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INTRODUCTION

1 An overview of the thesis

The first three chapters of this thesis are concerned with the spherical means asso-
ciated to the Hermite and Laguerre expansions. The study of spherical means has a very
long history. The classic work of I, John [9] deals with various applications of the spherical
means to the theory of partial differential equations. They entered Fourier analysis with
the celebrated theorem of L. Stein on spherical analogue of the Lebesgue differentiation
theorem. Liver since they have appeared again and again in several arcas of analysis like

integral geometry, inversion of Fourier transforms and related areas.

For a locally integrable function f on IR™ the spherical means are defined by

frpe(e)= f flz —y)dp,
. Iyl=,.

where (, 1s the normalised surface measure on the sphere lyl = r. Associated to the

spherical means is the spherical maximal function

Mf(z) = sup |f o+ ()],

In 1976, Stein [21] established that when n > 3 and p > =27 the maximal operator M is
bounded on LP(IR™):
1M fll, < Cllfllpy f € LP(R™).

From this follows the convergence of spherical means :

lim (z —y)dp, = f(z) a.e.

=0 Jly|=r

This is the spherical analogue of the Lebesgue differentiation theorem

1
limn 51 Js, [z —y)dy = f(z) a.e.



where B, is the ball of radius r centered at 0. The case n = 2 remained open for almost a
decade and in 1987 Bourgain [41] showed that the above maximal inequality holds in that

case as well.

The connection between the spherical means and the wave equation is explained by

the following fact. When n = 3 the function

u(x,t) =ct ([ *pla))

with a suilable constant c satisflies the wave equation

i 5’21.5

j"""'l
with initial conditions

u(z,0) =0, Julz,0) = f(z).

‘When n = 1 we have the familiar solution

wt)=5 [ fle = s)ds

and the classical differentiation theorem, namely

“mﬁ}-/ (x — 8)ds = f(z) a.c

i—+0

can be generalised to yield

lim “("“”t) = f(z) a.e.

t—0

whenever u is a solution of the wave equation with initial condition f € Lf .(R"), p> 2.
Several authors have studied almost everywhere convergence of solutions to the L? initial

data for general hyperbolic differential equations, see for instancé_ Sogge {21].

Various refinements of the regularity properties of the spherical means were obtained

by several authors, see the works of Oberlin - Stein [15), Sj6lin [19] and Peyriere - Sjolin [16].
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Motivated by these works Colzani [6] studied spherical means on compact symmetric spaces
using a scale of Sobolev spaces and proved a localisation theorem for spherical harmonic
expansions, In a recent paper Pinsky [17] has used the regularity of spherical means to

study pointwise inversion of Fourier integrals.

Our point of departure is the study of twisted spherical means on '™ which
S.Thangavelu has initiated in [34]. Let i, stand for the normalised surface measure on

the sphere |w| =r in " and define the twisted spherical means

I %X pe(z) = f Sz —w) g1im= cit .

Nwl=r
It has been proved in [33] that f x y, has the expansion

3 nle) = (2n)™ 3 ) £ x )

k=0

Here y(z) stands for the k th Laguerre function L}~ (3]2]?) e~ 11"” and f x ¢x(z) denotes
the twisted convolution [pn f(z — w)@p(w) ez Im = dyy of f and ;. By measuring the
regularity of these means in terms of certain Sobolev spaces a localisation theorem for
special Hermite expansions was established. As the twisted spherical means are dominated

by tlie ordinary spherical means on €™ = %" it lollows that the maximal function

Mof(2) = sup [f X jur(2)]

r (3

is bounded on LP(C™) for p > 722

We may extend this result in two possible dirvections, Using the local co-ordinates on

the sphere |w| = v in €' it is easy Lo see that

fxpe(z)= Oy A i J ((’*”’2 + |2)* + 2?‘|z|c030)1/2)

Joa/a(L 7|2 sind)

e In—2
X (é‘”z sinﬂ)“"3/2 sin<“"*~*0 dd.

{or a suitable constant €. This motivates us to define the Laguerre mean of order « of a

function on MYy as



2 Mea + 1
T %f(z) = CE) )/ (? + z +2?ZCI}30)1/2)

Jn._l/g(l r 3’31?10)

(é 7z sinf)a—1/2

$1n2%0 do.

Then T..¢ is a bounded self adjoint operator on L*(M,a** T da). For o > —1 let LE(¢) be

~ the k th Laguerre polynomial of type . Let

o (1) = Ik +1) e )1) Lo (_ﬁ_t ) e

Lk +oa+1

We have the interesting (product) formula, see [36]
T 9 (2) = 9 (r) 9 (2),

fora)-—-%,w?_ﬂ, z > Q.

A a 1 .
The functions ¢ (1) = (2[‘(};5-3:11))) & L“( tg) -1 form an orthonormal basis for

LEH(R,,r?*t dr). Therefore every function f in L?(MRy,r?**! dr), has the Laguerre ex-

pansion
Q0

HOEDWIRTONHON

k=0

Here ()« denotes the obvious innerproduct in L*(IRy,r?*t! dr),

In view of the above product formula it is easy to see that T.*f(z) has the series

expansion

T 5(2) = SOF, B)a hE(r) DE(E),

k=0

for > 0,23 0, > —1/2,

When f is a radial funcion f x ¢ reduces to

Fxou() = Cagy—tss ([ 7 1) ule) 7 ds) eonta)
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where C,, is a constant., Therefore, f x p,.(2) takes the form

El{n—1 m _
T g C,.;Z( k+n—1) ) A "V ds wi(r) pr(2).

Thus for a radial function f on €C" the twisted spherical mean of f coincides with the

Laguerre mean of order nn — 1, considered as a function on fZ,..
g y }

From the Laguerre expansion of f, using the orthogonality of 47 and the fact that

N
> L§ = L% we see that the Nth partial sum for the Laguerre expansion can be written
k=0

in the form

2 o 2
S = gy fy BT e et ar,

where p${r) denotes the Laguerre function L (%tg) e~ 1, For each s € R, o > —1, let

<)

lflg,u — Z (2k + o - 1)25 (fﬂbm;?)i

k=0

We define the Laguerre Sobolev space W] associated with the Laguerre differential

2 .2
operator ¢}, = ( d“‘i | dadtl cﬁ_ — 'T) by

T

We = {f € L*(I2y,r2*dr) : |fly < 0O},
By studying the regularity of 7.7 f(f) as a function of r using the above Sobolev space we

prove a localisation theorem for Laguerre expansions.

Now let us consider the maximal function associated with this spherical mean.

Define the maximal function T'* by
T7f(#) = sup [T A(E));
We will show that for f & L’”(R_,rjl t2etldt), p > -3—;—% the inequality
/0 lT“‘f(f) F’ gl ge < ¢ / FEYP 2ot gt

holds; This is the analogue of Stein's theorem for the Laguerre means. When o = $,n = 3

and f radial, the function

w(w, t) == ¢ tTﬁ (V2 )

5 .



solves the Darboux equation

( & t2 3

1 ]' '2 1
942 | 4* 2) ﬂ(:’ﬂ, t) —= “2— (-—'ﬁ -} l-‘.’I}I — J)‘bﬂ({ﬂ,t)
with the initial conditions

u(z,0) =0, Jiu(x,0)= f(z).

From the maximal theorem for the Laguerre means we obtain

. ufx,t) o
lim - = f(z) a.e.

for f € LP(R%),p > 4. When n = 1 and f even, the function Tf% f(z) solves another

9P ¢ & ., 1’
SLAVCAWRPIN A A

v(z,0) = f(:n), 9 v(x,0) = 0.

Cauchy problem

with initial conditions

However, we consider only the case o > 0 for technical reasons.

The second extension we have in mind is the study of the maximal function asso-
ciated to the Weyl transform of the measure p,. For an integrable function f on €™ the

Weyl transform W associates an operator on L?(R™) defined by

W) = [ on f(2) n(2) da.

Here 7(z) is the unitary operator on L*(IR") given by

n(2)p(€) = /@I (¢ 4 ),

for p € LA(IR"). In fact this is related to the unitary representation 7, of the Heisenberg
group. For details we refer to chapter 4. We can define the Weyl transform of the

normalised surface measure i, on the sphere || = r in ' as

W) = /

o=

7(2) ;lu,.(z).

0



It is a well known fact that

W o) =3 B () (o)

o (k+n—1)
where P f are the projections of f onto the & th eigenspace of the Hermite operator

= —A -+ |z]?. Using a transference principle, originally due to Calderén, we will show
that

| S?J,]J.,-;hu]W(Hx,-) ) s < ClAN,

( 45) may be called spherical means

holds for f € LP(I"™)
for the Hermite expansions. As in the case of Laguerre means measuring the regularity of
these operators in terms of Hermite - Sobolev spaces we can prove a. localisation theorem

for Hermite expansions,

More generally we can look at expansions of the form

Si fz) = Zﬂbﬂ' ) P f (

which may be called Hermite - Laguerre expansions. When o = 1 the functions u(z, t) =

1
t S¢ f () solves the Darboux equation

& 3 |
( 5 7 5) u(z,t) = (—/_‘s + |z|* — n) u(x, t)
with the initial conditions u(x,0) = 0, &u(z,0) = f(z). The solutions of the wave
equation
d* 9
'-8—2—11,(:1} t) = (-——A + || )u(m,t) -

can be expressed in terms of SE f and hence we prove pointwise convergence of solutions of

~1
the wave equation to the initial condition f. The function S, * f also solves the Darboux

equation with another initial condition.

When t — 0 the functions ¥{(t) — 1 and therefore it is reasonable to expect that

S f — fin the norm for fin LP(R™). The norm convergence of 52 f to f is equivalent

7



to the uniform boundedness of 57 on L?(Mi2"). For certain values of @ we show that this
* 1 1 'f ¥ ¥ 1

is indeed the case. Ior other values of o we establish some L? — LP inequalities for
these operators. As a consequence we obtain some interesting estimates for the Hermite

projection operators.

In chapter 4 we study certain analogues of Besicovitch - Wiener theorem for the

Fourier transform on the Heisenberg group. Consider the discrete measure p given by

O
=Y c;dy,;

. 41=0
with Y524 ¢t < co. The Fourier transform of such a measure is given by the almost periodic
function
m "
F (€)= i(€) = ) cie™™™.
4=

For such functions we have

BEdE = e e

j=0

My ol /
Br(y)

for any fixed y. The left hand side is the so called Bohr means of the almost periodic
function F' and it was first proved by H. Bohr for uniformly almost periodic functions and
the above general form was proved by A. Besicovitch [3]. Wiener {37] considered finite
measures of the form

OO

C; d, ;v

7=0

where v is absolutely continuous with respect to the Lebesgue measure. He proved that v

contributes nothing to the Bohr means of ji.

For the Fourier transform we also have the Plancherel theorem which can be written
a8
limyace [ 1f(€)PdE = (m) [ |f(2)f da.
| Br('y) -
If we think of this as the Plancherel theorem for the n-dimensional measure fdz, then the

Besicovitch - Wiener theorem can be considered as the 0 - dimensional analogue for the

8



discrete measure u. For the surface measure on |z| = ¢ there is a result due to Agmon
- Hormander which gives the {n — 1) - dimensional case of the above theme. Recently
Strichartz [28] has made a far-reaching generalisation of the above theme by considering
measures which are fractal in nature. In the general setup equalities have to be replaced

by inequalities. Results of the type

[imsup, oo 17 L ” \(fdp:) (E)PdE < C/|f|2d;£

have been proved by Strichartz {or a large class of o-dimensional measures.

Our point of departure is the Strichartz [27] spectral decomposition of an L* function

on H™ in terms of eigenfunctions of the sublaplacian on H", This decomposition is written

as,

[ = (2m) 1 S Fr ez )

h=0

where for each A > 0, e} are the elementary spherical functions defined by

ck(2,1) = eV (2).

Then the Plancherel theorem reacls

“f”2=2’ﬂ‘z/(r / If * ep(z,0)]* d) dz.

Lor a finite measure 41 on H™ we can write down the spectral decomposition as
— A
po=(2r)" Y e ep(z,t)
k=0
where the above sum converges in the distribution sense, Ior discrete measures of the form
=3 ¢; 8(2;,t;) with {¢;} € I! N [* we show that

| . N (2m)"
N oo IV 2;0-/{13'" E;;*eﬁ(z,(}).‘ﬂdz = 0L )n' Z‘CJF

‘T'his is analogous to the Besicovitch - Wiener theorem for the Fourier transform on the

Fuclidean space.



We also consider measures of the form g¢dpe, where p, is the normalised surface
measure on the sphere 5, = {{2,0) : |z| = r} C H™ and g € L*(IR). For this measure we

prove

N n—-192n—3%
. -1 o ool 12473 (p— 1)1
limn ooV 72 E—u:]*m fd;,n ier % €x(2, 0)* A" 2 dA dz = Al gl 2-

This is analogous to the Agmon-Hormander theorem. We can also replace the measure g dt |

. o
by the discrete measure ¥ ¢; 8(z;,1;) and get similar results.

3=0
In this spirit we can also prove similar results for the Hermite expansion. For meas-
ures of the form p = 3] ¢;ds; + v, where v is absolutely continuous with respect to the

Lebesgue measure on IR", Strichartz has established a Besicovich - Wiener type result for

this expansion. We consider measures of the form f diy where v; is the normalised surface
measure on the sphere |z| = 1 in IR", and f a square integrable function on the sphere

|z| = 1. For this type of measures we prove

. 18 Cep 2
imn—eaN "5 S|P (F dV)]2 = = /I M P,

k=0 il

Similar results can be proved for special Hermite expansions also. By this term we

mean an expansion of the type

f=0@2m)™ ), f X

where f is a function on €™ These results are in a way particular cases of results for

Heisenberg group when we consider functions on the Heisenberg group that are independent

of £,
2 Some open problems

We would like to conclude this introduction with some open problems which warrant
further investigation, These problems may perhaps require new ideas for their complete
solution.,

10)



(1) Theorem 2.1.3 concerning the alnost everywhere convergence to initial data of solu-
tiong of certain Darboux’s equation deals only with radial functions. It is interesting to
know if the theorem remains true in the general case. Likewise, theorem 2.2.4 about
solutions of the wave equa{;ion associated to the IHermite operator is proved only in the
lower dimensions, n < 3. It is worthwhile to see what happens in the higher dimensional
situation.

(2) In chapter 3 we have proved a localisation theorem for Hermite expansions, see

1
corollary 3.3.4 under the assumption that f € W3(/R"™). It can be shown some regularity

of that sort is needed for the localisation to hold. However the optimal condition which

ensures the localisation is not known.

(3) Concerning the Hermite - Laguerre expansions we have shown in chapter 3 that the
operators S f are wniformly bounded on LP(IR"), | < p < oo provided [of > 2, It is
natural to ask which is the smallest value of @ for which the uniform boundedness and
hence norm convergence holds for all 1 < p < co. We conjecture that this critical index
a is 2=, Also the problem about almost everywhere convergence of Sy needs further
investigation.

(4) In the last chapter of the thesis we have extended some results of Strichartz to
the Heisenberg group setup but only treated the discrete and the surface measure, | It is

worthwhile to treat, as in the case of Iluclidean Fourier translorm, more general mearsures

of fractal nature and obtain analogous results.

3 References

'This thesis is based on the following three papers :

[1] Ratnakumar P.K, A localisation theorém for Laguerre expansions, Proc. Ind. Acad. of

Sci., 105 (1995), 303 - 314.
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12] Ratnakumar P.I{ and 5. Thangavelu, Analogues of Besicovitch-Wiener theorem for
the Heisenberg group. Journal of Fourier Analysis and Applicaiions, to appear.
(3] Ratnakumar P.I{ and S, Thangavelu, Spherical means, Wave equations and Hermite -

Laguerre expansions, preprint,

For the background malterial concerning Hermite and Laguerre expansions we refer

to the monograph

[4] S. Thangavelu, Lectures on Hermite and Laguerre expansions, Mathematical notes, 42,

Princeton Univ. Press, Princeton. {1993).

We would like to mention that we closely follow the notation and terminology of the

above reference |4]. For any undefined term in the thesis we refer the reader to the same

monograph.
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Chapter 1

SPHERICAL MEANS AND MAXIMAL FUNCTIONS

In this chapter we discuss the boundedness properties of the maximal spherical means
associated with the Hermite and Laguerre expansions. To study the boundedness of the
maximal Laguerre means we embed the Laguerre means T, into an analytic family of
operators and then apply Stein’s analytic interpolation theorem. For this we introduce a.
g function associated with the Laguerre expansion. The spherical mean for the Hermite

expasion is defined to be the Weyl transform of the normalised surface measure p, on the

sphere |z| = ¢ in@ ™. We prove that when p > 722 the maximal operator supgerct |W(pe) f |
is hounded on L?(M2"). 'This is done by using a transference principle due to A.P. Calderdn.
We define an action of the reduced Heisenberg group on IR™ X II' in such a way that the

twisted convolution operator with the measure p, on LP{C'") is transfered to the operator

W (14) defined on LP(IR™).
1.1 A maximal theorem for Laguerre means

Recall the definition of the Laguerre means T.% f of a function f on IR, given in the
introduction

(3 resind)

mag = 20T cv+1) Ja-i
L5f (@) = f ((rs2)o) (5 raesing)e—1/2

Ly
2

3112 %0 do,

13



for ¢ > —5, where @ € IR, and (r,2)p = (+2+a?+2r 2 cosd)!/2. The Laguerre polynomials

Lg(z), of type o > —1 are defined by

1 d"
kY dak (e

=T gy k4o . ra — O
) = Li(z)e"a".
We have seen in the introduction that T.* f has the series expansion

Tf(z) = f(f, ?/jf)cr Y (1) ‘Zf(z)

k=0

Using techniques similar to those in [24] we show that the maximal function

T2 f (=) = suppsolT,° f ()]

is bounded on LP(IR;),ifp > 2(a+1)

The generalised Euclidean translation 7,.%f of f is defined by

O—~a —1/2

2o
a1 172 e f ry2)g) stn“*0do.

T ) =

Clearly |T,%f (z)] € Cr.*{f{(z). Thus it is enough to prove I” boundedness for the

maximal operator

mf () = suppsolr.oF (2]

for fon Ry. The Hankel transform of a function on 2y is defined by

'E) / f :Ly) 2cr+1 dy

where, for lev > —1 and = € IRy, J, is the Bessel function given by the series

R G VG0
Ju(-‘!») Z MeE+D)IE+v+1)

k=0

Since the operator 7,% is self adjoint on L2(JR,.,y %" dy) and satisfies

A (;fa(zy)) _ Jolzr) Jalzy)
(2y)° (ar) (2y)®

Ty

14



(here the translation is taken only in the y variable), we see that

Ja(re)
(raye

The generalised Euclidean convolution of two functions f and ¢ on I is defined to be

H(7,." f)(2) = Hf (z)

fro@) = [ F)nlom) v+ dy
Then we have
H(f * g) = H(S ) H(g). (1.1.1)
Tor Ref > 0, let N? denote the function on M, given by
NP(y) = (L =¥*)" " x(on(®)

and let NP(y) = NP(y/r)r~(a+2), the r - dilation of NP(y). Let 7,*F be the operator

defined by
r®Pf(x) = f+NFP(z) (1.1.2)

For He 3 > 0, o« > ~1, we have the formula

Jopp(w) 2177 1 J(sw) 9rp-1 2a
) 2L e e ()

Replﬁcing w by rw and applying the changé of variable rs =t the above equation becomes .

Jap(rw) Viatd
(rw)ets I'(53)

Thus in view of (1.1.1) and (1.1.4) we see that

H(NFP Y (w). . _ (1.14)

Josp(rw)

Hr0] Yow) = 2 TB) W (w) Ty

which converges to %(T,.‘* f)(w) as B — 0+ . From (1.1.3) we get

el ()

oltu—p 1 Ja+u(3?‘w) Y. - 2 .ﬁ-—-,u—l 2 a2 ptl
I8 - ) /ﬂ (srw)ets Hf(w)(l—-s") S ds

15



for e > pu, and ao4-p > —1. Then using (1.1.1), (1.1.4) in the above equation and taking

inverse IHankel transform on both sides, we get

| Trmﬁf (?.U) | ( 1.1.5 )

= I'(f) 17-&_11* Y (1 — g2)B—p=1 J2et2ptl g
F(ﬁ"ﬁ)[‘(;s)/n o (w) (1 —s%) ds.

Therefore, by Cauchy ~ Schwarz
|

F(ﬂ) r o i . 1/2
NG = () P (;:fﬂ |75 F (w) dS) , (1.1.6 )

7.7 f (w)] <

where
l 2\2 0252 Acctapt g )
Cpyu= [ (1= st poman2 gttiuna gg)
Byu A (1—s8%) S 8
which is finite whenever e > p 4+ 1/2 and ¢ > —a — 3/4. Now we prove the following

theorem, closely following the ideas in [24].

Theorem 1.1.1 Let 7Pf(x) = sup vso|r®*f (). Then 7# is a bounded operator on

L*(Ry,r*etidr) whenever Ref > —c.

Proof : In view of the inequality (1.1.6), it is enough to prove that the operator

1 . 1/2
61— o (L 3P
1 {} |

is bounded on L*(IRy,r***dr). Now by triangle inequality

(l/ﬂ r |7k f (ﬂ:)|2ds)1/z < (}_/ " TS (5) — f ‘103(33)‘2(:53)1/2

T rJo

+ (l L E %(-’B)lzdS) .

-
where ¢ € CP(IRy.) to be chosen later, and ¢,(2) = s~ 22+ (2 /).
Introduce the g function,

co 3 1/2
o(fa)= ([ “ns @) - el 2)

16



Then we see that

{ o, » A\
SUPr»0 (;—fﬂ |7, f ()] {13) <gl(/f )
1 p 1/2
+suppso (= [ 17 4 gufe)lds)

The second term of the above inequality can be dominated by some constant times
supsso|f * ws(x)|. Stempak has studied such maximal operators in connection with almost
everywhere convergence of Laguerre expansions. He has proved that these maximal oper-
ators are bounded on LP(Ml2y,r?*Hdy), lor p > 1. For a proof of this we refer to {25]. Thus

it follows that the second term defines a bounded operator on L4(IR., r?e+1dr).

We now proceed to prove that the g function is a bounded operator on

L*(IRy,r**t'dr). By taking Hankel transform this is equivalent to proving that

% Jagals) g U8 '
|1 ) (s) P S < M , (1.17)
We have J‘:*ﬂgf) = & +1p 77y When s = 0. By choosing the function ¢ € CsP(IR,.) such that

H(p)(0) = F(a-:;wrl) we can make i—{-“—r‘:iiff) — Hep(s)} bounded near the origin. For large s

J .
we have | :ﬁﬁf;’” < Cs~*#~42% and therefore

f e |Jﬂ+#(5) ‘2 ds
1

o0
gxtH 5 <

if p > —a— 1. Also f; ®[H(p)(s)|* < M. Therefore, it follows that

T ) S <

T'his proves the theorem. | O

Theorem 1.1.2 77 is a bounded operator on L™ if Ref > 0, and bounded on

LPp>1ifRelB > 1.
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Proof : The proof follows from the fact thal
nPJ () = [« NP (v)

and sup.so|f * NP(y)| defines a bounded operator on L® if Re >0, and on L? ¥p > 1 if

Ref3 > 1. We refer to [25] or [36] for a proof of this fact, | | -

Now we prove the L? boundedness of the maximal operator m.

Theorem 1.1.83 Lelt > 0,

(1) Forl <p<2, wehave |[mf |, < Cpallf ||y whenever p > 22(31?

(42) For2 < p < oo, Hmf Hp S Cp.a”f ”P‘

Proof : We prove the above theorem by using Stein’s analytic interpolation theorem, see
[23]. Let () be a nonnegative measurable function on IRy and € > §. Consider the family
“of operators .

GEf(z) = migy T (),
Using (1.1.5) it is easy to see that the family G7 deﬁue.s an analytic family of operators.
Also using (1.1.5) one can see that G? defines an admissible family of operators in the sense

of Stein.

By theorem 1.1.2 G¥ is a bounded operator on LP'(IR,.,r**tdr) for p; > 1. Also
by theorem 1.1.1 G!*% is a bounded operator on L*(IR4,r?**ldr). Therefore by analytic

interpolation theorem we see that the operator G¢ is bounded on L (R4, r?*T'dr) for

'i-}[ = 15":—-‘ - %<_ 1 — £, since p; > 1. When « > ¢, choosing t = 1+;__E we see that the
1 | )
operator Geto* = rj’;}"‘; = T, is bounded on LP(IR.,r?**dr) whenever p > (i(j:f_éz).

Letting € — O we see that
”Tr'?'a:} f ”P < CHf ”P

18



r --l ' ' ¢ r ' '
for p > ‘Z(f:: ]). Since the right hand side of the above cquation is independent of r, we

see that

This proves the first part of the theorem. Since m is bounded on L*(R,,r**tdr) and

S‘U;]),-;,..[]‘?J:m) f’ HP < G”fHP

L®(Ry,r2*dr) the proof of the second part follows from the Marcinkiewicz interpola-

tion theorem. [

1.2 A maximal theorem for the Weyl transform

In this section we consider the maximal function associated to the Weyl transtorm

of the measures p,. Recall that W{pu,)f was defined by
W) f€) = /|.=1u:- @32 f(¢ 4 o) dp,(2) (1.2.1 -)
where 7=+ iy and f € LP(IR"), 1 < p < co. Defining
Mf (@) . Sup IIW( )u,-)f ()|
we are interested in estimates of the form .

MMl < Cllf

for the maximal operator. The maximal function

Mo f(2) = sup |f x po(2)]

>0
is bounded on IP(@") for p > 528, as observed in the introduction, We use a transference
principle first observed by Calderén [5] to transfer the maximal theorem for Mj to a

maximal theorem for M on LP(I").

The transference principle of Calderdn deals with operators T on LP(It™) which are

semi-local in the sense that there exists 12 > 0 such that whenever [ is supported in a
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ball |2| < », T'f will be supported in |&2] < R4-» If 12" acts on a measure space X by
measure-preserving transformations then T' can be transferred to an operator 7y acting on
LP(X). Moreover, if T commutes with the above action then any LP(IR") inequality for
T gives a similar inequality lor Ty on LP(X). An application of L‘hié principle for ergodic

averages on spheres has been given in Jones [10].

In order to apply the transference principle we have to find a suitable group G acting
on IR"™ such that under transference the operators f x p, will go to W(u,)f. This is

achieved by considering the following action of the reduced IHeisenberg group on IZ".

Let I' be the one dimensional torus identified with [0,27) and let G = '™ x II' be

the reduced Heisenberg group with the group law given by
1
(2,t)(w, s) = (z +w, t+ s+ §Imz - ﬁ)

where t + s 4 %I m z + W is taken mod 2, This group defines an action on IR™ X I’ in the

following way : let g = (2,1),z2 = ¢ + ¢y and let (¢,s) € IR" x [I'. Define

U(o),s) = (E~v, s—t45a y—sa)

It is easily verified that
U(g)U(g')=U(gg), U(0)=id

and U( g) is measure preserving.

We use this action to transfer functions on 2" x II' to functions on (7. Suppose ¥ is

a function on R™ x I' and (£, s) € I&™ x II'. We define

ey (2, 1) = @(U(2 1) (€, 8))

to be the transferred function on G = €™ x II'. If T is an operator acting on functions

F'(z,t) we can define the transferred operator Ty on functions ®(¢,s) by setting

Tod(€,8) = (T Fie,))(0).
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Suppose now T is a convolution operator on (7, say
TF(g)=K % F(g) = fG K(gh=Y) F (k) dh.
- Il we further assume that I{(z,1) = k(z) e™*, I' (2,t) = f(z) e~ then

i .
TF(z,t) = /G I (z — W, —§ — -2—1??1:3-- 'ﬁi) f(w)e™ dwds

(2m) e "t k x f(2).

Thus when K and 7 are of the special form above T'F reduces to a twisted convolution

operator. If @ is of the form ®(¢, s} = (¢) éi” then the transferred function becomes
e, (2,1) = e fi(2)
where the function f¢(2) is given by
fe(2) = (€ — y)emottizy

Therefore,

i

To®(£, s) (T Fe,))(0)

om etk x [¢(0)

Il

and we see thal

k x f¢ (0)

li

/G;' n k(-—"{U) ff (T.U) dw
./(E’ . k(2 )_ei("’”“%?""y) (¢ +y) dz dy.

{l

If we recall the definition of the Weyl transform we get the relation

Tob(£,s) = (2r) € W(k) (6.

We now state and prove the following transference result. The proot is modelled after
the proof of theorem 2.2 in Jones [10]. However, we give a complete proof for the sake of

completeness,

21



Theorem 1.2.1 Assume that k is a compaclly supporied distribution on €'" such that the

operator [ — k X [ is bounded on LP(Q'"). Then W(k) is bounded on LP(IL").

Proof : We first observe that for functions of the form I (z,1) = e~ f (2) the inequality
T, < ClF

holds whenever ||k x f |, < C||f ||, holds.

Now consider the equations

1 2m .
[ W@ = oo [ [ Wkl et ds de

1 o
(27r)19+1 f nfﬁ 1T IFig 5y(0)|” ds dt

1
or) P /R"xﬂ‘ T F,(0)|” da

where @ = (¢, s). Since the measure da = d¢ ds is invariant under the action of U(g), ¢ € G

we have
1
k PdE = / T Fore Al (0P d
~/;?_n lI’V( )(P(g)l {6 (Q?I_)p_*_l lﬁ"b{ﬂ'l U(.q) ( )| a
1 i
a (27[') p+2 Qﬂj{?n /l.zlﬂﬁ fH’ / n s I iTFU(g)u.(D)IP da dg
where 1, = F(zil). Let us now calculate T'Fy(4),(0). By definition

T Fy(g1a(0) = /G K (1) Fygpa(h) di

|

/GK(frl)(I’(U(h)U(g)a)dh =fGI('(h'"1)tI>(U(h,g)a) dh
[3 K(gh ™) ®(U(h)a)dh.

{

In other words,

T'Fy(g1al0) = [ 7 (gh™") Fu(h) db
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Consequently,

fRn]I’V(k)tp &) dg
= Cy, Em ‘a g
R /"xﬂ /Ii gh™")Fy(h) dh| dg.du,

BpxIl

where Bpg is the ball |z| < R.

If we assume that k(w) is supporied in |w] < A then for |z] < K what matters is the

values of Fy(h) for |w| £ R+ A, where h = (w, s). Thus

4 ] o P
Lo S | L K (9h™") Fu(h) dblP dg da

= 'Y -1 2{/ P
-/anﬂ“/ . \/ I gh (h)dh|? dg da

where Ity(h) = F,(h) for |w| < R+ A and 0 elsewhere. Since the operator T is bounded

on functions of the form F(z,1) = e~ f (z) the above integral is dominated by

I )P ) < P (B)]P
/Z“xﬂ (/ |1 ()P dh | da C <AL dw /]ﬂxw |2 (h)|P da

<CA+RP™ [ ()P de

'1 1

Finally, we have proved that

[ owieerrde <o (22T iepae

Letting /£ — oo we conclude that

[ WkpEra <o [ e de

‘This completes the proof of the theorem,

In the above proof we have only used the semi-local property of the operator T

Therefore, if we let

My [ (a) = Sup W (e )f ()]
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then My are semi-local and the above arguments will lead to

S 21
2n — 1

”MNf “:J < O“f”p ) P

with C independent of N, This {ollows from the maximal theorem for f — [ X p,. Letting

N — oo we obtain the following result.

Theorem 1.2.2 For f € LP(IR™),p > 2 e have

i

M fl, < CHS [l

Consequently, W(u,)f — f a.e. asr — 0,

We use this result in the following sections to study solutions of certain wave equa-

tions and also to study Hermite - Laguerre expangions. We conclucde this section with the
following remark. A general transference theorem for the Weyl transform has been prdved
by Mauceri [13]. In fact, he has shown that if £ is any distribution on '™ such that
f =k x fis bounded on LP{€"), then W (k) is bounded on LP(I2"). Since we are inter-
ested in maximal functions associated to the Wey! transform we have to consider compactly

supported kernels.
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Chapter 2

SPHERICAL MEANS AND DIFFERENTIAL EQUATIONS

In this chapter we deal with some partial differential equations associated with Hermite and
Laguerre diflerential operators, We consider some Cauchy problems with L? initial data,
namely Darboux equations and wave equations associated with the Hermite operator. We
study the almost everywhere convergence of solutions to the initial data for these equations,
using the maximal theorem for the spherical means established in the previous chapter. For
the one dimensional wave equation for the Hermite operator we show that ﬂf—‘fl converges
almost everywhere to the initial data f € LP N L', for p > 2. This is done by expressing
the solutions in terms of the spherical mean W( ;) f. In higher dimensions we prove an
almost everywhere convergence of some Riesz means of the solutions to the initial data. in

the case of Darboux’s equation we show that the solution converges almost everywhere to

2% for the L” initial data provided H =7 f is also

the initial value as ¢ tend to 0 for p > =%

in LP(IR").
2.1 The equation of Darboux and the Laguerre means

If 44 is the normalised surface measure on the sphere [z| = ¢ in JR" then it is well

known that the spherical mean f # ji,(2) satisfies the Darboux equation:
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(af ”’;1(),,) u(m,t) = Au(z, b).

Observe that the differential operator on the left hand side is the radial part of the

Laplacian A on IRR". In a similar way the twisted spherical means f x j1,(2) satisfies

2n —1 £
(53 | nt Oy — Z) u(z,t) = ~Lu(zt)

where L is the operator

0 9,
— el —
L=—-A,+ \z\ ) E (mj o Y; ij)

and the Weyl transform W{( u,)f satisfies

— 2
(—Sf 2*n,t 1d£ Z)w(m t) = Ho(z,t)

where H = —A + |z|* is the Hermite operator.

Recall that W( 1) f is given by

W) fle) = i (k'-l- — 1')! or(t) Puf(x).

Generalising this, we cousider

where,

o DE+1D(a+1) o (1.) _ip
Vi) 'k + o+ 1) Le (275)3 |

Here P is the Hermite projection operator given by

Puf(z) = > (f, Bp) g,

|8=k

where &5 are the n - dimensional Hermite functions, (for definition and properties see

chap 4,sec 3). The Laguerre functions 9§ satisfy

(-—-63 2('?1() - ?}i )«pk = (2k+ o+ D)

26



and consequently, vo(x,t) = S&f (v) satisly

da-+1 . |
(maf ‘“j 0 + th) Vo = (H +a+1=n)v,.

- These equations may be called Darboux equations for the Hermite operator. In this section

we are particularly interested in the cases a = ::%. Using the results of the previous sections

we study solutions of these equations.

1

When « = —3 the function voi(@, 1) = Sy 2 f(x) satisfies the equation
2, L 1 .
(-—85 + Zt — -'2—) ‘IJ“_ZL(IE',i.) = ([ — ﬂ)v___%(:v,t) (2.1.1)

with the initial conditions

v_1(e,0) = [ (z), 0, U_%(:B,U) = (), (2.1.2)

~L

2
-1

The first condition is verified as 3, *(0) = 1 {or all k. To verify the second condition observe

_L
that the lunction ¥y, *({) is expressible in terms of the Hermite polynomial Iy x(2) as

~4 (__1),;3 2_2kﬁ 4 ~ 142
Trbk (t) — F(lﬁ—l‘ %) I.[Zk —"\/-—_"2' C '

Now since the vector field (""-(‘jg é—i) takes gy into Hapyq and since Hypqy(0) = 0 the

second condition is also verilied,

We now prove the following inaximal estimate concerning solutions of the above

Darboux equation. We define

w(2)

H

sup |u(z,t)]
0<t<1

whenever u is a function on IR™ x IRT.

Theorem 2.1.1 Let u be a tempered solulion of (2.1.1) - (2.1.2) with f € LP(IR"),

p > 722~ Then the following mazimal estimate holds :
oy n—4
Al = ClE™ 2 1
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.-.-.-l- # ¥
where H" 2 f is defined using spectral theorem.

Proof : We express 9, 2(1}) in terms of ¥p~'(¢) using the following formula, see [2]. For

~1 < < « one hag

et IR (1) =

gy e

I'rom this we gel

2 1 /1 9-m+§ 1 oo L, n
e” 7 L, (2 -"111 1 s(s? —12)r7 [ 55" ) e T ds

Consequently,

1
{r—
ﬁ
et
&3
1

] I’)/ MS(SZ_tZ)n-ﬂgﬂ ;(52 tz)q'bu-— ( )
!

+)

where (), is a constant. If we let T}, to be the operator

) = F(k——n)P )
() él“(.‘c—ﬂ%) kf(‘)

then we have the relation
Z ¢;¢_ )P f (z) = G, f ” s(8* —1° )""%’ e i(s’=1") W) T f (z)ds.
:

Now any tempered solution of the equation under consideration 1s given by

= S () s (o)

k=0

and so from the above relation we obtain

wi(z) < Csup (W () Tnf (=i

From this and the maximal theorem for the Weyl transform W( ;) we get for p > 2 ___1

[l < CNTS Ml
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Finally, it can be checked that the sequence

=B

verifies the conditions of the Marcinkiewicsz multiplier theorem for the Hermite expansions

Bt |

(see chap 3, sec 4) and consequently

-1,
”T;LfHIJ < O”I " ﬁf“p, l < p < o0,

This completes the proof of the theorem. ]

Corollary 2.1.2 If fe€ LP(R"™), H" 1fe LP(R") with p > =t then u(z,t) — f(z)

a.e. ast — (.

Next we consider the other Cauchiy problem

t2 3 1
—8] 1 - | v(x,t) = - (H —n)vu(z, 1) (2.1.3)
4 2 2
with the initial conditions
o(z,0) =0, 8w(z,0) = f(z). (2.1.4)

If v is a tempered solution of this problem then it is given by

o(,8) = £ 3 B} () Pasf (). (2.15)
k=0 |
To see this we only have to verify :
a  tEO8Y 1
(oS- 2) vl =2keule (2.16)
%i_]”.j].’ult‘l,bg (t) =0 - | (2.1.7 )
, , 1 A | .
| lﬂﬂ ("—d; + if) ti(t) = —1. (2.1.8)
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That (2.1.6) and (2.1.7) are true follows from

1 /1 ,  (=1)F 272% t 2
t L2 (—~t2) it Hyriq | == T,
k\ 9 \/QF(k—kl) 2 k41 5 C
.2

Applying (—0, + %t) to Hy *{‘"*1(7%) e~ T we get

Using the explicit values for Ha9(0) given in Szegd [29] we can check that (2,1.8) is true,

Theorem 2.1.8 Let n =3 and f& LP(R") be radial. If v is the solution of (2.1.3) -

(2.1.4) given by (2.1.5) then
v(m, t)

lim
L—3{)

= f(x) a.e.

: 3
provided p > 3.

Proof : We will show that when fis radial and p > % we have the maximal estimate

fu(:n t)

lln < 17 [l

| BUp |

"To prove this we observe that when f is radial Py f =0 and

Py f(x) = ZFk_:___ (/ f(s

For a proof of this we refer to theorem 3.4.1 of [36]. Thus v(x,t) is expressed in terms of

l

eta%ds ) Li(|of?) HH.

?"" h..-l‘l-

Laguerre means of order % !

o(en, t) = CETY F(v/2el).

By appealing to the maximal theorem for Laguerre means we complete the proof. ]

It would be interesting to seec if the above theorem remains true for all functions,
not necessarily radial. We conclude this section with the following result showing a finite

propagation speed in the three dimensional case.
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Theorem 2.1.4 Let n =3 and let v be the solution given by (2.1.5). If f i3 radial

and supported in |z| < r, then v(z,t) s supported in |z] < \——}3 (r -+ t).

Proof : In the proof of the previous theorem we observed that when f is a radial function

the solution v(z, t) given by (2.1.5) can be written in terms of the Laguerre means :
1
o(s, 1) = CT £ (Vaal).

From the integral representation of the Laguerre means it follows that when fis supported

|z} < 7, Tt% f(z) is supported in |z] <o 4 (see lemma 3.2.2). This proves the theorem.[
2.2 Wave equation for the Hermite operator

In this section we study the pointwise convergence of solutions of the wave equation

OF u(,t) = —(—A + |:z;|2)fu,(:n,t)

to the initial data, We use the maximal theorem for the Weyl transform of 1, which we
established in chapter 1 in order to prove almost everywhere convergence of u. Actually
certain Riesz means of solutions « can be expressed in terms of W( 12;) and this enables

us to study the pointwise convergence,

First we consider the one dimensional case, In this case it is convenient to consider

the operator (H + %) rather than H. So, we look at solutions of the Cauchy problem

| . 1
9 ulw, t) = — (H—|— -2-) u(z, 1)

with initial conditions

v

u(z,0) =0, Gulz,0) = f(x).

Formally, the solution of this problem is given by
' ' 1\~% BEEEE
u(z, t) = (H+ -2—) gin |t (H + -2-) f(x)
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where (H + %)“é’ and sin (t(H + %)%) are defined using spectral theorem. Thus the solution
u(z,t) has the expansion
| e | 9 1/2
w(e,t) =277 ) (dk +3) 2 sin ((2.’: + E) t) Py f (z).
k=0

We establish the following theorem concerning the alinost everywhere convergence of u(z, t).

Theorem 2.2.1 Let u be the solution of the above Cauchy problem. Then

T CID

{—0 1

for a.e. ® € IR provided f € LP N L' (IR),p > 2.

In the proofl of this theorem {as well as in the proofs of other results in this section) a '
crucial role is played by the Hilb type asymptotic formulas for the Laguerre functions (see

Szego [29]):
a Nk+o-F1)
Ik + 1)

La(t) e to/? = I{~ JL(2VE1) + O(k%~7).

Here I§ = k - “;fl and the error term can be replaced by

ENTA

5 O(k5-1), k'<t<l.

Taking o = 1 in the above formula we can write

Nk +1) /4 (}_tz) e~ = (VE )5 J

Ok +3) 7 \2 (VL) = ()

b [

where K = 2k + £ and the error term my(%) satisfies
()| < Ck™T, 0Kt <1

uniformly in t. Since




the solution u is expressed as

U0 = 3 e 5 (5) RS+ St B (o)

Let us write this as

We first prove the following equiconvergence result.

Proposition 2.2.2 For f in LY(IR) we have

Jim (“(?” Sﬁf(m)) ~ 0.

t~0

N 1
Proof : For f = ¥ P f it is clear that both ﬁiﬂ and S, f {z) converge to f (z) pointwise
k=0

as t —+ 0. Therefore, it is enough to prove the inequality

sup |m. f (‘L)l < C'[ |/ (2)| d.

t>0

The operator m; is given by the kernel

my(z,y) ka(t ) () D)

where h;, are normalised Hermite functions on IR, Using the estimates for mg(t) and ap-

plying Cauchy - Schwarz we get
(mu(=,))* < C B(x) By),

where we have written
OO

B(x) = E (2 k + 1)f%(zak(m))2.

Now we use the gmemtixlg [unction

! 1o iipr® o2 2y, 2r
Zr‘l’hk Vhr(y) = w2 (1 —r?)"2e 2isr SAME AR A
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to estimate B(x). First we have
3
o e By (2))? = 77 (sinh2t)F gmo anh2t
k=0

and since

(2k+1)"7T = P(1 ) f e IR T
0

s fOS

we have the expression

1
(%)

IFrom this we obtain the estimates B(z) < C and for 2? > 1

oD
Ble) = gzt [ 17 H(sinh 21)~hemstenkatgy,
0

't > Lot —dta? —i
B(m)ﬂC/ i e dt = (a7,
0

In getting these estimates we have used the facts that sinh ¢ ~ ¢, tanh ¢ ~ ¢ as t — 0 and

tanht = O(1) as t = co. Therefore, we have the inequality

[maf (2)] £ O +2)F [ 17 @) (L+27)7 dy

and this proves the proposition,

Next we prove the following result concerning the maximal function

() = sup |SES ()]

0<t<1

Proposition 2.2.3 Let f € LP(IR),p > 2. Then
1
1S 1 [l < CHF

1
and consequently S,* f (x) = f(x) a.e. ast — 0.
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1
Proof : The idea of the proof is to express 5% f in terms of S f. To this end we make use

of the formula

D+ DD(k4 041 vy T+ DI (b 41)
P+ p+v+1) - Mk +p+1)

1
X _/ﬂ s (1 —8)" "V Li(st) ds (2.2.1)

which is valid for ¢ > —1,v > 0. Taking p = 0 and v = -;— we get

Cek+DIG+L) L/, _ip
O(k + b (Et ) ¢

bo L2

e
o(3)

IF'rom this formula it is clear that

1
f (1~ )" e‘T“ ) LY (%tzs) e~ 80 (s,
0

1 1

SYTIRVED B TR T
S0 @) =5 [ (1-s)F e T00 50 f (@) ds

which immediately gives

| '*%f($)| < C sup |57f (z)).

0<i<1

Since 5% = W () /f, the proposition follows from the theorem 1.2.2.

Combining propositions 2.2.2 and 2.2.3 we immediately obtain theorem 2.2.1.

Next we consider the following Cauchy problem for the n-dimensional Hermite oper-
ator H = —A + |a}*
2'U(:I::Jf) = —Hv(z,1),

v(z,0) = f(2), Ow(z,0)=0.

Formally, the solution is given by
v(x,t) = (cos (tﬂé) )f ().
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In this case we are unable to prove the pointwise convergence of the solution to the initial
data, This situation is similar to the case of solutions of the Schrodinger equation on IR™,
Motivated by the works [20] and {31] we now consider what may be called the Riesz means

of the solution v. These are defined by

. ! g2 =3
v (2, t) =/ﬂ (l — %—2—) v(x, s)ds.

In small dimensions we are able to prove the following theorem about pointwise convergence

of the Riesz means.

Theorem 2.2.4 Letn =1,2 or 3. Then we have

v~ g, t)

lim
{—0

= f(z) ae zelll™

provided f € LP N LYIR™), p > 231711'

The proof of this theorem is sitnilar to that of the previous theorem., We express vz, 1)
in terms ol J,,,_.l(t.li%)f which is then compared with W{(t,)f. To start with we have the

formula for the Bessel [unction

o _ 27" Lo 2)a=} giss
) = TR L (1~ s ds.

This gives us the relation

| 2-n
(tﬂ'%)“”“ J,L_l(tH%') = : f (1~ s (cos t.sHé_) ds.

1 ..l_
2

In other words

M et) L )TG) ety ) o),
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The Bessel [unction can be written as the sum of the Laguerre function and an error term

using Hilb’s asymptotic lormula, viz.

— L= 1
(V2 k + n -1 I'(k + n) 2 ) i ()

2" Wt (tV2k +n) Tk +1) _____Ln_ (1

~ The error term can be seen to satisfy the uniform bound
mpt ()| < C 2k +n)*™, 0<t <1

a(2) =

i f =T

with «(1) = and a(n) = 2 for n 2 3. As before we first prove the equi-

CYTN

convergence result.

Proposition 2.2.5 Letn = 1,2 or 8 and f € L*(IR"). Then

n—1{.,. |
lim(u t(:L-’t) Stn_lf(w))=0.

t—{

Proof : Again it is enough to prove the estimate

sup [mP 1 f(2)| < C |[ (2)|d

0<i<1 n»

where
n-—-l -—
(®) = Z my (1) P kf z).
k=0
The proof of the above estimate is similar to the one-dimensional case. If ®p(z,y) stands

1

for the kernel of P, then the kernel of m{™" is estimated by

mi = (=, y)| < CZ(% +n) 70 By (2, y)

L
2

which by Cauchy-Schwarz is dominated by (B(z)B(y))2, where

B(z) = i(?k +n)”™ @ (z, 2).

k=0
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As before, the generating function identity for the n-dimensional Ilermite functions shows
that
— 11 2
B(z) = Cﬂf (=1 (sinh 21)~7 ¢~ (tanh 20)lel” gy
0

Thus we get the estimate

mi Yz, y)| < C (1 + =)~ A + |y))~H™

where b(1) = %, 5(2) = 2 and b(3) = 1. We note that the above integral delining B(z) does

not converge if n > 3. This completes the proof of the proposition.

To complete the proof of theorem 2.2.4 we observe that S*~'f = W(u.)f and con-
sequently S™! f(z) is bounded on LP(IR™),p > 2%, Therefore, S~ f(z) and hence

”"";(“ﬁ"’f) converge to f(a) a.e. as t — 0. Hence the theorem.
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Chapter 3

SOME CONVERGENCE RESULTS FOR HERMITE AND
LAGUERRE EXPANSIONS

In this chapter we prove localisation theorems for Hermite and Laguerre expansions. This
is done using the spherical means associated with these expansions. In this connection
we study the regularity properties of these spherical means in terms of Laguerre Sobolev
spaces, We also study the convergence of Hermite - Laguerre expansions 87 f encountered
in the previous section. We show that for large o, S7f converges to f in L? norm as ¢
tends to 0 for 1 < p < co. The norm convergence of S f is equivalent to the uniform
boundedness of S on LP(/E"). Tor a large this is a consequence of the Marcinkiewicz
multiplier theorem for Hermite expansion. For other values of o we establish some L? — L¥

inequalities for these operators.
3.1 The Sobolev spaces W?(R,) and Wi (R")

In this section we discuss some Sobolev spaces associated with Hermite and Laguerre

differential operators. The usual Sobolev space H*(IR") is defined to be

HY(R™ = {f € LXR") : (~A +1)°f € L*(IR™)}

39



; . 32 2 ' . . " '

using the operator A = 5.7 Tt 2. Since we are interested in studying the regularity
)|

of T.% f(x) as a [unction of » it is convenient to define a Sobolev space in terms of Laguerre

differential operator

0. = — d? 2o+l d z”
o da? r dx 4]

Then the normalised functions

1
- 27Tk +1)\? 1 _z?
“(z) = | 3 L -‘12)
Vi) (l‘(k‘+a+l)) ’“(2% ¢

are eigenfunctions of ¢}, with eigenvalue 2k + o + 1, which form an orthonormal basis for

LRy, z?t dz). We denote the norm in L* (I, 2**  dz) by | - ||

lor @ > —1 we define
We(IRy) = {f € L*(IR4,r** T dr) : Q°f € L*(IRy,r**+ dr)}
where ()2 is defined using spectral theorem. In other words
/= Sl

belongs to W/ (H2,) il and only il

o0 . _ 1/2
(Z(% +a+1)* (/, dJE>n‘2) < oo.
k=0

Here {,)q denotes the obvious inner product in L*(MRy,r***'dr). The last expression

defines the norm denoted by |- [, in W2(IR,),

Similarly one can also define the Hermite Sobolev space W3, using the Hermite
operator H = —~A + |2|% Thus [ = 5° P(f) € Wi, (I2") if and only if
| k=0 -

S (2k +n)°P(f) € LA(IR™)

k=0

We use the same symbol | - |, for the norm in W} also.
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We now prove an tmportant properly of the Laguerre Sobolev spaces. The following
proposition says that multiplication by a suitable function transfers functions from one
scale of Sobolev spaces to the other. This fact is crucial in the proof of localisation thieorem

for both Hermite and Laguerre expansions.

Proposition 3.1.1 Lel a > —1 and let ¢ be a smoolh function on Ry which satisfies the
following condilions:

(1) v = 0 near the origin in I,

(¢2) | (-j%)j e(r)| = O (,—%ﬁ) asr — oo forj= 0,1,2,3...2m.

Then the operator My + W * (IRy) — W 5, (M) defined by My, f = p - f is a bounded

operator for all s < m,

The proof of this proposition needs the following lemmas. Before stating the first
lemma we introduce, for each nonnegative integer k, the class Cy, consisting of all smooth

functions on I[Z4, vanishing near 0, also satisfying the decay condition, I('cf?)J‘P(”)I =

@, (,_ﬁfkﬁ) as r — co. The class O}, satisfies the following properties: (i) Cryy C Ch. (i1) If

0 € Cr, o € Chqy, and 1 € Cpy , for k> 1. (iii) IFp € Gy, 0 € Cry;.

Lemma 3.1.2 Under the above assumptions on m,p and o we have

k
— d - :
et Mo QL™ = H%:S‘m My, (R'F) Qe ™ with ¢ € Cg.

Proof : We claim that Q7. M, can be written as a linear combination of the form

d k
a1 My = Z: Moy, (&T) Qe (3.1.1)
i+-k<m
with ¢ ; € Cy. First we note the following relations
d
Qfx pr = AJ@ Qﬂ' - 2Mf#’ '&; "— ﬂ[(¢rr+£%ilwr) ( 3.12 )
2 d
Qﬂ-}-l = er T

rdr
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Using this relation in the above we get

d

e A/[{lﬁ”-i-u-w tys

Qoctt My = My Qo — 2 M(w+~‘ﬂ) dr

We also use the relation,
) b d o h—1 ING ( d k-7
Qe (‘a‘) - (z?) Qat 3 by (7) (:;r)
d\ ! d\
oy 7 (E;) +_c2 (I) (3.1.3)

where b;, ¢y, co, are constants. This can be easily proved by induction on k. We prove
(3.1.1) by induction on m. (3.1.1) is clear for m = 1. Assume (3.1.1) for m = j. Now,
2 d
+1 g
Qi—{-l (Qa a ;E“

) (@ M)

J k
e — E - 4
(Qﬂf - P d? ) (t+L<J ﬂ{{pkt (d?..) Qﬂ')

o d\* L d AP
Z Qﬂ (}M*ﬁ’k,t (E;) ch) — 2 E ?”d?‘ M‘Pk,t (2;) Q-ur

1

|

tLh<y t4h<j
= S My, Qu—2M,y =~ M, 4) g
— s g wa Pkt oy (v} , +%9~ﬂ-wkt) dr o
2 d d\*
—_—— — M, — .
r t_l_z.tr:(ﬁ d?' A Pkt ( ) -Qur
d d\*!
- Z MwmQﬁ ( ) Qt —2 Z MwL_, ('('E') L
I4-k<] 13 ]
k
d 2 d
s (Y -2 5 (2
t{;; (‘P + (Phg) d,r Tt._l.zk;_:j P, dT
d k+1
2y M (—-—) Q. (3.14)
H;J R dp

In the above computation we have used (3.1.2). In view of (3.1.3), the first term of the

above 1s

kL kL

dq t+1 = 1 i ' - d - {
= S () @D u (D) T oM () @

42



d k-1 d k2
+ Z ¢ My, , (""‘) @L-?- z cq My, , (——-) QL

> S 5 n (3w (£) e
= M;m()QJr (2] M (--) t
SNASE ! ) dr (=0 14h<] 3 Pk ¢ A
d k-1 d k2
+ Z cLr A-/[w.-,e (“’") Q; - Z 2 M;pk_, (-*—') Q; (3.1.5)
(k<] dr (+E<] dr

Now by induction hypothesis we have @ € Cj. Note that in the second term of the
above the coellicient of (;}f—;)kmf QY is (1/r) ks We have (1/?‘)£50k,; € Ciryi C U C G
for ¢+ > 0 and also r¢; € Ci—y1. Hence the first term in (3.1.4) is of the required form.
The second term of (3.1.4) can be written as —2 3¢ pcjpq Moty (j‘f;)k Ly and @y € Gy

by induction hypothesis. Therefore ¢’;_,, € Cy in view of (iii}. Hence the second term

of (3.1.4) is also of the required form. In the third term the coeflicient of ( ) (: s

M(w}‘;'; yrefl ) and ¢y, 2ot ©ys € Crya C Oy by induction hypothesis and in view of

(i),(ii) and (iii). Similarly -}, occuring in the fourth term belongs to Ciya C Ck. Also

Loy, occuring in the fifth term € Ciy.y C C. Therefore (3.1.1) holds for m = j + 1 also.
k .

Thus wehave T'™ f = Qo My, Q27 f = 2prhem Moy, (j‘f—) Q'™ f, which proves the first

lemma.

Lemma 3.1.3 (%)IQL . LRy, r?t dr) — L*(Iy,r?9* dr) is a bounded operator

whenever ¢ 18 a non negative integer and 1 +1¢ < 0.

Proof : We prove that £ @ is a bounded operator on L*(Miy,r*** dr) for 1 +¢ < 0.

We first note that

S = - (HHO) + (4 + DPGNE) . (316)

This can be seen as follows: Using the relations & L§(r) = — Lyt () and D¢~ L§H = L%,

we calculate

d o1 2\ -2\ _ cr—i—l(l ) } ﬂ(l ?)) -
d?(l’(z)e)" (L ot ) Talelgrt)) e
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. » / 1 . 2
- 3 (ex () e (5) o3z ()
; (La:r-i-l (2 ) +Lcr+l (é_ 2)) E_L'!E.

Now (3.1.6) follows from the definition of g, Let f € L?(MRy, 2%+ dr). By definition

i--b.:ifl—'-

H

d = NEOE ;
TQaf () =3 2k + o+ 1) (f,9])a -j;w:(r), (3.1.7)

k=0

and using (3.1.6) we get

GO = =53 (ke ek )R IO
\;ié(gkwﬂ) (k+ a2 (F, )0 o)
=~ (Tf(r) + 57 (r) (3.1.8)
where
TF0) = 3@k -+t DRI BE) (3.1.9)
and )
Sf(r) = §(2k+a+l) (k +a+ DY (f, 9.2, - (3.1.10 )'
T'herefore, - -
5@ @l S 75 AT Ol + I SF0)) (3.1.11)

Now using the expansion (3.1.9) we calculate,

JE—
f " T f (r)|* r2e+ oy
0

QO

> 2k +a+ )"k [(f,97)al’

k=1

Al T ()2

|\

SN2k + ot 1P B0)al
k=1 |
SN B0P = I8 (3.1.12)

N

b=}
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since 1 +t <0, Similarly one can see that
=S5 < NIFI1Z (3.1.13)

Using (3.1.12) and (8.1.18) in (3.1.11) we see that | £QLfla < V2| f|l« for 1 4+¢ < 0.

Similarly one can show that | (j‘%)} Q- flle < el f|la for some constant ¢, whenever §4-¢ < 0,

which proves the second lemma. 0

Proof of proposition 3.1.1 : We have by definition W3 = Q_*(L*(R,.,r**t dr)).

Therefore it is enough to prove that
S M, Qs LA Ry, r** dr) — LY(Ry.,r?* dr) (3.1.14)

is a bounded operator. Put

T'f = Qoya My Q5 F. (3.1.15 )
Then clearly,
7% flass = N f llats
< colifllas (8.1.16 )

for some constant ¢y independent of f. We will also prove that, for any positive integer

™m

[T F s < el £l (3.1.17)

for some constant ¢ independent of f.

Assuming (3.1.17) for a moment choose f; € L*(LRy,r2°"'dr) and g €
LA R, r%>*t dp) to be finite linear combinations of ¥&'s and Yg+!%, respectively. Con-
sider the function ) which is holomorphic in the region (0 < Ra(z) < m and continuous

in 0 < Re(z) < m, defined by:

h’(:‘;) = (Tzfl y .Ul)ﬂ*H_: ( . ;}-] J\J‘F Q;zfl 3 ﬂl)ﬂr—{-l (’3¢1.’18 )
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Then by (3.1.16) we have,

I

|<QHI-J M, QY1 91)ar]
l((p(?")fl 3 .‘jl)cr-l-l‘

|1 (i )|

i

where fi = Q.Y f1, and §) = Q. 91. Therefore,

Ih’(iy)l < ”Tﬂfl“cx-i-l ||§1||ﬂ,+1

< ¢o 1 Fille N1 Yot

and since both ;% and Q3 are unitary operators, we get

h(i)l < eollfilla lgnllars
Similarly by using (8.1.17) we get

hm +iy)] = KQuit’ M, Q™ Vi, 91)atil
= [(Qay1 M, Q2" f1, G)at]
1™ Filleeta |Gt il -1

¢ || filla lgall o

7A

|\

Thus we have

1(iy)] < co [ Fille llgriless

(i ig)] < e | Fillo 192 fasa

bince h is a bounded function we have by three lines theorem

: -
| h(t4+iy) 1< el || fille Hgillatas

for 0 <t < m. In particular,

Il— ) .
)] < e ™ ™ | filla 91|
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that 1s,
14 1-
(T, 901 < o™ ™ /™ 1 lellgi ot

Now taking supremum over all such g; € L*(MRy,r2°t3dr) with {|g1flas:s < 1 we get
1Tt fillar: < e "t Ci/m | filla: Therefore T'* is a bounded operator on a dense subset of
LAy 2t dr). "Therefore it has a norm preserving extension to LAy, r*e*1). Thus
we have

1T f ot < e )1 f s

Ve LRy, r?t dr), for 0 <t < m, which proves (3.1.14).

To prove (3.1.17) we proceed as follows. By Lemma 3.1.2 we see that T ™ f is of
the form 3 M, ( ..) @™ f. Also by Lemma 3.1.3 ( ) Q™ defines a bounded

t+h<m
operator on L?(My.,r?+! dr), whenever k+t~m < 0, Since ¢y, satisfies the conditions (i)
and (ji) of the proposition 3.1.1 for j = 0, it follows that M,,, maps L2(MRy,r 2%t dr) —

L?(IRy,72°% dr) boundedly. Thus we see that |7 ™ f||er1 < c1llf |la. This completes the

proof of the proposition.
3.2 A localisation theorem for Laguerre expansions

In this section we prove a localisation theorem for Laguerre expansions using Laguerre
means. There are several types of Laguerre expansions on I, = (0,00) studied in the
literature. The first one concerned with the Laguerre polynomials L§(z) which form an or-

thonormal basis for L*(MR4,e™® 2% dr). Thus every f € L*(JR4,e~® 2° dr) has the Laguerre

expansion
b

z: kak LT (@

k=0
with a; = fu f(z) Li(z) e i’:u”da: and ¢’ = fy*(Lg(z))?e " a*dz. Considering the

functions (P&(_‘:"_z_ll_)ll)lﬂ L¥(z)e™% 27 as an orthonormal system in L?(IRy,dt) we get an-
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other type of Laguerre expansions. A third type of Laguerre expansion is obtained by con-

et
1

sidering the functions ¢ (x) = L§ (%1 2) e” 1 as an orthogonal system in L2(MRy, z 221! da).
Several authors have studied norm convergence and almost everywhere convergence of Riesz

means ol such expansions. Some references are Askey - Wainger [3], Muckenhoupt [14],

Gorlich-Market§ [8], Markett [12], Stempak [25), [26], Thangavelu [32]. For various results

concerning Hermite and Laguerre expansions we refer to the monograph [36].

. _,:, L
Here we will be dealing with the Laguerre functions ¥§(z) = (2F(k£g:11)))2 i (z).
which form an orthonormal basis lor L*( IR, 2% dz). Thus every f € L*(IR,, 2 2%t de)

has the expansion

0

f= S{fHYMa¥f

k=0

Reacall that the Laguerre mean T.% f(z) of a function f on IR, is defined in the

introduction by

1.9f(z) = 2 11(/%_'- 2 fD Wf((w*2+zﬁ+2rzco.50)1/2) (3.2.1)

1 . ‘
JTI/E(? r 2 sinb) sin”*0 do.
(37 2z sind)e—1/2

We have also seen that the Laguerre means have the series expansion

T,7f(z) = 3 (Frdi)a B (r) i(2), (3.22)
ol
for r > 0,2 > 0, > —1/2. We start by proving the following regularity result for the

Lagueri'g means in terms of the Sobolev space Wi(R,).

Lemma 3.2.1 Let f € W then the following hold :
(2) For z £0, T*f(2) € Wa5+%+“l (IRy) as a funclion of r.
(i) T2 f(0) € W2, if and only if f € W (IRy.).
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Proof : The proof needs the following asymptotic estimates. See[11].
(k1)

'k -+ e - 1)

b(z) ~ woTkTM12% |27 F cos (x/?kz C;’T D o z#£0 (3.24)

925

T e+ 1)

kT (3.2.3)

K% as bk — oo (3.2.5)

=
ke
o
-
o S
{

From the above series expansion (3.2.2) for the Laguerre means we see that

g 2 _2a4l P AT (v 2 - 11(;13_'_1) r Tay |27 2
| Ine @) et = 2T ) Sy 1 0 I
< O L (L+R)™ (14 + k)77 |(f, P5)al? (3.2.6)

for z # 0, in view of (3.2.3) and (3.2.4). Also in view of 3.2.3 and 3.2.5 we can see that

f, T me s~ 2K d (3:2.7)

Now recalling the definition ol the Sobolev space W2 (M), from (3.2.6) it [ollows that
T>f(2)€ Plfgq+%+% (My), as a [unction of » whenever f € W 2(I2,). Similarly from (3.2.7)
it follows that f € W2 (IR,) if and only if T,% f(0) € W} (IR,). N

Now we prove a very usclul property ol Laguerre means.

Lemma 3.2.2 (1) If [ is supported in 0 < 2 £ b ,then T,%f(z) as a function of r is
supported in 0 < r < b+ z.
(42) If f vanishes in a neighbourhood of z then T.* f(z) as a funciion of r vanishes in a

neighbourhood of origin in I1,..

Proof : If f is supported in z < b then the integral (3.2.1) vanishes unless (r?* -+ 2? 4
21 2 casQ)I/ 2 < b. This implies (r — 2)? < b2 Therefore the integral (3.2.1) vanishes unless

r—z| < borr < b4z which proves (i). To prove (ii) notice that if f vanishes in a neighbour-

hood {|y—z| < a},a > 0 of z, the integral (3.2.1) is zero if |(r2 422421 2 cos0)? — 2| < a.
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Since z is fixed this says that the above inequality holds for » in a neighbourhood of 0.

Now consider the continuous [unction
g(r) = |(r2+ 22+ 2r 2c0s0)/? — 2| — a,

defined on IR,. We have g(0) = —a < 0. Therefore g < 0 in a neighbourhood of 0 as well. -

This means that for » in some neighbourhood of 0 we have |(r2+ 22427 2 cosf )/? - 2| < a.

Thus T.*f(2) = 0 in that neighbourhood.

Now we are in a posilion to prove a localisation theorem [or Laguerre expansions.

From the the series expansion (3.2.2) using the orthogonality of )2 we see that
20 ~ ~
[ 7T o) dr = 27 Do+ 1) (7,580 $EC2).

In view of the relation 3N Lg(x) = L3*!, we see that

[l
1=
3
=
=R
"E_.--"'
£
o
S

Sy [ (2)
k=0
2"""& D50 N
_ Tcr oy ,2::r+1d
F(CE + l) /U y f(Z)ﬁgncpk(?)? r
_ 27" 0 T o1 ,2a+1d. 3.92.8
— 11({:'[ "l' J_) ./{; "zr f(z)tPN (T'JT T ( i )

Using the above representation for the partial sums it is easy to prove the following theorem:

Theorem 8.2.3 Let @ > ~1% and let f € L*(IRy,z?** da) be a function vanishing in a

a1l
neighbourhood B, of a point z € IRy. If w € B, is such that T.%f (w) € Wo* (I}, as a

function of r, then Syf(w) =0 as N = oo.

Proof : The proof uses the following fact: 1f g € LE(R+,r2“+1 dr), then the Fourigr—

Laguerre coeflicients {g,?};f)ﬂ — 0 as k — oco. Recalling the definition of ¥§ this means

that
[ 7 gy eyt de = o)
0

50



as k — oo, Also if g € W2(I,) then,

| o) en() ettt = o) (3.2.9)

as k — oo, From (3.2.8) we get

opy o 27° ©1,°/{(z) . o
‘ng(z) - F(Ct"‘i“ .l.) A ?,‘g SDN%I(?‘)TZ +3d‘?’.

Let h be a smooth function on IR, such that h(r) = 1 on the support of T.%f(2) and
h(r) = 0 in a neighbourhood of the origin in My, Put A(r) = }iﬁ—l Then the above
equation can be written as

g7 [
SHIG) = Toa b MO TS () eR ) rie

Y e P sl P . o
Now il T.%J (2) € Wa? (M), we have by proposition 3.1.1 h(r)T.2f(2) € Wi(ﬂh).
Therefore by (3.2.9),

Suf(z) = o N CSF+5)) = o(1),

as N — oo which proves the theorem.

In view of Lemma 3.2.1, if f € W./4(R,), then T.f(2) & FVfF(JRJ,), for 2 #£ 0,

Thus we have the following corollary to the above theorem.

Corollary 8.2.4 If f € WMYIR,) then the conclusion of Theorem 3.2.3 holds. at points
z £ Q.

3.3 A localisation theorem for Hermite expansions

In this section we prove a localisation theorem for Hermite expansions. The techniques
involved are essentially the same as in the previous section. The fact is that the spherical
mean involved in this case is the Weyl transform of the normalised surface measure p, on |

the sphere in €'". We start by recalling the definition of the Hermite functions.
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The Hermite polynomials Hy(x) are defined on the real line by

. 2 dk —2 y 2
(—1) Tk € = Hp(z)e ™,

. 2
Then the functions hi(z) = Hi(z)e™7 are called the Hermite functions. The normalised

~ functions hi(z) = (5 kﬁﬂ)l/gfzk(m), k= 0,1,2,... form an orthonormal basis for L?(IR)

and they are also the eigenfunctions of the differential operator H = dff -2, called the
Hermite operator, with eigenvalue 2k -1, For cach multi-index & = (@, ++, ¢, ), we define
the Hermite functions on IR" by ®, = [1l.; ha,(21), @ € IR™ Then the functions &,
are the normalised Hermite functions, and they are eigenfunctions of the n— dimensional
Hermite operator —A + |z|? with eigenvalue 2|a| + n. The cqllection {Pq}a forms an

orthonormal basis for L*(IR™). Thus for f € L*(JR") we have the Hermite expansion

[ (%) = kil%f(a:) (3.3.1)

where Py is the Hermite projection operator

Pyf (z) = Z (f, ‘I)cr> O ().

|or|=%

We have seen in the introduction that the Weyl transform of the measure u, has the

expansion

W(g,) = § (Z!_(jlnu_li!)! wr(r) Py . (3.3.2)

l":2 .
where @i (r) = L}~ (3;) e” T denotes the Laguerre functions of order n — 1.

We start by studying the regularity properties of the operator W{ 4, ) in terms of the

above Sobolev spaces. We prove the following:

| : - | onet
Proposition 3.3.1 If f € WA(IR™), then W(u,)f (£) € anl * (IR}), for almost every
¢e m, ' |
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Proof : I'rom (3.3.2) we get

QW () (@) =

Integrating {from 0 to oo with respect to the measure »**~!dr and using the orthogonality

of (HLE=U)! 245, (1r) we get

(k+n—1)!
. kl(n—1)!
W O I I 2 el = , 23+tn-—-1 : 2'
| I ()u' )I(T)Ia n-l k;](k-l-ﬂ—"l)' (2A+T1) lpkf(/r’)‘
Now integrating both sides over IR", using (i!-(;:;.:ll))!! < C(2k+n)™t, and the fact that P

are orthogonal projections we get

Jra W ()S @Nepate < 3 26+ )™ RS ()

k=0

<CNH fllz=CIfIs.
Thus it follows that for almost every @ in ™ |W(u,)f (2)],4.2:0 < 0o whenever [f], < oo, .

which proves the proposition. - ]

The next lemma is analogous to lemma (3.2.2) in the case of Laguerre expansions.

Lemma 3.3.2 If [ = 0 near a point &g € ™, then W (i) f (o) as a funclion of r vanishes

i a neighbourhood of 0 in M.

Proof : Recall the integral representation for W{ u,)f (€) given in the introduction,

W(pe)f(€) =/ e +ze) F€+y)dus(z,y) (3.3.3)

m:z,*_yz:,,z
From the above integral we notice that if f = 0 near a point {; € IR", then f ({4 y) is

also = 0 for small |y|. Thus it follows that for small r

/  ietkse £ (¢ 4 y)dpp(z,y) = 0.
12 y2=r 2

This proves the lemma.
Now we are in a position to prove a localisation theorem for the Hermite expansions.
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Theorem 8.8.8 Let f € L*(IR") be a function vanishing in a neighbonrhood B, of a point
v € ™. Ify € By is such that W(u,)f(y) € Iflf’;,_’f_/lz(ﬂh), as a function of r, then

Snf(y) =0 as N — oo,

Proof : The proot is similar to the proof of theorem 3.2.3. From (3.3.2) using the ortho-

gonality of ¢ we sec that

Pef (€)= [ W(wn)f (€ pulr)r*™dr.

Therefore using the relation Y po Ly '(t) = L} (t) we can write the partial sum of the
Hermite expansion in the form
N 00
swm=;mmwj W (1ar) J (€ @y(r)r "= dr,
By lemma 3.3.2 we have W{( g ,)f (y) vanishes (as a function of r) in a neighbourhood of 0
in IRy for y € B,. Let h(r) be a smooth function on IR, vanishing near zero-and =1 on
the support of W(p,)f (y). Letting h(r) = Lh(r), we get
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Sn () = [D M)W (e £ (y) @(r) r2™ dr (3.3.4)

since W(p,)f(y) € W, ”/12(]l2+), in view of the proposition 3.1.1 we have A(r)W (i, ) f (v} e

n_

W.M2(IR,). Thus as in the case of localisation theorem for Laguerre expansions we see that

right hand side of (3.3.4) is = o(1) as N — oo, which proves the theorem. ]

In view of the proposition 3.3.1 we have the following corollary to the above theorem.

Corollary 3.3.4 If f ¢ WI}/Z(]R"), then the conclusions of the above theorem holds.
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3.4 Convergence of Hermite - Laguerre expansions

In this section we are concerned with the pointwise and norm convergence of S2 f to
f as t = 0. Recall that S7f is given by the expansion
= 'k + 1)+ 1)

Siﬂ'f ({U) — ;;; F(k '"'le+ 1)

1
L (51" )e " Pi f (a).

T'his expansion may be called the Hermite-Laguerre expansion of f and the convergence
of S7f to f may be considered a new summability method for the Hermite expansion.
As S f = W(py) f the following theorem is a restatement of the maximal theorem in

chapter 1.

Theorem 3.4.1 Let f € LP(IR"), p > 532, Then S""'f(2) — f(z) a.e. and also in

the norm.

We are interested in knowing similar properties of S with 0 < o < n —1, For a big

enough we can obtain norm convergence as can be seen from the following result.

Theorem 3.4.2 For [@] > %, SPf converges to f in the norm, as t — 0 for f &

LPIR™),1 < p < oo.

- We will prove the above theorem by appealing to the Marcinkiewicz multiplier the-
orem for Hermite expansions. If {m(k)} is a bounded sequence, then the operator 1,

defined by
T f = kim(k)l’kf
=0
is clearly bounded on L*(IR"), hut need not be bounded on [P(IR™),p # 2 unless some
more conditions are imposed on the sequence. .A suﬂ’lcieljlj condition on m(k) is given by’

the Marcinkiewicz multiplier theorem proved in [36]:

e T
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Theorem 3.4.3 Let A be the finite. differenee operator defined by Am(k) =
m(k+ 1) —=m(k). Assume that J > g and forj =0,1,2,.-.J the ilerated finite differences
Aim(k) salisfy

|ATm(k)| < C; k™

where C; are independent of k. Then the operator Ty, is bounded on LP(IR™), for1 < p < co.

In view of this multiplier theorein we need only to verify that the sequence

] F(k + :-)F(ﬂ:-l— 1) o (1o _1p
) = G tat1) (Et )E 4

satisfy the above estimates uniformly in ¢ for [a] > %. Using properties of the gamma

function one can easily verify that the sequence

[k + D) (e + 1)
C(k+a+1)

my(k) =

satisfies the required estimates. T'herefore, we have to consider the Laguerre polynomials

alone. Now, the Laguerre polynomials verify the relation

i () = LE() = L™ (1)

and they also satisly the uniform estimate, for « > —-é,

ik + D{ee + 1)
[(k+ a4 1)

for all t € IRy, k = 0,1,2,--. Therefore, if we use these two properties of the Laguerre
functions, it is not difficult to show that the sequence {1¢ ()} verifies the conditions of the

Marcinkiewicz multiplier theorem uniformly in ¢ as long as {a] > 7. This completes the

proof of theorem 3.4.,2.

Now it is natural to ask the following question : what is the smallest value of & such |

that S will be uniformly bounded on LP(IR™) for all 1 < p < oo 7 We conjecture that
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2 a4 , . -—-1 . ' " '
this critical value of o is (*5~). We do not consider this problem here, instead we look at
. ' / "
the worst case, namely o = 0, and prove some uniform L? — I* estimales for the operators

Stﬂ. Whﬁﬂ &Y = O let us suppress « E't-l].(l Wl'ite Lk(t) — LE_(t). We COHSidGl’ the Opgratgr

- 1 1
Stf — z L;; (Etz) Euztzp,t;f.
k=0

For this operator we prove the following result.

Theorem 3.4.4 For f,g € LP(IR"), +1 < p <2 we heve the estimale

[ st g)Peat < CF 1R ol

As a corollary of this theorem we obtain the following interesting estimate regarding

the Hermite projection operators.

Corollary 8.4.5 For f € LP(IR"), 2% < p <2 we have

STPS R < ClIFNIES
k=0

Proof : By taking ¢ = f in the theorem we have
= r 2 4
[ RSP L < Clf
But since Py are projections
s -Fn () cteram

The proof of the corollary is completed by noting that the family {Lk(%tz)e"%t:} IS an

orthonormal basis for Lg(_ﬂh,idi)-

Fstimates _of the form

1B lla < CRTD|IF

57



are called LP — L* restriction theorems for the Hermite projections and they play a crucial
role in the study of Bochner-Riesz imeans for the Hermite expansions (see [36]). It is
conjectured that

|Pef Il < CREG=D2) 1,

211.

for 1 < p < =%, This conjecture has been verified only for the radial functions. The result

of the corollary supports this conjecture.

We now turn to the proof of the theorem. We require the following two propositions.

[first we study mapping properties of the operator

00 N k
Kif () =) gzii 1) P f (=)

k=0

for ¢ real. Using the generating function identity {also known as Mehler’s formula)
z Golz) Po(y) tlﬂ'l =% (1 — ig)"‘f e ?%LT“"”F'H”FH“J?T”‘” (3.4.1)
for 0 < { < 1 we can calculate the kernel of this operator. We can write

Kif (@)= [ Kile,0)f () dy

and the kernel is given by
Ky(,y) = co(1 —2it) " ¢77 ¢ Blhat)

where B is real valued. We refer to [31] for this easy calculation. We are now ready to

state and prove the following result,

Proposition 3.4.6 Forl <p<2andi>0

e
15 <C (75) Ml
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Proof : By Riesz - ‘Thorin convexiby theorem it is enough to show that

,, b \"F
1K lleo <€ (7555) 111

1l < CHLF o

~ The first inequality follows {rom the explicit formula for the kernel and the second one

follows from Plancherel theorem {or the Hermite series since (2*:‘ 1

2”_1) is of absolute value 1

for real t.

In the next proposition we express the Laguerre functions Ly(t) e~/? as the Fourier

transform of certain functions.

Proposition 3.4.7 [ort > 0 we have

o0 _ Y 15\ K
Lk(t)e“%‘::l/ eritr ] (2*_”7) ds.

00 218 — 1 \218— 1

Proof : The Laguerre functions are given by the generating function identity
Z?'kl}k(t)e' = (1 —1)_18"5'%i'i
=0

for |r| < 1. Therefore, it is enough to show that

1 oo i1 1 (2 k (233""‘ 1)k ,__1 L...’l:_.
- ; ds = (1 — ;1
° 218 — 1 Z? 218 — 1 s=(1-r)

H J 00 | k=0

for ¢ > 0. The geometric series on the left hancl mde can be summed and the mtegral can
be evaluated using residue theorem. The value of the integral turns out to be zero for ¢ < 0

and for ¢ > 0 it is just the right hand side of the above equation, We leave the simple

calculations to the interested reader.

We now embark on the proof of theorem 3.4.4. Since

Stf: E L, ( ) ﬂ"%tn(Pkﬂg)

k=0
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and we are interested in the L% norm

f, Ksdafed= [ 713 et ps o) de

In view of Plancherel theorem for the Fourier transform on IR and proposition 3.4.7 we
only need to show that

o« ]

'm 1 4 12

(K S, g)*dt < OIS Mgl

By the result of propositon 3.4.6 we know that

L1

, { ~n(5—3)
(N <C (=) Il ol

and hence the above integral is dominated by

49 9 2 00 1 f —-211{-——-—)
U [ ()

This last integral is [inite provided ;5% AL < p < 2 Hence the theorem, ]

Theorem 3.4.8 Let a2 0,8 > s and -3-1"- < p <2 Then we have the uniform estimates

IS¢ F o < CNHFllpy S € P(R).

Proof : Since for « > 0, 52 can be expressed in terms of 5y, 1t is enough to prove
a uniform estimate for the functions S;f. To obtain this we need to get an estimate on
sup |(S:f, g}| and this is achieved by the following trick, If a function F(t) on [0,00) has
£>0 | | -

the expansion

Zak Lk

k=0

then

(E(2k+ﬂ)””la \2) (E(%Jrﬂ) 2"\L(;f)\2 "‘) ..

k=0
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As the Laguerre functions Ly(t)e™? are uniformly bounded for ¢ > 0,k =0,1,2,.. the

second sum is finite provided s > %. Thus il s > > we have
- 2 i
160 < C 3 (2K +1)* |ar %
_ k=0 |
Applying this trick to (5, f, g) we have
sup [(Sef, )" < O 2 (2k+0)* [(Pf, o)

= ( ST Le(t) e (P (1 1), g)| ot

0 k=0

where H°® is the {ractional power of the Hermite operator defined by
°f=%(2k+n)P.f.
k=0
Appealing to theorem 3.4.4 we see that

sup |'(Stf,g)| < CHHHf”p”L‘]”P
>0

for fﬁ < p < 2,5 > 3 which proves the theorem.

'I'he above theorem shows that the operators §¢ are uniformly bounded from the
Hermite Sobolev space WiP(IR™) into LP (IR"),. By allowing larger values of s we can

show that S are bounded from WP (IR™) into LP(IR").

Theorem 8.4.9 Let o > 0,5 > 2 and 1 < p < 0o, Then holds the uniform estimate

1Sefly SCHEf ey S € LP(IRT),

Proof : We follow a similar line of reasoning as in the previous theorem. The proof is
reduced to showing that for s > 5

o ]

oo 1+ 12

(K H 0¥ dt < Cf I3 gl
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This is guaranteed if we show that

(4

2

K™ |ly < Cf Yoy s >

sup |
{>0

The kernel of the operator I(; ™ can be explicitly calculated - this has been done in [31].
We refer to page 15 of that paper. Irom the calculations there it follows that the operator

is uniformly bounded on LP(/t"),1 < p < oo provided s > £, This completes the proof of

the theorem.,
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Chapter 4

ANALOGUES OF BESICOVITCH - WIENER THEOREM
FOR THE HEISENBERG GROUP

In this chapter we prove analogues of Besicovitch - Wiener theorem for the Heisenberg
group H™, We consider discrete measures of the form p = i} ¢; 6(a;) with {¢;} e ' n 12,
=
and consider spectral decomposition of i in terms of the eigenfuctions of the sublaplacian
on /1", Lor this expansion we prove an analogue of Besicovitch - Wiener theorem. We also
consider measures of the form gdu,, where ¢ is in L*(JR) and p, is the normalised surface
measure on the sphere |z| =1 CO'™ C H" and prove Agimon - Hérmander type theorem
for this expansion. We can also replace.g by the measure ¥, ¢;d,; with {¢;} € [2 We also
consider the case of [lermite expansions on 2", We prove analogous results for measures of
the form f dvy where v is the normalised surface measure on the sphere |z| = 1in IR" and

f is a square integrable function on this sphere. This is done by using a Hecke - Bochner

type theorem for Hermite projection operators,
4.1 Fourier transform on the Heisenberg group

The (2n -+ 1) dimensional Heisenbeg group H™ is the set ¢ " X Iif with the operation

1
(z,1)(w,s) = (z + w,t+ s + -2~I?nz.1'ﬂ)
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where z,w €0 ", t,s € I, The Fourier transform on the Heisenberg group is defined using
the infinite dimenstonal Schrodinger representations my indexed by nonzero reals A, These
are all realised on L*(MR™) and are given by my(z,t)p(£) = "M ¢ et+zow) ©w(é+y), for ¢ in
[*(IR"). Consequently the Iourier transform of a function f on H™ is the operator valued

function
F(\) = f [(z, 1) ma(2, 1) dz dt.

The Plancherel formula then reads
1715 = @M~ [IFOsiAra.
where ||7" | irs is the Hilbert - Schmidt norm of the operator T.

Our point of departure is the following spectral decomposition of functions on H ™ in

terms of eigenfunctions of the sublaplacian on H". Ior f € H™ this expansion reads
() = (2m)™" 71 3 ] * er(z,1),
h=1)
And the Plancherel formula for the above expansion is

Ilf||§=2ﬁr§]f@"f_m 1 % ez, 0)[? dA dz.

Here e} are the elementary spherical functions defined by

ei(z,t) = €7 pj(2)

where pp(z) = LE“I(%\AHzF)e“”?lI'P““z'z, LE~! being the Laguerre polynomials of type
(n—1), Tor various properties of Fourier transform and spherical functions we refer to [33].

The book of Iolland [7] gives a nice introduction to the Heiseriberg group.

We now state and prove an analogue of the Besicovilch - Wiener theorem for the

ITIeasure

oD
w= Y ¢;6(zt;)
7=0 |
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where 6(z;,1;) is the Dirac measure at the point (7;,{;). We need various properties
of the Laguerre functions @i(z). They satisfy the orthogonality relation @) x ¢;(2) =
(27)" pi(2) Ok,; where Ok ; is the Kronecker delta. Here ©r X @;(z) denotes the twisted
convolution frr» pr(z — w) @j(w) ez Im2T oy of @i and ;. They also satisfy the product

formula.
i kl{n — 1)
____ - [z AT —
A/|w|=r (Pk(z w) dﬂr Ui? +n~—1

 where @i(r) stands for @g(w) with hol = r, and p, is the normalised surface measure on

)1 (PF»(T) (lok( )

the sphere |w| = r. We also need the following generating function identity

1 _ itir Is Jn._ (trst

Z U‘f n—1)! wr(r) or(s) 12% = (1— ) (ugt_)n_l .

For these formulas we refer to [36]. We frequently use the following Tauberian theorem.

Theorem 4.1.1 Let {«;}, {A;} be sequences of real numbers such that «; 2> 0,
Aj = jl/n + G(J'l/”). Then the following are equivalent :

(1) ZE;I =N ;5 =2 Cp ™ (") gge |0

(2) S o = co (D — L+ 1))7H N 1,

A proof of this theorem can be seen in [30).

Theorem 4.1.2 Let p = Y32, ¢; (;,t;), where the sequence (c;) belongs to I'N1* and the

24 "s are distincl. Then

: - 2 (2m)" & 12
i E e breotin= 2 S

Proof : We have ep(z,t) = ¢~ @i(y/|Alz). Therefore,

! N
wxep(z,0) = ./:q“ ep (z — W, =8 — -Q-(Imz:.w)) du(w, s)
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Therefore,

[on % bz, 0" dz
/Gn ECJ Cp € e Mty g Imaz; =2y )‘F’k ( |)\|(z — 3.:)) Pk ( Al(z - zp)) dz

I
= Sey e o) [, A g (/= ) e (IGe - 5)) de

The lnterchange of the order of integration and the sum is justified by Fubini’s theorem

since (¢;) is in {! and

Jiston (VI = 2)) How (VI = 2)) L de < A [ w2 da.

A simple calculation shows that
[a @9 o (Vi - 2)) o (VDI ~ 2)) ds
s e (4 - )

2m) P e o (X2~ )

{

Thus we have

[ lix ez, 0" dz
= (20)" A7 3D 0 G e iR Im B ( |A|(z5 — zp)) -

hp

Now we consider the sun
Z i y f*f L h“‘!’ ¥ ei(z![})lzd'g'
k=0 (L
As the functions ¢x(z) are uniformly bounded (in fact, |px(2)| < ¢k ), we can first sum

with respect to & to gef

E [l e, 0)f dz = (1= )" (2)° A

12
S, 6, et i3 Imad g

hp
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In deriving the above we have used the generating function identity,(see Szegd [29]):

O}
> thon(z) = (1 —t) e mi=ikl’,
k=0

Since |z; — 2| # 0 for j # p we see that

. 1 14¢ .
gzmtqlme"gﬁllllﬁrﬁplz =)

for 7 # p. Therefore,

limyy-(1 = 1)) ¢" f@ o Ji* g (2, 0)2 dz = (2m)" AT X |

k=0 1=0

By appealing to the Tauberian theorem we get the result,

We next consider the surface measure on the sphere S, = {(2,0) : |z] = r} C H".

Let 4, be the normalised surface measure on the sphere S,.

Theorem 4.1.3 Let g € LE(IR) and let it be the product of u, and gdt on H™. Then

7719203 (n — 1)1

' . N S ' | ﬂ.--l-
imaacoNTED [ gl dla O PP dadh = T m == |l

Proof : We have

1 .
/I ep(z — w, —s8 'gfmzwfj)dp(w,.s)

Jome 24 (VMG =) €459 ) dy ) s

_ AL T 2B i\g
~/1w|=rtpk( |Al(2 w)) e'"2 d#,-(w)/ﬁg(s)g ds

(:!iﬂ;:ji!)! W (mr) O (\ATHKD J(N).

|

p* €p(2,0)

Thus

kl(n — 1)! g
[ ol bl 0 de = A" m s o (V) P OO
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As in the previous theorem, we consider

Z’:“./ ]d-fn !‘5*'3;, z U)I2 lz\lzn“f dz d)

k=0
ko

= Z‘“ b+ n =1y m)" L) /:"‘0‘“ (\/m?‘)lz ﬁ

=0 s

) A" 2 dA.

First we claim that the sum can be taken inside the integral. To see this it is enough to

check that the integral

2 l
/ {Zi%(m:__l) 2r) T s (VIR ) P 13O0 = o

is finite. The generating function identity for the Laguerre functions gives
S e (NI) 1
= (k+n-1)

A ﬁt —n+-] 2 Al r2 1442
R e BT o Rt

The Bessel [unction J,..;{2z) has the estimate

|Jnoi1 (12} < c272¢° z > 1.
" In view of this the above sum is bounded by

L _L1=t|y[s2
Cry N T e TR T

and hence the integral under consideration is finite. Thus we have shown that
5 z-“*f ” f ok ed(z,0)[? (A2 E dzd) = D(n) (2) (1 — £2) ™
k=0 —oo
oo ‘Qt “-ﬁ"l"‘]. A zt L tE 1-2
IRER {zu- Al )} T ( Al ) ALt Y

o0 2(1-—-'52 1-—-?52

Consider the [unction

r 2. ~n+1 2 2
(l __tﬁ)—n—’r-% {7 IAI? ; } o ( .{Alrtt) QH%H?‘IAIPQ
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Using the integral representation for the Bessel function this is equal to

|?*|' 1t 4 1 1 [A|t*2ta
¢ —~11-}- 1/2 e Ay, S f 1 . o2 11.-3('2 =~
(1=1¢%) F(1/2) T = 172) Joy 8 )T e

(1 - t?)—-n-i-l/ﬁ 1 . e i AL _
F(l/z)r(” -~ 1/2) ./;1 (1 B 32)1 3/26 2 I4te 2 =iz )d.s

A simple computation shows that this is equal to

s

l}.!tg 1—1
e I+t

I'(1/2)F(n —1/2

As t — 1—, this converges to

2/1-12 | \
s W2y - e gy

| o0
/ (gy)n-—:ﬂfﬂ e-—l.?s[r-?y d‘y — 211-—3/2 ﬂ.-—-I/E (IM?,L’)—WI-%.

(L/2)[(n — 1/2j 0

Therefore we have proved

limasyi—(1 — 127 Z f f(D e x ez 0P IMPT de dA

= r(u) 227 ek [ 7500

By appealing to Tauberian theorem we complete the proof.

In the above theorem we can replace g(t) dé by a discrete measure 3 ¢; 4, where a’s

are distinct. Then as a corollary we obtain the following result.

Corollary 4.1.4 Lel p be the product of p, and the discrele measure 3; ¢; d,;, where a3 s

are distinct, Then

'h.}ll-'

li‘:??lnqn.}mli??lw_.}m / f " EL Z, |2|/\|2""1/2dz dA
M k=0

o 11 (1_ 1)|22n—1/2 oo

y n—1 E ICJF

1=

————
Sy

Proof : In this case

o (VI = 0)) 30 ) F (),
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where
— C_tAn,
=) cje".
J

Therefore,

(;:'f?:_lb,w( \A\r) ‘F»’k( \A\z) I"(X).

(L * e;:(z,(])

Hence

M
[ bz O)F A2 ds
klin — 1 M 2
= et [ o (VB ] 10 e

As in the theorem we can show that

[imy oo N~} Zf fa;' i ez, 0)F N[22 dz d

T 1(?1__1)!2211-—5 M . )
= s [ 1E Q)
By Wiener’s theorem
2 2
ZE?HM._}N ﬂ{ / | dA = E |Cj‘
1=0
This completes the proof of the corollary. L]

4.2 'The case of Hermite expansions

Consider the normalised Hermite functions ®4(z) on JR™. These are indexed by multi
indices & € IN ™ and are eigenlunctions of the Hermite operator H = —A + |¢|* In fact
Hd, = (2|a} + n)®, where |o| = a; + a3 + ... + @, and {@} is an orthonormal basis for

L*(IR™). The Plancherel theorem for the Hermite expansion reads

[ 1f e = 33 |f(e)P
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where f(cr) = [ [{&)Pq(z)dz. The Hermite funciions ¥, satisly the Mehler’s formula

> Pofa) Paly) =777 (1 - %" 3~y (ePHP)+ {2y o

Y
for 0 < t < 1. We now prove an analogue of Wiener’s theorem for Hermite expansions.

" The following result is due to Strichartz (see[28]).

Theorem 4.2.1 Let = 3 ¢;0(a;) + v where v is absolutely continuous and a%s are dis-

tinct., Then
. )T
oN™7 ( 2
ltmy | rn7 1)2 |e; ]

el <V

where fi{c) = [ Qo (2)dp.

Proof : I'rom Mehler's formula we see that

J_--—- iZ n/?2 Z ([.L (Etlcﬂ

|

[ [ =32 3t 0, (2) @, (y) di(z) Tuly)
11"'"/2ffG;(m,y)du(w)dn(y).

1

Where

B N R ET
cop (T + ) + 2 gaClel” =

2 1 /1
e:z:p( 1wtﬁ‘m_—y'?m-2_(1+t)(|1‘2+“‘ ))

Notice that Gi(z,y) is uniformly bounded by 1 and

0 ifasy
1 fa=y

Gi(z,y)

limya - Gyla,y) = {

Therelore, we see thal

t

()Pl = 7 [ ey dii() )
ﬂ’”f/ﬁ@ﬂﬁdw

00
L Z ‘le?'.
. j:{]

iy (1 — 1) ?

o

H

I
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Setting ¢ = 1 — £ we can rewrite this as

lime-sor ¢! >, . lifa)Perd = im0y €™ 2 (Z ’ﬁ(&)lﬁ) -

k=0 |cr|ﬁf.: k=0 ||::t|=k

Il

(2m)7™2 3" )

j=0

Now by using the Tauberian theorem we get the result,

We now consider the case of the surface measure v, on the sphere |z| = r. More
generally we consider measures of the form fdu,, where f is a square integrable function
on the sphere |x| = r. To treat such measures we need the following Hecke - Bochner type
identity for the Hermite projection operators. Let Py(f ) stand for the projection of f onto
the k - th eigenspace spanned by ®,(z),|a| = k, that is

Py f(x) = l% f(e)®a(a).

Let L be the Laguerre polynomial of the type § and define

sy 2L(k+1) Tl T8 (2 o= B L 2641 g
I?L(f)“— F(k‘+5+l)/{] f(?)Lk(? )6 7 d?‘

The following proposition has been proved in [35].

Proposition 4.2.2 Assume that f(z) = [follz|) p(x) where p(z) is a solid harmonic of

degree m. Then

Pargm [ (%) = Fi(|2]) pl2)

1,2

where Fi(r) = RY(S) Li(r?) e™ 2" with § = %+ m — 1. For other values of k, P(f )= 0.
I'or a measure djt on IR™, let; P,:g(d;.f,) be defined by Py (dp)(e) = 2 |c|=k (f Poly) duly)) ©ulz).

Theorem 4.2.8 Lel v be the normalised surface measure on S ! and let [ € L*(S n-l dv).
Then limpy_ oo N~7 S 1P (fd)|lE = 2 fgnar |f R:Z
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Proof 1 [ixpand [ in terms of spherical harmonics [ = ¥ ¢,, ¥, where Y5, is a spherical

harmonic of degree m. In view of the proposition it is easy to see that

20k + 1)
Pk +6+1)

Popym(Yindv) = Li(1) e~ 7 Li(Jz[?) e~ 71" Y,

As various Y,,’s are orthogonal to each other it is enough to prove the theorem when

f =Y,.

|

> NPunlVad ] = 23 ot (L) e

k=0 b0 "‘+6+1
Je( 2t
= 2(l—t) e (i)

(i vty

Now we can proceed as in theorem 4.1.3 to conclude the proof.

cimilar results can also be proved in the case of special Hermite expansions. By the

term we mean an expansion of the type

f=0@2r)™" ) fxeo

where f is a function on @' ™. These are in a way particular cases of results in the previous

section when we consider [unctions on the Heisenberg group that are independent of ¢.
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