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Introduction

In thé last few years, joint spectral theory of several commuting operators has been
studied by several authors. It is very different {rom the single variable operator
theor},r. Attempts to extend results for a single operator to tuples of operators
quickiy result in easy counterexamples. Some one-dimensional facts do not have
their ‘analogues in the new situation. Thus it would be interesting to investigate
how much of the one-variable theory has multi-variable analogues and where exactly

they fail to carry over. The present thesis is of interest in this context., Here we

extend some well-known resuls of the single operator .-l;llem'y to commuting tuples

of operators.
The first chapter is an introduction to the basic lacts of joint spectral theory.

Here we 'brieﬂy describe the joint spectrum and the functional calculus introduced

by J. L. Taylor using the notion of Koszul complex in lhqmolcjgical algebra. We

also introduce the left and right spectra, the Harte spectrum and the approximate
point spectrum. A commuting n-tuple of d X d matrices is simultaneously 'uppér-
triangularizable with the eigenvalues occuring along the diagonals. Then the d
- number of scalar n-ﬁuples formed by picking up the (z,2)th. entries of the matrices
fori =1,...,d are called joint eigenvalues because to each of them there corresponds
a vec:t.or z, € €% which is a common eigenvector for all the n matrices. So, there
is a natural definition of joint spectrum for tuples of matrices. The Taylor -jcu'nt

‘spectrumn in this case reduces to these joint cigenvalues. In Section 1.3 we prove

this fact following a partitioning argument of Mclnlosh, Pryde and Ricker. This

chapter ends with a short introduction to Clifford algebras which are used in later
chapters.

- It is a well-known fact in operator theory that a compact operator on a Banach
space can be upper—-tri_angula,rised witl feSPecﬁ to a maximal chain of invariant

sﬁbspaces. In Chapter 2, we show that a commuting tuple of compact operators can



INTRODUCTION

X

Bé simultaneously upper-triangularised and the joint diagonal coeflicients are in one-

one correspondence with the non-zero joint eigenvalues of the tuple. This generalises

the result for commuting matrices mentioned above. Moreover, exploiting a rule of

‘multiplication of tuples we show that every non-zero point in the Taylor spectrum

of a corﬁpact tuple is a joint eigenvalue with finite algebraic multiplicity.
Chapters 3 and 4 are devoted to finite-dimensional results.

Cho and Huruya proved a joint spectral radius formula for commuting d x d
matrices considering them as operators on €" with the Kuclidean norm. In a recent
‘paper, Miiller and Soltysiak extended this result to operators on Hilbert spaces. In
Ghapter 3 we consider matrices as operators on the finite-dimensional Banach space
ok equipped with the p-norm. We then define a joint spectral radius with respct to
the p-norm and prove a newspectml raclius formula. We infroduce a new operator

corresponding to any n-tuple of commmubing Banacl space operators. This operator

. proves to be helpful in deriving the spectral radius formulae.

Cha.pter 4 is about perturbation of JD]I]L eigenvalues, The first results in this
(lll‘BGllOll came from. Pryde who obtained for commuting tuples of matrices an ana-
.. lqgue_o[ Uie .Bmmx&l*:kw theorem using ulum from Clifford analysis, In Ghapler 4,
-us:-ing'tlJiie Clifford o.per_a,tor, we Obbaill, n a similar spiril, exlensions to commuling
tupleslnf _ﬁwa-well*knﬂwn- pa'rt.:urbat_iou_ inequalities - the Henrici theorem and the

fa::.f'.:-:-HfQ_ffmalun-Wielasndb' theoren:i[ -



Chapter 1

Preliminaries

Let B be a commutative Banach algebra with identity. For ¢ € B, the spectrum
of a in B is the set og(e) = {A € € : (a — A)B # B}, where (a - A)B is the set
of elements {(a — A)b: b € B). If My is the maximal ideal space of B then the
Gelfanfél transform *: B — C(Msp) is defined by &((,o) = p(a),a € B,p € Mp. It
is a wéll-known fact (see {Co, page 224|)that the spectrum of an element a can be
described as os(a) = i(Mp). In other words a is invertible if and only if & is never
Zerao, | . : . . -
‘When 5 i# not .commutative, say B = L{X'), the space of linear operators ﬂ_ﬂ a
Ba,na.ch space X, then o(a) is defined as {A € C . ¢ — ) is not invertible in BY). If A
Is any commutative subalgebra of B containing a,‘_then the spectrum o 4(a) depends
on the algebra A in general. I'Iawéﬁer when A is a rﬁ_axilimi nbclian Qﬁbaigebra thén.

it is easy to see that o4(a) is independent of A and equals o(a).

1.1 Algebraic Joint Spectra
" For several Banach algebra elements, the (jﬂint) Sp e"c:tral'théo:ry is more compiiba,f'ed. |

" There is a difference between th'e'stud'y of commutative and non-commutative tuples

f

‘and in this thesis we shall consider only commutative tuples.

1
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1.1.1. Definition. Let B be a commutative Banach algebra and let a be the
n-tuple (aq,...,a,) € B*. We say that a is invertible with respect to B if there
exist by, ..., by € B such that @ 0 & ¥ 7™ @b, = 1. For A = (Ay,..., ) € C",
‘let @ ~ A denote the n-tuple {(a; — M,+.rrdn— ). The (algebraic) joint spectrum
of @ in B is defined as I

| os(a) = {A € C" : @ — A is not invertible in B}.

| Leﬁ_ a o B" denote the following subalgebra of B:

(1.1.2)-’ . a o B" def {(I.Ob:b: (bl,“.,bn) EB“}

1..1.3.. !' | Proposition,
dﬁ'-(a) — {’\ E-.Cn :.(a B A)ﬁﬂﬂ ?‘éB} = a (Mﬁ) = (), .. ':(P(dﬂ)) L € Mg},

PROOF Let X ='(-/\'1,.....,'An) € a(Ms) i.e.,'there. é};ists a @ E': Mp such that
| (P"(.;_;,): == ,\,; .Then for any n-tuple b = (bl, :b n) of eléments from B, we have
'tp()::‘;l(a‘:- A )by) = :‘_=1(tp(a.) )b = 0, So Z l(a. — A )b, = 1 has no solution

Comfersely if "2 l(a, ~ A)b =1 has no solutlon in B then the ideal generated
by a, — /\1, [ Oy — A 18 a proper one, 50 it is contained in some maximal ideal,
 say Z “The maxzmal ideals are in one-one correspondence with the multiplicative
~ linear gunctlorl.a]s. Let  be the multiplicative lincar functional with 7 as its kernel.
Then A = p(a). | R - "

Ifp:C* — C" is a polynbmlal mappmg then it is 1rnmed1a,te from Proposition
1.1 3 that os(p(a)) = p(os(a)). In partlcular, ag(a,) {)\ ,\ € og(a)} for
r=1hL0,n The foﬂowmg theorem due to Shllov, Arens-Calderdn and Waelbmeck.
I:__:_E;_fsa,ys that the algebram Jmnt 3pectrum cames an analytlc functmnal ca,lculus We

. state 1t wnthaut prnof A det&llcd prouf can be [ound in [Cu3]



1.2. SPATIAL JOINT SPECTRA 3

1.1.4. Theorem. Let U(oz(a)) denote the algebra of germs of functions which
are analytic in a néighbourhood of op(a). There exists a continuous homomorphism
f +— f(a) from U(ops(a)) into B such that

(i) 1(a) =1,

(ii) z,{a) = a; for2=1,...,n and

(i) f(a) = f o & for all f € A(au(a)).

As a consequence of Theorem 1.1.4 we have o3(f(a)) = f(os(a)) for any func-
tion f € U(os(a)).

\
t

1.2 Spatial Joint Spectra

In this section we present the axiomatic approach to the joint spectrum of a tuple

of elements from a non commautative Banach algebra B. We discuss various spectral

systems with a special emphasis on the Taylor joint spectrum.

1.2.1. Definition. For an integer n > 1 let B2, be the set of all commuting

n-tuples of elements from 5.

B ¥ {a=(ay,...,a4) € B": aq; = a,a, for all 1,5},

n=}~com

 B* will be denoted by Beom.

To ;:leﬁne the joint spectrum of @ € By, for a gencral Banach algebi‘a. B one
might look for a maximal abelian subalgebra. But unlike the single element case

the joint spectrum does depend on the maximal abelian subalgebra, For an exaniple

see (Al _ | |
If X is any set let P(X) denole its power set e, the set of all sabsets of X.

Let € denote the space of all com plex seq uences.

1.2.2. Deflnition. A speciral system for a Banach algebra B is a map

& ¢ Beoms — P(C®)
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such that |
(i) & € Beory = d(a) # 0,
(i) a € B, , = d(a) C C" C C%, and
(iii),a@ € Beom = 6{a) is compact.

;
1.2.3. Deﬂnltlon Let 7(a) be a spectral system on a Banach a,lgebra. B. Let

a € Bg_.,m and b € Bf . Let P, : €t - @€" and P, : €"** — C* be the
-pI‘U‘]ECtlfJnS Pi(z1, o Zapk) = (21,...,20) and Py(z,...  Znik) = (Zntiy- vy Znsk)
- respectively. The spectral system & for I3 is said to possess the projection property
if

P5(a,b) = &(a) and P5(a,b) = 5(b).

5 possesses the spectral mapping property for polynomials if 5(p(a)) = p(&(a)) for

every PGIYnomial p: € — €* and for every n-tuple a € Biom:

_ 124, Examples.

(1) Let B be a commutative Banach algebra. For a € B the rational spectrum
of @ in B is ch(a) where I is the smallest inverse-closed closed subalgebra. of B
that contams a1,y .. In general cng( ) C ch(a) Both o3 and og are spectral
systems Obkusly or has the projection property by virtue of Proposition 1.1.3.
But or does not have the projection property. For this result and more about the
ratlona,l Spectrum see [Wa). .

(11) For 8, subset S of B, let S’ def {b € B bs = sb for every s €S} It is easy
| ta aee tha.t S is &lwa.ys an algebra The algebra. S’ is called the commutant of §.

Simlla.rly X (8') is callcd the double commulant of S. For a € B”

com

we let

(a.) (a.)" a.nd ( )” denote the Banach subalgebras of B generated by dyy...,0, and

1, by 1L3 commutant (relatwe to B), and by 1Ls doublc cmnmutant rcspectwcly We
"deﬁne | -

428 i@ aca)(a)
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and
(1.2.7) (@) E {AeC": (a~A)o(a) # (a)}).
More generally, if A is any closed subalgebra of 8 containing a in its center, then

we let

(1.2.8) oa(a)E {AeC:(a-A)od# A}

In general, by an algebraic spectrum we mean o4 for some A, The sets &,¢' and o"

are spectral systems without the pm‘j‘tction property (see [SIZ]). Also o' C ¢” C 6.
(iii) The left specirum of a is defined by |

(1.2.9) _ a(a) = {Ae C":Bo(a—2) +#8).
Similarly, the right spectrum of a is defined by
(1.2.10) Co(@) ¥ (A eCm:i(a— N oB#B).

The Harte spectrum is oy e o1 U o, C ¢'. The spectral systems 07,0, and oy all
possess the projection property (see [Bu], [Harl] and [Har2]). - |
. (iv) Suppose B = L(X), where X is a Banach space. The tuple @ € L(X)?, is
said to be jointly bounded below if there exists a positive constant € > 0 such that
(1.2.11) . 2zl 2 €llal,

=3
The tuple a is joinlly onto if
(1.2.12) _ Sa X =X.

=1

The range space & a is defined to be the subspace

(1.2.13) o R(a) = {yeX: There exist z;,...,2, € z’\.’

such that Yy = alzﬁl 4 +'ana:n.}.

In other words, R(a) = R(al) + +++ 4+ R(a,). In this notation, a is jointly onto if
R(a) = X. | o ' '
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For a € L(X)",. the approzimate point spectrum o.(a) and the defect spectrum

CoIm

os(a) are defined by
(1214)  on(a)E {X € C": a— Ais not jointly bounded below}

and

(1.2.15) | og(a) =

{A € €":a— Ais not jointly onto}.

Then r:r;..- and o are spectral systems with the projection property (see {ChDa)).

| (?)-For aE.E(X).Eﬂm let aﬁ(a,X)'drﬁf o(ay, XY X +»+ X o(a,, X'), where o(a,, X)
denotes the ordinary spectrum of a, as an element of £(X). Obviously, the set
o 18 a:speétfal system with the projection pfoperty. However, o does not have
the spectral m&pping property for polynomial mappings, (Example: Let p be a
n-ﬁi‘ntriviél idempotent in £L{X). Then ag(p, ») = {(0,0), (0,1),(1,0),(1,1)}, so that
A+ Az (A, X2) € onlp,p)) = {0,1,2}, while o(2p) = {0,2). )
~ (vi) The Taylor spectrum: In this ex.ample. we discuss the joint spectrum intro-
duced by J. L. Taylor in {T1], Let Ay be the exterior algebra on n generators with
- identity eo = 1. Thi_s is the algebi:a of forms in eq4,.,., €, with Ccrmpiex coeflicients,
subjec.t to the cﬁllapsing property e.e, + e",e, = 0(1 £ 1,7 < n). The algebra A, is
gr.a.d_ed:' A, = @2___.1_1\{',_ with {e, .. ¥ e ‘1S <. <y £ n} a.s. the basis for
A%, Let E, : A, — A, be given by - '
| (1.2;1_63 | E,Eiz-etf, | z='.1,...-,n, (€A, .

~ The _npérators E,,. i ,En é,re célled the creation operators. Clearly E'mEJ + BB, =

01 £ z::_} < n). We regard A, as a [lilbert s]ﬁce by declaring _{eu veorgy 1 1S
1 < <y Snandk = 1._.2,'-; . ,',ﬁ] to be an ﬁrthonarmal basis. Then each E;
s a partial iéotrletr}' and E‘:E_, -} Ej e =-- 6,(1 <14y7 .f_{ ). A isa vector space,
_We define A,(X) ¥ x® A, Then for A = (Afy... AR) E L(X)" _ the operator
Dy i Au(X) = An(X) is defined by ' -

(1.217) DAYMS A®E.
| . : | | =1
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Then
(1.2.18) D%

T

|

AAREE =) AAQ(EE + EE)=0,
1

)= 1<}

If R(Da) and M (D4a) denote the range and kernel respectively of the operator
D4, then the equation (1.2.18) says that R(Ds) € NM(Dy) . We say that A is
nonsingular on & if R{Da) = N(D4). The Taylor spectrum of A on X is

(1219)  ox(A,X)% (Ae € R(D,_5) £ N(D,_y)).

When n = 1, D4 has the following 2 x 2 matrix representation relative tothe direct

sum decomposition (X @ ¢p) (X @ e1):

(1.2.20) | DA =(3 g)

So,

(1.2.21) . N(Dp)=N(A)® X,

(1.2.22) - R(Da) = 0 & R(A),

and | | |
(1.2.23) N (DAY R(DA) = N(A) @ X [R(A),

so that A is nonsingular if and only if A is one-one and onto. For n = 2 the matrix
of Dy relative to the direct sum decomposition

A(A) = (A ®eo) D (A Rey) O(V® ey) 0 (VU ® f!|ﬂq) £

0 0 0 O
| A 0 0 0
(1.2.24) 1 -
! ' Ay 0 0 O
0 —-A; A1 O
So

(1.2.25) N(Da) _ N (A) AN (A)) @ {(21,29) ¢ Agzy = Asza) B X,

(1.2.26)  R(Da) =08 {(A1z0, Agio) : 70 € X} @ {R(A1) + R(Ar)}.
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One can also consider a chain complex K (A,X ), called the Koszul complex as
_i

follows:
pe D! D*! Dk pn~?

(1.2.27) K(A,X) : 0 = AS(X) 2 AL(X) B B Ab(X) &0 B ARX) -0,
(here AR(X) is X @ A"‘ and D% i Dalax(x)). Then it is easy to see that

(1.2.28) or(A, X)={A € C": K(A ~ A, ) is not exact}.
For n = 2 this complex takes the form
(1.2.29) e ¥ — VA — A — 0,

where 6;(x) = (—Ajz, Asz) and 6o(zy,29) = Aymy + Agzg. Clearly AjA; = A4,
implies that g 0 6; = 0 so that (1.2.28) is a chain complex, To say that {1.2.29)
is exact means three things. We see from the definitions of the maps 61 é.nd,EO
that the exactness at the first stage and the third stage respectively mean that
N(A)NN (A;) = 0-and ’R(A) X . Exactness at the second stage means that every
pair (.."31,&7-;) € XX for which Arzi+Azxg = 0 has the form (21, z9) = (— Az, A17)
for some z € X. This is the same as dictated by equations (1.2.25) and (1.2.26).

- There are n+1 maps involved in the complex (1.2 27) and K(A,X) is exact iff
R(DXH) = N(DK ) for all k = 1,...,n — 1, M(DY) = 0 and R(D}!) = AR(X).
.LE:t'usi anaiyse the last two conditions. Since A°(X) consists of vectors of the
form z ® eq, N(DY) = {z € A:' E“ Aiz ® e; = 0}, Since the ¢;’s _aré the
generators ol the algebra Ay, T8 Aix @ ¢; = 0 iff /1 @ = 0 for all ¢ = 1,, ,11.. So
N(DY) = /V(Al) ﬂN'(Ag) n - ﬂN(An). Thus exactness at the ﬁrst stage means
that | | | -

(1.2.30) - N(Al)nN(A,)nu--nN(An) = {0}.

oy

.A:"l( X) consislt's of vectors of the foriﬁ 2,21 T ® €1 €inn En, Where ¢; means that
e; is omitted. So R(D%Y) = {(Th, Aiz:) @e; . {1y Ty €A} = R(A)® A,

‘Hence exactness at the last stage means -t_ha,t

(r231) RA)=X
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Obviously for the exactness of the complex (A, A') these conditions are necessary

but not _sufﬁcient. Note that
(1.3.32)i os(A,X) = {A € C": D;:A is not onto} = {A ¢ C" : R(A - A) # X}

so that o5 represents the singularity of the complex at the last stage. Now it is

natural to introduce the following delinition:

1.2.33. Definition. A € C" i3 called a joinl eigenvabie for A € L(X)D ., if there

exists a nonzero vector @ € A such that A,z = Az for all2 = 1,...,n. The joint

point spectrum op (A, A') is the collection of all joint eigenvalues.

If A is not a tuple but a éhﬂ‘gﬁpundcd operator A then o, (A, X) = op(A),
the orinary point spectrum of A, Obviously, o, (A, A) C opi(Ar) X+ X op(An).
So if Ay,...,A, have empty point spectra, then o, (A, X) is empty. Thus the set
opt 18 not in genéral a spectral system. In terms of the Koszul complex op (A, &) =
{A € C": D}, is not one-one}. So oy, represents the singularity of the complex
at the first stage. Hence o, (A) C or{A). In the next section we shall see that the

Taylor spectrum of a tuple of mwirices consists of the joint point spectrum only.

The inclusion relations for different spectra are as foliows.
(1.2.34) | opCo' Co’"Coyr.

And oy C oy il the underlying space is cithier a finite-dimensional space or a Hilbert
space. In general, all the above inclusions can be proper. Sce [T1, T2),
The Taylor joint spcctrum'aT(A) carrics an analytic functional calculus. We

state it without proof. A detailed proof can be found in [T2] and [Cug|.

com

1.2.35. Theorem. Let A € L(X)" , and fet 2 D or(A,X). Let U(Q2) be the
algebra of germs of analytic functions on £l Then there is a unital continuous

homomorphism

7 1U(Q) - £(x)

satisfying
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(i) z(A)= A, fori=1,...,n,

(ii) f(A) € (A)
(iii) If f = 0 on a neighbourhood of or(A, &), then F(A) =0.

(iv) For every relatively compact open subset @ of ) containing ar(A, X'}, there

exists a constant Cg > 0 such that

V(A < Cosup{If(2)] : = € ®)
for all £ € U(R).
1236 Theorem. Let A € £(X)2® 2 ox(A, X), and let f & U(Q). Then
or(f(A), X) = flor(A,X)).

PROOF  See [T2).

‘Do op is a spectral system possessing the projection property and the spectral

" mapping property for analytic functions.

1.3 The Joint Spectrum of Matrices

In this section we show that the Taylor (jo'int) spectrum of a tuple of matrices 1s the
sét of joint eigenvalues. The proofs presented in this section are on the lines of [Cul).
Let A = (A1, Ap) and C = (Cfl,. . ,-C‘n) be two n-tuples of bounded operators
“on two Banach spaces X and A, res.pect;ively. For B; € B(A,, Ay}, =1,...,n let

(58)= (5 &) (T &)

. 13 l Lemma Suppose By, .. B are su’ch that (‘,} g) is a commuting n-tuples

of aperaturs on X; @ As. If A a,nd c are nansmgular then (A B) is nonsingu-
lar (Here nonsmgularlty is in the sense of ‘Taylor, see (1.2.17), (1.2.18) and the
“discussion there) C'onsequently, U‘T( ] C or(A)U mr(C)
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ProoF For notational convenience, let us denote the map Dp, corresponding to
any commuting tuple A, as defined in {1.2.16), by D{A). Recall that a tuple A is
nonsingular if R(D(A)) = M(D(A)). Hence we have to show that ’R(D(‘; g)) =
N(D(% &) A trivial identification shows that D(§ &) = (P{¥ J(8). So
D(% 2)(28) = 0 implies that D(A)(z®¢)+ D(B)(y®n) = 0 and D(C)(y®7n) = 0.
Since C is invertible, there exists 2 ® { € A,(A2) such thad y @ n = D(C)(2 ® ().
Thus 0 = D(A)(a: ®¢)+ D(B)D(C)(z ® (). But D(B)D(C) = —D(A)D(B) since
(D(% 2))? = 0. Hence 0 = D(A)([z ® £ — D(B)(2 ® ¢)]). Now by nonsingularity
of A, wehave s ® £ — D(B)(2®() = D(A)(u®) for some u®v € Ax{H;). Hence
2ol (ied)=(en)
0 C/\2Q( y Q1

This completes the proof.

The next lemma is a very well-known result on simultaneous upper-triangular-

ization of a commuting tuple of matrices.

1.3.2. . Theorem. Let A = (A;,...,A,) be a commuting n-tuple of linear trans-
formations on an N-dimensional vector space X. Then there exist N + 1 subspaces
Loy L1, .., Ly satislying '

() (0}=LoC L - C Ly =4,

(ii) Ly is k-dimensional (k = 1, ..., N),

(i1i) each L-k is simultaneously invariant under Aryoi A,

ProoF It is clementary. to sce thal for any commuling family F of operators on

a finite-dimensional vector space, there exists a vector = € A’ that is an eigenvector

of every T' € F (for a proof see [HorJ], page 51). Applying this to the commuting
tuple A = (Al',...,An), we get a common eigenvector z, Let L, be the one*.
~ dimenional space spanﬁed- by 2. Then L, is invariant under Ay vy Ans Next
consider the vector space W = A’/ L; and the linear tr&ns[ormaticﬁs A;in W defined
as Aj(z+ 1) = A;z +Ly. Then Ai,..., Ay is are commuting linear transformations

‘on the finite-dimensional space W. So they have a common eigenvector, say z,+ L.

Thus for some scalar tuple (K1ys v vy fin)s .A*j'(té:g —I— L,) = p;z; + L) which means that
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Ajzy = pjzq + z for some z’ € L. Hence the subspace spanned by z, and z; is
invariant under Ay,...,A,. We call this subspace Ly, it is two-dimensional, contains
L, and is invariant.

Now applying the same reasoning to X'/L, and so on, we get for each j =

1,. ,N ~ 1 the subspace L; spanned by x;,23,...,%;. These subspaces satisty the

conditions of the theorem. Finally, define Ly = A" and that completes the proof. m

Let z4,... ,xﬁ-l and Ly,...,Ly be as in the proof of Theorem 1.3.2. Choose

~any zy not in Ly arbitrarily. Then {24,...,zy} is a basis for A. In this basis |

~ the matrices for A;,...,A, are upper-tria,ngula.r 1.e., of the form
ERP O ) )
o 0 | Lo
IR + 1 .
o0 00

1.3.3. Definition. For ¢ = 1,..., N, let X, be the n-tuple consisting of the tth.
diagonal entries in the matrices of Ay,..., A, i e A= = (AN, ..., A"}, Each A; is

called a joint diagonal coefficient of A,

- 1.3.4. Theo;'em.' If A=(A4,...,A) is an n-tuple of c'c:mmut_ing linear transfor-

mations on an N-dimensional vector space &, ‘then
mr(A) = o) = (i si =1, V).

- PROOF The proof is achieved by rcpea.ted appllca.Lmn of Lemma 1.3.1 to the.
‘simultaneous upper-trmngulanza.tlon of Theorem 1.3.2. It is easy to see that the

'n-.-tup.leﬂ A (A“) )\(“}) 1 = N are joint cigenvalues of the tuple A.

| ;Sr.:- {Xiyi =1,...,N} C o'P.-,(A) C JT(A) Now let A, be the space spanned by

: a: YIN, Then Xpis N —~1 dlmensmna.l and X = L1 ® X,. For j =1,...,n,

. ';_f?"é?'?"”%{?deﬁne the lmea.r transforma.twns C; on A, by the (N ~ 1) x (N = 1) matrix:

/\(J] L ﬂgal'
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C = (Ci,...,Cn) is a commuting tuple since A is so. By the result of Lemma 1.3.1,
or(A) € {A1} Uor(C). Repeating this argument N times, or(A) € {A1y..., An}
Hence or(A) = op{A) = {A1,..., A }. l

1.4 Partition of A Tuple

In this section we introduce the important concept of partition of a tuple of operators

which will be used often in the later chapters. Following {McPR| we introduce the

following notion.,

1.4.1, Definition. For A € L(A)", the set 4(A) C IR" is defined as

y(A) ¥ {X € R": Y (4, — \,)? is not invertible in £(X)}.
=1 |
Ifn L= 1 then it is easily seen that v(A) = o(A)NI and hence y(A) can be empty.

The relevance of the set v(A) can be readily scen from the following proposition,

1.4.2. Proposition, Let A e L(X)! . and let 0*(A)} be a subset of €" with
the property that p(e*(A)) = o(p(A)) for all polynomials p : €* — €. Then
o*(A) N I" C v(A) with equality if and only if o*(A) C IR*.

PROOF For each p € IR" we define a polynomial gy : € — € by the formula

|

(1.4.3) qu(z) = En:(z- - )

=1

If A € o*(A) N IR" then 0 € ¢)(0*(A)) = o(q\(A)) and hence A € v(A) by
definition of y(A). If 6*(A) C IR" and A € 7(A) then 0 € gy(c*(A)) so that
q)(2) =0 for some z € 0*(A) € ﬂ?ﬁ_. "This is poss_ible oﬁly if z=A éu_ld hence
Aeo*(A). o - -_ .
Since op and oy possess the 5pectfal mapping property for polynomials, the

a_bcive proposition implies that

(1.4.4) . S(A)NRCH(A)
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where ¢* denotes either op or oy, Equality holds if and only if o*(A) C IR".

'1.4.5. Déﬁniﬁun. An n-tuple A of elements from L£(X) is said to be strongly
ﬁommuting if for each 1 <2 < n there exist operators U, and V,, each with real spec-
trum, such that A, = U, +1V, and I(A) = (Uy,...,Uny V1, ..., Vi) 18 & commuting
2n-tuple, II(A) is called a partition of A.

In practice, the spectra o, gy, ¢’ and ¢” are often diflicult to compute. One of
the appealing aspects of the spectral set v is that it readily lends itself to explicit
- computation, The followirig proposition shows how it helps in computing the Taylor
~spectrum and the Harte spectrum. This proposition will be of utmost interest in

relation to perturbation of complex spectra.

1.4.6. '.Pmpasition. Let A be a strongly commutling n-tuple with a partition

H(A) and let p : €** — C” be the polynomial given by
P(zls KR }zﬂn) — (3'1 + tlnglyee ey @n + 33211)*

Then
or(A) -O‘H(A) p(v(II(A))).

PROOF ' We let o* denote either or or oy. Then it follows from the remarks

following Proposition 1.4.2 that o*(I1(A)) = 4(II(A)). Then we have

ﬂ'(A)*ﬂ(P(H(A))) 2 Ca (1I(A))) = ((H(A))) -

The results of ths section will be uselul in Scction 4.3 to find perturbation bounds
for cummutihg tuples with complex spectra.
1.5 The Cl-ifford Algebr_a _

McIntash and Pryde used the Chffard algebra. and the Clifford operator to study

| _.jolnt spectrum in [McP]. We will be following thelr approach to obtain perturba,tlon
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bounds on joint spectrum of commuting matrices in Chapter 4. The basic facts

about the Clifford algebra are brielly described below.

1.6.1. Deflnition, The Clifford algebra Ry, generated by K" is a 2"-dimensional
Jlincar space, Il basig clements nve indexed by subsets of tho set M = {1, ..., 1),
Let £ = {hs: S G M} be a basis (or Il The veclor space fidy,) is made into an
alge;bra. by defining a multipliction for these basis elements by .
(1.5.2) hshp = 1] (s1) hsar
SESIET
where (3,t) = —11f s <tand +1if s > ¢ ; and SAT is the symmetric difference of
the sets S and T defined by SAT = (SUT)\ (SNT).

In particular Ay is the identity for this algebra and
(1.5.3) h%j} = —hy, hinhgy = —hgyhgyy 4,7 = .. 7.

and if
(L5.4)  §={i1,...,ix} i) <iz<...<iy then hg=hg) - by

Let {h1,...,hs} be the standard basis of IR". Identi{ying h; with h{.j}, }R“ can
be thought of as a subspace af Ry B0 (21, .., 2y) 1s identified 1..';fi.th > m;h{j}..
Since | - . |
(1.5.5) (2o Tk mih{:‘}) = (= Zﬂrﬁ)ha
and hy is the identity of R(a), any non-zero element of R" is invertible in Ryy).

For any two elements A = EAShS and g = Epghs of IR(H), let < A, ;0 >
= 3  Aspts. This defines an inner product in which the basis {hs : § C M} is

orthondrma,l |
Let A bea ﬁmte-dlmenmon.,al vector space over €. The tensor product X ®R(n)

18 & ﬁmte dimensional vector space whose elements can be represented a8 Y 2g ® hg.

If A has an inner product < -, - > the space X ® R(,) naturally inherits it:

(186) <N s@he,Yus®hs>= Y <asys >
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Let IMy be the algebra of all K x k matrices. Let {Ags: S5 C M} be any collection
of 2" matrices from M. Then 3 As ® hg is an element of M) @ IR(y,). It can be
thought of as a linear operator on C*® IRy il we define its action on 3 Ar ® Ay
(1.5.7) (; As ® hs)(ZT: Ar & hT) = SETASAT & hghr

* So IM; @ R 13 a subalgebra, bf the algebra of all linear operators on Ck@ /(I
and IMy i8 a suba.]gébra, of IM; @ IR(») by the identification of the matrix A with
the operator A®@ hyg on IM; @ IRy,

1.5.8.  Definition. Given an n-tuple A = (A;,...,As) of k X k matrices, the
Clifford operator of A is an element of IM, @ IR,) defined as

CLff(A) 3" A, ® hyy.

Basic properties of the Clifford operator are summariscd below.

1,5.9. Lemma, If the tuple A = (Ay,...,A,) consisls of commuting matrices,
then _ | ' . .

(i) CJiff(A)z = 3 A}

(11) For any A € C" we define A — A .=.(A1_ ~ Ayeeey An —.).n). The operator
CLff(A — A) is'invertib.le'if and only. if (A, = A,)? is invertible and in such a case
CLff(A — A)~! = (T(4, - A,)})~ICIff(A — A).

(ii1) If each A, is self—adjolnt, then Cliff(A) is self-adjoint and

_ ICHIE(A)|| = r(A).
PROOF (i)

| Cliff(A)? = (A ® hy) X (34, @hm)

1=1 | | _;r:=l

( 1) Z A A @ h{n}h{:}

3*--1

Il

( 1)2A2 @’hﬂ + ZA A; @ h{:}h{x}

=1 1<)
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The first term is identified with EA? and the second term is zero by the multipli-

cation rule.

(i) .We note from part (i) that Cliff(A — X)? = 3°(A4, — A,)%. So CLfI(A — X) is
invertible if and only if 32(A, — A,)? is invertible and in that case Cliff (A — X)~! =
(Z(4, — ) ICLE(A — A).

(i) A straightforward computation shows that if I is the k x & identity matrix
and 7 € M is aﬁy index then (I ® hy;))" = —1 @ hyy. So for any B € IM; we have

(B®hp)* = (BOh)I®hy))* = ~(I®hi)(B*® hg)) = ~(B* @ hyy). Hence,
CUff(A)* = (—2) 3_(=A7) ® h(;) = CLll(A"),

where A* is the tuple (A],...,A}). This proves the first part. For the second part
note that |[CHE(A)([? = [|(CHA(A)I| = | = A%| = r(A). .

Notes and References. Algebraic joint spectra have been studied by Arens
[Are], Calderon [ArCa}, Waelbroeck [Wa] and others. For an excellent account of the
development of the theory and its integplay with several variables complex analysis,
see Wermer [We]. Among the many altempts to define spalial joint spectra (see
especially [Dasl], [Das2] and [Harl), [Har2], [Hard]), Taylor’s definition turned out
to be the most natural. Taylor, in his papers [T.lj, [12], [T3] and ['l‘d];develﬂped

joint spectral theory and the associated [unctional calculus. For alternative proofs
of the fact that Taylor joint spectruin coincides with the joint eigénvalues in the

finite-dimensional case, see [CT] and [McPR). Clifford algebra and Cliflord operators

were first used to study joint spectra by McIntosh and Pryde in [McP).
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Chapter 2
Commuting Compact Tuples

In this Chapter we study commuting n-tuples of compact operators on an infinite-

dimensional Banach space X, Tho r®aulis are mainly of two lypes and accordingly

they are grouped into two sections. The first seclion deals with the spectral prop-
erties of the tuple. We first show that any non-zero point in the Taylor joiht spec-
trum of a commuting compact tuple is djoillt eigenvalue. Then we show that every
non-zero joint eigenvalue of a commuting compact tuple has a finite algebraic multi-
plicity. In the second section we obtain a simultaneous upper-triangularization of a

commuting compact tuple. Here we use many of the results of the first section. The

joint diagon-al coefficients in this joint upper-triangular form are then shown to be in
one-one correspondence with non-zero joint eigenvalues. This is a generalization of
well-known results for single operators (see {Ri3]) and also of the finite-dimensional

results of Section 1.3.

2.1 . _Sp.ectral Propertiée_

In Section 1.3 we have seen that the joint spectrum of a commuting tuple of matrices
is the sa,in_e as the set of its joint eigenvalues. In the present section we are going to
prove that the spectral properties of an n-tuple of commuting compact operators

on an infinite dimensional Banach space resemble those of an n-tuple of matrices to

19
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a large extent. We begin with the fact that every non-zero element in the Taylor

joint ap::actrum of a cornmuting compact n-tuple is a joini eigenvalue.

2.1.1. - Theorem. Let A = (A,...,4n) be an n-tuple of commutling compact
operators on a complex Banach space X'. Let or(A) be the Taylor joint spectrum

of the tuple A. Lot A = (A,...,As) be a non-zero n- tuple of scalars, If A € o1(A)
then A is a joint eigenvalue of A.

PROOF The Taylor joint spectrum or(A) of an n-tuple of commuting compact
operators is countable because op(A) C o(A;) X -+« X 0(A,) and each o(A,) is
countable, Moreover, the only possible limit point of o¢(A) is (0,0,...,0). Indeed,
if g is a limt point of ox(A), then there exists a seqﬁcuce B, = (pgm}, , ulm)y
of pomts in oop(A) such that |{u,, — p}| — 0. So |;£(’“) — ft,| — 0 for each ;. Since

,ug"‘) € o(A,), it follows that s, = 0 for cach j.

So Aj is not a lmut point of JT(A) and we can find a nel,g,hbuurhood N of A con-
taining no other point of or(A). Lel f: €™ — C bea holomorphic function which is
1 on N and 0 on JT(A)\{A}. Then f(A) is a projection which commutes with each
A;. So R{f(A)) is an invariant subspace for each A, And ar(Alrisa)) = {A)
. It follows that J(A' lr(sa)) = {4 } forall y = 1,. . Since A # 0, at least one
A, (say /\ ) ] is non-zero, By the pro jection property 01:' the Taylor joint spectrum,
a(Ajlr(s A))) {,\_,ﬂ} So Ay lr(sA)) is an invertible- compact operator. Conse-
quently, R(f (A)) is finlte dlmensmnal Since on a finite-dimensional Banach space
the jmnt si)ectrum congsists of the Jﬂmt eigenvalues, we conclude that A is a joint
mgenvalue of A|r(s(A)), and hence of A. _
- Let A = (A5,...,A,) and B = (By,...,Bp) be two tuples of commuting
bounded operators on a Banach space X. We define the product AB to be the nm-

- tuple whose entries are A,B,,1 <2 < n,1 <7 < m, arranged in lexicographic order.

Using this multiplication fule, one can successively define the powers A% A3, .. ..
" Then A™ is an operator tuple with n™ entrics; these arc the products_A,; LA

| .wh___ere. the i_nd'ices are chosen from {1,...,n} wi th r_epetitions._allowed, and are then
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arranged lexicographically, |
The ﬁ-tuple A can be regarded as an operator from A'™ to A'™™, taking a vector
X = (T1,...,Zm) € A™ to the nm -tuple (A;2,,... y AnZ1, A129y . ..y AnZm ). When
== 1, the null space of this operatbr, denoted by .N'(A), is the set of all joint

eigenvectors of A. With the above definition of powers of a tuple, we define, for

any k > 1, the subspaces M;(A) of X by

(2.1.2) M (A) = N(AF).

2.1.3. Lemma. Ny (A) C M4i(A) forall k=1,2,.... If Mpy1(A) = Ni(A) for
some k, then Myi(A) = Ni(A) forall I=1,2,.... '

PROOF The first statement is evident, 1o prove Lhe second, take any z €
Ni+2(A). Then A¥2z = 0. So A*' Az = 0. This implies that A,z € My (A) for
all = 1,...,n. But Nieg1(A) = Ny(A). So A,z € M(A) for all 3 =1,...,n. In
other wfgrds, Ay =0, So z € Nit1(A). Hence Niyya(A) = Nyyp1(A). Now the

rest follows by induction. . ' B | _

2.1.4. Lemma. Let A = (A;,...A,) be an n-tuple of commuting compact
operators and A a non-zero scalar n-tuple. Then M(A — A) is finite-dimensional

for all & 2 1. Moreover, there exists a positive integer v such that

PROOF Since A # 0, for af least one 7, A; ;é.[). Assume without loss of generality
that A; # 0. By definition of the null sp:;i_ce of a tuple, -

' - Ni(A) C N(AII—— AI)*.

Since A, is a compact opera.tor and Ay 74 0, it is known that dim N( [ — )\j)*
for all k > 1. - Moreover, dtmN (Al ) is boundcd as k — oo (see [Ta), pages
278-280). That _cumplete_s the proof in view of Lemma 2.1.3. | | .
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Thus the integer v occuring in Lemma 2.1.4 is the smallest n such that Na(A -

A} = Nn+1(A A). We call the integer v the indez and dim(N, (A A)) the algebraic
multiplicity of A with respect to A.. Theorem 9.1.1 and Lemma 2.1.4 together show

that any non-zero point in the Taylor spectrum of a commuting compact tuple is a

joint eigenvalue with finite algebraic multiplicity.

2.2 Simultaneous Upper-triangularization

We have secen in Section 1.3 that if A = (A,,...,A,) is an n-tuple of commuting

linear operators acting on a Banach space X' with dim(X) = IN < co then there

exist éubspaces Lo, Liy ..., Ly of X such that
({0} =LeC LS Sy =4,
(1) Ly is k-dimensional (k=1,..., V),
(iii) each Ly is simultaneously invariant under Ay,..., A,
. So a family of subspaces -{Ll, ..+, Ln}, which has the properties (i), (ii) and (iii)
above, determines an uppér-triangular representation of Ay,... A,. One can choose
a basi$ £ = {z1,...,25} of & which has the properties: . -
(i) each x; lies in Lj but not in L;_y,
| (i) the matﬁx of the operé,tors Ay, ... A, with respect to the basis £ are upper-
triangular. | .. .
The joint diagonal coéfﬁcie’nts are then defined with the help of this simultaneous
upp.er-triangul&riza.tian. It was shown in Théorem 1.3.4 that op(A) = op(A) =
the set of all joint diagonal meﬂiments of A. Now we will obtain an extensmn of
thls l;o commutlng cnmpact linear operators acting on infinite- d:mensmna,l spaces.
The theory for a single operator has been completely charted out in ngrose{R13].
| We shall brleﬂy recapltulate it.
Thmughout this sectlan A stands for a complcx infinite dimensional Banach
space, The set L of all closed subapa{,{,q c.r[ A is a parlially ordcled set under

- 1nclusmn A completely ordered subset 01' tlus set is- calied ) clmln The class C of
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all chains is again a partially ordered set by the inclusion relation on the subsets
of £L. Let Cp be a completely ordered subset of C. Deline Fyg = U{F : F € Cp).
Then Fq 15 a chain because if Ly, Ly € Fp, then there exist F1,F3 € Cg such that
[y € F| and Lg € F5. Since Gy is (::Dmpletely ordered, we can assume F; C F;. So
Ly, Ly € F,. Since F; is a chain, either I, C Ly or Ly C L.

The chain Fy is obviously an upper bound for the class Cp. Moreover if G is any
other upper bound, then F, C §. So Fy is the least upper bound of the class C,.
So each totally ordered subset of C has a least upper bound. 1t {ollows from Zorn's
lemma that C contains maximal elements, which we call mazimal chains, Every
chain is: contained in at least one maximal chain. |

Given a subfamily F¢ &f a chain f’, the set N{L : L € Fy} is a closed subspace
of X, the same is true for U{L : L € Fy}. Given M € F, we define the subspace

M_ as
(2.2.1) : M.=U{LeF:L G M3},

interpreting the right hand side as {0} when there is no proper suliﬂpa,ce of M in
F. '

2.2.2. Definition. A chain F is called a simple chain if it satisfies the following

conditions :

(i) F contains the subspaces {0} and X,

(ii) if Fp is a subfamily of F then N{L : L € Fy} and U{L L€ .7"0} are in F,
(iii) for each M € F, dim(M/M_) is al most one. " |

Not{a that condition (ii) implies that M. € F for each M € F.

2.2.3, 'Theorem. A simple chain is maximal,

'PROOF: See [Ri3, page 167} |
I{ T e L(X), then a chain F is called mva,rlant under T if each M € .?-' 1S an

invarmnt subspace_of T, Tt is well—knowu (see [AS]) that if T is compact, then T

has a non-trivial closed invariant subspace i.e., there exists a closed subspace which
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is neither {0} nor X and which is left invariant by T'. This shows the existence of
non-trivial invariant chains for a compact operator I'. Let Cr denote the class of all
snvariant chains of 7. The usual Zorn’s lemma argument applied to Cr shows the
existence of maximal elements of Cr which we call mazimal invariant chains. It is

not apparent that maximal invariant chains are also maximal chains i.e., elements
which are maximal in Cr are maximal in C. The following theorem (see [Ri3], page

169) shows that this is indeed the case.

2.2.4. Theorem. Let T be a compact operator on AX'. Then every maximal
irivariant chain of T i3 simple,

A cofﬂllary of this theorem is that every maximal chain is simple. This is so
béca.-use évery maximal chain is a maximal invariant chain for the zero operator.
Of course, for this operator oné does not have to appeal to the Aronszajn-Smith
theorem .fgor the existence of maximal chains.

Now we know that there exists a.simple chain F of closed subspaces of X such
tha.'t_. each L in F is invariant under T. If M € F then either M = M_ or M /M_
has dimehsion one. In the later ca’se,.supposc 2y € M\ M_, so that M is the linear
span of {zM}.U M_, Since M is invariant under T', the vector T'zpy € M, so that

‘there éxisﬁs.a scalar o™ and a vector yp € M_ such that

M
Ty = 2 + Yar.

The scalar aM does not depend on the choice of zpy in M\M_. Siﬁce M_ is invariant
under T ~ o™ and (T'— aM)zp € M_ it follows that
(2.25)  (T-aMMC M.

L - o
When M = M_ we define o™ = 0. In this way we associate a scalar o™ with every

- subspace M in F.

2',-2.6._' D.eﬁniﬁion. The sca_la,r--ch as déﬁncd above is called the diagonal coefficient
| .Of.-:T at M, ' |
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2.2,7. Theorem, (i) Let Fde as above. Suppose that A is a non-zero eigenvalue

of T', ¢ a non-zero eigenvector satisfying 7'z = Az and
M=n{L:LeF,z€lL)}.

Then M € F,z € M\M_ and o™ = ),

(i) If M € F and o™ # 0, then o™ is an eigenvalue of T, If
aM has index 1 relative to T' there is a vector @ € M\ M_ satislying T'z = A=,
PROOF  See [Ri3, pages 172 - 173].

Noj}v we have all the material nceded to investigale the relation between the
spcctr;l progerties and the simultancous upper-triangularizability of a commuting
comp&ict tuple. We proceed along the route sketched above for a single compact
operator, Just as the theorem of Aronszajn and Smith{AS], asserting the existence
of proper closed invariant subspaces for compact operators, is the starting point of
the whole theory in [Ri3], we have taken as our starting point the theorem, due
to Lomonosov, that a compact linear nperai;or T acting on a Banach space A" has
a proper closed hyperinvariant subspace, It follows that for a commuting n-tuple

= (A;,...,An) of compact operators there exists a proper closed simultaneously
invariant subspace. This result, alo¥g with Zorn’s lemma implies the existence df
a maximal totally ordered family JF of closed subspaces of X, each of which is
invariant under A;,...,A,. We then obtain analogues of the finite dimensional
results concerning the joint eigenvalues of A.

Tt? ensure the existence of a proper closed'subspace which is aimultaﬁeoﬁsly

invariant under a familly of commuting compact operators we need the following
theorem. The theorem is due to Lomonosov[L]. But the proof was considerably

i
-s:mphﬁed by Hilden followmg Lomonosov's orlgmal ideas. Here we reproduce this

elementary proof from (Mic).

A subspa,ce M of X is called hyperinvariant undz,r the ﬂpﬂrator T if M is left

mvar!ant by all buunded opera,tors which commute thh T,

2.2.8. Theorem (Lomonosov). Every compact operator T on X has a proper
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closed hyperinvariant subspace.

Proor (Hilden)  If T has a non-zero eigenvalue A then the space {reX: Tz =
Az} is the required space. So assume 1" does not have any non—zeroleigenva.lue 1.e.,
o(T) = {0}, , _

Without loss of generality assume [|T]] = 1. Choose zp € A" such that | Tza|| > 1.
Let D = {z € X : ||z — zo]| £ 1}. Obviously 0 ¢ D. Moreover 0 ¢ TD. Indeed
for any z € D, || Tz — T'zo]| < ||7]- |z — ﬁ:g|| < 1. So il linyeo I'zy = 0 for some
sequence {z,} from D, then ||Tzo|| = limy e [T2n — Taof| < 1. But [[Tzof| > 1.
So 0 ¢ TD. |

For any y € X, let M, = {Ay: A€ L{X) and AT = T'A}. Fory # 0, M, #
{0}. So it remains to show that for s&ne y, M, is not dense in X', Suppose the
contrary, i.e., M, is dense for all non-zero y € X'. Then for any y # 0 there exists
an A € L{X) such that lAy — zo|] < 1. Let U(A) = {y € X : ||Ay — =0]| < 1}.
Each U(A) is open, and the union of all Z{(A) such that A commutes with T' is
X\{O} Since TD C X\{0}, so U#(A)’s form an open cover of TD. But TD is
- compact becaﬁse-T is compact and D is bounded._ So there are A;,...,A, such
that TD C U(A) U+ UU(A,). So TD CU(A)U- - UU(Ay).

So, for any ¢ € D,Tz € U(A) U -+ UU(A,). So, there exists ¢, such that
Tz € L(-(lA.l). This, by definition of U(A, ), means that A, Tz € D. So, there exists
13 such that TA, Tz € U(A,;). So, A,TA,Tz € D. Conlinuing this m times,
A,mT; .. AyTz € D. Let ¢ = max{][Ay|],... ,”AHH]. Since all A,’s commute with
T, we have (c":lA,'",-‘).', (A, ) (cT)™z € D. So, I |

(™ Aum) - (& A ) ()]
™ Al e Al D)™

< ()| ||| by definition {jf ¢ |

IA

This goes to 0 by the spectral radius formula. T-_h_us 0 € D. That is a contradiction,
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erators has a common non-trivial closed invariant subspace. This implies the ex-
istence of non-trivial chains consisting of subspaces simuliancously invariant under
IA1, .+ vyAm. Let CA denote the class of all chaiag which are simultaneously invari-
ant under each A,. Using a procedure similar to the onc used for establishing the
existence of maximal invariant chains for a singie compact operator, one can show
tho oxistenco of maximal cloments of Co, which we call the marimal simullanconsly

pnvardant chaing, Our naxt lenvun shows Lhal Lhese are, in Taet, simple chalna,

2.2.9, ]:r;emma. Each maximal simultancously invariant chain is simple,

PROOF ° l . Suppose F is a ma.}umal simultaneously invariant chain. Then JF obvi-
ously contains the subspaces {0} and X. For any subfamily Fo of F,let N=n{L:
L € Fo}. Then N is a closed subspace of X. Since each L is simultaneously invari-
ant under each A,, the same is true for N. Let M € F. Since F is totally ordered,
either M C L for each L € Fy, and hence M C N, or L C M for at least one L in
Fo, and hence N C M, It follows that FU{N} is tolally ordered by inclusion and is

therefore a simultaneously invariant chain, Since F is maximal, N € F. Similarly,

we can see that the closed subspace U{L : L € F} is also a member of F.

It remains to show that M/M_ has dimension one for each M € F. S.uppose'
dlmM/M > 1 for some M € F. Consider the Banach space M/M_ and the n-tuple
Ao € L(M/M_) defined by (A¢),(x + M_) = Az + M_. Then Ay is an n- tuple

of cammutlng compact operators. So there is a closed subspace Ny of M /M_. such
that {0} # Ny £ M/M_ and (Ao),(Ny) € Np for all 3 = 1,...,n. It follows that
A N = im eM:z+ M. € Ny} then N is a closed subspace of X, simultaneously
mva.rla,ni; under each A, and M_ g g M. Gwen any subspace L € F, either

.MCLandsoNgL orLgMa,ndsoLCM gN HﬂnceN¢}'and
FU{NY} is a chain. This violates the maximality of F as a simultaneously invariant
chain. So for each M € F, diimM/M_ is at most one.. | o . |

We can now define a joint diagdnal coeflicient. The above lemma implies the

‘existence of a simple simultaneously invariant chain for the commuting compact
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tuple A, Let F be such a chain.

2,.2.10. Deﬂmtwn The scalar n-tuple a™ = (eM,...,a) will be called a joint

d:agonal coeﬁiment of A at M € F if a is the diagonal coefficient of A, at M.

2.9,11. Lemma. If A is a joint eigenvalue then it is a joint diagonal coefficient.

PROOF There exists a non-zero vector & such that Ay =Mz forall y=1,...,n.

We define M = N{L € F : z € L}. Then by part (i) of Theorem 2.2.7, A, is the

diagonal coefficient of A, at M. So A is a joint diagonal coeflicient. n

2.2.12, Lemma. If a™ # 0 is a joint diagonal coefficient of A at M then oM is
a joint eigenvalue of A. | |

PROOF  Let Apr be the restriction of the tuple A to the invariant subspace M,
Then A is an ﬁ-tlipl'e of commuting compact Opef.a.tors on the Banach space M.
We"cl?,irri that 'a_:M -is a joint eigenvalue of AM; If not then by Theorem 2.1.1
aM ¢ o1(Ans). This means that the Koszl complex K(Ay — oM, M) as defined
in'(1*2ﬁ.27) is exact. We recall that the exactuess of the complex in pa,rticﬁla,r means
that R(AM—-aM) = M (see (1.2*31)).. But on the other hand, since a™ 3 0 we have
M- #TM and R(A, — a MyCM_foralty=1,...,n llence R(Apy —aM) C M...

M

Th&t is a contradlctmn So a™ is a joint mgenvalue of AM and hence of A, m

2.2, 13’ Definition, Let A be a 10111t diagonal coe[ﬁcmnt of A. Consider the set _
{M € .7" A 18 the Jomt dla,gonal coe[ﬁment of A at M }. The diagonal mult:plmty o
of A is the ca.rdlna.llty of this set.

The next lemma rela.tes the diagonal multiplici Ly of a dlagona,l coefﬁment to its

N 'algebram multiplicity as a joint eigenvalue. This generallzes Lemma 4.3 & of [Rl3]

| __"iThe proof there ca,n be a.da,ptecl to the present situation.

2.2, 14 Lemma If aM = (oM, ,a”) s & non-zero joint dlagonal coefﬁcwnt of

A theu its dlagnna,l multlphclty I8 ﬁnlte and i is equal to its algebra,lc mull;lplmty as
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a joint eigenvalue of A.
PROOF Let d denote the diagonal meitiplicity, m the algebraic multiplicity and

v the index of o™ relative to A. Then N(A — &™) is m dimensional and
{0} = Mo(A-a™) ¢ M(A-a) ¢ - "G M(A~aM) = Ns(A—a) = ...

We first reduce the probiem to the case v = 1. For this, define the operator n*-tuple

B and the scalar n¥-tuple p by

:
| B~pup=(A—-aM)y,

! .

Then p = {a™)” and B, being a polynomial in the A,’s, is a tuple of commuting
compact operatora. For the same reason the invariant subspaces of & in F are also
invariant under the tuple B, Since B — g aud (B — p)? have the same null ﬁpace
N, (A = aM) = Ny, (A — aM) of dimension m, it follows Lthat u is a joint eigenvalue
of B with index one and multiplicity m. So without loss ol generality we can assume
v to be 1. . |

Suppose d > m. Then there exist subspaces M(0), M(1),..., M{m) in F sat-
isfying M(O) G M (1)& G M(m) and o is the joint diagonal-coefﬁtient

of A ab M(K) for all k = 1,...,m. Since M(k~1) ¢ M(k), it follows that
M(k—1) C M(k)- for all &k = 1,...,m. There exist vectors g, %1,..., % such that .
Azy = oMz and zx € M(k)\ M(k)- ; k = 1,...,m. The vectors zq,21,... Tm
lie in the m dimensional null space of A — o™ and are, tllerefﬂfe, linearly depen-
dent. Hence some 2, 1s a linéar combination of zg, 1,.. . Tp-1. But g, z1,... 21 € '
M(k =1) C M(k)-. So 25 € M(k)-. That is a contradiction. So d < m.

Suppose m > d. There are exaclly d distinct subspaces M(1),.. .,M(d), say,
such that o™ is the joint diagonal coellicient of A al M(k),k = 1,...,d, Each
M(k)/M (k)__ has dimension 1 and therefore there is a continuous linear functional
i on M(k) with kernel 1,(),:'1(0) équal L‘n M (k). Ixtend iy to 'Lhé whole of X. Calf
the extension k. Then M(k). = {z € M(k) : () = 0}. If m ;‘> d there is a

non-zero vector xp in the m dimensional space V(A — aM) satis_fying the d linear
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conditions
we(z) =0, k=1,...,d.

UM=n{L&F:iao€ L} then M € F,xzo € M\ M. and the diagonal coeflicient
of A at M is oM, So M = M(k) for some k and hence zo € M (k) \ M(k). with

or(x) = 0. That is a contradiction. So m < d. Hence m = d. »

The results obtained in this section are summarised in the following theorem.

|

2.215. ‘Theorem. Suppose A = (A;,..., A, ) 1s an n-tuple of commuting compact

linear operators on a complex Banach space X, and F is a sitnple chain of closed

subspaces of X, gach of which is invariant under cach A,,7 = 1,...,n. Then,

(i) a non-zero scalar n-tuple A is a joint eigenvalue of A if and only if there exists
a subspa.te M € F such that A is the joint diagonal coeflicient of A at M,

(ii} the dia;gonal-multiplicity of A is equal lo ils algebraic multiplicity as a joint

eigenvalue of A,

Notes and References.  The results of this chapter are motivated by Ringrose’s
pa,p_ersl [Rll] and [Ri2] where he obtained these results in the case of a single compact
operator. His book [Ri3] gives a complete description of the whole theory. In this
'Cdﬁneqtion, see also the works of Brodskil [Br1}, [Br2] and [Br3). Lomonosov’s
theorem is the culmination of ma,ﬁy attempls to generalise the invariant subspace
theorem of Aronszajn and Smith, see [ArvF), [Ber), [BerR], [DDP] and [Do]. For
| ?ariﬁug feéults on invariant subspaces and Lriangul_a,riz&tiﬁil see the book [RaRo] by

a Radjavi and Rosenthal,



Chapter 3

A Spectral Radius Formula

t
5

In this chapter we define a new joind spectral radius for an n-taple of commuting
matrices and prove a correspondiug spectral radius formula, Our motivation is

drawn from Cho and Huruya who proved the following result in [CHJ:

Let A = (Ay,...,A,) be an n-tuple of commuting matrices, Lel »(A) =
max{{|A]] : A € o (A)}. Let 2 Do the sel of all multiindices & = (o, ..., ay),
a, 2 0 (7

L

Also lel A¥ = AT, ., A% and A*

Ly...,n). For such a multiindex, It Jaf = 370 ay, af = aql. . al,

(A7, ., A3 ). Then

i

|

| 1 /{2m)
rA)=inf]l S0 oA

th )
aceny |Cef=m .

We generalize the abwve resull lo the sebbing of a finite-dimensional Banach
sp_a.ge. The main result of this cl-la;p.tm' is stated and j)l‘ﬁved in Section 3.1. The
reSuf:ll; of Cho and Huruya was extended to infinite dimensional Hilbert spaces by
- Miiller and Soltysiak in [MiS]. Subsequelltl}r,.mu' result has been generalized to

| arbltrary Ba,na,ch spaces by Miider. See [Mii]. .

| Ene{:tlon 3. 2 18 devohed to infinite dimensional Hilbert spaces. | Here we obtain a

mmpler arratlgemenb of the proof in [MuS] We also derive an analogue of a theorem

of Rota

3
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3.1 The p-spectral Radius

Let V,, 1 £ p < o be the d-dimensional complex veclor space C¢ equipped with

the p-norm :

)
”m“P = (Z |1'":|;”)I‘{F 2 E G'{,

1=

Let A = (Ay,...,A,) be a commuting n-tuple of d x d matrices. So there exists a

unitary matrix U such that U*A;U is upper-triangular for all 1 < 3 S », l.e.,

( AEJ) *

Agj)
U*AjU — i

\ 0 A)

The joint point spéctrum of A is then given by
(3.1.1) Cow(A) = {(A, A =1L d),

Note that by Theorem 1.3.7, the.'l‘aylurjuiut spectrum and the Harte joint spectrum
as 1.»*..r».;all as the léft spectrum and the right spectrum of A are the same as o (A J.
Let |Al, denote the p-norm of a veclor X in €. We define the geometiic speciral
radius of A as

(3.1.2) rp(A) = nmg[!)tl,, : A€ op(A)}.

The n-tuple A can be identified with an operator from ¥, to the space V', the
~direct sum of n copies of %'equip_pecl with the natural p-nt)rm."Tlhe norm of this
operator is given by

(3.1.3): 1AL, = sup ZHA el|2)'.

(I p—' =1

Fﬂl‘ m 2 2 we defined the tuple A™ in Section 9.1, We recall that A™ is an ﬁ.’“-tuple

ﬁf matrmes conslsl;ulg of the plucluchs Ay » .. Ay, where the indices are chosen from

{l ,n} w1Lh lepemtmns allowed, and are i.lwu mmngml vawogmplumlly The

algebmzc spcc ;a.’ radius of the n- Luplc A is defined as
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(3.1.4) pp(A) = inf ”Am“:f"" ; 1 £p < o,

m

One of the basic theorems in matrix theory is the spectral radius formula which

asserts that for a (single) mataix 1" 1he infimum above is actually a limit, is inde-

pendent of the norm || ||, and is equal to the geometric spectral radius r(T'). See,

e.g., [HorJ, page 299]. The result of this section is an analogue for the joint spectral

radius : ,

3.1.5. Theorem. Let A = (A,...,A,) be an n-tuple of commuting d x d

madtrices. Then

3.1.6. Remark., Chd and IHuruya’s theorem is a special case of Theorem 3.1.5
for p = 2. This is so because the components of A™ arc A% where o varies over

21 with |o| = m. Thus the expression on the right hand side of Ché and Huruya’s

result 1s

i.ﬂf ”Am#AmHI/(Em) — nf ”Am”%/?” — PZ(A)

Hy

And the left hand side is by definition ro(A).

The pmqf of the theorem is given helow. One of the basic ideas of our proof lies
in the introduction of a new operalor A r.m*.ruﬁpmuling lo any n-tuple A, This is
an operator on V. ?, the Banach space ol all sequences ¢ = (aﬁl-, g, ... ) With :ﬁ, eV,
Cand 3552, |{x,||7 < 00, equipped with its nalural norm el = (292, ||:t:3||;j)"./?‘i The

operator A is defined as
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34
Ay 0
Aq ()
A, 0
0 As l
| .
o 4,

i.e., A is an infinite matrix each of whose columns contains one copy of A according

to the rule

| EJk= 3 (mod n) (k-——l)ﬂ»*i‘l 'ﬂjﬂ.k?ls- k:]'iz:"'

4.1.8. Lemma. Let A be an n-buple of commubing matrices and led A be the

operator defined in ( 3.1.7). Then
@) Al =AY
(i) A% = (&)
(z2i) [|A™], < ALY _
(2v) py(A) is the (ordina,ry.) slﬁectra,_l radius of A.
ProoF Let z = (z1,z3,. . .)'be an element of V., Then

s A{B — (AIJI:],. ') n,An:BIJ:AIij " or s 11‘1.11;.1:2,!41:[:311 . -) — (A:U1’A$2, - t),

s0 thal |JAz|p = 2, |[Az|p < ||A|| 21 el = ARl Hence [|All, <
[|Allp-'On the other hand for z € V 2 NAz| b =370 Az = |A(z,0,0,.. JIE <

",

1A [fxlls. So ([Afl, < IIAHp

This proves (2).
The statement (i¢) is an obvious consequence of the deﬁmtlon of A", "The °

statement (m) follows from (1), (#1) and the fact that any t:-pemtor norm is submul-
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tiplicative. To prove (tv) note thd¥

pp(A) = inf ||A™(]}/™
= il [[A»{}™  by(d)

I

= inl [[(A)™[}™ by(i),

and this is the (ordinary) spectral radius of A. |

Let S be an invertible matrix. The tuple SAS™! is defined as

(3.1.9) SAS™ = (SA; 87 ., SALST).

3.1.10.. Lemma. We have

o A 1157 e

ISASTH|, < 1S

Proor Let R = SAS~, Let diag(.5,.5,...) be the infinite block-diagonal matrix
with the diagonal blocks all equal to S. T'he operator R on Ve is then the same

as the operator diag(s,S,.. .)Ztliag(ﬁ'“', S0 So o

HRHP S. (liag(;ﬁ', ‘5'1 ' )Hill ‘AHI'H(““@(H“I: SH]! LY *)”rr
= (IS AT IS I

Now use Part (i) of Lemma 1. | y o L

For A in €" define A™ in the same way as A™,

3.1.11. Lemma. We have
oo (A™) = {A™ : X € 0 (A)}.

PROOF If A is a joint eigenvalue of A with a joint cigenvector z then any product

of the form A, ... ), is an eigenvalue of A,, ... A, with the same eigenvector z.

. tm
So A" is a joint eigenvalue of A™, | | B
3.1.12.  Lemma, For any commuting n-tuple Aol malrices, -

7';1(A) S.. ”A”h- |
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PROOF Let A € api(A), and let & € V}, be such that Aye = A forally =1,...,n

Then
M0 [zl = [ Aellp for all p=1,...,7
Hence
ZI)‘JIP D Z”A Ll HA”;S'
=1 ” “JJ J=1
This shows r,(A) < ||All,. "
3.1.13. Lemma. Let A be a commmuting n-tuple of matrices. Then
rp(A) < pp(A).
PROOF Applying Lemma 3.1.12. o the tuple A™ we get
?,F(Am) __,\.;- ”Am”” ‘
But r,(A™) = (r(A))” by Lemma 3.1.11. . Hence
7p(4) < HA™IM™  for all m = 1,2, ...
50 1p(A) < pp(A). . .

We have noted belore that for a commuting n-tuple A there exists a unitary
matrix U/ such that U*A,U is upper-triangular for all y = 1,...,n. We denote the
diagﬂnal part of U*AU by D, and the striclly upper-triangular part by N,. Then
D, = dmg(w A, Let D= (Dy,..., D) and N = (Ny,..., Ny).

| 3.1.14. Lemma'. For the n-tuple D the geotnetric and algebraic spectral radii are
| e'qu_a] i€,
| | | "?’”(D) = 1p(D) = 1r,(A).

- Proor Let @ = (z1,...,24) € V. Then D,z = («\E'ﬂ! (. A(J)md) The norm of

D_a.s. an operator from ¥, to V* is given by

_'”D”p_ = "“111 ZHU ({7 e

z]]p=1 =1
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n o

ap ()0 TjAR

H-'L"p-' 1==1 k=1

d n

sup ( ZZM(JJIPII [y 17>

{zllp=1 =1 =1

< SU Z|L,|‘” e

H:L‘lhn—l 12:)

(3.1.15)E = (D).

|

So p,(D) = inf HD’"”;/T” < |ID]ly £ (D). By Lemma 3.1.13, pp(D) = r,(D). m

For any real ¢, let Cy be the d x d diagonal matrix with entries ¢,¢%,...,t%

3.1,16. Lernma. For any € > 0, there exists ¢ such that
|CUAUCT, < rp(A) + ¢

PROOF Let A be any d x d matrix. Then

11 1—1(512 i“‘f+lﬂ1¢g
laqy (Lo t'_d'waﬂd
(3;1-17) GtAGt“] e
f"" aay 1wy e (i

If A is strictly upper-triangular then for large { we can make the p-norm of C,AC;?
as small as we want. We apply this fact to N, (the strictly upper-triangular part of
U*A,U) for all 3 = 1,.,.,n. We choose ¢ large enough so that IIGtNJGrlll;, < ¢/n
for all y=1,...,n. Then

3 X - v Y .
ICU*AUCT |, = |ICUD + N)CHl,
i ' |
S | g DC?1|I;L+ “ctNGt_IHP
| - ”DHF + “Ct_NCt“l ”P
< ry(A) +e - ' =

The next lemma ig the final step in the prool of Wie theorem,

-3.1.18.  Lemma. For a commuting n-tuple A, il 7,(A) < [ then {JA™]], — 0 as

N — 0Q,
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Proor If r,(A) < I then by Lemma 3.1.17, there exists ¢ such that

HG;U"‘AUC'{JH,, < 1. We have

JAM[, - st A ey Ty Dl

— s o A e Yy i,
w(':'r‘|\,,n((.:',_u*z\m',-')"'u,,u(ur;'*) ], by Lemma 3.0.10
< e lewAu eI 7Y by Lenuna 3.1.8(k).

A\

CUAUCT |, < 1. m

Now as m — oo the middle Lel m tends Lo zero hecause |

ProorF OF THEOREM 3.1.5 To complete the prool of the theorem deline for

any € > 0 a new n-tuple S = rp(_.'i.]-l-f A Then ||S™], = (r,,(A =) ATl Sincg
ro(S) < 1 Lemma 3.1,18 says that ||S™]|, — 0. So for sufliciently large m, |JA™ ||, <

(rp(A )+ ¢)™. Hence

2o(A) < 1o(A).

In view of Lemma 3.1.13, this proves the theorem. _

3.1.19. _Remark; Let & be any hounded sob of matrices and let Z™ be the set
consisting of products of matrices from & of length m. Let ||-|| be any opetator norm
“on the space €%, The Rota-Strang joint spectral radivs (see [RoS]) ol X is defined as
(3 = limsup,, vm(Z) where v, (2) =sup {||Al|: A € L}, In two recent papers,
[BéW]-.afnd [E4), it has been shown that u(E) is equal fo the qmwmh zed spectral
 radius T(X) (mtrc}duced in [DL]) defined by T(E) = limsup,, T,,,,(E) where Tm(E) =
sup {1‘( )i A€ B, ) I L is taken to be the set {4,.. A,,,} El.lld 1f the co - norm
is used then it is easy to see that 7,,(5) = (10 (A))™ and 1, (B) = HA’"‘HM. Since
| f”(E) and'fr(fi)' are equa,l,_ one gets ?‘g.:_,_(A') = p.x_.(A). Hence this gives another proof

of Theorem 3.1.5 fdr_tlle special case p = oo,
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3.2 The Formula in klilbert Spaces

Let ‘H be a separable Hilbert space and let L(H) be the space of all bounded
operators on M, Let A = (A},...,An) be an w-taple of commuting elements of
L), AH helore, wo conslder A Lo beoo bomded opesttor oo 76 4o 20", Che direet

Hune oF e coples of 16T e geometrie apeetral vadiecin Chen delined o be
(L) P(A) sap My N e o A ]

Recall that the joinl approzimale point spectrum ol A denoled by a,,,(A) 18 delined

to be the set

Gapp(A) € {A € €" : A — X is not bounded below}

It is easy to see that

Tapp(A) = {A € C" : There exists a sequence of unit vectors

xm satisfying (A, —A)a, —» O0asm — oo forall y=1,...,n}.

In [CZ], Cho and Zelazko have shown, in the more gencral context of a Banach
space, that r(A) does not change if in ( 3.2.1) o is replaced by any other joint

spectrum having the polynomial spectral mapping property. In particular,

(3.2.2) 1 r(A) = sup{[Alz : A € gap(A)}.

1 , ' X 1 t
The algebraic speciral radius is delined as

(3.2.3) o(A) = inl [[A™|™,

where t_he norm on the right hand side is the operator norm of the tuple considered

as an ﬂfmrator from H to H" equipped wilh the lml,i:ml' HOT:
' Tl
H(mli vy mﬂ)” = (Z ”;L_I”E)I/E y L1y Ty € H.
- | 1=1 -

The opemtnr A defined as in (3.1.7) is now Al -:qurm;uf on H*, equippedﬁith the

norm

(e

(yyma, . )| = (2“3.1“2)1/2 . €M

1= |
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for which all the facts proved in Lemma 3.1.8 remain trae. So the infimmm in (3,2

) s ackaally & lhnil.,

[ VA L) = LOH) Des Ui opecabon tledipes]

|

(191 Mat/tr D Ny,

i

We then have

3.2.5. Theorem (Miiller and Soltysiak). Let A be a conunuting n-tuple of

Hilbert space operators, Then

(3.2.6) r(A) = r(Ma)'* = p(A) = lim [[A™[]™.

173 OO

Our next two remarks are directed towards a simplification of the proof in [M{S]

even while following their essential ideas.

By a theorem of Curto [Cul], the (ordinary) spectrum of My and the joint

spetrum of A are related by

(3.2.7) C oMa)={ A, Ap € onh

3=1

Using this and the Cauchy-Schwarz inequality one sces that

(3.2.8) | 0 r(My) < r(A)

[From the definition of »(A) it is also clear thal »{A)? is a point in oc(Mp ). Hence
(3.2.9) . r(A)? < r(My).

T'his proves the first equality in ( 3.2.6). Next note thal the operator My 1s a
complelely positive mayp on L(H) (sce [P]). Such maps altain their norm at the
identity operator 7. Applying this Lo all powers of M wao see Lhat,

32100 M| = |IMA™ ()] = A"

__E,;: Lhe urclu-lla.ry spectral radius formula for My gives Lhe second equality in (3.2

ORI . _ _



39 THE FORMULA IN HILBERT SPACES 41

It 15 clear {rom 3.2.2 thal
(3.2.11) r(A) < [|A]]

Let Lpno(H) and L£L,.(H) denote, respectively, the sel of all invertible opera-
Lors and the set of all positive definite operalors, For any S € Lyw(H) we have

o(SAS7!) = o(A) where SAS? is the tuple defined in ( 3.1.9). So it follows from
(3.2.11) that
(3.2.12) r(A) < inf{|SAS™|: 5 € Lin(H)),

We can prove more ; there i3 equality*here; for a single operator this was proved by

Rota [Ro].

3.2.13. Theorem. Let A be a commuting n-tuple of Hilbert space operators.

Then

_ _ r(A) = inf{]|SAS™Y|:8 e Lin(H)}
(3.2.14) = l{|[YAST']: 5 € Li(H)}.

Proor The proof for the case of a single operator 7" in [IFN] can be modified for

-I 1 ] . '
the pregent giknation, 'To prove Lhe Lieorem, we need Lo produee Tor ench > r(A)

an S E L (M) wieehy that JSASTH] - o0 By Theorenc 205, given sueh v g we ean

lind a positive integer m such that |JA™ || < ™. T'his means that the operator

R — Z ?]“QTII(A#)HLAHI
me=0
] |
- J LW -

is well-defined. (Here in all summations all subscript indices vary over 1,2,...,n.)

Note that It > [, Further

Y AIRA, = EA;AJ+5;EA:‘A:AJ/\1+~-_
R —1) < A

I
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Put § = Y2, Then

IsAsTIE = s~ ATS)(SAS I
|30571455% 4,57
11 ( A3 AN S
| < pH|STTRSTY| = 7%, _

1

I}

3.2.15. Remark, We note that in the Gnite-dimensional case we have, {from the

discussion in Section 3.1, a version of Theorem 3.2.13 for all p-norms, 1 < p < oo,

More precisely, we have for any commuting tuple A = (Ay, ..., Ay) of matrices
(3.2.16) | | ry(A) = inl |[SAS™'],
where the infimum is taken over all invertible malrices S,

Notes and References. Let I7(k,n) h.u Lhe seb of all Tunclions from the seb
{1,...,k) to the set {{,...,n}. For [ € ['(k,n) deline Ay = Ayqy... Agry. Then
Bunce c%mjectured that the ‘rad_ius of the joint approximate point spectrum should
be equalJ to inf{[f Crerqm) A}A;H‘/Qk} (See [Bu2].) Nole that this expression is
Ecx:ez" o E!! AR A O ”U (2m) |

apprommate pﬂlnt spectrum, joint pﬂiut spectruny and Taylor joillt spectrum all are

the same as 111[,,,, . In finite dimension, where joint

sanie, the conjecture was proved by Chd and Huruya in [(JII] Chd and Zelazko in

[(.;7] showed thal ¢,,,(A) and o have the same spectral radius so that Bunw s con-

1/(2m)
jecture IJOQ]( the form sup{”)u” V= or(A)} = inf,, Dares: jor=m g’,A*aAa“ / m).

Miller and Boltyﬂmli proved Lhe conjectire in [MGS]. 'Phe operator Ma used in the
| prool is also used for obataining Sz.-Nagy-loias lype dilation theory for several

commuting Hilbert s.pace 6pemtors. (See [MiiV].)



Chapter 4
Perturbation Inequalities

Perturbation bounds for eigenvalues of matrices have a long history and several

significant results concerning them are known [B].

FFor corﬁmuting tuples of operators, Lhough the concept of joinl spectrum has
been developed over the last quarter of a century, not many perturbation inequalities
scem to be known in this case. Davis {Da] drew specinl atlention to this problem
and its importance. After that McIntosh and Pryde [McP) introduced a novel idea,
the use of Clifford algebras, to develop a functional calculus for commuting tuples
of operators and used this to extend earlier perturbation results from [BDaM]. This
approach was developed further by them and Ricker [McPR].

In two recent papers [P1, P2] Pryde has initiated an interesting program: using
the ideas of Clifford analysis to generalise some classical perturbation inequalities for

1

single matrices to the case of joint spectra of commuting tuples of matrices. In [P1]
he genéra.lizes the classical Bauer-Fike Theorem for single matrices to commuting
tuples. In the first section 6[ this clmptér, we obtain a similar extension of a well-
known theorem of Henrici [Hen]. We follow the ideas of Pryde [P1]. We must
emphasize that atte.mpts to oblain similar gencralizations of other inequalities [P2]
run into difficulties and stringent conditimis need to be imposed. Thus it would:be of

interest to find out which of the classical ‘one variable’ theorems can be generalized

to the ‘several variable' case, which fail to have generalizations and which are true

43
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s modified forms. The present chapter is of interest in this context.

Other authors, with different motivation, have also obtained extensions of some

classical spectral inequalities from the case of one operator to that of commuting

tuples (see, e.g., [Min]).

4.1 The Classical Henrici Theorem

To state the classical Henrici Theorem we need to define a measure of non-normality
of a d X d complex matrix. Any such matrix A can be reduced to an upper triangular
form T by a unitary conjugation i.e., there exists a unitary matrix U and an upper
Lriangular .nerix I guch that U AU =T, fether, writing 7' = A - N, where A

is a diagonal matrix and NN a strictly upper triangular matrix we have
(1)  UAU=T=A+N

Of course, neither U nor T are uniquely determined. The matrix A has as its
dmgonal entries the elgenvalues of A. The mairix A is normal ifl the part N in any
decomposition ( 4.1. l) of A is zero. Given a norm v on matrices the v measure of

'_non-normahty can be defined as
(41.2) S - AA) = inf_u(N)

~ where the infimum is taken over all N occuring in decumpositioﬁ (4.11)of A. A

is norma.l iff A,(A) =

Iclentlfy:ng A as usua.l with an operator on the ]"uclldea,n ‘space Cd with the

3 Euchdean vector norm || ||, we define the opemfm norim ol A as
@ A= s el

This norm will be of special inlerest 1o us.

~ We can now stata_the Henrici theorem [Hen]. -
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41.4. Theorem (Henrici). Let A be a non-normal matrix and let B be any

other matrix, B # A. Let v be any norm majorizing the operator norm. Let

. A(A)

and let g4(y) be the unique positive solution of
(4.1.6) - g+ + - +g =y

Then for each eigenvalue 8 of B there exists an eigenvalue o of A such that

' y
(4.1.7) o — Bl < VB = A

This theorem can be stated equivalently in the following way. For a fixed eigen-

value A'of B let
(4.1.8) § = min|a — S|

where o varies over all eigenvalues of A. ["hen

|
5
(4.1.9) - — < u(B - A).
' 14 Ay g AT

Sce {StSu, p.172] for this formulation and ils prool.

We will restrict ourselves to the operator norm and prove a version of the above
inequality for Lhe joint spectra of commuling n-tuples of matrices, ‘The formulation

of our result requires some facts from Clifford algebras which were explained in

Section 1.5,

4.2 Perturbation of Real Spectra

In this section we consider n-tuples of matrices A = (A,,..., A,) with real eigen-
values only. Our first result in this section concerns the Bauer-Fike theorem|BaF].
Recéll that for single matrices this says that if A is similar to a diagonal ma,tri:{,.
i.e., if there exists an invertible matrix 7 such that TAF-1 = A = diag(ay,. .., o)

and B is any arbitrary matrix ther a(1?) is contained in the union of the balls
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T-1||. Sce [B, p.114]. This was generalized to

B(a;,€) where ¢ = ||A = BJ}||T

the case of n-tuples of commuting matrices by Pryde in [P1]. However as Stewart

and Sun have pointed out in their recent hook [S5L3u, p.177] Bauer and Fike proved

a stronger result:

42,1, Theorem (Bauer-Fike). Lot A, 13 € My and T' € GL(d). Then for any
g € o(B) \ o{4),

(4.2.2) T} A-pB)~'T

I .
A generalization of this to the case ol n-tuples of commuting matrices with real

I < |7 (A - B)T

spectra is the following theorem.

- 4,2.3. Theorem, Let A = (4;,...,A,) and B = (Bl', ..., By) be two n-tuples of
commuting matrices with real spectra. Let 8 € o,,(B) \ op(A). Let T' € GL(d).

Then o |
(4.2.4) |1 T-H(CHff (A~ 8)~'T)|I"! < ||T" Chiff(A — B)T’

ProoF Since 3 & opi(A) and all A, have real spectra, 35(A, — £,)? is invertible.
So by part (ii) of Lemma 1.5.9, CIiff(A — ) is invertible.
On the other hand, since 3 € o, (B), there exists @ € C" such that B,z =

O,z for all 3 = 1.,. ,n Hénce,

. CH(A-B)z®h) = (A, ~B) (=@ hg)
. ' = (A = B)(z @ hyy)
. o = Clll(A - B)(¢® hg)
~ Soz®@hs = (Cl(A~ )" (CIfi(A - B))(x ® hy)

TT~(Clif(A - 8))™'TT~"(Clifl(A — B))TT"*(:Q,®'h¢)._ .

Hence )

Tz @hy) = (THCHA - ) T)(T (CHI(A ~ B)T)T™ (2 @ hy))
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Afte;‘ taking norms and cancelling [TV (2 ® lig)|| from both sides we have
H(T-H(CHE(A — @) T)|I~! < (T~ H(CHT(A —~ B)T) .

Now we will define the measure of non-normalily ol an n-tuple A = (Ay,...,
A,,) of commuting matrices. In this case thare exists a unitary matrix U such that
U*AU =T, for all  where the T, are upper-triangular. See [HorJ, p.81]. Write
T, = A, + N, where the A, are diagonal and the N, are strictly upper-triangular,
Let N = (Ny,...,N,). We can define the measure of non-normality of A as

(4.2.5) A(A) = inf [{CHT(N){|

L

where the infimum is taken over all choices of unitary U for which each U*A,U is

upper-triangular, We obtain below a Ilenrici theorem in the case of n-tuples:

4.2.06. _Theurem. Let A = (Ay,...,Ay) and B = (13,..,,8,) be two commuting
n-tuples of matrices with real spectra . Let 8 € o (B) \ op(A). Let § = min

{ll = Bl|: @ € op(A)}. Then

o 8

(4.2.7) , -
) 1444, .y i)
PROOF  Let U be a unitary such that the infimnm in the definition (4.2.5) of A(A)

< llCifA - B)|

is attained. Then U*A,U = A, + N, where Lhe A, are diagonal and the N, strictly
upper-triangular, Let A = (Ay,...,A;) and N=(Ny,...,Nn) . Then

U*Clifl(A - B)U = WU (D (A= B) @ b )U
. | _='3Z(AJ+NJ"ﬁJ)®h{:}
(4.2.8) | = Clff(A 4+ N - )
But A+ N — §) = Clill(A—g)+ChI(N)
(4.2.9) = Clifi(d - B)(1+ (Clfi(A — 8))"'CLfi(N))

Let, 1_\;—_'-;3; =_DJ' and let D = (DI',_. *.'.:L}n)' Note Lluit 3 E,-HPL(A_) since 3 & a'pt(A).
So {) g op(D). Moreover note that oy, (D) C IR, Hence by Proposition 1.4.2,

op(D)={A el 00 (Y (D,~))")}
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So T D} is invertible. Since CIEHff(D)? = 3(D,)?, hence CHff(D) is invertible and

(CLff(D))™ = Tp Tk @ hypy where T = (5,
So

D:)~' Dy. The T} are all diagonal.

(G4 - A)CHIN) = (DT® )N, @ bey)

(4.2.10)

ETkN; ) h{k] hiyy =5, say.

Now T, /N, being the product of a diagonal and a strictly upper-triangular matrix,

is again strictly upper-triangular, In different powers of S various products of T} N,

appear, But any product of d strictly upper-

zero, Therefore

riangular matrices is zero, So S7 is

(4.2.12) (Cfi(A+ N = B))7" = (L= § + -+ + (=1)*"5-)(Clifl(4 ~ B))~"

II(Cliff(A+N-—ﬂ))"1II < ICHA(A = 8)) 7" II. (1 + 1I(CHim(A = 8))~"|| . || CHm(N))|

oo 4 [J(CUI(A — B)) 7! . JICHE(N)||1*)

Let 7 = |[{CHff(A = B))~1[|1. "Then

(4.2.12)

I(CHE(A + N = 8)) ]l < 47'(1 +

Taking T° = U in Theorem 4,2.3 we have

{l

A+ N - )

LA

(4213)

VAN

By (4.2.12) and (4.2.13)

A(A)
)

A% A
et Udu—(l ))

U*(SIN(A — 8)) V]|
|lU*Clifi(A — BYY|
|Ciif(a - B)|

i

d214)  (CHEA - B >

(] +—L—Mf ‘I“."T. -@d#i[ﬁ“))

.SO the proof will be complete if we show that = & Recall th.é,{:' the D, are

di_agnna] .mat'_rices with real _e'nl;r_fies. Lot ald) be the (2, 2)th,

entry of D, ie.
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D, = disg(e{,...,a{). Then ou(D) = {(@,..., ) 2 & = 1,...,d}. Put
(ﬂ:u):' ., ,a‘(“)) = a, . Then

|(CHift{A ~ 8))~"]™

1 DA TClirD)|| !
jeha(y - b;%) =D

| I max{ﬁli-‘i-i—!z—,z=l,...,d}"l
max {||la,{| ,2 =1,...,d}

ma}t{ |2}] , 2 € ope{A — B)}
max{|[a — B|| : a € op{A)}

=3
I!

H

i

Il

II

§, by definilion,

That completes the proof, | N

The results of this section have been generalized later to simultaneously upper-

trianglarizable matrices (see [P3]).

4.3 Perturbation of Complex Spectra

In this section we consider n-tuples A = (Ay, ..., A,) of commuting matrices with
no restriction on the spectrum of A, . We recall that an n-tuple A of elements from
L{X) is said to be strongly commuting if for cach 1 < 3 < n there exist operators
Ay, and A, each with real spectrum, such that A, = Ay, + 14y, and II(A) =
(Atrys ey Ay Agey s . y Agy) LI rtmnrnul.iilg 2n-inple. HA) is ealled & partition of
AL 1L i well-known that a cotttmnubing biople ol minbyieen s Hi,mnp,‘lyt‘unllllilhirlg [Ht*t‘!
IMcPRIY., Sines Lliﬁ Agy commube for all ¢ - 12 and for all p = 1,..,,n, thers
exists a unitary U such that U"'A.,,_.,.U = A, + N, where A,, is diagonal and Nq,.

upper-triangular. Let

(43'1) | : .N.= (Nlll'"tNlﬂ‘iNﬁli*-‘.;iNZTl)



50 CHAPTER 4. PERTURBATION INEQUALITIES

and in this case define the measure of non-normality of A by
(4.3.2) A(A) = A(r(A)) = inf [|CHE(N)|]

where as before the infimum is taken over all N associated with A in the above
construction, For o = (ay,...,0,) € C" let a;, = Re(q,), g, =/ Im(e,). Now A
15 a strongly commuting n-tuple in the sense of Definition 1.4.5. Thus by applying
Proposition 1.4.6, we get e € o, (A) if and only if (a”,...,&ln,an,.._., Qo) €
opt(m(A.}}. Now let A and B be any two n-tuples of commuting matrices. Let
8 € crp},(B). Then (Ba1y... ) finy o1, o, O2n) € op{w(B)). By Theorem 4.2.6, there

exists {11, ..., 01n 21y .00 02 ) € o {7 (A)) such that if
‘5= Ii(ﬁlli"'iﬂlmﬁilj 1ﬁ2n) (0"111 &1111-&211"'1&211)“

then

433) 2 gy € JIQJIIF(F(A) - x(B)))

1+M&‘él+'+ §d=1

Note that § is also equal to ||@ ~ «|, the dlsi.a,n(:u botween B and a in €*, So we

~ have proved:

4.34. . Theurem Let A = (Al, Az) and B = (B,,..., B,) be two n-tuples of
commuting dXd matrices. Let # ¢ apt(B) . Define 6 = min {[la~B||: & € o (A)].

Then
— < lIChft(r(A) - x(B))]
= 7 l T-I."
]_|_E%&l+.+ﬁ‘;d'_(m ( )

”-4 4 A Spectral Varlatlon Bound

-'Conmder two d X d matnces Aand B. Let Ay,..., ) be the eigenvalues of A and

iy, vy pia the e:genvalues of B, Let Ss(B) = ma,xJ mm,lf\ — ity| . In [BFr] Bhatia
and Fned]a.nd proved that | '

G SA(B) < d'QMY A — e
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where M = max( ||Al],[|BI} ).
The approach in [BFr] was through characteristic polynomials, In [E1] Elsner

obtained the same result from Henrici’s theorem. Using Elsner’s approach we can

~ obtain an analogue of ( 4.4.1) for commuting n-tuples, Let

(4.4‘2)- Sa(B) = maXgeq..(B) minAEﬂ.Pt(A) l|A — g}

Define

s shno | ey = Ajrtorr o
10 forr =0

Then S3(A,r) is strictly monotone in both its arguments.

The following lemma can be foun'cl_ in Elsner [E1l] and is crucial to the proof.

44.4. Lemma. Given 7 > 0,6 >0 and a positive integer d define

= (6 4 87 4L )
|
Th,en g 18 the minirn_a.l number such that

min{Ss(TM,r),6M} < 71‘\-!1"'/"1*’/"’ orall M 20,r210

Theorem 4.3.4 can be equivalently stated as

(4.4.5) SA(B) < Su(A(A),lICHA(x(A) - =(B))]])

Let M = max ( |} CLiE((w(A))|], || CH((=(B))|| } . Let U be a unitary such that
U*A,,U = N, + Ay, and suppose the infiomem in the definition (4.3.2) is attained for
this choice i.e., A(w(A)) = ||Cliff(N)|| where N is as in (4.3.1). Then by definition

446)  A(A) = [[CHEQN)] < [[CHI(N + A + [|CHE(A))

The first term on the right hand side is ||Cliff(r(A))| ';. And nclirr(m” = r(A) =
r(r(A)) < ||CLiff(x(A))|] . So A(A) € 2M . Hence by monotonicity of S ih__the
ﬂrst component o | | - | o o
(447 SA(B) < 54(2M,||Clifi(n(A) ~ x(B))]]
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Also for all A € g, {A) and g € o, (B)
(4.4.8) A = galf < AL+ Hel] < ICHIE(A)]] + [ICHT(B)]]

so that 94 (B) < 2M . So

IN

(449)  Sp(B) < min {Ss(2M, ||CHfi((A) — n(B))I]),2M)
(4.4.20) g MAMY“E|CLT(r(A) — 7(B))]|Y¢

by the lemma. This is nothing but the Bhatia-Friedland inequality in the present

context. We state this as a theorem helow.

4.4.11. Theorem. Let A = (A1,...,As) and B = (By, ..., B,) be two n-tuples of
commuting d X d matrices. Let '.n'(A) and T'.'(B) be partitions of A and B respectively.
Let M = max (|| CHE((x(A)}],]] CUff((x(B)]]). Let So(B) be as defined in (4.4.2).

o Then we have the followmg bound on SA( )

(4.4.12) Sa{B)} < dl!d(?kf)l"l’rdll(}'liﬂ'(?r(A) — ?T(B))”l/d

4.5 The Hoffman-Wielandt Theorem

For an operator T on € let ||T']|5 = (tr T*T)"/? denote its Frobenius norm (also
called the Hilbert- Schm:dt norm or tlie Schutten Z-norm).,

thm sectlon we shall prove:

1

45.1. 'Theorem. Let A = (Ay,.. . A,) be an n-tuple of commuting normal
| operatm on C and let g = (a}, }, ,a}:")) | 51__& < d be the joint eigenvalues
nf A, Let B = (Bl, .y Bn) be another such n-tuple with joint eigenvalues 8, =
'(ﬁ(l) . E"))rl_ < k. < d, Then there’lexiSts_a.'pérmuta,tibn o on d in.dices'such
that - - " o
o R n d

sy XXl 8 ml"’ <3S4, o uz

J#.l'k=1 - .. 7=1
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When n = 1 the inequality ( 4.5.2) reduces to a famous incquality of Hoffman and
Wielandt {HofW]. The noteworthy feature of ( 4.5.2) is that the seme permutation

o does the job for each of the n components.

If we think of an n-tuple (11,...,1%) of (not necessarily commuting) operators

on Cf as a column vector

and consider it as an operator from €° to @, copies C“ then the 2-norm of T is given

by
IT{l2 = (&eT*T)? = Q1T 1302

=1
The inequality ( 4.5.2) can then be written as

| d
(4.5.3) > Mok = Bollgr < 1A - Bjj;

k=1 | |
Our proof of Theorem 4.5.1 has two ingredients, One is the use of Birkhof’s

Theorem on doubly stochastic matrices exactly as in the proof by Hoffman and

Wielandt. The other is the use of Clifford operalors, We start with a lemma

concerning the Frobenius norm of a Clifford operator.

454. Lemma. Let T = (7),...,1}) be any n-tuple of bperators in €% and
let CLff(T) be the associated Clifford operator. Then .

ICHA(T)|2 = 2* S IT, 2

)=1

PROOF  Note that

| tZT; ® h{i‘} L ZT‘? ® h{k}
1=1 . k=1 )

= T ® hyhgy

rf

it

CLff(T)*CLff(T)

E 7::7} Q hy — Z 7;”& ® h[;}h{k}

=\ | 17k | o

(4.5.5) -
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Let u;,{ =1,2,...,d be an orthonormal basis for ©¢ and hg,S C {1,2,...,n}
the standard orthonormal basis for Iij,). Then the collection 1 ® hs is an orthonor-

mal basis for €% ® IRn). We have, thcreforg, for each 7
tr(fl’;'il} ® h¢,) = Z E < (T;TJ & h,ﬁg)(ﬂ-f & }ls), wu @ hg >
{ &

2.2 <I7Tw,w >
G

2™r T,

il

(4.5.6)
On the other hand if 7 # & then

| tr(ﬂTTk (% h{J}h{k}) = Z Z < Y?Tku; & h{J} h{k}hs, w Q hg >
| S | |
(4.5*7) | | = 0.

The Lemma now follows from (4.5.5) , (4.5.6) and (45.7). )
PROOF OF THE THEOREM  Choose orthonormal bases u1,...,uq and vy,...,v4

for C"I such that |
| 4: d. 8) | | A ﬁk ~— CIE}H;:, B W = ﬂ,ﬂj)uk
for 1 < J < n,1 < k < d. If P and Qx denote the orthopmjectors onto the

1-dimensional spaces spanned by u; and v, respectwely_, we can write the spectral

resolutions
(4.5.9) - A E Q'(J)Pk ’ -BJ —_ E ﬁ{-ﬁ-’)
| - - k=1
Then,
Cliff(A) = zZIA ®hy)
<
= 3 Eﬂf”f’k)@hm
| =1 k-'l
| . | d
- (4.5.10) =13 En‘“!@hm Pa@fm
S B
In the .S_‘itme way, |
- .2'3"_':; S d |
@su) Chﬂ‘(B) =1 (3 A ’f@hmJ(Qk ® hy)

k=1 =l
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f

Note that for each k the operator P, ® hy is an orthoprojector in €% ® Ry and its
range i8 the 2"-dimensional subspace (Ran Py) ® Ry,. In particular { Py ® ha (P, ®
hs) = 0, if 3 # k. Note that

(4.5.12)  be(Py @ hy) = 2"

An analogous statement is true for the (.

Now as befor.ﬁ we will compute traces with respect to the orthonormal basis
u, ® hg in C* ® IRy, where 1 < r < dand § C {1,2,...,n).
If P is any operator on €% and T a non-empty subset of {1,2,...,n} then

tr (P ® hT) == Z < (P & hT)(ur ® hg),ur & hS >

il

Z < Pu, @ hyhs,u, @ hg >=0

(4.5.13)

by the definition of the inner product and the fact thal hqhg is never e_qﬁal to hs

unless T is empty. Se, o | N
br Cllff(A) Clff(B) = ~tr 54T, o ® hay)(Z, 71 ® by )(PeQu ® hy)

3

= =4 3k ["(E. BV P @ hy -+ (81, oI ”)1 Q.'@"{:}"{JJ

(4.5.14) = 3 a{"8r(PQ ® hy), by (4.5.13) above.
ki

Let |

(4.5.15) di = tr(FQu @ hy)y ki =1,2,...,d

Then the d X d matrix D = ({dy)) is 2" times a doubly stochastic matrix, because
of the relation (4.5.12) and the corresponding fact for Q.. Hence by Birkhoff’s

Theorem there exist constants a, > 0,2, a, =1 such that

(4.5.16) | | D=2") a0,

v€ESd
where Sy is the group of permutations on d indices and each element of Sy is also

1dent1ﬁe'd with a permutation matrix.

The{rest of the proof now proceeds as in [B p. 74] for the classical Hoffma.n—

Wielandt theorem. Using (4.5.4), (4.5.14) and (4.5.16) we can write

¥
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(|CHfT(A) — ClLff(B)|]3
= tr CIff{ A)*CHff(A) + tr CLT(B)* Clill(B) — 2Re tr ClifI(A)"Clifi(B)
= ||CLff(A)}|7 + ||CLilE(B) )2 — 2Re tr Chfl(A)*CLfl{B)
= 2“}:”# Z [ D)2+ 18 (J;)Ii 2Re “{J]ﬁij(}k)]
= 2" E o E Iﬂ' - 13((::)‘2
= 2n§ﬂ”§”ak -—ﬁ{,mnﬂcn
so that . - d .
(45.17)  [|CH(A) — CHE(B)II3 2 2°mine 2.l = Byl
" The theorem now follows fr.om_(4.5.4) and (4.5.17). _. u

4.5.18. Remarks. 1, Note that by the same argument a reverse inequality can

also be prﬁved: there exists ﬁnuth&r permutation o such that
| | . - d . . | .
(4-5-19) JA ~ Bl|; < Z“ak“f‘ﬁa(k)“c"-
. k=1

2. Sun(Su] has proved a generalization of the Hoffman-Wielandt inequality valid for

operators similar to diagonal ones, This result can also be extended to commuting
tuples, More precisely, let A = (A;,...,4,) and B = (B,,..., B,) be two n- tuples

of opera.tors on €°. Let P, Q be invertible Operators such tha.t
PA,P~! = dl&g(&m Lol

QB Q™ = diag (8, . 87

are dlagonal matnces ‘Then crk,ﬁk,l < k < d arc tlu joint mgenva.lues of A and

B respectwely We define the condition number of P as

cond P = uzén;u_k"* N
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where ||P|| denotes the usual operator sup norm of P, It can be proved that under
the above circumstances there exists a permutation o on d indices such that

; | |
(4.5.20) 2 ek = Boyllge < (cond P)*(cond Q)?||A - BJ[3

k=1

Sun’s result [Su] is a special case of this when n = 1. This can be proved by imitating

Sun’s proof [Su] (see also [StSu, p.216]) and using our Theorem 1.

Notes and References. For various important results on the perturbation

theory for eigenvalues of a single matrix see [B) and [StSu]. For commuting tuples

of matrices the program was initiated by Pryde (P1, [P2]. Subsequently the results
of this chapter were published in two papers [BBh1, BBh2], The proofs presented
above were then simplified by Elsner [E2, E3]. Pryde generalized the above results to

simultaneously upper-triagularizable but not necessarily commuting matrices [P3].
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