g CASE) = ¢

(fs 9 1) = v
(4.3) (fs 9 q2) = vy
(fs g q;c) = U}

where g; are different normal agreement features (like NUMBer, PERSon, etc.)
and/or other semantic agreement features (like ANIMacy, etc.). We shall call
the schema (4.3) the agreement schema for the function g projected by the verb.
Observations show that in most well formed sentences, the agreement schema of
the verb for any function g is satisfied by at most one constituent NP of the
sentences. However, some order of processing the agreement schema of different
gf-s) must be maintained. The mapping ¢To@ is thus nearly one-to-one in the
context of the agreement schema of the verb, which can very well serve as fest
criteria for selecting grammatical functions from internal properties of NPs, The
parser must ensure evaluation of an encoding schemata of a constituent NP in the
context of the agreement schema of the verb, somewhat like handling a “fcn-:ward
reference” (where a referred item is defined “later” than the pla,ces. where it has
been referred to). The trick is to “delay” the evaluation of encoding schema of
constituent NPs till an appropriate moment while maintaining a persistent data,'

78

structure like a Symbol Table to keep track of the points of forward reference (at

which actual function names get instantiated) and their local environments (the
internal f-structure of the constituent NPs),

4.3.1 Solution Part-I, Initiation of Forward Reference

A forward reference discussed above is encountered during Locate-ing the left hand
side of a schemata like (4.2) while processing an NP. In our “delayed” encoding
proposal, the (modified) Locate operation should leave the “name” of the func-
tional role played by the NP as “under-specified”. To force the Locate operator
to behave in this manner, we propose:

¢ The introduction of a new type of under-specification metavariable “?”.

¢ The encoding schemata (4.2) be modified to (4.4). With that, the modified
rule for S is as given in (4.5),

(44) (17) =l

S — NP* PP S7

(1 (I CASE)=l (1 (| PCASE))=| (1 COMP)=|

(45)
vV NP* FPP*
(1 (L CASE) =] (1 (| PCASE)) =]

The ? metavariables generate placeholders for a hitherto anonymous grammatical -
functions. Such a placeholder will be called a nameholder and denoted by actual
name variables ny,nq, - +. Locate-ing of a schemata like (4.4) creates such a name-
holder (n say) in the scope of the functional placeholder (f say) for the T metavari-
able and simultaneously stores the pair (f,n) in the Symbol Table. Locate-ing
a construct like (f n) where both f and n are already defined placeholder and
nameholder respectively, returns {a pointer to) the “value” part of the pair in the

f-structure (pointed at by) f, whose “name” is (pointed at by} n. With this, the
semantics of Locate with respect to form (4.6), the left hand side of the schemata

(4.4) is given below and pictorially represented in (4.7).

(4.6) (17

79

Locatel[d], where d has the form (x y). Let £ be the reference to a f-structure
Locate[x]. If y is a ? metavariable, let n be a new nameholder for the metavari-
able. An anonymous slot is created in the scope of £ and n is made to point to it.
Simultaneously, the pair (£,n) is entered as a new enfry of the Symbol Table. If
however y is a nameholder n, Locate returns the value field of the pair in £ whose
name field is held by n.

Symbol Table

(4.7)

4.3.2 Solution Part-II, Precipitation of Forward Refer-
ence

The next point to be considered is how to bind actual function names to name-
holders. We assume that the agreement schema for a function g may select the
structure which satisfies the constraints. For this, the agreement schema must be
handled in a different manner than normal projection schema. We choose the no-
tation (# g q) = v for one agreement schemata for the function g. We shall call
the forms (# ¢ ¢;) = v; a meta-structure or m-structure. M-structure schema are
projected by the main verb of a sentence. A symbol table entry (f,n) satisfies a
m-structure schemata (# ¢ ¢;) = v; projected by the verb V of a sentence S, if
[is the f-structure of S and the structure (f n) (where n is treated as an atom)
~contains the pair [¢; v;]. If a symbol table entry satisfies all m-structure schema

for a function ¢, by our proposed scheme, the nameholder n that points to the,
entry is bound to the function name g. Also, the satisfying symbol table entry is

deleted.

Testing of symbol table entries with m-structure schema and resulting binding
of nameholders to actual function names are carried out by a newly introduced
operator Search. The operator Search takes the entire set m-structure schema for
a particular gf and carries out the process described in the previous paragraph, If
more than one symbol table entry satisfy the m-structure schema for a particular
function ¢, the one earlier in order of occurrence is chosen. The relative evaluation

80

(by operating with Search) order for the sets of m-structure schema for different

functions 1s motivated by the default ordering of phrases in a sentence in the target
language. In Bangla for example, the default ordering is SUBJ-IOBJ-OBJ-COMP.
Note that the COMP function is played by an embedded clause like structure
and not encoded by m-structure schema. Thus, the test for SUBJ is carried out
first, followed by IOBJ and OBJ if any. The proposed solution technique can be
implemented in the following sequence.

First, all f-structure schema, including ones having under-specification metavari-
ables, annotating the children node of an S dominated c-structure tree are eval-
uated. This generates symbol table entries corresponding to NPs annotated with
under-specification schema. Next, the m-structure schema of the main verb are op-
erated on with the Search operator in the default phrasal order for the language.
A sentence is well-formed if and only if all the m-structure schema for the verb are
satisfied and all nameholders in the scope of the sentence are bound to names (i.e.
at the end, symbol table is empty). Note that the evaluation process naturally
satisfies the uniqueness property for sentence level grammatical functions.

Regarding the relative evaluation order of f- and m-structure schema, the general.
principle is “all f-structure schema are evaluated before any m-structure schemata
is evaluated (i.e. fed to the Search operator). There are some exceptions to the
general principle as explained in the following section.

Let us consider the Bangla simple sentence of Example-1, in which the NPs have
been underlined.

Examplé—l: .

a’pni a'ma’ke ekt’a’ bai deben
You(honoured)-NULL I-DAT one-DEF book-NULL give-3p-hon-PAST

You (honoured) will give me a book

Any permutation of the underlined phrases and the verb should give identical
results. The lexical entries of the head nouns and the verb are given in (4.8)-
(4.11). For an explanation of the GNPH feature, see Chapter-5.

a’pni N (] GNPH)=2/3p -2k,
(1 ANIM) =+,
(4.8) (t PRED)='you,
(t CASE)= NOM

81

a'ma’ke N (1 GNPH)= 1p,

(“ ANI.M-) = +
(4.9) (1 PRED)="r,
(

t CASE) = DAT

bai N (I GNPH)=3p—- 1h,

(1 ANIM) = —
(4.10) (1 PRED) =’ book',
(1 CASE)= NOM

dilen V (] TENSE)=PAST
(I GNPH)=2/3p—2h
(1 PRED) = |
'give < (SUBJ),(OBJ),(I0OBJ) >
(# SUBJ GNPH)=2/3p~2h
(4.11) (# SUBJ ANIM) = +
(# SUBJ CASE) = NOM
(# I0BJ ANIM) = +
(# I0BJ CASE)Y = DAT
(# OBJ ANIM) = -
(# OBJ CASE) = NOM

The f-structure fg of the sentence before processing the m-structure of the verb-
appears like (4.12) and the final solution is given by (4.13). The f-structures f,, fi
and f, are for the NPs in order.

I " ANIM +
_ CASE NOM
™ GNPH 2/3p - 2h
PRED 'You
fa

- ANIM +
) CASE DAT
e GNPH 1p Symbol Table
i PRED II’ fS T
(4.12) i - I ng

CANIM -] fs| ns
DEF YES
GNPH 3p—1h
| PRED ‘book’

TENSE PAST
PRED ‘give < 0 >

82

- ANIM 4+ ! 7
CASE NOM
GNPH 2/3p—2h
 PRED 'You

SUBJ

- ANIM 4+
CASE DAT
GNPH 1p

PRED T’

IOBJ

(4.13)

[ANIM -
DEF YES
OBJ CASE NOM
GNPH 3p-—1h
. PRED 'book!

TENSE PAST
PRED 'give < (SUBJ), (OBJ)I0BJ}>! ,

fs -

Ilf on the other hand, the sentence is as in Example-2, with the lexical entry of the
verb baklen as in (4.14), the NP a’ma’ke is selected as the OBJect.

Example-2:

a’pnt a’ma’ke baklen
You(honoured)-NULL I-DAT scold-3p-hon-PAST
You (honoured) scolded me

bakben V (1 TENSE)= PAST
(# SUBJ GNPH) = 2/3p— %,
(414 (# SUBJ ANIM) = +
' (# SUBJ CASE)= NOM

(# OBJ ANIM) = +
(# OBJ CASE) = DAT

4.4 TEmbedded Clause and Complex Sentences

In most of the languages under study there is a class of complex sentences which
is somewhat similar to the “to” infinitive class of sentences of English. In English,
the to-infinitive dependent clause of a complex sentence is normally described as
the complement of the verb, or VCOMP. But as there is no concept of VP in the
languages under study, the dependent clause is described as a general COMPlement

83

of the m&tri};. Here we consider ogly Bangla complex sentences. Other Indian
languages have similar constructs for complex sentences.

In Bangla, there is no distinctive particle (like “to” in English) to serve as a con-
nective between the matrix and the complement. Instead, the complement clause
is embedded within the matrix., The complement verb takes either the FORINF
or any of the FUTURE tense declensions!. Depending upon whether the declen-
sion on the verb of the complement clause is FORINF or indicates the FUTURE
tense, the SUBJect (and sometimes the OBJect) of complement clause is derived
from the IOBJect and SUBject of the matrix, respectively. The case marker of
the JOBJect NP of the matrix is invariably DATive. Moreover, if the verb of the
complement is in FUTURE tense, the verb of the matrix must be a “say” (or equi)
type verb, most commonly bal (stem). The verb (stem) bal of Bangla is quite-
versatile in this respect. Different possibilities of complex sentences with bal as
the main verb (stem) has been discussed in Sec-7.4. The rules for the sentence,
as well as the embedded clause are given in (4.15) and (4.16). However, in the
subsequent discussions in this chapter, we consider only dependent clauses with

FORINF verbs,

S — NP PP S
(1?7)y=l (1 (1| PCASE))=] (I COMP))=|
(4.15) |
|4 NP PP
(17 =! (1 ({| PCASE)) =]
St — - NP? PP
(1) =1 (t (1 CASE) =I
(4.16) (|l INFTYPE))= FORINF
{ (| TENSE)) = FUTURE }
(I EQUI)

(1 SUBJ GNPH)=(l GNPH)

(See Sec-7.4 for a discussion on the utility of the schemata (T SUBJ GNPH) =
(| GNPH) in (4.16)).

In complex sentences, the SUBJect of the embedded clause is generally omitted and
is derived from some function of the matrix through a control schemata (introduced
by Bresnan [24]) on the main verb. For example, the control schemata (4.17)
derives the subject of the embedded clause from the indirect object of the matrix.

(4.17) (1 COMP SUBJ) = (1 I0BJ)

The nomenclature has been explained in Chapter-5

84

From rules (4.1) and (4.16), the surface structure of a sentence with embedded

clause could be NP* Vpopryg NP* V NP* where Viorinr is the embedded

verb.

From (4.16), it is clear that the NPs occurring to the right of the embedded

verb can never be participants of the complement clause. Although participating
phrases of the complement clause do not permute with the phrases of the matrix,
it is a difficult problem for the parser to determine a-priori which pre-Vrorinr
NPs belongs to the complement and which to the matrix. Moreover, if a control
schemata like (4.17) is evaluated before any m-structure, the Locate operator han-
dling the same would tend to create slots SUBJ and IOBJ in f-structures of the
embedded clause and matrix respectively, violating the principles of delayed func-
tional encoding. Considering above difficulties, we propose the following additional
strategies:

1,

11,

1V.

vi.

The m-structure of the verb of a complement clause may not project a m-
structure for the SUBJect.

Initially, the f-structures of the participating NPs of an S with or without a°
constituent 5, are assumed to be defined in the scope of the matrix. Thus,
initially, the f-structure of the embedded clause have no reference to any gf.

All functional encoding schema are scheduled for evaluation after the m-
structure of the main verb.

The m-structure for the embedded verb are scheduled for evaluation after
functional encoding schema.

After evaluating the m-structure of the main verb, all remaining symbol table
entries (as well as the name-value pairs pointed at by them) are removed from
the scope of the f-structure of the matrix and attached to the f-structure of

the complement.

The m-structure for the complement’s verb is evaluated last following which
emptiness of symbol table is checked to determine well-formedness.

Example-3:

a’pni a’ma’ke ekt’a’ bai pad’.te ballen
You(honoured)- NULL I-DAT one-DEF book-NULL read-FOR-INF say-3p-hon-PAST

You (honoured) asked me to read a book

(4.18)

padi.te V (I TENSE)=FORINF
(t PRED) =' read < (SUBJ),(OBJ) >

(% OBJ ANIM) = -
(# OBJ CASE) = NOM

8

ballen V (] TENSE)= PAST
| (T GNPH):Z/SF-—Q&
(f PRED) =
'ask < (SUBJ),(COMP),(I0BJ) >’
(1 COMP SUBJ)=(1 I0BJ)

(4.19) (# SUBJ GNPH) = 2/3p — 9h
(# SUBJ ANIM) = +
(# SUBJ CASE) = NOM
(# IOBJ ANTM) =+
(# I0BJ CASE) = DAT
Note:

1. There is no m-structure schema for SUBJect in the lexical entry of pad’.te in
(4.18).

2. The functional control schemata (T COMP SUBJ) = (T I0BJ) in the lexical
entry (4.19) of the “equi” verb ballen derives the subject of the complement from
the indirect object of the matrix.

Let fs and fr be the f-structures for the matrix and the embedded clause, respec-
tively, The situation just before processing the m-structure of the main verb is
given in (4.20). After processing the m-structure of the main verb and removing
all unprocessed enfries of the symbol table from the scope of fs to the scope of
fE, the situation is as in (4.21). Finally, after processing the m-structure of the

86

complement’s verb, the final result is given by (4.22).

- ANIM <]
CASE NOM

GNPH 2/2p-2h
. PRED 'You' |

fa

" ANIM +

.) CASE DAT
2 GNPH 1p
fi L PRED 'L

- Symbol Table

(4.20) CANIM - f;s .
DEF YES - :

n3 - CASE NOM Is
GNPH 3p-—1h
' PRED 'book’

fe

COMP TENSE FORINF }

e PRED 'read < >

TENSE PAST
fs L PRED o lash <o > | .

- T ANIM -+ . |
CASE NOM

SUBJ GNPH 2/3p—2h

_PRE'D Y ou!

- ANIM +
CASE DAT
GNPH 1p

PRED 'I'
" Symbol Table

IOBJ

(4.21) - . U /E 3

COMP GNPH 3p—1h

fo L PRED 'ash <+ > -

8T

I - ANIM 4+ - -
CASE NOM
SUBJ -
GNPH 2/3p-2h
 PRED 'You)
CANIM 4+]
CASE DAT
IOB e e
. PRED 'l) x\
' \
. \
(4.22) ANIM - |] 1
DEF YES ;
ORBJ CASE NOM }
COMF GNPH 31’3'" lh. }"
PRED ‘book! N
SUBJ — et e = = [
TENSE FORINF
| PRED ‘read < (SUBJ),(OBJ)>"
TENSE PAST
Js | PRED lask <> _

4.4.1 Operational Semantics of Locate and Search

The definitions of the Locate (modified to take care of the “7” metavariable)
and Search operators are given below. The essential aspects of Locate have been
adopted from ([88][Appendix-F, pp 273]. The collection of entities and variable
assignments ¢ and the definition of the Substitute sub-operator are assumed as
described in the original source., We shall use S to denote the symbol table.

Locate:

The Locate operator takes a designator d as input. A successful operation finds a
new value for d and may alter the collection C and/or the symbol table S.

i. If d is an entity in C, Locate[d] is d.

1. If d is a symbol or semantic form character string, Locate[d)] is the symbol
or sermantic form with that representation.

i, If d is a variable,

If d is already assigned a value 1'11.6', Locate|d] is that value.
Otherwise, a new place-holder is added to C and assigned as the

88

value of d. Locat e(d] is that new place-holder.

iv. If d has the form (= y), where y is 7. Let F be the entity Locate[z] and n
be a new name-holder for y. A new pair with an anonymous name slot and
a place-holder in the value slot is created in the scope of F' and n is made to
point to the name slot. Simultaneously, the pair (F,n) is entered as a new
entry of 5. Locateld] is that place-holder for the value part of the newly
created pair.

v. If d is of the form (& n) where y is a nameholder. Locate[d] is the value field
of the pair in Locate[z] whose name field is held by =.

vi. Otherwise, d is a function-application expression of the form (f g). Let F°
and G be the entities Locate[f] and Locatelg], respectively. There is no
solution if &G is not a symbol or place-holder, or if F is not an f-structure or
place-holder. If F' is an f-structure: |

If G is a symbol or place-holder with a value defined in F', Locate[d]
is that value.

Otherwise, G is a place-holder or a symbol for which F has no
value, F'is modified to define a new place-holder as the value of &
and Locate[d] is that place-holder.

Otherwise, F' is a place-holder. A new f-structure F' is constructed with a
single pair that assigns a new place-holder value to ¢ and Substitute[F, F
is performed. Locate[d] is the new place-holder value.

Search:

The Search operator takes as argument a collection M of m-structure schema of
the form (# g ¢;) = v;. Note that every m-structure of M has the same gf ¢ as the

second entity of the left hand side of =.

We say that a symbol table entry (f,n) satisfies the m-structure schemata (# g) =
v; if and only if Locate[((f n) ¢;)] yields the value v;. A symbol table entry satisfies -
a collection of m-structure schema if it satisfies every schemata of the collection.

If there is no symbol table entry satisfying the argument M of Search, there is no
solution. Otherwise, let (f,n) be the first entry of .5 satisfying M. The name-holder
n is bound to the name g and the satisfying entry is deleted from 5.

There is no modification in the semantics of the Merge and Include operators.

However, with introduction of the delayed encoding concepts, an 01'd.er 'ha.s t_o
be imposed on the evaluation of various entities in C' as explained earlier in this

section.

89

4.5 Implementation Notes

Implementation of the basic operations of LFG is easier in LISP like type-less func-
tional languages, rather than in conventional programming languages. However,
due to the type inheritance property of C++, most of the facilities of LISP are
retained. C-+-- permits easy construction of data-structures representing hetero-
geneous contatners of objects (that are inherited from a common type). We have
used this fact to our advantage.

4.5.1 Object Design

At the top of our object hierarchy for GLI'G parser implementation, we have
an abstract class called GLFGObject, There are a few immediate sub-classes of
GLFGObject, namely,

¢ AtomObject, for atomic entities.
¢ StringObject, for atomic strings.
¢ FStructlbject, for f-structures.
e MStructObject, for m-structures.

¢ PairObject, for Pairs.

Fach of the above objects has a unique readable Class-1d.

The Holder object is basically a pointer to a GLFGObject. The GLFGObject car-
ries a virtual overloadable function eval () that is overloaded by each descendant
class of GLFGObject. A holder object is a variable if it is itself non-NULL and the
object pointed at by it evaluates to a non-NULL value. A NULL holder or a holder
that points to an object evaluating to'NULL is a placeholder. However, a NULL
holder with only the mayBeAton flag on, is a nameholder. Every Holder s associ-
ated bit-valued {lags mayBeXX, where XX could be ATOM, STRING, FSTRUCT, .
MSTRUCT or PAIR. If a flag is OFT, the holder may not point to an object of the
corresponding class. When any holder data receives a non-NULL value through
assignment, the validity of assignment is checked against the flags. A flag may not
be OFF in one and ON in the other between the holder being assigned and holder
assigned from, Any Holder object is constructed as a NULL-ponting placeholder
with all flags turned ON, The ﬂa,g's may be altered after construction. The what

90

member function of a holder object returns the GLFGObject pointed at by the
holder. In the GLF'G environment, two or more holders may be unified, whence,
they not only hold identical objects but also an updation of the held object of one
automatically updates the held objects of the unified holders. To achieve this, we
let every Holder object contain a variable to a HolderList object.

A HolderList object is a collection of pointers to Holder objects. Its main purpose
is to bind unified holders. At any point of time, all holders of a holder list points
to identical structures.

A PairObject has two Holders name and value. The name holder has only the
mayBeATOM and mayBeMSTRUCT flags turned ON while value holder has all but the
mayBeMSTRUCT flag ON.

The most interesting object 1n our system 1s FStructDbject. This object has two
fields — pairs, which 1s a container of PairObjects and unionList, which is a con-
tainer of Holder objects, where each contained holder in turn points to this object.
The following important member functions are associated with FStructObject:

¢ int addPair(PairObject *p). This function searches whether there is a
pair in the pairs container having the same name as p. If not, p is added
to pairs and TRUE value returned. Otherwise, if the value fields of the.
matching pairs are identical, return TRUE, else return FALSE.

e Holder locate(AtomObject *a). Searches for the names of each pair in
pairs to be a. If yes, the value part of the matching pair is returned.
Otherwise a new pair with name pointing to a and value field a placeholder
pointing to a newly created FStructObject is created and added to pairs.

The placeholder value is returned.

e Holder locate(Holder *n). Here n must be a nameholder and hence must
be having a NULL pointer value. Create a new pair with a nameholder as
the name field and a placeholder is created in the value field as above, and

returned.

e int unify(FStructObject *anotherF). This function has been described

" in more detail in Appendix-C. A point to remember is that £1->unify(£2)
and £2->unify(£1) have identical results and may modify the contents of
both £1 and £2. As a result of unification, the pairs and unionList con-

tainers of £1 and £2 must become identical.

The collection C of entities and variable assignments is a global contatner of Holder
objects. During construction of € it is made to contain holder objects pointing to

91

all atoms and all strings defined in the system, A holder pointing to an atom
has only the mayBeATOM flag on, while a holder pointing to a string has only the
mayBeSTRING flag on,

The Stack is a global container of StackEntry. A StackEntry has three fields —
two placeholders and a nameholder,

Each GLFGObject, as well as the Holder object overloads the function locate, the-
return value of which is a (pointer to a} holder, Locate of a holder object is itself,

Locate of an atom or a string is a holder in € pointing to the atom or string. Locate

of an f-structure is any of the holders in the unionList of the f-structure. Locate

operations on a pair objects and m-structure objects are illegal.

An ApplicationPair object is derived from PairObject. However, the flags on
the name and value holders are different during construction. The name field has
only the mayBeFSTRUCT flag on. The value field may have any one of the flags
— mayBeATOM, mayBeFSTRUCT or mayBeQMARK (a new flag) on representing GLFG
applications expressions corresponding to (f «), {f g) and (f 7), respectively.
Here f and ¢ are place-holders to f-structures and @ is any atom. Locating an
ApplicationPair object works as described in Step-d of Locate operation in Sec-

4.4.1.

An MStructObject has two members — a functionName of type AtomObject and
metaConstraints which is a container of Constraint objects (see below). The
member function search performs precipitation of forward reference of functionName,
consulting the global Stack in the process. A global container M of MStructObjects
holds all the m-structure schema projected during lexical mnteraction. ’

At the next level of abstraction, there is an Equation object, which contains a
left side and an optional right side. An equation may be fired. If both left and

right sides of an equation exists, firing it performs the task
left->locate->what ()->unify(right->locate~>what()).
iring of an one-sided equation, also called a Constraint object, involves append-

ing the constraint to a global container constraintlist. A constraint can be
checked against validity.

C-Structure rules are specified in yacc syntax. Tokens represent lexical categories
like VERB, NOUN, DET, etc., and other non-terminals represent phrasal cate-

gories.

92

4.5.2 Actual Parsing

The parser makes two “passes” over the input sentence. For the time being, let
us assume that words do not have ambiguous meanings. In the first pass, the
function lexAnalysis described in Chapter-3 is invoked repeatedly till the entire
sentence has been scanned. With the above assumption, no non-determinisms are
expected during lexical analysis of a well-formed sentence. Fvery time a new lexical
-entry is detected by lexAnalysis, a new Holder object pointing to the f-structure
sub-object of the LexPrimitive object returned by lexAnalysis is created and
appended to the global collection C. Also, if any m-structure schemata is projected,
it 1s appended at the appropriate location of M.

During syntactic parsing, lexical interaction is carried out by associating tokens
with Holder objects. Every non-terminal also get associated with holder objects
during parsing. The metavariable | for any grammatical category (phrasal or lex-
ical) in the right hand side of any c-structure rule represents the holder associated
with the category. During acceptance of a ¢-structure rule by the parser (i.e. dur-
ing a reduce operation), first a new holder is created in C and associated with the
non-terminal on the left side of the rule. This holder therefore represents the
metavariable. The Equation objects associated with all the non-terminal are in-
troduced into the system (and immediately “fired”) in order of their occurrence
in the rule being reduced, If the left side non-terminal is S (sentence or clause},
the search operation is carried out on each MStructObject in M. If the sentence is
well-formed, this operation should be performed without any error and on termina-
tion, Stack should be empty. Finally, when the entire input sentence (which could
as well be a complex one) has been scanned, the contraints in constraintList are

checked for validity,

4.6 Discussions

To test our formalism, a random sample of about 250 simple sentences and sen-
tences with embedded clauses were selected from newspaper clippings. The NPs
were simplified to the bare head nouns before feeding them to our parsers. In spite
of the fact that the phrasal ordering was quite unpredictable, almost all simple
sentences in active voice (constituting about 57% of the samples) were correctly
parsed. Bangla has no natural passive voice. Passive-like constructs are expressed
in the intransitive passive * or neuter voice called bhabavachya. In Bangla neuter
voice sentences, the verb assumes a distinct form. The agent (which we assume

2This is a misnomer as even transitive verbs may be used in this voice,.

93

to be the SUBject in absence of any accepted linguistic guidance regarding the
matter) takes either a DATive or a GENitive case marker. This explains why in
Table-1 these case markers have been shown also to mark SUBjects. As high as
30% of our samples were in neuter voice (as is expected in reports) thus justifying
the use of delayed syntactic encoding. Most of the neuter voice sentences were also
correctly parsed. From the 11% of the samples constituting active-voice sentences
with embedded clauses, barring those which used verb forms not already stored in
the lexicon (like ud/y.og nilen “took initiative”), the remaining were correctly
parsed. However, the parser in its present form could not parse neuter voice sen-
tences with embedded clause that constituted the remaining 2% of the samples.
At present, we are investigating this form in more detail.

In Sec-4.4, we have assumed that the embedded clause plays the COMPlement
functional role. In corresponding examples of English fo-infinitive sentences, it
is usual to visualize the dependent clause as VCOMP or the verb’s complement.
Since in Bangla there is no concept of a VP, the concept of the verb’s complement -
is ambiguous. There are however Bangla sentences very similar in form to the ones
considered in Sec-4.4 (and often confused with them) where the embedded clause
is similar to English forinfinitive clauses. Of the two types (i.e. to-infinitive and
for-infinitive) of clauses, the for-infinitive is slightly more natural. Hence, we call
the verbal inflection marking such clauses the FORINF declension. An example
of a sentence with a for-infinitive clause is given in Example-4. |

Example-4:

pradha’nmantri ekha’ne baktrita’ dite a’shen
Prime Minister-NULL here-OBL lecture give-FORINF come-3p-hon-FUTURE

The Prime Minister will come here to deliver & lecture

As in English, we propose to handle this by letting principal clause take dependent
complements. A peculiar and widely used type of sentence in Bangla use arbitrary
length chains of clauses semantically disjoint in time across the clauses. In such
sentences, which we choose to call garden-path sentences, it is difficult to pin-point
the principal clause. An example is given in below.

Example-5:

tumi ghum theke ut’he Ha't mukh dhuye dut'o bis/kut’ khete khete ekt’a rik/sa’y

chepe st’eSane chale y.eyo
You-NULL sleep from rise-CONTINF hand face wash-CONTINF two-DEF biscuit eal-FORINF

eal-FORINF one-DEF rickshaw-OBL ride-FORINF stalion-OBL walk-CONTINF go-2p-IMPER
You, (after) waking up (thereafter) washing your face and hands (while) munching two biscuits,

take a rickshaw to go down to the station.

94

Sentences like above are not very uncommon in Bangla. Note that only the fi--
nal verb has a finite declension, the rest having either CONTinual-INFinitive or
FORINF declensions. Note also the paired use of the same verb khete khete
with FORINF declensions to indicate simultaneity of action, while the verb with
CONTINF declension generates a temporal chain of events. However, in spite of a
CONTINF declension on the verb chale, the finite verb of the matrix is actually
the word pair chale y.eyo meaning “go down”. The finite verb here is a com-
pound verb, an example of a multi-worded lexical entity in Bangla. An analysis of
garden-path sentences is given in Sec-7.3.

05

Part 111

Application Division

06

Chapter 5

The Verbal Paradigm of Bangla

5.1 Introduction

The verb is the nucleus of our GLFG based approach for syntactic processing of
Indian languages. The deep structure of any sentence in any natural language
contains a verb which acts as the predicate of the logical form of the sentence.
The verbal paradigm of Bangla is quite involved in that, the surface form of even"
a simple sentence, there may be none, one or more than one verb. Apart from
providing the general semantics of the sentence, the verb(s) in Bangla provides
the grammatical glue with which the other participating entities in the sentence
are bound together. The grammaiicality of Bangla sentences emanates from the
semanter of the verb and a verb-centric parsing strategy is therefore very natural.
For verb-centric parsing, an ontological study of Bangla verbs is necessary. In
this chapter, the syntax and to certain extent semantics of Bangia verbs will be

adiscussed.

As with any word, a verb or kriya-pad (kriya=action, pad=part-of-speech) is
formed from morphemic units. The stem of a verb is called a dhatu. A verb con-
sists of a dhatu followed by an optional causational affix called sadhita pratyaya
and terminated by a verbal declension called kriya bibhakti, The study of the
verbal paradigm therefore involves the study of all the three morphological units

constituting a verb.

97

5.2 The Ontology of Bangla Verbs

5.2.1 Classification of Verbs

Bangla verbs can be classified on the basis of:

Participating Entity: By which, verbs can be marked as taking from one to
three participaling entities. Causated verbs however take one extra partic-
ipating entity than the corresponding non-causated forms. The number of
participating entities taken by a verb is generally known as its valency.

Causationality: This generally involves finding out whether thereis a causational
affix in the verb. A causated verb alters the semantics of the corresponding
uncausated verb in a determinable manner,

Finite-ness: A finite verb may end a sentence, and every (simple) sentence must
have one implicit (i.e. non-existent in the surface form as in zero-worded
verbs) or explicit finite verb. For many Indian languages, especially Bangla,
the ontology of infinite verbs is an interesting branch of study. Whether a
verb is finite or infinite 18 determined from the declension of the verb.

Number of words: On this basis, a verb can be:

1. Implied Verb. A verb which is missing in the surface form of the sentence
and has somehow to be implied by the parser. |

i, One worded finite verb.

iii. One worded finite verb preceded or followed by a negative particle which
constitute the paradigm of negative verbs.

iv. Two worded verbs, where both the words have a verb stem. This is a
cross-discipline with infinite verbs since in most cases the first word is
an infinite verb. These verbs can be further studied under:

(a) Compound Verbs
(b) Modal Verbs

on the basis of the declension on the first word of the two word sequence.

v. Two worded verbs, where the first word has a noun or adjective stem
and the second word has a verb stem. Such verbs are called composzte

verbs.
Complex cases of multi-worded verbs, including negative instances of

such verbs,

Vi,

98

In spite of above classifications, while speaking in the general sense, the word “verb”
will be used to describe a one-worded non-negated finite verb. Concepts will be
introduced and tackled initially with such verbs but the ideas will be appropriately
generalized for verbs consisting of any number of words.

5.2.2 Formal and Colloquial Form

Usage of Bangla is seen in two different forms — a formal form or “Sadhu Bhasha”

(“Sadhu” = Pure; “Bhasha” = Language) which is used in old-fashioned literature
anc a more common colloquial form or “Chalit Bhasha" (“Chalit”=Common).
The difference between the two forms is mostly in the verbal inflectional system.
The formal version is characterized by a well-defined and more rigid inflectional
system. In the colloquial form, many cases of vowel-disharmony have been evened
out. As a result, in the colloquial form, a large number of spelling rules govern
the conjoining between the stem and the inflection of a verb, As an example
of vowel harmonization, consider the verb pariya’=/par/+-/iya’/ in the formal
form becoming pere in the colloquial form. For the spelling rule governing the
formation of the verb, see Appendix-B. Since current usage of the formal version
is limited, our attempt has been to include the most common colloquial form as a
part of the language. Hence, in many places in this chapter, examples have been
considered from both the formal and colloquial forms, Whenever an example (or
description) has been cited in the colloquial form, it has been parenthesized. For
example, a citation could be pa’riya’ (pere) is a verb that

5.2.3 The Verbal Inflection System

The verbal inflection system consists of the causational affix and the verbal declen-

S107.

The causational affiz determines whether the verb is causated or not. In Bangla,
the only causational affix is a’, in both formal and colloquial form. However, in
the colloquial form, the affix sometimes get deformed in spelling as shown by some

rules in Appendix-B.

There are some verb stems (for example, da’md’.a’ ‘stand’) that may not be
morphologically causated. These stems must have lexical “flags” to enable the
morphological processor to decide that it may not be followed by a causational

affix.

99

The declension on a verb determines:

o I'he Tense and Aspect of the verb if it is finite. Certain declensions mark the
verb to be infinite, in which case it is tenseless.

o The Gender, Number, Person and Honorific Value of the verb. These four
features are henceforth to be referred to collectively as the GNPH value of
the verb, although for a particular language of interest, some of the features
may be absent (In Bangla, the gender and number feature are absent). The

GNPH feature of the main verb of a sentence musi agree with the GNPH
feature of the grammatical subject. Thus, the GNPH is one of the strongest
points for subject determination.

5.2.4 'Tense and Aspect

The tense-aspect system of Indian languages is quite complex. Tense and aspect
are normally determined from the declension of the verb. However, for a given
language, some tensual and aspectual cases are expressed by special multi-worded

verb forms.

According to Chatterjee [36], there are four basic tenses in Bangla — Past, Ha-
bitual (Past), Present and Future. There are three instances of aspect for
every tense namely, Simple (i.e. no aspect), Progressive and Perfect. In addi-
tion there is a distinct form for the Imperative Mood. Thus, in all, there are
thirteen different tense/aspect values for the TENSE attribute for a finite verb.

The thirteen tenses are shown in Table-5.1

There is no gender and number distinction with Bangla verbs. Five different
person-honorific classes are encoded in the declension of a verb as shown in Table-

5.2,

Of the thirteen possibilities of the TENSE value, the imperative mood, all the

simple tenses and the different aspectual cases of the past and present tenses are
completely encoded in the verb declension. The different forms are shown in Table-

5.3. The last row in every entry is reserved to express the inflected form (in “Sadhu
Bhasa”) of the verb root kar meaning “do”.

The remaining four forms require an auxiliary aspectual operator and hence are
instances of multi-worded verbs.

There are two major defective verbs. The first one has the stem y.a’ “go”. Hmwevex:,
when declened with a morpheme beginning with “E”, the stem gets deformed to gl.

100

We take care of this defective verb by a spelling rule. Another defective verb is the
aspect-verb. This verb can only be in PRESENT or PAST tense. The different
forms are chila’m, chili, chile, chila and chilen in the PAST tense and chi,
chis, che, cha and chen in the PRESENT tense. We have considered all the
ten forms as special VSTEM morphemes that are indeclinable. These morphemes
project the necessary TENSE and GNPH features. The indeclinability is assured
through manual tuning of the AFSA.

5.2.5 Verb Forms with Infinite Declensions

The verb declension system also encodes three types of infinite forms, as shown in

‘able-5.4.

In our approach, the lexical projection of a verb with infinite declension will not
have TENSLE and GNPH features. Instead, a feature INFTYPE will be projected |
with possible values FORINF, CONDINF or CONTINF.

A verhb with an infinite declension does not always automatically constitute an
infinite verb. In fact, the infinite declensions often act as auxiliary operators for
forming different types of multi-worded verbs. Also, there is one infinite verb form
that is necessarily multi-worded. The usage of verb forms with infinite declension
is described below. Here, ¥ may be any verh stem or verb stem conjoined with a
causational affix, and I may be any inflection. The linguistic concepts have been
taken from standard text books on Bangla grammar like [36].

ite (te) or FORINFE: This infinite form has three usages:

o As V-+FORINF Viy+I. Here V) is the stem of a verb indicating modal-
ity like par (can/may), ha (will/shall/must), etc. I determines the tense
and GNPH of the two-worded verb which will be called a modal verb.
Normally, Vs is different from V. |

o As VAFORINF V4IFORINF, This is the form of a merge infinite verb.
The usage is as Sy S’, where Sy is a sentential form ending in the merge
infinite verb and §' is the remaining part of the sentence, S’ is either a-
sentence, or S/CP, i.e. a sentence from which a case phrase 1s miss%ng
(a notation taken from Gazder et al {70]). Semantically, the action
described in Sy has a temporal reference that merges with the temporal

reference of 57,

e As VATORINF in isolation. This 1s the form for a for-infinite verb.
Usage is similar to the merge infinite verb. Semantically, Sy is the

. reason for S’

101

Another related infinite form, called the join snfinite form, has been discussed
in Sec-5.3 4. |

ile (le) or CONDINF: The form V4+CONDINT is the form of a conditional in-
finite verb. Usage is similar to merge infinite. Semantically, Sy is the pre-
condition for (and hence temporally meets) S,

iya’ (E) or CONTINF: There are a few different usages:

o The form V--CONDINT is the form of a continual infinite verb, Usage
is similar to merge infinite. Semantically, Sy temporally precedes 5.

o The form V4+CONDINT V7 is the form for Compound Verbs which has

heen described in Sec-5.3.3,

o There is another use of CONTINTF albeit rare. The form V+4+CONTINE
V4-CONTINT often acts as an adverbial infinite for a following verb V',
Usually, V is a Process type verb-stem. Semantically, the ahove form
describes an action V'’ that has been accompanied by process V.

Verbal Declension System Ambiguity: Comparison between Table-5.3 and
Table-5.4 reveals ambiguity in detection of the FORINF and the CONDINF de-’

clensions since they are identical in form with the HABIT-2p-1h and PAST-2p-1h
finite declensions, respectively. The lexical entries for these declensions therefore
have an alternation between the finite and the infinite forms.

5.2.6 Voice

Indian languages exhibit four different forms of sentence expression — the concept
having close similarities with the English voice system. The Voice system for Indian
languages is described below. The description provided is a deviation from classical
grammar texts. It has been adopted from a book by P. Dasgupta [52], where the
author has explained the voice system in the light of the X'-syntax.

Active Voice or “Katrivachya’ This is the most common and normal form. the
actor is given the principal status, or according to the concepts of X’-syntax,
the actor governs the verh, The actor thus becomes the grammatical function

subject of the sentence.

Passive Voice or “Karmavachya” Here the verb is governed by the acted upon
phrase which is given the subjective status.

102

Neuter, Intransitive Passive or “Bhabvachya” Usually, this form is found
with intransitive verbs. No phrase (or an empty category) governs the verb.
The actor takes a neutral case marker like DAT or GEN.

Quasi-passive, Middle or “Karmakatrivachya” This form is most common
for ergative constructions in which inanimate entities are delegated with actor
status, The verb is both governed by and governs the inanimate entity which
now plays a dual functional role of subject and object.

IFor Bangla, active voice is the most common mode of expression and the whole
tense system described above, 1s true for sentences in active voice. Passive voice 1s
rare in Bangla except for composite verbs.

Neuter voice is denoted by a two-worded verb of the type V4-FORINF Ha-DEC,
where V] is the stem from which the basic semantics of the verb is derived, FORINF
is the merge infinite verb declension, Ha is the stem of the copule and DEC is any
verb declension. The tense-aspect of the verb is determined by DEC.,

Neuter or intransitive-passive voice is denoted by a two-worded verb of the type
Vi-CAUS Ha-DEC, where V] is the stem from which the basic semantics of the
verbh is derived and CAUS is the verb causational aflix.

There are no special verb forms for the quasi-passive voice, The verb takes the
form as in active voice. Determination of voice is from semantic considerations.

5.3 Some Common Bangla Verb Forms

The major features in the f-structure of a verb are TENSE, GNP and PRED
(semantics, or logical form)., For causated verbs, there are two additional features
— CAUS, which takes a YES value and CSUBJ, which carries information about
the necessary case-marker on the participating entity in the sentence that plays
the functional role of Affected SUBject. In the GLFG based verb-centric parsing
system being discussed in the present thesis, syntactic control emanates frolm the
verb, meaning thereby, the m-structure schema should be most prevalent in the
lexical entries of verbs. In our approach, the lexical projection of a verb with infinite
declension will not have TENSE and GNPH features. Instead, a feature INFTYPE
will be projected with possible values FORINF, CONDINI or CONTINF.

Irrespective of whether a verb is finite one-worded or a more complicated form, it
is a single lexical entity. In this section, we shall mainly concern ourselves with the

103

lexical projection of Bangla verhs including the associated m-structure schema. For
multi-worded verb forms, supra-lexical specifications are obviously required. Also,
since the causational affix introduces a non-trivial modification in the semantics
and m-structure of a verb, supra-lexical rules are required for single worded forms
too. The GLIG based analysis of Bangla verbs must therefore involve:

e Study of Supra-Lexical rules for the different verb forms.

e M-structure and F-structure assoclated with various verbs.

It is obviously not possible to discuss the £~ and m-structures of each individual
verb in the present thesis, We provide a general overview of how the different
entities of the {- and m-structure of a verb (of any form) are generated, either
straightway from the lexical database entries of the constituent morphemes (for
single worded verbs), or through manipulations at the supra-lexical level.

5.3.1 One Worded Finite Verb '

The one worded verbs discussed here may or may not be causated, and are in active
voice,

Uncausated finite verbs derives the PRED feature and the m-structure directly
from the lexical database of the stern, The TENSE and GNPH features are derived
from the declension. For causated verbs, the PRED feature and the m-structure
must be altered to include one more participating entity. However, there are many
verb stems which may not be morphologically causated. To prevent such stems
being followed by a causational affix, their lexical entries contain an additional
f-structurve schemata (] CAUS) = NO. This way, the morphological processor
fails to unify the (T CAUS) entities from the stem and a causational affix (if such
an affix is present). As an example, the lexical form da’'md’.a’ (stem ‘stand’) +
- a’ (affix) + iben (declension) is ill-formed, i.e., there is no single-worded ver.b in
Bangla meaning ‘cause to stand’. This mechanism permits us to have a frivial
supra-lexical rule for one-worded causated or non-causated verbs,

VERB => VSTEM+(VCAUS)+VDEC where {
TENSE<<($1 TENSE) ; ~
GNPH<<($1 GNPH) ;

exists($1.VCAUS) 7 { o o
#=$1.M + (# ASUBJ {(ANIM,YES), (CASE,($1 CSUBI))});

104

|
=351, M;
}
A

existe($1.VCAUS) 7
$1.77; $1.70; @$1;
$1.77+1; strcat("CAUS-", $1.70); SUBJ; ASUBJ; @$1;

Thus, if a verb is non-causated, its m-structure is identical to the m-structure of
the stem. However, 1f 1f is causated, the m-structure gets modified as follows. The.
affected subject of the sentence is forced to be animate and the case marker on the
‘head’ word of the Affected SUBJect (ASUBJ) grammatical function is constrained
to be same as the CSUBJ feature of the stem. In either cases, the TENSE and
GNPH of the verb remains same as returned by the morphological sub-system. If
the verb is causated, the PRED feature is augmented to include the semantics of
causation. In that case, an additional argument for the secondary agent is added at
the second place of the semantic clause, the Affected Subject is made to occupy the
new position and the predicate is expressed by adding the string prefix “CAUS-"
to the predicate of the uncausated stem. |

Example: -
Consider the causated verb dekha’be (see-CAUS-FUTURE-3p-1h) “will cause to

see, i.e. show”. The uncausated stem dekh “see” projects-the following features
(only the necessary ones mentioned):

(T ASUBJ)=DAT

(4 SUBJ CASE)=NOM, (# SUBJ ANIM)=YES, (# SUBJ GNPI)=3p-h
(# OBJ CASE)=NOM - -

(# I0BJ CASE)=DAT, (# IOBJ ANIM)=YES

As a result of the above supra-lexical specification, the projection_of dekha’be
includes two additional m-structure schemata — (# ASUBJ CASE)=DAT, (#
ASUBJ ANIM)=YES. Also, the semantic clause is — “CAUS-see<(SUBJ)}, (SUBJ),

(OBJ), (IOBJ)>, which clearly has one additional argument than the semantic
clause of the uncausated form.

- 105

5.3,2 Infinite Verbs

An Infinite verb is one which can act as the “head” of a dependent clause of
a complex sentence or non-final clauses in a garden-path a sentence. Bangla is
characterized by a lavish usage of infinite verbs, Complex sentences have been
dealt with more detail in Sec-7.4, The infinite “head” verb of the dependent clause
of a complex sentence is treated as a normal verb with additional consfraints that

it should be tense-less and project a (INFTYPE FORINTF) feature.

The infinite verbs used in garden-path sentences (see Sec-7.3) are of three types,

two of which are one-worded. Fach form must project a FLOW feature indicating

the temporal relation between the clause headed by the verb in question, and the

next clause of the sentence. The flow feature can have three possible values. If C;

and O, are two successive clauses in a garden-path sentence and if G is headed by

an infinite verb V (which may be multi-worded), the semantics of the three values
of the FLOW feature projected by V, is explained below:

i. If 'LOW has a value BEFORE, C; temporally precedes Cy.
4 FLOW has a value SIMULTANEOUS, C; and O, describe stmultaneous

events,

iii, If PFLOW has a value IF-THEN, C; not only temporally precedes Cg, but
also a pre-condition for event Cj at all taking place. -

iv. A FLOW value JOIN indicates Cy temporally meets Cs.

For a more detailed discussion on garden-path sentences and the use of the FLOW
feature, including examples, see Sec-1.3.

Infinite verbs projecting BEFORE value for FLOW is one-worded (unless negated,
or the base part generated out of multi-worded forms) that takes the CONTINIE

declension. An IF-THEN value of the FLOW feature is also projected by a single-
worded verb, the declension being CONDINFE. The supra-lexical specification for
infinite verhs projecting FLOW values BEFORE and IF-THEN is:

VERB => VSTEM+(VCAUS)+VDEC where { -
equals(($1 INFTYPE), CONTINF) 7 {
FLOW<<BEFORE ;
oo o
equals(($1 INFTYPE), CONDINF) ? {

106

FLOW<<IF-THEN ;
s -
exista($1,.VCAUS) 7 {

.. same as finite one-worded verb ...

-
H — H

$1.M;

, same as finite one-worded verb ...

Example: The verb dekhe see-CONTINF “upon seeing” has a FLOW value
BEFORIL, while dekhle see-CONDINT “f seen” has a FLOW value IF-THEN,

A TFLOW value SIMULTANEQUS is projected by the form V-FORINF V-FORINF,
i.e, a doubly uttered CONDINF declened verb. The supra-lexical specification in
this case 1s:

VERB => VSTEM+ (VCAUS)+VDEC VSTEM+(VCAUS)+VDEC where {
equals (($§1 INFTYPE), FORINF) &&
equals($1.VSTEM, $2.VSTEM) &
equa13($1*VCAUS, $2.VCAUS) &&
equals($1,.VDEC, $2.VDEC) {
FLOW<<SIMULTANEQOUS;

ks
exists ($1.VCAUS) 7 {
= ,,, same as finite one-worded verb ...
: {
#=$1 .M,
A
., . gsame as finite one~worded verb ...
}
I

¥

Example: The two-worded verb dekhte dekhte see-FORINF see- FORIN.F “while'
seeing” project a SIMULTANEOUS value for the FLOW attribute. |

The Verb form projecting a FLOW value JOIN has been discussed 1n Sec-5.3.4. \.

107

5.3.3 Multi-Worded Verb Forms

There are a few types of multi-worded (finite, 1101n-nega,ted) verb forms in Bangla:

VAFORINE Vir: This is the form for modal verbs talked about in Sec-5.9.5.
Verbs in progressive-future tense and NeuterPassive Voice also have this form.

V+CONTINF V’': This is the form for compound verbs.

X V: This is the form for composite verbs where X is either a noun or an adjective.

The supra-lexical rules for the various verb forms are considered below:

Compound Verbs:

VERB => VSTEM+(VCAUS)+CGNTINF VSTEM+VDEC where {
compoundable($1.VSTEM, $2.VSTEM) ;
TENSE<<($2 TENSE) ;
GNPH<<($2 GNPH):
exists($1,VCAUS) 7 {
.. 3ame as finite one~worded verb ...
Fo
#
i

FA

exists($1.VCAUS) 7 |
$1.77+1; strcat("CAUS-", $1.70, vector($2.VSTEM)); SURJ: ASUBJ: @$1;

$1.77; strcat($1.70, vector($2.VSTEM)); @$1;

B~ 1

$1.M;

In the above rule, compoundable is a user supplied filter. The compoundable filter
is a mapping from (Verbal Stem x Verbal Stem) onto {TRUE, FALSE}. The
naive method of construction of this filter is to have a compiled list of all pairs
that map to TRUE (i.e., all compoundable stems). However, attempts are being
made to derive the compoundable filter using different iexical attributes of the
compounding stems. A review of the status of such research may be found in the

work of a colleague, Bandyopadhyaya [9].

In case the stems are compmindable, the TENSE and GNPH features of the com-
pound verh are derived from the second verb-like word called the vector. The se-
mantic predicate of the compound verb is primarily derived from first word called

108

the pole. However, it is subtly altered by the vector meaning of the vector. The
alteration 1s assumed to be captured by the function vector.

Example:

In the compound verb dekhe phelbe see-CONTINTF drop-FUTURE-3p-1h “will
observe”, the vector meaning of the stem phel “drop” (vector) provides a sense
of completion of the main action (“see” here). Suppose that vector(phel) re-
turns COMPLETE., Then, the semantic predicate of the above compound verb is
seeCOMPLETE,

Some Future an Habitual Tense Forms

For future tense verbs, the supra lexical rule is:

VERB =>' VSTEM+(VCAUS)+VDEC VSTEM+VDEC where {
equals($2.VSTEM, FUTUREMODAL);
equals(($1 TENSE), CONTINF) || equals(($1 TENSE), FORINF);
equals(($2 TENSE), HABIT) || equals(($2 TENSE), FUTURE);
equals(($2 TENSE), HABIT) 7 { |

equals(($1 TENSE), CONTINF) 7 {
TENSE << HABIT-PERF;
o

F o
TENSE << HABIT-PROG;

}
oA |
equals(($1 TENSE), CONTINF) ? {
TENSE << FUTURE~PERF;
FoA{

TENSE << FUTURE-PROG;

k

)y
GNPH<<($2 GNPH);

exists($1.VCAUS) 7 {
. game as Tinite one-worded verb .

e
o~

In the above rule, FUTURE.MODAL is a special auxiliary verb stem tha'k (stay).
The two-worded verb is in future and habitual tense depending upon whether the

109

future modal auxiliary is in FUTURE or HABITual tense, respectively. The aspect

of the verb is progressive or perfect depending upon whether the declension on the
main verb is FORINF or CONTINT, respectively.

Example:

i. dekhte tha’kba see-IFORINF stay-FUTURE-1p “shall go on seeing” is in
FPUTURE-PROGressive tense.

ii. dekhe tha’kba see-CONTINF stay-FUTURE-1p “should have seen” is in
FUTURE-PERFect tense.

iii. dekhte tha’kta’m see-FORINT stay-HABIT-1p “used to go on seeing” is
- in HABITual-PRO Gressive tense.

iv. dekhe tha’kta’m see-CONTINF stay-HABIT-1p “used to have seen” is in
- HABITual-PERFect tense.

Verbs in Neuter Voice

For Neuter Voice verbs, the supra lexical rule is:

VERB => VSTEM+(VCAUS)+VDEC VSTEM+VDEC where {
equals(($1 TENSE), FORINF);
equals(($2 GNPH), 3p-ih);
equals(($2.VSTEM, COPULA));
- TENSE=($2 TENSE);
GNPH=($2 GNPH); -
= ($1 #) - (# SUBJ CASE) + (# SUBJ CASE)=DAT;

H?

In the above rule, COPULA is a special verb stem Ha (b e). Note the change in the
m-structure of the verb from the m-structure projected by the stem of the main
verb. Note that the GNPH of the auxiliary is constrained to be a neutral one like

3p-1h.,

Exampl‘e: | | |
dekhte Hala see-FORINF be-PAST-3p-1h “had to see” is a verb 1n neuter voice
as in the sentence a’'ma’ke ta’jmaHal dekhte Hala I-DAT Tajmahal-NULL see-

FORINF be-PAST-3p-1h “I had to see the Tajmahal”, where the subject a’ma’ke
takes the DATive case marker. |

110

Modal Verbs

For all modal verbs, most of the clauses in the supra-lexical rule are common, Only

the semantic clause gets modified according to the modal operator. The general
form of the rule is:

VERB => VSTEM+(VCAUS)+VDEC VSTEM+VDEC where {
~ equals(($1 TENSE), FORINF):
equalsFrom(($2,VSTEM, MODALSET)):
TENSE=($2 TENSE);
GNPH=($2 GNPH);
= (31 #);
F {
exigts($1.VCAUS) 7
$1.77+1; strcat(modal ($2.VSTEM), "CAUS-", $1.70): SUBJ: ASUBJ: Q$1;
$1.77; strcat(modal($2.VSTEM), $1.70); @$1:

Here, the set MODALSET is the set of modal auxiliaries. The function modal
returns the modal semantics of the modal auxiliary stems. The predicate of the
modal verb is obtained by concatenating the modal semantics of the auxiliary with
the predicate for the main verb. For four most common modal auxiliaries, the

modal semantics are given below, along with example sentences from the prototype
a’mi ta’yjmaHal dekhte X-la’'my I-NULL Tajmahal-NULL see-FORINEF X-PAST-

Ip, with X being the modal operator,

pa’r Can/May-). a’mi ta’jmalal dekhte pa'rla’m “I could see the Tajmahal”.
The predicate is Can/May-sec.

ca’h (WantTo-), a’mi ta’jmaHal dekhte ca’ila’m “I wanted to see the Tajma-
hal”, The predicate is WantTo-see.

la’g (GoOn-). a’mi ta’jmaHal dekhte la’gla’m “I went on looking at the.
Tajmahal”., The predicate is GoOn-see.

bas (TakeUp-). a'mi ta’jmaHal dekhte basla’m “I took up seeing the Tajma-
hal”. The predicate is TakeUp-see. |

Comiposite Verbs

The most diffcult of verb forms in Indian languages, especially Ba.ngla, 15 the com-
posite verh. Composite verbs of Bangla represents the dynamicity of language.

111

Most new actions are described in Bangla by using composite verbs. As described
carlier, a composite verh consists of a non-verbal (and meaningful) entity followed
by a verbal auxiliary unit, The non-verbal entity can be a noun (N), an adjective
(A) or sometimes a post-positional particle (P), Most verbal-noun units (1mor-
phemes formed from a verbal stem followed by a causational affix) may be used as
the first entity of a compound verb. Linguistic study of Bangla composite verbs is

ab an early stage. Iiven, a universally accepted set of linguistic tests for 1dentifying
composite verbs is not available.

The form N-V of composite verbs is most common, The six most common auxiliary
V stems of composite verbs are kar, ha, de, pa’ kha’, pa’, Of them, statistics
shows that kar (“do”) accounts for the auxiliary of more than half of the composite
verbs used normally. Now, kar is a transitive verb stem. Quite often, the composite
verb N-kar is an intransitive one, In such cases, it is tempting (and often confusing)
to consider kar as the main verb with N as its object (complement). For example,
consider the composite verb (stem) cha’n kar (“bath-do™). In the sentence ra’m
cha’n karche (“Ram is taking a bath”), cha’n (bath) may be considered to be the
object ol kar. However, the approach is clearly not proper because first, it leads to
a high degree of polysemy for kar and secondly, it leads to an awkward situation -
for sentences like ra’m a’ma’ke bait’a’ da'n kareche (“Ram has gifted me the
book). Here, if da’n (“gift”) is considered as the object of kar, the actual object
bait’a’ (“the book”) can not be assigned a function. Transformational approaches
towards treating the N of Ny composite verb as the complement of V {even in the
presence of other objects) may be found in P. Dasgupta [48). However, criticisms
thereof, and a more halanced outlook towards composite verbs of Bangla may be
found in M. Dasgupta [44]. The latter approach suggests a greater bias towards

treating composite verbs as separate lexical entity.

Treatment of composite verbs as separate lexical entities is not trivial in the gen-
eral case. Iowever, for the more widely used forms, this approach appears more
realistic. In the present work, we employ the lexical approach by considering com-
posite verbs at the supra-lexical level, The resulting supra-lexical specification 1s
given below. We consider only the N-V composite verb, leaving the others for later

research.

VERB => NSTEM VSTEM+VDEC where <
composable($1.NSTEM, $2. VSTEM) ;
TENSE=($2 TENSE);

GNPH=($2 GNPH) ;
= Composi'teMStruct(iBi.NSTEM_., $2.VSTEM) +

(\# SUBJ GNPH)=($2 GNPH);
LI -

112

compositeArgumentNo($1.NSTEM, $2,VSTEM).
compositePred($1. NSTEM, $2.VSTEM):
compositeArgumentList ($1.NSTEM, $2.VSTEM);

¥

Note the functions CompositeMStruct, compositeArgumentNo, compsitePred
and compositeArgumentlist, They generate the m-structure, number of seman-
tic clause arguments, semantic predicate and the semantic clause argument list,
respectively, Together, these functions perform what may be termed as the verbal-
ization of the nominal stem.

Example:
Let us consider the nominal stem da'n that is composable with verb kar. The
results of the above functions are summarized helow:

i, CompositeMStruct(da’n, kar) returns the list { (# SUBJ ANIM)=+, (#
SUBJ CASE)=NOM, (# IOBJ ANIM)=+, (# 10BJ CASE)=DAT, (# OBJ
ANIM)=-, (# OBJ CASE)=NOM }

ii. compositeArgumentNo(da’n, kar) returns 3.
i, compsitePred(da™, kar) returns “gift”.

iv, compositeArgunentNo{da', kar) returns the list { (SUBJ), (OBJ), (10BJ)
}II '

Thus the predicate of the composite verb da’n kavlen gift do-PAST-2/3p-2h
“oifted” has a semantic clause ‘g1 ft < (SUBJ),(0BJ),(I0BJ) >' and an m-
structure { (# SUBJ GNPH)=2/3p-2h, (# SUBJ ANIM)=-+, (# SUBJ CASE)=NOM,
(# 10BJ ANIM) =+, (# 10BJ CASE)=DAT, (# OBJ ANIM):-, (# OBJ CASE)=NOM

}

Although composite verbs can be
detail.

causated, we have not taken up that case in

5.3.4 Negative Verbs

verb negation in Ballgla and one type of negation
o0 is catried out with the help of one of the two
interesting use of a negative particle along

There are two types of finite
of infinite verbs, Tvery negation Is
negative particles — na and nl One

- -113

with a type of infinite verb, that does not actually negate the sense of the verb,
has also been discussed here,

A good study of negation in Bangla in general may be found in Singh [163], where
negation of verbs have naturally enjoyed maximum predominance. It may be
observed in Bangla that the negative particle in almost all negative forms maintain
near proximiby with the verh it negates. Also, in some of the forms, the presence of
‘the particle alter the lexical projection of the verb and sometimes impose syntactic.
restrictions. It is therefore natural to use supra-lexical specifications for negative
verb forms. Here we concenirate on some of the more commonly used forms:

Finite Verb followed by “na”. This is the most common form of negation.
The negative particle introduces a simple negation on the semantics of the
preceding verh. No selectional restrictions are imposed. Other features of the
“verb remains unaltered, Thus the situation is somewhat as expressed by the
Iinglish particle ‘not’ used as a singleton (i.e. with no auxiliary). We shall
call this type of negation an indefinite negation. The necessary supra-lexical
specification for this form is: |

VERB => VSTEM+(VCAUS)+VDEC NEG where {
aquals(($2 NEGTYPE), INDEFNEG);
TENSE<<($1 TENSE);
GNPH<<($1 GNPH);
exists($1i. VCAUS) 7 {
#=$1.M + (# ASUBJ {(ANIM,YES),(CASE,($1 CSUBJ))});
Yoo A
#=§1.M;
F

FA
oxists($1.VCAUS) 7
$1.%7: gtrcat(""", $1.70); @¥1; :
$1.~741; strcat("~CAUS-", $1.70); SUBJ; ASUBJ; 0$1;

by

Ilere, ~ is taken to be the negation operator. The particle na’ is assumed to

project a NEGTYPE feature with value INDEFNEG.

Fxample: -
The verb dekhla’m na
semantic predicate “see,

I’ see-PAST-l.p no-INDEFRinite “did not see” has a
and TENSE as PAST and GNPH as Ip.

 Here the situation is somewhat like in the En-
there is no simple equivalence of the ‘had

Finite Verb followed by “pi”

glish ‘ha,ve 1.1101;’.' negatlon OPGI‘&{}OI‘ (

114

not’ operator in Bangla). Here, the preceding verb must necessarily be in
PRESENT tense. Apart from negating the sense of the verb, the effect of the
operator 18 to alter the tense of the verb to PRESENT-PERFect. We shall
call this type of negation an perfect negation. The particle na’ is assumed to

project a NEGTYPE feature with value INDEFNEG. The necessary supra-
lexical specification is:

VERB => VSTEM+(VCAUS)+VDEC NEG where {
equals(($2 NEGTYPE), PERFNEG).
equals(($1 TENSE), PRESENT);
TENSE<<PRESENT-PERF;
GNPH<< ($1 GNPH) :
exists($1.VCAUS) 7 {
#=$1.M + (# ASUBJ {(ANIM,YES),(CASE,($1 CSUBJ))}):

FoooA
#=$1.M;
b
Fo{

exists($1.VCAUS) 7
$1.77; strcat (""", $1.70); ©$1: |
$1.77+1; strcat(""CAUS-", $1.70); SUBJ; ASUBJ: @$1;

Example: |
The verb dekhi ni’ see-PRESENT-1p no-PERFeCT “have not seen” has a
semantic predicate “see, and TENSE as PRESENT-PERF and GNPH as

Ip.

“na’” followed by any of the infinite forms: This is the usual form for nega-
tion of infinite verbs. Treatment is same as in indefintie negation of finite
verbs, except that the negative particle precedes the infinite verb and the
verb being negated is one type of infinite verbs discussed in Sec-5.3.2. As a
representative example, we give the necessary supra-lexical specification for

the infinite verb that are one-worded in positive usage:

VERB => NEG VSTEM+(VCAUS)+VDEC where {
equals(($i NEGTYPE), INDEFNEG);
equals(($2 INFTYPE), CONTINF) 7 {
FLOW<<BEFORE ;
} o
equals(($2 INFTYPE), CONDINF) 7 {
FLOW<<IF-THEN ;

115

};
exists ($1.VCAUS) 7 {
#=81.M + (# ASUBJ {(ANIM,YES),(CASE,($1 CSUBI))}):

Foo A
- #=$1.M;
)

F o

exists($1.VCAUS) 7
$1.77; strcat("™", $1.70); ofi;
$1.7741; strcat ("“CAUS-", $1.70); SUBJ; ASUBJ; @$1;
h

Example;:

The verb na’ dekhe no-INDEF see-CONTINF “not having seen” projects
a BEFORE value for the FLOW attribute, while the verb na’ dekhle no-
INDEF see-CONDINF “if not seen” projects an IF-THEN value.

A “na’”” between two identical infinite stems: Here both the stems have FORINF
declension. Recall that in the absence of the negation operator, this is the
form projecting a SIMULTANEQUS value for the FLOW feature. The in-
teresting point to be noted- here is that the form being discussed signify no
negation at all. In fact, this is one way of expressing temporal join of two
events and a JOIN value is projected for the FLOW feature. The supra-

lexical specification for this form is:

VERB => VSTEM+(VCAUS)+VDEC NEG VSTEM+(VCAUS)+VDEC where o
equals(($2 NEGTYPE), INDEFNEG);
equals(($1 INFTYPE), FORINF) &%
equals($1.VSTEM, $3.VSTEM) &&
equals($1.VCAUS, $3,VCAUS) &&
equals($1.VDEC, $3.VDEC) {
FLOW<<JOIN;

}

exists{($1. VCAUS) 7 '
#=$1.M - SURJ + (# SUBJ {(ANIM YES) (CASE, ($1 CSUBJI))});

} i o
| #=$1+M:
}

> o

... Same as positive forms, i.e. no ~ operator used ,..
}
Example: dekhte na’ dekhte see-FORINF no-INDEF see-FORINF ©

116

There ave some other forms where the negation oi)era,tors locally group with verbs.
However, they have not been considered here, Treatment of negated forms of multi-

worded verbs, may be carried out in a line similar to the negated join infinitive
verb discussed above.,

5.4 Discussions

In the present chapter we looked at the verbal paradigm of Bangla from the angle
of implementation of a computer based parser. As our implementation approach is
verb-centric, the more properties of Bangla verbs we can encompass in our formal-
ism, the more general will be the resultant parser, We started with the observation
that the common Bangla verb is one-worded and may be quite efficiently handled
by our proposed morphological formalism, However, we also noted that there are
some ‘verb forms that are used quite frequently, but are not one-worded. Also,
negated verb forms are always multi-worded. Contemporary linguistic research on
Bangla verbs is involved with in-depth study of syntactic and semantic properties
of the various multi-worded forms. For example, other workers of our group have
studied the “compoundability” condition for Bangla verbs. The present chapter is -
however more concerned in bringing all the forms under a single umbrella of supra-
lexical specifications. We have been successful in incorporating the more common
forms under our formalism as may be observed from the preceding discussions.
The task is however far from over. There are many more details to be worked out
and many questions to answer. Some verb forms not discussed in this chapter but

study of whose properties have been earmarked for future study are:

i. Infinite Compound Verbs and Composite Verbs.
1. Verbal Adjectives.
iii. Negated Compound Verbs and Negated Composite Verbs.
iv. Negated Infinite Compound/Composite Verbs.
~ v. Foreign language Verbs and their assimilation into Bangla.

vi. Different type of ambiguities in the verbal paradigm.

Also earmarked for deeper study is handling all types of composite verbs, At

present only some common forms have been taken up.

117

Table 5.1: The Thirteen different Tenses- Aspects of Bangla

DifTerent values of the TENSE attribute

Abbreviation used in Text

1 | Past Simple PAST
2 | Habitual Simple HABIT
3 | Present Simple PRESENT
4 | Tuture Simple FUTURE
5 | PPast Progressive PAST-PROG
- § | Habitual Progressive HABIT-PROG
7 | Present Progressive PRESENT-PROG
8 | Future Progressive FUTURE-PROG
9 | Past Perfect PAST-PERF
10 | Habitual Perfect HABIT-PERF
11 | Present Perfect PRESENT-PERF
12 | I'ubure Perfect FUTURE-PERF
13 | Imperative Mood IMPER
Table 5.2: The Five GNPH attributes of Bangla
Diflerent values of the GNPH attribute Abbreviation used in Text
1 | First Person Ip
2 | Second Person Intimate 2p-Oh
3 | Second Person Casual 2p-1h
4 | Third Person Casual 3p-1h
5 | Second/Third Person Honoured 2/3p-2h

118

Lable 5.3: The Verb-Declension System of Bangla

GNPH —

1
ilal :
PAST (la'm) {il‘ii} e ila Ten
karila'm karii k{ E;:: e (o
T = l::-,ﬂ c kl?:i:lﬂ. kairilen
HABIT (ﬂﬂ'l'ﬂ Xl 1He ten
km*i:ta.’gn EE:lii k(“:a o (tons
: L a: @ karita kariten
PRESENT i c o
o ke A (e) (on)
e oL _ifu B kare l-faren
FUTURE (ba) (bi) e \be Al
kariba karibi kirﬁzﬂ k(hﬁg G
itechila'm iteahili itechl oo, kﬂl‘ﬂl_'ﬂ“
PAST-PROG (chila'm) (chili) lfc?lflll::; 'EEIEH”;' i(t h !‘1'1&5‘
‘ chila chilen
| -8} I;:te;:;lil:n‘m I-:ait;il;a-lc.hili karitechile karitechila karitechilen
PRESENT-PROG (chi) (ehiz) ‘f:;':’;‘f i(t:ﬁ Xy i(tﬂ}f oy
a che
_ i::::]f ;ﬂ‘:: :]1 k::is; Elr:?l :s l-l:ﬁri’t ?ﬂl e karitecha karitechen
ch ya'chile lvm'chil 1y antchil
p - . ya'chila ya en
AST-PELRP kuﬁuﬂ!;‘ﬁ;}‘m ka,E-TEh’i'HI)iII) (E.ch:h) (echfla.) (echilen)
‘ﬂ,ﬂ o } :;}Ell n;'l;.r? chile kn.riw: chila | kariya'chilen
PRESENT-PELRLY {(echl) (J:ac:h i::)ﬂ E;:Ifﬂ; 16::1::; i(?:::::?;‘
kariva’ochi kﬂti.lr%al-:;:his kariya’che kariya'che kariya'chen |
: aha uk 11T
IMPER - NULL {n) (k) (un)
kar kara karuk karun
Table 5.4: The Infinite Verb-Declensions
Infinite Abbreviation || Declension | Declension kar
Form Used “Sadhu” “Chalit” | Inflected
Merge/Reason Infinitive | FORINF ite (te) karite
Conditional Infinitive CONDINT ile (le) karile
Continual Infinitive CONTINE iya’ (E)) kariya’
Note: The *Chaht?

form of the CONTINF inflection is actually e at the surface level. However, to distinguish 1t
from the PRESENT-3p-1h inflection (the distinction is especially required since the two inflec-
tions are subject to different types of spelling rules), the lezical form E has been used. The
symbol B belongs to the lexical alphabet only. Spelling rules are used to obtain surface forms of

this inflection.

119

Chapter 6

The Bangla Case Phrase

It has alveady been discussed that sentences in Indian languages mostly have a
“flat” structure, with the verb as the key entity. Depending upon the verb, there
may he other pariicipaling phrasal entities in the sentence which normally permute
{reely among themselves. In Bangla, the participating entities are generally of
two types - the noun phrase (NP) and the post-positional phrase (PP). The
main distinction hetween the two is morphological. Noun phrases are case marked
by inflectional case markers. Post-positional phrases on the other hand are case
marked by cerbain types of particles called post-positions. A case phrase therefore
have two essential associated features — the semantics or PREDicate feature and a
CASE-marking feature. The semantics is derived from the “head” noun or pronoun
of an NP (il CP is an NP) or the head of the “object of post-position” (POBJ) NP
(it CP is a IPP), '

6.1 The Noun Phrase

A complele linguistic study of the Bangla noun phrase is beyond the capability of

the present work. T'he study of noun phrases is essentially a study of the various

modifiers/qualifiers of the head noun and various selectional restrictions imposed
by these modifiers. rey [67] has pointed out that the amount of available literature
on noun phrases is surprisingly small. For a language like Bangla, the situation 1s

even worse. The present study is a modest attempt to fill the gap, at least from
the viewpoint of computer implementation. The discussions in this chapter are

greatly influenced by Jackendoft 84] and Frey [67]. The original analysis offered
by Jackendoff for simple NPs in English, which was predominantly based on a

transformational approach, is given in (6.1), (6.2. Yrey has on the other hand,

120

1 - Sand e i mimim- T . . " - - -
e T s e e At e e T T e g T e e D e o 1 e e e -

suggested a TG based analysis in 67]. He has pointed that Jackendoff’s analysis
have certain madequacies vis-a-vis Imposing some common selectional restrictions.
I'rey introduced some new phrasal types to take care of the selectional restrictions.
[n the present work, we have adopted Trey’s approach in principle. However,
Bangla NI’s are quite different from English NPs and require different techniques
Lo tackle the intricate detadls.

C DEM)
((j.l) N’” (::.:: N}]) - < }}()lsrs) N”
. @l

DEM
(62) N" - { POSS § AP* N
Q]

whoere AP is the adjective phrase and the other categories are as follows:

DISM: Demonstrative pronouns, interrogative pronouns, ‘the’, ‘a’, ‘some’ (singu-
lar}), cle.

POSS: Possessives.
Q1: ‘Toach’ Il o’ ‘every’. ot
Ao .Jflt.- l y {1! ¥ 11{] y ﬁ:vely } C (JI
Q2: ‘Many’, ‘few’, ‘several’, ‘much’, ‘little’, etc.

NUM: Numerals, ‘a few’, ‘a little’, ‘a dozen’, etc.

The paradigm of Bangla NPs is a vast one. Here we Investigate some of the
more common forms. The head of a Bangla NP 1s a noun or pronoun (N) An N
consists of a nominal stem (NSTEM), an optional cleﬁnite—mm*king affix (DEF) and
a nominal (NDIC) or possessive declension (P 05S). The declension is .manda,tory
in the deep-structure of an N. However, in the surface, it may be mam‘fested as a-
NULL declension. Constituent morphemes of a noun are extracted during parsing
by the lexical sub-system. The lexical sub-system also takes care of some of the
selectional restrictions vis-a-vis inflections and the stem. We have incorporated one
such restrictions in our system — “nersonal nouns and pronouns may nofz take the
DER affix”., With this, words like a'mit’a’, ra'mt’a’, etc, are declared ill-formed
ab the morphological parsing level. |

121

6.L.1 'The Nominal Inflections

Mhava AW | ENEY QL T ’ M 4 o r
I'here are threc Gl(\-ﬁﬁeﬁ of nominal inflections in Bangla — the DEF affix, the POSS
declension and NDISC declension.

The DEI" aflix acts like a determiner like “the” in English. The affixes t’a’, £
specily singular number for the noun. Affixes kha'na’, kha’ni are also used in
place of t?a’, £’1. The affixes gulo, guli are used to specify plural numbers. Thus
bait’a’, bailkha'ni, ete., (bal=book) means “the book”, whereas baigulo means

. e TN Ny g : p . | |
“the books”. The DI affix is optional, In its absence, the noun is said to be
mdefintle.

The POSS declension in Bangla is a single lexical form er. However, due to spelling
deformation resulting out of vowel harmony, it may also become a’r, r in the
surface. "T'he usage of the POSS declension is roughly similar to the apostrophe-s
of I'mglish. U'bus pa’khit’a’y (bird-DEF-POSS) means “the bird's”. A noun with
a POSS declension will be said to have a POSS case marker,

The nominal declensions normally act as case markers for nouns and pronouns.
Compared to Sanskrit, the number of nominal declensions (NDEC) is quite small
in Bangla., They may be broadly classified in four groups depending upon the type
of case marking they perform:

i, The NULL declension, which has no surface form. Since this declension is
normally used on the subject of the sentence, it will be called the NOMinative

case marker,

ii. The declensions ke and re (which may deform to ere) form the class of
DATive case marker.

iii. The declensions e,te (which may deform to y,ete respectively) are the LOCa-
tive case markers.

iv. The declensions e, te are also called OBLiQue case markers. To avoid con-
[usion, these declensions will be called OBLQ if conjoined with noun stems
with no PLACE feature and LOC with noun stems with PLACE feature. For
example, ha't (hand), being a body part, has 2 PLACE-YES feature. Thus.
Ha’te means “on the hand” but gorute (goru=cow) means “the cow”. The
OBLQ case normally points to a SUBJ grammatical function except in some

poetic forms,

122

6.1.2 The Different Modifiers of the Head Noun

The Modifiers of the head of an NP could be of the following types:

i, Inflectional, as a DEF affix or a declension on the head N. The nominal
inflections have been considered above.

il. Numeric, involving number with associated inflectional paradigm.
iii. Adjectival — qualitative or gerundative modifiers.

iv. Demonstrative and Interrogative modifiers.

v, Quantifiers

vi, Genitive or Possessive modifiers.

There are order restrictions on the different types of modifiers. An NP may take
none ot some of the above types of modifiers. However, a demonstrative and a
quantifier may not occur together and neither can a quantifier and a numeral.
There may at most one of numeric, demonstrative and quantifier modifiers. Itach -
modifier (except inflections) are complex linguistic objects in the sense that they
have their own associated inflectional and modifier paradigms and should be treated
ags phrases.

The numeric and adjective modifiers have the highest syntactic proximity with
the head, The adjectival modifier is a chain of simple adjectives of quality (like
la’l “red”, chot’a “younger” or “smaller”}. Numbers may occur both to the left
(normal attachment in a “head last” language like Bangla) and right of the head
N. A pre-numericalty-modified NP is indefinite while a post-numerically-modified
NP is definite. Thus, tint’e chele (three-def boy-NULL) “three boys” is different
from chele tint’e (boy-NULL three-def) “the three boys”. For a post-numerically-
modified NP, all non-NULL inflections that normally occur with the head N, hops
over to the numeric modifier. Thus, “to the three boys” would be chele tint’eke
and not *cheleke tint'e. Finally, all adjectives must be between the number and
N in a pre-numerically modified NP. With this, we obtain the following analysis
for N/, a numerically modifies N as given in (6.3}, (6.4) and (6.5). The schemata
(. COUN T) = + ensures tha,t_the head N is countable in (6.3) and (6.4).

(63) N' — NUM A" N
le (1 ADJ) I=l
_ (] COUNT) =+

123

(64) N — A’ N NUM
L& (T ADJY =] (Il DEF)
({ COUNT) =+

Il

65) N — A4 n
1€ (T -!fl.DJ) =]

The lexical entries of every number project a NUMBER. feature. However, the
lexeme kayek “some” (plural) projects NUMBER="?, i.e. an unknown number.
Moreover, the belief modifiers besh “quite”, sa’ma’nya “only” may co-occur to
the lelt of kayek. It is economical to take care of this co-occurrence by a supra-
lexical rule,

The rule for N%, i.e. a N’ with a demonstrative (DEMO) modifier or a quantifying
(QUANT') modifier, is given in {6.6), (6.7).

(6.6) N" — DEMO N
=]

(6.7) N" — QUANT N’

=]
~ (] DEF)

Note that in (6.7), the quantifier imposes a selectional restriction that the N’
should not be definite. Thus, while pratit’i cheleke “each-DEF boy-DAT” ‘to
each boy’ is correct, *prati chelet'ike “each-NULL boy-DEF-DAT” is not, This
restriction automatically prevents quantification of numerically modified phrases
like *prati duit’i chele “each-NULL two-DEF boy-NULL”.

The internal structures of the modifiers DEMO and QP have been analyzed in
nec-6.2.1,

The noun phrase NP is an N” with an optional genitive phrase modifier GENIP.
Hence we have rule (6.8) for the NP

(68) NP — GENIP N
(i POSSESSOR)=| 1=l

The GENIP has been analyzed in Sec-6.2.2.

124

6.2 Internal Structure of NP Modifiers

6.2.1 Demonstratives and Qualitatives

The three commonly used demonsiratives are ei this/these, oi that/those and sei
that/those. They are indeclinables and project the appropriate DEM features.
Mention must also be made here of the relative demonstrative y.e which marks.
a relative NP construction. Relative NPs have not been considered in the present
work. The difference between oi and sei is that the latter is more often used as an
anaphoric binder for a relative clause. The following are the lexical entries for the
common demonstratives (all demonstratives are indeclinables):

ei: (DEMO) (1 DEM) = THIS
oi: (DEMO) (T DEM) = THAT
sei: (DEMO) (1 DEM) = THAT

The following quantifiers (phrases) are most common:

prati, prat/y.ek “each”, “each and every”. These quantifiers may either take
the singular DEF affixes t’a, t'1 or no aflix butl a following count particle
(CNT) from {kat’a, kat’i}. Thus we may have pratit’a, prat/y.ek kat'i,
etc, The COUNT=+ feature is also projected to ensure that the head N is
countable.

anek, sab “many”, “all”. They may take cither the plural DEFINITE affixes
gulo, guli or no affix but a following count particle from {kat’a, kat’i,
kichu}. Thus we may have anekgulo, sab kat’a, sab kichu, etc. The

COUNT =+ feature is projected.

bes’, sa’ma’n/y.a, kichu “quite a few”, “some”, “lew”. These belief quantifiers
"] LI L) L) £
must co-occur with count particle kichu to give bes’ kichu “quite a few",

sa’maya kichu “only some” kichu kichu “just a few”.

Note that kichu is both a quantifier and a count particle.

For proper analysis of the QP, we create a lexical category QU{RNT. QU{%NT
words may be formed from stems belonging to QUANTROOT‘WIth an optional
DEFINITE affix. The lexical entries of each quantifier stem project a QNT and a

NUMB feature. The NUMB feature (SINGular, PLural or NO) serves in restricting
SFINITE affix. The following lexical entries for the more

conjoining of a wrong D.
common quantifiers are:

125 -

prati, prat/y.ek: QUANTROOT ((QNT UNIV), (NUMB SING) (COUNT +)

)
anck: QUANTROOT ((QNT LARGE), (NUMB PL) (COUNT +))

Sab; QUANTROOT ((QNT UNIV), (NUMB PL) (COUNT +))
be;s : 9UANTIIOOT ((QNT HIGHBELIEF), (NUMB NO) (COUNT -))
sa’ma’n/y.a: QUANTROOT ((ONT LOWBELIEF), (NUMB NO) (COUNT -)

)
kichu: QUANTROOT ((QNT MEDIUMBELIEF))

The rule for the quantifier is given by supra-lexical specification:

QUANT => QUANTSTEM+DEF (CNT) where {
exists($2) || C ($1 QNT) {= HIGHBELIEF && ($1 QNT) != LOWBELIEF)
ONT<<($1 QNT):
COUNT<<($1 COUNT);

}

The filter in the above specification ensures that quantifiers bes’ and sa’ma’n [y.a
are lollowed by a count particle. The COUNT feature ensures that the modifies
head noun has compatible countability,

6.2.2 The Genitive

A genitive modifier for an NP is itself a noun phrase. However, the case marker on
the head noun or pronoun must be for the POSSessive case. The rule for GENIP

is as given in (6.9).

(6.9) GENIP — NP
(| CASE) = POSS

Thus a GENIP and an NP are syntactically equivalent units except that a GENIP
1(;qum,a that the head noun take a POSSessive case marker. Since the GENIP
is a full fledged NP, it may have 1ts own genitive modifier, which in furn may
have its own modifier and so forth. Thus, an NP may actually have an attached .
chain of any number of genitive modifiers. Howevel, every such modifier qualifies
the most closely nested NP, In the form gz g2 <« gn 7 where every g; is an NP
with POSSessive case markers on their “heads” and n is an NP with or without a
possessive marker on the head, the phrase g, : < n qualifies g;11 and g, quahfies

126

y , |
7. %uc]l phrases are quite commonly used in Bangla. For example, consider the
NI in I%x-1: |

ix-1 a’ma’r bandhur bad’.a bha’iyer 1a’l kalamt’a’
{-;I_TOSS friend-POSS elder brother-POSS red pen-DET
“I'he red pen belonging to the elder brother of my friend”

Iox-1 should have an f-structure as given in (6.10). The schemata (| CASE) =
POSS under NP in (6.9) correctly carries out the analysis.

POSSESSOR | 1 O53PSS0R ,[fF.'REdP] } |
2 'j}' : 'ien
POSSESSOR | O bad o)
(6.10) | PRED 'brother - |
DEP YIS ”
ADJ {"la'l}
| PRED pen’ 4

6.3 Empty “Heads” and Affix “Hopping”’

sometimes, in discourse usage, the “head” noun or pronoun of an NP is omitted
entirely (i.e. it manifests as empty or € “heads”), especially if modifiers are present.
Anaphoric resolution is made through matching of modifiers. As an interesting
side elfect, the aflixes on the empty head remain explicit in the surface and gets
Py foy Y ! y ‘ if . 1} .
conjoined to the immediately preceding modifier. The “hopping” affixes do not obey
the rules of morpho-syntax during conjoining in that they get conjoined even after
the terminating declension of the modifier. Let us consider Ex-2:

Ix-2 ama’rt’a ama’y da’o
“I.-POSS-DEF I-DAT give-IMPER”
Give my (X) Lo me, |

In [ix-2, the NP a’ma’rt’a has a deep structure a’ma’r et’a’ “I-POSS eDEI.
Due to aflix hopping, the DEI affix on the empty head has hopped to get conjoined
with a’ma’r. Note that the morpho-syntactic rule that requires the DEF aflix to
piecede the POSS dec]eﬁsion}' has been violated. This way a’'ma’r e-t’a’r “I-
POSS e DEF-POSS” becomes a’ma’rt’a’r (the X belonging to my Y) and a’ma’r
e-t'a’ke “I-POSS e DEF-DAT” becomes a’'ma’rt’a’ke (to the X belonging to me).
Aflix hopping is also observed with other modifiers like 1n eit’a’ke = el e-t’a’ke
“his-DEF-DAT = this e-DEF-DAT™ to this X. The aflix hopping phenomenon may
give rise to strange instances when indeclinable particles may get de:clened: For
example, bad’.a “big” is an indeclinable adjective. 1o mean ‘to the bigger/biggest
of some X-s, the NP b.ad’.at’a’ke.“big-—DEF-DAT“ may be used. Note that the

L

indeclinable has conjoined with two affixes in bad’.at’a’ke.

Affix hopping is a hard implementational problem to solve as it involves gross vi-
olations of rules of morpho-syntax. In addition, during parsing of a word with
“hopped” affixes, the empty “head” must be projected into the syntactic compo-
nent by the lexical sub-system.

Tor Bangla, we offer a solution to the above problem after making the following
observations;

1. All empty heads must have the DEF affix t’a, t'i on itself in the deep-
structure. Thus, the “hopped” aflix(es) may either be only the DEF affix or -
may be the DET affix followed by other affixes. For example, we may have
eit’a’ “this-DEF = this e DEF”, or we may have eit’a’ke “this-DEF-DAT
= this e-DEF-DAT”. However, we may not have *eike “this-DAT” to mean
“ this ¢-DAT?” since in this case the empty head e does not take a DEF affix.

i1, If hopped affixes conjoin with the head noun/pronoun of a genitive modi-

fier, it does so only after the POSS declension on the noun/pronoun. Since
almost all other (non-numeric) modifiers are headed by indeclinable words
(indeclinable words are those that may not be inflected by any affix or de-
clension), the hopped affix conjoins directly with the word itself. Thus, n
chelert’a’ “boy-POSS-DEF = the ¢ DEF of the boy”, the hopped t’a’ has
conjoined after the POSS declension on the genitive's stem chele, But 1n
la’lt’a “red-DET = the red ¢ DEF”, the hopped t’a’ has conjoined directly
after lal, the stem of the adjective modifier. The case with numeric modifiers
has been taken up below.

iii. A pre-nominal NUM modifier itself may take a DEF affix. With such mod-
ifiers, aflix hopping is never observed. For example, one may never have an
NP * ekt’a’t’a’ke “one-DEF-DEF-DAT”. However, if a pre-nominal NUM
modifier does not take a DEF affix as in ekt’a’ke “one-DEF-DAT?, all affixes
from but not including the DEF (i.e. only ke in this case) should be con-
sidered as hopped. The question of aflixes hopping to a post-nominal NUM
modifier does not arise as affixes may only -hop on to the previous word.

iv. The DEF affix does not take part in any spelling rule f1_'<jm the right, i.e., the
morpheme boundary between the DEF affix an the preceding morpheme can

be easily determined.

in two parts. The first part necessitates certain enhancements

We offer a solution _
that had been briefly

in the morphological analysis component. The enhancements,
mentioned in Sec-2.3.6 will be detailed below. 3

198

T}m lirst part ol the proposed solution for tackling the affix hopping problem deals
with non-NUMeral modifiers. During parsing, if the finite control of AFSA comes’
to a state s which may properly recognize any NP modifier word (whether really
a modifier has been recognized may be checked from the comprehensive lexicon
for the hitherto recognized morphemes). Let there be more unscanned symbols
in the input word, The AIFSA tries to recognize the remaining symbols from the
root node of the DEJ' affix. In case the latter recognition process is successiul,
the lexical sub-system informs the syntactic component that two, rather than one
words have been recognized and parsed. The first word consists of the stem and
alfixes recognized upto 8. The second word has PRED as DREF where DRET 1s a
lexical entity for Discourse REFerence. It may be used by a higher level discourse
analyzer for actual binding, There is one restriction in the above process. State s

can nob be i the DAG DISE.

As an example, consider the word a'ma’rt’a’r. After scanning upto a’ma’r, the
finite control is in a state s say. It can easily be checked from state s that the
lexical Torm for &'ma’r is /ami/+/er/ “I+P0OSS". Now, POSS is a terminating
class Tor nouns and the derived f-structure of a’ma’r’ indicates a noun with POSS
declension and hence a possible NP modifier. Attempt is next made to recognize
the remaining symbols t’a’r from the root node of the DIk DAG. This yields a
parse /t’a’/+/er/ “DETFHPOSS”. Two words are reported to be recognized —
the first is “I-POSS” and the second “DREF-DEF-POSL”.

The second part of the solution deals with NUMerical modifiers, The situation
o different with NUMerals since they may take the DEF affix as their own right,
which in turn may be followed by a nominal declension. It will thus be difficult
to detect the hopping affixes at the lexical level. But noting that an NP may not
have both pre- and post-numeric modifiers, we may consider a new rule (6.11) for
N as consisting of a NUMeral only. Note that in (6.11), the empty head DREE 1s
projected syntactically through the schemata associated with NUM.

(6.11) N’ — NUM
(] PRED) = DREF

An associated implementational problem of empty heads is in detection of the
boundary of an NP where the trace head had no inflection to hop. For e}{a,l'{lple}
consider sab kichu ¢ ,all some “everything”. Here, both sab “a,llj’ and kichu
“some” both qualify an empty head. In & sentence like a’ma’r sab ku:“hu toma’r.
theke peyechi I-.POS5 all some you-POSS {rom get- 1p-PRES-PERF, “I got what-

ever I have from you”, the mocliﬁel'S_sab and kichu do not qualify toma’r. While

rules (6.3)-(6.5) require definite presence of a ‘qualified” noun with nominal mod-

ifiers, none can be detected here, not even from traces left in hopped affixes. To

129

¥

solve this 1)}'(}1.1!01‘11, we propose duplication of rules (6.3)~(6.5) in (6.12)-(6.14), to
lake care ol a non-existing head in N where the DREF entity is projected t.hrm:lgh
'fun(:LLimm,l control. Note that these rules are invoked only when the trace head has
a NULL case marker. This is because if there had heen a non-NULL affix on the

lrace, it would have hopped to a modifier and lexical parse of the modifier would"
have mniroduced the head as a DREF entity

(6.12) N' — NUM A
le (1 ADJ)
(I PRED)=DREF

(6.13) N~ A NUM
le (1 ADJ) (I DEF)

(6.14) N’ e A
| (1 ADJ)
(1 PRED) = DREF

6.4 PPost-positional Phrase

ounply speaking, a post-positional phrase is an NP modified post-posttion. The
post-position acts as the “head” of the phrase and behaves like the case marker for
the entire phrase. The rule for a PP is given by (6.15).

(6.15) 1P — NP P
(1 POBJ)=|

Most post-positions used in Bangla are positional. PPs headed by such post-
positions do not play any functional role but act as adjuncts. All these post-
positions require a GENIP as the NP. Examples of adjunctive post-position are
upare ‘above’, bhitare ‘inside’, madh/y.e ‘inside’, ba’ire ‘outside’, etc. There
are three classes of non-adjunctive post-positions. They are analyzed below.

The Agentive/Instrumental Post-Position

The post-positions diye and d/Ba’ra’ (“Sadhu”) ‘by’, signify agent%ve or mstru-
mental role for the governed phrase. Depending upon the verb, a diye governed

180

PP may play either the INSTrumental or the SUBJect or even the affected sub ject
({\SU]:JJ } functional role. d/Ba'ra’ requires that the governed NP actualiy be a
GIENIP, I'or diye the case feature of the governed NP 18 NULL if the head of the
NP has a CAT=instrument feature; otherwise it is DAT. In our analysis, we let

PPs governed by diye, d/Ba'ra’ project an INST value for the PCASE feature.
Thus we have:

d/Barver p { (I POBJI CAT) = instrument; (I POBJ CASE) = NOM
- (t POBJ CASE) = POSS j
(| PCASE)=INST

{ (I POBJ CAT) = instrument; (] POBJ CASE)= NOM
. (I POBJ GASE) = DAT J
(l }J CrA.SIEI) - IN 'SrT

diye P

Txamples:

ra’mke diye Ram-NULL by “by Ram”.
ra’mer d/Ba’ra’ Ram-POSS by “by Ram”.

*ralm d/ba’ra’ *Ram-NULL by, Because “Ram” does not have an INTRU-
MENT=4 {eature,

[a’t’hi diye stick-NULL by “by (a) stick”.
la’t’hir d/Ba’ra’ stick-POSS by “by (a) stick”.

The Source Locative Post-Position

T'he most, used source locative post-position is theke ‘fromt’. ‘The case feature of
the governed NP is NULL if the head of the NP has a PLACE=+ feature; otherwise
it is POSS (i.e. NP is a GENIP). We let thelce project the LOG value for PCASE

leature. Thus we have:

o (t POBJ CAT) = place;(T POBJ CASEY= NOM
theke P4 (1 POBJ CASE) = POSS }

(| PCASE)=LOC

Examples:

| »
radmer theke Ram-POSS from “from Ram”.

dilli’ theke Delhi-NOM from “from Delhi”.

131

‘The Reason Post-Position

The pﬂst-lp osition jan/y.a ‘for’ (also selctom used tare) requires a governed GENIP.
We let this post-position project PCASE=FOR.

jan/y.a P (1 POBJ CASE)= POSS
(I PCASE) = LOC

ILxamples:

ra’mer jan/y.a Ram-PQOSS for “for Ram”.

t’a’ka’r jan/y.a money-POSS for “for money”.

6.5 Discussions

In the present chapter, we have attempted a GLFG (actually LFG, since no special
GLI'G feature has been used) based analysis for Bangla Noun Phrases and Post-
- Positional Phrases. We were limited by non-availability of pertinent literature. Qur
analysis is mostly modeled after the one provided by Frey [67]. A major portion of
the chapler dealt with the Noun Phrase, more particularly, the different modifiers
of the head noun/pronoun of a noun phrase and their selectional restrictions. In
our estimate, the analysis covers a very large portion of day to day Bangla NP
usage and may be implemented in a straightforward manner.

‘T'he aspect of “aflix hopping” that has also been considered in this chapter however
has some serious.implementational connotations. We have shown that this phe-
nomenon might lead to chaotic behaviour of the lexical component as certain basic
assumptions arve violated. However, from certain observations that we have made,
we were able to provide a technique for tackling the problem with no unreasonable
increase in complexity. The problem of detecting a noun phrase where the head 1s
missing but modifier(s) are present, has also been taken up. A solution has been
proposed that takes care of most examples. Nevertheless, the offered solutions are
mostly ad-hoc and the phenomenon deserves further and deeper investigation.

An NP in Bangla may also be a gerundative phrase. A gerundative phrase is a
clause like structure in which the verb is a participle and there are no auxiliaries to
provide the tense. As in English, two closely resembling but semantically different

gerundative forms are observed. In either case, the verb consists of a (simple or
compound stem) terminated by affix a’ (not causated) or a’no (causated). In
the passive form, the verb is preceded by an agentive GENIP, an optional patient

132

NP playing the IOBJ Tunction if the verb is causated (whose case requirement
is determmed by the m-structure of the verb) and followed by an OBJ NP, An
example 18 given below:

ama’r kha’oya® a’pelt’a ...
“I.-POSS eal-PARTICIPLE apple-DEF .. .»
'he apple eaten by me . ..

In the other [orm, the OBJ NP is optional and if present must precede the verb as
n:

ama’y a’pelt’a khaloya’ ...
“I.1°088S apple-DET eal-PARTICIPLE ...*»
Mating of the apple by me . ..

We shall refer to the fivst form as a verbally modified and the second one as a verbal
noun phrase, bome linguistic work on Bangla gerundative phrases has been carried
oul by I’. Dasgupta [46], Presently, we are also investigating into this form to bring
it under the purview of the GLIFG, Tor this we have taken help of supra-lexical
specifications, Some breakthrough is expected in the near future.

133

Chapter 7

The Sentential Paradigm of
Bangla

7.1 Types of Sentences

sentences are classified according to the number of verbs (not the number of words
constituting the verh) contained in them as well as the relative importance of the

roles of the vorbs., A sentence can be:

Simple Sentence. Here there is only one verb which is the main verb.

Cearden-Path Sentence, Iere there are more than one verb which are involved
in providing the sense, IHowever, one verb, called the main verb, is given a
superior status and occurs last in a chain of verbs. The verb-chain describes a

sequence of actions partially ordered in time or causationally. The superiority

of the main verb is reflected in agreement between its GNPH and the GNPH
of the subject of the overall sentence, Also, the main verb is the only finite

vorb in the sentences. All other verbs are infinite ones.

Compound Sentence. Here also there are multiple verbs. However, in this case
there are more than one main verb, i.e. that there are multiple subjects. Like

English sentences, Bangla compound sentences involve sequences of simple
sanbences connected by conjunctive operators. Compound sentences have not

been considered in the present work.

Complex Sentences: The complete class of Bangla complex sentences include.
those in which the dependent clause is embedded (See Sec-4.4 and also Sec-
7.4), as well as the class of sentences having multiple relative clauses. In

134

the latter type, successive clauses are linked by anaphoric operators (like the
h P |
) 1‘ H . }} . . u ' L]] *
anaphoric “that” operator linking English relative clauses. A major work

on Bangla relative clauses may be found in P. Dasgupta 147]. We have not
considered relative clauses in the present work.

These other class of complex sentences is similar to the “to” or “for” infinitive

sentences of Iinglish except that in Bangla, the infinitive clause is embedded

in the outer sentence. Theoretically, dependent clauses may be embedded to

arbitrary depths, implying thereby that Bangla i1s an NI’-complete language

in this respect. However, normal speakers rarely use embedding beyond first
(or at most second) level. This is one of the most difficult features of Bangla

from NLP point of view.

Sentential Adverbial/Adjectival Clauses: These clauses are somewhat like
the adverbial and adjectival clauses of English. Strictly speaking, they are
not sentences sice such a clause in isolation does not constitute a well-
lormed sentence. We have not covered this type of clauses as most of aspects
pertaining to their analysis have not yet been sufficiently studied from a
computational linguistic point of view.

Interrogative Sentences: There are two types of interrogative sentences in Bangla
- “Yes-No” queries and “k-phrase”. The former type has a relatively simple
structure. The latter type is so named because of similarities with Iinglish
“Wh-phrases”. We are presently studying the aspects of interrogative sen-
tences with a view of providing a GLFG based analysis for them. However,
they have not been considered in the present work.

7.2 Simple Sentences

i L] 1 | L] ‘] . . 1 L]
Simple sentences have been discussed in some detail in Chapter-4. In this section
we consider some special aspects of simple sentences not considered there.

7.2.1 Sentences Without a Finite Verb

In Bangla (not necessarily in all Indian Janguages; for example, not in Hindi),
sentences with forms like “X is Y?, the verb, which is the copula, is omitted. Ifox

example:

i, tumi bha’la chele You good boy “You (are a) good boy”. This the simplest
type with form < Object > 13 < Qbject >, where < Object > 1s a noun

135,

phrase NP (whose head may be adorned by adjectives).

i, a'mi toma’r bha’l I you-POSS brother “I (am) your brother”. Here the
form 18 < Qbject > is < Function > of < Object’ >. Here Function is
all att?'z.butwc noun like “brother”, “capital”, “president”, “name”, etc. The
syntactic form of the < Function > of < Object! > part of the sentence

is an NP with < Function > as the head noun and < Object’ > being a
GIENIP (genitive phrase). |

i, balt’a’ 1a’l Bell-DEF ved “The ball is red”. Here the form is < Qbject >
18 < Quality >, where is should be interpreted as has property, and
< Quality > is an adjective phrase AP. An AP is normally a simple ad-
jective, but may be followed by < QualityType > —POSS phrase (where
< Qualitylype > is a noun for a quality name like “colomr”, “size”, etc.).
thus highlighting the, type of quality qualified by < Quality >. For example,
the sentence considered above could as well be written as balt’a’ 1a’l raNer
Ball-DII red colour-POSS “The ball is of red colowr”. We have not analyzed

the AP to suflicient depth in the present thesis.

iv. chelet’a’ke dekhte bha'la Boy-DEF-DAT see-FORINF good “The boy (is)
good to look at”. Here the form is NP-DAT VERB-FORINF ADVERDB.
Alternative forms may lack the DAT case marker on the NP and/or the
VERB and the ADVERB may interchange position as in chelet’a’ bha’la
dekhte Boy-DEF good see-IFORINT,

Since the verb is missing from the class of sentences considered above, the question
of m-structure projection does not arise. Hence, there is no difference hetween
QLG and LFG rules for the above class of sentence, Rules for the different types
of sentences considered above have been enumerated below in the same order.

{. In thesc sentences, it is not clear which is the subject and which is the object.
We arbitrarily choose the first phrase as the subject and the second as the
object. The semantics of the sentence imply a unification of the concepts
described by the subject and the object. With these considerations, the rule

is!
S NP - NP
(1 SUBJ) =] | (1 OBJ) =i
(1 PRED)=unify < (1 SUBJ), 1>
Example: The semantics of the sentence tumi bha’la chele is unify <
YOU,GOOD~BOY >, where YOU and GOOD — BOY are the f-structures

for the case phrases tumni “you” and bha’la chele “good boy” respectively.

136

I,

11,

In this case, the semantics of the sentence implies a relationship < Function >
hetween < Object > and < Object’ >. The rule is:
S e NP NP
(1 SUBJ)=| (T PRED) =
(I PRED)< (} SUBJ),(l POSSESSOR) >

Example: The semantics generated for the sentence a’mi toma’r bha'i
I-NULL you-POSS brother-NULL “I am your brother” is BROTHER <
LYOU >, where BROTHER, I and YOU are the semantics of the NPs
bha’i, a’mi and tom’ar, respectively.

This type of sentences do not have any semantic representation as such. Here
the syntactic form of < Quality > is that of an adjective phrase. A sentence
simply asserts a < Quality > qualifier for < Object > for future discourse
relerence. Thus we have:
S5 NP AP
(1 SUBJ)=| (i PRED)=asserta < (] SUBJ),|>

Iixample: The semantics of the sentence balt’a’ 1a’l (ralNer) Ball-DEF red .
(colour-POSS) “The ball is (of colour) red”is an assertion clause asserte <<
BALL,RILD >, where BALL is the semantics of the subject phrase balt’a

and I[2lvD s the semantics of the adjective of quality 1a’l “red”.

In this type of sentences, the verb must pertain to an action in which some-
thing councrete or abstract is taken into body or mind. The sentence lacks
an explicil subject as in ergative constructions. However, unlike ergative
constructions, the subject includes the universal set of objects capable of
performing the action described by the verb. The semantics is more involved
than can be expressed by the notation currently being used. Informally, the
semantics of the sentence chelet’a’ke dekhte bha’la should generate the
semantic clause as in the English sentences with an anonymous subjects like
“Tt is good to look at the boy” or “The boy is good to look at”™. We are
presently carrying out further investigation into the matter.

7.3 Garden-Path Sentences

A garden-path sentence is a chain of clauses headed infinite verbs, with a clause
headed by finite verb completing the overall construct. The SUBJects of all the
clauses are identical and may be physically absent in all but one of the clauses.
Similarly, the TENSE of the overall sentence 1s identical to the TENSE of the final
clause. The clauses with infinite verbs naturally do not have any TENSE passed on

from the verb. The TENSEs of the non-final clauses are unified with the T,

of the sentence.

137

NS

In the overall sentence, the part constituting the clauses with

infinite verbs shall be denoted as the SCOMP atiribute of the sentence. The point
of inbczrf;st 15 the flow of lemporal context in the chain of the clauses constituiing
SCOMP and between SCOMP and the final clause. A Garden-path sentence will be
givenl a semantics “garden — path < F LOW,SCOMP,LAST >", Here, FL OW
is a temporal attribute which can be either “BEFORE® or “SIMULTANEQUS
to”. SCOMP refers to the chain of non-final clauses represented by the SCOMP
attribute. LAST is a reference to the last clause in the sentence. The semantics
may be mterpreted as “SCOMP took place FLOW LAST”. With this, the GLFG
rule for garden-path sentences is:

5 —— INF g
(1 SCOMP)=| (1 SUBJ)= (] SUBJ)
(1 SCOMP SUBJ) = (1 SUBJ) (f TENSE)= (] TENSE)

(I TENSE)=(] TENSE)
(I FPLOW)} = (] FLOW) (I PRED)='garden — path < (T FLOW),
(] SCOMP),(l PRED) >

Iy the above rule, a FLOW attribute is being propagated from INF, which is used in
the PRIND clause of the sentence. For every clause with infinite verb, the FLOW
attribute gets projected lexically by the verb (see Chapter-5). The resursion in
the rule permils garden-path sentences of arbitrarvy length to be generated. The
schemata for semantic clause denotes passage of temporal context from left to right.

INT is a clause (with a possible absence of subject) headed by an infinite verb, as
described by the following rule:

INF — NP* V
(1;9 =7 (] FLOW)

In the above rules, the NP* V structure is the usual for verb-terminated clauses.
The schemata (| FLOW) under V ensures that the verb is infinite and projects

a I'LOW attribute,
Example: Consider the garden path sentence:

a’'mi ha'd’.d giye ca® khete khete bait’a’ pad’.ba
-NULIL home-NULL go-CONTINF tea-NULL eal-FORINI eat-FORINT book-DEF read-FUTURE-

1p
“I, after reaching home, while drinking tea, shall read the book”,

T.et the semantic clauses for the verbs be:

giye go-CONTINF. go < (SUBJ), 1o < (OBJ)} >>
khete khete eat-FORINF eaf FORIN_F . ingest < (SUBJ),(0OBJ) >

138

pad’.ba read-I'ULURLE-1p. read < (SUBJ),(OBJ) >.

Let the symbolic f-structures of the NPs a’mi, ba’d’.i, ca’ and bail be “I”

g T Wrp e ; ' !
“'IIOMI,; , LAY and “BOQK?”, respectively. The semantic clause for the en-
bire senlence is then:

garden — path < BEFORE, g0 < I.lo < HOME >
garden — path < SIMULTANEOQUS, eai < I, TEA > read < [,BOOK >>>

7.4 Complex Sentences

We have already talked about the class of complex sentences in which the dependent
clanse is embedded in the matrix, in Sec-4.4. There we considered a sub-class in
which the verh of the complement was infinite with a FORINF declension. In the
present seetion, we would talk about embedded-clause complex sentences where
the main verh is bal “say”, that is, the main verb is an equi verb. We have not
covered relative clauses in the present work.

It has alrcacdy been pointed out in Sec-4.4 that the Bangla equi verb bal is quite
versatile, With bal as the main verb, the following cases could occur (considering
a single embedded clause), with the complement verb having different valencies:

i, The complement verb is mono-valent (i.e. intransitive). In this case, the
subject of the complement clause is not explicit, with the result that the-
complement clause takes the simple form of a single verb (with the appropui-
ate declension) as in: |
ra’m a‘ma’ke baste/bashe baleche
Ran-NULTL me-DAT sit-FORINT/sit-TUTURE-3p-1h say-PAST-3p-1h
“Ram has told me that I should/ he would sit”

Thus, depending upon whether the declension on the complement verb 1s
FORINT or of FUTURE TENSE, the SUBJect of the complement 1s derived
from 10BTect or the SUBJect of the matrix respectively. The SUBJect and

the JOBject phrase can permute freely anywhere to the left of the comple-
ment. Thus.the following example is a alternate well-formed version of the

above example:

a'ma’ke ra’m baste/basbe baleche
Me-Dat Ram-NULL sit-FORINF /sit-FUTURE-3p-1h say-PAST-3p-1b

“Ram has told me that I should/ he would sit”

139

? |) vy ' ! . ,' N]
I'his sort of permutation is seen in all the other cases discussed below.

SR , . 1 . .
1, .I,.hf-}. complement is bivalent (i.e. mono-transitive). Here, there can he a few
diflerent cases: |

(a)

Where both the SUBJect and the OBJect of the complement are implicit
and are derived from the matrix, The surface form remains identical
to the intransitive complement verb case. Only the ibe declension is
atlowed on the verb of the complement. The SUBJect and the OBJect
ol the complement is derived from the SUBJect and the IOBJect of the
matrix respectively, as in:

ra’m a’ma’ke ma’rbe baleche

Ram-NULL me-DAT kill-FUTURE-3p-1h say-PAST-3p-1h

Ram has said (to me) that he will kill me".

Where the complement verb’s object is inanimate. Relevant for both
declension forms on the complement’s verb. Here, the SUBJect of the
complement is derived from the SUBJect/I0BJect of the matrix de-
pending upen whether the verb of complement is in FUTURE tense or
whether it is a FORINT type infinite verb. For example:

ra‘m a’ma’ke bait’a’ pad’.be baleche

Ram-NULL me-DAT book-DEF read-FUTURE-3p-1h say-PAST-3p-1h

“Ram has said (to me) that he will read the book”.

ra‘m a’ma’ke hait’a’ pad’.te baleche
Ram-NULIL me-DAT book-DET read-FORINF say-PAST-3p-1h
“Ram has said (to me) that I should read the book”.

If the object of the complement verb is animate, there is problem. Nor-
mally, for such verbs, the object takes the DAT case marker. The equi
verh of the matrix necessarily has an I0BJect with a DAT case marker.
It is quite easy to confuse between the I0BJect of the matrix and the
OBJect of the complement. We have conducted small experiments with -
native speakers who have generally agreed upon this confusion. How-
ever, whereas some feel that they would rather not try to comprehend

a senbence like:

? ra'm a’ma’ke toma’ke ma’rte baleche

? Ram-NULL me-DAT you-DAT kill- FORINF said “7 Ram hias told me (you) that

I (you) should kill you {me)”

of the opinion that the rule for binding the object of the
arest (P with DAT marker (as in the previous
. Indeed, we have incorporated the latter

SOME are
complements to the ne
case) should be the approach
point of view in our system,

140

- fl1 . . . k o ' L 1
. The t,mnple}nenﬁ, verd 1s trivalent (l.e. bi-transitive), This case leads to a
. ey ey . -+ . . . ¢
MOLe t,mnpllclzated form of the situation encountered with transitive comple-
111{-311L- verhb w}rlth animate OBJects. We have kept it outside our purview {or
the time being.

I'rom the above discussions, it is clear that the Bangla verb (stem) bal is used
Lo mean request, command, persuade, etc., on one hand and acquiesce, promise,
agree, ete., on the other. Tor the former sense to be valid, the embedded clause
must have a FORINI verb, while for the latter, the embedded clause must have a
verh in PUTURE tense. bal therefore has the following alternate projections:

bal V (1 PRED)='ask < (SUBJ),(COMP),(I0BJ) >’
(i COMP SUBJ)= (] I0BJ)

(1 COMP INFTYPE)=, FORINF

(3t SUBJ ANIM) = +

(4 SUBJ CASE) = NULL

(4 1OBJ ANIM) = +

(4 10BJ CASE) = DAT

bal V(I PRED) = promise < (SUBJ),(COMP),(I0BJ) >’
(] COMP SUBJ)=(1 SUBJ)
(1 COMPTENSE) =, FUTURE
(# SUBJ ANIM) = +
(# SUBJ CASE)= NULL
(#£ TOBJ ANIM) =+
(£ IQOBJ CASE) = DAT

LExamples:

1,0t us consider the following example sentences:

i, a’pui a’ma’ke bait’a’ pad’.te ballen
Vou-NULL I-DAT book-DETF-NULL read-FORINF tell-3p-hon-PAST

You (honoured) asked me to read the book

i, a'pni a’ma’ke bait’a’ pad’.ben ballen
You-NULL I-DAT book-DEF-NULL read-FUTURE tell-3p-hon-PAST

You (honoured) promised me to read the book

Let the lexical projections for the complement verbs be:

1 PRED) = read < (SUBJ), (0BJ) >

padite V (]
| INFTYPE)= FORINF

141

pad’ben V(| PRED)='read < (SUBJ),(OBJ) >’
(1 TENSE)= FUTURE
(# OBJ ANIM) =~
(# OBJ CASE)= NULL

We have already considered the rules for embedded clause complex sentences in
Sec-4.4, equations (4.15) and (4.16). Some evaluation order restrictions were also
discussed there. Using them, the f-structures for the above two examples would
be:

T ANIM & ! g
oy CASE NULL
SUBJ GNPH 2/3p-—2h
PRED 'You
" ANIM 4
. CASE DAT
IOB,J GNPH 1p {77~ 7 7 N
- PRED T \‘
\
) T ANIM -)) ‘;
DEF YES | ,
onJ CASE NULL !f
. ' GNPH 3p-1h /
COMP | L- PRED "hook! | _J‘i /
SUBJ i im0
TENSE FORINF
- PRED 'vead <(SUBJ),(0BJ) >
TENSE PAST
 PRED ‘ash < (S'UBJ),(COMP),(IOBJ) >

142

' " ANIM ! -
. CASE NUILL
SUBJ o
GN.PJCI 2/3}3“21’1 TT -
PRED 'You | \

CANIM + \
CASE DAT \
GNPH 1p
| PRED '[!

10BJ

y

ANIM -)) }
DEF YES f
ORJ CASE NULL /
GNPH 3p-1h /
 PRED 'book' /
SUBJ ﬂﬂﬂﬂﬂﬂﬂ My e e e e e
TENSE FUTURE

PRED ‘read < (SUBJ),(OBJ) > |

ik -

COMP

TENSE PAST
PRED 'promise < (SUBJ),(COMP),(I0BJ) >’

-

The utility of the schemata (T SUBJ GNPH}= (| GNPH) in (4.16) may be
discussed now. It restricts the GNPH attribute of the verb of a FUTURE type
embedded clause to be the same as that of the main verb. With this restriction,

the following sentence is ill-formed:

* a'pnl a'ma’ke bait’a’ pad’.bi ballen
You-NULL I-DAT book-DEF-NULL read-F UTURE-2p-0h tell-3p-hon-PAST

7.5 Discussions

In this chapter, certain types of Bangla sentences have been analyzed in the
LIFG/GLEFG framework. Most of the sentential forms discussed are typical for
Bangla. For example, sentences without a single verb is not so prevalent in other
Indian languages. The garden-path sentences discussed here is another typical
B'a,ngla, sentence type. Whereas other Indian languages do not prohibit usage of
garden-path sentences of the type discussed here, they are not so abundantly used
as in Bangla, This aspect of Bangla interested Chatterjee (34], who has poil}teFl out
that even very long garden-path sentences in Bangla are accepted as stylistically
and idiomatically adequate. In this chapter, we have shown that .the above two
forms may be explained in the light of the GLFG. We have also carried out a more
involved discussion on the use of the equi verb bal in forming a class of complex
sentences, The pertaining analyses are a continuation from Sec-4.4. However, here-

143

we have not only pointed out the versatility of bal but have also drawn parallels
with similar complex forms of English. Both, in Sec-4.4 and here (Sec-?.é), we
have demonstrated how judicious use of control schema may be used to impose
various selectional restrictions in class of complex sentences discussed.

Many aspects of Bangla sentences have not been covered in the present work, While
it is diflicult to provide analyses for some of the aspects like gerundal infinitives,
sentential adjectives, etc., we have already carried out some study into analyzing
interrogative sentences, Of the interrogative sentences, the “k-phrase” are an in-
teresting study. Like English, in Bangla, there are query “keywords” for different
thematic roles of the sentences. Furthermore, like English, all the query keywords
have k as the prefix, as in ke “who”, ki “what”, kon “which”, kabe, kakhan
“when(day)/when(time)”, kotha'y “where”, etc., and hence the name k-phrase.
Like English “Wh-phrase” queries, the k-phrase is substituted for the entity in
the corresponding position of the non-interrogative sentence. Just as with normal
senterices, entities in k-phrase queries may freely permute. For example, all the
interrogative sentences below, have identical meaning.

ke bait’a’ pad’.be

Who book-DEF read-FUTURE-3p-1h
“Who will read the book 7",

bait'a’ ke pad’be

Book-DEF who read-FUTURE-3p-1h
“Who will read the book 7”.

bait’a’ pad’.be ke

Book-DET read-FUTURE-3p-1h who
“Who will read the book ?”.

Bangla “Yes-No” interrogative sentences differ from Inglish in that first, in Bangla,
there is a special verbal yes-no operator ki used for constructing a query, and
secondly, there is no subject-verb position interchange. ‘The ki operator may occur

anywhere, except at the sentence initial position, as in:

ra’m bait’a’ pad’.be ki *
Ram-NULL book-DEF read-FUTURE-3p-1h yes-no
“Will Ram read the book 7”.

ra’m ki bait’a’ pad’.be

Ram-NULL yes-no book-DEF read-FUTURE-3p-1h
“Will Ram read the book 7”. |
ra’m bait’a’ ki pad’.be

Ram-NULL book-DEF yes-no read-FUTURE-3p-1h
“Will Ram read the book ?”.

144

We intend to provide a comprehensive GLFG analysis of Bangla interrogative sen-
tences in the near fubure.

145

Chapter 8

Conclusion

Lhe motivation behind the present thesis was to provide a realistic computational
model for a computer-based lexicon-driven syntactic processing of modern Indian
languages, with Bangla as the target language. The model was intended to have a
well-deflined and extendible implementational connotation.

The Lexical Functional Grammar was chosen as the primary formalism. The goal
was set atb:

o I'ormulation of a pre-syntactic processing stage meant for strong lexical inter-
action, This includes techniques for parsing isolated words into constituent
morphemes (called lexical level analysis), as well as detection of multi-worded
lexical entities and lexical projection thereof (called supra-lexical level analy-
sis), The goal includes development of software tools to enable a linguistic ex-
pert to systematically specify morpho-syntactic and supra-lexical properties
of the language and automatic generation of various analytical components

from them,

e [ormulation of a syntactic processing stage as extensions on the basic LFG
approach. It has been shown that Bresnan’s concept ot non-configurational
encoding leads to a less-efficient parser implementation for Bangla and similar

languages. The suggested extensions were Intended at circumventing the

problem.

Providing an object-oriented design for implementation of the formalisms
suggested above and directly implementing some of the key aspects in a

C+- based programming platform.

146

o Applying the developed formalism to different sub-paradigms of Bangla natu-

ral language processing, namely, the verb, the case phrase and certain classes
of sentences and clauses,

Goals Achieved

o A linite-state tool for parsing words, called the Augmented Finite State Au-
tomata (AI'5A} has been proposed. The AFSA is capable of parsing words
into constituent morphemes, even in the presence of spelling rules that render
detection of morpheme boundaries difficult.

e A soltware tool for use by the lexical “expert” was proposed. This tool
permils specification of the lexicon of the target language in four parts —
~major morpheme classes with abstract lexical properties for each class, rules
of morpho-syntax with knowledge of constructing the lexical properties of a
word class from the properties of the constituent morphemes, spelling rules
and the morphemes constituting the vocabulary along with specific lexical
properties of the morphemes. A part of the tool creates a Comprehensive Lex-
icon - an indexed database of morphemes. Another part compiles the AFSA
in a systematic manner. The compiled AFSA contains pointers leading into
the comprehensive lexicon through which lexical projections of constituent
morphemes can be easily recovered, The projection of the word is derived
as a unification of the projections of the constituents. The implementation
of the software tool has been achieved almost to the complete specifications.
However, prefixes and compound stems (due to euphony) have not been 1n-
corporated. Some amount of manual tuning of the AFSA may be required

to take care of some special cases.

o A soltware tool for supra-lexical specification by the lexical expert has also
been proposed, Through this tool, the lexical expert informs the system how
to recognize multi-worded lexical entities and how to generate the projec-
tion of these entitics. The aspects that are specified include different word
groups and how they co-occur, filters for validating different properties of
co-occurring words, how the different attributes of the combined entity are
instantiated and how the semantics function of the entity is created. The'
major achievement in this respect is proper identification of the different as-
pects of supra-lexical specification and proposing a non-ambiguous tctol for
the same. Implementation of the component for automatic constru(.:tmn of
the supra-lexical analyzer from the given specifications can be carried out

without much difficulty using tools like lez and yac.

147

' oy 1 g \ “ X \
[he analysis described above can be carried out in a manner transparent

to the syntactic component. Thus, syntactic specification for phrases and
sentences, need not be detailed down to the morphemes.

A viable (for parser implementation) syntactic formalism that takes care of
most of the problems avising {rom Bresnan’s postulates, has been proposed
in the form of the Generalized Lexical Functional Grammar (GLEFG). The
main theme of the GLI'G is delayed syntactic encoding of participating noun
phrases (NDPs) of a sentence. The key features of the GLFG are — an under-
specification metavariable “?7” that assigns unnamed functions to NPs, a
meta-structure projected lexically by verbs for late binding of names of func-
tions through tests and a symbol table for co-ordinating the entire process.
We have illustrated that the above features succeeds in decreasing potential
non-determinism arising out of Bresnan's postulates, to a reasonable extent.
We have mapped our extensions into a new operator Search and have ex-
tended the semantics of the traditional Locate operator of LFG. Some of
the key components like the operators Locate (extended) Merge (unifica-
tion component) and Search have been implemented. However, since only
few data on internal grammars of NPs, PPs, etc., for bangla were available,
we have implemented our ideas only for a restricted types of sentences (one

worded NPs).

Qur syntactic formalism is clearly centered around the verb. Bangla verbs.
constitute a considerably complicated paradigm. We have provided a sys-
tematic sbudy ol the different aspects of the Bangla verb, including classifi-
cation, morphological properties, nature of infinite verbs and multi-worded
verbs. For some of the more complicated cases like certain difficult examples
ol negated verbs, verbs consisting of three or more words, composite verbs,
ebe., could not be covered in much depth due to lack of sufficient linguistic

data based on detailed analyses of usage of such forms.

A description of Bangla noun and post-positional phrases has also been pro-
vided. However, here again, we are hampered by near absence of linguistic
data. We have carried out a preliminary study based on our approaches. We
expect that our analysis would initiate more involved investigations in the

field by linguists,

We have reserved a chapter for discussing some typical sentential forms of
Bangla. The situation here is also similar to the one with NPs, i.e., there
is virtually no computational linguistic works covering the different sentence

types discussed (or just mentioned) by us- Again, we expect to initiate in-
depth linguistic studies in the field.

148

Application Potentials

The obvious application domain is in building natural language understanding
systems for Bangla and similar languages. This requires further development in
the semantic aspects that we have not covered in this thesis. Such a system may
be applied almost every domain of man-machine interaction and also in machine
abstraction of texts, While we have not investigated machine translation aspects
in this thesis, we have a strong feeling that the techniques would be quite suitable
in translations environment also. In the restricted domain, the techniques may
be used to build up query languages for databases for various domain. However,
for this, a deeper study of question type sentences, especially the “ka-phrases” (so
called because of similarities with English Wh-phrases), is necessary. The morpho-
syntactic components may be applied in isolation in spelling checker and corrector.
Morcover, it may be used in a speech recognition system to provide high level word
hypothesis verification,

Scope for Future Work

The problem of a realistic computer implemented NLP system for Bangla (or even
any Indian language) is a vast domain, virtually unexamined. There is scope for
further work in practically every aspect of NLP, However, we have identified certain

fields as of immediate interest:

o A more rugged morphological parser incorporating prefixes as well as eu-
phony. As we have pointed out, with the current version of the AFSA, the

above enhancement may lead to potential violation of sone basic premises.
At present, we are investigating the nature of the violation and trying to

hypothesize about their nature.

o Tt is clear from the present thesis that the efficiency of the syntactic compo-
nent is most dependent on lexical design, especially the m-structure of verbs.
A more discriminating m-structure of verbs leads to faster and better rejec-
tion of wrong parses. It is however a daunting task to manually construct the

m-structure of all verbs of any language. A better alternative woulld be.to
have a software tool for the same, We have also been investigating this point

for some time now. Our approach is*based on the fact that the entire set of
verb may be conceptually clustered such that the m-structure of the verbs
in a cluster are similar to one another. The proposed software tool would be

149

used by a linguist for incremental betterment of the clusters. This way, the
ideal situation would be attained asymptotically.

¢ We would like to carry out detailed study for the incorporation of:

~ Negation in general and of all verb forms in particular. Tor this, a clearer

understanding of the semantics of the negation operators and negative
{orms is necessary.

~ Rule-based detection of compound and composite verbs. A break-
through in these domains would not only result in tremendous reduction
in storage requirement but also provide considerable linguistic insight
into the general phenomenon of “compounding”,

—~ Gerundative phrases.

~ Relative Clauses. Analysis of relative clauses is important from the
angle of natural language database query languages. At the primary
level, we would like to identify the anaphoric operators, which normally
occur 1 pairs and syntacticaily mark relative clauses.

— Questions — “Yes-No” clauses as well as “ka-phrases”. We have already
done some preliminary study in this field. Indications are that simple
interrogative sentences may be incorporated into our system without
mutch trouble.

— Co-ordination and Compound Sentences, As with English, study of
compound sentences and co-ordinated phrases is a difficult branch of
study. Ambiguity and its efficient handling must be seriously studied
before taking up this field.

150

Bibliography

(1] Aho A.V.; Ullman J.D. 1972 The Theory of Parsing, Translation, and Com-
piling, Prentlce-* Hall: Englewood Cliffs, NJ.

2] Aho A.V.; Ullman J. D. 1977 Principles of Oompzler Design Addison Wesley:
Reading, MA

3] Aho A. V.; Hopcroft J. E;; Ullman J. D. 1982, Data Structures and Algo-
rithms, Addison Wesley: Reading, MA.

4] AlamY. S. 1983. A Two-Level Morphological Analysis of Japanese. Tezas
Linguistic Forum 22, 229-252,

(5] Allen J. I'.; Perrault C, R. 1981 Analyzing Intention in Utterances Artificial
Intelligence 16: 441458,

6] Allen J. 1987 Natural Language Understanding, Benajamin Cummings :
Menlo Park, CA, 1987.

[7] Alshawi H.; Boguraev B. K.; Briscoe E. J. 1985 Towards a Dictionary Sup-
port Environment for Real Time Parsing. Proc. ACL Second European Con-

ference, 171-178,

(8] Andrews A. D. 1982 The Representation of Case in Modern Icelandic In:
Joan Bresnan (ed). The Mental Representation of Grammeticel Relations.
MIT Press : Cambridge, MA : 427-503.

(9] Bandyopadhyay D. (in Press, 1992) The Valency of Bangla Verb and Some-
related Issues, Monograph of Institute of Linguistic Sciences, India. Calcutta.

[10] Barnett J.; Knight K.; Mani L; Rich E. 1990 Knowledge and Natural Lan-
guage Processing. Comm. of the ACM 33(8) 50-71.

(11} Barton E. G. Jr.; Berwick R. C.; Sven Ristad E. 1987. Computational Com-
plexity and Natural Language. MIT Press, Cambridge MA.

151

[12] Bates M. 1978 T'he Theory and Practice of ATN Crammars. In: L. Bolc ed.,
Natural Language Communication with Computers 191-259. |

[13] Bear J. 1986 A Morphological Recognizer with Syntactic and Phonological
Ruless. In: COLING-86, 272-276.

[14] Bear J. 1988 Morphology with Two-level Rules and Negative Rule Features.
In: COLING-88, 28-31.

15] Berwick R. C. and Iong §. 1991 Principle-Based Parsing: Natural Language
Processing for the 1990s. In: Artificial Intelligence at MIT, Vol-I Winston
and Shellard eds. 287-325.

(16] Bharti A.; Chaitanya V.; Sangal R. 1989. A Karaka Based Approach to
Parsing of Indian Language Processing, TRCS-89, Kanpur, India.

[17) Bharti A.; Chaitanya V.; Sangal R. 1990. A Computational Grammar for
Indian Language Processing, In: Seminar on Development of Core Grammar
of Indian Languages for Computers, Central Institute of Indian Languages,
Hyderabad, India,

(18] Blaberg O. 1985 A two-level description of Swedish, In: Karlsson F. Ed.-
Computational Morphosyntaz: Report on Research 1981-1984, University of
Helsinki, Helsinki 43~62,

(19] Blank G. . 1985 A New Kind of Finite-state Automation: Register Vector
Grammar, In: [JOAI-85 2 749-758.

[20] Blank A.; Ritchie G.; Pulman S. G.; Russell G. 1987 Formalismas for Mor- |
phographemic Description, In: ACL Proceedings, Third European Conference

11-18.
~ [21] Bougarev B. K.; Carter D.; Briscoe E. J. 1987 A Multipurpose Interface to

an On-line Dictionary. In: ACL Proceedings, Third European Conference.
63-69. |

22] Bouma G.: Konig B.; Uszkoreit 1988, A Flexible Graph-unification Formal-
~ism and its Application to Natural Language Processing. /BM Journal of

Research and Development 32(2), 170-184.

23] Bresnan J. (ed) 1982 The Mental Representation of Grammatical Relations.
MIT Press : Cambridge, MA. -

[24] Bresnan J. 1982 Passive in Lexical Theory In: Joan Bresnan (ed.). The Mental
Representation of Grammatical Relations. MIT Press : Cambridge, MA : 3-

80.

152

25] Bresnan J. 1982 Control and Complementation In: Joan Bresnan (ed). The
Mental Representation of Grammatical Relations, MIT Press : Cambridge,
MA : 282-390. '

[26] Briggs R. 1985. Knowledge Representation in Sanskrit and Artificial Intelli-
gence, Al Magazine Spring 85. 32-39. |

127] Briscoe E, J.; Boguraev B, K. 1988 Computational Lexicography for Natural
| Language Procssing. Longman/ Wiley: London/ New York.

128} Brodda B. 1986 BetaText: an Event Driven Text Processing and Text Ana-
lyzing System, In: COLING-86. 421-422,

[29] Calder J.; Klein E.; Zeevat H. 1988. Unification Categorical Grammar: a
Concise Extendable Grammar for Natural Language Processing. COLING-
88. 83-86,

[30] Calzolari N.; Picchi E. 1988. Acquisition of Semantic Information from an
On-line Dictionary. In: COLING-88. 87-92.

(31] Carden G. 1983. The Non-finite-state-ness of the Word Formation Compo-
nent., Linguistic Inquiry 14 537-541.

[32) Cardona G. 1976, Panini: A Survey of Research. Motilal Banarasidas. Delhi,
varanasi, Patna, Madras.

133] Charniak E.; Mc Dermott D. V. 1985, Introduction to Artificial Intelligence.
Addison- wesley: Reading, MA. |

[34] Chatterjee S. K. 1986 (Reprint}) The Origin and the Development of the
Bengali Language — Vols I and II (in English). Rupa and Co., Calcutta.

135] Chatterjee S. K. 1986 (Reprint) Bengali Self Taught Rupa and Co. Calcutta.

[36] Chatterjee S. K. 1988 Bhasa Prakash Bangala Byakaran (a Book on Bengali
Grammar in Bengali). Rupa and Co., Calcutta.

(37] Chomsky N. 1957 Syntactic Structures Mouton, s’Gravenhage.

[38] Chomsky N, 1965 Aspects of the Theory of Syntaz MIT Press, Cambridge,
MA. ' |

(39) Chomsky N. 1981 Lectures on Government and Binding: the Pisa Lectures
Foris Publications: Dordrecht, Holland. |

(40} Sinha R. M. K. (ed.) 1991 Proc. CPAL-2 (Second Regional Conference on
Computer Processing of Asian Languages, Kanpur, India), Tata McGraw

Hill, New Delhi.
153

[41] Dalrymple M.; Zaenen A. 1989 Modeling Syntactic Constraints on Anaphoric

Binding Technical Paper No. P89-00149, Systems Sciences Laboratory, XE-
ROX PARC.

[42] Dalrymple M.; Zaenen A, 1991 Modeling Anaphoric Superiority Technical
Paper No. P91-00161, Systems Sciences Laboratory, XEROX PARC.

~ [43] Dalrymple M. 1991 An LFG Account of Anaphoric Binding Constraints Tech-
nical Paper No. P91-00052, Systems Sciences Laboratory, XEROX PARC.

[44] Dasgupta M. 1992 Composite Verbs in Bangla Indian Journal of Linguistics
17 (1): 1-31.

[45] Dasgupta P, 1977 The Internal Grammar of Compound Verbs in Bangla
Indian Linguistics 38. 68-85.

146] ‘Dasgupta P. 1979 The Bangla -WA /-No Forms Participle and Gerund Indian
Linguistics 40 (3) 185-197. |

[47] Dasgupta P. 1980 Questions and Relative and Complement Clauses tn a
Bangla Grammar PhD Thesis, New York University,

(48] Dasgupta P.; Dhongde R. V.; Rajendran S. 1981 Complement Verb Repars-
ing in Bangla, Marathi and Tamil. Indien Linguistics, 42 (39-47).

[49] Dasgupta P. 1982 Phonology and the Bangla Verb, Indian Linguistics, 43(1-
2).

[50] Dasgupta P. 1983 On the Bangla Classifier Ta, its Penumbra and Definite-
ness, Indian Linguistics 44 (1-4). 11-26. |

(51] Dasgupta P. 1985 On Bangla Nouns Indian Linguistics 46 (1-2). 37-66.

52] Dasgupta P. 1990 Kathar Kriya Karma (Bengalt) (Grammatical Functions
of Verbs]. Dey’s Publishers, Calcutta, India.

[53]I De Smedt K. 1984 Using Object-Oriented Knowledge-representation Tech-
niques in Morphology and Syntax Programming. In: Proc. of the European

Conference on Artificial Intelligence (ECAI-84). 181-184.

(54] Dey P. 1979. On Rule Ordering in Bangla Phonology Indian Linguistics 40
(1). 24-34. |

[55] 1991, Computers and the Indian languages — Unpublished Report of the
Department of Electronics, Govt. of India, New Delhi. |

(56] Domenig M.; Shann P. 1986. Towards a Dedicated Database Management
System for Dictionaries. In: COLING-86. 01-96.

154

57] Dorre J.; Seiffert R. 1991 A Formalism for Natural Language — STUF. In:

Her:zog O.; Rollinger C. -R. (Eds) Tezt Understanding in LILOG (LNAI-546),
Springer-Verlag, Berlin Heidelburg. 33-38.

(58] Dorre J. 1991 The Language of STUF. In: Herzog O.; Rollinger C. -R.

(Eds) Text Understanding in LILOG (LNAI-546), Springer-Verlag, Berlin
Heidelburg. 39-50.

- [89] Dowty D. R.; Karttunen L.; Zwicky A. M. eds. 1985. Natural Language
Parsing. Cambridge University Press: Cambridge.

160] Early J.1970. An Efficient Context-Free Parsing Algorithm. Communications
of the ACM 14. 453-460.

[61] Eisele A.; Dorre J. 1986. A Lexical Functional Grammar System in PRO-
LOG. COLING-86 551-553.

(62] Ejerhed E.; Church K. W. 1983 Finite State Parsing. In: Karlsson (ed.)
Papers from the Seventh Scandinavian Conference of Linguistics. Helsinki.
410-432.

63] Fenstad J. E.; 1987 Natural Language Systems. In: Advanced Topics in Arti- |
ficial Intelligence, ond Advanced Course, ACAL 87, Oslo, Norway (Lecture
Notes in Al Series No, 345) Springer-Verlag: 189-233.

[64] Fillmore C. J. 1968 The Case for Case. In: Bach E.; Harms R. (eds.) Uni-
versals in Linguistic Theory, Holt, Rinehart & Winston, New York. 1-88.

[65] Fillmore C. J. 1977 The Case for Case Reopened. In: Cole P.; Sadock J.
M. (eds.) Syntaz and Semantics Vol-8 (Grammatical Relations), Academic
Press, New York, San Francisco, London. 59-81.

[66] Flickinger D, P.; Pollard C. J.; Wasow T. 1985 Structure Sharing in Lexical
representation. In: ACL Proceedingsd, 23rd Annual Meeting. 262-267. |

[67] Frey W. 1985 Noun Phrases in Lexical Functional Grammar. In: Dahl V.;
Saint-Dizier P. (eds) Natural Language Understanding and Logic Program-
ming, Elsevier Science Publishers B. V. (North Holland), 121-137.

68] Fukumoto F.; Sano H.; Saitoh Y. and Fukumoto J. 1991 A Framework for Re-
stricted Dependency Grammar. In: Proc. Third International Workshop on
Natural Language Understanding and Logic Programming, Stockholm, Swe-

den Brown C. G. & Koch G. eds. 61-74,

[69] Gazder G.; 1985 .Review Article; Finite State Morphology Linguistics 23,
597-607. |

155

[70] Gazder G.; Pullum G. K.; Klein E. and Sag I. 1985 Generalized Phrase
Structured Grammar, Oxford; Blackwell

L]

[71] Gazder G.; Mellish C. 1989, Natural Language Processing in PROLOG,
Addison-Wesley Publishing Co. Reading, MA.

[72] Gazder G.; Mellish C. 1989. Natural Language Processing in LISP. Addison-
Wesley Publishing Co, Reading, MA.

(73] Gorz G.; Paulus D. 1988 A Finite-state Approach to German Verb Morphol-

ogy. In: Proceedings of COLING-88 (Conference on Computational Linguis-
tics): 212-215.

|74} Grosz B. J.; Jones K. S.; Webber B. L. eds. 1986 Readings in Natural Lan-
guage Processing, Morgan Kaufmann : Los Altos, CA.

[75] Halliday M. A. K. 1976 Types of process. In: Kress G. (ed.) Halliday: System.
and Function of Language. 159-173.

(76] Halvorsen P-K. 1983 Semantics for Lexical Functional Grammars. Linguistic
Fnquiry 14(3) 567-613.

[77] Halvorsen P-K. 1988 Situation Semantics and Semantic Interpretation in
Constraint-based Grammars In: Proc. of the International Conf. on Fifth
Generation Computer Systems, Tokyo Japan 471-478.

(78] Halvorsen P-K.; Kaplan R. M. 1988 Projections and Semantic Description in
Lexical Functional Grammar, In: Proc. of the Int. Conf. on Fifth Generation

Computer Systems (FGCS’88), Tokyo. Vol, 3, 1116-1122.

[79] Hendrix G. G.; Sacerdoti E.; Sagalowics D.; Slocum J. 1978 Develop-
ing a Natural Language Interface to Complex Data ACM Transactions on

Datebase Systems 8 (2): 105-147.

[80] Herath I.; Yokoyama S.; Isahara H.; Ishizaki 5. 1989 Sinhalese Morphologi-
cal Analysis: A Step Towards Machine Processing of Sinhalese. Proc. IEBE

Workshop on Tools for AI - TAI-89 100-107.

[81] Herzog 0. Rollinger C. -R. (Eds) 1991, Text Understanding in LILOG
(LNAI-546), Springer-Verlag, Berlin Heidelburg. |

(82] Hopcroft J.; Ullman J. 1979, Introduction to Automata Thea.ry, Languages
and Computation. Addison-Wesley, Reading MA.

83] Iosda M.; Aiso H.; Kamibayashi N.; Matsunaga Y. 1986. Model 'fqr Lexical
Knowledge Base. COLING-86, 451-455. | -

156

184] Jackendoff R. 1977 X-Bar Syntax: A Study of Phrase Structure. Linlgm'stic*
Inquiry Monograph Two. MIT Press, Cambridge MA.

[85] Joshi A. K. 1985 Tree Adjoining Grammars: How Much Context-sensitivity
is Required to Provide Reasonable Structural Descriptions? In: Dowty D.,
Kartunnen L.; Zwicky A., eds. Natural Language Processing: Psycholinguis-
tics, Computational and Theoretical Properties Cambridge University Press:
Cambridge: 206-249.

(86] Kak S. C. 1987 The Paninian Approach to Natural Language Processing.
International Journal of Approzimate Reasoning 1. 117-130.

[87] Kaplan R. M.; Kay M. 1981 Phonological Rules and Finite State Transduc-
ers ACL/LSA (Assoc, of Computational Linguistics/ Linguistic Society of
America) paper. New York.

[88] Kaplan R. M.; Bresnan J. 1982 Lexical Fuctional Grammar : A Formal
System for Grammatical Representation. In: Joan Bresnan (ed). The Mental
Representation of Grammatical Relations. MIT Press : Cambridge, MA :
173-281

[89] Kaplan R. M.; Zaenen A. 1987 Long-distance Dependencies, Constituent
Structure, and Functional Uncertainty. (to appear in) Baltin M.; Kroch A.
(eds) Alternative Conceptions of Phrase Structure, Chicago Univ. Press.

190] Kaplan R. M.; Maxwell J. T.; Zaenen A. 1987 Functional Uncertainty. In:
The CSLI Monthly, Center for the Study of Language and Information, Stan-
ford University. ”

191] Kaplan R. M.; Maxwell J. 1988 An Algorithm for Functional Uncertainty.
Technical Paper No. P88-00084, Systems Sciences Laboratory, XEROX
PARC. (Also in Proc. COLING 88, Budapest 297-302)

[92] Kaplan R. M.; Maxwell J. T. 1988 Constituent Coordination in Lexical Func-
tional Grammar. In: Proc, of COLING 88, Budapest Aug 88, 303-305. Ka-
plan R. M.; Zaenen A. Functional Uncertainty and Functional Precedence
in Continental West Germanic. Technical Paper No. P§8-00082, Systems

Sciences Laboratory, XEROX PARC.

93] Kaplan R. M. 1989 The Formal Architecture of Lexical Functional Grammar .
Journal of Information Sciences and Engineering 5. 305-322.

(94] Kaplan R. M.; Zaenen A. 1989 Functional Information and Constituent
Structure in West G—ermanic Infinitival Constructions. Technical Paper No.

P89-00067, Systems Sciences Laboratory, XEROX PARC.

157

[95] Kaplan R. M, 1989 The Formal Architecture of Lexical-Functional Grammar.
Journal of Information Science and Engineering 5, 305-322.

[96] Kaplan R. M.; Netter K.; Wedekind J.: Zaenen A. 1989 Translation by Struc- -
tural Correspondences In: Proc. of the Fourth Conference of the European
chapter of the Association for Computational Linguistics. 272--281.

[97] Kaplan R. M.; Zaenen A.; 1990 Long-distance Dependencies, Constraint
| Structure and Functional Uncertainty In: M, Baltin, A. Kroch (eds) Alter-
nate Conceptions of Phrase Structure. Chicago University Press.

98] Karttunen L. 1983. KIMMO: a General Morphological Processor, Tezas Lin-
guestic Forum 22 165-186.

[99] Kartunnen L.; Wittenburg K. 1983 A Two-Level Morphological Analysis of
English, In: Proceedings of ACL, 23rd Annual Meeting: 217-228.

{100} Kartunnen L., Kay M. 1985 Parsing in a Free Word Order Language. In:
Dowty D. R., Kartunnen L. and Zwicky A. M. (eds). Natural Language Pars-
ing, Cambridge University Press, London: 279-306.

(101] Karttunen L. 1986. D-PATR: A Development Environment for Unification-
pased Grammars, COLING-86 74-80. |

[102] Kashket M. 1986 Parsing a Free Word Order Language: Warlpiri. In: Proc.
ACL 60-66.

[103] Kasper R.; Rounds W. 1986. A Logical Semantics for Feature Structures.
ACL Proceeding, 24th Annual Meeting 257-266.

(104] Kasper R. 1987 A Unification Method for Disjunctive Feature Descriptions.
ACL Proceedings, 25th Annual Meeting 235-242,

(105] Katajia L.; Koskenniemi K. 1988. Finite-state Description of Semitic Mor-
phology: A Case Study of Ancient Accadian. COLING-88 313-315.

(106] Kay M. 1973. The MIND System, In: Rustin R. (ed.) Natural Language
Processing. Algorithmics Press, New York. .

(107} Kay M. 1979. Functional grammar. In: Chiarello C. et al., eds. Proceedings
of the Fifth Annual Meeting of the Berkeley Linguistics Society 142-158.

[108] Kay M. 1984. Functional Unification Grammar: A Formalism for Machine
Translation. COLING-84 75-18. ‘

158

[109] Kay M. 1985 Parsing in Functional Unification Grammar. In: Dowty D. R.,
Kartunnen L. and Zwicky A. M. (eds). Netural Language Parsing, Cambridge
University Press, London: 251-278.

[110] Kay M. 1987 Nonconcatenative Finite-state Morphology. In: Proceedings of
ACL, Third European Conference: 2-10.

[111] Khan R. 1983. A Two-level Morphological Analysis of Rumanian. Tezas Lin-.
guistic Forum 22 253-270.

{112] Khan R.; Liu J. S.; Ito T.; Shuldberg K. 1983. KIMMO User’s Manual. Tezas
Linguistic Forum 22 203-215.

[113] Kholdovich A. A. (ed) 1974 Typology of Passive Construction: Diathesis and
Voices(in Russian). Nauka Leningrad.

[114] Klaus N.; Wedekind J.; 1986. An LFG-based Approach to Machine Transla-
tion. In: Proc. IAI-MT 86, Saarbrucken.

[115] Knight K.; 1989 Unification: A Multidisciplinary Survey. ACM Computing
Surveys 21 (1): 93-124.

[116] Koskenniemi K. 1983 Two Level Model for Morphological Analysis. In: Pro-
ceedings of IJCAI-83 (International Joint Conference on Artificial Intelli-
gence). Karlsruhe, West Germany: 683-685.

[117] Koskenniemi K. 1984 A General Computational Model for Word-form Recog-
nition and Production. In: Proceedings of COLING-84 : 178181

(118] Koskenniemi K.; Church K. W. 1988 Complexity, Two-level Morphology and
Finnish. In: Proceedings of COLING-88: 335-340.

(119} Lindstedt J. 1987. A two-level description of Old Church Slavonic Morphol-
ogy. Scandu-Slavica 30 165-189,

[120] Lun S. 1983. A Two-level Morphological analysis of French. Tezas Linguistic
Forum 22 271-278.

(121) Marcus M. P. 1978 A Computational Account of Some Constraints on Lan-
guage In: Waltz D, ed. Theoretical Issues in Natural Language Processing-2,

ACL: Urbana-~-Champaign.

[122) Marcus M. P. 1980. A theory of Syntactic Recognition for Natural Language
MIT Press: Cambridge, MA. |

(123] Maruyama N.; Morohashi M.; Umeda §.; Sumita E. 1988 A Japanese Sen-
tence Analyzer IBM Journal of Research and Development 12 (2): 238-250.

159

(124] Maxwell J. T.; Kaplan R. M. 1991 A Method for Disjunctive Constraint Sat-
isfaction. In: Tomita M. (ed) Current Issues in Parsing Technology Kluwer
Academic Publishers, 173-190.

1125] Maxwell J. T.; Kaplan R. M. 1992 The Interface between Phrasal and Func-
tional Constraints (submitted for consideration to}) Computational Linguis-
tics.

- [126] McCord M. C. 1982 Using Slots and Modifiers in Logic Grammar for Natural
Languages. Artificial Intelligence 18: 327-367.

[127) Mellish C. S. 1988. Implementing Systelﬁic Classification by Unification.
Computational Linguistics 14 40-51.

[128] Meya M. 1987. Morphological Analysis of Spanish for Retrieval. Literary and
Linguistic Computing 2 166-170.

[129] Minsky M. 1981 A Framework for Representing Knowledge. In: Haugeland
J. ed. Mind Design MIT Press: Cambridge, 35-128.

[130] Moens M.; Steedman M. 1988 Temporal Ontology and Temporal Reference.
Computational Linguistics 14 (2): 15-28. -

(131] Mohanan K. P. 1982 Grammatical Relations and Clause Structure in Malay-
alam. In: Joan Bresnan (ed). The Mental Representation of Grammatical
Kelations. MIT Press : Cambridge, MA : 504-5809,

(132] Moshier M. D.; Rounds W. C. A Logic for Partially Specified Data Struc-
tures. Conference of the Fourteenth ACM Symposium on Principles of Pro-
grammaing Languages, Munich, W. Germany. 156-167.

[133] Nakhimovsky A. 1988 Aspect, Aspectual Class And the Temporal Structure
of Narrative, Computational Linguistics 14 (2): 29-43. '

(134] Neidle C. 1982 Case Agreement in Russian In: Joan Bresnan (ed). The Men-
tal Representation of Grammatical Relations, MIT Press : Cambridge, MA :

391-426,

[135] Panda H. R. 1992 Rule Based “Sandhi Bicched” (de-euphomzatlon) of Ben-
gali, M, Tech Dissertation, Indian Statistical Institute.

[136] Passonneau R. J. 1988 Computational Model of the Semantics of Tense and
Aspect, Computational Linguistics 14 (2): 44~-60.

(137} Paul J. 1986 Bangla Verb Morphology: A Reconsideration. Indian Linguistics
Vol 47(1-4): 73-179. -

160

[138] Pereira F', C. N.; Warren D. H. D. 1980 Definite Clause Grammars for Lan-
guage Analysis — a Survey of the Formalism and a Comparison with ATNs
Artificial Intelligence 13: 231-278.

[139] Pereira F. C. N.; Shieber S. M. 1984. The Semantics of Grammar formalism
seen as Computer Languages. In: COLING-84. 123-129.

(140] Perrault C. R. 1984 On the Mathematical Properties of Linguistic Theories.
| Computational Linguistics Vol 10: 165-176.

[141] Petrick S. R. 1987. Parsing. In: Shapiro S. C. (ed.) Encyclopaedia of Artificial
Intelligence. Wiley, New York. 687-696.

(142] Pollard C.; Sag I. A. 1988 An Information-Based Approach to Syntaz and
Semantics: Vol 1 Fundamentals. CSLI Lecture Notes No. 13, Chicago Uni-
versity Press, Chicago.

[143] -‘Ritchie G. D. 1986. The Computational Complexity of Sentence Derivation .
in Functional Grammar. In: COLING-86. 584-586.

[144] Ritchie G. D.; Pulman S. G.; Black A. W.; Russell G. J. 1987 A Compu-
tational Framework for Lexical Description. Computational Linguistics Vol
13(3-4): 290-307.

t145] Robinson J. A. 1965. A Machine-Oriented Logic Based on the Resolution
Principle. Journal of the ACM 12. 23-41,

[146] Sager N, 1981 Natural Langﬂage Information Processing: A Computer Gram-
mar of English and its Applications Addison Wesley: Reading, MA.

(147] Sangal R.; Chaitanya V. 1987. An Intermediate Language for MAchine
Translation: An Approach Based on Sanskrit Using Conceptual Graph Nota-
tion, Computer Sc. & Informatics. Journal of the Computer Society of India

17 (1).
148]) Schank R. C. 1980 Language and Memory Cognitive Science 4 (3): 243~284.

149] Schiller A.; Steffens P. 1991 Morphological Processing in the Two-Level
| Paradigm. In: Herzog O.; Rollinger C. -R. (Eds) Text Understanding mn’
LILOG (LNAI-546), Springer-Verlag, Berlin Heidelburg. 112-126.

[150] Seiffert R. 1991 Chart Parsing of STUF Grammars. In: Herzog O.; Rollinger
C. -R. (Eds) Tezt Understanding in LILOG (LNAI-546), Springer-Verlag,

Berlin Heidelburg. 51-54.

(151] 1990. Seminar on Development of Core Grammar of Indian Lang*zfages for
Computers, Central Institute of Indian Languages, Hyderabad, India.

161

[152] Sengupta P.; Dutta Majumder D. 1987 Natural Language Processing and-
Artificial Intelligence Techniques In: Proc. Congress of Cybernetics and Sys-
tems New Delhi 1987,

[153] Sengupta P.; Chaudhuri B. B. 1989 A Morphological Verb and Case Analyzer
for NLP of a_-Major Indian Language. In: Proc. National Symposium for
Natural Language Processing. Vishakapatnam, India.

[154] Sengupta P.; Chaudhuri B. B. 1992 A Lexical Representation System for Ef-
ficient Word Form Analysis and Lexical Projection in Inflectional Languages
(with Bengali as a Case Study) In: Sinha R. M. K. (ed) Proc. CPAL (Second
Regional Conference on Computer Processing of Asian Languages, Kanpur,
India), Tata McGraw Hill, New Delhi: 199~208.

1155] Sengupta P.; Chaudhuri B, B. 1993 A Morpho-Syntactic Analysis Based Lex-
ical Sub-System International Journal of Pattern Recognition and Artificial
Intelligence (forthcoming).

[156] Sengupta P.; Chaudhuri B, B. 1993 Natural Language Processing in anIndian
Language (Bengali)-I: Verb Phrase Analysis. IETE Technical Review (The

Institution of Electronics and Telecommunication Engineers, India) 10(1)."

27-41, _
[157] Sengupta P.; Chaudhuri B, B. 1993 Delayed Syntactic Encoding in LIFG

Parser for an Indian language — Bangla. (submitted for consideration for
publication to) Computational Linguistics.

[158] Sengupta P.; Chaudhuri B. B. 1993 Projection of Multi-Worded Lexical Enti-
ties in an Inﬂectlonal Language. (submitted for consideration for publication

to) International Journal of Pattern Recognition and Artificial Intelligence.

[159] Sengupta P.; Chaudhuri B. B. 1993. On Parsing a Class of “Free Word-
Ordered” languages. Proc. Third Regional Workshop on Theoretical Com-

puter Science. Kharagpur, India. 202-210.

(160] Sharma P. C. S.; Srinivas B. 1989 Lexical Functional Grammar for Telugu. In:
Proc. National Symposium for Natural Language Processing. Vishakapatnam,

India : 38-57.

(161] Shieber S. M. 1985 Using Restriction to Extend Parsing Algorithms far
Complex-Feature-Based Formalisms. In: ACL Proceedings, 23rd Annual’

Meeting. 145-152.

[162] Shieber S. M. 1986 An Introduction to Unification-Based Approaches to
Grammar. Chicago University Press, Chicago.

162

[163] Singh U. N. 1976 Negation in Bengali and the Order of Constituents. Indian
Linguistics Vol 37(3): 295-303.

[164] Stall J. F. 1967 Word Order in Sanskrit and Universal Grammar. Dordrecht.
[165] Stall J. F. (Ed.) 1972 A Reader on the Sanskrit Grammarians. MIT Press.

[166] Susumu Kuno. 1987 Functional Syntsz: Anaphora, Discourse and Empathy.
| Chicago University Press, Chicago.

[167] Tomita M. 1986. Efficient Parsing for Natural Language: A Fast Algorithm
for Practical Systems. Kluwer, Boston.

[168] Trost H.; Buchberger E. and Heinz W. 1989 On the Interaction of Syntax and
Semantics in a Syntactically Guided Caseframe Parser. In: Proc. COLING
BUDAPEST Vargha D. ed. 677-682.

[169] Uszkoreit H. 1986 Categorical Unification Grammar. COLING-86, 187-194.

[170] Vasu S. C. 1891 The Ashtadhyayi of Panini(2 Vols.). Allahabad Univ. Press.
Allahabad, India.

(171] 1989. Proc. National Symposium for Natural Language Processing. Andhra
University, Vishakapatnam, India. |

[172] Webber B. L. 1988 Tense as a Discourse Anaphor. Computational Linguistics
14 (2): 61-73.

[173] Weisched] Y, 1986 Knowledge Representation and Natural Language Pro-
cessing Proc. IEEE Vol TG (7): 905-920.

[174] Weizenbaum J. 1966 ELIZA — A Computer Program for the Study of Natu-

ral Language Communication Between Man and Machine, Communicationas

of the ACM 9 (1): 36-45.

(175] Wilks Y. 1975 An Intelligent Analyzer and Understander of English Com-
munications of the ACM 18 (5): 264-274.

(176] Wilks Y. 1978 Making Preferences More Active Artificial Intelligence 11:
197-223.

[177] Winograd T. 1972 Understanding Natural Language Academic Press, New
York. | |

[178] Winograd T. 1983 Language as a Cognitive' Process : Vol-TI Syntax, Addison--
Wesley : Reading, MA.

163

[179] Winston P. H. 1984, Artificial Intelligence. Addison-Wesley Publishing Co.,
Reading, MA. (2nd-edition).

[180] Wittenburg K. 1986. A Parser for Portable NL Interfaces Using Graph-
Unification-Based Grammarss. In: Proc. AAAI-86 2. 1053-1058.

(181] Woods W. A. 1970 Transition Network Grammars for Natural Language
Analysis. em Comm. of the ACM 13 591--606. |

(182] Woods W. A. 1975 What’s in a Link: Foundations for Semantic Networks In:
Bobrow D. G.; Collins A. eds. Representation and Understanding: Studies
in Cognitive Science Academic Press, NY.

[183] Woods W. A, 1980 Cascaded ATNs. American Journal of Computational
Linguistics

[184] Zaenen A.; Engdahl E. (To appear) Descriptive and Theoretical Syntax in
the Lexicon. {(to appear in) Computational Approaches to the Lexicon: Au-
tomating the Lexicon II, Atkins B. T. S.; Zampolli A, (eds) Oxford University

Press.

[185) Zeevat H. 1988. Combining Categorical Grammar and Unification, In: Reyle
U.; Rohrer C. (eds.) Natural Language Parsing and Linguistic Theories, D.
Reidel, Dordrecht, 202-229,

[186] Zernik U.; Dyer M. G. 1987 The Self-Extending Phrasal Lexicon. Computa-~
tional Linguistics 13 (3-4): 308-327. |

164

11

111,

1V,

Vi,

vii,

viil,

Publication List of Probal Sengupta

Sengupta P.; Dutta Majumder D. 1987 Natural Language Processing and
Artificial Intelligence Techniques In: Proc. Congress of Cybernetics and Sys-
tems New Delhi 1987,

Sengupta P.; Chaudhuri B, B. 1989 A Morphological Verb and Case Ana-
lyzer for NLP of a Major Indian Language. In: Proc. National Symposium
for Natural Language Processing. Vishakapatnam, India.

Sengupta P.; Chaudhuri B. B. 1992 A Lexical Representation System for
Efficient Word Form Analysis and Lexical Projection in Inflectional Lan-
guages (with Bengali as a Case Study) In: Sinha R. M. K. (ed) Proc. CPAL

(Second Regional Conference on Computer Processing of Asian Languages,
Kanpur, India), Tata McGraw Hill, New Delhi: 199-208.

S.engupta P.; Chaudhuri B. B. 1993 A Morpho-Syntactic Analysis Based
Lexical Sub-System International Journal of Pattern Recognition and Artifi-
cial Intelligence (forthcoming).

Sengupta P.; Chaudhuri B. B. 1993 Natural Language Processing in anln-
dian Language (Bengali)-I: Verb Phrase Analysis. IETE Technical Review
(The Institution of Electronics and Telecommunication Engineers, India)

10(1). 27-41.

Sengupta P.; Chaudhuri B. B. 1993 Delayed Syntactic Encoding in LFG
Parser for an Indian language — Bangla. (submitted for consideration for
publication to) Computational Linguistics.

Sengupta P.; Chaudhuri B. B. 1993 Projection of Multi-Worded Lexical
Entities in an Inflectional Language. (submitted for consideration for publi-
cation to) International Journal of Pattern Recognition and Artificial Intel-

ligence.

Sengupta P.; Chaudhuri B. B. 1993. On Parsing a Class of “Free Word-
Ordered” languages. Proc. Third Regional Workshop on Theoretical Com-

puter Science. Kharagpur, India. 202-210.

165

Appendix A

The Bangla Character Set

Like most Indian language alphabets, the Bangla alphabet is predominantly pho-
netic. There are two separate sections of alphabetic symbols — the vowels and
the consonants. The consonants are grouped together into well-defined phonetic
classes, alongwith a sundry list of consonants that can not be grouped as easily.
When vowel symbols appear with a consonant, in graphemic representation, it {the
vowel) is manifested as a identifiable marker to the left, right, left and above, right
and above or below the consonant. Two or more consonants may form a consonant
cluster. A consonant cluster indicates back to back consonant utterance without
intervening vowel bursts. Such a cluster behaves as a normal consonant, Every
consonant cluster has a unique graphemic symbol, usually, but not always, formed
by superimposing scaled down graphemes of the consonants forming the cluster.

The standard for all Indian script symbols is known as the ISCII — Indian Stan-
dard Code for Information Interchange. Specially designed PC add-on cards are
available for displaying and printing ISCII texts. Such cards are known as GI5T
cards, We have used such a card manufactured by Mssrs. AEM Ltd., for our
printing purpose. However, understanding Bangla text in Bangla print requires
knowledge of the alphabet as well as knowledge of the finer points of GIST card
usage, we have proposed a phonetically motivated code for the purpose. The code
proposes one, two or rarely three English letter codes for Bangla vowels and conso-
nants. Consonant cluster characters are generated by using a special code (in our
case “/") for composition. The code is explained below.

166

The Vowels

a o { % y ® o £ 0 8
a' o 'R TR) s! 3 o) B
The Consonants
The Main Consonant Greups
k& ¢ 5 LY F LY o © of
h o« | ooho® LA 5 Iy o« | b @
g T,) - ;¢ ®© |4 & | b 7
sh T | Jh % 1 d¢h & | dh v | bh @
N o | N & o o« tp T ! g =
Other Consonants
T y @ - A
d.; G d’h, & (Note the dots after d' and 4'h)
8 *f) g $ T H =
o s h'

The Consonant “k” with different Vowels

kp! ke & ko @

ka & ki- & ku
ke! & ko' @

W WAk

bt

A Few Consonant Clusters

k¥ k/n # k7y, 3 k/p
rk & kKl oF k/g ¥ kS
kS NP e N s Nk
N'/s 3 N'/ch 2 Hn = p/t

QR ot H 3

167

To provide a clear idea of the code, we include below a coded and printed text
form of the Indian National Anthem.

janaganamana adhina'yaka Jaya He ST i &7 8
bha'rata bha'e/y.a bidha'fa’ S o0 R
pa’'N'/ja'ba sin/dhu gujara’t’ha ma'ra't'ha’ enere g omas T
d/ra'bid’ .2 ut/kala bali/ga RS S T
bin/dh/y.a Hina'cala y.amuna' gall/qa’ forms et g s
sc/chala Jaladhifarali/ga S ZANOT

{aba §'ubha na'me ja'ge T BS FCT FT

taba s'ubha a’s’{’S ma'qe T BT ST T
ga’He taba jayaga'tha' ME OF TR
janaganamali/galada’yaka Jaya He FOTTRAATIE & X
bha'rata bha'y/y.a hidha'ta’ TES o s

Jaya He jaya He jaya He 0T ETE T

168

Appendix B

Some Spelling Rules and
Morphologically Parsed Words

B.1 Spelling Rules

Given below are the spelling rules used in our system for Bengali.

Vowel Harmony Rules (Global):
1, V:V + a:o
i, aa’:aa’ + 0:0 0:y a:a
ili, eiuoieiuo + 0:y a:a
v, aa’:aa’+ e:!y

v. eiuoieiuo + 0.y e:e

Spelling Rules at VSTEM-VDEC Boundary

i, V:V + 0O:y aa’eiou:aeceiou at VSTEM, VDEC
i, V:V + 0:c 0:/ ch:ch at VSTEM, VDEC

. V:V + ieu:000 nsk:nsk at VSTEM, VDEC

169

iv. C:C a:e C:C + E:e at VSTEM, VDEC

v. a:e G:C + E:e at VSTEM, VDEC

vi, C:C iuieo C:C + ae:ce at VSTEM, VDEC
vil. aa’iuo:00eo00 + e:y at VSTEM, VDEC
vill, aa’iuo:0e000 + 0:y E:e at VSTEM, VDEC
1X, ata hii + be’tlibe’tl at VSTEM, VDEC

X. a:a h:0 + oi:01 at VSTEM, VDEC

Xi. a:a h:0 + e:y at VSTEM, VDEC

il

xll. a:a h:0 + e:e =;= at VSTEM, VDEC
x11, a:a h:0 + ei:00 ns:ns at VSTEM, VDEC
Xlv. ate h:y + E:e at VSTEM, VDEC

Xv. y.:g a’:i + E:e at VSTEM, VDEC

The last rule is meant for the defective verb stem y.a’ “go”.

Spelling Rules at VCAUS-VDEC Boundary
i, a’:i + i:e y:0 a’:0 at VCAUS, VDEC
1. a:a + a’;o O:y 0:a’ at VCAUS, VDEC
iii. u:0 + a’:o O:y 0:a’ at VCAUS, VDEC
iv. a’:a’ + e:0 n:n at VCAUS, VDEC
v. a’:a’ + e:y at VCAUS, VDEC |

vi. a’:a’ + 0:c 0:/ ch:ch at VCAUS, VDEC

170

B.2 Some Examples of Morphological Parsing

of Verbs

Input Word: kari
Lexical Form: kar + 1
Category: VERB

- F-Structure:

[PRED do .]
[TENSE PRESENT]
[GNPH ip]

Input Word: kara’i
Lexical Form: kar + a’ + 1
Category: VERB
F-Structure:

[PRED do]

[CAUS 1]
[TENSE PRESENT]
[GNPH 1p]

Input Word: pa’n
Lexical Form: pa’ + en
Category: VERB

F.structure;

[PRED get A
[TENSE PRESENT]
[GNPH 2/3p~2h.

Input Word: pa’c/chilen
Lexical Form: pa’ 4 chilen
Category: VERB

F-structure:

{PRED get]
[TENSE PAST-PROG]
[GNPH 2/3p-2h]

171

- B R T B e T] LE LT T P N e et o e - - -

Input Word: pa’oa’c/chilen
Lexical Form: pa’ + a’ + chilen
Category: VERB

F-structure:

PRED get]
- [cAUsS | -
"TENSE PAST-PROG]

[GNPH 2/3p-2h]

Input Word: s’uc/chilen
Lexical Form: s’u + chilen

Category: VERB
F-structure:

{PRED lay]
[TENSE PAST-PROG]
[GNPH 2/3p-2h]

Input Word: s’oa’c/chilen
Lexical Form: s’'u -+ a’ + chilen
Category: VERDB

IF-structure:

[PRED lay]
[CAUS 1]
[TENSE - PAST-PROG]
[GNPH 2/3p~2h]

Input Word: hayechili
Lexical Form: ha 4 Echili

Category: VERB
F-Structure:

[PRED be]
[TENSE PAST-PERF]

[GNPH 2p-0h]
Input Word: {\bf kheyechila’m} \\

172

S

A T—r— —r = —r

Lexical Form: {\bf kha’} + {\bf Echila’m} \\
Category: VERB\\
F-structure:\begin{verbatim}

[PRED eat _
[TENSE PAST-PERF-
({GNPH ip -

I Input Word: kha’iyechila’m
Lexical Form: kha? 4+ a’ 4+ Echila'm
Category: VERB |

F-structure;

[PRED = eat]
[caUS = 4)
[TENSE PAST-PERF]
[GNPH 1p]

Input Word: bhegechen
Lexical Form: bha’g + Echen
Category: VERB |

F-structure:

[PRED flee]
[TENSE PERF~PRES]
[GNPH 2/3p-2h]

Input Word; pod’.e
Lexical Form: pud’, + e
Category: VERDB
P-structure:

[PRED burn]
[TENSE PRESENT]
[GNPH 3p-ih]

Input Word: pod’.a’y
Lexical Form: pud’. 4+ a’ + e
Category: VERB

F-structure:

173

[PRED burn 1
[CAUS 1 Z
LTENSE PRESENT |
[GNPH 3p-th

Input Word: ca’iten

Lexical Form: ca’h 4 ten

Category: VERB

F-structure:

LPRED want . |
[TENSE HABLiT]
[GNPH 2/3p-2h)

Input Word: ga’o
Lexical Form: ga’h + a
Category: VERB
F-structure;

LPRED sing]
(TENSE PRESENT]
[GNPH 2p-1h]

Input Word: diye
Lexical Form: di 4+ E

F-structure:

[PRED give]
[TENSE - CONTINF]

Input Word: diiye

Lexical Form: d1 + a’ + E

F-structgre:

[PRED give
[CAUS 1 _
[TENSE = CONTINF;

174

Input Word: y.a’c/chilen
Lexical Form: y.a’ 4 chilen
Category: VERB

F-structure;

LPRED go]
[TENSE PAST-PROG]
- [GNPH 2/3p-2h]

Input Word: giyechilen
Lexical Form: y.a' 4 Echilen
Category: VERB

F-structure:

[PRED go 1
[TENSE PAST-PERF]
[GNPH 2-3pHon

175

Appendix C

The Unification Function

First we talk about unification of two GLFGObjects. Clearly, two unifiable objects

must be of identical type. Thus, for example, an AtomObject can not be unified
with an FStructObject. We propose a overloadable member function unify for
GLFGObject. The return value of the function is a pointer to GLFGObject. Thus

we have:
virtual GLFGObject *unify(GLFGObject)

as a top level member function of GLFGObject,

Every sub-class of GLFGObject overloads the above function to reflect the unified
objects. Non-unifiable objects return NULL. Note that the unified object is entirely
new GLFGObject, which is neither same (semantically) as the this object or the
parameter GLFGObject, It is thus the duty of the caller function to retrieve the

unified object and destroy the objects unified,

Top level access to the unification mechanism is through a global function described
in the following header:

int unify(Holder *hi, Holder *h2);

We now provide a pseudo-code for the above function.

int unify(Holder *hi, Holder *h2)
{
if (pl == p2) return TRUE;
GLFGObject *ol = object pointed by hi,
*02 = object pointed by h2;
if (o1==02) return TRUE;

176

// 1t pointed objects of two holders are same, they are already unified.

if (hi is free, h2 free or holds something) {
destroy the HolderList member of hi;
make the holderlList member of hi same as that of h2;
add hl in HolderList member of h2;

make hil point to what ever h2 points to,
return TRUE;

+
else if (h2 is free, hi is holds something) {
destroy the HolderList member of h2;
make the holderList member of h2 same as that of hi;
add h2 in HolderList member of hi;
make h2 point to what ever hl points to;
return TRUE;
F
else { // Both hi and h2 holds something
GLFGObject *g = (held object of hi)->(held object of h2);
it (1g) { // the held objects are not unifiable
return FALSE;

}
// g points to unified object

destroy held object of hi;
make held object of hl to be g;

destroy held objects of all holders contained in
HoldexList collection of h2;

make held objects of all holders contained in
HolderList collection of h2 to be g;

merge to HolderList objects of hi and h2;

return TRUE;

}
¥

177

