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Chapter 1

INTRODUCTION AND SUMMARY

1.0;'."Generaf Intrﬂductiﬂﬂ

The problem of drawing inference concerning the parameters of a finite
population of identifiable units has been increasingly engaging the attention
of statisticians, The central problem here is to devise a suitable method
- of selecting a sample from the population and to employ an appropriate
estimator to estimate the finite population total or mean. A consider-
able progress in this field of study has been made and many authors have
contributed towards the development of the theory in this aspect of the

problem of statistical inference.
Numerous papers have been written covering the first aspect of the

problem, namely, method of selecting an appropriate sample from a given
universe. It has been demonstrated that the unequal probability sampling
provides more efficient estimator of population total than that obtained
from an equal probability sampling.

Hansen and Hurwitz (1943) were the first to indicate the utility of the
method of selection with varying probability. They gave a method of se-: .
lecting a single unit with probability proportional to size which can be
easily extended to select more than one unit if the selection be made with
replacement - the probability proprotional to size with replacement (pp-
swr) scheme. Madow (1949) proposed the use of systematic sampling with
unequal probabilities to avoid the possibility of units being selected more
than once. Midzuno (1950), Narain (1951), among others, considered the
- problem of sampling with varying probabilities without replacement (wor).
Closely following these authors Horvitz-Thompson (1952),Sen (1953), Yates
and Grundy (1953) studied more general methods of sampling wor and
with varying probabilities. The variance of the Horvitz-Thompson estima-
tor (HTE) of population total is uniquely determined by the first order and
second order inclusion-probabilities of units in a sample for a chosen design
and reduces to zero if the variate'values are exactly proportional to the cor-
responding inclusion-probabilities. As the values of the variable of interest
are unknown it seems reasonable to choose an auxiliary variable (usually
known as size-measure) which is believed to be closely related to the main
variable and attempt has been made to develop fixed-size sampling designs
with inclusion-probabilities proportional to size-measures. Such designs are



called IPPS (inclusion—proBability proportional to size) designs or wps de-
signs (Hanurav (1967)). It was desired to construct mps designs or designs

which are approximately rps such that the variance of the HTE have vari-
ance less than that of the customary Hansen-Hurwitz (1943) estimator of
population total in the ppswr sampling scheme., Apart from the estimator
suggested by Horvitz and Thompson themselves an alternative expression
for variance of HT'E was derived independently by Sen (1953} and Yates
and Grundy (1953) which is valid only if the number of units in the sam-
ple is fixed. The unbiased estimator of the variance of HTE proved to be
disadvantageous since it is not always zero when the variance is zero, An
alternative conditioanally unbiased estimator was suggested by Sen (1953)
and by Yates and Grundy (1953) which possesses the particular property
of being zero when the variance itself is zero. Both the estimators can
assume negative values. However under some selection procedures it was
demonstrated by Sen (1963), Raj (1956a), Rao and Singh (1963), Lanke
(1974), Asok and Sukhatme (1974), among others, that the first estimator
could take negative values for some of the pairs whereas the later one takes
positive values for all the sample pairs. Many sampling designs such as
designs due to Yates-Grundy (1953), Brewer (1963), Hanurav (1962), Fel-
legi (1963),Rao (1963), Héjek (1964), Carroll-Hartley (1964),Durbin (1967),
Sampford (1967), Fuller (1971}, Vijayan (1967), Mukhopadhyay (1972),
Sinha (1973),Sengupta (1981), Gupta, Nigam and Kumar(1982), Saxena,

Singh and Srivastava (1986), Sunter (1986) |
, Hedayet, Rao and Stafker (1986) etc, were developed for using HTE.

. Schemes due to Yates-Grundy (1953), Narain (1951), Yates-Grundy (1953),

Brewer and Undy (1969), Brewer {1963),Rao (1965), Hanurav (1967), Durbin
| (1967), Fuller (1971),Dodds and Fryer (1971), are applicable for n = 2
only., Apart from sampling strategies consisting of (approximately) 7 ps de-
sign and corresponding HTE some very interesting special procedures like
Rao-Hartley-Cochran strategy (1962), Midzuno (1950,52) procedure were
suggested and developed. Schemes due to Rao-Hartley-Cochran (1962) and
Chikkagouder (1967) use a special estimator other than HTE. Procedures
derived by Midzuno (1950,52)-Lahiri (1951)-Sen (1952),

Sankarnarayanan (1969), Deshpande (1978) gave unbiased estimation for
ratio estimator. Singh and Srivas-



tava’s (1980) procedure was developed with regression estimator in view.
Mukhopadhyay (1972) and Sinha (1973) attempted to obtain sampling de-
signs realising a given set of second order inclusion-probabilities. This prob-
lem has also been considered by Herzel (1986). Das (1951), Raj (1956),
Murthy (1975) have suggested certain other special estimators for use with
Yates-Grundy’s (1953) draw by draw procedure. Excellent review of sam-
pling designs may be found in Brewer and Hanif (1980),Chaudhury and
Vos (1988), Mukhopadhyay {1991).

- Apart from the derivations of the above mentioned sampling designs
the direction of theoretical research in survey sampling in recent years was
primarily guided by two major findings, namely

(a) the non-existence of unblased minimum variance estimation {Go-
dambe (1955)) and (b) that the likelihood function is independent of the
sampling design (Godambe (1966)).

Within the formal survey sampling model, which takes into account in-
dividual labels, the likelithood function was found to be independent of the
mode of randomization. This implied that once the sample was drawn,
any inference (estimation) consistent with the likelihood and conditional-
ity principles should be independent of whether the sa.mple was drawn at

random or was drawn purposively.
The discovery that the likelihood function is independent of the mode

of randomization gave rise to formal theories of (prior-probabilistic) model -
based inference and the related purposive selection. Given the data the
problem of drawing inference about a population parameter using a predic-
tor was foreshadowed and considered by Brewer (1963), Royall (1970,1971),
Royall and Herson (1973) gave general formulations to the problem. After
that different models and corresponding optimal estimators were examined
by Royall (1975,1976},Cochran (1977), Sarndal (1980), Wright (1983), Isaki
and Fuller (1982), Tam (1986) among others. Under exchangeable general
linear models [Arnold (1979)] Mukhopadhyay (1988) found the UMVU pre-
dictor of the population total. Rodrigues et al (1985) extended the con-
cepts to develop a general theory of prediction which covers both linear
and quadratic functions of population values, Skinner (1983) considered
the multivariate prediction of mean. Meanwhile question of robustness of
the estimators (predictors) arose and Royall and Herson (1973) introduced
the concept of balanced samples. Scott, Brewer and Ho (1978) generalised
the concept of balanced sampling. Mukhopadhyay (1977, 1985) studied
the robustness of some optimal predictors under a class of alternative mod-
els. Cumberland and Royall { 1981) defined the w-balanced sample. Kott
| (1986 a,b),Pfefferman (1984), Pereira and Rodrigues (1983), Tallis (1978),




among others, contributed some fruitful results in this area. As all types
of balanced samples are really non-existent in practice, Royall and Her-
son (1973), Royall and Pfefferman (1982) recommended srs, approximately
stratiied random sampling as approximately balanced sampling. Royall
and Cumberland (1981) proposed a sampling design to realise the concept of
balanced sampling approximately. Iachan (1985) proposed a similar design
with some modifications. However to take care of the brittleness of model-
dependent predictors under departure from the assumed model, the genesis
of the model-based predictors which combine both model-randomization
and design-randomization, was evolved. Cassel, Sarndal and Wretman
(1976) and Sarndal (1980) suggested the generalised regressiox} predictor
(GRP) of population total. Wright (1983) generalising GRP, introduced
the QR-predictors. Montanari (1987} generalising Wright’s result, defined
an enlarged class of QR-predictors, Brewer, Samiuddin and Asad (1989)
considered a linear design unbiased estimator, having ratio estimator prop-
erty and some stability, specially for outliers. The strategies suggested here
often do not possess any desirable properties (unbiasedn(-;ss, attainment of
a minimum variance bound etc.) in exact analysis, though in asymptotic
analysis most of these properties hold. Brewer (1979) considered the class
of predictors which are asymptotically design unbiased (ADU), the pre-
~dictors being of a particular form suggested by a model and in this class
' the optimal strategy is one which minimises the asymptotic expected mse.
His stand-point is somewhat between design and pure superpopulation as a.
basis for inference. Robinson and Tsui (1976,1982), Wright (1983), Robin-
son and Sarndal (1983), Fuller and Isaki (1981),Liu (1983) among others
" made valuable contributions in asymptotyic analysis. A review of different
model-based and model-dependent strategies for drawing inference for a
finite population total may be seen in Mukhopadhyay (1990,1992).
~ The problem of estimating a finite population variance has received little
attention compared to a population total or mean. The problem of esti-
~mation of a finite population variance was first considered by Liu (1974a).
"‘He intro duced Horvitz-Thompson (HT)-type estimator of variance and ex-
amined its forms under simple random sampling with and without replace-
~ ment and probability proportional to size (ppswr) sampling procedures.
He showed his estimator to be admissible in the class of all unbiased es-
~timators for the population variance and also constructed an admissible
general unbiased quartic estimator for the variance. Observing that Liu’s
estimator can sometimes take negatlve values, Chaudhury (1978) suggested
non—negatwe alternative estimators and noted some of their properties. Das
and Tnpa.t.hl (1978) obtamed the ratio-type and product-type estimators



of variance under simple random sampling with replacement. Isaki (1983)
considercd muitivariate ratio and regression estimators of variance following
Olkin’s (1958) multivariate estimators in case of population total. Following
- prediction-theory based works of Royall (1970, 1976), Royall and Herson
(1973), Mukhopadhyay (1978, 1982, 1984}, Chang and Lin (1985) obtained
the optimal model-unbiased, design-unbiased and model-design-unbiased
predictors of finite population variance. Minimax strategies for estimating
the variance has also been obtained. Mukhopadhyay (1984) obtained opti-
mal estimator of variance under generalised random permutation models,
He suggested (1990} a predictor of finite population variance under proba-
bility sampling suggested by a multiple regression model and showed this
to be asymptotically design unbiased and consistent. Valuable contribu-
tions in this direction were made by Sankarnarayanan (1980), Zacks and
Solomon (1981), Skinner (1981, 1983), Strauss (1982), Ghosh and Meeden
(1983), Liu and Thompson (1983), Singh (1983), Vardeman and Meeden
(1983), Rodrigues et al (1985) and Sengupta (1988), among others.

1.1 Summary of the results |

In the above context we have paid attention to some aspects of the
problems of deriving suitable sampling strategies for estimation (prediction)
of population total and variance under fixed population and obtained some
results which are briefly described chapterwise as follows. In the description
of the results of this thesis, references to earlier works have been omitted
as they have been given in details in the different chapters deriving these
results. |

We have used design-based approach in chapter 2, section 4.3 and sub-
sections 4.4.1-4.4.5 of chapter 4, model-based approach in chapter 3, re-
maining portion of chapter 4, chapters 5 and 6, where, of course, sampling
designs have been invoked in some places to find optimal designs, robust de-
signs etc. The work of cha,pter 7 is Bayesian estimation of finite population
proportion.

Chapter 2 mainly covers the problems in estimating a finite popula-
tion total. In section 2.2 the notations are described., In section 2.3 we
have investigated the conditions under which the strategy consisting of
Midzuno’s scheme of sampling and ratio estimator would be superior to the
Hansen-Hurwitz strategy consisting of ppswr sampling and the customary
estimator, both the schemes using the same set of values of size-measures.
Numerical examples have been given to show that such conditions are re-
“alised. |
Section 2.4 shows the derivation of k-th order inclusion probability using



the sampling design due to Singh and Srivastava (1980) and some investi-
gation of the first and second order inclusion probabilities. It is shown that
Yates-Grundy (1953) estimator of variance of Horwtz—Thompson estimator

(HTE) of population total is non-negative for this design.
Chapter 3 also covers the problems in estimating a finite population

total under superpopulation set-up.

In section 3.2 we considered the prediction of population total under
a class of polynomial regression models with variance function given as
a polynomial in the regressor variable under different balanced samples
due to Royall and Herson (1973), Scott et al (1978}, the predictors being
some of Royall’s (1970) optimal model-dependent predictors. The bias and
mse of these predictors along with those of a Horvitz-Thompson predictor
under r-balanced sample [Royall and Cumberland (1981)] have been com-
pared. It has been shown that under a wide class of polynomial regression
models, the Horvitz-Thompson predictor along with a wps-design (which is
expected to provide m-balanced samples on an average] provides a better
sampling strategy than model-dependent best linear unbiased predictors at
balanced and over-balanced samples. Bias of two optimal predictors at an

over balanced sample has also been examined.
Chapter 4 deals with some investigations in the problems of estimating

a finite population variance, In section 4.2 we proved that for any given
sampling design p with m;; > 0V ¢ # 7 there does not exist any uniformly
minimum variance quadratic unbiased edtimator (UMVQUE]) of the finite
population variance S:. 1t is also proved that for any non-census design
‘there does not exist any UMVUE of Sj in the class of all unbiased estima-
tors.
We suggest in section 4.3 a non-negative unbiased estimator of a finite
population variance .5'3 which is applicable to any fixed size without re-
placement design. The variance and estimator of variance of this estimator
have been obtained. We considered , in particular, estimation of b ¢ using
SRSWOR design, design due to La,hlrl Sen -Midzuno and design due to
Singh and Srivastava (1980). Estimation of 82 under a controlled sampling
plan and unbiased estimator of S2 under PPS WR sampling design have also
‘been considered. The performance of seyera] strategies for estimationg S
‘have been studied both numerically and under a superpopulation model.
Chapter 5 covers the optimal estimation of a finite population variance
“under some superpopulation models with exchangeable errors. The robust-
ness of the optimal strategies under a class of alternative models has been
examined. Sampling designs ensuring near unbiasedness under alternative
models have been investigated,



In chapter 6 we have considered the estimation of finite population
variance under measurement error model. A Bayesian approach for predic-
tion of population parameters is considered in Bolfarine(1991} , Mukhopad-
hyay(1994 a, k, ) among others. In section 6.3 prediction of population
variance is considered under uni-stage sampling and that under two-stage
sampling is considered in section 6.4.

In chapter 7 a two-stage sampling design is used for estimating popu-
lation proportion in Bayesian approach under two different priors. Section
7.2 contains the prior and posterior moments of the population proportion
under multinomial setup and section 7.3 contains the same under hyperge-

omeltric setup.



Chapter 2

ON SCME SAMPLING DESIGNS FOR ESTIMATING A
FINITE POPULATION TOTAL

2.1 Introduction and Some Review of Earlier Work

During the last five decades, starting from the work of Madow (1949),
many unequal probability without replacement (upwor) sampling designs
(s.d.) have been proposed in the literature. Horvitz and Thompson (1952)
first suggested an unbiased estimator for any upwor sampling design. The
Horvitz-Thompson estimator (HTE, eyr) and its variance [V (eyr)] are
specified uniquely in terms of the inclusion-probabilities 7;’s and m;;’s, the
first and second order inclusion probabilities, respectively. If the values y;
of the characteristic ‘y’ of interest are exactly proportional to 7; and the
number of units in the Samp_le is fixed, V(egr) reduces to zero. In practice,
y values being unknown, one chooses an auxiliary variable ‘x’ whose values
are (believed to be) closely related to ‘y’ and attempts have been made

- to develop fixed size sampling designs with 7; « z; ¢+ = 1,2,--+,N. Such
designs are called nwps designs (Hanurav, 1967) or IPPS (inclusion- probabil-
ity proportional to size) designs. Since, in general, x-values are not exactly: .
proportional to y-values, one would be satisfied if n;’s are approximately
proportional to z; or p; = 3, a measure of size of unit i (X = I z;).

As listed by Hanurav (1967) the following are some desirable properties
of a sampling design to base eyr (for notations, section 2.2 may be seen ) s

(1) T = nﬂ:{/X,.'B,* S% Vf,

~(ii) v(S) = n V s:p(S) > 0. Here and subsequently, p(S) denotes the
probability of selecting the sample S, v(S) the number of distinct
units in &, n denoting the fixed sample size.

(i) m, >0 V1 # g, where my; is the second order inclusion probability of
the units ¢ and j. -

(iV) ?TI'J' —<.. ﬂ';'?'l'j v i,j.
(v) ¢ = mii [ ey > B, where 8 is not too close to zero,

(vi) mii’s shau_ld be computable from some sifnple formulae.



The properties (ii) to (iv) are required for ensuring the existence of an
unbjased variance estimator v(eyr) and the non-negativity of vyg(e HT), an
estimator of V (exr) suggested by Yates and Grundy (1953). The property
(v} is desirable to make the values of vyg(exr) expectedly stable over dif-
ferent samples. Raj (1956) showed that in samples of size n = 2 if wor sam-
pling is superior to ppswr sampling independently of y’s then the condition
~ (iv) is satisfied. Gabler (1984), however, improved upon these conditions
and found that sufficient condition for a connected fixed size wps strat-
egy to have V{egr) < V(ey) where ey is the Hansen-Hurwitz estimator
and V (ey) denotes its variance based on probability proportional to size
with replacement (ppswr)-scheme, both the strategies using the same set

{pi, 1=1,2,..,N} and same n is
Zm;'nﬁ >n—1
i 77y

The inequality V(exzr) < V(ey), is satisfied for the following schemes
among others, for n=2 :
| Scheme due to Yates-Grundy (1953),Narain (1951), Brewer-Undy (1962),
Durbin (1953), Brewer (1963), Durbin (1967}, Sampford(1967), Fellegi
(1963} , Fuller {1971), Singh (1978). |
- For n > 2 the above inequality is asymptotically true under certain
assumptions for the schemes due to Yates-Grundy (1953}, Yates-Grundy’s
- (1953) and Durbin’s (1953) rejective procedure, Goodman and Kish (1950)

and Hartley and Rao (1962), among others.
Another special type of sampling strategy is one due to Rao, Hartley

~and Cochran (1962).

Another estimator of prime inportance is the ratio estimator which is
a biased estimator under SRSWOR, but is unbiased under the scheme
- due to Midzuno (1950, 52), Lahiri (1951)- Sen (1952) (henceforth referred
to as Midzuno scheme). Sankarnarayanan’s (1969) scheme, Deshpande’s
(1978) scheme and Deshpande-Ajigaonkar’s (1969) schemes, among others
- are modification of Midzuno’s scheme. We note that for both Midzuno’s
and | | . |
~ Sankarnarayanan’s scheme, p(S) = a3 ;c5 pi + B, where a, § are suitable
~ constants. For Midzuno’s scheme 8 = 0. Midzuno’s scheme made 7ps has
been studied among others, by Rao (1963), Chaudhury (1974), Mukhopad-
- hyay (1974). Rao (1963) showed that for n = 2, Midzuno’s scheme made 7ps
coupled with HTE provides a better strategy than Hansen-Hurwitz (HH)
scheme. Chaudhury (1974}, Mukhopadhyay (1974) proved this proposition
for any given n. We will compare Midzuno's original strategy with ppswr

'g_



strategy, both using the same p; and same n and find conditions under

which Midzuno's stralegy fares better than ppswr strategy in section 2.3.
The linear regression estimator which is biased under SRSWOR remains

unbiased under the scheme developed by Singh and Srivastava (1980). We
will investigate some properties of this scheme in section 2.4,

Some recently developed sampling designs are due to Chao (1982),
Saxena, Singh and Srivastava (1986), Sunter (1977, 1986), Gabler (1987),

among others.

2.2. Notations

We shall use the following notations in this chapter and also in the

'subsequent chapters.
U denotes a finite population of N identifiable units labelled 1,2,--,N.

Y, a real quantity associated with unit k is the value of the variable ‘4’ of
interest of which the population parameters like population total, popula-

tion mean, variance are sought to be estimated . ¥ = (g1, -, 8, ,yN) E
a point in Ry, the N-dimensional Eucledian space.
S = {11,722, *,in(5)} is a set of n(S) units in U denoting a sample of

size n(S) taken from /. S denotes the complementary set of S, § = U — S.
§ = {S} is the collection of all samples i.e., the sample space.

~ The combination (S,p), or simply p, where p is a probability measure |

defined on (S, P), P being the power set of S such that p(S) is the proba-

bility of selecting S (hence having the property p(S) > 0, Sgesp(S) =1) -

will denote a sampling design. p, will denote the class of all fixed size (n)

[FS(n}] designs, p, : {p |p(S) > 0 == n(S) =n for every S € §}.

.. will denote the probability of including units 11,82, 40+, 13 Il &

ﬂ‘il.fg,“*,l
sample. Hence

iy daeiy = Z p(S)
S3H182,0.0

d: {(k,yx); k € §}, will denote the data obtained from the observatiuon

of a set S and the associated y-values, S € §,yx € R;.
We shall often have an access to the values of an auxiliary variable x

closely related to the main variable y on all the units in the population , z;

being the value of x on unit i ; p; = (E L1 Zy = X) will denote the mze
measure of unit i. (In the sequel z w1ll be a vector of real values)
Y =population total = S 1, Y = population mean = N E,__l Ui

The estimator ey = e, i, where s is a sequence of the units oc-
curing in the sample drawn mth probability proportional to size with re-
placement (ppswr), (where a unit may occur more than once), will denote

10



Hansen-Hurvitz (HH) estimator and V' (ey) will denote variance of ey, the
combination {eg,ppswr), denoting the Hansen-Hurvitz (HH-) strategy or
PPSWR strategy.

EHT = Soies 5: : the Horvitz- Thompson estimator (HTE), V (eyr) is its
variance. |

v(T') will denote an unbiased estimator of variance of T', V(7).

11



2.3 A Comparison between Midzuno strategy and PPSWIR
strategy

2.3.1 Introduction and formulation of the problem

Chaudhury (1974), Mukhopadhyay (1974) derived the superiority (in
the smaller mse-sense) of the strategy consisting of Midzuno sampling
scheme modified to a mps design and the ratio-estimator over Hansen-
Hurwitz (HH) strategy for any n. The same problem had been considered
by Rao (1963} for n=2. In this section following Gabler (1984} we investi-
gate the conditions under which Midzuno’s original strategy proves superior
to HH strategy. The contents of this note was published in Mukhopadhyay
and Bhattacharyya {1991).

Gabler (1984) investigated the conditions under which the strategy con-
sisting of Horvitz-Thompson estimator and a fixed size (-n) 7ps design fares
better (in the smaller variance sense) than the probability propertional to
size with replacement (PPSWR) design combined with the customary es-
timator (Hansen-Hurwitz strategy) of population total, both the strategies
using the same set of {p;} values. The results in this section are derived

following his work.
In Midzuno scheme probability of drawing a sample p(S) & Yics 2

where z; is the value of an auxiliary variable £ on unit ¢, p; = ¥, Nz =
X and hence 4 '
S
S
plS)=3m
where |
ds = EI'ES Di »
N -1 .
M.-=( .‘),:=0,1,2
n— 1
T = yo1pi + By
— [(n=1)(N-n) (r—1)(rn—2)

Tij = (NTL)[N=2) (Pc + p;) A (N=1)(N—2)
An unbiased estimator of ¥ = yjv , ¥ for Midzuno scheme is
EEES Y | | (2 9 1)

-. ds
We denote this strategy by H;. For PPSWR scheme using the same p;

values, the HH-estimator of ¥ is

1 {
==-5 % _ (2.3.2)

Ep =

€y = —
niEin

12 _ :



This strategy is denoted by H,;. Now variance of H,,

1 (Eie.s' yf)2 2
ViH,) = — Y
( 1) M, SEZS gds

)

N . N
= B + D viviBis,

i=1 ig =1

1 1 1 ]
where (; = v Y e =1, Bi; = T 2830 < 1. Now V(H;) can also be

written in the quadratic form as follows :

> { Bt Y}EP(S)

ges qs

1 y 2
Z T{ny —Yqs P(S)

Sef qS_ €5

|

- V(H;)

|

1
]
2.

Ly
e
]
o
|
g
=

[

se8 tES
1 [, ¢ |
s E Zzl- (ﬁ; + 1) + zzzﬁz}'(ﬁﬁ + 1)
., | i=1 i#j=1 i)
= §’A Z say (2.3.3)

where 2 = Y “P.‘Y, Z' — (3:1:”’ :zﬁ)a
A = ((Ai;)}), an N x N matix with

M= A= fi+1

Afj' — ﬁij "'I"' 1
We note
_ . |
D z=21=0 (2.3.4)
| f=1 ~o
where 1 = (1,1,..,,1).
Similarly,
. 1 N ; 9
V(H) = =Y p(Z-v)
. | n i =1 P _
= zD7 (2.3.5)

| whe:re D = Diag (d; = ;}:-), an N x N matrix with 7; = np,.
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Following Gabler {1984) we find conditions under which

V(H,) <V(H;)V yeR" (2.3.6)

2.3.2 Main Results

We consider the general eigenvalue problem
AX=uDX (2.3.7)

where for the real eigenvalues p,1 > e > uy,

X'AX N
L = maz XD X IXER — {0},

X'Dg' =0, = 1,2,--~,j--1} (2.3.8)

™ )

g* is the eigenvector corresponding to the eigenvalue
ui(t =1,2,.+-,N) [Rao, C.R. (1983), p.74].
- Now (2.3.7} is equivalent to

CX=pX (2.3.9)
where C' = ((Cy;)) = DA
| 71 0 -« 0 N [ A Az o Aiv )
{0 mm -+ 0 A2l Az v Agw
0 0 - ?TN} \ Anv: Awnz o Ann J

T1A1 MLAL2 ses TN
?TEAZI Mo Az v ToAN

TNANL TNANZ *°° TNAN
so that Cy = mA;, Cyy = i)y

Now,

N

. N N |
ZCH = Zﬂ"‘ iy = ?T,ZAU = 7y Z ﬁlj' +- 1)
j=1

i=1 =1 i=1

iz

i=1 =T ds

§
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[
ll—-‘l
(]
ing
|

1 1 1 1
= "G T & “‘“}
M g3 95 1 53i j(#i)es I8
(1 1 1 1
= Mg §— —t — ﬂ_(n-—l)}
M, Sza: gs M SZB, ds
n 1
— ﬂ'" -
M; g5 9s |
= A (2.3.10)
N N
i= i(#f)=
A+ i — 3 =
= 7 NPi\F -
7 i(#f)=1 Ml 554,71 qs

i
A
>
+
_ <
[~ =
"3
)
X
2y

n 1
= i:'T.'r‘}‘.? | M ZH Z Dy
1 5355 95 i(#5)es
n 4qs — Py
= MA;+ —
’ J+M1£ ds
= A+ n—n . !
i PJMI £ s
= ?rj}xj+n ‘H'J}\J |
—_ n - (2.3.11)

Thus C" is a generalised stochastic matrix where C;; > 0 for all 4,7 and n
is a simple eigenvalue of C. All other eigenvalue of C must be smaller than
n. Now (1,1,--+,1) is an eigenvector associated with the eigenvalue p = n.
- - | Z'AZ

~ Our problem is to find conditions under which %(%% = E'DNZ <1,V z €

RN," __subjéc.t to the condition Z2'1=0.
It follows that the eigenvectors ¢' corresponding to the eigenval'ues_uj
(7 = 2,-++,N) must have co-ordinates with sum zero i.e, 9' 1 = 0, which

satisfies the condition (2.3.4). Hence to find the maximum value of the

15



7'AZ
ratio E,D“;Z, the second largest eigenvalue is fo be considered.

We consider now the followiﬁg theorem on eigenvalues of a stochastic

matrix.

Theorem 2.1 [Brauer (1971), p.191]
Let m, be the minimum and M, the maximum of the elements of the

v-th column of the generalised stochastic matrix A of order n with row sum

i T}
sand ¢t =Z m,, T = Z M,. Then each characteristic root u of A, different
r=1

=1
from s satisfies

lul < min (s =, T — s);
Using the ‘theorem stated above on the generalised stochastic matrix

!
C', we have

py < min {n—>Y min; Cij, > maz;Cy; ~ n} (2.3.12)
i i

As M < A for all 1,5 , we have
maz; Cy; = miA; for all i (since Ci; = miA;)
1 npiM,

My &5:9s — 2.55i 95
(since arithmatic mean > harmonic mean)
np;M;

I
E

I
v

_ NDW, 'H‘;A{

I

- (2:3.13)

Hence Z maz; Ci; = Z M A

n 1L

- M1Z,-:_p1§ s
My

— = N > .3.14
nag = N2t (2.3.14)

If uy < 1.then (2.3.6) holds. It, therefore, follows from (2.3.14) that a
sufficient condition for (2.3.6) to hold good is

n — Z min;Cy; < 1
t. |

1The inequality in (2.3.14) was pointed out by a referee,

16



i.e, Z min; Ci; 2 n—1 (2.3.15)

e p; man —2>n—1 (2.3.16)
:Ml : l j; gs

Hence we have the following
Theorem 2.2 A sufficient condition for Midzuno strategy H;, to be

bﬂti;er than the PPSWR strategy H,, in the smaller variance sense, both -
the strategies using the same n and {p;,i = 1,2, -+, N} values, is the

condition (2.3.16). |
Remark 2.3.1 Following Rao and Vijayan(1977), V(H;) can be written

in the form

:a,r “ I 1, v Y52
= ZJ}.JPfPJT{l M, ZSBi,qu}( “)

"'i]':]- pl' pf

Also

V{H:) = —‘ZZ(y' e,

1<i=1 D;

Hence a sufficient condition for V(H,) < V(H,)VY € Ry is

1 1 1 :
1 < — Vi
Mlsgqu n

or
n 1
The expression (2.3.17) gives a set of sufficient cond1t10ns for V(H,y) <

V(H:). For large N it may be tedious to verify all these (‘2’ ) conditions. The

condition (2.3,16) is easy to verify. The condition {2.3.16) may, therefore,
be looked upon, as a referee has suggested, as a generation of conditions

(2.3.17).

Example (2.1)
Consider a populatlon with N = 5.n = 3 }’ (24509 10) and P =

(.16, .18,.20, .22, .24).
Here v ~ 1583 =
Thus p; 2 aVi (1)

1T,



1.73 .89 .87 .85 .83)
89 1.70 .85 .83 .82
A=1 .87 .85 1.67 .82 .80
85 .83 .82 1.64 .78
83 .82 .80 .78 1.62 )

(.83 .43 .42 41 40
48 .92 .46 .45 .44
C=| .52 51 1,0 .49 .48
56 .55 .54 1.08 .51
.60 .59 .58 .56 1.17 )

7 = (-2.8-1.4-1.0 2.4 2.8

{

e
)
-~

| 1.39
> min;Cy; = 2.4105 > 2(=n — 1) (1)

(i) and (ii) show that the condition (2.3.16) is satisfied.

3
Now V(HI) = 7
and V(Hg) = 7

Hence, Hy > H,.
Example 2.2 Consider a population with N = 6,n =4
Y =(35691012 ) and P = (.14 .14 .15 .16 .20 .21).

Here a ~ .13636 ;
Hencep; >a Vi |
Also 3 ;min;Ci; =3482>n~1=3
Thus the condition (2.3.16) is satisfied.

V*(Hl) = 14.2684,

Hence H; > H,



2.4 A note on sampling design due to Singh and Srivastava
[§S(1980)]

In order mainly, to make the linear regression estimator
U, =y+ b(-}—(" ),
'('i'-[-%T)' Yies(zi — E)(vi — T B

(n-l_lj Sies (i — )" 5

unbjased for population mean ¥, 88(1980) suggested the following sampling
procedure. The scheme is carried in two steps.

where b =

|
&
e

Step 1: Two units (1, 7) are selected with probability proportional to

(zi — zj) :

Step 2: {n — 2) units are selected from the remaining (N ~ 2) units
in the population by SRSWOR:

It follows that

62

p(S) = YA (2.4.1)

Step 1 can also be achieved as follows:

Step 1 {a) : Select 1 at first draw with probability proportional to

Step 1 (b): Select 7 at second draw with conditional probability

piie(z; — z:)"
Unde.r_this scheme, £(b) = B, E(7,) = Y where

B=S 5, = L S -7
‘_SEI Y (N-“*l) (xl )(y:_ )j
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52

In section 4.4.2, we shall note that for this scheme S,(R) = —.57 is an unbi
s
ased estimator of the pc}pula,tiﬂn.va.ria.nce S, where 3 Z (y; —
tES

v

,and 5% = (N 7} E;A(L’: ..._..)2
We give here an expression for the &** order inclusion proba.blhty for

the design.
Lemma 2.1 Under this scheme

. (N --—n) Z": Sﬁ(t'ql N (N - n)t¥ y

iy = N ) =S NG
Setuystv,) e (N ”n)(k) S:E(ilrr"':fk)
q?;q;l 57 B A Y R (2.4.2)

where z{) = 2(z ~1)... (2 =t + 1) and Sz(” .iy) 18 the variance of z on

U — (1'1,1'2,*”,:',..,).
Proof: Under this scheme

ﬂilli? |.'"1"ik - Z p(S)

53¢ 67, 1%

2
Z Sz
Sy fg,0 8 ( ) S
> 5

1
(j:) S -5'31'1.1'2. "k
1

— 2

SR 5
-(n S_E | S€S 3,2511,1::, Vk

L 5; 2

= v S
(n SJ:E : Sﬁtl ‘:’h t‘l‘-’l ’

— _ 2
g |, (29
nj7z | p =1 SHip,

k
- T ( 2 si)
pl <p2: S.al.pl.lpg | |
k—1 I .
+ (=1)" ( 2 si)} (2.4.3)
S5 "Fll v abpy _ |




Now,

> 2= 2 {iya- zz,wz.m,,}

SPAiyia,ip SHi1,8a,ip €S

S Y e Y mm

2igoip) DIy igip) VEI=1 1200 000 rip)

n
Hence
(N) t N-n
n 2 2
Tii§qrets (’::)sz Sm {plz:-_.-l( N )S:l:(lpl)
k N-—n N 2
_ﬂpgpg-:l( N )( N-1 ) =(ipyipg) T

— 1 N-—-n £ S:(EFI)
B N S?
P =

An elegant alternative pmﬂf using the notion of exclusion probability is
suggested by a referee which is given below.. |

Let us denote the k-th order inclusion probability P[S iy, ...,7)] as
e . It follows from the definition (2 4, 1) of the sampllng demgn that

‘ljilll
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< —
Tipde ™ E&ﬁ,...,ik (N)Sz

1 1 1
= (N)Szzlzsﬁ """ 1.t{;; iGSmf n(n I)EZHMES:E"ZJH
() Sty (N =B Sk (2.4.4)
= (N) S Nk) o -

Using the above result lemma 2.1 follows from an elementary result in
probability theory viz.

By lemma 2.1,

N - nS:({]
i = 1 -
g | n 52 -
_n(N-1)-N (N-nj
- NN=-2) T N—2 7 (274'5)
<\ 2
where ¢; = N(xi - X)_.__ >
2ik=y (T — X)
: 1 N 2
R .

Obviously, Y m; = n,

Similarly from (2.4.2) we have
N-—n Szz{f} , '5':1..-2(;{):H
N

?T,'J; = 1 ]
57 57

(N — n}(N—-n-— 1) S:(;,,')

T i (240

A o
2 N -1, (V-1 2 7y 2
S"’(ﬁf} N 38.1: —' (N-—-Z)(N)~— 3) {(:I: X) + (z; "" X) }




N
We verify that Z mi; = (n— 1)ms;

F{#i)=1 o

We now investigate whether for this design hi; = mm;—~Mi; 20V i £ 5,
This condition ensures non-negativity of uYg(eHT) for the sampling design,
The investigation is done following a suggestlon of the reviewer.

Consider first n = 2. We have

MMy — My = WA = W
N -2 S:tsz (N-_z)(N—-S)SE(‘)
 (N-3) 2
— N3N — 1)54[(N - 2)(N - I)Sﬂ(‘)SZ(J)
~N(N -3)8;8;:5]  (2.4.8)
Since
2 (N"“l) 2 N _¥n\2
Sm(:‘) (N-——Z) [S:: (N— 1)2(31 X) ]
and (N —1) .
S:f(ij) — (N —3) IS: N — 2{($: - X)2 + (z; - X]z}
2 _ _
o=y~ Xl - X))
therefore (2.4.8) simplifies to
1 .

NQ(N — 1)283 (N — 1)25: -} Nz(m; - Xr)z(;ﬁj — .)f)2 : o

+2N(N = 1)83(z; — X)(z; — X)|
which is clearly non-negative. Therefore for n = 2, 4;; > 0, the result then

follows from a general result of Lanke{(1975,Theorem 5.1); vide also Seth

(1966)] which is stated as follows:
Theorem 2.3: Let p be a s.d. of fixed s:ze n such that its first and

second order inclusion probabilities, 'II' and 7r satisfy
i ¢ ! ) 3
Ty < ?ri';rj- Y ot,,9.

‘Further, let p be the sampling design which is performed as follows: first
draw a sample S~ according to p'. Then draw a sample § " of size n” with
s:n:np]e random sampling without replacement from U — S’ and finally put
S =5 US". Then the inclusion probabilities of p satisly m;; < mym; for all
1 and_; for the samphng design p.
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Chapter 3

ON SOME MODEL-BASED OPTIMAL SAMPLING
STRATEGIES FOR PREDICTING A POPULATION TOTAL.

3.1 Introduction, Review of Some Earlier Work and Summary :

Brewer (1963), Royall (1970}, Royall and Herson (1973) and their fol-
lowers considered the predictipn—thearetic approach for making inference
about the population total Y, starting from an assumed super-population

model. Here the population vector ¥ = (¥1,¥z,...,Yn) is considered as a
realisation of a random vector ¥ = (Y1,Ys,...,Yy)|Y; being the random

variable corresponding to ;] having a joint distribution # and the total
Y = 2N . ¥, which is now a random variable, is predicted on the basis of
the set of random variables {(k,Y:), & € S} and where y; must be sub-
stituted for Y, after the data d = {(k,y:), k¥ € S} have been collected
from the field. A statistic t(,}:) is a predictor of Y if it is an estimator
of £(V), le. if £{t(Y)} = E(Y), & denoting expectation wri model. We
note that we are u;ing the same symbol Y to denote the sum of fixed
population values y1,¥3,....,y~n as well as the sum of N random variables
Yi,Y5,..,Yy. For a given sample S, an optimal predictor fs of Y is one
which is unbiased [E{Ts —Y) = 0V S : p(S) > 0] and for which -
'varianrfe of Ts —Y is minimum in the class of all unbiased predictors of
Y[E(Ts—Y)? < E(Tg~-Y)*V S :p(S) > 0andV T, unbiased for Y].
If optimality is considered in the linear unbiased class, one gets the best
linear unbiased predictor (BLUP) of Y.

Assuming that with each unit i there is available a real quantity z;, the
~value of an auxiliary variable 'z’ (closely related to main variable 'y’) on i,
Royall and Herson (1973) showed that under polynomial regression model
6(60,51,...,6;;u(:1;)) where Y1, Yz, ..., Yy are independently distributed with

& (Y | zx)

J
Eﬁs%fﬂi

- o §=0

V(| z) = olu(m)  (3.1.1)

_ where [, ...0; are unknown constants, §; = 1(0) according as the term
z). is present (a.bsent) in &(Yi|z:) and v(z,) is a known function of z, the
predictor |
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. o |
Pl b)) = St DA (1
' kS kEgi:ﬂ

where ﬁ}* is the generalised least square predictor of B, under the model

(3.1.1), is the BLUP of Y. Often v(zy) is taken as 73, ¢ € 0,2] for a wide
class of socio-economic surveys [Jessen (1942), Mahalanobis (1946}, Scotl

et al (1978)]. We shall denote T(0,1;2?) as T, thus

=T 2.5 Trlk
T — ' k
- 2.5 Yk
T = F. k (3.1.3)
: g Ik ES Lk 3 :
Tz* = }: Yk -+ Z bad Z T}
S s Tk g7

where }_ s denotes } ies-
The predictors mentioned above do not depend on any sampling de-

sign (unlike, design-based estimators like HTE, etc.). The BLU-predictors
have been shown to be subject to serious bias when the assumed super-
population model is incorrect [ Royall and Herson (1973), Mukhopadhyay
(1977), Scott et al (1978), Harsen et al (1983)].

In section 3.2 taking a clue from Scott, Brewer and Ho (1978)' we con-
sider the prediction of a population total under a class of polynomial regres-
sion models with variance function given as a polynomial in the regressor
variable when the samples selected are balanced samples, such as those due
to Royall and Herson (1973), Scott et al (1978), (who also defined over-
balanced samples) and the predictors are chosen from the class of Royall’s
(1970) optimal model-dependent predictors. The bias and mse of these
predictors and those of a Horvitz-Thompson predictor under n-balanced
samples due to Royall and Cumberland (1981) have been compared. It
has been shown that under a wide class of polynomial regression models
, the Horvitz-Thompson predictor along with a mps-design (which is ex- -
peceted to provide 7-balanced samples on an average) provides a better
sampling straregy than model-dependent best linear unbiased predictc:fs at
balanced and over-balanced samples. Bias of two optimal predictors at an
over-balanced sample has also been examined.

3.2 Predicting a Population Total Under Balanced Sample.

.3.2.1 Review of the earlier work
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We consider again the polynomial regression model & = £(6y, ..., 6;: v v(z 7))
as given in (3.1.1) and the BLUP of Y under this model as noted in (3.1 2). |

For an arbitrary sample, T (in (3.1.3)) is {-biased for population totg]
Y when £ changes from £(0, 1; :1:) to any other model {(éo, ..., és; v'(z)), v'(2)
being an arbitrary function of x. We note that the bias of T does not de-
pend on the form of the variance function under the model £(60y +vey by Uj(az))
(Mukhopadhyay (1977)]. However, under the balanced sample Sy(J) of or- -

der J [ Royall and Herson (1973)] which satisfies

7] .—..“m'.(;’:?‘”, j=1,2,..,0 (3.2.1)

where

1 .
S

and Ul = Efff__l z,, T is unbiased under (b, ...,6;v(z)) for arbitrary
’5.1’1 ( )
SIII'II]B.I‘]Y T* is biased for Y under ¢ in general, except on a over-balanced
sample S,(J) of order J [Scott et al (1978)] where it is unbiased. An
overbalanced sample Sp{J) is defined as a sample S for which

—(J) -
g0V =25 7=012..,J (3.2.2)
T |

Scott et al showed that on a sample S',_.(x)(J) which we shall call ”gen-
eralised balanced sample” or *v(x)-balanced sample” of order J and which

satisfies

3 ”(i"), §=0,1,..,J, © (3.2.3)
ES v(zy)

T3%(0,1;v(z)) remains unbiased under &(é,...,6;;V {(z)) = _{;_"_Q_'(say), V(x)
being not.necessarily identical with v(x). S,x)(J) depends only on v(x)
and not on &, ..., 6;. When v(z) = z¢ we may call S,x)(J) as a g-balanced
sample of order J (provided such a sample exists). Sy(J) and S,{J) are
S.(J) and S;2(J) respectively. A z%balanced sample of order J will satisfy

—*{J) 1+1
Is 2.5 Ly .
T = -y 1 =0,1,...,J

Any type of balanced sample are, however seldom available in practice.
~ Scott et al (1978) proved the following
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Theorem 3.1 On Syx)(J), 75" (0,1;v(z)) is BLUP of Y under & =
£(bg, . 8s; V() provided

J |
V(z) = v(z) }: 6,-{1_,,-.1:"'1 (3.2.4)
j=0

- - i
a;’s being arbitrary non-negative constants. |
’ Thus on S(u(z){J); T*(0,1;v(z)) is BLUP under £(60y.., 653V (2)) for

arbitrary J, o, ...,8s so long V(x) is of the form (3.2.4).
Royall and Cumberland (1981) defined a r-balanced sample of order J,

S.(J) as one which satisfies
AS) =Xz XV =0, j=0,1,..,0  (3.25)

For a 7ps sampling design (m o« %, i = 1,2,...,N) m-balanced sam-
ples are met in expectation ie., E{A;(S)} = 0, J = 1,2,...,J, E de-
noting expectation wrt a mps-design p. The Horvitz-Thompson predictor

Tyr = ‘-}23 %’f becomes model-unbiased for Y under £(8o,...,85;V (z)) for
arbitrary &g, ..., 67, V(z) on S(J}, because

J

& (Tor)

X
"o

J ¥
Xy 6p;28 Y
'J'=D

5J'ﬁ.f-'5{— :
0

JE

t

|

o (7
N} §8X
-

)

J N N
> 6B > = =E(Q_Ya)
§=0 k=1 k=1

However, Ty is not known to have any BLUP-property on S,(J)under

any subclass of models €. |
In this section we shall consider purposive sampling designs like bal-

anced sampling, 7 -balanced sampling etc.,, where the sample satisfying
certain conditions (like (38.2.1), (3.2.2) etc.) is selected with certainty (and
with probability % if K{> 1) such samples exist).

Hence a sampling strategy will be here a combination (f‘, S) S the pur-
posively selected sample. We denote (T,_*,.S'I(J)), (T;,S:,,n(.]), (THT, Sy (J))
as strategies Hy, H; and Hj respectively. H; will be a better strategy than
HJ' (H"}"-Hj) 1f'V(H,) <:V(HJ) |
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3.2.2 Some specified subclasses of models ¢

We shall consider the subclasses of £(&o, ..., 657V ()} of the class of sy-

perpopulation models ¢ as follows :
(a) The particular form

I
= Z ,\J-a_,-a:f (3.2.6a)
k

will be denoted as V;IL(E:), where A; = 1(0) if z? is present (absent) in V(x).
Here a;’s have been assumed as in theorem 3.1 to be arbitrary non-negative

constants,
If further A;’s satisfy the restriction

§; =0 = A =0, Apypp =0 7=0,1,.,J -1 (3.2.6b)

V, . (z) will be denoted as V; ;(z).
The model ¢(&,...,6s; Vi (z)) will be denoted as & ;. Expectation

operators and variance operators wrt this model will be denoted as &,

and V1, respectively.
Example 1. £(0,1,1;Vo2(z)) = &z describes, according to the above

definition,
E (Yilze) = Przx + Pz}

and | |
vnj (..T:k) = 49 ..'Ui

[since 8y = 0, we have Ap = 0, A; = 0 by (3.2.6b)].
Example 2. £(1,0,1,1; Vo 3(x)) = o3 describes

E(Yilzy) = fo + Bazi + Bsz;
and |
Vo3 = ag + ﬂsﬂﬁ

[since &; =0, we have )y = — 0, A; = 0 by (3. 2. 6b}].
It follows from (3 2. 4) that under 61 7, T*is BLUP at S, (J). This can

be seen as fo]lﬁws
Under 10,

o,
Vig(z Ekaj 327)

. where X's satisf_y {3.2.6b).
By theorem 3.1,
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f’l"" = fs*(ﬂ, 1;z) is BLUP of Y under {g on S:(J) provided
J : J ]
V{z) = :cz :53,-1::1',.-:1;-"'1 = Z b;a;% (3.2.8)
3=0 ;=0

(3.2.7) is a particular case of (3.2.8) with ag = 0 [note that by (3.2.6b),

51*:U=~3‘>Aj=‘-0}. )
Similarly, under &, s, 15 is BLUP of Y at 5,2(J), because, by(3.2.4),

T# is BLUP under ¢ provided

J J .
Vizg)=2?) ba;0’ =) 6a;2°7 (3.2.9}
| s

§=0

(3.2.7) is a particular case of (3.2.9) with asy1 = 0, @ = 0 [note that by
(3.2.6‘)) 5:; =0 = Ajpy = G]. )
It is seen that under & ; (where V) ;(z) = E;Ll A;a;z'), predictor T
at S;(J) and predictor Tz* at S,3(J), are BLUP of Y. We shall, therefore
work with the model ¢; s, since both (3.2.8) and (3.2.9) include Vj ;(z).
We shall first examine the bias of Ty and ’f’f under general model ¢
on over-balanced samples, We shall then compare the performance of the
optimal strategies H;, F3 under models £, s_;. Subsequently we shall exam-
ine the performance of strategies H,, A, H3 under £; s and observe that
though Tyr is not known to have any BLUP-property on 5,(J) under any
subclass of models, H; fares better than both H,; and H, under €, ;_; under
very general conditions. This result seems to provide some justification for
use of a suitable design-based strategy in preference to model-dependent

strategies.

3.2.3, Some Preliminaries

(2) The following inequality will be used in the calculation :
Callebaut’s (1965) inequality : If (A4;, As, ..., Aar), (B1, Bs,..., By)
are two sets of positive quantities which are not proportional, the quantity

M A
$= (D A'"*BFT*)(D_AFTEBPTY) (3.2.10)

isi i=1
increases monotonically with increasing value of | 2| for fixed w.
(b)Lemma 3.1 [Mukhopadhyay (1977)] :
Let w(xl,...,mm;yl,...,ym) be a polynomial in y, ...y, of order < 2.
Then under the model ¢ :

('3 ['l,b(:l'-], Pery mm; Ui, '“‘!ym)]
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= Y[Z1y 00 Zm i E(W1)y o5 € (Ym)]
+1{}(i"1! ") mm; yl! x#ry ym)y? = Ue(yi)
f(v)=0
where §(y) denotes terms containing y; and ¥y (1 #7=12,..,m),
3.2,4 Bias of T;, T‘f under &,

To observe the behaviour of biases of ﬁ,* and TI* under £ algebraically,
we cans:der the fallnwmg section though it is not feasible to use the pre--
dictors Ty and 7, when one chooses an overbalanced sample. |

We consider the following class of models

() & i (&lbos s bsiv(2))}

with & = 0 and at least one of é;,...,8s is not equal to zero;

[":) 62 . {E(Sﬂl---a‘i?;”(m))}&

with §, =1 and § = ., —-5;--0
Next we consider bias of Tu : T * under ¢ on a over-balanced sample

Sg2(J). We have the bias of Ty under £,

i

ee(ﬁ-,* ~Y)

Y,
g T T

Be(Ty')

]

)
Ng
ty
Lo &
™
Rz,
*E:j‘-t
o
o
%

|l
A
<
RS
=
Lr
R
T
g ~+
i

At SI?[J) using (3 2. 2) thlS reduces to

j+1
B,E{TU 'an J)} kazéﬁ; Z:.S'.E'

i=0 ES Ik
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Vs ) |
——}

= 3-’65:2 Eﬁﬁ:{nzri“

n ES L =0

—Zmiﬂ‘zmk}

e ES - E 6;8;C ov. (fﬂm Irl)
25' I'J: §=0 '

= By (say), (3.2.11)

l

Cov. denoting sample covariance.
Similarly,

1l

Be(f15a(0)) = (X nEit — L )ISa())

g Tk

o 1 _
— 6: 0. h)
| % -T'ké .?46.? ES Ty {g L
1 o
T Z Tk I Z-‘"—’k}
S S5

g |
Ef k ZﬁjﬁjC’ov.{zk,azi"l)
=0

TS —
B, (say) (3.2.12)

Al

|

Thus if

zy >0Vkand ;> 0V j7=0,1,...,J, (3.2.13)

both (3.2.11) and (3.2.12) are positive under &;. Under conditions (3.2.13)
both (3.2.11) and (3.2.12) are negative under &,.
-~ Now coeflicient of §; 847 #0) in (Bp — B,) is

nJ g T -
Z:::ﬂk Cov. (:Bi,a:k 1) | E;s Cov (zk, T} 1)

+1 _ 1 VR 1
ZM Es:ni{n;x: %mk)(ﬁzd

':ﬁ- %Ef (= 5 o) Em’“)}l
e _
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- DTS (- 25Tk N3
B [Xszr2s 2t — Ts i X z]
) (g & (Tszx s 7i) (8:2.14)

If z, >0V k, (3.2.14) is a positive quantity.
This can be seen as follows :
Putting in Callebaut’s inequality (3.2.10),

4 2
M:n, Akth,.Bkzl, Vk, w-—-Jz
one gets '
q&:Z:ckZ:ci“:tﬁl (say) , for zz'%
S S | ,
and

_ )
= A ) = f . :
b= AT A= () forr =T

S

Hence ¢; > ¢, by Callebaut’s inequality.
Coefficient of 8yfp in (By — By) is

~n Lk Ds(Tk — Ts)’

(Zs 2x)(Zs =i)

(3.2.15)

Hence we have -

Theorem 3.2 : Under the assumptions (3.2.13), both T, Ty are poS-

itively biased on 5,2(J) under £;. However, in this case

\B(T*)) < |B(Ty)] (3.2.16)

Under (3.2.13), both Ty, T are negatively biased on S,3(J) under &;.

However here also (3.2.16) holds. |

Thus under (3.2.13), T} is a more robust estimator than Ty on S,a(J)

~ both under £, and ¢; in the sense of bias.

3.2.5 Mddel Yariance of T*(IO, 1;0(z)) :

Now we have under & = &(6, ..., 673V (z)), variance of T*(O, 1;v(z)) as

viu[f‘*(o'l;ﬂ(i)) ~ Y] = IIEEB[T#(O: 1;;”_(3:)) "—.Y-]z

. | ."'—:[_5__,5,,{{1&'*(0}1; v(z)) — y}]z_.
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3
™
Cn
< |n
HEE
™)
o

1

When V(x) satisfies (3.2. 4)

ES e } Z w(ze) Y 68k
ES U'[Ij;) S J'..___..

“T Z (zx) Z 532615'1:
s

=0

Ve [T7(0,1;v(z)) = Y]

d ) 5Tk Ly
J_Z:ja 3B;l{ S;(;“;)-} gu(mk)

Sou(zi)zy (3.2.18)

)

which reduces under Sy(z)(J) [ using (3.2.3)] to

J | )
Z‘Sjﬁs[{ 23 : }2_§_z k | Z”(mk)ﬁ: 1]
= S u(zk) m:g'_ ) U(xk) q
ZOJD Y
| Because g = "(?‘ C 7 =0,1,..,J]

j=0 Y5 o(z4) T3 3
J a 1 g
T _ G Yk -
_253 J[(Es :) (Nln)'z--g; +ZU($J;)-’C‘L 1]
4 Ssa, | Tgvlz)zl

(3.2.19)

Thus (3.2.17) gives the variance of T*(0 0,1;v{z)) under &; (3.2.18) the
~variance of 7*(0, 1;v(z)) under & when V(x) satisfies (3.2.4); (8.2.19) the
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variance of 7%(0, 1;v(z)) under & when V(x) satisfies (3.2.4) and if furthe, -
the sample is Su(z)(J) ( which satisfies (3.2.3)).

From (3.2.17), putting v(z) = =, V(z) = Vor = T30 Aja;27, we haye
variance of Tl* under ¢ s for the balanced sample S,(J),

Ve (F7 - Y15.(0) = Veo L0, 132) = Y5 ()]

ES:E"}“Z Ek EA ﬂ:%"‘zz)‘ a; kIS (J)]

S:k ( J....ﬂ g i=0
- l{gfxi‘}*Zi\ T e+ 3 diey T ells.o
=0 :

= [ZA a;{ gjik Z-’%"‘Z%HS

ES ka(J) ES ka( ))
X X

J
Esmk
ZAJ JE mk(

| since under S,(J), ) _ E( j) _ {J)]

i n . Tg X 5 g
NN — J —
L ( ' ﬁ) Z AJ‘IIJX(J)
n !

= M;(0,J) (say)  (3.2.20)

We note that in calculating the expression for variance of (f’.}’ —Y) at L
Sz2(J) under the model ¢; ; we can not take L beyond (J — 1) as in those
cases the conditions (3.2.2) do not apply to some terms in the explicit -
expression of the variance. Also we can not take £ < 1 as in that case the
result in (3.2.4) will not apply to T{ |

Thus, using (3.2.2), va.ria.nce of f‘z* under €4 J....l on S,;a(J) is

_vel..,_.j(T* V15 (7) = Ve, (20,1 :%) Y|5z=(J))

[{ 2T T }22 2 Z,\ anJ _|_> ) /\ aJIJszﬂ( ) |

ES(:":J:)/( k) 8. (ﬂik g j=1
=§A.,-a;{1; DI i*+Zzi [5:2()
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=[5 (s S m

=1 s

= Z Aj *-'1:( Ziﬂk )z 4 nzg ™)

§=1

W8
ot
Nl
et
]
5
=
.
~+
g
o
H-lt
.
{n
Hu
=

= M,{1,J —1) (say) (3.2.21)

Since under S;2(J), Tg < X [follows from (3.2.2) for j=0, because,
g5t = L agam,a,sAM > H.M., is{" ”2;13-

| ___. Il e
My < YW Zn)p 3y g D

y=1

n

We shall now compare M;(1,J — 1) and M,(1,J — 1). Thus,

CN(N -
Ml(l,J-— 1) -—MZ(I,J-— 1) > ( . Z}‘ aJ[X(J) . XX(J 1)]
_ 2
> 0 ifz, 20 (3.2.22)

Hence we have

Theorem 3.3 : Under & -1, Ty is BLUP at Sz(J); Similarly under
§1,0-15 T} is BLUP at Sz2(J). However, Ty at S,2(J) is a better strategy
than T} at S,(J), (H; > H,), provided ¢, > 0 V k. -

Nﬂte i Scott, Brewer and Ho [SBH| (1978) showed that under &,
where V (z) = ofz + o2z?® both (T}, 5.(J)) = H, a,nd (1%, 5,2(J)) = Hy are
BLU-strategies. However

o
E{(fr - YIS} = D=0 gy pax)

o
M, (say)
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E{(T7 - Y)|80(J)} = ———F5(0] + 01 X)
= M; .(S&y)

N —n)— —

< M - " X(o? +02),

using (3.2.2) for j=0.

Thus

! ! N N —n

showing H1 is less efficient than Hj, the loss in efﬁciency will be small in

general if o} dominates o} but can be substantial if 0 is relatively large.
The result in theorem 3.3 pursues the resull of SBH to polynomial

regression models with variance function given as higher degree polynomials

in the regressor variable,
Next we consider model variance of Horvitz-Thompson predictor THT =

Xg -J— where 7; « z;, on a 7-balanced sample under model ¢, ;.
We ha.ve under {p s, for a wps-design on a sample S,(J),

Veo: (Tur = Y |Se(J)) = &g, {(Trr — Y)Y S,(J)}
"{5&.;@3?“ )!5( )}

J 5 Xz
[Z% }tjﬂf{“"{_z 2T Z z,
i= -

k=1

(XD -%Y > o

[]
Eq" “
h}—-'
‘_D
ol

%3
> B
;.ELI..

_I_h'.ll
NE
B,

Using the condition of w-balancing ie.,
X PRI LA
o Z I}: b= Z I‘}:,
s k=

“in the above expression we get

L

Veo, (Tur — Y)|$ Z Aj fl:{ Z z}
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k=1 k=1
J X N - N
== Z)“J“J{;‘Z-’Ei “Zzi}
1=0 k=l k=1
J 1 orli~1) 1 <(5)
= N> Ao { XX - =X}

= Mg(0,J) (say) (3.2.23)

Since the similar expressions as given in (3.2.21) for variance of T2 hold

only if the variance function in the model £{6o, ..., 67; ¥V (z)) is a polynomial
of maximum order (J — 1), we shall consider My (1,J — 1) for comparing

with MQ(I, J — 1)
We have therefore from (3.2.21) and (3.2.23)
=, N* 1)
My(1,J -1) - M,;(1,J-1) = Z ).J-arj-[—’;-XX
i=1.

(6 1‘\’(1‘4“-""1)._,‘,3
1L

N

J=-1 . .1
D Asas() 1;23’#
S

1=1 k=1

— fj 2] | (3.2.24)
k=1 .

where 8 refers to S;a(J).
Now at S,:(J),

Thus (3.2.24) simplifies to

J~1 . |
1 . . . ,
2 Naile L alEs ol - el + (D] — 7 YY)
=1 3 s S S s
J~1
= E A;a,-[(z zx)Cov.(z, :t:i'_z) + nCov.{xy, mi“l)] | (3.2.25)
j=1 5 | |
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If we consider, therefore, the model & y1 where A; = 0 then under cop.
ditions z; > 0V k= 1,..,N, (3.2.25) is non-negative, since a;’s are nop. -

negative constants.

Hence we have )
Theorem 3.4 : Under £;,-1, T is BLUP at Spa (J). However, Ty, at

S.(J) is a better strategy than T* at S;2(J) in the sense of having smaller _
average variance, (Hz >~ H;) prov:ded zr > 0V k. |

Combining theorem 3.3 and theorem 3.4 we have
Theorem 3.5 : Under & -1, H3 > Hy > H; , provided z; > 0 V £

Remarks 3.1 We have compared above performarce of the predictors
Tf: f‘; and Tyr at the sampling designs where their performances are op-
timal, viz., Royall- Herson (1973) balanced sampling design for 7} | Scott
et al (1978) over-balanced sampling design for 7 and mps-balanced sam-

pling design of Royall and Cumberland under the model &, J-1. The model
condition {3,.., have been invoked since under this model T* is BLUP at
S:(J) and T} is BLUP at S z2{J). Again on a r-balanced sample S.(J),
Harwtz-Thampsan predictor THT is model-unbiased under &; ;_;. Thus
under §z,y-1 (Tla (J)) = Hy (Ta , §z2(J)) = H; , are optimal pre-
dictors. Also under &5 5.1, H = (Tur,Sx(J)) is model-unbiased though
THT is not known to have any optimal property under £; y_; or any sub- |
class of it. The result in Theorem 3.5 shows that if z, > 0V k, a condition -
which generally holds , Hy is a better strategy than H, and H, is again f
a better strategy than H;. A wps design provides W—balanced samples on

an average. The model & sy = 5(60,...,5_;;17( ) = g? Z LAy :n’ where

A;’s satisfy (3.2.6b} is a very general polynomial regressmn model and cov-
ers a wide class of socio-economic situations. Thus under very general
situations a (THT,’JTPS) design is expected to provide more precise predic-
tion strategies than model-dependent optimum strategies (1%, S,(J)) and
(T}, Sz2(J)). Moreaver the samples S,{J) and S, (J) are often conspicuous
by their absence. -

3.2.6 A Suggested Study

The following extension to above investigations is incorporated as sug-
gested by an examiner. Let £(&,...,8;,V(z)) = E(J)( (z)) (say). |
~ Let for ¢ = 1,2,... the strategy H, consist GfT = T%(0,1,z?) based on
~ a balanced sa.mple aat1sfy1ng (3.2.3) fc:r v(z) = :::9’ i.e., a g-bajanced sample |

which satisfies | |
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() A
V) T (3.2.3a)

ah

, N 205 YTy *
mbozwhere T, =T%(0,1,2%) = > yi >z
5 Eszk 5

Under model £ = ¢N(zh), h =g~1,...,J +g— 1it follows from (3.2.17)
along with (3:2.3) that for ¢ — 1 < J, the model mean square error of H,

EMSE(H,) = g {(T," = ¥)*Su(J))}
5 I x}; h
_ 2 Tyt ) %
= .‘E; Z (=) k Z k
E; Tk ~1 h—2g+2 h
B {Es .g:ﬂ-y} ka +Emk
k 5 5'
2.5 Tk ~ 7!
> xi‘n[§ o Zx“ MR eing (8.2:32)
2.5 Tk - - '
= S5 + el f'“lusmg (3:2:3)
k3 5
_ 23 Tk_ y(h-g+1)
s Ty |
zf !
. Eénk X (A9t (y5ing (3.2.3a) for j=g-1)
_ (N-n) Ny (0=1) gh-s+1
I

Now, for j =g — 1, (3.2.3a) becomes
T (9-1) n
% Lz

’ —0 . "
Since Cov(zk,z{ ") > 0 for g > 2 (g is an integer), we have

7y < mg(g"z)(smce AM. > HM. )

x—s{g_l) > m_smﬁs(y—z)

~and

N N
n . N —
> Ffsms(g 8+ T, LERUS)



3
X
— fs(ﬂ“i)._:_
| :'Eg
For 7 = 0, (3.2.3a) becomes
{—
1 _ YTy’

—t——

— -
I3 D5 T ?

Now, Cov(zy, mi"") is negative for ¢ > 2 and hence

l 2—-¢ 1 “s'l
n%ﬂ:k _<n§$k ngxk

] 1—g
1 2.5 Zg g 25 Ty

= X > iz
Using this in (3.2.26) we get, X{s-1) > a75lo=2)
Therefore under ¢y (g —~1< A< JT)

EMSE(H,))— EMSE(H,) = - L5
N{N —n) 5
n
< NN —n)
n
-X(™}  (by (3.2.26))
_ __N(N - n)
- n
< 0 _
Hence, EMSE(H,) < ¢MSE(H)

~ 7 7 =g —
T5 2.5 Tk y 5 I .25

(3.2.26)

FE;‘I!H

- Since under Ekr = 6(‘}}(2‘!}3 anz”) for non-negative constants a;’s,

L
e‘f;f.LMSE(HF) — E G}.E&MMSE(HQ)

h+ K

40



it follows that under the model &;_, 4,

EMSE(H,) KEMSE(H;) forg 2 1

Next we consider the projection-type predictor

~ - T g\ ES yimf/mf . 1—3 29
Tg—ﬁX—T{'O,l,E)-X 77 g ‘“X(zyimi )/(Zﬂ:n )
Eszi/mi S S

Under the alternative model £(/)(z;) to achieve unbiasedness T, has to
‘satisfy the condition of balancing i.e.,

R S Bzl Y N
Een(Ty -Y) = X SE =g~ — B )T
A 'T'i t==1
X iy N .
— H(Z 29 ZI;E'H Q"Zl'f)
& %4 S = |
= {) |
X . N
i.e., — $"?_ﬂ+1 — :D:
2.5 55:? g }; ;
| N g-1
For j=g—1, Xg__ = EH i
s T ! n

and hence the predictor can be written in the form

T, = N 2lo-1) Y2
n 5

Ty

’I.‘he strategy consisting ot:_ the predictor ﬁ at a properly balanced sample
(i.e., a sample satisfying X (-1 g, (i-g+1) — )'?(-")]r (7 =0,1,..., J) is denoted
by HJ. Now,

EMSE(H]) = é'Em){(fg—}’)zjs:g(J)}

N Xlo-1) -
— ;:ﬂ:‘(;— .‘L'?:l 1)2+L$i
i g
— _l}r_;.(j'{(ﬂ" 1))2 }: A
n S
N g hegtl | o
an(ﬂ )Z:Bl_ g+ +Z$f
g 1=1
2 )
= ﬁ;..(x(n-l))z I AN
n ' !
5 1i=1
2
— i “(9“1))?(h"ﬂ+1) _ NX(h)
n
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Hence,

EMSE(HY) — EMSE(H;) = g()—{”'”lf*““i"lﬂ — X971 Rh-atyy

Suppose that ¢ > g. Using Callebauts’ inequality for A; = z, By =
l,w=~h/2and z =g~ 1— h/2 we see that the quantity ¢ = X9~1h-9-1
is increasing for increasing value of [g — 1~ A/2|. Now as & > ¢’ 4 ¢ — 2,
therefore, h > 29~2 (sinceg > g),i.e, h/2 > g—1=> h/2~g+1 > O which .
implies that the value of ¢ is monotonically increasing with the increasing f

value of the difference 2/2—-g+1 Since h is a constant therefore h/2—g 1
increases as g decreases. Therefore X~NX(h~0-1) increases as g decreases

and hence under the model &,(g' +9—2< k& < J+ g~ 1)and consequently

*
under &%, ..

EMSE(H%) - EMSE(H) <.

Again,
AT2
N° X (o=1) glh—g+1) _ p73p(h)

n
NN = 1) (-1 ghgt1)

I

EMSE(HY) ~ EMSE(H,)

N? "
2 gle-n glamet) _ py iplh

NN = 1) o(5-1) gh-g41)

A

n
N(X o~ glh=ot1) _ j{r(hl) |
~NCouv(zf™1, gh~ot)
0 for 2(g—~1)<h<J+g~1

Il

|

A

= EMSE(HY) < EMSE(H,)
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Chapter 4

SAMPLING STRATEGIES FOR ESTIMATING A FINITE
POPULATION VARIANCE

4.1. Introduction and Review of earlier work

In the theory of sampling from finite population, discussions have usu-
ally been centred on the estimation of population total or mean. The prob-
lem of estimating a finite population variance has received comparatively
poor attention, The estimation of population variance is of considerable
importance in many circumstances. The geneticsts often classify their pop-
ulation according to population variance [Thompson and Thoday (1979)].
In allocating sample size in a stratified randorm sampling according to op-
timum allocation rules, the stratum standard deviations are required to be
estimated.

The problem of estimation of a finite population variance was first con-
sidered by Liu (1974a). He derived a Horvitz-Thompson (HT)-type esti-
mator of variance and examined its forms under simple random sampling,
with and without replacement and probability proportional to size with
replacement (ppswr) sampling procedures. He showed his estimator to be
admissible in the class of all unbiased estimators for the population vari-
ance and also constructed an admissible general unbiased quartic estimator
for the variance of any unbiased quadratic estimator for the variance. Sinico
a variance is a non-negative quantity, it is desirable that any estimator of
the same should also be non-negative. Observing that Liu’s estimator can
sometimes take negative values, Chaudhury (1978) suggested non-negative
alternative estimators and noted some of their properties. Das and Tripathi
(1978) obtained the ratio-type and product-type estimators of variance,
when the population mean or variance or co-efficient of variation of an aux-
iliary character is known, under simple random sampling with replacement
(stswr) and studied their properties under large sample. Following Olkin
(1958), Isaki (1983) considered multivariate ratic and regression estima-
tors of variance under a multivariate normal set-up. Some other works on
variance are due to Liu (1974b}, Mukhopadhyay (1978, 1982, 1984, 1990},
Chang a..nd Lin (1985), Rodrigues et al (1985), Sankarnarayanan (1980),
Zacks and Solomon (1981), Skinner (1981, 1983); Strauss (1982)5 Ghosh
and Meeeden (1983), Liu and Thompson (1983), Singh (1983), Vardeman
a.nd Meeden (1983) and Sengupta (1988). Some of their works concen-
trate mainly on estimating (predicting) the variance under assumptions of

43



some superpopulation models, following the prediction-theoretic approach
of Royall (1970), Royall and Herson (1973).

4.2 Summary |

Following Godambe(1955),Lanke(1975),and Basu(1971)we have proved
some non -existence theorems for the population variance. We have proved
that for any given sampling design p with second-order inclusion-probability
mi; > 0,(Vi#7 =1 ..., N),there does not exist any uniformly minimum
variance quadratic unbiased estimator(UMVQUE) of the finite population
variance V(). It is also proved that for any non-census design there does

not exist an; UMVQUE of V(¥) in the entire class of all unbiased estimators

(section 4.3).
In section 4.4 we suggest a non-negative unbiased estimator of V(y)

et

which is applicable to any fixed size without replacement sampling design
p € p,. The variance and estimator of this variance have been obtained.

We consider, in particular, estimator of V(¥) using srswor design, design

due to Lahiri (1951)-Sen(1952)-Midzuno(1951) [ Midzuno scheme, in short
| and design due to Singh and Srivastava(1980).Estimation of V(¥) under
controlled sampling plan and ppswr-sampling design have also been consid-
ered. The performance of several strategies have been studied empirically.

Finally we considered a superpopulation distribution for the main vari-
able v and a gamma distribution for the auxiliary variable x and obtained
expressions for the average variances of several strategies. These we com-

pared for various values of the model parameters,

4.3. Some Non-existence Results

4.3.1 Some Preliminaries

Let as before U denote a finite population of N identifiable units la-
belled 1,2,..,1,..,N ; y; is the value of the characteristic 'y on unit: i in

the population . Our problem is that of estimating the finite populatlon

variance

LN
wE
alZm mazzz viy;  (4.3.1)

jz=x ] 171=1

V)

|
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where

IN
o= L3y
N,;y
1 1
s = (1)
o
&7 = '}FE

by a sample survey where a sample S(s) is selected with probability p(S){p(s)]
according to a sampling plan and an estimator v(S,¥)} is employed for the

purpose.
A statistic v(S, ¥} is a homogeneous quadratic unbiased estimator (QUE)

of V if

v(S, g_{) =5 bsiyi+ D bsijyiv; (4.3.2)

teS | 1ZJES
and
E(v(S,Y))=V(y)V V€ Ry

It

ie.,

ny st;sp(s) T ZE Z ba:‘jP(S) = ﬂli{: yf = dg ZNZ Yily

=1 831 t#5=1 53,5 | =1 (7 5=1
VY € Ry

Here bsy, bgi; are constants that may depend on S and units i and (ij),
but not on y-values. A set of necessary and sufficient conditions for (4.3.2)
to hold is : |

st;t‘p(S) = a1 (4.3.3{1)
S3¢
- D bsiip(8) =ay (4.3.30)
8345

As a special c_ase of this , there is an estimator of Horvitz-Thompson (HT)
type , suggested by Liu(1974),

? i ' I .
vpr($,¥) = a3 E g, SOy 54
| icg T i#jes iy |

v (say)

I
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which is unbiased for V(¥) for any p. We note that there can not exist any

non-homogeneous QUL -

v = bo + 3 bsayi + D D bsiiivs

€S I#JES
)
because if yll = e = YN = 0, then V(g) = 0, E('U) = bg ShOL'[Id bE‘, Zero,

Hence we consider only homogeneous QUE.

4.83.2 Main Result

Godambe(1955) first observed that in survay sampling no UM V-estimator
in the class of all linear unbiased estimators of population total exists
for any p in general. The proof was subsequently improved upon by
Hege{1965), Hanurav(1966), Ericson(1974) and Lanke(1974).

In this section following Lanke’s(1975) proof for non-existence of UMV U-
estimator of population total we note a non-existence theorem (theorem 4.3)
for estimating the population variance,

The following lemma follows from Hanurav (1966), Lanke (1975).

Lemma 4.1 : For any given design p, there is at least one unbiased
estimator of V(g) iff m; >0(1#J5=12,:--N).

Following Liu (1974a) and Lanke (1975) we note the following theorem
- for estimating variance. |

Theorem 4.1 : Let p be any sampling design with n;; > OV 7 # 5 =
1,2,-. N, If there exists a UMVQUE of V(H) then that must be vy.

Following Lanke (1975) we prove the following,

Theorem 4.2 : Let p be any sampling design with n;; >0V i # 5 =
1,2,+++,N. Then vy is not UMYV in the class of all homogeneous QUE of

V.
Proof : We recall that a s.d. p is a unicluster design (UCD) if for any

two samples | -
S1, 81, S1# S2, p(S1) >0, p(S2) > 0= S,V Ss = 6.

Hence for a UCD, @y; = 0 for many pairs (i,j). Therefore by lemma 4.1
if p is a unicluster design, no unbiased estimator of V is available. Hence
p is a non-UCD. Therefore there must be at least two non-disjoint and

- mnon-identical samples S, and S, with p(S;) > 0 and p(S;) > 0. Suppose

- tE€S5NS; and 7 € 5N SE. '”

- - Let the estimator vy be defined as
: Yy — P(Sz)yf forS = Sl

vo(S,¥) = < vy 4 p(S))y? for S =5,
B vy, for S # S, S,.

LI
B T
H .h_-'_

16



Hence vy is QUE of V(g)

Let us consider ¥ = ¥ = (0,0,..., 4%, 0,..,0,9;, 0, .., 0).

For this point,
V{m) — V{vo) E(v}) — B(v,)

~yip(S1)p(Sa)[¥i {p(51) + p(S2) }

Il

I

2 )
-—Zalg;— +- 4{13%] (4.3.10)
4k Wiy

(4.3.10) can be made positive for some values of y;, y;. As for example, for
N = IO,y.- = 10, Yy = 100,7[“:' = .3,?1‘,'1' == .2,;}(81) — .1,;3(32) — .15,V(U1) —
V (vo) = 8662.5 > 0. - |

From (4,3.10) it can be observed that V (vo) can be smaller than V(1)

for certain values of y; and y;.

Hence v, is not UMYV,
From theorem 4.1 and 4.2 we obtain the following non-existence theo-

rem,
Theorem 4.3 : For any given p with my; > 0V # 7 = 1,2,-++, N,
there does not exist any uniformly minimum variance quadratic unbiased
estimator (IMVQUE) of V.
In the next part the non-existence of a UMYV estimator for V in C,,

the class of all unbiased estimators, is noted following Basu’s(1971) result

for population mean. The result is also contained in Liu and Thompson
(1983). | |

- Theorem 4.4 : Let p be any non-census design with #;; > 0 (i # 7 =

1,2,--+,N). Then no UMYV estimator exists in the class C, of all unbiased

estimators of V,

4.4 On Some Sampling Strategies for estimating the Popula-
tion Variance

4.4.] A non-negative unbiased estimator

In this section we try to develop suitable sampling strategies for esti-
mati ng the finite population variance. Since a variance is a non-negative
quantity , it is desirable that its estimator should also be non-negative. We
assume that the values z; of an auxiliary variable z are available for all the
units in the population.

let

s N
% = N ~ 1”5)

V
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=1
! N ! N
= GIZyE”GQZZyt% (4.4.1)
i= 1#)=
where . )
' | e
- — -,Y —_— T )
“UENTT NIV -1) NL__Zl;y

From (4.4.1), an unbiased estimator of .Sf is, writing M; = (‘::'_‘)

2
o Yilj
b = EIZM1P(S ELLMEP

€5 t#JES
2
" (4.4.2)
Mop(S) |
where 1
g =2 (w9, 7=~ Zyt
N ies s

(4.4.2) gives a non-negative unbiased (nnu) estimator of 7 and is applicable
to any fixed size(n-) without replacement design p € p,.. For any fixed size
(n-) without replacement sampling design p € p,,, with positive probabilities
of selection to all possible My samples, the estimator (4.4.2) gives a non-
negative unbiased estimator of S;. The variance of t is

(4.4.3)

V() = 2

where ) denotes over all Mn-samples belonging to the sample space § and
s; = (s3)%, 8} = (S})%. An unbiased variance estimator is

v(t) = t? — est.(S))

nﬂw, '

Sy = {N 1 1-2(% - Y)*)

1==]

Eyt T Zy;y, -

g z(N 3)

N2(N _1)23’:3»’: NQ(N___]_ Z%QJJJ:

| 1 | 77 |
NN ) D YiVsUkYi (4.4.4)
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N
where }_, E Z 5" denote respectively 32N s Z):,¢J_1, 3 2 Vit Ak=1

S Y et

Hence

i

(4.4.5)

1 y) Vi Vs
{1 A )
il T & Wan(S)
;! , .U?L‘.f
+.
NN - 1) ZS: M,p(S)
"NIN —1) % Msp(S) NN -

T

o ViVl
)2 ? Mp(S)

where )¢, ZS, Es: S denote respectively D e, 20 2liziegs 2u 20 2aikjdtkes

2020 20 DoikiAkAIES

A, general unbiased estimator of a polynomial function of population

values was considered by Nanjamma et al (1959),
Chaudhury (1978) considered the problem of estimating finite popula-

tion variance and gave several estimators. In particular he considered the

estimator
| .- I afS])
NEP(S]
where ;
Q(S) - Z ﬁ:dﬁ =
I<iES V)

He proved the following results:

(1) Var(e) = N4{2a

where § = E(e) = V (¥).

L

1

Lij = %m,-,-(S) and my;(S) = {

(4.4.5)

y;)°

1 if1,7€8
0 otherwise

—~ 92}

(2) An unbiased estimator for Var(e) is

il () gy = 1) = 4(5) + (S)]

where

2 (d

t<JEST

B(S) =

Nz gy by =ty (big = 1)



z E d:; dH Yiikt

I<JES k<IES ‘J Lk f'JH

where Yijel = S smii(S)mu(S) and fijm = EZS#S'me'(S)mH(S,)-

The estimator (4.4.2) considered above is a special case of the estima-
tor (4.4.5') (multiplied by &) and is applicable for any sampling design
with a fixed size n and for which all the My possible samples have positive
probabilities of selection. The properties of the estimator (4.4.5;) for dif-
ferent sampling designs have, however, not been studied. We consider here

properties of the estimator (4.4.2} for the following sampling desogns, i.e.,
SRSWOR, Midzuno, Singh and Srivastava, PPSWR, etc. The estimator

(4.4.2) was also considered by Isaki (1980).
4.4.2 Application to Different Without Replacement Sampling
Designs

(a) For the simple random sampling without replacement(srswor) de-
sign, po (say), t = s?. From (4.4.5) an unbiased estimator of variance of

st, V(s?) is

Y
1 N?—2N+3
2y o4 4
vis) = 5 Nn;y' NN —1)n( n-l);”
4 ~ 3 2(N-3)(N -
Nﬂ(ﬂ——l)?yly.} ‘ Nn(n (n zy:yjyk
(N —2)(N - 3) -

(Y3 4.4.6
NN =1)n{n~1)(n - 2)(n - 3) ?y s (44.5)
We denote this strategy (po,s?) by Ho.

(b) For Midzuno strategy, pM(sa.y), p(S) = qs/M;, where g5 = ;g 1;,
P =x/ X, X = Ef_‘;l z;. Here the estimator (4.4.2) reduces to

2 \

s
trg = —2 4.4.7
M Ngs ( )

with variance,
| n s,
V(t ¥ . S“ 4.4,
(trr) = NTM, 4 E (4.4.8)

| The.'strategy (par,tar) is denoted by H1
(c) Under the scheme due to Singh and Srivastava(1980), pj, (say), p(9) =

. '1
Iﬁﬁ-‘f Here (4.4. 2) reduces to the ratio-type estimator

2

-—Sgsj  (44.9)



with

gi |
V(tr) = Z—% — (4.4.10)
0 > %

$
We denote the strategy (pg,tr) by Hz. The strategy was also mentioned

by Nanjamma et al (1959).
Clearly tp is biased under Po. The bias of tp, under pg, to first order

of approximation is, assuming |° "32\ < 1, following Cochran(1977,pp.160-
162)

Blta) ~ [BV () - C(s2,aD)l/82 (44.11)
where V {e), (e a’) denote variance of e and covariance of e and € respec-
tively and B = 2%. Calculations.show that

N(N—'n){(N'“l)(N“l)“z} A\, )2
C S;-;! €Iy — X y — Y
(40 D ¥ (e~ X)t(u - )
(N~ 1)(N = m){(n = (N — 1) =20} _,
n2) Va) o
N — e
i AN =n)(N —n—1) (N ~-1)*82 (4.4.12)
n(2)V(4) _
where

Szy = [N-l—l) Y(zi — X)(vi ~ Y) and wp) = u{u —1)...(x — v + 1), Using
expression for V'(s7) [Sukhatme(1953)] and (4.4.12),from (4.4.11)

W)
B(tg) "y )32[2(N 1AW L{SES, — Say)
~N{(N =1)(n - 1) = 2}{3_(zi — X)*(si — Y’
Sy 14
-'*-S;E Z(E;—X) }I (4.4.13)

Followmg Hartley and Rao(1954), an exact expressmn for bias of tp under
Po 18 given below.

We have
2 . . 32
C’(Sz,s ] = E(s:} - E(;‘%]E(S:)
o2 2
, S
therefore S (;? = S,f — C(:’é'a s2)
2 Sy
or, E(iﬁ) — Sy = —C(;—%,Si)

o1



Hence bias in ¢y is
B(tﬂ) P:l,zggn aza (4-4.1‘1)

2
&
where 2z, = =¥, 2, = 55, Thus
x

If((tif)) I lpzl,zg!%i-i < cv(sy) (14.15)

where cv(s?) denotes coefficient of variation of sZ . Hence if the population
is such that cv(s?) < .1, then the bias may be regarded as negligible in

comparison with the mse,

Now,
SZ
tr — S: ~ sﬁ — Rs?( assuming -——52 = 1)

Hence mse of tp is

E(tR-S) E(S —RS)

= &IZ)N(d))[N{(n—l)( - 1) =2} (s — Y)* = R(z: ~ X)*)*}
+4R(N — 1)*(N —n —1))5.8; — S.)] (4.4.16)

The strategy (po,tr) is denoted by Hj.
Das and Tripathi(1971) considered the class of ratio-type (of which t5
is a special case) and product-type estimators of V (¥) in case of srswor and

studied their properties for large samples.

4.4.3 Estimation under PPSWR

Under ppswr,. an unbiased estimator of Sf is from (4.4.1)

t, = a;As — a; Bs (4.4.17)
- where
Y} wy;  1,y? f
Ag= > —, Bg = Z - — (= 4+ =)
¢ NP n ™ 1 Py 2" p; Py
sirce,

AS) Zyu Zylyj

Thls estimator was also contained in Murth}r (1967, Chapter 6, Section -
6.7). We have :

Vib) = ¥ (5 2 4 8y (3 )
NS0 e nf(n = 1) G pep;



2&.2 (Z yi y}

n(n -~ 1){N — np; P:PJ

Now,

g ;.* yPy!
V(Z"&“) Z - 2V ri) +Z L-C(ri,r5)

i

S np; nzpt n* ptpj
4 2,,2
Y, Yi y;
— l —— ,I"' ;
anpgﬂps( pi) +Zn9plpj npip;)

) rf;; i(z yi)? (4.4.18a)

where r; denotes the number of times i-th unit occurs in the sample S.

Denoting gf: by z,

V(Z % 25)

122 V{ziz) Z C(#iﬁ:*az:*zk) + Z Clziz;, ze 1))
S

it

Z ytyj

plpj

t

5

Now variance of the product of the two variables X; and X, is given by
|Goodman (1960)]
g | YO6) | V)V

V(X1 X3) = (X Te) 2 a4 L —
1 %) = X X XX,

where X; = E(X;),7 = 1,2. Hence

V(z;zj) — (Ez)zlvé-:f) V;z,-)+V(z;)V(zJ-)]

VZ,* VZ,'E
;2)_'- -(2-4)

= 22

since z; and z; are identically distributed.
Using 7 = E(z;) =Y and

V(z) =V () =~ ¥)pi = o (say)

mmmmm
I



Clzz;, ) = FE(zlzz) — E(2iz;) E(2i2)

Y 4
= Yz 2 Y
Z Di
= Y«
and C(22;, z:2) = 0.
Therefore
V(g; Iy):—l-;-j-) — 4?1»(?’1»2“- I)chi(z | }i) f 4n(n _ 1)(1,1._ 2)Y2ﬂ:
= 2n(n—1)Y a2 }i - 2n — 4]
v y?
= 2n(n—1)[{D_ ;‘—)2 +2(n-2)Y*) ;‘—-
~(2n — 8)Y"] (4.4.18)
Again,
2 ! 9
Y; YilYy Y. WYy
C —, -2y = 2 (] R
(g P g PfP:') 53: (Pi P:‘Pj)
" y
Vi Yi%k
+) C ,
; (RP; Pj'pk)
: 3 ”
Ui Uy Y Yily
= 2 E E(ZLE
E.S':{ (P;‘P_f) ~ (pi (P:'pj)}
3
= A=Y LT -V 4 (4.4.18¢)

Hence from (4.4.18a),(4.4.18b) and (4.4.18c)

n 2

. y‘2 2 2 yl? 4
tam ot ) T =Y - (2n - 3)Y4)
“%{YZ% neN3 (4.4.18)

We denote the strategy (ppswr, tp) as Hy,
Das and Tripathi(1978) also mentioned of the estimator ¢, but they did

not study any of its properties.
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As noted by an examiner the estimator in (4.4.17) is not uniformly non-
negative , but a non-negative unbisaed estimator of Sj' based on PPSWR

may be considered, such as
}

— ;)

! Ly =} (sa
N =D -0 % P

We denote the strategy (ppswr, p) a5 IL, Now variance oft

' 1
V(tﬂ) 2n(n — 1)N2(N _ 1)2 (2n — {Z Z i 7 y:

+2(ﬂ—*2){2-*1'(2k¢1( MOSREDIID yIP=PJ

ip‘.
1 y:
n(n ~ 1)N*(N - il p N =2) )2 }
+4N(2n - 3) > v (D w)* —2(2n -3 Zy‘
—'2)(23;;)22%?-1-2(”“2){2NZ§ZD’?
ALy g+ (U D) + s

3
.._42%( 1 - 2 Ey‘—-l—zyt "—2N2 2n—3 Z@,ﬁ

i

|

4.4.4 Ratio Estimator of Variance Under a Controlled Sam-
pling Design

Another type of sampling of practical importance is controlled sam-
pling. In SRSWOR, the number of possible samples (‘D is very large
even for moderate N,n. In many field surveys, all the possible samples
are not equally preferable from operational point of view - some samples
may be inaccessible, inconvenient, expensinve, subject to insufficient or less
efficient handling. It will, therefore, be advantageous if the sampling de-
sign'is such that the total number of possible samples be much less than
(f), retaining at the same time unbiasedness property of the estimators
of interest. Chakraborty (1963) first introduced the concept of using the
incidence matrices of designs in sampling from finite populations in this re-
spect. t-designs have been used in generating controlled sampling designs
by Srivastava and Saleh (1985), Foody and Hedayet (1977), among others.

Some recent works on controlled sampling designs are due to Hedayet,
Lin and Stufken (1989), Rao and Nigam (1989,1990), Mukhopadhyay and
Vijayan (1992). | -

00



Controlled sampling has been used by several authors for estimating a
finite population total [eg.Sukhatme and Avadhani(1965), Avadhani ang
Sukhatme(1967, 1968, 1973), Srivastava and Salah(1985), Rao and Nigam
(1989)]. In this section we consider a controlled sampling design for est;.
mating the population variance.

A balanced incomplete block design (BIBD) is considered with param.
eters v,b,r ,k,A, where v is the total number of elements or units, b is the
number of blocks, r is the number of replications of each unit, k is the size of
a block and A is the number of blocks in which every pair (7, 7) of elements
occur together, 1 # j = 1,2,--+,v. Each element is identified as a unit in_
the finite population and each block as a sample. Therefore N =v, n =&,

Samples(blocks) are selected with probability proportional to sample
variance, sZ ie.,p(S) = p.s%, where p is the constant of proportionality.

Using the relation Y5, p(S) = 1 we get,

b1 I
pr -2 = Z-’ﬂf-’ﬂf}: 1
g=1 " g “"( B
or,p[Zm?.; )Z:n,a:_,] = 1
or,%{—[in E:ﬂ,a:j] = 1

| since r(k — 1) = A{v — 1)ie.,r(n — 1) = A(N — 1)]

N n
TR = rNS?
- ns2
Hence p(S) = ;NSEE (4.4.19)

Under this scheme tp = —*-5'2 becomes unbiased for .S'2 since

5 |
Z ﬁRP(S
Sz

b
PR

E(tﬂ)

:r]\.”S2

Il

f

o
__y_
2
I
b
P

'2]
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n b 1 2. 1 4 |
;,']"\"f ;{; ;yi n(n__ 1) ;ytyj}

§=1
...:. 1 2 A 3.
o rN[rny (n__l)zy‘y.?]
= 5 (4.4.20)
Vitr) = E(tr)' ~{E(ta)}"
= : f.;.gﬂ_.s* (4.4.21)
rN st ® y

We denote this strategy by Hjg.
We note that the unbiasedness of the strategy Hp follows simply {from

the fact that if for a design p, .5? and §j are unbiased estimator of .S'lf and
57 respectively, the estimator $257/S5? is an unbiased estimator of Sj under

the modified design p*, when p*(S) = (S?/S?)p(S). This is also noted that
Hp i1s actually a family of sampling strategies and H; itself is a mamber of
this family corresponding to the trivial BIBD. One may similarly think of

controlled versions of Hy and H;.

4.4.5 An Empirical Study

To assess the performance of strategies H; (¢ =0,1,---,4) we considered

35 natural populations as listed in table 4.0 of chapter 4.
Along with the strategies H;(f = 0,...,4) we considered the following

strategies

(a) Hg = (PM:E*)
() Hy= (PR:EF)
where ¢ is another non-negative unbiased estimator

' 1 (,*'-_— j)z
) N(N*—I)ZE y?r“y ’

t£5ES tJ

considered by Chaudhury (1974), Mukhopadhyay (1984), among others.
Yor n = 2 strategies Hg and qu coincide with the strategies Hy; and H,

respectively, | | |

Variances of H|, V(H;)(+ =0(1)4, 6, 7) were computed for all the above
mentioned 35 natural populations (excluding those populations for which
variance of Hy was not defined, because p(S), which is a function of sam-
ple variance of the auxiliary variable z, becomes zero for some samples).
The variances have been shown in tables 4.1, 4.2 and 4.3 for n = 2, 3,4
- respectively. I | |

P
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The strategies H;(: =0,...,4) were ranked according to the magnitude
of V(H,), one with the lowest magnitude of its variance being given rank
1, the next lowest rank 2, etc. The following table shows the average rank
of the strategies over different populations for n = 2,3,4. If a strategy H,
has less average rank than a strategy H; (on the basis of the populations

considered) we will write H; r H;.
Table 4.A

Average Rank
Sample size Hﬁ Hl Hg H3 H.; 1{5 ffﬂ;r
n=2(17) {4.69 1..53 3.29 3.18 241 - —

Rank |n =3 (32) |6.66 3.61 3.76 4.33 50 3.03 1.55
n=4(32) |672 376 3.3¢ 3.92 551 3.25 1.5

Figures in the parenthesis indicate the number of populations consid-

ered.
The above table shows that for the populations studied,

for n=2, H\(= He) r Hy7 H:;;HQ(E Hy) r Ho
for n=3, HT;HGIH1£H2;H3;H4£HQ
for n=4, H7£H5>?:H2;H1 ;.Hg;H.;;HQ

on an average,
Hence, the following conclusions can be drawn from the above empirical

study:

(i) for n = 2 the strategy H, is best among H;,i =0,..4 and forn =3

and 4, Hy and H, are preferable among the strategies H;(: = 0,...,4). Hj
is the least preferable( having the largest average rank) for all n among the
strategies H;(1 = 0(1)4,6,7).
(i) it is found that though in most cases Hy and Hg fared as the most
stable estimator (in the sense of having lowest variance) the performance
of H, and H, was quite satisfactory and quite close to that of Hg and H
for almost all the populations and for all the values of n considered.

The investigations into the above natural populations though did not
advocate vehementiy in favour of the strategies H;(¢ = 0,...,4), it is felt that
they, specially strategies H; and H,, should give satisfactory estimators of
finite population variance in practice. However, the purpose of our inves-
 tigations was not for finding grounds for supporting any of our strategies

(Ho, ..., Hy4) but also to find their position vis-a-vis the other rival strategies.

We now consider the performance of Hy vis-a-vis the strategies Hy, ..., H.
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We consider the following doubly balanced BIBD (8, 14, 7, 4, 3)
(Chakraborty,M.C.(1963)]

J
7
7
5
6
5
o
5
5
7
5
6
5
6

=T 00 00 ~3 00 OO 00 =~ =~ OO0 D 00 08 &

2
6
2
4
3
4
4
3
2
4
3
4
2
3

B Rt DO = GO P DD e DO b GO ke O e

We impose this design on the population numbered 1,2,3,4,8,13,14,15
and 16 of table 4.0 | of which the last three populations numbered 14,15
and 16 are confined to their first 8 units| and also on the population with

the following x and y values {Rao and Singh{1973), table 1]

unit 1 1 2 3 4 5 6 Ki 8
x; 506 977 2252 2254 3802 4873 5542 7409
Vi 0 22 5 74 63 131 80 141

Again, we consider the following symmetrlcal BIBD (7, 7, 3, 3, 1)
[Chakraborty,M.C. (1963)]

~T O O b 0 B
B = =T O O b W
LW o = -3 O Ut

We impose this design on the population numbered 1-4 and 6-10 of table

4.0 and aiso on the population with the following x and y values [Rao and
| Slngh(1973)]
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aniti 1 2 3 4 5 6 T
z; 05 20 18 17 16 24 22
Ui 121 110 99 85 82 116 108

The variances of the strategies H;(¢ =0, ..., 5) of the above populgtigns

have been shown in tables 4.4 and 4.5.
The strategies were ranked as before and their average ranks are shown

in the following table
Table 4.B

Average Rank
Sample size PUP]H. size HD H H Hs H4 Hﬁ
n=.3J N = 7(10) 53 2.2 3.1 3.5 3.8 3.1

Rank

Figures in the parenthesis indicate the number of populations consid-
ered. |

‘Thus for n=3, H, r Hy = Hp r Hs r H, r Hy

for n=A, leH:,ngrHErH4ng |

where "H; = H denotes the strategy H;: has the same performance as
H; in the sense of ha.vmg equal value of average rank.

From the above table we infer that :

(i) the strategy H; is best among H;,7 =0,...,5 and Hp is the least
preferable strategy, H, is the next superior. |

(ii) For n=3 H, is superior to Hs where for n=4 the position is reversed.
The position of Hs is somewhere around H; and Hs,- it is equivalent to H -
for n=3 but is inferior to both Hj and H; (but, ofcourse, superior to Hy,Hp)
for n=4. Both the tables 4.A and 4.B show that H, is the best and Hj is

the worst strategy among H;,t =0,..., 5,

4.4.6 Average Variances of the Strategies under a Superpopu-
lation Model

- To assess the relative performance of the strategies Hi(i = 0,...,4) we
. compare theiraverage variances under the following superpopulation madel:
Y1, Y2, -.., YN are considered as realisations of N independent normal vari-
‘ables Y;,Ys,..., Yy, each distributed with (0,0%29), o?, a constant (> 0)
‘and g, a known quantity, We, further, assume that z's are independent
 gamma variables with parameter ». Such assumptions for comparison of
~average variances have been considered by several authors [eg. Rao and
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Rao (1971a,b)] E, and & will denote respectively expectation wrt = and

the above superpopulation model.

We shall denote E,EV (H;) as ;. We have

|l

B ]-——Z{H—Z?}J" 29

0 5¢8 n? (€S

_ N
+(n 2n+3 Zzgq {%235433?9

| n:;( :#JES 1=1
(N* -—2N+3 )

+ N3 (N | %;0 z!

(N—-—n I'(r+ 2g)

"B

(Nn—SN—-3n+3](I’(r—|—g))2]

(n—1)(N —-1) I'(r)

o

t

(

(4.4.22)

on simplification.
Again,

= E, 4,..29
n [M[J z (EIES pl 235

SES 165

e 2”+Szza*xfmg} (2 3 3040

| n’(n— ) t;‘.JES | i=1

(N? —~2N+3 )
TN - Z;Z”

Mla [ZE { 23:1:2"

- Se8 eS8

+( 2n+3 zzm

nz(n 1£JES

1. z E, (Zteg -"'31){

Se§ E;E,si?;)
- (r* - 2n+3)
oy S )
8r+2g N2-2N+3) r+g.,
N r N(N-——l)( =)l
M1 4 ' 3F(r+2g) (n2—~2n+3)_]j‘(,-+g) .
D I (ol

i

2
|
S



N —n)r 3F(r+2g)

+Z n I'(r)

(n? —-2n+3) I'(r+g),

S — ( NG )}
{31“( 29) = (N? -—2N+3)(P("+Q’))2}
N T(r) = NWHN-1) " T(r)

| Using the approximation,

¢1($)) ~ Eﬂ(él(m)) (*)
$2(z)"  Ea(da(z))’
where ¢,(z) and ¢,(z) are rational functions of x

with ¢ (z) # 0.

Such approximations have

E.(

been used extensively

by various authors [eg. Rao (1978)]

I'(r+2¢) (Nn—3N-3n+3)T(r+g),,
I'(r) (n —1}(N -1} ( T'(r) )l (4.4.23)

N—n

(S=2)
on simplification.

We note that «y = 71, where however, the expression for v, is exact and
that of ~; is the approximated one.

o*[3

BLV(H,) = E{ Z'  {k14(2,9,5) + k2 B(z,0, 5) H L1 (A(=, 1, 5)
-+A(:z:,1,.5')) —LQ(B((S 1,5) + B(z,1, 5)

+24(z,1/2,5)A(2,1/2,5))}] - o [;I’(;?;)29)
(N* —2N +3) ,I(r + 9))2] (4.4.24)

-y U

where

$ES
‘B(m}g‘ls) = ZZI?T»?
- #JES
3ot
kl — "'—2,
n



nt(n — 1)*
;-
Ll — ﬁ,
1
L, =
: N(N -1)
and similarly,
Alz,9,8) = ) zi,
IS
B(z,9,58) = )_ ) =zz; etc.
- (#ies

now,

E.[A(z,9,5){A(2,1,8) + A(z, 1, 5)}]

N irlI‘(r + 2g)
- I(n)
E.[A(z,9,5){B(z,1,5) + B(=,1,5) -+ 24(z,1/2,8) A(z,1/2,5)}]
T'(r + 2¢) |
I{r)
E.[B(z,9,5){A(z,1,8) + A(z,1, 5)}]

I'(r+ g)
I(r)

E.|B(z,9,8){B(,1,5) + B(z,1,5) + 2A(z,1/2, §) A(z,1/2, 5)}]

= n(n — IJ(F(;(j)g))z[N(N ~1)r* +4(N —1)rg]  (4.4.254)

and B (s2) =r, (4.4.25¢)

(N(r* 4 r) + 49 + drg+ 29} . (4.4.25q)

(Nr+4g)  (4.4.25b)

=n(N = 1)r

= n(n — 1) J2{N(r* +r) +4rg +2¢° + 29}  (4.4.25¢)

on simplification. .
Hence
D(r+2g) (N —n)  4g% +2g
EIEV Hs) =3 4 : |
_ (H3) t:f.. o) { No Nm }

. (n* ~2n + 3)(24* + 2¢) .
+ - Nu(n - 1)r -}, (4.4.26)
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on simplification using (4.4.25a)-(4.4.25¢) and also the approximation (x)

as used in the case of the strategy Hj.
Calculation of Ex&V (Hs) was found to be mathematically intractable

and was omitted from comparison.
Lastly, from (4.4.18)

E,£V(Hy) = E,£(Bi+ B;+ By)

1 N yf‘ N
where, By = H(N__l)z{;‘;'“(gyf)z}
— 2 Al y_l'z.f 7 — y4 = yf
B, n(n_l).Nz(N_l)g{(g o)+ 2(n—-2)Y >
—(2n - 3)Y*} |
4 Al y; 2 v 2
and By = nN(N—-l)Z{Y;EMY- ;y;}
Now,
4 N .4 N N
BB = et T - e+ DY et
_ No* rI‘(r+2g-~1) I'(r+g),,
_ n(N — 1) [f T'(r) ( I'(r) a (44.27)
neth) = e A e,
' F2n — r((r + 20 - 2))
HE e -0+ o) +9 -

+(N ~2)** + (n—2)r — (dn = T)(r + g ~ 1)
+2n(N - 2)r(r + g — 1)}] (4.4.28)

and similarly,

4o [3?_1"(1' + 29 — 1)

EngBB) - n{N — 1) I {r) I'(r})
Hence using (4.4.27)-(4.4.29) and on simplification
ot D(r+29-2) 2
" TN YT =1V =2 +20 - 2)
Tlr+g

+2(N—i)r—|—2} | ( s

(= DV = 2)7 4 6)(r 49 - 1)
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+4(n o 1)(" + g 1) + 4n(N — 2)r(r ~+ g — ]_) + Z(N . 2)21,2
+2(N — 2)r}] (4.4.30) '

No algebraic comparison between the average variances vo(= 11), V2, V4

was possible.
Tables 4.6, 4,7 show that the values of average variances E,.£V (Hp)(=

E,EV(H)), E.£V(H,), E.£V(H,) (denoted respectively by evl,ev2 and
ev3 in the tables) for r = 2(2)6, ¢ =0,1,2, f = § = .2, 4,6 for N = 20
and N = 40. It is seen that for large r(= 6) and high sampling fraction (f =
.6) Hp is the best among all these strategies for all values of g. Otherwise

H, fares best followed by Hy(= H,) and H,.

The conclusions reached above is at variance with the conclusions reached
“about the performance of the strategies Hg, ..., Hy on the basis of the em-
pirical study based on first 30 natural populations as described in section
4.4.5. This is not surprising, because, the populations coinsidered in sec-
tion 4.4.5 are expected to observe the model £(Y;|z;) = Bz;, (8 a constant)

where as the present model consideres & (Y;|z;) = f (a known constant). In

the present model, the variance function V(Y;|z;} depends on z;. The con-
clusions reached in this section should be applicable to populations where
y-values remain constant on an average, though the conditional variance

may depend on x-values,
4.4.7 A Suggested Study

The following investigation is considered as suggested by an examiner

as follows :
~ We consider the strategy H, = (p,t) where p is a fixed size design with
p(S) o & (s;lz) and ¢ is the estimator defined in (4.4.2). Assuming as before

that z’s are independent gamma variables with parameter r we have under
the prewous model
N—-nI‘(r+2g)
EEEV H,} =
) = BN 1)
nf—-2n4+3 NP-IN+3 I(r+g},,
(IS NN S [ gy
nfn—-1)  NN-1) = T(r) °° .
N-n I‘(r+2g) Nn—3(N—n)+3,T(r+g)
= ()8 7 ——
i) (N -1) ' I

=, (sa:f)

)’]

which coincides with -, - E,£V(H,). Therefore the suggested strategy H,
and our strategy H, are both equivalent in the sense of average variance.

Rl
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We consider a model where y3,¥s, ..., Yn are assumed to be a realizatiop
of the variables ¥;,Y5,..., Yy each distributed independently as N(ﬁ,gsz).

This model is considered because of the fact that the strategies involving
the estimator in (4.4.2) is location invariant but the strategy H, is not

Hence, in order to compare the strategies under model it is justified to
consider a model for which the mean is unknown but constant.

Under the new model

V) = oyl (S APV = 1)(4 - )

29 o
—6(2n — 3)) + 42-;—2- + 2(2;;)

+‘5‘(”"‘" 2)25‘?2:5? —4N(n-~ 1)(4 ...N)Zx‘?y

29

+ Z%(S(n —2)+3N{n-1){4~ N))}

g
+20 6 {(~N(Nn+ N +n-10) + 23 57) D

((Nn-—N+2n+1)+2(n—2)(Z£—;)me

+4Z§:—;} + ﬁ“(Zi —~ NY(2 Zﬁ;‘ + Ni(n — 3))]

and
E,EV(Hy) = oy l)lz‘f(N ) [0*{2(N + 2n + l)rtz‘?;)zg)

HIRN ~2) 4 2(V = n) 4 )LDy

—I—f}’zﬁz.‘i(N. 4. n){P(;?;fg) I‘(;(:)g)

F}-[N _ 2)(P(;(":)g))2 F(;(;)g) (N . 1) P(;(’:)g)}
L(r + g) P(r — g)

N -2V 8Dy K=y
I’(r—f—g)I‘(?'—»g)

| “&N'(5N—4 — Nn) P(T) F(?‘)
E C(r +2¢) '(r — 29)
| I‘(r) P(T)
R e R e
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Furthermore it is to be noted that we can consider the mean of the pre-
viously assumed model to be zero for treating the estimator t; of section
4.4.3 as this one is invariant. Hence we get the following result.

V(L) = oy (N 1)

+4(N“-——2N+3 Sl }+2(n—2){3 1) Z---

g o]
+2(N+1>: e BZ E;}-—z ot
" " ?mﬂ.
+6 — —
(2 PiP; E PiP_f)]
Putting p; = ff;ﬁ we get
v r, - J4
EV(t,) = 4n’(n-—-1)2N2(N—1)2[ 2n(n —1)(2n — 3)

{12(N —1)*> "z + 4( N — 2N + 3) ix”m”
+4n{n — 1)(n — 2){3(N — 1)* ) _zi )  zf
+2(N +1) D> 2!y =l + 3(N - 1)()_ zf)’
JFe
+(3_2f) >z zfzl} + 12n(n — 1){(3] 2!)? 3 alz}”
N -1)(2_=0)°} '

and

E.lV(t) = 2n(n_12)‘;w__1)[r(}zr)zg){ 14n(N - 2) + 22N — 32}

+2(F(; (j)g) H{n(8N® ~ 2N — 14) ~ 2(V* + 3N — 17)}

+2(2n — 1) P(’;E:)gg) P(rr(:)g]

+2(n + 1)(N - 2)(IV — 3)(1‘(11‘(?)9) )SP(;(:)Q) |




Table 4.0

pop. Source ¥ X popln, E?(K} cv(y} P
no. aige(N)
1 Mursthy No.of Area in 8 0.449 0817 089
(1967) cultiv- 1951
p.126 atora
Yill. 1-8 in 1961
2 do Workers at  Area in 8 0,449 0,896 0.43
household 1951
induatry
3 do, No. of No. of 8 0.634 0.530 0.92
vill. 8-18 cultiv- persons |
ators in 1661
in 1961
4 do Workers at do 8 0.634 0.777 0.89
household
industry
B do, p.132 Timber Strip 13 0,368 0.861 0.96
bl. no7 volume length
8 do, p.178 Area under Geogra- 10 0.085 0.344 0,25
vill. 1-10 paddy phical
area
7 do, p.180 Catch of No, of 12 0.723 0.77¢ 0.93
fish boats
landing
8 dao, p.228 Qutput No.of B8 0,066 0.308 0,32
workers
9 Sukhatme & Area under Total 10 2.301 0.397 0.87
Sukhatma rice cultivated
(1970)p.51 area -
10 do, p.166 No.of No, of 10 0.248 0,194 0.85
banana banana '
bunches pits
11 Yates No.of Total no. of 12 0,608 0,650 0.81
{1960)p.169  absentees persons
12 do, p.163 Volume of Eye- 0 0,573 0.484 0.90
| timber estimate
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Table 4.0 (contd.)

pop. Source Yy X popln. ev(x) ovly) »
no. size(N)
13 do, p.232 Length Length 8 0.562 1.609 0.47
coloured of line
14 Oochran Na., of No. of 10 0.423 1.077 0.22
{1977)p.182 paralytic '‘placebo’
polic cases children
in placebo
group
15 Raj,D. No. of No.of 156 0.420 0.414 0.77
(1972)p.70 cattle (arms
16 Sukhatme &  Area under Area under 20 0.723 0.744 0.99
Sukhatme wheat wheat
(1970)p.185  (1973) (1936)
17 R.K.Som Average Average 16 0.351 0,243 -0.3b
(1973)p.255  no. of monthly |
persons expenditure
per h.h on cereals
per h.h,
18 Jessen Total no. No.of fish 16 0.474 0.571 0,90
(1978)p.151  of fish tagged
19 do, p.153 No.of h.h, No.of h.h, 13 0471 0.428 0.62
in 1960 in 1950
20 Konijn Measurement  Measurement 10 0.202 0,182 0.77
(1973)}p.389  obtained in obtained in
reinterview first
interview
21  do, p.49 Food Total 16 0.078 0111 0.95
expenditure expenditure
22 Yamane Vaccancies Apartment 10 0.353 0,344 0.98
(1967)p.334
23 Hanuray Artificial Artificial 4 0,447 0578 (.98
(1967)p.386
24 Horvite & Eye-estimated No. of house- 20 0.426 0.389 0.87
Thompson no, of house- holds in
(1962)}p.682  holds in i-th block
i~th block
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Table 4.0 {contd.)

pop. Source y X popln.  cv(x) ev(y)
no. - gize(N)
25 Rao (1963) Acreage Acraeage 14 0,370 0418 0.3
p.386 under grain  under grain
corn in corn in
1960 1968
28 Hanuray Population  Population 10 0.171  0.206 0.92
(1967)p.386 in 1967 in 1967
(Arst 1-10
units)
27 do do do 10 0.481 0,487 0.98
28 do do do 10 0.733 0.73% 0.99
20 do do do 10 0.328 0.306 1.00
30 .51 survey Age at Age at 7 0.371 0,167 0.30
Report death which
(1991} addiction
gtarted
31 Sarndal, pop, in pop. in 10 0.686 0,673 (.99
Swensgson thousands thousands
& Wretman 1985 1976
(1992)p.653 |
32 do 10 1.827 1.761 1.00
a3 do 10 0.668 0,520 0.99
34 . do 15 1174 1.190 1.00
36 Fuller Yieid Sail 11 0.236 0.092 (.84
p.18 nitrogen

70



popln.

V(Ho)

0.129 x 1012
0.101 x 10%9
0.257 x 1013
0.207 x 1012
0.410 x 1013
D.408 x 1014
0.334 x 1012
0.525 x 1012
0.249 x 1012
0.311 x 1013
0.124 x 1013
0.287 x 1013
0.744 x 1033
0.211 x 1034
0.205 x 10%¢
0.181 x 107%¢
0.181 x 102

Table 4.1 (n=2)

V(H,)

0.159 x 1012
0.174 » 10°
0.101 x 1012
0.856 x 107
0.113 x 101
0.416 x 10°
0.630 x 104
0.227 % 10
0.309 x 10%
0,748 x 10°
0,134 x 10%
0.376 % 107
0.671 % 1033
0.283 x 1034
0.911 x 10258
0.1356 % 1048
0.627 x 10°

V(Hg)

0.373 x 10'?
0.379 x 1019
0.354 x 1013
0.320 x 108
0.150 % 1013
0.286 x 101!
0.583 x 10°
0.169 x 10*
0.768 x 10°
0.159 x 108
0.724 x 103
0.372 x 108
0.191 x 10%¢
0,275 x 1034
0.669 x 1024
0.496 % 10%!
0.824 x 107

71

V(H;)

0.235 x 1012
0.269 x 10°
0.817 x 1013
0.166 x 10°
0.14G x 104!
0.725 x 109
0.108 x 10°
0.39G »x 10
0.657 % 10°
0.935 x 10°
0.263 x 10%
0.638 x 107
0,972 % 10%3
0.170 x 1034
0.130 x 1036
0.199 x 102°
0.252 x 1019

V{H)

0,169 x 10!
0.157 % 107
0,263 x 1012
0.451 x 107
0.181 x 101}
0.782 x 10%°
0.689 x 10¢
0.202 % 10
0.247 »x 10°
0.145 » 107
0.140 x 10°
0.902 % 107
0.437 x 1074
0.204 x 1032
0.124 x 10%¢
0,730 x 1073
0.554 x 10



popln. V(Hp)

no,
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0.561 x 10!
0.675 x 104
0.118 x 10!
0.138 x 10!*
0.107 x 10!
0.108 x 10%%
0.303 x 10*?
0.271 x 10"

0.272 x 101

0.223 x 102
0.306 x 10!?
0.350 x 102
0.272 x 10'?
0.176 x 10%?
0.131 x 10!°
0.166 x 1012

- 0.166 x 1017

0.207 x 10%*
0.276 x 10!*
0.166 x 10'2
0.829 x 10
0.131 x 1012
0.191 x 1012
0.346 x 10%
0.110 x 10%*

10.113 x 10%*¢
0,121 x 10%¢

0.181 x 10%
0.121 x 10%@
0.121 x 10%

- 0.775 x 107

0.108 x 10%*

Table 4.2 (n=3}

V{(H,)

0.678 x 1011
0.775 x 108
0.686 x 101%
0.328 x 107
0.108 x 10°
0.185 x 10
0.125 x 10'?
0.503 x 101°
0.178 x 10°
0.346 x 104
0.980 x 107
0.137 x 10

0.239 x 10°
0.133 x 10"
0.573 x 10°
0.263 x 10

0.135 x 10°
0.286 x 10°
0.211 x 107
0.144 x 107
0.309 x 101
0.330 x 10*
0.188 x 107
0.318 x 10%3
0.121 x 10%
0.605 x 107
0.658 x 10%*?
0,983 x 10*

0.516 x 10°°
0.142 x 01°

0.603 x 10°

0.396 x 10*
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V(H,)

0.101 x 10*?

0.174 x 10°
0.501 x 10!
0.318 x 107
0.118 x 107

0.930 x 1010

0.831 x 10'*
0.134 x 10!
0.316 x 10°
0.321 x 10*
0.122 x 108
0.351 X 10
0.842 X 107
0.281 x 100
0.777 x 108
0.260 X 107
0.169 x 10°
0.133 x 107
0.420 x 10°
0.528 x 10°
0.283 x 10°
0.281 x 104
0.126 x 107
0.470 x 10%
0.263 x 10%3
0.405 x 1024
0.251 x 102!
0.593 x 10°
0.139 x 107
0.562 x 10°
0.214 x 10*
0.524 x 10°®

V (H3)

0.862 x 10
0.101 x 10°
0.851 x 104
0.562 x 107
0.248 x 1068
0.233 x 101!
0.243 x 1012
0.498 x 101¢
0.237 x 10°
0.414 x 104
0.122 x 108
0.175 x 10
0.412 x 10%
0.231 x 1010
0.678 x 10°
0.486 X 10
0.205 x 10°
0.315 x 108
0.904 x 10°
0.178 x 107
0.180 x 103
0.551 x 104
0.207 x 107
0.310 x 10?8
0.450 x 109
0.345 x 10%
0.507 x 10%2
0.197 x 105
0.630 x 10°
0.643 x 10*
0.309 x 108
0.684 x 10*
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Table 4.2 (n=3) (contd.)

V{H,)

0.106 x 107
0.889 x 108
0.173 x 10!
0.282 x 107
0.145 x 10°
0.212 x 10!
0.178 x 10'2
0.120 x 10'!
0.518 x 101°
0.444 x 10*
0.536 x 10°
0.114 x 10
0.235 x 107

0.501 x 10°

0.595 x 10°
0.664 x 10?
0.162 x 10°
0.848 x 10°
0.195 x 108
0.360 x 108
0.933 x 10*
0.101 x 10°
0.599 x 107
0.291 x 10%**
0.135 x 10%
0.824 x 10%

- 0.487 x 1023

0.115 x 107
0.370 x 10°.
0.330 x 10°

0.440 x 10°

0.211 x 107

V{(Hs)

0.606 x 10!
0.719 x 10°
0.611 x 10"
0.288 x 107
0.108 x 10°
0.161 x 10!
0.127 x 10'*
0.462 x 10*°
0.175 x 10°
0.328 x 101
0.931 x 107
0.130 x 10
0.232 X 102
0.122 x 10%°
0.520 x 10°
0.239 x 10
0.123 x 10°
0.244 x 10°
0.210 x 107
0.143 x 107

0.285 x 10*

0.318 x 104
0.190 x 107
0.322 x 10%*
0.111 x 10%*
0.595 x 107
0.660 X 10%

0.947 x 10*
0.522 x 10°
0.143 x 108

0.609 x 10°

10.402 X 10*

73

V()

0.509 x 10*!
0.669 x 108

0.190 x 10!
0.177 x 107
0.191 x 108

0.609 x 10'°
0.867 x 10!
0.249 x 10
0.107 x 10"
0.192 x 10*
0.353 x 107
(0.130 x 10

0.337 x 10°
0.126 x 10
0.111 x 10°
0.268 x 10

0.918 x 10°
0.146 x 10°
0.411 x 10°
0.430 x 10°
0.990 x 103

0.174 x 104
0,347 x 108
0.144 x 1028
0.537 x 10%** -
0.835 x 10%

0,630 x 102!

0.186 x 10°
0.919 x 107
0.404 x 108
0.287 x 105
0.356 x 10*



popln. V(H{})
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0.305 x 104
0.427 x 101
0.655 x 10
0.873 x 101!
0.719 x 10"
0.720 x 10

0.174 % 107

0.181 x 10%f
0.182 x 10'?
0.153 x 10*
0.201 x 10%%
0.222 x 1012
0.182 x 10%
0.124 x 10%?
0.940 x 10!
0,118 x 101%
0.118 x 101
0.144 x 10%°
0.185 % 10%%
0.118 x 10
0.041 x 101
0.134 x 10'?
0.203 x 10°3
0.682 x 1073
0.717 x 10%°
0.807 x 10%°
0.108 x 10%®
0.807 x 10*®

0.807 x 10
~ 0.807 x 10%%
- 0.546 x 10%°
0.738 x 10%°

Table 4.3 (n=4)

V (Hy)

0.362 x 10!
0.424 x 10°
0.345 x 10!
0.165 x 107
0.619 x 10°
0.106 x 101
0.617 x 10*

0.201 x 10!°

0.100 x 10°
0.224 X 10
0.542 x 107
0.862
0.154 X 107
0,736 x 10°
0,361 x 107
0.150 x 10
0.792 x 10°
0.157 x 108
0.129 x 107
0.830 x 10°
0.217 x 10*
0.118 x 107
0.188 x 10%*

0.690 x 10%

0.425 X 10%®
0.397 X 10%*
0.522 x 10*
0.351 x 10°
0.419 x 10°
0.999 x 104
0.495 x 10°
0.227 x 101

14

V (H,)

0.503 x 10
0.681 X 108
0.251 x 10!
0.154 x 107
0.425 x 10°
0.444 x 10°
0.366 x 10%%
0.272 x 101°
0.125 x 10°
0.165 x 101
0.499 x 107
0.118 x 10
0.351 x 10°
0.145 x 10%°
0.523 x 10°
0.651 x 10
0.902 x 10°
0.262 x 10°
0.330 x 10°
0.307 x 10°
0.212 % 101
0.585 x 10°
0.158 x 10%°
0.111 x 10%°
0.313 x 10%*
0.158 x 10*1
0.210 x 10°
0.381 x 10*
0.554 x 10°
0.363 x 103
0.155 x 10°
0.485 x 10

V(Hs)

0.428 x 101}

0.508 x 108

0.329 x 10!
0.186 x 107
0.143 x 10°
0.101 x 10!}
0.112 x 10'2

0.244 x 1010

0.113 x 10°
0.224 x 10%
0.516 x 107
0.959

0.254 x 10°
0.125 x 10
0.322 % 10°
0.285 x 10
0.110 x 10°
0.156 x 10°
0.491 x 10°
0.857 x 10°
0.337 x 10¢
0.993 x 10°
0.144 x 10%3
0.174 x 10%*°
0.134 X 10%°
0.186 x 10%?
0,102 x 10°
0.459 x 10°
0.225 x 10°

- 0.233 x 10*

0.129 x 10°
0.355 x 10*

contd.
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Table 4.3 (n=4) (contd.)

V{H,)

0.780 x 10!
0.628 x 108
0.129 x 10%*
0.207 x 10°
0.967 x 10°
0.158 x 10!
0.118 x 10%*
0.898 x 10'°
0.388 x 101
0.329 x 10*
0.399 x 108
0.801

0.168 x 10°
0.440 x 101°
0.446 x 10°
0.428 x 10?
0.121 x 10°
0.606 x 10°
0.146 x 108
0.270 x 108
0.759 x 10*
0.449 x 107
0.218 x 10%*
0.101 x 10%
0.618 x 10%
0.365 x 10%
0.826 x 10°

0.182 x 10°

0.277 X 10°
0.248 x 10°

0.330 x 10°

0.157 x 107

V(Hﬁ_)

0.314 x 10!
0.392 x 108
0.265 x 101!
0.138 x 107
0.614 x 10°
0.909 x 10*°
0.624 x 10!
0.254 x 10*°
0.996 % 108
0.213 x 10%
0.519 x 107
0.812

0,149 x 10*
0.707 x 10°
0.328 x 10°
0.131 x 10
0,706 x 10°
0.123 x 10°
0.129 x 107
0.830 x 10°
209 x 10*
0.124 x 107
0.193 x 10*
0.581 x 10%°
0.424 x 10%°
0,407 x 10%*
0.493 x 104
0.316 x 10°
0.424 x 10°
0.102 x 10°
0.504 x 10°
0.238 x 10*
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V{Hy)

0.277 x 101
0.380 x 108
0.108 x 10!
0.950 x 10°
0.878 x 10°
0.473 x 10°
0.426 x 10
0.166 x 10
0.616 x 10°
0.141 x 10*
0.242 x 107
0.797

0.190 x 10
0.684 x 10°
0.117 % 10°
0.131 % 10
0.582 X 10°
0.755 x 10°
0.328 x 10°
0.356 x 10°
0.131 x 10*
0.238 x 10°
0.103 x 10%
0.453 x 10%
0.857 x 10%*
0.770 x 10%
0.727 x 100
0.117 x 10°
0.814 x 107
0.470 x 10°
0.334 x 10°
0.193 x 10*



popln.

no
1
2
3
4
3]
6
7
8
g

10

V(Hp)

0.597 x 10!
0.772 x 10
0.125 x 10%
0.152 x 102
0.152 x 10
0.152 x 101
0.166 x 10!
0.238 x 10"
0.273 x 10%
0,273 x 10%?

V(H)

0.664 x 10!
0.782 x 10°
0.567 x 10!
0.293 x 107
0.175 x 10°
0.564 x 10°
0.150 x 10**
0.672 x 101
0.212 x 10'°

Table 4.4 (N=7,n=3)

V(H,)

0.720 x 1011
0.815 x 10®
0.697 x 10%?
0.378 x 107
0.105 x 10°
0.118 x 107
0.864 x 10!°
0.494 x 10'%
0.668 x 10°

0.218 x 10°

0.689 x 10°

Table 4.4 (N=7,n=3) (contd.)

pop.
no.

@ G -3 S D B ) Y =

ek
o

V(H,)

0,107 x 102
0.764 x 108
0.171 x 102
0.204 x 107
0.121 x 107
0.586 x 10°
0.135 x 10
0.967 x 1011
0.103 x 101}
0.723 x 1010
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V{(Hs)

0.474 x 10!
0.558 x 108
0.107 x 101?
0.418 x 107
0.132 x 10°
0.219 x 107
0.158 x 10'*
0.557 x 1012
0.106 x 10

0.229 x 10'°

V(Hj3)

0.680 x 1012
0.681 x 108
0.100 x 1012
0.571 x 107
0.198 x 10°
0.104 x 108
0.166 x 101
0.197 x 1012
0.139 x 1010
0.342 x 109



popln. V()

110,

1
2
3
4
5
6
7
8
S

10

0.151 x 107
0.305 x 10Y
427 x 104

0.655 x 1011
0.873 x 1011
0.150 x 1012
0.194 x 10'2
0.194 x 10'?
0.194 x 1012
0.195 x 102

Table 4.5 {N=8,n=4)

20:0

0.163 x 107

v (H)

0.156 x 107

0.362 x 10" 0.503 x 10!

0.424 x 108
0.345 x 10!
0.165 x 107
0.617 x 10t

0.862

0.171 x 10?
- 0.882 x 10°
0.389 x 10°

0.681 x 10°
0.251 x 101!
0.154 x 107
0.366 x 101
0.118 x 10

0.214 x 107
0.145 x 1010
0.558 x 108

Table 4.5 (N=8,n=4) (contd.)

POP.
110.

1
2
3
4
S
6
7
8
O

10

V(H)

0.218 x 107
0.780 x 10!
0.628 x 108
0.129 x 10%?
0.207 x 107
0.118 x 10%?
0.801

0.191 x 10°

0.0.496 x 1010

0.719 x 10°
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V(Hs)

184 x 107

0.504 x 101
0.589 x 10®
0.263 x 101
0.148 x 107
0.462 X 10!
0.145 x 10

0.247 x 10?
0.126 x 10

0.534 % 10°®

V (IT;)

0.186 x 10°

0.428 x 10
0.508 x 10°®

0.329 x 10"
0.186 x 107

0.112 x 10!*
0.959

0.186 x 10°

0.122 x 101°
0.174 x 10°



Table 4.6 (N=20)

n=4

r=2 r=4 o ) r=6 )
eyl ev] ev2 ey 4 ay ev evy
g ﬁf;; l':;; w g 0.bG 0.58 1.48 D 0.56 0.66 1.31
1 3.45 4,38 4.38 1 11.38 13.16 1738 1 23.81 28,73 30.10
2 70.81 118.42 42.92 2 48866 66348 468,16 2 1746.32 219463 1937.87
n==_8
pez? r—=4 r=08
g evl ayd ev¥3: g eyl BV2 evd g evl evZ evl
0 018  0.18 « 0 018 0.8 064 O 0.18 0.18 0.58
1 1.17 1.78 1.96 1 3.79 5.07 784 1 7.85 10,15 17.64
2 25.40 50.87 2049 2 17118 269.69 214,63 2 601.82 871.36 922,85
n=12
r=:2 =4 r=
g evl ev2 evd ¢ evl ev2 evd g evl ev2 evy
0 0.08 0.08 * 0 0.08 0.08 0.41 0 0,08 0.08 0.37
1 0.61 0.6 1.27 1 1.62 2.47 5,07 1 3.36 4.77 11.41
2 11.16 28,54 1349 2 7462 13883 140,46 2 261.04 431.83 601.80
Table 4.7 {N=40)
n=g
r=2 r-4 | r=06
g evl ev2 evd g evl ev evd ¢ evl evy evd
¢ 023 0.23 x 0 0.23 0.23 066 O 0.23 0.23 0.60
1 1.54 1.93 208 1 4,05 6.11 821 1 10.24 12690  18.46
2 33.64 4768 2177 2 22677 29143 22879 2 79154 100088 O72.24
n=16
r=2 . - r=4 r=0
£ eyl ay? evd g evl evl evd ¢ evl ey 2 ev3
0 0.08 0.08 * g 0.08 0.08 031 O 0.08 0.08 0.20
1 0.5§ 0.79 0.9 1 1.76 2.36 394 1 3.63 4.83 8.87
2 1240 1979 1071 2 82,32 11500 110,74 2 28849 388.16 472.82
n=24
r=2 =4 r=8
4 evl eyl evd ¢ eyl ev 2 evyd g evi ev2 evl
0 0.04 0.04 * 0 0.04 0.04 0.2 O 0.04 Q.04 0.15
1 0.24 0,42 065 1 0.77 1,13 260 1 1,68 2.24 b.84
2 .48 10,53 71 2 36,27 56.28 73.28 2 12593 184.12 312.52

The values obtained in the previous version of this table have been
thoroughly checked and are given above. In the above table x indicates

undefined values,
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Chapter 5

LESTIMATING A FINITE POPULATION VARIANCE
UNDER SOME GENERAL LINEAR MODELS WITH
EXCHANGEABLE ERRORS

5.1. Introduction and Summary

This chapter considers estimation of a finite population variance under
certain class of superpopulation models. We have considered here super-
population models with exchangeable errors. The models are depicted in
(5.2.2) and (5.2.3). Optimal strategies have been obtained under these
models and their robustness under a general class of alternative polyno-
mial regression models have been considered. Sampling designs ensuring
near robustness of these strategies have been investigated. Results of this

chapter were published in Mukhopadhyay and Bhattacharyya (1990-91).
5.2 Superpopulation Models and Formulation of the Problem:;

Let, as before, U denote a finite population of N identifiable units la-
belled 1,...,k,..., N. Assciated with k are two real quantities y;, zx, values
of main variable ’y’ and a closely related variable ’z’ respectively.

We assume that corresponding to each value y; there is a random vari-

able Y; whose one particular value is yi. ¥ = (y1, ..., ¥n) can then be looked
upon as a particular realisation of a random vector ¥ = (¥y,...,¥n), [¥;

being the random varlable corresponding to il havmg a probability dis-
‘tribution 5*0 indexed by a parameter vector g € @ the parameter space.

It is requlred to predict

1 N
Vy) = zoM-Y
k=1
N
= aIZYkE_—agzz}m (5.2.1)
k=1 k£ k=1
where |
1 1 1 - 1 &
o= gll-gha=gm NE .

which is a random variable, on the basis of the observed data {(k,y:),k €
S} and the assumed prior distribution of Y. We shall consider the following

superp0pulat10n models,
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Let YV follow a N-variate normal distribution with

E(Yilrx) = pa,
V(Yk :51:) N T
C(YhYk'!mhxk') = Oy = pv/(vavy),
1
< p < 1.
N—1- P >

where £, V, C denote respectively expectation, variance and covariance wrt
superpopulation model. We denote the above model with exchangeable

errors as £(pg, vy, p) = & (say).

Following Royall and Herson (1973) we denote a model € with u, =
ZE{ 53-ﬁ;mj';, Uy = o’ Eé‘ 5;7;52; as E(ﬁg, ...,5;; 5{;, ...,5L;p) where 5_,' _— 1(0) if I‘l
is present (absent) in puy, § = 1(0) if z} is present (absent) in vy, v, is a
known non-negative constant (1=0,1,...,L.), 8;(7 = 0,1,...,J),c%(> 0), p are
unknown.We denote £(1;1;p) = & and £(1,1;1;p) = £; and shall consider
prediction of V under these two superpopulation models with exchangeable

EeITors.
Thus for &;,Y}’s are independent normal with

E(Yi|zy) = B
V(Yilzy) = o*k=1,2,...,N (5.2.2)
C(Yhyh"lmhxk’) = --pg‘zik: 7 k, =1,2,..,,N

and for &;,Y}.’s are independent normal with

E(Yk ﬂ:k) = Ct’ Bz
V(Yi|ze) = _.::r*,;c_z 1,2,.,.N  (5.2.3)
C(YVi, Yolze,zp) = po®, k#k = 1,2,.,N

Optimal design-(p-) unbiased, model-(m-) unbiased, design-model-(pm-)
unbiasd estimation of V under model £(0; 0%w(z); 0), w(x) a known function
of X was considered by Mukhopadhyay (1978, 1982). In the sequel we shall
consider the following purposive sampling designs :
() The design p? is defined as
. 1 for § =5,
P:('s)'“ O otherwise  (5.2.4)
where S; is such that,

2(So) = min s2(S)

S
- SES,
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, where
1 RO
Si(s) = 1 Z(m; ~Z5)%,Ts = - Z-"Tk
" Lies " " kes
( S being the set of all samples of size n), i.e., the sampling variance of x
on Sp is the minimum among sampling variance of x on all possible samples

of size n.
(b) The design p?* is defined as
| 1 for § =25,
QY — -
Pi(5) =1 0 otherwise  (5.2.5)
where S is a sample such that $?(8§,) = mazges, s2(5), i.c., the sample
variance of x on Sy is the maximum among sample variances of x on all

possible sample of size n.

5.3. Prediction Under & :

We recall a few definition.
Definition 5.1 A predictor ¢(S,V) is p-unbiased for V (V') if

() ¥ ]

Ble(S,3)] = V(7]

1.€., if

_ Ele(S,9)] =V(y) Yy € Ry,
Definition 5.2 A predictor e(S,Y) is model(m-~) unbiased for V() if

Ele(S,¥)] = EV(Y)] VY 5 :p(S) >0,
Definition 5.3 A predictor e(S,¥) is design-model (pm-) unbiased for
V(Y) if

o

EE((e(S.y) - V(¥)] = 0.

5.3.1. Optimal prediction of V under §; :
Under £, |

E(V) — a-lNUz“ﬂ-gN(N'—' 1),00'2
N —1
= % (1 — p)o* = 1 (say)

It is known [Arnold (1979)] that under ¢,

| 1 1
st = (vs — ¥ )2 Yg = "‘"Zyk
"’“lkezs | o N res }
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is unbiased and complete sufficient for (1-— p)o.
N—1,2 (say) is UMVU predictor (UMVUP) of V in the class

Hence =78 = ¢]
of all unbiased predictors of V.
Under ¢4, (n—1)s? ~ o*(1 - p)xfn__l}. Therefore

Nolyy 2 ) s

V(i) = ( 7
= \An (say) (5.3.1}

a constant dependent only on n,
Hence we have the following
Theorem 5.1. Under ¢, for any given p € py,

E,(ef — )’ < Epé(e— )’

for any m-unbiased predictor e. Again any p € p, is opt1ma.1 for using el
Note 5.1. We note that the predlctor €] possesses the following mini-

max property.
mazpe,, Ky, p) = Min Maz E(e,p)

eEM  pEpn
where M is the class of £;-unbiased predictor of V and R( ,P) denotes

y 5(6 ‘—'Tl) '
Note 5.2. Although any p € p, is equally efficient, con51derat10ns

of robustness, following Godambe and Thompson (1977), with respect to
an alternative class of superpopulation models suggests a purposive design

p* € p,, as optimal to use e} as has been noted in section 5.3.3.
Note 5.3 We note that the results in this section are valid even if the

normality assumption in the model (5.2.2) is relpaced by a more general
asssumption that ¥;,...,Yy have an exchangeable absolutely continuous

distribution and no distributional assumption is made about £(1,1;p).

5.3.2. Bias of ] under a class of alternative models:

We consider the following general class of alternative models

6(501 6J:6{]: ’ :6.;,;19)

Bias of ey for a given sample S under £I(50, vevy 05 5{;, XE ,6;;0)

BE (5“' '51' n: 1‘5 ﬂ)(e;) = 66!(5[1:"':5 ul :5[,:0)( V)

= Gl TV - )
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LSS gl - (S )Y
5 y=0

N 5 =0

! o s
Mot z{fz&ajﬁf 7~ (7 2 2w}

1=0

'-'( N ]{{J’ g‘ﬁiqf{ggmk#_ﬁzzk}

1 Jooo . -
| ;{;}‘sjﬁf(xi - 79}’
1= |

n—1

N — 1 L ! _ —( J
—H1r S g @ - XY 4+ 30 682 (8% ~ Sk
j=0

+ 3222867 Bif (sugsyty ~ Setii)

j#5'=0
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where | S

Thus
8(ct) = (L) Bl 1 8) + B 6+, 8)] (538
where ;
B, 61) = 2. 4F; (Si(:') = Sf(:'))
F=0 |
+ZZ{; 5 ﬁj E(JJ SE[J}')) (5.3.7)
i1 =0
and

L
B (60 ++,61) = * Y em(zs - X))  (5.38)
{=0

Thus a set of suficient conditions for a sample S to preserve the unbi-
‘asedness of e} under alternative models & (8y,+++,65; 8, +++,65,;0) is

-:ng =XV v1for which § =1,/ =1,2,..., (5.3.9)

Siu) :(11 V_? for which 6 == 1,] = 1,2,. J (5‘3.10)

SI(_{J‘{} —_ Sz(ﬁi)v‘j, fDI‘ Whiﬁh .6: — 1’63;' - 1,] ?{—_ J — 1,2,.--,-] (5-3-11)

Condition {5.3.9) is similar to the conditions of Royall and Herson’s (1973)
balanced sampling design {(as discussed in chapter 3 of this thesis}. Condi-
tions (5.3,10) and (5.3.11) are additional conditions of balancing required
on the sample. We shall call conditions*(5.3.10) and (5.3.11) as ”variance-
~ covariance balance of order J”. A sample S satisfying conditions {5.3.9)-

(5.3.11) may be called a strongly balanced (s.b.) sample. A s.b. sampling

design pp (say) may be defined as one for which pg(S) = £(0) for each of
% s.b. samples S = 5p,,t = 1,2,...,k (otherwise ).

Obviously a s.b. design will very often be conspicuous by its absence.
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Note 5.3. We have

.. N-1
Be'(ﬁﬂ.'“fﬁ;;l;p) (61) ~= N B('Sﬂn e 15.1')*

Note 5._4. Similar results can be obtained when

J
Hy = Z ﬁjmkj

=0

ie., y has a multiple regression on {J-1) auxiliary variables zg,;,,zy,
Ty; being the value (assumed known) of auxiliary variable z; on k,k =

L2, N
5.3.3. Robustness of e] under a class of alternative models:

~ As suggested by a referce we consider a measure of robustness (sensi-
tivity) of an estimstor e* which is optimum under v, wrt alternative v, for

a given sample S as
Ag = |E(e* — 1) — &, (e — 1)¥ (5.3.12)

where 7 is the parameter of interest. Less is the value of Ag more (less) is

the robustness (sensitivity) of e* wrt .
We shall consider robustness of ¢! under the model & (py;15p) = €

(say). ef is biased under ¢

Now under £ (uz;1;p), (n—~1)s? ~ ‘72(1"“9)in-1),;2 where A = %,the
non-centrality parameter., Hence, - |

(el —m)" = Vale]) +[Eg(e] — )]’

(S {0 (1~ )7+ 20%(1 — sl + 58

» L] ) # r f »
Hence increase in the measure &{e* ~ 71)% in using e* from £; to € is
1 1 1

N—-1.,, 4 2 2
Ag = { 5 ) s n_lo‘(l——-p]ﬁ—s#} (5.3.13)

(5.3.13) shows that Ag(e}|¢1,¢) is minimised for the sample for which s?
is minimum, Thus an optimum design in the class p, to use the (biased)
estimator ey under the general class of alternative models E'(,u,;; 1; p), (op-
timum in the sense of robustness) is a purposive design, p; (say) where
py(€ pn) is as defined in (5.2.4) ie.,

1 for §=8*
L1 S e
p#( ) 0 otherwise
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S* being a sample such that

(5%) = minses, si(S),

2
Sp

Hence we conclude as follows : Suppose from the apriori information one
believes his true model is £; and hence uses €. Later the sampler for some
reasons doubts the correctness of his assumed mode! and suspects it to be
€' (1315 p). under € (ui;1;p),v (€f) will be minimum for p,. Again though
any p € p, (including py) is equally efficient for €] under &, pj; is the most
robust one in p, in the sense of minimising the absolute value of difference in

model mean square errors, A(e?[&;, £) and hence even under &; one should
use p;, to take care of the contingencies due to the failure of the supposed

model from &; to E’(,u,,-; 1;p).
In particular if p; = B + 12, a robust design to use e} under f' is p¥,

as defined in (5.2.4).
We now consider the robustness of e} under model ¢ (u;;g:;0) = ¢

(say).

N N -1 20 1
£€'(#c:y.';ﬂJ(ﬂ1 -n)' = { N )2n2(n — 1)2 [nz tnn - 2) ggf

Zg; Zgi

+{s} +.’-”2;;§9f —-0o%(1-p)}]

Hence a robust sampling design to use e} under model £" wrt change in

value of model-variance of €] is p™* (say) where p'* € p, and
1 for & = 8%

S = ¢
P (5) 0 otherwise  (5.3.28)

where §* is such that

zgi —minSeS th)g

Egt(ui Tgu) minsés..zgf(m—ﬁs)z'
4 _

Z(.s + o?— Z g,l = Minges, Z(Si T Jz;zggf)z
. S"

Sn
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' We can also define, following Godambe and Thompson (1977) a measure
of robustness {sensitivity) of an estimator e* which is optimum under n, wrt,
alternative 7y, for a given sample S as

= |Vy(e") — Vy,(€")]

The designs which are optimum for the measure defined in {5.3.12) are
~also optimum under this measure.

5.4 Optimal prediction under ¢
We have under &

£V) = (G T¥ - g LY
= (Nh:l{ﬂz(l—ﬂ)Jrﬁ’Vm}
= 75 ({say) (5.4.1).

oad 1
where, Vm': N{— 1 Z(.‘L‘t -_"X)z,X: E-Zm;.

It is known [Arnold (1979)], the statistic (&, 5, §2) is unbiased and
complete suflicient for (e, B, (1—p)o?), where |

and

Thus &, 3, 53 are minimum variance (model-)unbiased estimator of , 5
and (1 — p)o? respectively. Also

1

V() = (Smm)glz(xf--:zs)wm)

+E z; — Zg)( -~ 75)C(Y,Y;)

l
M
I
'
q




1)
=
|
=2,
qu‘:--:
{7
E)
|
)
&
o

1

~ n 52
B2 = f* — 4 (5.4.3)
Sﬂﬂ
Consequently an optimal estimator of 73 is given by
.N - 1 A 52 X |
Mg - L) =e ) (5.4.4)
Or,
., N-1 |8 x
= (C )0 - ) + V)

Under &;, ﬁ and 63 are independently distributed withﬁ ~ N8 ,.aﬁﬂ:p])
and (n —2)82 ~ (1 ~ p)x{,_y)- Therefore

vl = (- 2y + v
o ( | Ve (o201 — p)?

- )

%82 04(1 """ P)z
2 4 . 5.4.5
G e Ly | (5.4.5)

|

N -1
N

" Here it seems that the purposive sampling design pi* € p,, as defined
~in (5.2.5) is likely to be optimum one in the sense of smaller variance. We
can not, however, completely recornmend the purposive design p,* as the
optimal one, because of the term (-—f’f—) appearing in the curly bracket in

o (5.4.5).
5.5 Some Approximately S.B. Designs :

In predicting population total under a super-population model Royall
and Herson (1973) introduced the concept of balanced sampling designs in
order to keep the ratio predictor unbiased under the class of alternative
polynomial regression models as discussed in chapter 3. The conditions for
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balance have been given in section 3.3.1, As is obvious, balanced samples
are, in general, conspicuous by their absence,

Royall and Cumberland (1981) proposed a restricted and purposive de-
sign to guarantee (first moment) nearly balanced samples and hence some
robustness against model breakdown. Their scheme consists of the follow-
ing two steps : |

(i) a sample S is selected with simple random sampling out of ¢ = (‘:‘:)
possible samples ;

(ii) the sample S is accepted if |Zs — X| < 6, otherwise (i) is repeated.

in this procedure probability of selecting S is

PJ‘

o iflzs—-X|26
p(S) = i L otherwise.

b

where ¢; = #{9 : |Ts — X| < §}.

This procedure, however, has some shortcoming as pointed out by Sarn-
dal (1981), of having zero probabilities of inclusion for some units. Iachen
(1985) proposed an alternative sampling design by assigning probability
inversely proportional to |Ts — X| to these samples S that do not pass the
test |‘fﬁ3 — YI < 6.

Thus ;
p(S) ER ¢ if |Zs— X|>34.
Thus their design becomes
A if l?ﬁg - jf“l < 0
P1(8) = { Al l'ff'ifl otherwise
The constant Abl = A1(6) has to be determined from the constraint
2sp(S) =1.

Employing the similar technique we hereby derive some approximately
strongly balanced designs applicable for certain models.
We have for a given S,

Beuanoy(6]) = ~orBds(s) (5.5.1)

where dg(s2) = s — 52
Similarly,

B (1;1,1;0)(e) =

where dg(Z) = Fs — X and

N -1
Be (11,100 (€1) = N (o*nds () + B*ds(si)] (6.5.3)




To make Bf' (1,1;1; 0)(.3;) =~ (), we propose as in Jachan, a design p; such
that

- —;—‘1(%7 otherwme |

Szmlla,rly to minimise (5.5.2) and (5.5.3) respectively we propose de-

signs, ) <6
Az if dg 82 < Oy
p(S) = {

Az282 atherwise

ds (%)
d
o A3_ if d_g( 2) < 61 and dS(.'I:) < 52
G if dg( 2) < 6, and dg( ) > b
Pa(xg) = f if dg( 2) > 61 and ds ("f) < by

S‘a 3 if dg(s?) > 6, and dg(Z) > 6,
ds(Z) 43(5?]
The constants A; = A;(4), ¢ = 1,2,3 can be determined {rom the con-

straints
> om(S)=1,i=1,2,3 (5.5.4)

Deﬁning the sets Dl, Dg, DSI: Daz, D33 and D34 as

Dy = {§:ds(s;) 2 b1},

: ds(T) 2 6},

:ds( ) < 8y, dg(E) < 6},
) 2 b},
} < 5‘2}:
Z) > 62}

U
|-
e i
Iy Wn

T
T
T

(
ds
dsf
(

AR
G
Tt
—_——
n Wn
& o
i&ﬁ
G'.r
AV AV
I
(=8
':nl:r:-.

&ﬂd €4 — #D“ Cg, = #D;! €562 — #‘D31 (5‘5'5)
we see that (5.5.4) is equivalent to, under p;, p, and p; respectively,

)chl + Alﬁl Z {ds }h = 1

SeD,

Mcs, + Asby Y {ds(Z)}

SeDq

I

1

A365.59+A3452 Z {ds I]}" + Asdy }: {ds }_

SEDE? SED;},Q

Phsbibs X {ds().ds(s2)} = 1

S€Djy,

00



ie., Ay = {e5 +6dy)!
Ar = (c5 +8d)™"  (5.5.6) |
hs = (cg,8, + badas + 61das 4 8, badss) -
where
dy = > {ds{s®)}!
Scly
dy = z {dS (—f]}ul
Selq
d, = ), {ds(m)}"
S€Dgzq
d33 — Z {dS (Si)}nl
S&Dj;
dsy = Y {ds(Z).ds(sZ)} 1.
ScDgy

Clearly 7y; > O under py, 1 53 = 1,2,--+, N, k =1,2,3, Execution of
designs px involves a preliminary choice of é; and 6, and computation of
Tg and 82 for all samples S. One has then to consider equations (5.5.5) and

(5.5.6).
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Chapter 6

BAYESIAN ESTIMATION OF FINITE POPULATION
VARIANCE UNDER MEASUREMENT ERROR MODEL

6.1. Review of Ea:rlier Work :

We consider here the estimation of finite population variance under mea-
surement error model. Here the variables involved may not be observed

directly but only the values mixed with measurement errors. Sprent {1966)

proposed a method based on the generalised least squares approach for es-
timating the linear regression coefficients under this model. Lindley (1966)

and Lindley and El-sayad (1968) pioneered the Bayesian approach for that
problem. Further Bayesian works can be found in Zellner {(1971) and Reilly
and Patino-Leal (1981). A general treatment for the inference problem in
regression models with measurement errors is considered in Fuller (1987).

Normal theory Bayesian analysis in finite population sampling was el-
egantly caried out by Ericson (1969, 1988). A Bayesian approach for pre-
dicting finite population total and variance when the variables involved in
the regression model are measured with error is considered in Bolfarine
(1991), Mukhopadhyay (1994 a,b,c) among others. Bolfarine (1991) con-
sidered properties of predictors of finite population total under the location
model with measurement errors and also under the simple regression model
with measurement errors in both variables. Extensions are considered for
the case of two-stage sampling, Bayes predictors of population variance are

also derived .
Mukhopadhyay (1994 a,b ,c) obtained Bayes predictors of finite pop-

ulation total in unistage and two-stage sampling,domain total and finite
population variance under regression models with measurement errors. A
minimax predictor for population total was also obtained by him,

'6.2. Introduction and Summary

- In practical sample survey situations, the true value of the variables are
seldom observed, but values mixed with measurement errors. We consider
a finite population P of a known number N of identifiable units. Assosiated
with ¢ is the true value y; of a study variable y. We assume that y; can
not be observed correctly, but a different value Y; which is mixed with
measurement error is observed.
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We also assume that the true value y; in the finite population is actu-
ally a realisation of a random variable l;, the vector ¥ = (Y1, Ys,..., Yn)

obeying a super population model ¢. However both y; and Y; are not ob-

servable and we do not make any notational distinction between them. The
parameter of our interest is the population variance

1 1 N
Sy = "ﬁﬂil(yi -9 7= I ) Ui (6.2.1)
1=

We intend to predict S; by drawing a sample S according to a fixed
size(n)-sampling design p with selection probability p(S) and observing the
data Ys = ({,Y;,7 € S) and using the model &.

In sub-section 6.3 we consider the problem in unistage sampling. The
problem of estimation of S? in two-stage sampling has been considered in

the next sub-section.
6.3. Prediction in unistage sampling

68.3.1 Description of Model

Tor the present discussion we consider the simple location model with
measurement errors, which is described as follows : | |

Y = i+ €, E(ﬂ;) = (0, E(Ef) = JE, )
E(eey) =0, (2 # fl)
YVi=y;+uw, Ew)=0 - E(u})=0} (6.3.1)
E(U;uir) = 0, (t # f') |
E(eu;) =0, (1,7 =1,2,...) |

Here ¢;'s are superpopulation model errors (also known as error in equa~
tion) and u;'s are measurement model errors. Assume that o, o2 are

known. |
We further assume that the errors ¢; and u; are independently normally

distributed. The model (6.3.1) was earlier considered by Bolfarine (1991),

among others.
Under the model (6.3.1)

Y; ~ N(u,0%) (6.3.2)

where '
0 = o? + o} - (6.3.2)

As the distribution of a large number of variables including socio-economic
variables is (at lcast approximately) normal in large samples, we assume 2



normal prior for g with mean 0 and variance 0%, i.e.,
u~ N(0,0% (6.3.3)
* Joint distribution of Ys = (Yi,k € S) and p is, therefore,

v

L{Ys ). f (1) o 27578 e 730

where ?S — ;IIE{ESY;' ,
The posterior density of u is normal with mean

nYe/o?
B Y =2 (6.3.4)
~ o2 1 g%
and variance . {
VY = e (6.34)
~ gt

Also, likelihood of Yy given ys = (¥;,1 € §) is

L(Ys | 9s) o eopl—-x (¥ = wi)’

U icsS

Here posterior distribution of y;’s given (Ys,u) are independent with

Y. 2 | 2
iUE + uguiag) (6.3.5)

vli € S) ~ N{

o2
and |
it € S) ~ N{up, 08y  (6.3.6)
where . -
o o5 = L | (6.3.6)

| o
Under the above prior Mukhopadhyay (1994) considered Bayes estimation

of population total. However Bayes estimator of population variance under
‘the above prior was not considered by him.

-8.3.2 Bayes Prediction of 57

~ We shall assume a'squaredﬁ error loss function.
Therefore Bayes predictor of S2is
-~ 2 o -
5" = B(S)|Ys) = B(B(SH Ve, )|V} (63.7)
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Consider the identity

2__n2 N—‘HQ ITI-(N"_H)
Su“ﬁsv'*_ N Syr T 7 N2

(vide Bolfarine and Zacks (1991),(1.3.3)) where

(% —vs)* ~ (6.3.8)

1 _ 1
33 = ;Zfes(y" - ys)?, ys = ;Ziesy" (6.3.9)

1 -
2 Vo — N b ra 2 ry — - + z Rl .
2 = Y o= T = Y gt § = P (6.3.10)

- We know that the distribution of the sum of squares

1
—n

S

. _ 1gmn
n 5 A
S = Z;:—..;l(XJ' — X)* where X = ;ZI,_:IXJ;
when Xi, X;,..., X, are independent normal variables with X; distributed
normally with expected value &; and standard deviation ¢® (the same for
all 7) is ¢* times a noncentral x? with (n — 1) degrees of freedom and
non-centrality parameter 3.7.,(¢; — £)*/0® = X (say) with mean

E(x*) =v+ A
and variance
Var(x?) = 2(v +2)),

where v is the degrees of freedom of the non-central ¢ denoted by x2.
From the posterior distribution of y; (¢ € S) and y; {i € S) given in
(6.3.5) and (6.3.6) it follows that

ng?

y 2 |
-—EE'- ~ X(n=1),p - _ (6.3,11)
where
| )\:E;I}-s2 iandsz-:l (Y; ~Y)? (6.3.12)

R R e A |
Also,

(N—-n).sﬁr/af e X(N~n-1)2 (6313)
Again,

(7 - 0) Ys,u) ~ N(u,od)  (63.14)
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where -

2.2 2 o
s U0y o, ___ ¢ j'\,h;;r2 —{ N — n)o‘f (6.3.16
1T g T (N—=n) n(N- "’)‘72[ ( )

Hence, using (6.3.8)-(6.3.16)

nn-1cdl? o} ,, N-nN-n-1,

B(S)|Ys,n) = w2 Tt~y a
oY 22 2 g

atl n)[gcgu F (Vs — )]

+

N2 ne! N-—-n o*
n ol N-n,_ N —10?
= n g Mo oA (o
+(N —n)a’} (6.3.17)

Therefore,

St, = E{E(S;|Ys,u)| Ys}

n o, N-n, V5. 0%
e ---—4'[35"" { 23 23)2 | 2 2 }]

N N " (nb?* + o?) (nb* + 0?)

+NN: 10302{n03 + (N —n)o®} ((using (6.3.4),(6.3.4))
_ '_’f_f;[s? +an o'¥s +- R(N_n)- 72
T Nott' T N (né? 4 o?)? N?  o*(nf? + o?)

N — 1o? N
+ - glnol+ (N=n)o’} (6318

If § — oo, the expression (6.3.18) becomes,

not, N
i

N ot
= S5 (say)

- Bolfarine (1991) obtained the Bayes.predictor of S? |his expression (5)}
under model (6.3.1) with normality assumption for ¢; and u; and with non-
informative prior for u [i.e., p(p) o const.|. His predictor, therefore should
- coincide with our predictor {6.3.18) when § — oo, that is, with SERB in
(6.3.19). This is found to be true. The predictor (6.3.19) coincides with

Bolfarine’s predictor.

» ~N, 4, n—1 4
Lt S)p i {o: 1 N__naﬂ} (6.3.19)

§— 00
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Under mode] (6.3.1) (together with normality assumption of e;’s and

u;’s} and Jeffrey’s non-informative prior for the joint distribution of x4 and
1 |

o Viz.

plp,o ) x o, pERy 0] >0
Mukhopadhyay (1994a) obtained Bayes predictor for Sj lhis expression
(23)] as
T k2 H(N"I‘ﬂf'— 2) = 1 k.S?; k(N — n)
S, = Y k -
vE (k+1)* N(n-1) d +(k+1)2[ " N(N —1)

+ ;((’;:?) (N = n)(k + 1) +1)]

2 _ |
where k == Eﬁ- and is assumed to be known.

o

However, we have considered here prior for i only, assuming ¢? and o?
to be known and therefore, our predictor (6.3.18) (and also (6.3.19)) differs

from his expression. X
We also note that if y; is measured without error (i.e., 02 = 0) then S'g

reduces to the Bayes predictor

A N-—-n o> 1 1 nf*
Sy = sl : - -
. NV N ol (N——-n)ﬂﬁ(n N) 0% -+ nb*
n (ﬁﬂﬂ — ¥s)*
.3.20
T L (6.3.20)
| y .
where ffg = EE&T« = fﬂafé If further § — oo (i.e., in the case of

. \ ‘ : & 2
non-informative prior), the predictor Sp tends to

T N — 1 % hlﬂ
fim S = yoi+ T o= 5
which coincides with equation {3.1.27) in Bolfarine and Zacks (1991).

. . 4 . ~ 2
We now consider Bayes prediction risk of S,y . For a squared error loss

function this is given by

E|Var(S;|Ys)] (6.3.21)

where the expression in (6.3.21) is taken with respect to predmtwe distri-
bution of Yg Now the posterior variance of 82

|

V(S]] }:.9) E,[V(SHu, }:s)l lis] + V| E{S] |1, }:s)l }:S]



N —
= EP[V{%sﬁ + =% =2, o+
N - _
n( N n) (!;'-r S)zl }:S:N}l YNS]

! o
; NNz L9 (107 + N = no?)| V5] (6.3.22)
G" )
by (6.3.8) and (6.3.17))

Now,
V(S Y)Y = Bi{V (3t Ys,h)

(T — ¥s)*| 1:3«, 1) H 1:5]
the covariance terms become zero

2 .2
v Syrs

mutually independently distributed

because s s and ¥, are all

|
=
=
B
-,
-~
|
-]
S
v
HE‘I
[
o Ty
et
—
>
C
o S
B

|
~
P

I
=
9
= W
-+
|
=

|
=
S

b

Again,

| VMIE(Sﬂ{S:#)l{S] =



04}732 J2§2
(n6? + 02)? (n0? + o?)

-4 } (6.3.24)

Hence, by adding (6.3.23) and (6.3.24), and on simplification

6

2 2 g, 4 4 n O 2.2
V(Su“:f) = Nzg-[{(”“_l)”u_l_(N‘n“l)g}_I'd'NzUaJuSY
2n*(N — n)? o? o o’ ol (?
e e ) &
N o?*n  N-n (nd?+40?
_i'_-*-i'zr‘zfz(]\f——':rz,]2 oiYs’ af(::rﬁ - o
N* (rG?+02)2'a?'n  N-—n
02§
: 6.3.25
bt (6520)

The above expression shows that the posterior variance of S‘f given Y is

not independent of Yg. Now the predictive distribution of Yg under model

(6.3.1) and prior (6.3.3) is N(0,% + 6%) [ref. Bolfarine and Zacks (1991),
chap.3, p. 92|. Hence by (6.3.21), Bayes risk of 3532 T

4
2 o,

EV(S]1Ys)] = s=5{(n—1)ol+ (N =n—1)o* +2(n - 1)olo]
2n2(N-n)2{iz(f_§+ ot olf 132
N1 o2'n  N-—n (nf?+4 o?)
w2 4 2 2 ®
+4_31(N n) a,. Jﬂ(0u+ o*
Nt (nf*+o*)0*'n  N-—n
ol2d°
I : 6.3.26
(n02+02))}- (6-3.26)

Allowing 6 — oo in (6.3.26), we note that limit of Bayes risk of Slg as

4
2 0O,
N? g1

{(N=1)o* = (n-1)o;}

6.4. Extension to two-stagey sampling

Following Bolfarine (1991) we consider the following superpopulation
model applicable to two-stage sampling. The finite population is divided
into k subpopulations (clusters) P, of size My, h = 1,2,...,k. Let yp;
be the true value of the characteristic y associated with unit 7 in cluster
hy, (7 = 1,..,My, h = 1,2,..,k). In the first stage, a sample § of n
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clusters is selected from the k clusters in the population. In the second
stage, a sample s of size my, 15 selected from each cluster h in the sample S,

However, as in the previous section the true value y;; can not be observed,
even when unit (hj) is in the sample, only their values Y; mixed with
measurement errors are observed.

We assume that

Yni = Wp + i (6.4.1)
ph ==+ vy . (6.4.2)
Yhj = Ynj + ti; (6.4.3)

Here ey;,v, are soperpopulation model errors and uy; 1s the measure-
ment error. Assume that e;;, v; and uy; are all independent,

en; ~ N(0,0%)

Up N(O,aﬂ)
up; ~ N(0,02.),7 =1, , My, h=1,...,k

Under the above model, Bolfarine (1991) considered the prediction of
finite population total. Under a slightly different model which takes into
account the finiteness of the survey population (and measurement errors),
Mukhopadhyay (1995) considered prediction of finite population total in
two-stage sampling, We shall here consider prediction of finite population
variance under models (4.1)-(4.3) which are extensions of model due to
Scott and Smith (1969) to measurement errors. |

Now, S,f = El,f Zﬁ=1 Ef—;—i (yh,f — g)z where M = Zﬁ:l Mu, =34 Ej %’"
Here | - -

Yiilin ~ N(pp, 00, + 03y, = 0}) (6.4.4)

Hence following section (6.3.1) posterior distribution of y,;’s given (Yis, )
where (Yhs = (Y4, hj € Si) are independent with )

ypi(h € 5,1 € Sp) ~ N{ ; , (6.4.50)
| Oy Oh
yn; (h € S0 € Sp) ~ N{pa,0%) (6.4.5b)

o (A€ S) ~ N(m,0,) (6.4.5¢) ]
where $ = P — 8, 5, = A, — Sy
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After the sample S has been selected, we may write the population
variance as

kM,
S? = DD Ayn; — )"
v (E;.... )i
1 — M, ~Y 2 e L
= —M—{L ZJ_I(th - y) T : :(yhi o y) ]
hES hel§ 1=1
1
hes hES hes
+ ) Mu(gn — 9)*}] (6.4.6)
hef .

M, - _ M,
where S,f = b}h Ei:hl(yhj — yh)za Yn = T}IZJ h1 Yhy-
Now, for h € 5,

o - _ 1 _
Uh—7 = Ui —-—[Z{(mhyhs +(Ma—mn) v H =37 > My, (6.4.7)
hES | he S |
~ where yjs = - T 2eiES) yh}iyhr = 3 ome jes; Yni- Again for h € 8,
o L 1. 1 1.
Ynh— 4 = mh(Mh M)yh3+(Mh mh)(Mh M)yhr
1
Y Z {miyis + (M) — my) i }
i(#h)€S
M
- ““ﬁﬂh (6.4.8)
hes |

Hence we have

Mh (YSh — ﬂ*h) - Hoh he s (649)

~ L. MOh h - S |
where
k M 2
h Mp T4
Poh = bn — ) =——lh = ) {(Ysn — n) (6.4.10)
oy M nes M o}
and

ﬂ" _
{ MG — )Tt oo RES g )



where
1

(6.4.12)

MR TR Bk

Mh ) gch |

(

2
Top =

A ; Z Mo,

hes

Again, using the results of the uni-stage sampling given in (6.3.17) we

can write
(o O | A -
ﬁ'&‘f[sh M (Von — pp)?]
' 2
BSHIYot) = | 1M1 (ot - miod), B s
| th.%ﬁll-, | hes
Therefore using (6.4.6) - (6.4.12) we have
mh ﬂ-:h Mh - mh
E(S| Y, 1) —[) " M| Yen —
(5y1Ys, K) [}g thﬂ”h (syx - M, (Ysn — ua)?)
M, - 10?2
-+ ;\‘Jf ;ét (Mhﬂi — mha‘fh)
+2.M Ysn — tn) + 4
%_ h{(Mh G'h( sh— ) + ton)’
my , 1 2,02 .,
Mh (Mh M) G’;*: I Jﬂh}_
M, -1
+h§5 Mi{ =570 + bon + 064}
1 1, & o 1 o!
= (1= =) (2 Mol — 3 ma~%) mp—5s1
M Mo = Uﬁ) M;g hf’h v
1 ﬂ:h — 5
+— > mu—5(Ysn — ps)
M /s h
2 afh
LY, ;;S mh“"‘g"(YSh — pn) (pn — 12)
=
1 | af .
M2 (2&_; mh"'f‘(YSh = P*h))
1 & - ,
'""ﬁth(ﬂh — fi)? (6.4.13)
h=1

Let us denote %f(ygh — ta} by 2, then (6.4.13) becomes

—
—,

| E(Sjl }:-5': )uh-]

E{{—(l — T Zthch

]_ 4

hes ah
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1 4 1

eh 2 2

"‘Hzmh 451’h+Fzmhzh
res  On i pes

4

5 1
+— 3 mpzp(pn — i) (> mauzy)*
M (s M* s

1 k
7 > Mu(pn — )" (6.4.14)
h=1

It follows from Scott and Smith {(1969) that the posterior distribution
of 1 |Ys is N-variate normal with mean

E(,LL,;;’ Ys) — }u,Y;;, -]- (1 — )\h)Y“,g (5.4115(1)
where Y5, = -~ 3., V., Vg = 2ugs MYhs
Sh my, ~j€ap “hIy LS T i:hES An
and ,
Lﬂr, he S
}‘h — ﬁi"‘ﬁi‘ _ ~ (6.415b)
J he S
and covariance matrix ((Cn)) where
1= )2t + (1= M)0%, h=1
Cr={ \ !
hi { (1 _ )\h)(l . }H)ng h ?{__[ (6.4.151‘3)
where

Hence it is implied that 2| Yg is N-variate normal with mean
I'.'Tzh - -
P (1~ \n) (Yo - Vi) (6.4.160)
A
and covariance matrix

, ”—:{L 1— 205002 4+ (1 —A,)0%Y, h=I
OM:{ 4 {-:E % ( )0 (6.4.16b)

%‘ﬁlz—?(l —.)i;;)(l "-}ig)_llz, h;é {
Using (6.4.15a)-(6.4.16b) in (6.4.14) we get
E(S)|Ys) = EuE(S;|Ys,u)
. 1 1 i 9 U:h
=571 H)(E Mok = 3 mh‘{;‘f’)

hes
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I DL TER = A
h=1 M
L1 ) mh.‘%&u M) (Vo — Vo)? = (3 mhf;ﬁ(l An)(Ys
M o M* e o o
""".-1'}:‘-‘?))ﬁ + S(alhl’.‘éh-m:fs]
9 k
R 5L = (L= ) = G )

10— Y mp~L (1 = =)L = M) + = D . m 1— X

| M = "ag( a1~ ) M,f; hod (1)
1 2‘5::; : My, M; |

M? };'”h of (1=An)+ El( a a2

When & =1 , the above expression becomes

1 1.,.,,, o0& m m, o! o
st~ ) (Moe e+ r (L= )=

When there are several clusters (k& > 1), prior of p, is taken as u) ~
N(u,8*). In case of one cluster there is only one parameter x4 and thus
" no question of variability occurs, hence the expression is independent of
d. hence the role of  becomes irrevelent yielding the above #-independent
 estimadtor. |
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Chapter 7

BAYILSIAN ESTIMATION OF POPULATION
PROPORTIONS IN A POLYTOMOUS POPULATION IN
TWO-STAGE SAMPLING

7.1 Introduction

In practical situations data are frequently generated from polytomous
processes with the parameter of interest being the respective frequencies of
the attributes concerned. As for example if we consider rural indebtedeness
for agriculture in the state of West Bengal, a farmer may fall into one of the
following four categiories , viz. whether he has taken loan from nationalised
banks, or from co-operative bank or from private money-lenders or for
agricultural purposes he has not taken loan at all. One may be interested
in estimating the proportion of farmers in these several categories in the
rural areas of a district, which may be considered as a cluster. In practice
_ inferences about these frequencies are always based on the assumption
that the data generating process is multinomial (in case the population
is infinite) or hypergeometric (in case the population is finite). In this
context one may wish to use Bayesian methods to predict finite population
parameters using suitable priors. In the Bayesian approach to prediction
problems the main role is played by the predictive density function which
‘expresses the plausibility of the parameters in the light of the results of an
informative experimant. The predictive distribution in its turn is influenced
by the choice of the prior distribution.

In the present chapter we have considered a two-stage sampling design
for the above problem and both the cases, where data follow the multi-
nomial or the hypergeometric model are treated separately. Accordingly
the priors are chosen from the class of Dirichlet distribution for the first
case and from the ckass of Dirichlet-Multinomial (DM) distributions for
the second case. Nandram and Sedransk (1993) made a similar study for
a binary variable in two-stage cluster sampling and used a mixture of beta

distributions as a prior for their analysis.

We consider the following set-up.
There are N clusters and t attributes are fﬁund to exist in each cluster.

We assume that the number of units in k-th cluste_r having i-th characteristic
is Y3 and M, is the size of cluster i.e., total number of units in the k-th

cluster,
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Hence Etﬂ..l Yk. Mk
Again, b = denotes the proportion of units having i-th character-

istic in cluster i.
We are interested in estimating the population proportions F; with char-

acteristic #(1 = 1,...,k),

N
— Yk.* N
P=SE R =T G
3 1;;{:1 Mk k=1

Yki

M N,
) (Ek 134 ) = g‘sﬁﬂk (7.1.1)

where p, = fn""-& v My (denoting 4L, M, by M) is the population

proportion of Gnits in the k-—th cluster i.e., relative size of cluster k, through
survey sampling. A two-stage sampling design is employed. At the first-
stage a sample § of n clusters is selected by SRSWOR. At the second stage
~ from each selected clusier, a sample of m; elementary units is selected. We
assume that the sampling design is a non-informative one. In this Bayesian
‘approach our analysis will proceed on the basis of the data obtained from
the final sample and the actual sampling design by which the sample have
been selected will be considered irrelavent,

Let y;; denote the number of units belonging to the i-th category among
“the sampled m, units from the sampled k-th cluster. We denote (yxy, 2, ...,

Yie) b)’ Yk

7 2 Present Study Under Multinomial Setup
'7.2.1 Prior Moments of F,

We assume that (Y, Yiz, ,..Ykg]--ar'e jointly distributed as a multinomial
distribution, 1i,e., there are { possible outcomes A; for each of M, trials,
each observations representing a trial, i=1,2,...,t. Y}; denotes the number
of times event A; occurs in M, umts in cluster k. Y.;’s are discrete and
integer valued with

o P(Yklaykh.ankllg#l:ekh-"19“) — (H k Y, )0Yk" 0}’“ | (72'1)
P 1y ooy

~where 83,4, ... HH are the parameters of the distribution with 3°%_, 8, = 1.
We denote (B“, 0x1) by 0. |

We consider 61, ..,0pn to have independent Dirichlet distribution with

- parameters {&,...,&;) = o and density function

T(o)
i, Da]

| P(akla gkr) Ht 10 (7.2.2)
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where o = ;—1 a;, 0< 0,7 =1,2,...,¢, ;:1 0; < 1.
It is known that .

E(0;;) = --&—’- (7.2.2)
V(0,;) = 28— %) 7.2.2b
k3 &z(ﬁ'—i— 1) ( di )
' Oy X
Cov.(0k,0,,) = aﬂ(;i ) (7.2.2¢)

( Johnson and Kotz, Continuous Multivariate Distributions, p.231)

Let X — (YI, Yg, ...,YN)th, where Yk - (YM, ...,YH)'.

Considering (7.2.2) as a prior of 8, we have using (7.2.1), the predictive

distribution of the random vectors, ¥3,7;,..., Yy as

M ! Y, ;
P(X|f) = Hk._11—[¢ Y, Bﬂk(n;‘:lok;J)
~ . f=14kir O
Y Ml | o F;'=1F(ﬁj + Yk:')] (7.2.3)
I, Y T Tay T+ My) -

(Ref. Johnson and Kotz, Discrete Distributions, p. 183)

where Ej (.) denotes expectation of (.) wrt distribution of f) as given in

(7.2.2). It follows, therefore,

o
E(Yi;| @) = Mipy, p; = = (7.2.4)
Le, E(6|a)=p;, J=1,2,..,t (7.2.5)
M+ ap;(1 - p))
| ) = — 7.2.6
V(‘Ek,:lff) 1+ o Mk ( )
Mj; 1T @ 1 It
and C‘au.(ﬁk;,ﬁm g) == '—( 1+ o )(E)pr,- (7-2-7)
Hence,
N i N !
E(P|e) =) E(Sioxle) = p; ) px = p; (7.2.8)
tz=] k=1 -
- and y
My +a 1 o O |
. 2 {1 — — 7.2.9
V(RIEJ gpk 1+ o Mkﬂf( a) ( )
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since Cov.(8, 6) = 0 (k #1). ALso,

M+ o
Cov.(F;, Pil@) = p,PJ Zﬂk{ Mk(kl n a)—} (7.2.10)

In particular, when a; = $Vj = 1,2,...,¢, (7.2.8) and (7.2.9) reduce respec-

tively to 1
E(R|a)= -
and LN Mo
* — s,
V(P e) = 2

7 9.2 Posterior Moments of P;

We shall now find the posterior moments of P; given the data.
We have already assumed that n clusters were sampled at the first stage

and let y;; denote the number of sampled units in cluster k(€ S) having

the characteristic A;, ;._1 Ye; = my, Assume that the sampling design

is a non-informative one. Since the sampling design at the second stage
is simple random sampling with replacement, the likelihood of the sample

observations for the k-th cluster is

| m
P(y“,...,yktlﬂkl,...,ﬂkx) - ( * )0};1“1..,3#‘”“ (7.2.11)
Ykly eony Ykt | |

Using the prior {7.2.2) of §y, the joint distribution of Y and 0g where,
i == (yk,-k = S)txm and ?g = (Hk:k c S)txn is

N S

p . o ]'[. ™y, e

 where,
. qf = (0k:kes)txn
,..Zf = (yk:k S S)h{n:

Ve = (k1) oos Yae) -

i
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Therefore marginal distribution of ¥ is

rop

my ) [la) Ty D(ws; + o))

7.2.13
Ykly ooy Ykt H;-=1F(&f) [(a+ my) ( )

ﬁf’(ﬂ) = ers (

Hence posterior of 85 given (g,a), is obtained by dividing (7.2.12) by

(7.2.13),
F(CE + mk) | t

P (05 |4 2) = Thies e (r2.14)
This posterior distribution will be used later {vide (7.2.20)) as prior of
fo in finding a posterior distribution.

o

Therefore, for K € S,

where 0 is the null matrix.

~ e .
Now :{ given 0, the probability that among the non-sampled units in

Fr

cluster k there will be (Yi; — ysy) units of typej, is

(Mk m— mk)!
P(Ykl — Ykl, nthkt — yktlak) = ]‘[t l(yk — yk)
i j= J 7

’ Yij—Ur;s
1 HJ’"—"IGH

Hence likelihood of (Vi —Iivi),k = 1,2,...,N where I, = 1(0) if &k €
S (otherwise), is

P((X —Ikg), ‘ 05:,D,k = 1,2;---:N) p— Hk:lnl_ I(Yk.f _ Ikykj)!
. _ J=

3 1N PRl (7.2.15)

where
D = (mk:ykj:j = 1,2, "“'.l't!k € S)
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Using (7.2.14) , (7.2.15) and (7.2.2), the joint distribution,

P((Ye ~Teys), 0,k = 1,2, ..., N| @, D)

(Mk - Ikmk) Yyj—1
H H ﬁ ki—dk¥ky
k= 1]'It I(Yk-? — Ikyk.ﬁ)'
X= F(ﬂ + Ij;mk) H 0 f.l:ﬁ:"‘“:“'l
T Ty + Leyrs) 7
_ HN i (Mk "“Ij;mk)! B
kzlnt_l(ykj — Ikyk:)
I‘(ﬂf + Ikmk) Ht-—lﬁ Yijta;-1 (7.2.16)

Integra.t.mg out 8 from (7.2.16) we get the marginal of (Y —I, yy, &k =
1,2,..,N) as ” N

P(Kﬁ -'I;, Yk k = 1,2,...,N' E,D)

(Mk Igmk) I‘(Cf 4 Ikmk) }
(Yk.r — Ikyk:)' Ht 1I‘(a'.f + Leyis) .
G T (Y + o)
I‘(a -}- Mk)

- Hf:l{

___HN II (ij'}'ﬂj"'lrkyk;“"ﬂ;“l)
o =1

(Mk +a—1Mi—1; mx)

3t (n, a;-1
o J=1 1"1:; f“;“
'_'Hk =1

(Mk*f-cl—l)

Me=—I,m;

(Tevn; + o) (M — Iimy)
o+ Iim,

Hence, E(ng — Ly 2-') =

l.e.,

E(th 2) — {kykJ'(Mk-“’" a’) | *aJ'(Mk = ]kmk)

Iimg + o - imy + o
Yks oy
— M. (LY W el
. k(-kmk) ¢+ (1 f\k)a (7.2.17)
1+ 5-
wherel; = My
ereAg I+ = (7.2.18)



Therefore,

Y, : .

E(— Jl‘ID) (5.&:"23) = Ak-fkykj ; (l—kk)fri (7.2.19)
my X

= E(PF|e,D) = Zpk Akf,:—-—+(1-xk)_i) (7.2.20)

Again,
E{[YH ~ Ikykj)(ykj — I.l:ykj ""' 1), x D}

(fwm + o) (Leyes + o + 1) (M) — Imy ) (M — Iimy, — 1)

2.
(Ikmk -I- o -+ 1)(Ikmk -+ 0.’) (7 21)

(Zeyrs + aj ) (M — Ikmk)__{
Iemy + a)(Iymye + a + 1)
~mi(Ieyes + 05) — Liyey — o5 + a}  (7.2.22)

M (Leys; + a; + 1)

Using above results we get

1 1 (Ikyk' a-)(hmk + o — Jpyr; — ﬂf')
V(Yiila, D) = M1 — X ) (> J 7 T
( kJ'E'} ) k( k)(ir-}-Mk) (a-}-fkmk)(fkmk'l'ﬂ‘i‘ 1)

Hence,

V(Ble) = 2 aV(8j2)
11 (g + o)
M’ (Iimy + «) ‘

(Ikmk 1+ o — Ikykj — a’j‘) (7 9 23)
(e + a+1) -

7.3 Present Study Under Hypergeometric Setup
7.3.1 Moments of P
In a finite population set up , we usually consider a categorical data to

have hyper
geometric distribution . Here we choose the Dirichlet-Multinomial (DM)

distribution as a prior of the parameters of Hypergeometric distribution.
Hence our likelihood function becomes

I = nkesn,ﬁl(y“‘)/(M“) (73.1)

Yk mi



Now the DM distribution is defined by

N1
I,

J—
["J] N
N! \
(Ej=lﬂj)[NlHJ Lt n;! , (n; 20, Z;nj =N

P(ny,ngyeyng) = E[l’[_, 1P;,- 4

[

where

Al = h(h+1)...(h + 5 = 1).
[Johnson & Kotz, Discrete Dis;i;ri‘lrJui:ix:tné1l p.,308]

Here we consider that Y,’s have independent DM distributions with
parameters My and aj. Therefore the joint prior distribution of ¥ is

¥ |

MilT(a) -, Tle+Yi)
Pla+ M) ™" Yull(ag)

Py |a) = I,

L ¥

(7.3.2)

Hence the join_t distribution of y;’s and ¥Y}.’s is

. MiD(a) —, T(oq+ Yes) et (%)
| — N A -t Mk
PXI) = Tt a1 )l Ta) ()
N (Mk — Ikmk)!Ikmk!I‘(a)
- r[k:l
| F({I + Mk]

IT;

'"IT(&.)(Ixym) (Yei — Tiyi)!
VO (M;; Ikmk)!I‘(a + Ikmk)
it [(e + M)
[ + Yii)
T + Layw) (Y — Tiyw)!
10 (L )T () - I'(oy + Teywi)
TP e+ Be) T T (o) (Teyw)!

| Integrating out Zy; = (Y4 ~ Lyyk) in (7.3.3) we get the marginal of y.’s as

t
' Hf:

(7.3.3)

Pl k=1, g = i, (eI T

k IP(CE -1 Ikmk) i;l I“(a,-)(fkyk,*)! (7‘3-4)

and hence the posteriar distribution of Yii — Liyse, given Yy 1S
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P(}:k ~Iy yr k= 1,2, :Nl Yk E)

_ HN“ Mk - Ikmk)!l_'(o: + Ikmk)
=1 a4+ M)
SUMow + Loy} (Yei — Teyes)!
(CE' T kykl)( ki kykt)-
which is also a Dirichlet-Multinomial (DM} distribution with parame-
ters (Mk = Ikmk) and (CE,' + Ikyk;),i = 1,2, voobe |
Now , the posterior mean of Yy; given yy; is obtained as

(7.3.5)

o Ly

{ : — . —
E(Yei| yr, @) Teyei + Tome (M — Iimy)
= MW 4+ (1 -2)2M, (1.3.6)
iy 84
8 vl
_ M}
where A\, = ltwy fkes
0 otherwise
Yii | Qg 2
IE,E(ﬁkt‘yk,Q’) ""*)\k i (1'"' Ak)—(; (7 .7)
nd
: 1, o+ Iiysi)

(@ + Limi — 0 = Deywi)

7.3.8
(Cli + Ikmk + 1) ( )
which implies .
N
o Var(R) =2, sl - (G
1 oy + Lywi) (@ + Iimg — o — Teyi) (7.3.9)

| Mk) (CE + Ikmk)(a 1M+ 1)

Hence we observe that both the cases considered in section (7.2) and
(7.3) are yielding the same estimate of F; and their variances are also same.
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