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Introduction B

Based on the canonical commutation relations between the creation, con-
servation ( number ) and annihilation operators of a free field on a boson Fock
space, Hudson and Parthasarathy [21] have developed a quantum stochastic
calculus, of which a detailed exposition may be found in Meyer [30] and
Parthasarathy [38]. In order to handle the problem of dilating uniformly
continuous quantum dynamical semigroups in the algebra of all bouded up—.
‘erators in a Hilbert space, Hudson and Parthasarathy (22] had already noted
the importance of extending their calculus when an infinite number of in-
dependent crea,tmn and annihilation processes are used as integrators. Also,
any attempt to extend the results of Meyer [29] and Parthasarathy and Sinha
(37] on the realisation of classical Markov processes in the Accardi-Frigerio-
Lewis’s framework of quantum stochastic processes involves the investigation
of quantum stochastic differential equations { q.s.d.e ’s ) with infinite degrees

of freedom.

The aim of the present thesis is to present a brief exposition of the Hudson-
Parthasarathy calculus in Fock space when a possibly infinite number of basic
integrators are involved and apply it to the study of the following two basic
‘problems: . . |
(a) Under what conditions on Z = {Z},' t,7 € 8} the following quantum
stochastic differential equation | |

dV(t) = S V@) ZIAR), v(O)=T (0.1)

kES

where AL(t), i, ] €T =8U {0} are the basic 1ntegra,tors in the boson-Fock
space T'(IL*(IR4,K)) with respect to an orthonormal basis {e;, i € S} for
the Hilbert space K and Z = {Z}, i,j € S} is a family of densely defined
operators in the initial Hilbert space Hp, admits a contractive, isometric, co-
isometric or unitary operator valued adapted process V = {V({), t > 0} as
'~ a solution ? -

(b) Given a fannly O = {6, 14,7€8}of structure maps on an initial *-algebra
Ao C B(Hy) under what conditions, a quantum stochastic flow J = (T £
0} in the sense of Evans and Hudson [12] exists and satisfies a q.s.d.e of the
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form:

T(a) = 3, di() = 3. J8i(x))dAi(2) (0.2)
{1€S
on He®e(M) for all z € Ay 7 |

Here is a brief summary of our results:

In Theorem 2.12 of Section 2 the first problem is given a complete so-

lution in the form of necessary and sufficient conditions when the family
Z = {Z}, i,j € S} satisfies the inequalities

SUIZEFIP + 102 FIP) < el £

€S
for all f € Ho,7 € S, ¢; being a positive constants. This generalises
and sharpens the previously known results of Hudson- Parthasarathy [21],
Mohari-Sinha [33] and Mohari-Parthasarathy [31]. In particular we prove
that (0.1) admits a unique contractive solution if and only if Z € Z5 where

Z5 =12, (Z+(Z) + 3(ZE) 25 Yijes < 0, for all ' €T, #8' < o0},
kes |

This class plays an important role in dealing with (0.1), in the spirit of semi-
group theory developed as in Yosida [39), for unbounded dissipative coeffi-
cients { See Section 5 ). As in Mohari-Parthasarathy [32] the role of Journé's
time reversal principle ( See Theorem 2.11 ) in the proof seems to be of special
interest.

When V = {V(t), t > 0} is the unitary solution in the discussion above
the quantum stochastic process ji{z) = V({)(z @ I)V(1)*, t 2 0 satisfies (0.2)
for a family of bounded structure maps £ = {Ej-, 3,7 € 8} with B(Hy) as the

initial algebra. The expressions for the L} are presented in order to motivate -

applications to classical Markov processes in Section 3.

In Section 3, following Mohari-Sinha [33] we present a theory for quantum
stochastic ( QS ) flows with countably infinite degrees of freedom for the noise
when © = {6, 7,7 € 8} is a family of bounded srtructure maps obeying the
regularity conditions |

SY16i(2) fIF < S ll=Di £

€S | 1€J; -
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> IIDifIP < oI

ieJ;
for all x € Ay, f € Hp where for each j € §, J; is 'a countable index set and .
{.D;, i € J;} s a family of bounded operators in Hy. As in Parthasarathy and
Sinha [37] we show that the family {Ji(z), = € Ag, ¢ > 0} is commutative
whenever 4 is abelian. This enables us to conclude that in the vacuum
state of the Fock space, {J;, t 2 0} describes a classical Markov process with
the bounded infinitesimal generator 3. Finally we apply this theory to show
that continuous time Markov chains with countablely many state space can
be understood as commitative @S flows on the abelian algebra of functions
on the state space. This extends the previous studies by Meyer [29] and

Parthasarathy and Sinha [37].

In Section 4, following Mohari [34] we consider (0.1) for the class of un-
bounded coefficients Z which admits a sequence of regular elements Z(n) €
Z7, n > 1 such that Zi(n)f — Zif, i,j € S asn — oo for all f € D,
where D is a dense linear manifold in Hy. We exploit Frigerio’s equicontinu-
ity method as outlined in Fagnola {13] to ensure the existence of a contractive
operator valued process satisfying (0.1) with Z as its coefficients. The ap-
proximating sequence of evolutions being non-commutative, this method only
guarantees the existence of a contractive solution as a ‘weak operator imit’
of a subsequence of the evolutions associated with Z(n), n > 1. Such a con-
struction does not help in eitanlining the analytical properties of the limiting
contractive processes. In this context the analyticity of exp_onential vectors
( Wiener chaos expansion ) plays an important role in setting up an induc-
tive procedure to get a sufficient condition for the solution to be unique or
isometric. Analysing the dual process we also obtain a sufficient condition '
for the evolution to be co-isometric. It 15 worth noting that the condition
for the evolution to be isometric ( co-isometric ) is similar to that of Feller’s
resolvent condition for the minimal process, associated with a Kolmogorov's
differential equation, to be faithful. In Section § these results are further

strengthened.

In the spirit of _s‘émigroup theory developed as in Yosida (39] we build, in



Section 5, a theory for (0.1) whenever the entries in Z satisfy the following:

i,j €S8,

S;-—-b'; ,
. : | Z ) 1 E S&j = 0,
4=y =78t i=0,j€8,
- kes o
Yy , t=0=73

where Y is the geheratnr.of a contractive Cy semigroup and {Z;, k € S} isa
family of densely defined operators such that D(Z;) D D(Y) and

<LHYF> +<Yff> +), <Zuf,Z:f >L0,f € D(Y) (0.3)
| k€S

and § = (( S} )) is a contractive operator in Ho ® [2(S) such that'S}(’D) C
D(Z}) where D is a corefor Y. In the spirit of Yosida'’s approximation method
[10] we exihibit an approximating family Z()), A > 0 of regular dissipative
elements which enables us to exploit the theory developed in Section 4.

In this context we also deal with the dilation problem associated with
quantum mechanical Fokker-Planck equation written formally as

p(0) = p, p(t) =Y p(t) + p(1)Y" "+§ka(t)zz - (04)
subject to (0.3) for p € T, the Banach space of all trace class operators
in H,. Davies [9] employed a special perturbation method outlined in Kato
[25] to prove the existence of the minimal semigroup o™" such that p(t) =
o"(p) is a solution for (0.3)-(0.4). Here the dual semigroup 7™ = (¢™")*
on B(Hy) has been realised as the vacumm expectation of a (dissipative)
- quantum stochastic process, In this context the' stability of Zgp under a
specific perturbation plays a crucial role in the aﬁproxima,tion procedure, A
necessary and sufficient condition for the process to be conservative is also
obtained. In such a case the ‘Feller’s resolvent condition ’ described in Section

4 is also necessary for the evolution to be isometric.

As an illustration of the general theory of dilations we conclude our ex-

position with an investigation of Markov processes with countablely many

states.

vi



In Section 7 we construct a class of non-commutative operator valued
p.mcesses, on the algebra of functions on state space, which dilates Feller’s
miﬂima.l solution in Fock space. Feller's condition is still necessary and suffi-
cient for the dilation to be a conservative quantum stochastic proéess in the
sense of [2]. This extends the previous studies by Fagnola [14]. .

In Section 8, we continue_.thé programme begim in Meyer [29]. In a
series of papers ( Parthasarathy-Sinha [37), Mohari-Sinha [33] ) it has been
shown how to realise a classical Markov process with countable state space
as a commutative QS flow. But it was restricted ofily to processes with
‘bounded Markov generators. Here we consider the general si'tu,a.ticn_ and
realise Feller's minimal solution as a commutative QS flow. We introduce a
special seqtience of commutative QS flows which approximates the induced

QS flow on a suitable algebra in the strong operator topology. A necessary

and sufficient condition for the flow to be conservative is also obtained. A
notion of quantum exit stop time is introduced. It is a commutative a.d'a,pted
family of strongly continuous increasing projections on Fock space. Feller’s
exit stop time is realised as the vacuum expectation of these projections,
Finally imposing a weak hypothesis on the Markov generator, we show that
the dilation constructed by the apprximation procedure satisfies the diffusion

equation (0.2) on the abelian algebra of finitely supported functions on the
~ state space. This section is adapted from Mohari [34).

Vil



1 Notations and Preliminaries

All the Hilbert spaces that appear here are assumed to be complex and sep-
arable with inner product < -,- > linear in the second variable. For any
Hilbert space H, a symmetric Fock Bﬁﬁce over .H is a pa._if (T(H),e), where |
I'(H) is a Hilbert space and e : H — T'(H) satisfies the following;

(i) e(H), the span of {e(u),u € H}, is dense in I'(H);

(i) < e(u),e(v) >=ezp{ < u,v >). .

The ‘elements e(u), u € H are called the éxpon:antial or coherent
vectors . The family {e{u) : u € M} is total for any dense linear manifold
M in H and linearly independent in I'(H). So bpera,tors may be defined
densely on I"(H) by giving their action on each e(u), u € M. If (I'(H),¢')
is another Fock space over H then I'(H) and I''( H) are naturally isomorphic
under exchange of exponential vectors e(u) — e'(u), u € H. Here in the
follnwing paragraph we outline Fock’s construction of symmetric Fock space
over H, , o '

For each n > 1 we define a projectioﬁ P, on H @ H®- -®H, n-fold by

~ linear extension of
Po(u; ®- - Quy,) = E
i
where the sum ranges over all permutations # of the set {1,2,..n}. Put

T(H)=C® Y S(H®H- g™ H)

n>l -

Define e : H — I'(H) by
E(H) = @n?_uu(n)
~where -

u(“_) — - - b
| T 5 n21



For u,v € H we have

<efu)ev) > = Y <ul® V>
n>0

— E 1
30 nl
= exp(< u,v >).

(< u,v >-')n

For any ux € H, 1 < k < n the map (21,22,",2,) — e(Xicken ZEUk) 18
analytic, Hence ,

d
2 e+ 20),uq

exists for any u,v € H. In particular it can be shown that e(u), u € H span

a dense subspace of I'(H), so that I'(H) is a Fock space over H.

We also denote by B(H) the C* algebra of all bounded linear operators in
H. When C is a bounded operator on H and u is an element of H, the second
qﬁantized I'(C) of C and the Weyl operator W(u) are determined uniquely
by the relations:

I{C)e(v) = ¢(Cv) _
Wwe(v) = exp{—lull’~ < v >Jeu+0)

for all v € H. The von Neumann algﬁbra. generated by the family {W(u), u €
M} is B(H), whenever M is a dense subspace of H. |

The gauge, creation and annihilation operators [21] A(4), a'(u), a(u)
are defined on ¢(H) by the actions

d . .,
/\(A)e(ﬂ) — a;e(e AU)]umﬂ!

a'(u)e(v) %e(v . 4 au)|q=uﬂ,

a(u)e(v) .

_ where A € B(H)) and u € H.

i

<u,v>el), veH



3

Suppose now that I'(H) is a Fock space over H where H = H,; @ H,. Let
I'(H}) be the closure of the span of {e(u)}, u € H}, & = 1,2, Then I'(Hy)
is a Fock space over Hy, k = 1,2. For u,v € H with u = u; + uy, v =

vy -+ Vg, Uk, Vi - Hk, k= 1,'2, we have

< elur) ® e(ﬁz), e(v1) @ e(vg) > = < e(ul),c(vl) > < e(ug),e(vy) >
' = exp( < Uy, vy >lezp(< ug, g >)

= exp(< u,v >)

so that I'(H;) ® I‘(H 2) is another Fock space over H with exponential map

u — e(u;) ® e(uy). Thus we have
D(H) @ I'(H,) = T(H)

In future we shall frequently use this isomormhism, interchanging I'(H;) ® .
['(Ha) and T'(H{ @ H,) without any comment. |

Fix two Hilbert spaces Ho and K and write L4y T4y for I'(H) when H =
LA(I,K) and I = IR4,|s,t) respectively. Set '

g’

H —_ H{}@I‘.'.,Ef] ZHU @I‘(},t,.ﬁ-[t — Ptlm .

we have the deccmpositidn H = I;Tﬂ. ® fIIt. The Hilbert space g.*l will be
identified with the subspace Hy ® &, of H where @ is the vacuiim vector in
Hy. Every operator defined on a tensorial factor of H will bé identified with
its canonical ampliation to the whole space and denoted by the same symbol.

" Fix dense linear manifolds D in #, and M in L*(R,,K). The algebraic
tensor product DQe(M) is dense in A , where (M) is the linear manifold
| . generated by the vectors e(u) : u € M . .

Definition 1.1 [21]: A family X = {X(t) : ¢ 2 0} of operators in H is
called an adapied process with respect to (D, M)if



() D(X(t) 2 Dge(M); . o

(b) X(t)fe(uxpy) € Hy and X(t)fe(s) = {X(t)fe(uxp,))e(uxf,o)) for
allt >0, f€D,ue M. |

It is said to be regular, if in addition, the map t — X(1)fe(u) from

gy

IR, into H is continuous for each f € D,u € M. An adapted process
is called bounded, contraclive, tsomeiric, co-isometric or unitary according

~ as the operators X(t) are bounded, contractive, isometric, co-isometric or

unitary for every t > 0.

For 0 < s <t denote by d,,t the von-Neumann subalgebra of a = B(T',)

given by
{W(u) : supp u C [s,]}

This is simply Ip, ® B([s1) ® It oo. The family {N,: = ag® a,+;0 < s < t}
forms a filtration of the von-Neumann algebra N := gy @ a where gy =
- B(Hp). Vacuum conditional expectations {JF,;:0 < s <t} on each of these

subalgebras exis_t- and are characterized by

E, 4B ® W(u) =< ¢(0), W (uxpoge)e(0) > B ® W(uxpss)
where [s._;t]." = IR \[s,?]. They satisfy the relations: '
. Es,tOEs’.t' = Ea,t -

where [s,t] C {¢',1']. We also write IE, for IE, ,.

Definition 1.2 [35]: A (D, M)- adapted process X = {X(¢) : ¢t > 0} is said

to be a martingale if

< fe(uxpa), X (t)ge(vxp,g) >=< fe(uxjo), X (s)ge(vxoq) >
forall 0 € 3 < t,.f,_g € D, u,v € M. A bounded martingale is said to be

regular if there is a Radon measure y on R+ for which

11X(2) - X ()P + X (2)* = X () WP < e, EDIDIP



- whenever 0 K s<tand ¢y €@, ® ‘I‘[,[ |

We fix an orthonormal basis {e; : i € §} in K and set E} = |e; >< ¢ :
i,j € §. The basic quantum stochastic processes {A} :1,j € § := § U {0})
are defined in H by I

I®A\(xo ® BY) ; i,j€8
Li®a(xpy®e) ; 1€8,7=0
Io®al(xpy®e;) ; t=07€8
t1 | s t=0=s

These basic processes are (Hy,K) - adapted and increaments in disjoint in-

terval commute for any pair of the basic processes. Except AJ these are

martingale,

We denote by u/(s) =< e;,u(s) >,ui(s) = u(s) for j € § and uy(s) =
u%(s) = 1. Choose M = {u € H : v’(-) = 0 for all but finitely many j € S}
and set N(u) = {j;u?(+) # 0}. So #N(u) < oo for u € M, |

Definition 1.3: An adapted process L = {L(s), s 2 0} is called simple if
it is piecewise constant, taking the following form:

L(s) == Z L(Sk)X[ﬂ.#Hl)(t)
0<€k<o0

where 0 = sy < §; < 93 < ... € 85, ~» 00, We shall denote by ED(D,M) the
class of simple (D, M)- adapted pracessés.

For L € IL%S, M), we define, for t > 0 the quantum stochastic integral .
by o . '

| . | |

[ T(s)AA(s) = ToL(sw)(AE A sk41) — Al A si))

| - k20 | |
where A represents any one of the basic processes and t A s is the minimam



of t and s. For any simple adapted process L}, i,7 €S we set

Asg(8) = [ Ti(s)aAi(s)

Lemma 1.4 : Fix any pair L}, M| € L%D, M) ,where i,5,I,k € §. Then
fort >0, f,g €D, u,v € K the following hold: '

< fe(u), Ay(t)ge(v) >= [ ‘dsui(s)i(s) < fe(u), Lifs)ge(v) >;  (1.1)

< ALj_(t)fe(u) , AMi(t)ge(p) >= ‘/;{dsuk(s)uf(s) < AL;*;(&)_fe(.u), L¥(s)ge(v) >
b dsui(a)oi(s) < Lifs)fe(u) Argp (s)ge(v) >

+ bjdsup(s)vi(s) < Li(s)fe(u), Lf(s)ge(v) >}; o (1.2)
where
& 0 i I=0ori=0
| 6 = otherwise;
and | . | |
Az (0)f e < 2exp( () [ ILi()fe(w)lPan(s) (1)
where .

wlt)= [ (1+]u(s)[?)ds.

Proof : For the proof of this fundamental Lemma in bosonic calculus devel-
oped in -Hudson-PaItha,sé.rathy [21] the reader is refered Parthasathy [38]. In
these notational framework it is available in Evans [11], n

_. Quantum Ito’s formula (1.2) can be expressed as:
dAdAF = BiaAr (1.4)

foralli,j kle8.



Prdposition 1.5 : [21] Let L = {L(.s), s > 0} be a (D, M) - adapted

measurable process satmfylng the following:

[ 11L(s) few)Pdba(s) < oo )

for all f € D,u € M. Then there exists a sequence of elements L") ¢
IL°(D, M) such that

t
() it [ ILE(s) () = ) ()} fe(u)| Pva(s) = 0
(it) There exists a unique regular (D, M) - adapted Aj, process such that

ity 00| |[[AL(2) — Apm (2)] fe(u)l] = O

where A is one of the basic processes;
(iii) For any pair of process L% and M satisfying (1.4) the unique process
Ay and Apgr defined as in (ii) satisfy (1.1),(1.2) and (1.3).
Proof: See Hudson-Parthasarathy [21],

In the present exposition we shall deal with quantum stochastic calcu-
lus where countably many noise components. are present. To this end we

introduce the following class of processes.

Definition 1.6 : (21, '33] = {L}(s) : i,§ € 8} is said to be a (D, M)
adapted square sntegrable fa.nnly of processes if each L‘ is (D, .M ) adapted
,measurable. &nd for each ] €S, feDuecMandt>0
> / |i(s) fe(u)|Pdva(s) < c0. (L)
€S

We shall denote by IL(D, M) the class of all such square mtegrable fami-
lies. Note that LD, M) Cc L(D,M).

For further details on these definitions and qua,ﬁtum Ito’s formula the
reader is refered to Hudson—Parthasarathy 21], Evans [11] and Mohan Sinha

- [33]. A complete account is available in Parthasarathy [38).



Theorem 1.7 : 21, 33] Suppose L € L(D, M). Then
| b
X(t)= 3 [ Li(s)dai(s)
| f..’fﬁg ¢ :
exists in the strong sense on D@e(M) and defines a regular adapted process
satisfying for f,g € D and u,v € M

< fe(u), X(t)ge(v) >= > /[: dsu;(s)v'(s) < fe(u),Li-(s)ge(v)ﬁ (1.7)

JES
IXOF@IF <2 ep () T [ 1L e@lPdnls) (1)
1ESFEN(u)
Moreover for a regular process L, X (1) = Oforallt > 0if and only if Li(t) =0
for all £ > 0.
If M is another element in JL(D, M) and

V()= 3 [ Mis)dAi(s)
1 JES

then

< Y(t)fe(u), X (t)ge(v) >= E_*f; dsui(s)v’(s){< Y (s)fe(u), Li(s)g

1 JES

e(v) > + < Mi(s)fe(u), X(s)ge(v) > +:LS < Mf(3)fe(u), Li(s)ge(v) >}
o (1.9)

Proof: Fix any iricreasing sequence S*, n > 1 of subsets of & such that

#8" < 00 and U,»18™ = S, Also set S" i= 8™ U 0. Define the sequence of

regular (D, M) -adapted processes X,,, ¥,; n > 1 by

Xut)= [ Ei)anits),

V()= 5 [ Mi)dnis).

ijes"



on ﬂ@s(M) So we have

< fe(u), Xn(t ge(v) >= / Y u(s)v'(s) < fe(u), L (s)ge(v) > ds,
e (1.10)

< Xn(t) fe(u), Ya(t)ge(v) > | | |
= [ 2 <Xa()fe(w), Mi(s)ge(v) > ui(s)vi(s)ds
+£" 2 < Lj-(s)fe(u),}’n(s)ge(u) > uj(s)vi(s)ds

1JES

+/ 33 -(L'(s)fe(u) Mi(s)ge(v) > uj(s)vk(s)ds (1.11)

‘ES"JkES
foreachn 20, f,g € D, u,v € M. Now taking ¥, =X,, ¢=f, v=uin
(1.7) we have for N(u) C S"

1 Xa(t) fe(u)l)?

+/ 2 2 <L’(3 fe(u), Li(s) fe(u) > uJ(.s)uk(s)d.s .

€S j keN(u)

= [{2Re 3 <wi(e)Xa(s)felw), T w(s)Eis)felw) >

{€N(u) JEN{u)

+ 311 Y wi(s)Li(s)fe(u)||*}ds

{eS™ jEN(u]

/{2 > () Xa(s)fel ] 2 w(s)Eis)fe(e)

{EN(u) JEN(u}

+ 2211 22 w(s)Li(s)fe(u)l[*}ds

fES" JEN{u)

JACSCIECTEED o o= O G LAO!

JEN (u) tES

where Cauchy%Schwartz inequality has been used to get the inequ&h'ties. By



10

Gronwall mequality we conclude that
IXa®f el < 260 [ 5 S |ILiCs)fe(w)|Ydvals).  (112)
JEN(u)ied"

Since for n > m

d(Xo~Xm)= Y, LidA
IEST\E

- the same argument shows that for all n > m and N(u) C &

HXa(2) — X))} fe(w)]
<2 [ 3 ||Li() e(w)|Ydvas).

JeN(u) ,e.s —_

Define the (D, M) - adapted process X by

X(s)fe(u) = lim X,(s)fe(u);

n—og

Also observe that for 0 < s <1

1X(@) = X(s)fe(w]* < 2¢O 5 [* SLi(s) Fe(w)|Fduals)

JEN(u) 1€S

So X is a regular (D, M) -adapted process. Now taking limit n — oo in
(1.10), (1.11) and (1.12) we conclude (1.7), (1.8) and (1.9). That for regular
L, X(t) =0, t > 0 implies that L = 0 is immediate from (1.7). 'This

completes the proof. | |

If
X(t) = X(0) + / > Li(s)dAi(s)

| {,jES
for all £ > 0 we write

dX = Y~ Li(s)dAi(s). -

t,J€S

Following elementary lemmas will play an importent role in dealing with

countably many noise components.
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. Lemma 1.8 Let {4:},k > 1 be bounded operators in B(h) such that for

some constant ¢ > 0

_ Zk:IIkaH2 < | fII

holds for each f € H. Then Y "L} L, converges in strong operator topology.

k
The same is true for their ampliations in H ® X, where X is a Hilbert space.

ProofLet M,, = E A7 A;. Then {M,} is an increasing sequence of positive
1<k<n
operators. So it suffices to show that M = w.lim,_.M, exists and {|M]] < c.

For any f,g € H, n 2 m we have

(< (Ma=Ma)g>P < {3 1Al l14rgll}?

m+1<k<n
< XY HAFIPH X AP}
m+1<k<n m+1<k<n

Also observe that ||M;]| € ¢ for all n > 1. By uniform boundedness principle

we conclude the required results. To prove the second part observe that

E;,HA;: ® 19)* =< %b:{(zk:AIAk) ® Ity >< |IM] {1}

Lemma 1.9 Let {Ax},{Bx},k > 1 be bounded operators in ‘H such that
the sums ¥, A} Ax and 3 B} B} converge strongly. Then Y, Ay Bx converges
strongly. | - .

Proof: By our hypothesis we have for each f € H and some positive constant

Sl14kfIP < ellfIP.

k21
Hence foralll<m<n f,geH

(< £, S ABg> [ < (314l IBagll)?

k=m k= |
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< (DUAFAD 'S |1BrglP

k>1 k=m

< ellfIF 3 1Bl

k=m
Taking superemum over all unit vectors f we have
N AiBigl* < e 30 || Brglf?
k=m k=m
and the right hand side tends to 0 as m,n — co. - | |

Notes and Remarks:

‘This section is a brief account of the basic tools of boson Fock stochastic

integration theory, based on Hudson-Parthasarathy [21]. This exposition is
based on the notation of Evans {11} and adapted from Mohari-Sinha [33). For

further details we refer to Parthasarathy [38].



2 A class of quantum stochastic differential

equations with bounded coeflicients:

Denote by Zp the class of elements L = (L} € B(Hy), 4,7 € S) such that for

each 7 € S there exists non-negative constant ( depending on L) ¢;, satisfying

2L P < S FI2 (2.1)

icS

for all f € Ho.

Theorem 2,1 (21,33] : Suppose L € Zg, Then there exists a unique regular
(Ho, M )-adapted process X = {X(¢), t 2 0} satisfying
dX = 3 LidAN ()X (L), X(0)=Xo® I (2.2)
f,jES |

on Hn@_&(M),WhEI‘B .XQ - B(H{})

Proof : First we set up the iterative scheme of regular (Hy, M) -adapted

Processes :
Xﬁ_l(t) = ()
t * . |
Xalt) = Xo®I+ [ 3 LiXna(s)dAi(s)n 2 1. (2.3)

fjES
Our aim is to show that for each n > 0, X, is well defined, {L}X,, 1,5 €
S} € IL{Hg, M) and for any fixed T > 0

1X(t) = XD F el < LAY ey fieequip0 < ¢ < 7
' | (2.4)

where

Bu(T) =2 3 o}, f € Ho,ue M.
JEN(u)
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For n = 0 these are immediate. Now suppose that these are verfied for

0 < n € k. By Lamma 1.5 and (2.4), X, is well defined and from (1.4) in
Theorem 1.4 we get |

[{Xeea(t) = Xe(®)) fe(w)]]
N(u} 4 _
< 263 [PNLHXuls) = Xies() felw)l ()

i>0

which by (2.1), Lemma 1.8 and induction hypothesis implies

[{Xk41(2) — Xi(£)} fe(u)|]?

N(u)

< 20 Y0 [ [{Xu(s) = Xoa(s)}fe(w)lPdas)
§=0
§ T k41
< Bl I IAIP eI 0 S £ < .

This proves that the iterative scheme (2.3) is well defined and (2.4) holds
for all n . In particular, X(t)fe{u) = s.limy,_oXn(t)fe(u) exists for all
f € Hy,u € M and defines a (Hy, M) -adapted process. From (2.4) we have
the following inequalities: '

1X () fe(w)]] < alu, TIXI IIf] C (2.5)

where

N

n2>0
These in particular imply that {L{X(t), ,5 € S} € L{He,M). Each X,
being a regular process, (2.5) implies that X is also a regular process. Now
for any f € Ho,u € M,n > 0 by triangle inequality and (1.4) we have
. . ' t - ‘ -
CIXQ) - Xo®I- [ 3 LidAl(s)X(s)fe(u)lf
| {j€ES |

< 2(/[[X(2) = Xn(OM eI+ AulT) [ 1IX(5) = Xal)Few) Pa(s)}.
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That X satisfies (2.2) is immediate from the above inequality once we take

hmit as n — o00.

Let X' be another solution of (2.2) with X'(0) = Xo ® 1. By (1.4) in
Theorem 1.7 and Lemma 1.8 we have forall 0 < ¢t < T\, f € Ho,u € M

(X)) = XS < uT) [ 10X(6) = X () fe(w)| (o)
By Gronwall inequality we conclude the required identity. - B

Before we procced for the next result we introduce some more terminology.

Denote by 6, the right shift on L*(IR,,K) so that for all £ > 0

u(m T t) y & 2 t:
(Geu)(z) =
0 , 0<z <,

Definition 2.2: [1,19,32] A family X = {X(s,1),0 < s < ¢ < o0} of bounded

operators in 7 is said to be a right cocycle if the following are fulfilled.
(a)X (s, ) is a regular (Hy, M)-adapted process in |3, 0o) for every s;
(b)For.a.ll{JgrSsgt(m |

X(s,8) =1, X(r,t) = X(s,0)X(r,s); (2.6
(c)Forallr 20,0 Ls<t<
I‘(ﬂ:)X(s +r,t+r)(6,) = X(s,t). (2.7)

X is said to be a strongly continuous right cocycle if the map (s,t) —
X(s,t) is continuous in strong operator topology. _
A family V = {V(s,1),0 < s < t < o0} of bounded opera.fors in H is
called a left cocycle if their adjoints {V(s,t)*,ﬂ <s<t< oo} constitute a _

‘night cocycle.
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For any bounded operator A in H,['(8;)AT(6]) takes Ho ® &4 ® Hy; into
itself. Denote by I'(§;)AT(4}) the canonical ampliation to the whole space

bl

H.

 An adapted bounded process V = {V(t) : ¢ > 0} is said to be a bar-cocycle
123] if for all 5,2 > 0

V(t+s)=V({)I'(6:)V(s)T'(67) (2.8)

For a left cocycle V = {V(s,1),0 < s £t < oo} the family {V(O, t),0 <
t < oo} is a bar-cocycle. Conversely if V = {V(¢), t > 0} is a bar-cﬁcycle
then V(s,t) 1= L(8,)V({T(6?), 0 < s <1 < oo is a left cocycle.. It is worth
noting that 7 = {n(t) := I - V({)V(t)", t > 0} is an increaéing_ family of

positive operators whenever V is a contractive bar-cocycle.
We quote the following theorem without proof.

Theorem 2.3 [1,19]: Suppose V = {V(i) : t > 0} is a strongly continuous
contractive bar-cocycle. Then

(i} there exists a stronly continuous one parameter contraction semigroup

P = {P, t 20 in Ho such that
P, = Eﬂ[v(t)]

(ii) there exist two weakly * continuous semigroups 7 = {7y : ¢ 2 0}, 7 = {# :
t > 0} of completely positive contractive maps on B(Hg) such that
7(B)
7i(B)

Eo[V(t)'(B® )V (2)]
Eo[V(t)(B ® N)V(2)"] ' (2.9)

!

{l

for all B € B(H,).
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A bar-cocycle V is said to be regular if P, ¢ > 0 is norm continuous.
Iri such a case the associated family X of operators is called a regular right
cocycle. It is easy to varify that X(s,t) := W(x[,»u) is an unitary regular
right cocycle for any fixed u € IL,(IR;,K). Here our aim is to construct a

class of regular right cocycles.

Proposition 2.4 Suppose L € Zgp. Then for any s > 0 there exists a
unique regular (Ho, M) -adapted process X{s,.) in the time interval [s, c0)
satisfying the q.s.d.e

dX(s,8) = Y LidNX(s,t), X(s,8) =1 (2.10)

(,j€S
on Ho®e(M). Moreover
D89 X (s + r,t +r)'(6,) = X(s,1) (2.11)
on Ho®e(M) forall 0 < s <t < oo andr > 0.

Proof: Fix any s > 0. ‘First part’is nothing but a restatement of Proposition
2.1 with ‘H, and L replaced by Hy ®I', and it’s cannonical ampliation, Since
(2.10) admits a unique solution identity (2.11) follows once we verify that

X'(5,8) =T(0.)X(s+r,t+r)I(F;)
is also a solution of (2.10). From (1.3) and (2.10) we have

fe(u) X'(s,t)ge(v) > — < fe(u),gc(v)
E (6, w)i(T)(Bv) (7) < fe(u) X"(.s +r,1+ r)ge(u) > dr

{

/ E v’ 'r) < fe{u), L'X"(s—l—r t—i-r')ge(v) > dr.

i,j€S

whenever f,g € Hy, u,v € M. Hence we get the required identity. N
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Corollary 2.5 : Consider the family {X(s,1),0 < s <1 < 00} of operators
defined as in Proposition 2.4, If X has a bounded extension then

(1) X is a bounded right cocycle; _

(i1} In such a case the map (s,t) — X(s,t) is continuous in strong operator

topology if and only if

| X (s, 8)|| < ve?t?), forall0 <s <t< oo

for some A > 0,v > 1.

Proof: Note that X(r,-) and X(s,-)X(r,s) are both solutions of (2.10) in the
interval [s, co) with initial value X (r,s). It now follows from the uniqueness
property that X (r,t) = X(s,t)X (r,s) forallt > s > r. Identities {(2.7) follow
from (2.11). This completes the proof of (i).

X being a right cocycle (2.7} implies that

X(s,t) = T(8,)X (0,1 — s)I(6%),0 < s < t < o0.

Also observe that the map £ — I'(#;) is continuous in strong topology. Hence

1t is enough to varify (ii) for s = 0. Also note that (2.6) and (2.7) imply that
X G A )] S X Gyt + )X E)IE= (X @D X @) 82,2220

where X () := X(0,t), t > 0. (ii)‘only if ’: The map ¢t — X(¢) being

continuous in strong topology by uniform boundedness principle we have
Xl <C,0<t <1
for some C' > 1, If [t] is the integer part of ¢ > 0 we conclude that

X ()] < CHH < O = 4
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‘if’; X(0,1),t 2 being a regular process and uniformly bounded on com-
pacta we conclude strong continuity by a standerd method in real analysis.
 This completes the proof of (ii). . »
We set M, = {u € M,u is continuous }. It is evident that ¢(M.) is dense

in F+.

Proposition 2.6 : Consider the family {X(s,?),0 < s £t < o0} of operators
defined as in Proposition 2.4. Then for any fixed u,v € M., there exists a
unique family {N(s,1),0 < s <t < oo} of bounded operators on H, satistying
the following:

(1) < fe(u), X(s,t)ge(v) > = < fyN(s,t)g> forall f,g € h;

(ii) £N(s,t) = LuywyN(s,2),
- (iii) N(s,t) =< e(u),e(v) > {I+
Z./a{h{m{t“(tLﬂ(tn)lﬂ(fn)Lﬂ(in—l),H(fn.—l) a 'Lu(ﬁ):ﬂ(il)dtl_dti“'dtﬂ;}

n=1

(iv) 228 — _N(5,)Ly(s)0(0),

where the series in (iii) converges in operator norm operator topology and

Lyt = Z u,-(t)vj(t)Lj,-.

ijES

Proof: By Proposition 2.4 and (1.3) we have

< fe(u),X(s,t)ge(v) > = < fe(u), ge(v) > +/: < fﬁ(u),LH(T),H(T)X(S,T)_(}E-(U) > dr.

(2.12)
Now consider the ordinary differential equation
ON(s,t
| E(R ) = Lu(t),v(t)N(S:t)at 2 8 (2.13)

with the initial condition N(s,s) =< e(u),e(v) > [ in B(H,). Since
suPysolfLuq)un |l < oo it follows that (2.13) admits a unique bounded solu-

tion given by the infinite series in (111) of the proposition. Now a comparison
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with (2.12) shows that property (i) of the proposition holds. (iv) follows from
(iii) by straightforward differentiation with respect to s. -

Our aim is now to study the quantum stochastic evolution satisfying (2.10)
in detail. To this end we introduce the following notations.

For any L € Zp define the family of bounded linear operators
{L{(X), t,j € S,X € B(H)} on H) by

LiX)= XLi+ (L)X + Y (LF)yx L (2.14)
k€S

where the necessary convergence follows from (2.1) and Lemma 1.9. Observe
that for all 4,7 € §, L{(X)* = £1(X*). In particular for any bounded self-
adjoint operator X, |

Ls(X) = (( £(X) Diges
is a self-adjoint operator on the Hilbert space H @ I,(S"), for any finite subset
S’ of 5. We set

Zz ={L, Ls(I) € 0, forall 8’ C S ,#8' < o0}; -

Zr ={L, Ls(I) 2 0, forall §' C § ,#8' < o0}

and Tg for the class of elements [ € Zp satisfying [,;(I) = ( for all 4,5 € S..
Hence I C Z% C Zgp and Z5 ﬂzﬁ' =Tgr.

 The following Lemma of independent interest will help ué in describing
various classes of operators introduced 1n tlﬁs section. For any bounded semi-

definite operator in a Hilbert space we denote A > 0 if there exists a é > 0
such that A > é1.

Lemma 2.7 : For bounded operators A > 0, B > 0 acting respectively on
Hilbert spaces M and K and C acting from K into H, the bounded self-adjoint

operator

4 O
C* B

D =
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on HB K is p.ositive semi-definite if and only if B > C*A-1C.

Proof : Without loss of generality assume that B > 0, otherwise replace B
by B +¢, € > 0 and adopt a limiting argument. In such a case we claim that
the following statements are equivalent:

(a) D is positive semi-definite;

(b) | < f,Ck > > << f,Af >< k,Bk > forall f€H, k € K;

(c) | < f,LA"YV2CB Y2k > | < ||f]| ||k|| for all f € H, k€ K;

(d) |[A7/2CB~2) < 1,

(e) C*4™1C < B.

Details of the proof are omited. | | _

Corollay 2.8 : Consider bounded self- adjoint operators A, B and (', D

acting as in Lemma 2.6. Then following hold:

(i) If B > 0 then there exists a positive constant A such that the bounded

self-adjoint operator

A4+ )X C

D, =
- O* B-

on H & K is positive definite (> 0);
(1) f D > 0 and Bk = 0 for some k € K then Ck = 0.

Proof: (i): Since B > 0 there exists a § > 0 such that < k, Bk >2> 26||k||
for all & € H. Also ab'servé that < k,C*(A + A)"Ck > < |IC|PII(A +
AU 11k|]2 Since im yoeo]|(4 + A)7Y| = 0, there exist A > 0 such that
A+A—6>0and < k,C*(A+ A= 8)"1Ck >< §||k||* for all k € K. Now
combine these two inequalities to conclude that C*(A + A - 5)"10 < B -4

Hence by Lamma 2.7 we have Dy > §I, This completes the proof of (i),

(ii): For any f € H and scalar A we have

< f,(A+ 1) f > +A <f,_0k:¥+7\'< k,C"f > 2 0.
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If < f,Ck ># 0 choose A = ~nl$L&e2l n > 1. So we have ~2n| < f,Ck >

|+ < f,(A+1)f > 2> 0for all n > 1. Hence < f,Ck >= 0 for all f € H.
This completes the proof of (ii). | Bt

For any fixed I € Zx define operators Sj, 1,7 €S on Hy by

S: = Li+6;

J

and B, S on Hy ® K by

B = Z ,C;(I) & IE; > < le;
HL1ES
E Sj- X |€,‘ > < f:j|

{,JES

S

A simple computﬁtian shows that the family £L(I) = {£}(I), i,j € 8} on H,

takes the following form:

Z(Sf)*’s;_ 5;; y 3&.? €5
kes
(L1)" + Y (SH)"L} , i€8,7=0
Liin=4 _ “Ei‘ . | o
L+ > (L)S; , 1=0,7€8
keS
Li+ (L + S (I Lk | i=0=

kes

It is clear that B = $*S — I. Hence B < 0 if and only if ||S]] < 1. If
L € 2% and $*S = I then by Corollary 2.8 (ii) we have £}(I) =0 whenever
or j € S.

Proposition 2.9: Consider the family X = {X(s,1),0 < s £t < oo} of
operators defined as in Proposition 2.4, The following statements are valid:

(i) X has a contractive extension if and only if I € Zg; In such a case X is

a strongly continuous right cocycle;

(ii) |1 X (s, )¢ 2 ||¥]],0 € s <1 < 00,9 € Ho@e(M) if and only if L € Z§;
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(iii) If B < 0 then X has a strongly continuous bounded extension,;

(iv) If Ls:(I) > 0,for some non empty & C S then X(s,t) is unbounded

whenever t # s;
(v) If B > 0 then X(s,1) is unbounded whenever s £

(vi) X has an isometric extension if and only if L € Z.

Proof: By Proposition 2.4 and (2.10) we have
< X(s,t)fe(u), X(s,t)ge(v) > — < X(s,t")fe(u), X (s,t")ge(v) >

¢ 3 . .
= / < X(s,7)fe(w), Y ui(r)W(r)L{DNX{(s,7)ge(v) > dr, 0 < s <t/ <t
i —
{,j€T
| (2.15)
for all f,¢9 € Hp,u,v € M. For any finitely many vectors fo € Ho, “u€ M
set the vector ¥ 1= ¥, foe( *u)|le( *v)||™!. From (2.15) we have

%II.X(S,,t)i,bll2 =< (s, 1), L(I (s, 1) > (2.16)

where 9(s,t), £(I) are the vectors and bounded operator in the Hilbert space
®BaHy, Hoy = Bje (o) H such that E(I)E = L(I) and (s, 1) = @by, =u($,1)
and 7.(s,%) = @jenqw’ ()X (s,8) fe(u)lle(u)|| ™.
Also observe that FL(I) is positive semi-definite if and only if FL(I) is
so. Hence from (2.16) it is clear that for any fixed s > 0, the map t —
|1 X (s, )]l £ > s is decreasing or increasing according as L € Zzor Le ZE.
(i) ‘if’: Since HoQe(M) is a dense linear manifold in H part’ of (i)
is immediate from (2.16). (i) ‘only if’: By Corollay 2.5 X is a contractive
cocycle. So for any ¥ € H,||X(s,t)%|| < ||1|| whenever 0 < s < t < o0.
Hence || X (s, t')i,lei:f < 0. Now fix any finite set of vectors g, € Ho,a € &,
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where §' C 8, #8' < co. Taking “u € M, in (2.16) where “u’(0) = 6% and

Jga , i az#0,

f, = go— Y fzs , 08, a=0
@ B

~Yfs 5, HOES,a=0
\ g

we have

> < gary L5(Igp >< 0
a,fes’!

Hence L € Z5. Strong continuity follows from Corollay 2.5. This completes -
the proof of (i).

(ii) follows by a similar method employed in (i).

Define for any real scalar A the regular (Hp, M) -adapted process Yy =
{YA(Sst):O Ss8<1i< OG} by

Ya(s,t) = e M7 X (s,¢)

Also observe that Y, is the unique solution for (2.10) where coefficients AL;

are same as that of L} except *Lj = L§— A,

Assume B < 0. By Corollay 2.8 there exists a A < 0 such that *£(I) <0
where AL} are identical to that of L} except ALY = L) + 2). Hence by
(i) conclude that Y has a strongly continuous contrative extension. This

completes the proof of (iii).

Asumme Lg(I) > 0 for some non eﬁlpty S’ C 8. So there exist constants
§ > 0, > 0 such that "CS—,(I) > &1, where "“Ef;- are identical to that of L'}
except 2L = L3242, Hence for any f € Ho,u € M, u; =0, if j § §' (2.15)
and (ii) implies that |

[¥(s, O fe(@)IP 2 HFe(w)l* +6 [ (L+ u(rIP) 1¥(s, ) felu)]
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IV

So in particular Y\ (s,1) fe{u)|]?
I e(w)]]%. Hence |[¥a(s, ) fe(wPlfe(wl? = 1+ 8 f(1 + [[u(r)][2). Since
SUPy e Jo (14 [Ju(7)||?) = oo whenever s # ¢ we conclude that Y(s,t) is an.
unbounded operator whenever s 5 t. This completes the proof of (iv). (v) is

immediate from (iv).

To prove (vi) first observe that Zz N Z% = Ip. Hence (vi) is immediate

from (i} and (ii). I

Now our aim' 1s to dualise the pmﬁess considered in Proposition 2.4, and
arrive at a counter part of Proposition 2.9. To this end we introduce some
more notation. For any LI = (L} : i,j € S) elements in B(H;) we define
L={Li:4,j€8} by

Li = (L), i,j € S.
and set

Zp={L, L€ 2p}, Z¥={L, L € £¥},and Iz = {L, L € Zp}.

We define R;,f > 0 the time reversal operators on IL*(IR,, k) by

(Ryu)(z) = { u(t — ..4:) , 0zt
u(x) , t< &

Definition 2.10 : [23,32] Let X = {X(s5,1),0 < s € t < o0} be a
family of operators defined on a common domain He®e(M) such that for
each s > 0, X(s,1), t > s is a (Hp, M)— adapted process. The family
X = {X(s,1), 0 € s <t < o0} of operators is éa.id to be the dual process {23]
of X if foreach 0< s <t < oo Ho®e(M) € D(X(s,1)*) and the following

equality holds |
' X(s,t) =UX(0,t - s)'U, (2.17)
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on Ho_@_&(M)

It is worth noting that (f}j = L and for each X, X(s,t), t > s is also
a (Ho, M)— adapted process and (X j = X. The following theorem relates

these two i1dentities.

Theorem 2.11 [32] : (Journé’s time reversal principle [23]).

Let L € Zr N Zx. Consider the family {X(s,1),0 < s <t < oo} of
operators defined as in Proposition 2.4. Then the dual process X exists and
for each s 2 0, f(s,j, s £t < oo is a regular (Hy, M) -adapted process

satisfying
dX(s,t)= ) E}dAff(s,t),.f(s, s)=1
ij€s
on HoQRe(M) for t > s.
Moreover X is a right cocycle if and only if X is a right cocycle.

Proof: Let Y = {Y(s,1), 0 < 8 <t < 0o} be the unique solution of (2.10)
as described in Proposition 2.4 with L replaced by LFixT>0, uveM,
and define operators M (s,1),N(s,?), 0 € s <¢ < T in H, by the relations

< f,M(s,t)g> =< X(T-t,T—s)Urfe(u),Urge(v) >, (2.18)

< f,N{s,t)g> =< fe(u),Y(s,t)ge(v) > (2.19)
for all f, ¢ € Hs. By Proposition 2.6 (iv), N(s,t) is a bounded operator and

dN(s,t ~
cgs ) = -N(S,t)Lu(_,),u(,). (2.20)

The definitions of X and Proposition 2.6 (i1) imply through a change of

variables

< M(s,t)g, f> — <ge(v),fe(u)>
= < ge(Rqv), X(T —t,T - s)fe(Rru) > — < ge(v), fe(u) >
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i

./i:a < ge(Rrv), Lyr—ryur-nX(T — t,7)fe(Rru) > dr
= [ < 9(e(Rrv), Lty X (T =4, T = 7)fu(Br) > dr
forall 0 < s < ¢ < T. Thus

< £, M(s,8)g > = =< fe(w),ge(v) > + [ < f,M(r,DEuinoing > dr.

Hence for all 0 € s < £ < T we have

dM(s,t) -
ds — —M(S, t)L‘“(#):”(-’) '

Comparing with (2.20) we conclude that M(s,t) = N(s,t) forall 0 < s <

t < T. Since u,v are arbitrary but subject to being in M, only it follows
that 'YT(s,t) = Y(s,t) on Ho®e(M,) for all 0 < s <t < T, where

Yr(s,t) = Uz X (T — ¢, T — sYUr, 0 < s <t <T. | (2.21)

Since for each 0 < s < ¢ < 00, D(Y(s,1)) 2 HoQe(M) YT(.S., t) has an exten-
sion to Hy®e(M). In particular this also implies that Y does not depend on
T > t. Letting T descend to t we see that X satisfies the required conditions.

Now the second part of the theorem follows from Corollay 2.5. "

Theorem 2.12 : Let L € Zr( Zr. There exists a family X = {X(s,1)},0 <
8 <1 < o} of operators in H such that X(s, ) is a regular (Hy, M)-adapted
process in [3,00) for each s > 0, satisfying
dX(s,t) = 3 LidA}(t)X(s,t), X(s,8) =1 - (2.22)
1,)€S
on DRe(M). Moreover the following hold:

(1) The following statements are equivalent:

(a) X has a contractive extension;

(b) L € Zg;
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(c) L € Z5.
In such a case X is a strongly continuous right cocycle.
(i1) X has an isometric extension if and only if L € Ig;
(iii} X has & co-isometric extension if and only if L € T R

(iv) X has an uﬁitary extension if and only if L € Zg ﬂ.’i}g.

Proof:(i): (a) & (b) is nothing but a restatement of Proposition 2.9 (i). For
(a) ¢ (c) consider the dual process described in Theorem 2.11 and conclude
the result by Proposition 2.9. That X is a strongly continuous right cocycle
follows from Corollay 2.5.

(ii): is nothing but a restatement of Proposition 2.9 (vi). (iii): It follows
from (i) and Theorem 2.11 once we note that X is co-isometric if and only
if X is isometric.

(iii) is immediate from (i) and (ii). n

Remark 2.13 : For L, M € Zr we define M % L = {(M % L)} elements in
B(Ho) by '

(M % L): = L+ (M7y + Y (MF) L}
keS

where the necessary convergence follows from (2.1) and Lemma 1.9. It is
worth noting that (Zg, x) forms an associative non-commutative unital semi-
group with identity 0. Moreover L is an invertible element if and only if S
admits a bounded inverse. Set L for it’s inverse and Y for the regular adapted

process satisfying (2.10) with L as it’s coeflicients we have
<Y (s, 1), X (s, 1) > = < 9,9 >

for all 4,9’ € Hy®e(M). This seems to suggest.that if L e Z} thenY is a

contractive process.
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Proposition 2.14 : Fix I € 25 N Z5 and consider the family of maps
Ji(z) = X(0,%)"z ® 1X(0,1), t 2 0,z € B(Ho) (2.23)

where X is the the contractive operator valued process satisfying (2.22). Then

{7¢(z), t = 0} satisfies the following stochastic differential equation:
difz) = 37 3u(£5(x))dA () (2:24)
ij€S
on Ho®e(M) for all z € B(My), where the family £ = {L}, i,j € S} of

bounded linear maps on B(Hy) are as follows:

>_(57)zS] - Gz , 1,J €8;
kES
(L2 + 3 _(57) = L] , 1€85,7 =0
Li(z) = | k€S (2.25)
e+ Y (Li) xSt , 1=0,j €8;
kES
gLy 4+ (L) x4+ Y (Ly)'zly , i=0=

k€S

Proof : This result follows from quantum Ito’s formula (1.4) once we have
shown that {j;(Li(z)), i,7 € §,t 2 0} € L(Ho, M). We claim that for each
7 € & there exists a constant a; 2 0 such that
SIE IR < allel Pl (2.26)
i€5

for all z € Hy, 1 € H. Since S is a contraction on Hp ® l2(S) we have

IA

2L I < 2{lladllP + 30 < eSTY, (3_SF SH)eSty >)

{€S k.k'es 1€S
2{|lz¢|]*+ < ¢, S* Sy >}

2{ll=1* + |11}
2{llz9|* + D_ =S5 9|} N - (227)

kES

4lz[[*[1o1I".

IA A

AN

IN
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for all 7 = S, veH,z ¢ B(Hy), where ) = @kengf‘n,b. A similar computa-
tion also shows that

SoILH )] < 2{D I =9||* + D |l=Li9])?) (2.28)

ies tES keS

Now combining these two inequalities with the assumption that L € ZzN 25

we conclude (2.26). X(0,1),1 > 0 being a contractive process ,for each j € §

we have

Sl < SIEi=) X0, 04l

< ol ] FIIX(0, )9 < ajll] ¥l
for all ¢ € Ho®e(M),z € B(Ho) This completes the proof. B

Corollay 2.15 : Let Y be the generator of a norm continuous one parameter

contraction semigroup and {Zx, k € §} be a family of bounded operators in

Hy such that

Y +Y"+ 3212 <0 (2.29)
T kES

where the series converges in strong operator topology and W = (( W} )); jes
be a contractive operator in Hy ® l5(S5). Then there exists a unique strongly

continuous contractive bar-cocycle V = {V(t), t > 0} satisfying

dV(t) = Y V() ZiAl(t), V(0) =TI (2.30)
keS
on 'Hu@e(M) where
Si-8 ., ijes,
, Z; , & Si] — U,
A
/ -—EZ;.S'? , t=10,7 €8,
keS
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Moreover the following statements are valid:
(i) Y is the generator of the semigroup P, := Eo(V(¢));

(i1) Consider the family of contractive maps
ji(e) = V(t)z @ YV (1), t 2 0,z € B(Ho)

where V := UV ({)*U,, the contractive bar-cocycle associated with V. Then
{ji(z), t > 0} satisfies the following quanturn stochastic differential equation:

d(z) = 3 ji(Li(z))dAl(t) (2.31)
i,j€S
on Ho®e(M) for all z € B(Ho), where £ = {L, 4,7 € 8} is a family of

bounded linear maps on B(Hy) described as follows:

g(sf)*35f — bje , 1, €S,
| ES(SD"[% Zi] L 1€8,5=0,
Li(z) = 2_:[2;, )" Ciloies (2.32)
;Sx + ¥ + ) ZieZ , i=0=]

kes

(1) In such a case L3 is the generator of the one parameter semigroup of
completely positive maps 7, ¢ 2 0 defined as in (2.9) associated with the
contractive bar-cocycle V. For all t > 0,7(I) = I if and only if equality
holds in (2.29).

(iv) V is isomertric, co-isometric, or unitary if and only if equality holds in

(2.29) and S 1s 1somertric, co-isometric, or unitary.

Proof : A simple computation shows that [,__';(I ) = 0 whenever; € §,7 =0,

L3)=2 +2*+)> Z;Zy <0and B=§*S —TI < 0. Hence Z € Z5. That
kes
Z is also in Zg follows by Theorem 2.12(i) once we varify that Z € Zg. Note
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that it is enough to show that the series ) L}L; converges in strong operator
jes
topology, where L; = (Z7)*, j € S. For any fixed f € Hp we have

SLAP = D < Lif, Y SHSFY'LLf >

JES k.k'ES JES

ISAIl < Yol1ZefIP

kES

where f = @kegékf an element in Hy ® [,(S). Now appeal to Theorem 2.12
to conclude the first part of the Prﬁpositicm.

Since V is contractive b.a,r—cocycle (1) is evident from Theorem 2.3(i) and
(1.1). For (ii) we consider the unique contractive right cocycle Y satisfying
(2.22) where L := Z. Then by Theorem 2.11 we get that the dual cocycle ¥
satisfies (2.22) with Z as its coefficients. So V(t) = Y(0,1)*, ¢+ > 0, hence
V = Y(0,t) by (2.17). Now take X(0,?) = ¥(0,t) in Proposition 2.14 to
conclude (ii).

Since U;fe(0) = fe(0) for all f € Ho we have < f,m(z)g >=<
f,V(£)zV(t)*g > for all f19 € Ho, hence (iii) is evident from (2.31).

For (iv) we appeal to Theorem 2.12(ii)-(iv). This compltes the proof.

Remark 2.16 : One of our central aims of this exposition is to construct con-
tractive bar-cocycles satisfying the quantum stochastic differential equation
(2.30) with coefficients Z where Y is the generator of a strongly continuous
contractive semigroup and {Lk,k € S} is a family of densely defined oper-
ators so that D(Y) C D(Li),k € § and (2.29) holds as a bilinear form on
D(Y). The class 25 N Zx of operators is stable under a specific perturba-
tion which will play a crucial role in dilating the associated one parameter

semnigroup of completely positive maps ( See Section § ).
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Notes and Remarks:

Theorem 2.1 occurs in Hudson-Parthasarathy [21]. The proof here is
based on Mohari-Sinha [33]. Theorem 2.12 (iv) is the main result in q.s.d.e.
with bounded coefficients, proved in Hudson-Parthasarathy [21]. Conversely,
Hudson and Lindsay [20] have shown that X satisfies (2.22) with coefficients
L € TrNIg, whenever X is a regular unitary right-cocyle. This characteri-
zation of a regular unitary right-cocycle can be exploited to prove a weaker
version of ‘Journé’s time reversal principle’ ( Theorem 2.11 ). For further
details we refer to Mohari [34]. The proof of Theorem 2.11 is based on
Mohari-Parthasarathy [32].



3 Quantum stochastic flows:

Let Ay C B(Hp) be a % subalgebra.

Definition 3.1 : [2,12] A family {J;, t > 0} of * homomorphisms from
Ag into B(H) is said to be a quanium stochastic flow( QS flow) with initial
algebra Ap if for each z € Ap the following are fulfilled:

(1) Jo(z) =2 ® I ;

(ii) Ji(z) € B(I'y) for all t 2 0;

(iii) There exist maps 8} : Ag ~ Ag,1,j € § such that {Ji(z), t > 0} is a reg-
ular (Hp, M) -adapted process satisfying the quantum stochastic differential

equations:

dT(z) = Y J(6i(2))dAl(t) (3.1)

i,JES

Or1l Hg@E(M ).

The QS flow will be called conservatsve if it can be extended to a unital
* algebra A D A, satisfying (i), (ii) and
(iv) forall t > 0, Ji(I} = 1.

O = {6, € S} is called the family of structure maps associated with the
QS flow {J;, t > 0) with A, as initial algebra. For further details of this

notion and the motivation from various point of view we refer to Accardi-

| Frigerio-Lewis [2].

Proposition 3.2 : Let {J;, t > 0} be a QS flow with initial algebra .4, and
structure maps {6;:, i, €8} Thenforalli,j €S

(i) 8} is linear on Ay; -

(i) 6i(2)" = 6(z") ;

(iii)If for each [ € S,z € A, )_0i(z)6;(z) converges in strong operator topol-
- | - keS
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ogy and ({,z) — J,(z) is jointly continous in the strong operator topology of

Ao C B(Hs) then for all z,y € A

0i(zy) = Oi(a)y + z6i(y) + G

(iv) if the QS flow is conservative then #5(I) = 0;

Proof : J; being a * homomorphism, for any z,y € Ay and scalars o we

have
0 = dJi(ez+y) - ak(z)~ Ty)]
= Y BlBi(az +y) - afi(a) - BRI
ij€3
0 = d[F(z*) — Ji(z)"]
= X A) - Ha))am)
i €3
and

0 = d{T(zy) — T(z)}T(y)}
= Y J(8i(zy) — Oi(x)y — 26i(v)) ~ D T:(6i(z) 8% (y))dAl(2).

€S k€S
= 2, JO(ey) ~ 8i(e)y ~ 26(y) - 3 6.(=)6(w)dAi()
i,7€S € |

where quantum Ito’s formula (1.1) and Lemma 2.6 have been used to get the
last equality, By Theorem 1.4 these three equalities imply (i}, (ii) and (i)
respectively. If J;,t > 0 is conservative then
0 = dJ(I) = Y J(8i(1))dAi(2),
{,JES

Once again by Theorem 1.4 we conclude (iv). =
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Definition 3.3 : [11,33] Let Ay C B(Ho) be a * algebra, A family
O = {9_;'-, 1,7 € 8§} of maps from A, into itself is said to obey the siruc-
ture e_quatian.s if the following holds : for all 1,5 € S and z,y € Ag

(1) 9;; is linear on Ajg:

(2) 8i(z*) = 6i(=)" ;

(3) 8i(zy) = 6i(2)y + =6i(y) + Y_0i(=)6;(v)

kES
where the series converges in the stroeng operator topology.

(4) If I € Ag then 85(I) = 0;
It is said to be reqular if for each j € S there exist constants o; > 0, a

countable index sets J; and a family {D}, : € J;} C B(Hy) such that for all

f = Hﬂ: S -AO
2 @A < X N=Difl? (3.2)

ic§ 1€,
where

ZIID'fIIE < oI fIF%,

i€J;

It is to be noted that (3.2), Lemma 2.5 and Lemma 2.6 imply that
Zﬁ};(:c)é’f(y) = Y 6i(z*)*6;(y) is, indeed, a strongly convergent sum. It
kES k€S .
is worth noting that if A’ is a unital subalgebra of A such that 64(A") C A’

for all 3,7 € & then O 1s also a regular structure maps with .4’ as its initial
algebra.

The central aim of this section is to establish the existence of a QS flow
with structure maps {6, 1,7 € S} whenever the structure equations and the

regularity condition are fulfilled.

Fix a family © = {9_‘;—, i,7 € S} of linear maps on a unital % algebra Aq
satisfying the regularity condition (3.2). Fix T' > 0 and for any f € Ho,u €
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M and z € A, set

Kﬁ(:!:,f,u) = “:'*"f”2
Kn(z, fyu) = [2¢0)" % |laDpDit - DifIF (3.3)

_ Jn-1
ix €5, i €N(u)
1<k<n

2¢) % ol (3.4)
1EN(u)

K(T,u)

I

By (3.2) and (3.3) we have

2¢"u(7) ) I{n(ﬁ_‘;(m),f,u) < K, p1(x, f,u), (3.5)
J'éi?-*)
Koo, fu) < K@)l PP (3.6)
We write )
K L VH(T)
Sﬂ yJ ) = 3.7
(z, fiu [Z \/— [Z;J (3.7)

and note that (3.7) implies

FOL s 2Ol ipisie. @9

S(z, fyu) := lim S,(z, fu) < [3

=3O

Proposition 3.4 : For every = € A, there exists a sequence {J\"(z), ¢ >
0},n > —1 of regular (Hop, M )-adapted processes satisfying

Jt(-l)(fﬂ) = 0,
72) = <+ / 3 74 (6)(=))dAi(s) (3.9)

i)J €S

1(7w) = 7D (@) Fe(w)|P < Z2ELWRET e (3.10)

n!

T @f eI < Sulas fwllel? (311)

foralln >0, 0<t<T,f€ Hopu€ M, where K, and S, are as in (3.6)

 and (3.7).
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Proof : The proof is along the lines of Theorem 2.1. Our aim is to show
that for each n > 0 (3.9) is well defined and it satisfies (3.10) and (3.11).
For n = 0 (3.9)-(3.11) are immediate. Suppose that (3.9)-(3.11) have heen
proved for 0 < n < k. Then by (3;9) and (3.11) for each § € S we have

YT Bi@)) fe(w)lP < Si(3-8i(a")85(=), £, e(w))l eI

€S €S
< o T, w)le(w) P36} (=")6i(=)I 1 £1)?
1ES
where
(T, ) = [EUI{(T u) ][vau(’f (3.12)

Thus {J}('ﬂ(ﬂ;(m))} € IL('Hy, M) and once again by Theorem 1.4 FHE >0

is well defined and from (1.4) we have

(75 =) = TP () fe(u)lf
= || [ TATOE) - TED(6i(2) i (s) few)I

13ES

< 2o § / STITB6i(2)) — TED(6 ()] fe(w)Pdvals)

€N (u) €S

vu(T) X { vy ()% 2
S 2e” E I{k(ej(m):fiu) k-f* 1, “e(u)ll

{,jeS

< Kk-i-l( f: u)

y (15)""‘*”1

[le(u)ll*.

This proves (3.10). To complete the proof of (3.11) observe that

ITEH (@) fe(u)lP < (|m“”(m)fe(u)||+m““*”(m)fﬁ(u)--J:“"(f)femu)*
< (W) et + | K@ Oy e,

use (3.11) for n = k, Schwarz's inequality and proceed exactly as in the case

k=0, | | n
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We set for fixed f,g € Ho, y,v € M, 2,y € Ap

R{)(L’J, f‘! u) = S(‘I}f‘lu)

Ru(z, fyu) = Z Rn-l(ej(:c)rfi“)'
{€S,7EN ()
Observe that
Ro(z,fyu) = 3 S(65 - 65(2), fru)
ig €85,5x €N(u)
1<k<n
v (T k 2e¥u(T)) }*
> ( T TS (T el
k20 VK ' JEN(‘“))
= afT,u)( Y, o)l=| "I f]I* - (3.13)

JEN(u)

Proposition 3.5 : Let {J}("’)(m), t > 0,z € Ap} be as in Proposition

3.4, Then there exists a family {Ji(z), £ > 0},2 € Ap of regular (Hy, M) -

adapted processes satisfying the following : for each ¢ € Ag, f € Hp, u € .M

and 0 <t <T

(i) Je(z)fe(u) = lim 7" (z) fe(u) and the map & — Ji(z) fe(u) is linear ;

) @) e < S, lle(w)l P < aT, ol PSPl
(Bl Py

(i) {|(Ti(z) — T (@) fe(u)l| < 3 X

=n+1
(iv) Ji(z) = = + J§ 3 Ju(8;(2))dAi(s);
:365
(v) the map ({,z) — Ji(z)fe(u) is strongly continuous with respect to the
strong operator topology of Ay C B(Hy);
(vi) if for each 1,5 € 5, z € A 6i(z)* = 6i(z") then
< ge(v), BJ(z") fe(u) >=< Ji(z)ge(v),Bfe(u) >, t 20, g € Ho,v € M

whenever B is an element in the commutant of 4, ® g t-

Proof : From (3. 10).we have |
VAR = J‘“’(m))fe(u)u < 3 P @) - I (@) few)]

k=n+41
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< 3o HHELOA Dy,

k=n-+1
forany n > n, 2 € Ay, f € Hy, u € M. So the right hand side of (i)
exists and determines [J;(z) as a regular (Hy, M) -adapted process. Letting
m — oo and using (1) we get (i) and (11i).
Now first observe that (ii) and (3.13) guarantee that {J;(8(z),i,7 € S} €
IL(Hq, M). Hence by Theorem 1.4 we have
I(Ge) ~ =~ [ 5 TEie)an) fe(w)l

IJES

< 2l|(File) ~ M (@) fe(u)lf
w2l [ 3 {(6(@) — TE G @))dAi(s) fewl (314

1] €S
By Theorem 1.4 and (iii) we conclude that the second term on the right hand

side of this inequality does not exceed

10 Y [ TIHTE@)) - TG @) e(w)]Fduals)

JEN{u) i€l |
< 4enWy, (1) Z (i[Kk(Q}( )f,u:)yu(T)

{€S,JEN (1) k=n

1Y lle(u

By Schwarz’s inequality in the summation over %, (3.5) and (3.6) the right

hand side of this inequality does not exceed

Q4 k oo U k+1
o () 35 2T S EE e e

k=n k=n

These observations, (3.14) and (i) imply (iv). To prove (v) we first observe
that by (iv), Theorem 1.4, (ii) and (3.8)

\(Fi(2) = @) el = Il [ ST dAife(w)lf

, N(v)

< 20 [ SS(8i(a), £,0)lle(w) ()

h 3'—0 €S
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© k oo i - .
< 2 () - (sl 32 > Tl /)
=0 k=0 {€3,jeN(u) -
< () - e = ¢r) P G

On the other hand

[Tz — y) fe(u)]]* < S(mmy,f u)fle(w)||* .
< 2] E{] VU(T? Z{]{(21:?. u(T)yn

x 2, Iz—-y)Dy - DifI’} (3.16)

l.k Ej:jk :jkEN{u}
1<k<n

Inequalities (3.15), (3.16) and dominated convergence theorem imply (v).

(vi) follows from (i) once we have shown that for alln > 0,z € Ayf, g &
HD: u,v € M

< ge(v), BT (z")fe(u) >=< J"(2)ge(v), Bfe(u) > (3.17)

whenever B is of the form &’ QW{(x(,m),where T > { and 2’ in the commutant
of Ap. For n = 0 (3.17) is immediate. Assume (3.17) for n — 1,n > 1. By

(1.3) and structure equations we have

< ge(v), Bm(")(m*)fe(u) >=< &IB;QB(U) fe(u) >
+ < B“ge(u),/ Z VA (6:(z" NdAI(s)fe(u) >

i,j€S

B*zge(v), fe(u) > +/ S vi(s)ui(s) < Bge(v), T 1](9‘(::: ))fe(u) > ds

1365

< 2ge(v), Bfe(u) > -+ / S vi(s)ui(s) < T8 (z))ge(v), B fe(u) > ds

i,jeS

< I"(x)ge(v), Bfe(u) > .

| Ib

3
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Proposition 3:6 : Let k,,0 < ¢t < T be a family of linear maps from A
into B(H) such that for each z € Ay, k(z) 0 <t < T is a regular (Ho, M)
adapted process satisfying
dki(z) = 3 ke(8i(2))dAl(2), ko(z) =0 (3.18)
{,j€8
on Ho®e(M). If there exists a constant C such that supp<icr||ki(z)|| < C||z|

for all z € Ag then ki(z) =0forall 0 <t < T.
Proof : For any fixed f,g € Ho, u,v € M., t 2> 0 we have

< fe(u), k(z)ge(v) >= j; < fe(u), ky (62 (z))ge(v) > ds (3.19)

where

(@)= T uils)(5)8)(2),
i,j€8
Note that 8:%32:) € Ao and for any fixed T > 0 there exists a constant v > 0
such that ||9:E3($)H < #|lz|| whenever 0 € ¢ < T. Now iterating (3.19) n

times we have

< fe(u), ki(z)ge(v) >= | < fe(u), k(6 (-(6257)(2)- ))ge(v) > dtn -dlt.

0<tn < - <ty <
Hence | < fe(u), ki(z)ge(v) > | £ CTLHH-IE whenever 0 <t < T Taking limit
as n — oo in the above inequality we conclude that < fe(u), ki(z)ge(v) >= 0.

Since Ho®e(M.) is dense in H this completes the proof. ll

Corolary 3.7 : Let O = {9;:,1',_]' € S} be a family of linear maps on A,
satisfying (3.2). Then there exists atmost one regular (Hg, M) -adapted
process {J:(z),t > 0} satisfying (3.1) on HoQe(M) and || T (2z)|| < ||| for
eéch z € Ap. .

Proof: If Ji(z), t 2 0 and ji(z),t 2 0 are two contractive regulaf (Ho, M)
-adé,pted processes satisfying (3.1) then ki(z) = Ji(z) — j¢i(z) is a solution
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of (3.18) and ||ki(z)|| < 2||z|| for all ¢ > 0. Hence the result follows once we

appeal to Proposition 3.6. _

Proposition 3.8 : Let {J;, ¢t > 0} be asin Proposition 3.5. If © = {6}, 4,5 €
S} is a family of structure maps with initial algebra Ay then for any f,g €
Hoyz,y € Ao, u,v € M

< fe(u), Ti(zy)ge(v) > = < Ji(a") fe(u), Ti(y)ge(v) > .

Proof : For any n > 0 set

B{M(z,y) =< T (%) fe(u), T (y)ge(v) > — < fe(u), T (zy)ge(v) >
| (3.20)

where J,(“) are as in Proposition 3.5. We claim that

n n—k41
IB(H)(QJ y)‘ < EV(T) VH.H(T)k
Ao A TRV pruy |

+ G (Yt gy v mt, fu) ) (3.21)

where v(T) = maz{v,(T),v,(T)},

(IG5 (=, £ usy, 9,0)

veolT) = [0+ () + [Io(a) P 2ds,

Gilk(z, fiuyy,9,v)

xRyss, (4,9, )lle( Flle(u)l P (3.22)

and the second summation in (3.21) is over i,.s and j s subject to the con-

straint 11 = 31,1 <1, 4+, £2,2< r<k.
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We prove the claim by induction. When n = O,Bfal(m,y) = ( and the
claim holds trivially. By (1.3), (1.4) and Proposition 3.5 we have

14 | . . ,
BPaw) = [ % w(s)v(s){BE (e, 6()) + B(6(), ) +
1€NV{u},;EN(v)

;Bﬁ“"”(ﬁi(x), 65(y))}ds + pi" (7, y) (3.23)
ed

where

)= [ X ue) o)< (I~ @) felw), TV (6 ))ge(v) >
€N (u},7e€N(v)

+ < TIV(6i() fe(w), (Tw) ~ T (y))ge(v) >} ds. (3.-24)

By (3.10), (3.11) and Schwarz’s inequality we have

0™ (2, 9)| < {[Kalz", f,w)Raly, 9,01 + [Kn(y, 9,0)Ra(z, £,u)]'/?)

1 ﬂfzyuﬂ
< A2l el (3.25)

When n = 1,135”(3.:,3;) = pgl)(w,y) and (3.25) implies (3.21). An elementary

application of Cauchy-Schwarz's inequality shows that

/ut{ Z lui(s)vi(a),G;’i;i(xi f: U 9}(%,), g, U)lﬁ}d.s

{EN(“):.Z;GN(”)
< Gz, fouy, g, v)va(t); (3.26)

/ﬂt{ )y |“i(3)”j(3)‘G;ll:j’;(ﬂ}(z), fousy, g,0)Y ) ds

1EN(u),;eN(v)
< G Fous gy g, 0 o(1); (3.27)

3142 3k,0
f . A .
[T (o DO ), £, Gl),0) s
{EN (1) JEN(v) r>1

< Gkl (, £,u5 9, 6, v)Vau(t); (3.28)

J1 t“'jkll
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Now assume that (3.21) holds for n — 1. Using triangle inequality in (3.23),
(3.24) and the estimates (3.26) - {3.28) we obtain (3.21) for n. This proves
the claim (3.21) for all n. By (3.6) and (3.13) we have

Gk (2, fruiy, 9,0)]
< ca(T,v)( Z (&?)Ej’[Qﬂ""(T)]”ZE’I{(T,u,)"_k'*'z"’

JEN(v)

where ¢ = ||z||*|[v|12l| FH2 g |)*|le(w)|i*Hle(v)||*. The right hand side does not

exceed

cao(Tyo)( 3 a2)Zir( T at)TiK(T, uyr*

JEN(v) JEN(u) -
< caT,v){maz( > ol D> o2, )P*K(T,u)""
jEN(u) 1EN(v)

Thus by (3.21)
aﬂ-kbk

B(ﬂ-) } <C & _
B (@)l < ,g;k!\/n-—kﬂl

where C, a, b are constants,

a = [v(T)K(T,w)]"?,b = 3v(T) max ( Y of, K(T,u),K(T,v),1).
7€N(u)

Since

n n—kpk hn
im Y — 2 <y @Y
Sk (n— k1)L T e Vil

we conclude that Bf"’(m,y) — 0 as n — oo, By Proposition 3.5 we conclude

the required result. _

Proposition 3.9 [11] Let {J,, ¢ 2 0} be as in Proposition 35 K 0Ois a
family of structure maps then for every ¢ > 0, z € Ap, Ji(z) extends uniquely

F 3

to a bounded operator on H. Denote this extension by the same symbol

Ji(z). Then for all.t >0,z € Ag
) 194211 < el
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(i) If Ay is a von-Neumann algebra then J;(z) € Ay ® ag.

k
Proof: Choose any element ¥ € H of the form ¢ = Y fie(u;) where f; € H,
t=1

and u; € M. By repeated use of Proposition 3.8 we have

< P, Je(z*z)p >

|17:(2)9))* =
< [l 17”2yl
S A MG R
< P (T ) e

11
Using (ii) in Proposition 3.5 we now get
k
Aheod ) » 1
1T ()9l < NplFat*am ez |(Q_a(T, w)il fil| |leCunll)
i=1

for all t < T. Letting n — oo on the right hand side we have

| Te(z )|l < =] l2]].

Since vectors of the form 1) are dense in H the proof of (i) is complete. Now

(ii) is immediate from (i) and Proposition 3.5 {vi). N
The following theorem summarises the results we have obtained so far.

Theorem 3.10: [11,33] Let © = {5;-, 1,] € 8} be a family of regular
structure maps on a x algebra Ay C B(Hp). Then there exists a unique
contractive Q.5 flow {J;, £ > 0} with initial algebra A;. Moreover the map
(t,z) = Ji(x) is continuous in the strong operator topology of Ay ¢ B(H).

If A, is a unital » algebra then the ¢}.5 flow is conservative.

Proof : Proposition 3.5, Proposition 3.8 - 3.9 imply the existence of a QS

flow satisfying the required equation in any bounded interval. The existence

and uniqueness of the @5 flow in IR, will follow if uniqueness is established
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in every bounded interval. Suppose {J;,1 > 0} is another contractive Q.5
flow satisfying the same equation in [0,T]. Then taking k;, := J; — J/ in
Proposition 3.6 we conclude that 7, = 7.

Strong continuity of the map follows by the density of Ho®e(M.,) in H
once we appeal to Proposition 3.5(v) and Proposition 3.7(i). The last asser-

tion follows from Proposition 3.2(iv). o

Theorem 3.11 : [37] In Theorem 3.10 suppose that .4, is abelian. Then

(T.(z), T(y)] =0 for all s, > 0 and 2,y € A,

Proof: Without loss of generality we assume s < ¢. Since 7, is a homomor-

phism and A is abelian we have

T(2)Tu(y) = Tu(ay) = Tulye) = Ju(w)Ti(a)-

Now for any fixed y € Ay define the family of maps k;,t > s from Ag into H
by
ke(z) = Ti(2)Ts(y) — Ts(y) Ti().

By Theorem 3.9
I(z) = Tu(@)+ [ 3 Ju(6(x))dAi(o)
,JES
Since {Ji(z), t > 0} is adapted and J,(y) commutes with the increments of
Al in [s,00) we conclude that k;, ¢ > s satisfies (3.18) with k,(z) = 0 for
all £ > s. Also note that ||ki(z)]| < 2|lyl| ||z]|] whenever ¢ > s Hence by a

simple variation of Proposition 3.6 we conclude the required identity. This

completes the proof. | _

Corollary 3.12 : Let L € 25 N Z5. Consider the family j, : B(Ho) —
B(H), t > 0 of contractive maps defined as in (2.24), Then the following
hold: |
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(i) The family £ = {ﬁj, i,7 C 8} of maps on B(Hg) defined as in (2.25)
satisfies the regularity condition (3.2). The family j;, 1t > 0 is the unique
contractive map satisfying (2.24);

(ii) If L € Zr N Ix then £ 1s a family of regular structure 'm.a,ps with initial
algebra B(Hp). In such a case £ takes the followig form:

> (SF) 2SS — btz , 4,7 €S,
keS
| (8 [z L) , 1€6,7 =0,
Li(z) = k&S (3.29)

- SIL;, =) S L i=0,7€8,

keS

iH ~ S {LiLyz + aLiLy — 2LaLy} , i=0=].

keS |

where S5 = {S_;:, 1,j € 8} is a unitary operator on Hy® I5(S), H is a bounded
self-adjoint operator on Hy and Ly, k € § is a family of bounded operator in
Ho so that the series Y (Lx)*Ly converges in the strong operator topology.
In such a case {j;, ¢ ;?ﬁ 1s the unique Q.5 flows satisfing (3.1) with £ as its

structure maps on B(Hp).

Proof : For any fixed 7,j € S, f € Hy, z € B(H,) we have

1C5(2)f11P < 4{lle LiAIP + 1D = fI1P + 11 3o (2 =L FII7) (3'30)-

kes

For any g € Hp we have

l<9,§(Lf)*mL§f> * < {kZlIL?)gH |l=L% £][}?
€ es | |
< QoL gIPYOC N=L5 11
keS KES
< N LEN allP O = L5 I
kES kES

Taking supremum over all g € Hy, ||¢|| = 1 we conclude that the last expres-
sion in (3.30} is
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<HR(E)LEI Q= L5 £IP).

k€S kES

That £ satisfies the regular condition (3.2) is now immediate once we
appeal to (2.27) and (2.28). Uniqueness of the contractive process satisfying
(2.24) follows from Corollary 3.7. This completes the proof of (i).

Since I € Tz NI by Theorem 2.12(iv) X is unitary. Hence that £
satisfy structure relations follows by Proposition 3.2 once we note that ji(z) =
X(0,8)(z @ 1)X(0,t) is a QS flow satisfying (3.1) with £ as its structure
maps. Since £(I) = 0 we conclude that 5 is an isometric operator and (2.25)
implies the above form of the structure maps. Since L € Zg the operator S

is also co-isometric. This completes the proof. N

Example 3.13 : [29,37,33] Let P(t), ¢ > 0 be a transition probability matrix
P(t) = {P,(t), a,be £}t 2 0 for a Markov process with denumerable state
space £. So the family oy(@) 1= P({)d, ¢ € l(E) of operators forms a.
one parameter contraction semigroup in the Banach space l(€£), Let ay

be continuous in norm operator topology and @ = {Qu4, a,b € £} be the

generator of the semigroup 1.e.

d
E}: ub(t)|t=0 - ‘Qab

Then Q4 2 0if a# b, Qs = =) b and sup, c¢|Qaa] = ||Q]] < c0. We shall
b¥n

now realise the Markov process as a commutative (0.5 flow. Put any group

structure on £ so that G = £, u'is the counting measure and & acts on itself

by left translation. Define the unitary representation .S'a. of G in ILy(G) by
(Seu)(d) = u(a™'d), u € L*(u)

Choose a matrix (( m(a,b) )),a,b € G such that Q(a,b) = |m(e,b)* if a #



50
b, —|m(a,a)|® if a = b and set bounded operators L, := S, M,, a # e where
(M,$)(8) = m(b,ab)g(b), b € G

Also observe that

<fi 2 LiLaf > = 3 3 Qb ab)|f(B)
afte ay¥e bEY
= = Q(b,n)|f(D)[*
beG
< GIfII

Now with the elements of & := G\e as indices and S} 1= Sub.S'al, a,b €S we
consider the structure maps @ the restriction of £ defined as in (3.29) on the
abelian von-Numann algerba L®(u) C B(L*(u)) ar:’ S§ := 0,5,, a,b € S:

62(0)(b) = ba[d(ab) — ¢(b)]

o(¢)(b) = m(b,ab)[¢(ab) — ¢(d)]
62(#)(b) = m(b,ab)[$(ab) — 4(b)]
Bo($)(b) = D im(b,ab)|’[($(ad) — $(B)].

acs

It follows from Therem 3.11 that there a commutative @S flow {j;, ¢ > 0}
with initial algebra L*=(u) satisfying the following q.s.d.e:

di(4) = D 5(65(8))dA;, jo(4) = 4.

a,bes

Since 83(¢)(b) = )_SUb, a) 4(a) we conclude that ai(4) = Eo[j:(¢)], t 2 0.

aES
Notes and Remarks :

The notion of quantum stochastic process is introduced by Accardi-
Frigerio -Lewis [2]. For a general theory of Markov dilation we refer to Kum-
merer [26]. The construction of quantum stochastic flows based on structure

maps is due to Evans-Hudson [12], Evans [11]. The present exposition is
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adapted from Mohari-Sinha [33] where the theory has been extended to deal
with QS flows with infinite degrees of freedom. If #8 < oo then the regularity
condition (3.2) is equivalent to the following condition:

16;(2)l| < llell, z € A i, 5 €S

for some constant v > 0. The construction in [11] is based on this as a regu-
larity condition on the family of structure maps ©. The proof of Proposition
3.8 is different from [11} and in a sense direct. Theorem 3.11 is adapted from
Pathasarathy-Sinha [37]. It worth noting that for any central projection II
(i.ell € AN A) the family I16}(z) is also a regular structure maps. We

exploit this observation in Section 8 where we shall deal with the dilation

problem associated with Markov process.



4 A Quantum stochastic differential equa-

tion (qsde) with unbounded coefficients :

In this section we shall consider the class of contractive evolutions V = {V(2) :
t 2 0} satisfying the following gsde: .
dv(t) = Y V(t)ZidAi(t) ;V(0) =T (4.1)
iJES
on DQe( M), where D is a common dense domain of the family Z = {Z}, i,j €
S} of operators in the initial Hilbert space Hp. I

The following proposition will play a crucial role to guarantee the existence

of a contractive solution for a certain class of coefficients Z.

Proposition 4.1 [13,31] : Suppose Z € 25 N Z5. Then there exists a
unique strongly continuous regular (Mo, M) -adapted contractive operator
valued process V = {V({) : t > 0} satisfying (4.1) on HoQe(M) and for all
fEe€HepueMOLs<L<tgT

V() = V(s)lfe(w)l|* < Ko(f,u)[vu(t) — vi(s)] (4.2)

where

Kr(f,u) =2 exp(ru(T)lle@)l* 3. 11Z;£]*

(€S ,jEN (u)
Moreover the dual contractive bar-cocycle V = {V(t) := UV (@)U, t >
0} satifies (4.1) and (4.2) with Z replaced by Z.

Proof : The first part is essentially a restatement of Theorem 2.12, where
V(t) = (X(0,¢)),t 2 0,L = 7 except (4.2) which follows from the basic -
estimate (1.4) and the fact that ||V ()} <1 for all £ 2 0.

For the second part follows from Theorem 2.11 once observe that for all

t >0, X(0,t) = V(1), where X is the dual cocycle associated with X. n
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For a dense linear manifold D in Hy, we denote by Z~(D) the class of

densely defined operators Z = (2} : 1,5 € S) satisfying
(a) DCD(Z);(i,j €5); . (4.3)

(b) There exists a sequence Z(n) € Z; N Z-,n > 1 so that for all f €
D,i,j €8
o limy oo Zi(n)f = 2} f (4.4)

Lemma 4.2 : Let Z = (Zi:4,j € S) be a family of densely defined operators
satisfying (4.3) and (4.4) Then for each f € D, j € § there exists a constant
¢;{ f) 2 0 such that

igggs_llzi(n)f I” < e(f)
and

SNZEFIE < ei(F) (4.5)

i€S
Proof: Z(n) € Zg implies that for each fixed j € S

2NZ;mA* = 2] fIP- < Zi(n)f, f > - < £, Z5(n)f >
i€S

< 2517 + 201 12 ()] (4.6)
Now the required inequality follows once we apply (4.4) in (4.6). A simple
application of Fatou’s Lemma in (4.6) and (4.2) establishes (4.5). n
Fix Z € Z7(D) and Z(n) € Zy satisfying (4.3) and (4.4). We denote
- by VM = {V{(¢) 1 ¢ > 0} the unique regular (H,, M) adapted contractive
process satisfying (4.1) with Z(n) as it’s coefficients { Proposition 4.1 ).

Following an idea of Frigerio as autlined_inz Fagnola [13] and Mohari-

Parthasarathy [31] we shall investigate the asymptotic behaviour of {V‘”)}

as n — oo,
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Proposition 4.3 : The sequence {V™} admits a subsequence {V("*}} sat-
isfying the following:

(1)w-limy o V{™)(2) = V(t) exists for all ¢ > 0; (4.7)

(ii) V.= {V(%) :t > 0} is a contractive (H,, M )-adapted process for which

lim sup| < 4, [V™)(t) — V(#)]fe(u) > | =0

kw2001 T

for 0 < T <co,p € H,feDyue M
(iii) For each 0 € T < o00,f € D,u € M there exists a constant ¢ =

¢(f,u,T) such that
V() ~ V()lfe(w)ll < elwult) —m(s)]V40< s <t Ty (4.8)

(iv) V.= {V(t):t > 0} is a strongly continuous (*y, M} adapted process,
{V(t)Z:} € L(D, M) and

dV(t) = Y V(t)ZidAl(t) V0) =1 - (4.9)

{j€8

holds onDQe(M);
(v) If (4.9) admits a unique contractive solution then V is a cocycle and

w. lim V() = V({#)(t > 0)

Ti—# 0O

Proof: As in [13,31] consider the sequence {p,} of continuous functions on
IR.{..- defined b}’
pn(t) =< 3, VUt) fe(u) >

where ¢ € H,f € D,u € M are fixed. By (4.2) and (4.5) we have for
0<s<igT

la(t) = Pa(8)] < I IIVE(E) = VI (s)) fe(w))]
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< [lle( £, u, T)[vu(t) — vuls)]}?

where ¢(f,u,T) is a non-negative constant independent of n. Furthermore
lpn(t)] < ||#]ll| fe(u)]| for all £ > 0 and n > 1. Hence by Arzela-Ascoli theo-
rem { pn}.is conditionally compact in the topology of uniform convergencé on
compacta. Using the seperabality of the spaces involved and usual diagonal-

isation procedure extract a subsequence {V("®)} satisfying (i) and (ii). For

(ii1) observe that for any ¥ € H, f € D,u € M

| <, [V(E) — V(s)lfe(u) > |

f

lim | < 9, VR (1) — V) ()] fe(u) > |
< llle(fy u, THva(t) — va(s)]Y2.

So taking supremum over all unit vectors ¥ we get

IV (t) = V() fe(w)|l € e(f,u, T)u(t) — vul(s))2.

V = {V(t):t > 0} being contractive, strong continuity follows from (4.8).
Lemma 4.2 implies that {V(t)Z}} € IL(D, M). Now by (1.3) and (4.6) we
have for each f,g € D,u,v €M and t > 0

< fe{u), V(t)ge(v) >= ;}LIEG < fe(u), VO (t)ge(v) >

=< fe(u),ge(0) > + Jim 3 [ dsui(s)vi(s) < fe(w), VO (s) Zi(nu)ge(v) >

iJjES

=< fe(u),ge(v) >+ 'E dsu;(s)yf(s) < fe{u), V(s)Z_::ge(v) >

.,

{,JES
which implies (4.9) and proves (iv).
Fix any s 2 0 and define as in [20] the contractive adapted process V, =
(Ve(t) ;t 2 0) by
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The proof of the first part of (v) is complete once we have shown that V.

is also a solution of (4.9). V being a solution of (4.9), the following holds for

i > s
dV,(1) = V(s)D(0,)V(t — s){ 3, ZidAl(t - s)T(6:))
JES
on DQe(M)., Also observe that 1(6,)dAl(t — )I(8) = dAi(t) and

I'(8:)T(8,) = 1. So

4V,(t) = V(s)T@)VE = )TN Y ZiT(6.)dAI(t — )T (6;)).

i,J€S
Hence we obtain the required result. The ‘second part’ of (v) follows by a

standard subsequence argument. | ™
The following extension of Proposition 4.3 will be required in Section 5

where we will deal with the dilation of minimal quantum dynamical semi-

group.

Proposition 4.4 : Let foreachn > 1 Z(n) = {Z}(n),i,j € §} be a family of
operators and D be a dense linear manifold such that D CID( Zn)), i,j € S.
Suppose there exists a regular contractive (Ho, M)- adapted process V(™
satifying (4.9) on DQe(M) with Z(n) as its coeflicients. If (4.3) and {4.5)
hold on D for a densely defined family of operators Z = {Z;:, 1,7 € 8} then
Proposition 4.3 holds as well for the sequence V"),

Proof : It follows without difficulty once we adopt the method employed for
the proof of Proposition 4.3. |

Lemma 4.5;: Suppose X = {X(¢):¢t 2> 0} is a strongly continuous bounded
operator valued (Hy, M) adapted process satisfying '

dX(t) = Y X(£)ZjdAi(t), X(0)=0 -(4.10)

i,jES
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on De(M). Then for all myn > 0 ,f,9 € Dyu,v € M and t 2 0 the
following holds:

¢ :
< ful™, X ($)gv\™ >= Z/ﬂ dsuy(s)v’(s) < ful™) X(s)gv!™ > (4.11)

i,j€S

where u(~1 = 0 and for any n > 0

n ifi = 0,
n; =
n—-1 ift € 5.

Proof: X being strongly continuous, for any T 2 0 ,supge,cr || X (2)]| < 0.
Now use the fact that s — e(su) is real analytic for any fixed u € M and

dominated convergence theorem to get (4.11) from (4.10). »

Lemma 4.6: Suppose T' = (T(¢) : £ 2 0) is a family of strongly continuous

operators in Mo such that sup;e [|T(t)]| < oo and
dT(t) = T(t)Kdt,T(0) =0 (4.12)

holds on P. If K is the generator of a contraction Cy-semigroup with D as a

core then T'(2) = 0 for all t > 0.

Proof: D being a core for K, for all A > 0 we get

(K ~A)D = Hy. | (4.13)
Define bounded operators Ry; A > 0 by
Ry = /Dm e~ D (t)dt
and from (4.12) observe that

ARA == R}Jf | | (4.14)
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on D. Hence by (4.13) and (4.14} we have Ry =0 for all A > 0, s0 T(t) =0
for all ¢t > 0.

Proposition 4.7 : [34] If Z] is the generator of a contractive Cy-semigroup

with D as a core then equation (4.9) has a unique contractive solution.

Proof: Let V' = {V'(1) : t > 0} be an another contractive process satisfying
(4.9). Using the basic estimate (1.4) and (4.5) observe that V' also satisfies
(4.8). Hence V' is strongly continuous. Define X (t) = V(¢) — V/(£)(¢ > 0).
To show that X(?) = 0(¢ > 0) it is enough to show that for any u,v € M

Tutm) imy(t) = 0 | (4.15)
where T, (m) 4m(t) € B(Hp) is defined by

< £, Tum wm(t)g >=< ful™, X (t)go™ >

In view of Lemma 4.6 ,we are to show that T (m) y(m () satisfies (4.12).
We shall do this by induction on m,n 2> 0. For m = 0 = n it is immediate
from (4.11) with u = v = 0. Assume that (4.15) holds for all u,v € M and
m,n 2> 0 such that m +n < k. Then by induction hypothesis and (4.11)
observe that Ty(m) n)(t) satisfies (4.12) for all u,v € M and m,n 2 0 where
m+n =k+ 1. Now an application of Lemma 4.6 completes the proof. =

For any X € B(H) we define the bilinear forms Li(X)i,j € S) on
DRE(M) by

< fe(u), Li(X)ge(v) = < fe(u),XZige(v) >+ < Z] fe(u), Xge(v) >

o+ Y < Z;-"fe(u),Xnge(v) > (4.16)
keSS |

where the necessary convergence follows from (4.5) and Cauchy - Schwarz

inequality. In order that the solution V' = {V({) : £ > 0} of (4.9) be isometric
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it is necessary that £i(I) = 0(i,j € S). Here our aim is to get a sufficient
- condition for V = {V(¢) : £ > 0} to be isometric. To this end we introduce a

few more notations:
I={Z € 2(D): Li(I) = 0;i,j € S}

and for A > 0
Br={B 20: B € B(Hy); Ly(B) = AB}

Lemma 4.8: If Z € T and X(1) = I — V{{)*'V(¢), t > 0. then for all
m,n>0f¢geEDuveMandit >0

i . .
< ful™ X(t)go™ >= 3 / dsvi(8)v?(s) < fu("”‘),ﬁ}(X(t))gv(“i] >
| . Jo
1,1€5
(4.17)

where m;,n;(z,7 € S) are as in (4.11).

Proof: Z € 7 and quantum Ito’s formula implies that for all f,g € D,u,v €
Mandt>0

¢ . .
< fe(u),X(t)ge(v) >= > /{; dsui(s)v’(s) < e(u), £3(X(1))ge(v) >
{JES
_ (4.18)
We obtain (4.17) from (4.18) and analyticity of the map s — e(sv) (for any

v € M), where the necessary convergence follows from (4.5). n

Proposition 4.9: If Z € T and g, = {0} for some A > 0 then the solution
V ={V({t):t >0} of (4.9) is isometric.

Proof: Note that 0 € X(t) < I, X(0) = 0. Define non-negative operators
Y, € B(H) and B{"(u) € B(Ho)(X > 0,n > 0,u € M) by

Y, = f e MX (1) dt
0
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and

< f,B{(u)g >=< ful?, Yy gul > .

Observe that for any fixed n > 0,u € M, B{™(u) = 0 for some A > 0 if and
only if X (£)ful™ = 0 for all f € Hg and t > 0. We shall show by induction

on n > 0 that for all f € Hp,u e M,t 20
X(t) fu™ =0, (4.19)

Taking u = 0 = v in (4.17) observe that BEU)(O) & Bx. So (4.19) follows for
n = 0 by our earlier observation and the assumption that 8y = {0} for some
A > 0. Now assuming (4.19) for n — 1(n > 1) we get for (z,7) # (0,0) and
t >0

< ful™) LU X ())gut™) >=0.

Hence (4.17) implices that Bg")(u) € fyforall u € M, A >0, so B&“)(u) =z ()
for some A > 0, which by the observation made earlier implies (4.19) and

completes the proof. N

Now our aim is to exploit the time reversal principle to obtain a sufficient

condition for V = {V(¢) : t > 0} to be co-isometric. To this end we impose

some additional conditions on Z.

Assumption 4.10: For the triad (D, Z,Z2(n);n > 1) satisfying (4.3)-(4.4)
and Z(n) € Zz N Z5 there exists a dense linear manifold D in Hj such that
(D,2,Z(n);n > 1) also satisfies (4.3) and (4.4).

If Z satisfies Assumption 4.10, Lemma 4.1 implies that Z € Z(D) and
Z € Z(D). For any X € B(H) define the bilinear forms f;(X) (1,7 € S) on
D®e(M) as in (4.16) with Z replaced by Z and set

I={2:LiI)=0;i,j € 5}
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and for A > 0
Bv={B>0:B € B(M): £%B) = AB).

Since for each n > 1, Z(n) € 25 N Z; by Theorem 4.1 there exists a
unique regular (*o, M) -adapted process V™ = {V{"(t) : ¢ > 0} satisfying
(4.1) with Z(n) as its coefficients. Moreover the dual contractive bar-cocycle
V) = (VO @t > 0) satisfles (4,1) with Z(n) as its coefficients. It is
evident from (4.7) that

w. lim V() = V(t)(t > 0) (4.20)

where

V() =UVE)U > 0)

Proposition 4.11 : [34] Let for Z Assumption 4.10 be valid. Then

(i) V= {V(@E):t> 0} is a strongly continuous (Hp, M) adapted process,
{V(¥)Z§} € L(D, M) and

dV(t) = S V() ZidAi(t): V(0) =T

\j€S
holds on DRe(M).
(ii) V* = {V(¢)* : t 2 0} is strongly continuous.
(iii) If V is co-isometric then Z € Z

(iv) If Z € T and §) = {0} for some A > 0 then V is co-isometric.

Proof: Z ¢ Z(D), so i) is immediate from Proposition 4.3 and (4.20). ii)

follows from i) because ¢ — I, is continuous in strong operator topology. For
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ii1) and iv) observe that V is co-isometric if and only if V is isometric. Hence
the required results follow from Proposition 4.9 and i) , m

Notes and Remarks :

In the context of the charactization problem associated with a strongly
continuous bar-cocycle Journé {23] established a class of quantum stochastic
differential equation with unbounded coefficients. The ‘ time reversal princi-
ple’ of markovian cocycle is also indicated in [23]. Frigerio’s equicoﬁtinuity
method is employed in Fagnola [13} to guarantee a contractive evolution sat-
isfying a q.s.d.e. with unbounded coeflicients , associated with pure birth (

pure death ) process ( Proposition 4.3 ). In this constext a necessary and

sufficient condition for the evolution to be conservative is also obtained. The

present form of Proposition 4.3 is an improvement of the result obtained in
Mohari-Parthasarathy [31]} and Mohari {34]. Proposition 4.7, Proposition 4.9
and Proposition 4.11 are adapted from Mohari [34].



5 Minimal quantum dynamical semigroup

and its dilation in Boson-Fock space :

We consider the quantum mechanical Fokker-Plank equation writen formally

as
p(0) = p, p(t) =Yp(t) + p(1)Y" + 3 Zap(t) Z; (5.1)
kes
subject to
Y +Y* + ) Z;Z, <0 (5.2)
keS

for p € T, where Y, Zy, k € & are densely defined operators in My and
7y 1s the real Banach space of all self-adjoint trace class operators in .
When Y is a bounded operator (5.2) implies that {Z;,k € 8} is a family

of bounded operators and the series »  Z;Z; converges in strong operator

kES
topology. In such a case, for each p, (5.1) admits a unique 7} operator valued

solution p(t), ¢ 2 0 and the map p — ay(p) = p(¢),% 2 0 is a one parameter
contraction semigroup in the Banach space { 73,]] - |];» ). On the other hand
there exists a unique regular (Hy, M) -adapted contractive operator valued

process V = {V (1), t > 0} satisfying

dV(t) = SV ZIAI), V(0) =TI (5.3)
kES |
on Ho®e(M) where
Si—-8& , i,j€S,
‘ Zt' y 1: E S,j —_ 0,
b= 0.4
Z; -—ZZ}:SJ{“ , t=0,7€8, (5.4)
kES |
Y | , t=0=y

and § = (( S} )) is a contractive operator in Hp ® l,(S). The contractive one

parameter semigroup 7y := Ey| V(£)* (e QI)V(t)], ¢ 2 0 of completely positive
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maps and oy, t > 0 satisfy the following relation

tr(zoi(p)) = tr(pn(z))

whenever t > 0,p € Ty, =z € B(H,). For further details we refer to Corollary
2.15.

Here our aim is to deal with the dilation problem associated with Fokker-
Planck equation (5.1)-(5.2) when operators Y, Z;, k£ € § are not necessarily

bounded operators.

Definition 5.1: [18,28] A one parameter family of completely positive maps
7 = {r, t 2 0} on B(Hy) is said to be a guantum dynamical semigroup if
the following hold:

(i) 7o(z) = 2, 7e(7u(2)) = Togu(z), 8,2 20, z € B(Ho);

(i) ||m(| £ 1,t > 0;

(iii) The map t — tr(p7i(z)) is continuous for any fixed x € B{(Hp)and p € 7,

the trace class operators in Hy.

(iv) For each t > 0 the map 2 — 7(z) is continuous in the ultra-weak operator

topology.

For a dynamical semigroup 7 we define a one parameter family of maps

o = {0y, ¢t 2> 0} on the pre-dual space of all trace class operators 7 so that

tr(zai(p)) = tr(pn(z)) (6.5)

whenever t > 0,p € 7, z € B(Hp). Note that the family ¢ is uniquely
determined if (5.5) holds for p:= |f >< g, f, g € Hp. It is also evident that
o is a strongly continuous one parameter semigroup in the Banach space
(T, || llir). Conversely for a strongly continuous one parameter semigroup

o (5.5) determines a unique dynamical semigroup 7. Moreover for any ¢ >

0, tr(op)) = tr(p),p € Tp if and only if r(I) = I.
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The central aim of this section is to exploit the theory developed in Section
4 and the construction of the minimal quantum dynamical semigroup , as
outlined in Davies [9], in dilating the minimal semigroup in a boson-Fock

space.

Before we proceed to the next result we state the following simple but

useful lemmas:

Lemma 5.2 : Let slim,.o,A, = A and slimpn.oBn, = B. Then

limpaeAnp By = ApB* in || - || topology whenever p € 7.

Proof : It suffices to show for A = B = 0, p 2 0. In such a case there

exists a complete orthonormal set fi, k& > 1 in H and a sequnce ¢, > 0,k >

l,zck < o0 such that p = chl_ﬁ: >< fr| and for eachn > 1

k>1 k>1

AnpBolle & D_ckll |Anfe >< Brfilllir

k>1

< ekl Ankll [1Bafxll

k>
Now use uniform boundedness principle and dominated convergence theorem

to conclude the required result, n

Lemma 5.3 : Let A,k > 1 and B,k 2 1 be two families of bounded

operators such that both the series Y A} Ay and ) B} Bj converge in strong
k>1 E>1

operator topology. Then for each p € 7} the series ZkaA; converges in
| k>1

l| - l}lsr norm topology.

Proof : Lemma 1.9 implies that the series Y A;Bj converges in strong
kel |
operator topology. Alsc note that for any bounded operators A, B, p the

following polarization identity holds:

4 A*pB = Y (-i)*(A+¢*B)*p(A+i"B).

- 0<k<3
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Hence without loss of generality we assume that Ay = By, k 2 1. In such a

case for any m 2 n 2 1,p 2> 0 we have

I Y- AwpAille = D tr(AwpAR)
n<k<m n<k<m
= ir(p ) AiAs)
n<k<m

Hence the result follows from the above equality once we appeal to Lemma

0.2. n

Following Davies [9], let ¥ be the generator of a strongly continuous
contractive semigroup in Hy and Z;, k& € & be a family of densely defined

operators on H, such that

DY)CD(Z), kes (5.6)
and
<fYF>+<Y >+ <Zef,Zkf ><0 (5.7)
kes

for all f € D(Y').

In view of Lemma 5.2 the following relation

ki(p) = ' pet”

defines a strongly continuous, positive, one parameter, contraction semigroup

on 7., whose generator @ is given formally by
G(p) =Yp+ pY~, | (5.8)
We introduce the positive one to oﬁe map 7 on 7y defined by .
w(p)=(1-Y)p(1 -Y")".

Set m(Tx) = {n(p), p € Tn},
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As in [9] we define the positive linear map J : 7(7,) — 7, by

T(p) = Y ZrpZ; (5.9)

kesS

where the convergence follows from (5.7) and Lemma 5.3.
We quote the following proposition without proof.

Proposition 5.4 Consider the family Y, Z;, k¥ € § of operators satisfying
(5.6) and (5.7). Then the following hold:

(1) w(7y) is a dense core for G and (5.8) is valid for all p € #(7}).

(i1) The map J has a positive extension J' on D(G) such that

tr(G(p) + JT(p)) < 0 (5.10)

whenever p € D{('). Moreover equality holds in (5.11) if and only if equality
holds in (5.7).

(iii) For each fixed A > 0, J'(A — G)~! is 2 map from #(7}) into 7 and
has a unique bounded positive extension Ay in 7) such that ||4;|} < 1 and
J'(p) = Ai[l — G|(p) for all p € D(G);

(iv) For ﬁny fixed 0 < r <1, n(7}) is a core for the operator W = G+ rJ’
defined on D(G). Moreover W) is the generator of a strongly continuous
positive one parameter contraction semigroup o;, whose resolvent at A > 0

is given by

A =WINT = (A= G) 1Y r* Af, (5.11)

k>0
where the series converges in trace norm,

(v) For each p 2 0, { > 0 the map r — afr](p), r € [0,1) is increasing and
continuous.

(vi) There exists a positive one parameter strongly continuous contraction

semigroup o' on 7 such that

lim, 1107(p) = 07" (p)
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for all p € 7},
(vii) For each A > 0,R™(A) := (A = G)! 3 A} - R()) strongly as

0<k<n _
n — oo, where R(A) = (A — W)~!, W is the generator of o["";

Proof : For (i)-(vi) see Davies [9]. Now for (vii}) we follow Kato {25] (
Lemma 7 ). For each A > 0,0 £ r <1 we have

RN = (A= G ¥ rf45 < R.(A) < R(N).

0<k<n
Letting r T 1 we get R™(X) < R{)). But as R™()) is incresing with
n, slim,LeRM™M(A) = R'(A) exists and R'(\) < R()\). We also have
R(A(A) < R < R(A). Hence R.(A) = lim,oRM(A) < R'()), R(}) =
lim,11.R,(A) < R/()) by (vi). This completes the proof. u

Now our aim 1s to obtain a necessary and sufficient condition for ¢ to
be trace preserving, It is evident that equality in (5.7) is necessary. Still

following Kato [25] we obtain the following theorem.

Theorem 5.5 : Consider the semigroup /", t > 0 defined as in Proposition
5.4. Let equality in (5.7) be valid then the following statements are equivalent:
(i) tr(op™(p)) = tr(p) for all t 2 0, p € Ty;

(ii) for each fixed A > 0, A} — 0 strongly as n — oo;

(iii) for each fixed A > 0, (A — Wg)(w('ﬂ)) is dense in Tj;

(iv) for each fixed A > 0, the characteristic equation W3 (z) = Az has no
non-zero solution in B(H,),

where Wp = G + J' with domain #(7},) and W is the adjoint of Wy;

(v) for any fixed A > 0, there is no non-zero ¢ € B(Hy) so that

< f,zYg>+<Yfizg>+) < Zkfaﬂ’zkg >= AL f,g> (5.12)
: kES

hold for all f,g € D(Y).
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-

Proof: The proof is exactly along the line of Theorem 3 in [25]. We write

o = o™", As in [25] in this context we note that

IRl = [ ezp(=2t)llo(o) et (5.13)

for all p > 0, which follows from the basic resolvent formula R(A) =
_/0 wﬂxp(—a\i)atdt, A > 0. As a simple consequence of the following identity

I+ T'REIN) = (AL = GYRPI(A) + A (5.14)

and Proposition 5.4(ii) we get tr(p) = A tr(RM(A)(p)) +tr (A3 (p)) for
p € T. Since R"™M()\)(7,) C T; we have

lioll = AR A o) + IAT (o) lsr (5.15)

for all p > 0. Now taking limit as n — oo in (5.16) by Proposition §.4(vii) we

get

Hmnwm”A:‘:-l_l(p)”if — ”ﬁ”_"\“R(A)(p)”ff
= ) /U “ezp(=A)(|lollr — oep)lle)  (5.16)

for all p > 0, where we have used (5.13) in the second equality. Since for each

fixed p € T the map ¢t — ||o:(p)||ir is continuous and |la:(p)||s» < |lp|ltrst = 0
from (5.15) we conclude that (i) and (ii) are equivalent.

QOur next aim is show that (i1) and (i1} are equivalent for any fixed A > 0.

From (5.14) we note that (ii) is equivalent to equivalent to
it oA = G = TIRM(N)(p) = p

for all p € 7. Since R™(X)(p) € D(G) we conclude that [A — G — T')(D(G))
is dense in 7. Since w(74) is a core for G, for any fixed p € D(G) we choose
a séquence p, € 7(7;) such that p, — p and G(p,) — G(p) as n — oo, By

Proposition 5.4(i1) we have

T @i = 114 {1 = @p)ler < 2 ~GJ(P)ler < Hlpller + [IG () lir
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for all p in D(G), hence J'(p) = Iimy,_seo T (prn). Thus it is evident that
(A =G - T)p) =lmue(A— G — T )ps)

Hence (A ~ G — J'|(7(73)) is dense in Ty,

Conversely let (ii1) be valid. Since [I —~ A7) = [ — A)][A — G} D(G)) =
A= G = TNx(D(G)) D |A— G~ TNx(Th)], [I — Ax](T1) is dense in T}, Set
Ci™ = — D A%, which is a uniformly bounded by HC'E")” < 1,n >0, That

0<k<n
lim, e, C\™ = 0 is now an easy consequence of C\"[I ~ 4] = — (7= AT,

~ On the other hand, A, being a contractive positive map, ||AT|| < [[A}]|

whenever m 2> n, hence

G Nler = —7 3 114K (o)l 2 1430l

0<k<n
whenever p > 0. Thus we have A} p) — 0 as n — oo, This shows that (ii)
and (iii) are equivalent.
That (iii) and (iv) are equivalent follows by the definition of adjoint of a

densely defined operator and Hann-Banach theorem.

The proof is complete once we show (iv) and (v) are equivalent. We claim
that an element © € D(W;) satifies W;(z) = Az if and only if & satisfies
(5.12). For any fixed f, g € Hy and z € D{W;) we have

<Y(1-Y)'fz(1-Y)g :>.
<(1-Y)'f,zY(1-Y)" >
2. <Z(-Y) ' f,eZ(1-Y) g X5.17)

kesS

Since R((1 — Y)™1) = D(G) the claim follows from (5.17). That (iv) and (v)

|

tr(n(|f >< g|)W;(z))

4.
+

are eqivalent is a simple consequence of the claim. B

We use the same symbol for the linear canonical extension of a bounded

map that appeared in Proposition 5.4 to the Banach space of all trace class
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operators. In the case of an unbounded operator, say G we extend to D(G) +

+D(G) by linearity.

The family of maps 7™ := (¢7"")* on the dual space B(My) is called

minimal dynamical semsgroup. For further details we refer to [9].

Qur aim is to deal with the dilation problem associated with Fokker-
Planck equation (5.1} whenever the operators Y, Z;, k € § satisfy the fol-

lowing assumption,

Assumption 5.7: Y is the generator of a strongly continuous semigroup on
Ho and Z,, k € § is a family of densely defined operators satisfying (5.6}

and (5.7). There exists a dense linear manifold D in H, so that it is a core

for Y and
S (D) CD(Z;), k,jES

where S = ((S}, k,j € §)) is a contractive operator on Hy @ [p(S) such that
for any fixed 5 € §, .S'} # 0 for finitely many 1 € S,
For any A > 0 we define bounded operators ¥y, L}, k € S by

Yi=XNA-Y)YA-Y), Z) =22 (\ - T7)!

where boundedness of L}, k € § follows from (5.7). Moreover for each
A>0, Y, L}, k€S satisfies (5.2), hence the series Y (L3 )*L; converges
in strong operator topology. On the other hand for eagﬁsg € D(Y) we have
Yag - Ygas A = oo. Taking f = (I - A(A—~Y))g, g € DY) in (5.7) we

get
1Zk(I = AMA=Y) gl < 201 = AMA=Y) gl (7 = MA = Y) " )all

Hence Zg — Z,g as A — oo for all g € D(Y).
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For any A > 0,0 < r < 1 we define bounded operators Z(A,r) =
{Zi(M\r), i,j € S} asin (5.4) with Y, Z,k € S replaced by Y;, r'/2Z}, k€ §
respectively. So foreach 0 < r € 1,A > 0, Z(\,r) € 25 N Z5. We denote
Yy = {Yr)(t), t > 0} for the unique regular (H,y, M)— adapted contrac-
tive process satisfying (5.3) with Z(A,r} as its coefficients.

We also define operators Z(r) on D as in (5.4) with Z,, ¥ € § replaced
by r1/2Z;, k € S. When r = 1 we also write Z{), r) = Z()\), and Z(r) = Z.
For each 0 < r» < 1 it is evident that

limy— e Zi(r, A)f = Zi(r)f, f € D.
for all 7,7 € S.

Proposition 5.8 : Consider the operators Y, Z;, k € § satisfying Assump-
tion 5.7. Then the following hold:

(i) For each 0. < r < 1, w.limy,oo VII(t) = V(1) exists for all ¢ > 0
and V) = {V{)(1), ¢+ > 0} is the unique regular (Hy, M) -adapted con-
tractive operator valued process satisfying (5.3) on DQe(M) with Z(r) =

{Zi(r), i,j € 8} as its coefficients. Moreover V") is a strongly continuous
contractive bar-cocycle;

(1) For each ¢ > 0 the map r — V(")(t), 0 < r <1 i1s continuous in weak
operator topology.

"Proof: Foreach 0 < r <1, A >0, Z(\r) € 23 ﬂéﬁ and the triad
Z(r), Z(A,r), A > 0, D satisfy (4.1) and (4.2). By our hypothesis D is also a

core for Y. Hence we conclude (i) from Proposition 4.3 and Prnposi_ti.on 4.6,

"Fix 0 <rr, <1, n 2 1 such that r, - r as n — oco. By (i) we
note the triad (Z(r), Z(rs),n > 1,D) satisfies (4.1) and (4.2) on D. Since
ZXr,)f — Z{r)f, as r, — oo for any f € D and V) being the unique
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contractive solution of (5.3) with Z(r) as its coeflicients, Proposition 4.4

implies that w.lim,—V(£) = VIX(¢), 0 < ¢ < co. This completes the

proof. | |

For each A, u > 0, 0 € r,s < 1, we define one parameter family of

semigroups 7(**™*) on B(H,) by
T(A.p,r)(m) — EU[V(A.T')(t)*mv(m-")(t)], i Z 0,

where semigroup property follows from bar-cocycle property of the contrac-
tive processes V{47, The associated pre-dual semigroup o{**m% on 7 is de-

fined as in (5.5) whose bounded generator L) is given by

LN p) = Yup + pYy +rsy ZEp(2Y), p€T.
kES

For each 0 £ r < 1 we also have

WO(p) =Yp + pY* +13 ZepZ;, pen(T),
kes

where W) is described in Proposition 5.4.
We also write 707}, (7)) and for 7MANT) £(Awinn) regnectively. Simi-
larly for their pre-dual maps on 7. Whenr =1 we omit the symbol r.

For each 0 < r,s £ 1 we also set one parameter semigroup
rre) = Ey[V iy zvVE(@#),t >0

on B(Ho). When r = 1 we omit the symbol r.
Our aim is to show that o{™™ is the pre-dual map of 7%, ¢ > 0 for all,
where ¢™" is defined as in Proposition 5.4. Before we proceed for the next

result we state the following Lemma.

Lemma 5.9 : Let A,k > 1 and B,k > 1 be two families of bounded

operators such that the series ZA:Ak converge in strong operator topol-
n>1
ogy and s.im,_,.,B, = B. Then for each p € T, the sequence C(m,n) =
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EAkBm p Bl A, converges in || - || topology to €' = ZAkB p B A} as
kes kES
(m,n) — oo, independent of the order of limiting variables.

Proof : Lemma 5.3 implies that C,C(m,n), m,n > 1 are elements in 7.

For any fixed m,n > 1 and p € T we have

IC(m,n) = Clle < E{”Ak(ﬁm — B)p(ArBn )l

- ||A«Bp(Ak(Bn ~ B))*|ir.}

Hence for p = |f >< g| we have

IC(m,n) = Cller £ D_{l[A{ B — B)fll |AsBrgll + [ 4eBfll | Ax(Bn — B)gl|}

k1
- (,?—; |44(Bn - B)fIF): (;”Aang‘lz)%.
- (;”Akﬂlﬂ)%(gllmwﬂ _ Byl

< o(ll(Bm ~ B)fI| ||Bagil + If11 [|(Bn — B)gl}) < BII Il lg]]

where «a, § are some positive constants independent of f,g. Hence the result
follows for p = |f >< g|, f,g € H. For a general p =) ¢ |fi >< g, ||fill =
i

lg:ll = 1, jei] < o0, use dominated convergence theorem to conclude the

i

{ ' y
required result., This completes the proof, | n

Proposition 5.10 : Cosider the family of operators {Y, Z;, k € §} satisfy-
ing (5.6) and (5.7). Then for each fixed 0 < r < 1 the following hold:
(i) Foreach A\,p >0, 0<r,s<1

gt = pwTS) 4> 0,

() Bmgs, p—ool | £ (0) = WO p)] [ = 0

whenever p € 7(7), independent of the order of the limiting variables;

(i) lim (sp)mcollot " (p) = i (o)l = 0 for all p € T,
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where &) is the map defined as in Proposition 5.4;
(iv} The pre-dual map of ‘rt(r) is thr), t > 0
(v} For each 0 < s < 1, aﬁ"*” = aE‘-”'_” for all t > 0.

Proof : Since for each fixed A,u > 0, L) = pAn/ra/r) we conclude
(i) by the fact that a bounded generator uniquely determines the semigroup.

Now for (ii} first observe that

LN r(p)) = Yum(p) +m(p)¥y

+ r’gzﬁ(ﬁ(ﬂ ~Y)y Dp(A(A -Y) )2}y
g

and
W(n(p)) = Yalp) +n(p)Y" +r*3 Zip(Z})"
kes

for all p € 7 and Yyr(p) = p2(p—Y*) (e =Y) (Y1 =Y) 1p(1 - Y*)1).
Now (ii) is immediate from Lemma §.9.

Since n(7) is a core for W) which is the genrator of a strongly continuocus
contraction semigroup, (iii) is evident from (ii) once we appeal to a standard

‘result in the semigroup theory (10].
For any fixed f,¢g € My, A ¢ > 0 we have

tr(za; ™" (|f >< g)) =< fe(0), V‘*"‘"(t)*:cV{“*’)(t)ge(O) >

Hence (iv) follows from Proposition 5.8(i) and (iii). Also conclude (v) from
(i) and (iii). This completes the proof. . -

The follow_'ing theorem establishes our central aim set in this exposition.

Theorem 5.11 : Let Y, Z;,k € S be a family of operators satisfying
Assumption 5.7, Consider the family Z = {Z_;:, 1,7 € 8} defined as in (5.4}
on D. Then there exists a unique regular (D, M)-adapted contractive process

V = {V(t), ¢ > 0} satisfying (5.3) on DRe(M).
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Moreover the following hold:

(i) T7"(z) = IE(V(t)*zV(¢)], where 7™ is the minimal dynamical semi-
group on B(Hp) associated with (5.1) and (5.2).

(ii) Let equality in (5.7) be valid and S be also isometric operator then Z € 7.

In such a case V is isometric if and only if 8, = 0 for some A > 0, where 3,

is defined as in Proposition 4.9.

Proof : The first part is nothing but a restatement of Proposition 5.8 (i} for
r =1,

In view of Proposition 5.10 it is evident that for all 0 € r < 1 following
hold:

tr(ot(If >< gs) = lhmatr(el"(1f >< gl)e)
= lim,; < fe(0), VII(#) 2V} (2)ge(0) >
= < fe(O),V(r)(t)*iV(t)gﬁ(O) >

for any f,g € Hy. Now taking limit as » T 1 in the above identity we get the
required identity for (i) by Proposition 5.4(vi).

That Z € T is simple to varify. ‘Only if’ part of (ii) follows from (i} and
Theorem 5.5. For the converse we appeal to Proposition 4.9. This completes
the proof. |

Now combiniting Theorem 4.11 and Theorem 5.11 we arrive at a necessary
and sufficient condition for V to be co-isometric.

Corollary 5.12 ; Consider the family V{V(¢), t > 0} of operators defined
as in Proposition 5.6. Let the family {Y*, Zi, & € S} of operators also
satisfy (5.6) ,(5.7) and D be a core for Y* so that D C D(Z}), k € S. Then

the followig hold:
(i) The dual bar-cocycle V satisfies (5.3) on DQe(M) with coefficients Z
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replaced by Z where

(S -6, Lj€ES,
. “%(S?}*Zk , 1€8,j=0,
’ Z} , 1=0,j €8,
|y L i=0=j

are defined on D;

(ii) Let equality in (5.7) be valid and S be co-isometric operator then Z € 7.
In such a case V is co-isometric if and only if 8, = 0 for some A > 0, where

St

B, 1s defined as in Proposition 4.11.

Proof : 9§ being a contractive operator we observe that

DML FI* < 2 fIP

kesS keS

for each f € D(Zy),k € &, where Ly = Z(Si)*z;. Hence the family
=)

{Y*, Ly, k € 8} also satisfy (5.6) and (5.7). Thus (i) is immediate from

Proposition 4.11. The proof is complete once we note that V' is co-isometric

if and only if V is isometric and appeal to Theorem 5.11(ii). | m

Example 5.13 : Let Li, k € § be a family of closed operators in Hy and
Y be the generator of a contractive Cy semigroup satisfying (5.6) and (5.7).
For each k € S consider the polar decomposition L; = Si|Li|, where Sy
is the partial isometry with intial subspace as R(|Lz|), hence SiLy = |Lg].

Now with Z; = Lk,Sf = 5_:-'5';;, k.7 € S define the family of operators Z2 =
{Zj,. t,J € S} asin (5.4) on D(Y'). 1t is evident that Assumption 5.7 is valid.

For more explicit example we refer to Section 7 and Section 8.
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Notes and Remarks:

The notion of minimal semigroup associated with Kolmogorov backward
and forward differential equations was introduced by Feller [15]. Kato |25]
employed a special perturbation method to construct the minimal semigroup
in the spirit of Hille-Yosida semigroup theory. Proposition 5.4 is adapted
from Davies [9]. Theorem 5.5 can be regarded as an abstraction of the main
result obtained in {25]. The notion of dilation in boson Fock space associated
with a dynamical semigroup is introduced in [1]. In Hudson-Parthasarathy
[22] the dilation was established when the dynamical semigroup is uniformly
continuous. Here we used [9,25] as our guiedline to exploite the class Z5 N
éﬁ of operators introduced in Section 2 and develope a theory in the spirit
of semigroup theory as developed in Yosida [39]. Here our choice of the
contractive operator S is restricted so that the operators Z7, j € & is well
defined on D. It is note clear wheather this restriction is necessary. .Althﬂugh
the results obtain here can be applied to deal with the dilation problems
considered in Section 7 and Section 8 we follow a special method outlined as
in Mohari [34]. Some results on the related dilation problem may be found
in Chevotarev [6]. The method employed here is different from that in [6].



6 Classical Markov Processes:

Let (X, F, p) be a probability space and X (t, ), £ 2 0 be a time homogeneous
Markov process with denumerable state space £, We identify the state space
£ with a subset of natural numbers Z. Let P(t) = {P;(¢), ¢, €&}, 1 >0

be the transition probability matrices defined as follows:

Pi;(t) = p(w, X(t,w) = 7|X(0,w) =1}

It is evident that for all i,k € £ the following hold:
(2) Pi(0) = &;
(b) Pu(s+1t) = Pi;(s)P;(t) for all s,t > 0;
(¢) Pu(t) 20 anﬁEZP;j(t) <1forallt>0;
where the inequalig;gindicates that the process may go out of the state space
with positive probability. The family P(t), { > 0issaid to be strictly stochas-
tic if equality holds in (c¢) for all z € £, ¢ > C.
We assume the standard weak regulanty property :
(d) myoPi(t) = 6, for all 7,k € €.
In such a case Doob and Kolmogorov proved the following facts:
(1) The limit §; = lim;_,0+(1 — P;;(t)})/t exists for all 7 € £ but it may be co;
(i1} The limit Q = lim;—04 Pix(t)/t exists and is finite,
(ii1) Q; > 0 for all z 2 k. Moreover, for each fixed ¢

Jijti |
If (; < oo for all ¢ € £ and equality in (6.1) holds then P(t), t > 0 also
satisfies the Kolmogorov forward and backward differential equations i.e. the

map ¢ — Pi(?) is continuously differentiable for each ¢,k € £ and

’
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(e) PL(t) =) Pi;(t);
jEE

(f) Pi(1) = Zsﬂiipjk(t);
j€E

Wh&l‘& Qﬂ' — _Qiur

We say that Q = (( Qi; ) is a Markov mairiz if Q;; > 0 for all : £ 7 and
equlity holds in (6.1) with Q; = Q;; for every 1.

For a given Markov matrix {8 Feller [15] proved that there exists a tran-
sition probability matrix F(t), ¢t > 0 satisfying (a)-(f). Moreover if a family
P(t) = {Pa{t), t > 0} of positive matrices satisfies either (e) or (f), then for
all ¢ > 0 Py (1) 2 Fie(t). It is evident that the minimal solution F'(¢), t > 0O
of Kolmogorov differential equations is uniquely determined. In general (a) -

(f) do not determine a unique solution. For an account the reader is refered

to Chung {8].

We shall quote without proof the construction of Feller’s ‘minimal’ solu-

tion as outlined in Ledermann-Reuter [27)].

Definition 6.1 : A family of matrices = {2(t) = (;(¢) : 4,5 € £);¢ > 0}
is sald to be regular Markov if the following holds:

(2) i) 206 £4) Quilh) = =000
JF#
(b) the map t — Q;;(t) is continuous for each ¢, j € &.

For any n 2 1 denote the family of finite matrices
Q) = (1) = (Q;(8) 1 4,5 € &,);t 2> 0}

and F(n) ;= {F(“)(s,t) = (F;&F](s,t) 1 1,] € Ey; 0 <us < 1}, the unique solution

of

2 (s, 1) = F™(s,)(1), F(s,5) = ;0 < s S
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where &,,n > 1 is an increasing sequence of finite subsets of £ such that

£, 1E.

Lemma 6.2 : Foralln 2 1,0<38 £t <00,k € & the following holds:

1) F(s,8) = 6u; (6.2)
(i) g F{(s,8) = S F (s, £)(0); (6.3)
JE€E,
(i1 *—--—-F‘“’(s t) =3 Qui(s)Ffi (s, 1); (6.4)
Je&y,
(iv)  EP(s,t) = gﬂ&"’(s,r) Fif(rt)(s<r<t);  (6.5)
V) F{Gn 20, LEMPs<L (6.6)
JEEn
(vi)  Fyt(s,0) > F{(s,t); (6.7)

(vii) I Q(2) = 0, set FM(#) = F{P(0,1), then

Fi(s,t) = Fi)(t — s). (6.8)

So as n — oo, F}S,”)(s,t) tends to a limit say Fyu(s,t). From Lemma 6.2

we have the following theorem.

Theorem 6.3 : For any fixed s > 0. Fy(s,t) is absolutely continuous in ¢,
and for any fixed t > 0, Fjx(s,1) is continuously differentiable in s. For all
0 <s<Xt<ooandi kel the following holds:

() Fal(s,s) = bus - (89)
. %,
()  FFa(st)= TR 0)%E)  (6.10)
i |
for almost all ¢t > s (s held fixed);

i)~ Pl t) = S%(s)Fa(s, ) (6:11)
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(iv)  Fu(s,t) = 3 _Fij(s,r)Fjx(r,t) (6.12)
7
¥)  Fuls,t) 20, Fy(s8) S 1 (6.13)
(vi) If Q(t) =l as in Lemma 6.2 '(1.ﬂ'ii)._,j set Fy(t) = Fi(0,1), then
Fi(s,t) = Fu(t — s) i (6.14)
and (6.10) is valid for all ¢ > s.

Theorem 6.4 : If a family of matrices P(s,t) = {Py(s,t) : 1,k € S},O'S

§ <t < oo satisfies
P(s,8) = b;x; Pu(s,t) 20
and either (6.11) or (6.12) then
Py(s,t) 2 Fiuls, 1) (6.15)
forall 0 < s €1 < .

Proof : For a complete account of these results see Ledermann-Reuter [27].

n
Consider the situation when {2() = {2 and set Fyx(¢) : ¢ 2 0 as in Theorem

6.3(vi). It is clear from (6.14) that for all ¢ > 0
S Fu(t) < 1. - (6.16)
k

The following theorem indicates a necessary and sufficient condition for equal-

ity in (6.16).

Theorem 6.5 For all 7 € £ and ¢ > 0 equality holds in (6.16) if and only if
By = {0} for some A > 0 where

By={x 20,z €l,(£): Oz = Az}
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Proof : See Feller [15]. »
Notes and Remarks:

In general Feller’s resolvent condition for the minimal process to be strictly
stochastic is difficult to varify. However in pure birth process thisis equivalent
to ZA;I = 00, where Qi rr1 = —{hx = A, k 2 1, otherwise 0. For a more

k>0
explicit description of Feller’s condition for birth and death processes, the

reader is refered to Karlin-McGregor{24]. Also see Kato [25].



7 A class of non-commutative Markov pro-

cesses .

In this section we shall deal with a class of quantum stochastic evolutions
initiated by Fagnola [14]. Some resuts in this direction will be found in
(7]. Here we consider a class of non-commutative Markov processes which
inparticular includes the related result obtained in [14] and and improves
some unsatisfactory parts in Chebotarev-Fagnola-Frigerio {7].

Fix a Markov matrix Q = ({;;1,5 € Z) and choose complex numbers

m;; (1,7 € Z) such that

“\mﬁlz ) 3':.7

12 . -
o - { mgl? ””_ 1)

and § C Z\{0} so thatforallk € Z,i ¢S
Mg ks — 0,

So for each 1+ € Z,—Q; = ZQ,-J; holds, Also fix an orthonormal ba-
JES

sis {fy : £k € Z} for Hp and denote by D the linear manifold generated

by the basis vectors, Define unitary operators S;,{¢ € S) and projections

du(k € Z),M,(n > 1) in Hy by

Sifk = frtis
k= |fr >< fil, (7.2)
I, = Z st

|k|<n

and denote by A the commutative von-Neumann algebra generated by

{éi ;k € Z}. Also consider the normal operators Z;(z € S) satisfying

Zi fx = mp prifr.
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Observe that for each f € D there exists a constant c(f) 2 0 such that

2NZ AP < e(f) (7.3)

€S

Now consider operators Z = (Z}; i,7 € S) defined by

0 y 4] €9,
. ""Si'Zt' ; iES,j"—-"O,
7! = * o (7.4
. Z;SJ ; 3—_—013651 )
1Nz, i=0=]
)

Taking Z(n)(n > 1) as in (7.4) with Z;(i € S) replaced by Z"M = Z1, a
routine verification shows that the triad (D, Z, Z(n), > 1) satisfies Assump-
tion 4.10 and D is a core for Z) which is the generator of a contractive C,-
semigroup. For each n > 1 set regular (Hp, M) -ﬁdapted contractive process
V() as in Proposition 4.3. It is also evident that Z € Z N Z. Now exploiting

the results proved in Section 4 we obtain the following theorem.

Theorem 7.1 : Consider the family of operators Z = (Z}, i,7 € §) defined
as in (7.4). Then

(i) there exists a unique strongly continuous (Mo, M) adapted contractive

evolution V = {'V(t)J : 1 > 0} satisfying
dV(t) = Y V() ZidAi(t); V(0)=1I
£,j€S

on DRe(M)

(ii} V is a cocycle and for all 7,5 € Z,t > 0 the following holds:

(a) < fisme(@;)fi >= Fi(2)

(b) < fis T(¢5)fi >= Fi;(1)
where 7 = (10t 2 0) and 7 = (7, 1 £ 2 0) are as in (2.9) and F({) =
(Fi;(t) : 1,] € Z) is the minimal solution for the Markov matrix {1.
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(iii) The following statements are equivalent:
- (a) V= {V(?):t 2 0} is isometric.
(b) V= {V(t):1t = 0} is co-isometric.
(c) By = 0 for some A > 0,
where By(A > 0) are defined as in Theorem 6.5.

Proof: (i) is immediate from Proposition 4.3 and Proposition 4.7. For (ii)

set matrices P(™m(t) = {P;(jm’")(t) : —~n <1,7 < n};m 2 n defined by
PI™(t) =< fie(0), VI™(1)*§; V(%) fie(0) >
We shall show that for each n > 1 and m > n
plmnl(t) = F=i(¢) (7.5)

where F")($)(t > 0) is described in Lemma 6.2 (vii). To show this first
observe that (7.5) is true for t = 0. Quantum Ito’s formula (1.4) implies that

d
P(m‘“)(O) — 0, EEP(m,n}(t) = Q(ﬂ)P(m,ﬂ}(t), ' Z U (76)

where Q") = (Qi: —n L 4,7 £ n).
But (7.6) admits a unique solution, so (7.5) is immediate. Proposition
4,3(vi) implies that w—ﬁmnﬂmV[“)(t) = V()2 2 0). Henceforallt > 0,i,7 €

Z we have

lim F{(t) = lim lim P{™™(t) =< fi, 7(¢;)fi >

n— 00 n—o0 mM—O0

Hence (b) in (ii} follows from Theorem 6.3(vi). (a) in (ii) follows by an

identical method and we omit the details. For (iii) we shall show that (a)

<= (c), a similar method will yield (b) <= (¢). For (a) == (c), observe

that V = {V (1) : t > 0} being an isometric process we have from (ii), for each

j € Z,t >0, ) Fi;(t) =1 Hence by Theorem 6.5 we get By = {0} for some
| J
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A > 0. To show the converse recall the sufficient condition for V' = {V(¢) > 0}
to be isometric, described in Proposition 4.9. Let B € 3, for some A > 0.

Denote z = (z(k) : k € Z) defined by
z(k) =< fx, Bfy >

A simple computation shows that z € By . Hence by our hypothesis z = 0, B
being a non-negative element we have B = 00, Hence 8, = {0} for some A > 0.
This completes the proof. ; n
Notes and Remarks:

In [14], improving the basic inequalities concerning iterative integrals, a.
sufficient condition on the coefficients is obtained to guarantee the existence
of a unitary evolution, In particular it sﬁccessfully deals with the quantum
harmonic oscillator. This section has been reproduced from Mohari (34]. It
is known (see [7] ) that {oy(¢) := V()¢V({)* ;t > 0;¢ ‘€ A} is a non-
commutative family of bbunded op”erators. By Therom 7.1, oy is an identity
preserving *homomorphism if and only if By = 0 for some A > 0. For an

unbounded Markov generator it is not clear whether it satisfies a diffusion

equation in the sense of [12].



8 A class of commutative quantum Markov

processes

As in Section 7, § is a Markov matrix and operators Z;, S;{(i € S) and II,(n 2
1) are as in (7.1) - (7.3). Now consider operators Z = (2} :1,j € S) defined

by
(SI:F '" I)‘SI'J' 3 2’1.7 S S:

_ —Z; , L€, =0,
AR~ : ‘ 8.1
y Z;S; , t=0,7 €35, (8.1)
~1Y32:Z, , i=0=].
KES

Taking Z(n)(n > 1) asin (8.1) with Z;(z € 5) replaced by Zt-(“] = Z;lIl,, arou-
tine verification shows that Z satisfies Assumption 4.10 and Z € InZ. More-
over D is a core for Z§ which is the generator of a contractive Cy-semigroup.

Exploiting the results proved in Section 4 we arrive at the following theorem.

Theorem 8.1 : Suppose the operators Z = (Z};i,j € §) are as in (8.1).
Then

(i) There exists a unique strongly continuous (Ho, M) adapted isometric
evolution V = {V (1)} : £ > 0} satisfying

V()= S V(t)ZidA(t); V(0) = I (8.2)
{,je8

on DRe(M). |

(ii) V is a bar-cocycle and for all 7,5 € Z,t > 0

< fiyn(9;)fi >= F;()

where 7 = (77 : ¢ 2 0) is defined as in (2.9) and F(t) = (Fi;(t) : 4, € Z) is

the minimal solution associated with the Markov matrix {2,
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(i) n = (n(t) := I =V (#)V(t)* ;¢ > 0) is a strongly continuous increasing
projection valued commutative adapted process.

(iv) V = {V(t) : t > 0} is co-isometric if and only if B, = {0} for some
A >0, '

Proof: (i) is immediate from Proposition 4.3 and Proposition 4.7 except that

V is isometric which follows once we verify the sufficient condition indicated in
Proposition 4.9. To this end let B € §) and set z(k) :=< fi,Bfi > (k € Z).

B being an element in £, we have from (3.16)

. “%\mm*m(k) — %lmul%(k) + DMk (k)

JjES
= (Zﬂkl)m(k) = 0.

€S

Az(k)

|

Hence 8, = {0} for all A > 0. This completes the proof of (i).

(ii) follows by a similar method employed for the proof of (b) in Theorem
7.1(31).

V being a contactive bar-cocyle n is an increasing positive operator valued

process. Hence (iii) follows once we use the fact that V{f) is an isometry for

each t > 0.

Now for the ‘only if’ part in (iv) use (ii} and Theorem 6.5. For the
converse recall the sufficient condition indicated in Proposition 4.11 for V =
{V(t) : t > 0} to be co-isometric and observe that it is the same as that for
V = {V(t) : ¢t 2 0} in Theorem 7.1 to be co-isometric. So By = {0} for some
A > 0 implies ) = {0} for some A > 0. Hence this completes the proof of
(iv). | | -

Consider the family of maps a = {a;;t 22> 0} defined by

a(d) = VISV (4 € A) (8.3)
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If Q@ is a bounded Markov generator i.e. sup{fd;| < oo, then o = {e;1 > 0}

is the unique family. of strongly continuous identity preserving * homomor-

phisms satisfying:

da(d) = 3 au(0i(8))dN(1); ao(8) = ¢ (8.4)

i,JES

on Ho®e(M) ,where 8 = (6} : ¢,j € 5) is a family of regular structure maps

on A given by
[ (Br-i — $1)6:; . 4,7 €8S,
0 (4y) = | Mkemi kP hmi — T bk i Ok , 1€8,7=0, 6.5
’ PkwjkPhos — Tk k4§ Ph , 1t=0,7 €5,
Y |mkeriPdr-r — x|’ , i=0=13.
res

Furthermore {a;(¢) : ¢ > 0,¢ € A} is a commutative family of bounded
operators. For further details we refer to Example 3.13. .

Here our aim is to drop the boundedness assumption on £} and invéstiga.te
the family a = {a, : t 2 0} in detail.

By Theorem 8.1 observe that a = {a, : t > 0} is a family of strongly
continuous * homomorphisms. It preserves identity if and only if By = {0}
for some A > 0,

In {31} the asympﬁﬁtic' behaviour of the induced maps jt(")(qﬁ) E=
V(8)gV () (t > 0,4 € A) as n — oo has been investigated but it is not
clear whether it approximates the process o = {a; : t > 0} in a reasonable
topology. Here we shall modify the approximating sequence to ensure it and -
conclude some properties of o = {a, : t > 0} from that of the approximating
sequence. In particular, we shall show the commutativity of the process and
prove that the differential equation (8.4) is satisfied in weak sense. Finally
with an additional hypothesis on 2, we shall show that it satisfies (8.4) in

strong sense. To this end we introduce some notations.
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Define bounded operators S{™(i € 5), Z(n) = (Z¥{n):i,5 € S)(n > 1) by

S(n).—..{ SfH[__n+I—H[_ﬂ ' £>0

STy+I-T,; , i<O0
where
H[-ﬂ = z Pk Hn] = Z‘?Sk
k2 —n k<n
and
((‘S‘t'(”])mt I)‘S;J : L_,J c S;
; ""Z:'(n) . tES) = (},
Zin) = ' S 8.
J(n) (Z}ﬂ))t(s‘gﬂ})# 1 "-—'"'0,] = S, ( '6)
-2z, i=0=]
kES
For each n > 1 a simple computation shows that for all 7,7 € &
' . Sgﬂ) St.(ﬂ) . I 6 ) 1 ., . E S,
Zi(n) + Zin) + S ZHny 2Ky = | 0 O T D
ves | 0 , otherwise.

So for each 7 € 8 and f € D we have

2 NZi A < AR+ 127 R)FI1P + 211l 123 ()£

€S
These show that (Z, Z(n),n > 1, D) satisfy (4.3) and (4.4), where Z is defined
as in (8.1). Denote C™ = {C™™(%) : ¢t > 0} the unique co-isometric solution
of (4.1) with coefficients Z(n) (n > 1) defined as in (8,6). So by Proposition

4.3 and Theorem 8.1 we have
s-lim, e O™ () = V(1)(t 2 0). (8.7)

Now consider- the maps af™") = (™™ ;¢ > 0ym,n > 1 defined by
™™ (g) = C()pCM(t)", ¢ € A (8.8)

We also write a(® for cr(“'")(n > 1).
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A simple application of quantum Ito’s formula (1.4) shows that

dof™™(g) = T al™M( M pi(@)dAi(2); of™"(g)=¢  (8.9)

i,jES

where

(0i(9) ~ $)6i; , 1,5 €S,

al($) 2 — 2™ , 1€8,7=0,

(mn) i 4) = (Z}m})'aj(é) — qb(Z}“))' b , 1=0,7 €5,
é{(Zﬁm’)*ak(é)Zﬁ“’ - %(.Z,‘,”")*Z,E""qs
1427y 2"} , i=0=]
(8.10)

and

ox(9) = (S{™) 45" k€ 5.

We also write ™y for ™"y for each n > 1. For n > 1 denote ()9 = {(“)9} :
1,7 € S} the regular structure maps defined by (8.10) where m == n and
ox(p) = S;dSk(k € S). Some algebraic relations among these maps are listed

in the following Lemma.

Lemma 8.2 : Fix any n > 1 .The following holds for all i,5 € 5 :
(i) forg € A

H["‘-ﬂ (ﬂlﬂj(é) ; £1j201

()il h) —
pi(¢) = .
! { I, (“)-ﬂg(é) . otherwise

(ii) for |k} < n <m

™) i b) =" pi().

Proof: Note thatforallie S,n > 1
(’a') Si(ﬂ)zt'(n) = sztgn);
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(b} for k € Z

Mi-n{dr-i — ¢x) ; 1> 0,
Ioj(fp—i — &) 5 1 <0

(Si'(n))*gﬁkslgn) — "ﬁk B {

(c) for k| €n<<m
(5™ ¢St = (M) 5™,

With these observations a routine computation implies (i) and (ii), m

Let Ag be the linear manifold generated by {¢i : k € Z}. So Ay is weakly

dense in A.

Proposition 8.3 : Forany n > 1

(i) o™ = {a{ : ¢ > 0} is a family of * homomorphisms from A into
A ® B(I'}) and the family {agﬂ)(qﬁ) 12 0,¢ € A} is commutative;

(ii) for k| < n < myt >0

o (Bx) = ™" (41); (8.11)

(iii) for ¢ € Ag,t 2 0
s-limn_*.mcrt("j(qﬁ) = oy(¢); (8.12)

(iv) a = {a; : t 2 0} is a family of * homomorphisms from A4 into

A® B(T'}) and the family {e(¢) :1 > 0,4 € A} is commutative,

Proof: Since ("4 is a family of regular structure maps Lemma 8.2(i) implies
that (™ pu is also a family of regular structure maps on 4. Hence (i) follows
from Theorem 3.10 and Theorem 3.11.

- For any fixed f,g € Ho,u,v € M,n 21 denote zm(t) = {z{™ () : |k] <
n};t 2 0,m > n defined by

i (t) =< fe(u),a{™ (4 )ge(v) > .
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From (8.9) we get form 2 n

d

C_Em(m)(t) = (™M) (@) > 0) (8.13)

where (M(t) = {Q;(t) : ~n < 1,7 < n};t > 0 are defined by
(uj-i(t) + mis ) (v~ (t) + T;) , i # 5,
“Eni'r(t) | ) 7 = j

r#i

Q;J-(t) —

Also observe that z(™)(0) is independent of m > n. Since (8.13) admits a
unique solution we have for all m > n > |k, fy g € Ho,u,v € Mand ¢t 2 0

< fe(u), ot (dr)ge(v) >=< fe(w), ™™ (r)ge(v) > .

Now a standard argument implies (ii). For (iii) it is enough to show (8.12)

for ¢ = ¢y, k € Z. From (8.7) and (8.11) we have for each n > |k|
ol (1) = w-limpmacai™ (¢) = V()¢ C™ ()% > 0), (8.14)

Hence we get applying (8.7) once more in (8.14)

w-lim, oo™ (64) = ou(ds) (¢ 2 0).

Since & : n > 1 and ay(¢ > 0) are * homomorphisms, (8.12) follows.

This completes the proof of (iii). For (iv) use (i) and (ii) to show that
{cr;(gé) :t 20,9 € A} is a commutative family. Since Ap is strongly dense

in A, (iv) follows by a standard approximation argument. »

We shall show that @ = {a; : ¢ > 0} is indeed, a quantum analogue of

Feller’s minimal solution. To this end we introduce a few notations. For any
fixed u € M, consider the family of matrices P(s,t) = {P;;(s,1) : —00 <
i,j < 00}, P™(s,8) = {P¥Ns,t) : ~n < i,j < n};0< s <tandn >
1,20) = {Q;(1) i n < 4,5 < n};t > 0 where

P (s,t) =< fie(u), CM(s)*CW(£),C™M (£)* C(s) fie(u) > e~
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Pij(s,t) =< fie(u), V(s)" V(£)$;V(£)'V (s) fie() > [le(u)||™*
Imi; +ui—i()F , 1#£7]
= Qix(t) , t=].

ary

Qi;(t) =

Proposition 8.4 : For any fixed u € M, the following holds :

(i) lim P)(s,t) = P;(s,t) (0 <s<t<oo);

(i) {P;;(s,t), 0 < s <t < oo} is the minimal solution described as
in Theorem 6.3 associated with the family of Markov regular matrices {) =

{Qt) = (;(2), ¢ 2 0)}5

Proof : (i) follows from (8.7) and (8.12). Using quantum Ito’s formula (1.4)

we havefor 0 € s <t <ocoandn 21

_g_{ P54} = PO (s, QW (1), (8.15)

Since (8.15) admits a unique solution, we have for any ¢,j € Z and n 2>

max( |z, |j])

PO(s,t) = 3 P, o) F (s31) (8.16)
|k|<n

where F(")(s,t) is the unique solution of (6.3). Now taking limit as n — oo

in (8.16) we get for all 2,7 € Z
Pi(s,t) = Fij(s,t)

where (6.7) and (6.13) have been used to employ dominated convergence

theorem. Hence (ii) follows by Theorem 6.3. | _

For the rest of this section we shall impose the following hypothesis on

the Markov matrix {2:
(H) for each j € Z,sup {; < co.
i
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Observe that for Q satisfying (#),8 = {6} :i,j € S} described as in (8.5)
possesses the property that each 9;'- maps Ag into .A. Furthermore we have

the following Lemima.

Lemma 8.5 : Let () be valid. Then for ¢ € Ay the following holds:
(i)
; 6;(4)"6;(8) (8.17)
is convergent in strong operator topology for j € S .
(i)
W-limp oo™ (M pi(8)) = e(65(4)) (8.18)

fort>0,4,5 €S

Proof : In view of Lemma 1.9 to show (i} it is enough to verify (8.17) for
¢ = ¢y, k € Z. For j € § (8.17) is always valid since only finitely many

terms are non-zero, For j = 0,1 € § we have

0o(bx)"60( k) = DpinPri + L kiBrs
so for each f € Hyg
> Ne(d:) I < 2(1Q%] + sup Q)] 112
(T | RED
Hence this completes the proof of (i). For (ii) note that it suffices to
verify (8.18) for ¢ = ¢x, k € Z. For (i,5) # (0,0) ,(™ pui(4;) being equal
to 85(¢x) for sufficiently large n, (8.18) follows from (8.12). Proof of (ii) will

be complete once we verify (8.18) for ¢ = 0 = j. To show this observe the

following:

(a) ™ ud(4:) being an element in the linear span of {¢, : |r| < n} (8.14)
implies that

oM (Mu(dr)) = VN d(41))C™(2) (¢ > 0)
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(b) ™ ud() : n > |k| is a sequence of self-adjoint operators and

s-lim™ g (gx) = 6(8x) -

A standard argument coupled with these observations and (8.7) lead us to

the required result. This completes the proof,

Theorem 8.6 : Consider the family of maps o = (a4 : t > 0) defined as in
(8.3). Then the following holds:

(i)a;: A— AQ B(I',);t 2 0 is a family of strongly continuous * homo-
morphisms and {o,(¢) : t > 0,¢ € A} is a commmutative family of bounded '
operators;

(ii) « is identity preserving if and only if By = {0} for some A > 0;

(ii1) If (H) holds then for all ¢ € A

ao(@) = ¢y day(¢) = Y a(6(4))dAN(t) (¢ 2> 0) (8.19)
| {JES
holds on Ho®e(M);
(iv) For any f € Ho,u € M,t 2 0,¢ > 0 and a positivity preserving
bounded process j = {j:(¢) : t > 0,¢ € A} satisfying (8.19) the following
inequality holds:

< fe(u),ji(@)fe(u) > 2 < fe(u), a($)fe(u) > .

Proof: By Proposition 4.11(ii) observe that V* is strongly continuous, hence
Theorem 8.1 implies the first part of (i). For the rest of (i) appeal to Propo-
sition 8.3(iv). Note that (ii) follows from Theorem 8.1(iv).

First observe that for all f,g € Ho,u,v € M,¢d € Apand ¢t > 0

< fe(u),ai($)ge(v) >= lim < fe(u), et ($)ge(v) >

=+ 00
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=< fe(u), dge(v) > + 3, Jim [ dsui(s)i(s) < fe(), o () pi(#))ge(v) >

rJES

=< fe(u), dge(v) >+ 3 / dsui(s)v7(s) < fe(u), a,(6}(4))ge(v) >
{JES
where (8.12), u,v € M rEf:»‘..tu:l (8.18) have been used in the first, second and

last equality respectively. Now for (iii) it is enough to show for each ¢ €
Ao, {01(6:(4))} € EL{Ho, M). Adaptedness of the processes is clear from
Theorem 8.1(1) and for each ¢ € Ay,j € S, oy being a homomorphism we get
from (8.17)

S a(8(8)) a(Bi(4)) = a T (6)"64(6)). (8.20)

{eS {eS
where the series converge in strong operator topology. oy being a contractive

map for each ¢ > 0, we get the required result from (8.20). This completes
the proof of (iii).
For (iv) we need to show for each f € Hp,u € M and |k] < n

y() 2 (1) (t > 0)

where

yi(t) =< fe(u), ji(¢e) fe(u) >

and

o (1) =< fe(u), oi™ (4x)fe(u) > .
Fix any n > 1 and observe by our assumption on j = {7, : ¢t > 0)

jt () = y™@)QM() + ()t > 0) - (8.21)
where y™(t) = {ya(t) : —n < k < n} and 2(t) = {{"(t) : —n <k < n} is
given by

M) = Ty (¢ 20)

lil>n
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and z("(t) > 0. Also note that z("(t) = {z{™(t) : —n < k < n} is the unique
solution of (8.21) where z(")(#) = 0. With these observations we get the
required inequality by integrating the differential equation. This completes
the proof. | .

Notes and Remarks:

The programme was initiated by Meyer [29], where it was indicated how to
realise Markov a chain as a QS flow. Pa.rtha.sarathy-Sinhﬁ [37] proved that the
QS flow restricted to a suitable commutative algebra is indeed a commutative
prosses. This theory has been subsequently generalised in Mohari-Sinha, {33]
to deal with the dilation problem assaciated with a countable state Markov
process having a bounded generator. Fagnola [13] initiated the programe
when the Markov generator is unbounded and deal with quantum stochastic
evolution associated with pure birth ( pure death ) process. ( See Theorem 8.1
). In Mohari-Parthasarathy [31] the theory has been extended in the context
of a more general state space and a class of unbounded Markov generators.
The present exposition is reproduced from Mohari (34]. In analogy with the
classical Feller minimal process, we expect an operator inequality in Theorem

8.6(iv). However, with an additional assumption on j;, namely if for all ¢ # j

and u,v € M < fie(u), ji(@)fie(v) >= 0 for all £ > 0 then

(@) 2 o)

- whenever ¢ > 0. It remains an open question whether Feller’s condition is
also sufficient for the existence of a unique positivity preserving contractive

flow satisfying (8.19).
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