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IAbstrac't

The problems of detection and use of reflectional symmetry in the images of planar shape
contours are studied. Symmetry, in general, provides important shape representation cues,
some of which we utilise here, to acquire viewpoint information and, towards model based
shape matching. We concentrate on local reflectional symmetries of smoothly curved planar
objects, though the methods are equally applicable to polygonal objects; even this could
be extended to certain three-dimensional shapes and for other object relations such as

rotational symmetry.

Under the affine or perspective approximation to image projection, properties of geometric
invariance are used to find (reflectional) symmetric contour pairs. Local symmetry line is
detected from the transformation matrix (responsible for inter-symmetric-curve reflection)
of symmetric contour pair. The key result we establish here, is that due to bilateral sym-
metry constraint, the imagé transformation between the symmetric contour pair is a subset
of affine or projective transformation, as the case of image projection may be. The goal of
the analysis, at this stage, is to remove the imaged distortion (perspective “fanning” and
affine “skewing”) due to the affine or perspective approximation to image projection. This
is to recover the shape of the object up to similarity transform (rotation, translation and
isotropic scaling) ambiguity., Symmetry constraint is utilised to find the “back-projection”
matrix responsible for image distortion. This image-to-object transformation (up to simi-
larity ambiguity) is used to determine the object plane orientations relative to the camera

and, to test for non-co-planarity amungst a collection of abjects.

As we establish algorithms for obtaining back-projected images from the *skewed” scene, we
concentrate on the wave diffusion algorithm which gives almost all the pereeptually relevant
symmetry set for planar shapes up to similarity transform. We study this symmetry gener-
ation process and present the parallel implementation of this methodology on a transputer
network. This is to overcome the basic drawback of wave diffusion process, viz, the high pro-
cessing time, An attractive alternative, almost instantaneous, for symmetry set generation,
we call normal transform, similar to the wave propagation mechanism is introduced.

Symmetry set of a planar shape, generated using wave diffusion process, is used for model
based symmetry set matching., Symmetry sets of the image and the models are transformed
to & representative frame to take care of images of objects up to similarity transform, The
structural and relational matching constraints between the symmetry set of an image and
the symmetry sets of models, combined together, are incorporated in an energy function.
Simulated annealing technique is used to mlmmlze this energy functmn to find the best

match.

The thesis is concluded by a summary indicating the future scope of research.
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Chapter 1

Introduction

The representation and recognition of shapes by computer has numerous applica-
tions: as a step towards automating processes such as inspection; acquisition of
objects from a conveyer belt or container; reconnaissance; and, navigation by an
autonomous system. Also, such work can potentially contribute to understanding
one of the most exquisite and effortless of human competences: the rapid recogni-
tion of familiar shapes even when they are partially occluded by others, when their
surface colour or texture is unfamiliar, and when they are viewed from a wide range
of vantage points. From a very early age, we can learn new classes of shapes, learn
to discriminate subclasses, and then mobilise those new representations to effect

recognition,

“... we arrived at the idea of a sequence of representations, starting with descrip-
tions that could be obtained straight from an image but that are carefully designed
to facilitate the subsequent recovery of gradually more objective, physical proper-
ties ...” [43], Understanding how to represent and recognise shapes has, however,
- proved to be a remarkably difficult task, both for computer vision and for percep-
tual psychology. So much so, that the current state of the art is that only limited
classes of shapes can be recognised reliably from a limited range of poses, To
date, perceptual psychology has been of limited usefulness, for though theories of
~ “shape abound [6,18] they are too vaguely formulated to be implemented in a com-
puter recognition system. On the other hand, most computer vision approaches to.

shape [3,44] have either emphasised gross shape characteristics (for example, low-

1



order moments or the first few coefficients of the Fourier or other transform of the
contour function of the shape), or have relied on highly localised features, such as
an estimate of points of high curvature along the bounding contour. Gross shape
representations [29] have insufficient discriminatory power and are sensitive to oc-
clusion, while very local representations are subject to measurement noise that is

unavoidable in practice,

The most advanced representation and recognition techniques developed to date in
computer vision have explored representations intermediate between these extremes,
and have exploited one or more of: relational constraints between parts of a shape,
prior models, symmetry properties of the shape, or affine/projective invariance. The
relational constraints based approach relies upon precisely known algebraic relation-
ships between different parts of a shape and has only been explored for the case of
polyhedra, albeit classes of polyhedra defined parametrically [34,58]. Model-based
recognition, even for non-polyhedral shapes, has enjoyed some success [34,42,58).
Over the past thirty years, researchers in computer vision have explored a number
of aspects of symmetry to generate symbolic representations of shape, culminat-
ing in the systems reported by Blum and Nagel [10], Connell and Brady [17] and,
more recently by Rom and Medioni [59]. The importance of invariance has been
recognized since the origin of the field in the 1960s. The fundamental difficulty
in recognizing objects from images is that the appearance of a shape depends on
viewpoint (position and orientation of the camera). Geometric invariance generates
important shape “signature” and recognition cue which remain unchanged under
an appropriate class of image transformation. A useful collection is provided in 53],
The present work is a contribution combining these a.pproaches primarily focusing

on symmetry properties of a shape.

1.1 Shape from symmetry

Many important classes of shapes, from faces and leaves through to manufactured
items such as many stamped metal parts and profiles of aeroplanes and buildings
exhibit one or more symmetries. We, in fact, remember and enjoy symmetrical
~objects better than asymmetrical ones. There is a wealth of literature, spanning
more than hundred years, discussing the mechanisms by which humans detect sym-

metry (see [22]). Within the plane, symmetry comprises reflections, rotatlons, and



translations, in which latter case symmetry corresponds to pattern repetition. The
essential idea of a symmetry is a motion [26]: “suppose you have an object and pick
it up, move it around and set it down. If it is impossible to distinguish between
the object in its original and final positions, we say that it has a symmetry.,” The
line of thinking encapsulated by the quotation leads inexorably to modeling sym-
metry using the operations of group theory {77], a point to which we return when
discussing affine/projective invariant representations of shape. However, requiring
the transformed object to be “impossible to distinguish” from the original is far too
restrictive both for computer vision and for human perception. Real objects such
as faces, pears, wrenches, and the outlines of fish (72| are only approzimately sym-
metric, and, more significantly, the shape only exhibits symmetries locally between
segments of a shape or pattern.

1.1.1 Detecting symmetries

Distinctive from the earlier psychological studies, the first exploration of local sup-
port for symmetry, using computational methods, was by Blum [9] in his study of
representations of biological shapes to effect recognition, determine abnormalities,
and monitor growth. Blum proposed an elegant “grassfire” method to recover per-
ceptually relevant symmetry axes of a shape, an issue on which we concentrate when
discussing the parallel implementation of the algorithm in chapter 5. Defining sym-
metry is not quite as simple as it seems. The symmetries we consider “correct” or
perceptually significant for a square depend on its orientation: compare the squares
and symmetries of figures 1.1 (a) and (b). The full symmetry for a square must

therefore be as shown in figure 1.1 {c).

The idea of local symmetry was put on a more solid mathematical footing by Gib-
lin and Brassett [32], who defined the symmetry set (SS) of a shape as the locus
of the centres of all circles bi-tangent to a shape’s bounding contour. A number
of algorithms have been developed for computing the loci of local symmetries of
shapes, particularly reflectional [11,65] and rotational symmetries [27]. They have
been demonstrated to work reliably on a range of shapes, generating representations
useful for recognition. Rosenfeld [60] provides a lucid account of the differences be-
tween Blum’s [9], Brook’s [14] and Brady’s [11] definitions for symmetry generation.
A more recent paper by Ponce [56] gives further comparisons. Eades [21] surveys
several symmetry finding algorithms for pattern classes commonly studied in com-
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 Figure 1.1; The “obvious” symmetries (dotted lines) for a square (a) and a diamond
(b). In fact the two shapes are identical; the correct symmetries of a square are

shown in (c).

putational geometry, graphics and pattern recognition: for example, finite set of
points, polyhedra, finite sets of line segments, and planar subdivisions.

However, all such algorithms and representations share a severe limitation: symme-
try is not preserved under skew, corresponding to the shape being viewed other than
in a fronto- parallel plane. Simply stated, symmetry axes computed in an image of
a shape taken from a non-fronto-parallel vantage point are not in general the trans-
formed fronto-parallel symmetry axes. Despite this mathematical inconvenience,
“skewed symmetries” (that is, reflectional symmetries viewed from a non-fronto-
parallel vantage point) such as those shown in figure 1.2 strongly suggest actual
symmetries and constrain the plane in which they are perceived to lie. The mathe-
matical fact that the skew symmetry may be an accident of projection is evidently
discounted. Indeed, Wagemans (75| has recently provided evidence that skewed
symmetry is a nonaccidental’ [78,42] property of a shape that the human visual
system exploits. Kanade [37] was the first to analyse mathematically symmetries
skewed by image projection, and proposed heuristics to interpret a skew symmetry
as a real symmetry viewed from some (unknown) direction, which he represented
using gradient space. A moment-based approach [30] was proposed by Friedberg.
Kelvin Yuen developed algorithms [68] to detect skew symmetry and projected rota-
tional symmetry. Van Gool et al. used arc length space (ALS) (33] to extract affine

1Critical information is unlikely to be a consequence of an accident of viewpoint.
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1.1.2 TUsing symmetries

Symmetry axes have various applications in computer vision and related fields. This
section will outline some of them, but by no means is the list exhaustive.

Shape descriptions

¢ Boundary reconstruction
Blum [9] observed that his set of “sym-points” (Symmetry Axis Transform
(SAT) points) with their associated “sym-distances” (radii of appropriate cir-
cles} formed a complete description of shape; it is possible to completely
reconstruct a shape’s boundary using the envelope of “sym-distances”, He
did not, however, propose a way of using this in a practical system.

¢ Symmetric axis features |
Blum [9] used, what he called “A-morphology”(axis morphology?) to describe
a shape in terms of the behaviour of its SAT axes.

Blum and Nagel (10| extended the idea of shape primitives into a description
which segmented the shape into simplified segments based on axis properties,
segment end and join, then formed a directed graph using weighting measures
for each segment.

¢ Symbolic description
The system in [17] builds semantic network descriptions of shapes based on

“smoothed local symmetry” (SLS) [11] for learning planar shapes. Shape
segmentation used various shape parameters such as length, aspect ratio, area.

and orientation.

e Hierarchical descriptions
Pizer, Oliver and Bloomberg [55] used the SAT to generate a hierarchical

shape descriptions at different scales of resolution, by tracking the disappear-
ance of SAT branches as the resolution is reduced.

Rom and Medioni [59] use both region and contour based information for
hierarchical decomposition and axial representation of planar shape. They
address the issue of local versus global information and the intuitive notion

of part.

% As opposed to “B-morphology”, boundary morphology



Figure 1.3: For a pair of edgels A and B, the point C represents both Symmetry
Set [32] and SAT (9] points whereas E is the SLS point [11]. Point F represents
PISA [40] point on the circumference of the circle.

Morphogenesis

Leyton 40| uses symmetry information to attempt to infer processes that could have
acted on a basic shape to achieve its present form. This analysis is appropriately
called Process-Inferring Symmetry Analysis (PISA). This appears to have two major
uses - shape description and inference of process history.

For a pair of edgels A and B, the different symmetric points due to SAT, SLS, PISA
and SS are illustrated in figure 1.3. |

Recovering 3D shapes

For a variety of 3D objects, Ulupinar and Nevatia [74] have shown three types of
symmetry: skewed, parallel and line-convergent symmetries give significant infor-
mation about the surface. The recovery of shape of the surface is, however, limited
to objects consisting of zero-Gaussian curvature surfaces. In [45], co-curvilinearity
and symmetry are used as perceptual grouping processes to generate the collated
features including curves and ribbons., These collated features including Transfor-.
mationally Invariant Symmetry Analysis (TISA) segment scenes and describe the

2D shapes of surfaces.



Shape back-projection

Recently attempts [52,51] have been made to extract symmetry information of affine
and projective images of planar shapes using geometric invariance properties of
affine and projective transformations. Back-projection is defined as the transforma-
tion from image to object plane after removing the perspective and affine distortion
of the imaged object due to non-fronto-parallel viewing. The symmetry constraint is
utilised to back-project the image modulo similarity transform (i.e. up to rotation,
translation and isotropic scaling ambiguity) and to calibrate the camera. These
would be a major part of deliberations of this thesis. A similar approach has been
explored by Fawcett et al. [25] to recover structure modulo similarity from an affine
view of a 8D point set with one or two bilateral symmetries.

Other uses

¢ Shape recognition
Mukherjee and Dutta Majumder {50] have proposed a shape symmetry match-
ing technique given a model base of symmetry sets of shapes described in the
representative frame, The key idea is to formulate the matching process as

minimization of an energy function.

o Skeletonisation
Symmetry axes are obviously good at skeletonising [9] certain shapes. A
number of symmetry detection procedure, described above, are successfully
utilized to skeletonise a shape reducing the amount of information needed to

store the shape, without reducing the ability to recognise it.

¢ Path planning | | |
Canny and Donald {16] have used the Voronoi diagram in robot path planning,
selecting the natural path which, in simple terms, keep the robot as far away

from all obstacles as possible.



1.2 The present work

After an introduction of the basic geometric framework in chapter 2, the present
thesis is broadly divided into three parts. In the first part, spanning chapters 3
and 4, we are interested to recover shapes modulo similarity from the images under
affine and projective transformations. The contribution is a step forward reconciling
symmetry and invariance. In the second part, in chapter 5, we concentrate on the
efficient detection of symmetry set for shapes under similarity transform. The
contribution is the parallel implementation of a high-level vision algorithm. Lastly,
we show a novel application of perceptually relevant symmetry set in chapter 6 for
shape matching, the contribution being the use of a smart minimization technique
towards model based object recognition.

Henceforth, by symmetry, we mean local reflectional symmetry, unless mentioned
otherwise. We concentrate on symmetries of smoothly curved planar objects, though
the methods are equally applicable to polygonal objects, and even could be extended
to certain three-dimensional shapes and for other object relations such as rotational

symmetry,

As stated earlier, chapter 2 briefly provides a consistent framework of the image
transformation and parameters for image projection which we utilize in subsequent

chapters.

Suppose then that a planar object has a bilateral symmetry; how does this constrain
its image projection? If the two “sides” of the contour have a mirror symmetry, then
one can be transformed onto the other by a reflection. A reflection is a particular
type of projective transformation - the most general planar object to image trans-
formation. However, the key result we establish in the subsequent chapters is that
because of bilateral symmetry constraints, this image transformation is a subset of
planar projective group. We assume that the projection between the object and im-
age planes can also be approximated by a projective transformation. QOur aim is to
evaluate this transformation (perspective and affine distortion) for image to object
back-projection (“unskewing”) modulo a similarity transform. We will show that
this information can usefully be used to determine the slant and tilt (orientation) of
the object plane with respect to camera position and for a test for non-co-planarity

amongst a collection of objects.
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Figure 1.4: Symimetry set of the edge image of DC10 aircraft after 95 iterations of
wave diffusion process followed by non-maximal suppression.

In chapter 3, we assume the image transformation to be a subgroup of planar
projective group - planar affine group. We detect symmetry [52] in the affine images
of smoothly curved planar objects using affine tnvariants. We utilize this affine
symmetry [52] to back-project the image, calibrate the camera and test the planarity
conditions of a collection of objects.

Chapter 4 is the direct extension [51] of chapter 3, the image transformation as-
sumed being planar projective group.

As we establish algorithms for obtaining unskewed images from the “skewed” scene,
~ we concentrate on a symmetry finding algorithm which gives almost all the percep-
tually relevant symmetry set for planar shapes up to similarity transform. The
wave diffusion algorithm, originally thought by Blum [9] (“grassfire” technique),
implemented by Scott et al. [65] provides such an alternative. An example is shown
in figure 1.4 where symmetry set of the edge image of DC10 aircraft is obtained

following [65].

However, a significant drawback of the symmetry set evaluation of a 2D shape using
the wave diffusion process is its slow execution time caused, in large part, by the
diffusion step. In chapter 5, we first recall the need for a diffusion step followed
by a parallel implementation [49] of the wave diffusion algorithm on a transputer
network. A faster alternative approach to detect the symmetry set, which is termed
as normal transform and which is similar to the wave propagation mechanism is

detailed [48].

10



Chapter 6 describes the matching process [50| of symmetry set of a planar contour,
generated using wave diffusion algorithm, with candidate models of a model base,
consisting of symmetry sets of models, The structural and relational matching con-
straints are incorporated in an energy function and ssimulated annealing technique
is used to minimize this function to find the best match.

Chapter 7 concludes the thesis with a summary and a discussion on future direction.

11



Chapter 2

(Geometric Framework

Before we proceed further, we detail the fundamentals of imaging and surface ge-
ometry. Naturally, the basic issues have been discussed many times before in the
vision literature, As a consequence, most of the results to be presented in this
chapter are well-known, although not necessarily in the form in which they will be
given here. General references are too numerous to list; however, a thorough and
lucid discussion in the context of shape from surface markings, which we have tried

to follow, is given by Garding (31].

The analysis is based on the familiar pinhole model of image formation. The trans-
formations {53,23] described here are from plane to plane collineations. Projection
from planar surface model is considered because of its abundance in man-made
environment. Also, many surfaces can be considered locally planar and their math-
ematical analyses are much simpler compared to any other class of surfaces,

This chapter provides a sufficient background for the rest of the thesis and chap-
- ters 3 and 4, in particular. The chapter is organised as follows: We discuss imaging
~ geometry in section 2.1. The issues relating to image transformations are dealt in

- section 2,2 followed by discussions,

Notation Throughout the thesis, we adopt the notation that vectors are written
in bold font (e.g. x) and matrix are written in typewriter font (e.g. X).

12



Inage

Figure 2.1: The orthographic projection model with visual rays all perpendicular to
the image plane.

2.1 Imaging geometry

The two imaging models most commonly used are orthographic and perspective pro-
jection. Contrary to our visual experience, in orthographic projection, the size of
the image of an object is independent of the distance from the image to the object.
Figure 2.1 shows the orthographic projection model where the visual rays are all
perpendicular to the image plane. For smaller viewing angle, this is a good approx-
imation of perspective projection, where the visual rays converge onto a common
point, the focal point. However, this approximation, unfortunately, is not strictly
true for real scenes, inspite of the mathematical simplicity of orthographic projec-

tion.

On the other hand, a common viewing situation, which cannot be modeled by or-
thographte projection, is that the ground plane will occupy half of a perspecitve
observer’s field of view, given his central line of sight being parallel to the infinite
ground plane., The image formed by perspective projection is shown in figure 2.2,
Thus, hortzon can never be obtained by orthographsc projection which is purely
a perspective phenomenon. Orthographic projection may be a reasonable approxi-
mation when we have a priori knowledge that the planar surface is approximately

- paralle] to the image plane.

13



] Figui'e 2.2: The perspective projection model where visual rays converge to the focal
point, |

2.1.1 Projection from a planar surface

Refer to figure 2.3. The projection of planar surface § onto the image plane is
analysed [31] in the pinhole camera model. Orientation of S is given by slant angle
- o and Uit angle 7. XY Z and zy are the camera and the image coordinate systems
respectively. The local coordinate system of § is given by uvw where w = 0 as we
are dealing only with 2D objects. The w axis is parallel to the surface normal n of
S pointing away from the image. The slant o (€ [0,7]) is the angle between n and
the optic axis (Z) while tilt 7 (€ [0,27]) is the angle between the parallel projection
of n onto the image plane and the z axis of the image coordinate system. Surface
normal at the origin O,,, of S passes through Oyyz. The distance between these
origins is given by §. Stevens (71| has compared the human perception of surface
representation with the parametric surface representation using (o, 7, §).

To enumerate the transformation from the coordinate system uwvw to XY Z:

1. Parallel translation along n to the coordinate system u'v'w' whose origin co-
incides with Oxyz:

t/ U -
vl | = v (2.1)
w' w+ 6
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2. Rotate o around the v' axis to make the plane w" = 0 coincide with Z = 0:

y' cosg 0 —~sineo o
v ] = 0 1 0 o | {2.2)
w' sineg Q0 coso w'

3. Rotate 7 around the w" axis:
X cost —sint 0O T
Y | = sint cost O v” (2.3)
Z 0 0 1 w”

The complete coordinate transformation is obtained by concatenation of the pre-
~ ceding three steps. |

In case of perspeclive projection, the image plane zy is the plane at Z = f where
f is the focal length, z and y axes being parallel to X and Y axes respectively.
- For orthographic projection the image plane is at Z = 0 coinciding = and y with
X and Y axes respectively. Since, translating the image plane along the optic axis
(Z) does not change the image for orthography, we can conveniently choose 6§ = 0

bringing OQuew to Oxyz.

2.2 Plane to plane transformations

The plane to plane transformations describe world model to image mappings and
vice versa. We begin their descriptions starting from the plane projective group.

These fransformations can be represented by a group since they satisfy the group
- axioms of: closure, identity, snverse and assoctalivity. While there exists more
general transformations (53] than projectivities, the detail discussion of those is

- beyond the scope of this thesis.

The plane projective group A projective transformation or projectivity, from
one projective plane I, to another, =, is a non-gingular 3 X 3 matrix acting on

homogeneous coordinates.

T tin tiz tas X1
Zg | = | tar tag tas Xz (2.4)
Tg tg1 sy s Xs |
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or
x = TX (2.5)

The transformation matrix T has eight degrees of freedom because only the ratio of
homogeneous coordinates is significant and there are 8 ratios among 9 elements of

T.

Properties like concurrency, collinearity, order of contact (intersection, tangency,
inflections), tangent discontinuities and cusps and cross-ratio are preserved under

projective transformation [53].

The plane affine group In case of affine transformation the matrix T, as in
equation (2,5), takes the form:

t1y t12 i
T={ ta1 t22 g (2.6)
0 0 t33’

Affine transformation has six degrees of freedom and is equivalent to the combined
effects of translation, rotation, isotropic scaling and shear (non-uniform scaling in

some direction).

Properties like parallelism, ratio of lengths of collinear or parallel segments (e.g.
mid-points), ratio of areas, linear combination of vectors are invariant under affine

transformation [53].

The plane similarity group This is a specialization of the affine transformation
without shear and is equivalent to a Euclidean transformation composed with an
isotropic scaling, This has four degrees of freedom and occurs when the world plane
is parallel to the image plane i.e. under fronto-parallel viewing. Ratio of lengths,

angles are preserved under plane similarity transform [53].

 The plane Euclidean group The Euclidean transformation matrix is shown
in equation (2.7). Here the top 2 X 2 sub-matrix of T is a rotation matrix and
t = (t;,1,)" is a translation vector. It has three degrees of freedom.

17



fu riz &
T=1ray ra t (2.7)
0 0 1

Lengths, angles, areas are preserved under the Euclidean transform [53].

2.3 Discussions

The motivation for using a specific transformation geometry depends on the physical
imaging process. While the plane projective group is a perspective phenomenon, the
transformation due to affine group is the effect of a special type of weak perspective
where the parallel lines in the object remain paralle] in the image. The similarity
or Kuclidean transformation is due to orthographic projection for fronto-paraliel

viewing.

There is a strict hierarchy of plane to plane transformations beginning from the
plane projective group. FEach group inherits the invariances of the more general
transformations of the preceding groups, but also have extra invariances, The hier-

archy and the range of transformations are shown in figure 2.4.

Chapter 3 deals with the affine images where the invariances of affine group are
used to detect the symmetry. It is easy to show, for example using a Taylor’s series
expansion of the projection equations of a pinhole camera, that affine group is a
good approximation provided the field of view is small, and the range of depths
encompassing the object is at least an order of magnitude less than the distance of

the object from the camera.

Chapter 4 is the extension of the ideas of chapter 3 to a planar projective group.
However, in both the cases, the images are back-projected modulo a similarity

transform.

The symmetry detection methodologies presented in chapter 5 and its application
in chapter 6 concentrate on planar shapes under similarity transform.

18
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Chapter 3

Symmetry in Affine Images

3.1 Introduction

We investigate the constraints placed on the image projection of a planar object
with local reflectional symmetry. Under the affine approximation to projection, we

- demonstrate an efficient algorithm for detecting and verifying symmetries despite

the distorting effects of image skewing. The symmetries are utilised for three distinct
tasks: Firstly, image to object back-projection modulo a similarity transformation;
secondly, determining slant and tilt of the object plane; thirdly, as a test for non-co-
planarity amongst a collection of objects. These results are illustrated throughout

with examples from images of real scenes,

We assume that the projection between the object and the image plane is approx-
imated by an affine transform. If the two “sides” of a contour have a mirror sym-
-~ mefry, then one can be superimposed onto the other by a reflection. A reflection
is a particular type of affine transformation., Since affine transformations form a
group, the transformation between the two sides of the contour in the smage is also
affine, This immediately provides an algorithm, albeit one that is computationally
expensive, for detecting possible symmetries: if {wo image contours can be mapped
- onto each other by an affine transformation (six degrees of freedom), then the object
- could have had a reflectional symmetry. However, a key result of the present chapter
is given in section 3.2, where it is shown that the image transformation is actually
a subset of the affine transformations with only three degrees of freedom. This,

20



and the use of affine index functions (section 3.3), is used to develop an efficient
algorithm for detecting and verifying symmetries.

The mathematical framework is established in section 3.2. It is shown that a single
symmetry is sufficient to unskew the affine image, to give a one-parameter family
of symmetric shapes that could have given rise to the image. A second co-planar
symmetry is sufficient, in general, to uniquely determine the aspect ratio of the
plane. This determines the back-projection up to a similarity transformation. This
is achieved without any knowledge of the intrinsic camera parameters, an impor-
- tant consideration in practice since the automatic calibration of camera intrinsic
parameters is a poorly conditioned, nonlinear problem. If, however, the camera as-
pect ratio is known, the back-projection determines slant (up to the usual two fold
ambiguity often referred to as the Necker ambiguity) and tilt of the object plane.
Finally, a test for non—<o-planarity is given for two symmetric objects from a single

image, |

Throughout the chapter, results are shown from an implementation of the theory
outlined in sections 3.2 and 3.3. Image back-projection and its applications are
demonstrated in section 3.4 followed by discussion. The reader may care to pause
at this point to view figures 3.13, 3.14; figures 3.15, 3.17: and figures 3.18, 3.19,
which show typical results using the implemented program.

3.2 Mathematical framework

In this section we study the constraints on the transformation between two image

contours if they are the projections of corresponding sides of a planar object with
" bilateral symmetry. Figure 3.1 illustrates the sifuation under consideration: the

image contours 7 and 4' are the images, assumed to be affine, of two corresponding

sides, I' and I"” respectively, of a planar object with a bilateral (mirror) symmetry.
'A key attribute of affine transformations is that they preserve parallelism, so lines
~ joining corresponding points in the image, for example the lines aa' and bb’, are
~ parallel. Affine transformations also preserve length ratios on parallel lines. In

particular mid-points are preserved, so the imaged symmetry axis passes through
~ the mid-points of aa’ and bb’. | |
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Figure 3.1: v and 4' are the affine images of two corresponding sides of a planar
object, I' and I'! respectively, with bilateral symmetry. Affine transformations pre-
serve parallelism, so lines joining corresponding points in the image, for example the
lines aa' and bb’, are parallel. Affine transformations also preserve length ratios on
‘parallel lines. In particular mid-points are preserved, so the imaged symmetry axis

passes through the mid-points of aa' and bb'.

3.2.1 Image transformation

The following theorem explores the image transformation between the affine images
~ and 4’ in more detail. In particular, it fixes notation that will be used subsequently

to unskew images.

Theorem 1 Suppose two curves ¥ and ', as in figure 8.1, are the images of two
corresponding sides of a planar object with bilateral symmetry. Suppose further that

image projection can be répresented by an affine transformation.

Then the transformation between «y and ' has the following properties:

1. v and ~ are related by an aﬂ‘ine transformation. That :.s 1fx is a point on
then there 15 a pomt x' on 4 such that:

x' =Aix+Db | | (3.1)

where A 13 a non-singular 2 X 2 matriz, and b s a two-vector.
2. The aﬂ”inﬁ transformation {A,b} satisfies the follqw:'ng constraints:

22



(a) A*=1
(b) A+1]=0
(¢c) [A-1I|]=0

3. The matriz A has eigenvectors a and b (b as above) with eigenvalues +1 and
—1 respectively. Vector a is parallel to the symmetry azis, vector b is parallel
to x! — x.

4. The transformation has three degrees of freedom. It can be parametrised by
a,bs, b, where:

N —b.(1 +4)/b, | _ [
=1 by (1 - a) /b . b= [ p, | (32
5. With this notation, the image (skewed) symmetry line {s;
(1 —a)byz+ (14 a)by — byby = 0. (3.3)

The proof is given in appendix A.1. Note that the affine transformation has only
three degrees of freedom (given by a,b,,b, in the statement of the theorem) as
claimed in the introduction. The theorem also applies if the original object has
affine skewed symmetry, since an affine image of an affine transformed object with

bilateral symmetry has the same properties.

3.2.2 Back-projection

In this section we consider the extent to which we can unskew images such as those
shown in figure 3.10. Evidently, some of the skewed objects in figure 3.10 have only a
- single symmetry, in which case the best one can hope for in general (that is, without
mobilising further knowledge) is to unskew the image to a single parameter family
of symmetric shapes that corresponds to tilting the symmetric shape backwards
while preserving the direction of the symmetry axis. If, on the other hand, there

- is more than one symmetry axis, then one might hope to combine the information

from two or more such to uniquely unskew the image. This insight is proved in the
following theorem. | | |
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Theorem 2 Suppose we have an (un-calibrated) fmage of one or more co-planar
symmetric objects then

1. One symmetry
If there 18 only one symmetry present, the smage can be back-projected, moduio
a ssmilarity, to form a one-parameter family of symmetric shapes that could
have given rise to the image.

2. Two symmetries
In the case that two symmetries are present in the tmage, the image can be
back-projected uniquely, modulo a ssmilarsty, provided that the two symmeiry
~azes are neither parallel nor orthogonal (either in the ¥mage or in space, since
the camera 18 assumed affine).

Proof

First some notation for back-projections. Suppose the affine transformation relating
the object and image planes is given by:

X=Ux+B (3.4)

where X is the 2D image vector, X is the corresponding two-vector in back-projected
planar scene, B is a two-vector translation and U is the 2 X 2 linear transformation
matrix with det U > O responsible for back-projection. It can be shown [7} that

the transformation U can be decomposed as:

U = MR(9)P(A, 1) | (3.5)

- where P(A, 7) is a symmetric matrix:

P()\,'r)_-j:; R(1) [ 3 (1} ] R(—7) (3.6)
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with

R(T)ﬁ COST "‘"""Siﬂ'r
sint cost |’

This particular decomposition of U makes explicit its four degrees of freedom in a
way that corresponds to the processes of projection: the linear transformation U
consists of an isotropic scaling by A,, a rotation about the optic axis by R(6), and
- an expansion by A in the direction v = (cos r,sinr) (the eigenvector of P(A, 7)).

The eigenvectors of A (refer to theorem 1), say a and b, back-project to vectors
respectively parallel to and orthogonal to the symmetry axis. In the object plane,
therefore, the scalar product (Va).(Ub) = 0 and consequently:

a'U'ub = 0. (3.7)

The matrix V = U'U is clearly symmetric and it is positive definite. Let the compo-
nents of V be given by:

v=-“5], (3.8)

then we have from equation (3.7)

o

(ash, azby+ab, ab)| B | =0 (3.9)
i

This is a linear constraint on «,f,7. Two such constraints determine the ratio
~ a: B : . The sign is fixed by the requirement that V is positive definite, so that
~ trace V = a + v > 0. This is sufficient to determine A and 7 as is shown in the

following lemma.

- Lemma: The ratio o : §: v, with sign chosen so that a+y > 0, determines A up
- to a four fold ambiguity, and v up to a two fold ambiguity.
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Note that A? is the ratio of the eigenvalues of V, and 7 is the rotation angle to the
eigen-directions. From equations (3.5) and (3.6)

V= AP(A%, 1) (3.10)

The trace and determinant of V give two equations for A\?

trace V.= a4 = A}1+ A%
detV = ay-p*=A)"
Eliminating A2, |
(trace V)?
detv OV (8.11)

(1422  (a+79)?
N EI’T _ﬁ-{ = 44 (3.12)

- Solving this gives A? = {1"%,1/X"%} where A"? = 2u—-—1+2\/ﬂ(ﬂ —1). Or, equivalently
= &, /i = /i — I, which are four solutions of the form {X’,1/X, —X',~1/X'} with

T/l -
A= u+u—T.

* The rotation angle, 7 is obtained from equations (3.6) and (3.10)

g ﬂ:xfn(r)[}(‘: ? R(—7) (3.13)

Rearranging gives

[ cosT sinr}[a ﬂ][cosr --sin*r]i__,\zr);2 0 |

| —sin7 cos7 B ~ | sint cosT

From the off diagonal elements we obtain:

"‘ﬂ_ﬂinzf e (ot — ) cosTsinT + fcos’r =0
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from which

20
o — o

tan2r = (3.14)

|

This gives four solutions for 7. If r* = (1/2)tan™?[(28)/(c — ~)| then the four
solutions are {r* + nx/2} for n = 0,1,2,3. Two of the solutions are simply due to
a clockwise rotation as opposed to counter-clockwise, so may be disregarded. It is
only necessary to determine if 7 is in the first or second quadrant. From (3.13)

B = A3(A* — 1) costsint = (1/2)A}(A? — 1) sin 27

so that Sign(B/(A*—1)) = Sign(sin 27) and if Sign(/(A?~1)) > 0then0 < 7 < 7/2,
otherwise 7/2 < 7 < #. Consequently, there are two solutions for 7 corresponding
to the two solutions, {A'?,1/A"%?} above for A%, [

This proves the lemma, now we can return to the proof of the theorem, In the
following we take A = (/& + 4/t — 1. The other solutions differ only by similarity

transformations. If A = ,/u++/u — 1 then for real solutions & > 1 and consequently
A > 1. Hence Sign(f) = Sign(sin 27) and this uniquely determines 7.

1. One symmetry
Equation (3.9) has a one parameter family of solutions for the ratio a: g : 4.

Correspondingly there is a one parameter family of solutions for A and r.

2. Two symmetries |
Two symmetries generate two constraint equations (3.9):

where

111 '.1 1 131 111
- | azb, azhy +ab; ayb
M-—_- a2h? a:bf,+agb: a:bg (3'15) |

Ve '}
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Provided the matrix M is of rank 2 this uniquely determmes the ratlo {a: 87}
(and consequently, from the lemma, A and 7). It can be shown that M drops
rank if any of the vectors {a’,b',a? b?} are parallel, hence the clause in the
theorem. The optimal solution when there are more than two constralnts iS
discussed in section 3.4,

3.3 Detecting symmetries

As shown in section 3.2, corresponding sides, I' and I of a symmetric planar object
project to image curves v and ' respectively. Even though the projection (I' — «
and I' — ~') is by a general affine transformation, the image curves ~ and ~' are
related by a three dimensional subset of the (6 dof') planar affine group. In this
section we describe how these results can be utilised to detect efficiently such image

pairs.

Intra-image curve matching has much in common with the inter-image curve match-
ing necessary for model based vision, and approaches developed for that area can
be used to advantage here. In particular, and this introduces the second theme of
invariants foreshadowed in the introduction, the use of invartants as index functions
avoids the cost of a six-dimensional search over transformation parameters [39,64].
The three stages of an implemented algorithm are described in the following sec-

tions.

3.3.1 Generating and matching affine invariants

Two curves that are related by an affine transformation have the same affine in-
variants. The converse is not necessarily true, but invariants can usefully be used
to generate hypotheses for matching, which can subsequently be tested. Briefly, a
function I(T) of a curve I is an invariant if I() = |U|*I(T') where ~ is the image of
I' (refer to figure 3.1)under the affine transformation as defined in equation (3.4).

The exponent w is the weight of the invariant, If w = 0 then the invariant is abso-
lute, otherwise it is relative. Note that in order to determine local symmetries, the

invariant cannot depend on global properties of the curve, Examples of (semi-local)
affine invariants for smooth curves are glven below.

*degrees of freedom
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Figure 3.2: Examples of distinguished points for a non-convex curve under affine
transformations. Points en and ex mark the entrance and exit of the concavity
determined by the bi-tangent line. Further distinguished points are constructed
from these points: T'en is the point on the curve which is tangent to a ray based
at en (similarly for T'ex and ez); h is determined by the line parallel and furthest
from the bi-tangent. Apart from h these distinguished points are also preserved by
projective transformations. Examples of these points on an image curve are shown

in figure 3.6.

Unlike model based vision, where absolute invariants are needed, relatsve invariants
suffice in this case. To see this, consider two symmetry-related curves in the object
plane, These are related by an affine transformation with determinant —1 (since
the transformation is a reflection}. Consequently, affine invariants of each side of
the shape are equal modulo a sign. In the image, invariants are multiplied by
U*, which is unknown, but which is the same for both sides. Thus, relative affine

invariants of each side have the same magnitude.

Matching on invariants can be implemented as an O(n) complexity process by the
use of hashing (where n is the number of curves) [62,64], We have implemented the
simpler O(n?) algorithm, since n is small in the cases we have experimented with.

It is straightforward to implement the more complicated algorithm.:

~ Affine semi-local invariants

For a non-convex curve, following Lamdan et al. [39], we exploit concavities, by
constructing a bi-tangent across the concavity and determining the interior point
 on the concavity curve with tangent parallel to the bi-tangent. See figure 3.2.
* This generates three distinguished points. This particular choice of points has the
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- Table 3.1: Affine invariant values for objects in figure 3.3. M, and M, are moments

|
about z and y axes respectively.
Iovariant | Spanner Spoon Hex Spanner | " Plier |
Area (Image apace) | 1064 1056 LY 3855 | 2710 2728 l 4308 3814 |
My (Cunonical frame) | 10,85 | 11,88 | 32,18 {"al.44 | 1861 | 17.18 | 2.57 | a.08 |
My (Cunonical frame) | 102,15 | 90.71 | 86,17 | 84.41 | 03.72 | 08.88 | 83.50 | 76.82 |

advantage that it does not depend globally on the curve. Consequently, if part of
the curve is occluded or missed because of segmentation problems, local symmetries
can still be detected. Affine invariants are generated from the concavity curve:

1. Area in the image space
This is a relative invariant, The area used is that of the triangle defined by
the three concavity distinguished points (en, ez and h).

2. Moments in the canonical frame
Significant concavities are mapped to a canonical frame {39} consisting of an
equilateral triangle with vertices at (—1,0), (1,0} and (0,+/3) by using the
affine basis triplet points of the concavities. The x and y moments of the
concavity in the canonical frame are used as invariant indexes,

Table 3.1 lists the invariant values for the objects in figure 3.3. These differ, in
general, by less than 2% for symmetry related concavities. Figure 3.4 shows the

matched concavity pair extracted from figure 3.3. For the plier, invariant values
are not consistent because of the thickness of the handles. The handles cause two

problems: firstly, they are rounded so (as in the case of an extremal boundary) the
surface curves projecting to the outline will be space curves and not mirror pairs in
general; secondly, and more important in this case, the handles and jaw are not in

the same plane,

For a convex curve segment distinguished points can be obtained from the anti-
symmetry set [8].

- 3.3.2 Determining the affine transformation

Having found. two curves with matching invaria._m(s), the next stage is to determine
if the curves are affine related. This is achieved by extracting a number of dis-
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Figure 3.5: Affine view of spanner.
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Figure 3.6: Distinguished points for edge curves extracted from the image of fig-
ure 3.5. The notation of points for the curves P and @ is defined in figure 3.2.

tinguished points on each curve, and determining an affine transformation between
these point sets. Three points are required to determine a general affine transfor-
mation. Distinguished points are curve “markers” that can be determined before
and after a transformation. A number of examples are shown in figure 3.2. They
include points preserved by projectivities (such as inflections, bi-tangent contact
points, “cast” tangents) as well as those exclusively preserved by affinities (such as
points defined by parallel lines). Examples are shown in figure 3.6. Note, points
are ordered by the curve so the correspondence problem is greatly simplified.
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3.3.3 Verifying subset membership

As noted in section 3.2, the image curves are related not by a general affine trans-
formation (with six degrees of freedom), but by a three parameter subspace. If
the affine transtformation does not lie in this subspace, then the two curves cannot
be symmetry related and as a consequence, inter-curve reflections, as in figure 3.9,
will not work. Note that if two curves are symmetry related then two points are
sufficient to determine the transformation of equation (3.2). When more points are
available the form of the transformation is used as a constraint (via a Lagrange
multiplier) in a least squares estimator. Details are given in the next section. If
the curves are afline related then one side can be superimposed on the other. An
example is shown in figure 3.9,

3.3.4 Implementation and results

Feature extraction Image contours are extracted using a local implementation
of the Canny [15] edge detector. Significant concavities are extracted for each
closed contour after computing a convex hull and setting a threshold on concavity
height and width. Bi-tangents are found via a dual space construction [62] and this
determines the concavity entrance {en) and exit points (ex). Concavity height point
(h) is determined by the line parallel and furthest from the bi-tangent.

Concavity matching For each closed contour in the scene, matched concavities
are detected using affine invariant indexes as described in section 3.3.1. Examples
of the three points, en, ez and h, used as an affine basis are shown in figure 3.8.
Corresponding points in the matched concavity pair are determined from the trac-
ing order (clockwise or anti-clockwise) of the image contour from which concavities
are extracted. These point correspondences are used to determine the afline trans-

formation between corresponding curves.

Affine transform The next step is to determine if the afline transformation arises
from a reflectional symmetry of the object curves i.e. whether it lies in the 3 dof

subspace defined by the constraints of equation (3.2). In practice the affine trans-
formation determined from the three affine basis points is not sufficiently accurate,
50 extra correspondences are included via a pseudo inverse. Two additional points,
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Table 3.2: As the accuracy of the affine transformation Is improved,
it more closely satisfies the constraints of equation (3.2). The ta-
ble gives the computed A and & elements when they are calculated ei-
ther (a) directly from three points, or (b) via a pseudoinverse from five

points.  The transformation is for the points obtained from figure 3.20.
No of Pta Affine elements :nlﬂnl eqn. (3.1) wnd (3.17) Elements calculated ar eqn. (3.2)
‘11 a a a b = =bs(1 b - - -
. I K R U R IR U s L Tk M (D VL
5 0.77 0.97 1 -IT.TD‘r 0,43 =075 157.15 0.08 0,41

marked T,,, T.. in figures 3.2 and 3.6,' are the points of tangency to the extracted
curve drawn through the cavity entrance and exit points (these are determined from
the convex hull). In straightforward notation, equation (3.1) is rewritten as

PX = (3.16)

where X is a six-vector formed from the elements of A and b. This is solved using
a pseudo-inverse as

X = P{(PP!)Q (3.17)

Table 3.2 demonstrates that as the number of points increases the accurat;aly deter-
mined affine transformation does indeed satisfy the constraints of equation (3.2),

An alternative method for improving the accuracy of the affine transformation is
to minimise differences between the curve on one side and the other side affine
transformed (so it should be identical). For example differences of area, or the
distance between corresponding points of the matched curve could be used as a
measure. This has not been implemented, but the accuracy of the affine transfor-
mation computed from the pseudo-inverse is demonstrated in figure 3.9 (edge image
of figure 3.20) where one side @ is “reflected” onto the other side P.

Affine symmetry axis Having determined the affine transformation, the sym-
metry axis is given by equation (3.3). Since mid-points are preserved by affine
transformations, the mid-points of lines joining corresponding distinguished points
lie on the symmetry axis, This provides a quick, though not as accurate, method
for determining symmetry axis. An example is shown in figure 3.8 where the line
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L (0 1) ¢
(0,00 {¢v,0)

Figure 3.12: Mapping of guiding vectors a and b to unskewsing frame with vertices
at (0,1), (0,0) and (v,0).

3.4 Applications

3.4.1 Back-projection

Here we determine the back-projection to the object plane using the results of
section 3.2, Note back-projection does not require camera aspect ratio (or any of
the intrinsic parameters). We first give an intuitive and simple construction for
determining the back-projection and its uniqueness, which is applicable for two or

less symmetries.

Consider an image consisting of two co-planar objects with single bilateral sym-
metries. Determine the skewed symmetry axes of each object (say by joining the
mid-points of corresponding distinguished points), and choose an origin on one of
the symmetry axes, with vector a on the axis, and b parallel to the lines joining
corresponding points. Henceforth, the vectors a and b are called guiding vectors.

See figure 8.12. The back-projection is achieved in two stages.

1. Unskew the first object by determining the transformation that maps a and b
to the points (0,1) and (v,0) (unskewing frame). This determines three of the
degrees of freedom of U including the arbitrary rotation and isotropic scaling,
but does not determine the object plane aspect ratio. Explicitly |
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[ﬁu t1a a; bi _ 0 v
Uz Uy | la; 2] 110
So,

m o -1
U=[0 v a% b%]
1‘%.% by

yielding the expected one parameter (v) family of solutions.

2. Now, v is determined by enforcing that the second object should also be
unskewed. We have:

a*Utyb? = 0 (3.18)
Multiplying out gives:

1-1

by

1 gl 1-¢ 0 171 a4t
a*| r [}, 2] 5| p'=0 (3.19)
L.a'ﬁ v v l..a'ir‘ v

which is a linear equation for v®. Note that if b! is parallel to b* {and
consequently a’ is parallel to a?) then the quadratic form in equation (3.19)
is identically zero and there is no constraint on v. Similarly, there is no
constraint if a' is parallel to b? (and consequently b! is parallel to a?). This
occurs if the symmetry axes of both objects are parallel or orthogonal, In this
case both objects are unskewed by the first stage.

This formulation is, of course, equivalent to section 3.2.2, and either can be used if
there are two symmetries present. If there are more than two symmetries, where a
least squared solution is required, then the above method is not easily generalisable.
However, the formulation of section 8.2.2 is not restricted. Its application in a least-

squared solution is described below.

Figure 3.13 and 3.14 show examples of object pairs before and after back-projection.
The angle between the vectors a' and b* before and after are given in table 3.3. Ac-
curate back-projection requires at:cur_ate determination of these vectors (which are
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Table 3.4: Angles between guiding vectors before and after unskewing the object in
figure 3.15.

Objects First symmetry | Second symmetry
Initial Angle 05.8 74.3
Final Angle 90.0 90.0

Table 3.5: Angles between guiding point triplet before and after unskewing for
multiple objects in figure 3.18,

Objects = | Spanner | Spoon | Hex spanner | Plier
Injtial Angle | 76.4 97,2 81.5 04.3
Final Angle 89.7 89.1 89.6 88.8

we seek the minimum of [[Mx|{? subject to ||x|| = 1, where M is a n X 3 matrix with
each row given by equation (3.9}, This is a standard problem in linear algebra.
The solution is the eigenvector of M'M with least eigenvalue. It is also possible to
determine a covariance matrix for A and g in a similar manner to [7]. A more
complete treatment of image noise and segmentation errors would weight each row
of M according to a measure of ils uncertainty.

Results of applying this least squares estimator to the affine scene in figure 3.18 are
given in table 3.5 and figure 3.19. Note that the angle between the guiding vectors
for the plier is not as good as the others due to the handle limitation discussed in

section 3.3.1.

Back-projection is generally formulated as maximising a function - in this case one
sensitive to the angle between back-projected guiding vectors, but unaffected by
similarity transformations. Instead of the linear constraint given in equation (3.9)

back-projection could be computed by minimising the nonlinear function f{z) =
5 cos? 0;, (where ; is the skew angle between a' and b’) and the sum includes all

symmetric objects in the scene.
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Figure 3.19: Unskewed image of multiple objects of figure 3.18.
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Pigure 3.21: Unskewed image of hex spanner of figure 3.20.
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Figure 3.22; Examples of images used to calculate slant o and tilt 7 for each of the
camera orientations. For each orientation o and r are recovered for three different
object arrangements. Results are given in table 3.6.

3.4.2 Slant énd t1lt determination

If the camera aspect ratio is known, so that camera projection is scaled orthography
rather than affine, then slant and tilt of the object plane can be determined from the
ratio {a : B : 74}. Refer to the lemma in section 3.2.2. Quite straightforwardly, the
variables A and r which appear in the back-projection operator (3.6) are respectively
sec 7, Where o is the slant of the object plane, and tilt (with A? = X% so that |A| > 1).
See figure 2.3 of chapter 2 and (7). The ratio {a: §: 4} determines A up to sign,
corresponding to a reflection of the plane. Thus slant is recovered up to the usual
two fold ambiguity under scaled orthographic projection, i.e. ¢ and T 0.

Calculated slant and tilts are given in table 3.6, The results are compared to
(a) slant and tilt obtained by a method which back-projects a circle under per-
spective [63]; and (b) approximate measurements from the camera position. Two
camera orientations are compared, Three resulfs are given for each orientation cor-
responding to different arrangements of the co-planar objects. One representative

image for each orientation is shown in figure 3.22,

- 3.4.3 Planarity tests

~ Suppose two symmetric planar objects are not co-planar; can this be detected from
the image? If the objects are not co-planar then equations (3.12), or (3.18) may not
have a solution. This provides a simple test for non-co-planarity which will always
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Table 3.6: Slant and tilt values calculated from symmetry back- projection, circular
back-projection and (approximate) camera position.
Orientation Symmetry Circle | Measured
1T o r o[ 1 o
figure 3.22 left |50 £ 3| 88 & 2 | 53 | 60 54
figure 3.22 right |41 £ 3 | 106 £ 4 | 47 | 118 | 44
figure 3.15 44 | 111 [47 118 ] 44

be passed if the objects are co-planar (subject to image noise), but non-co-planar
objects may fail, |

The test is derived from equation (3.12) as follows. We have

(14+2%9*  (a+49)?

N ey (3.20)

Considering the A equality first a number of constraints may be evaluated as follows:

1. For A? to be real and positive, u > D (from p > 0, it follows that ey > 8% or
det V > 0, where V is defined in equation (3.8)).

2. Multiplying out gives A* + 2,/A + 1 = 0. This only has real roots if the
discriminant (u — 1) 2 0, ie. for /\ real, u > 1, -

This defines a region for acceptable {a: B : 7} solutions. If solutions do not lie in
this region then the image cannot have arisen from co-planar objects,

An example is shown in figure 3.23, where the hex spanner is in a different plane from

the other spanner. The calculated values of {a: #: 4} and ware {—0.793 : —0.0920 :
1} and —0,013. respectively. The above planarity test condition demonstrates that

the objects are not in the same plane. |
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Figure 3,23: Affine image of two non-co-planar objects.

3.5 Discussions

We have demonstrated that the object relation of bilateral symmetry gives rise to
image constraints that can be utilised in real applications, In particular bilateral
symmetry restricts the affine transformation between corresponding image contours
to a three dimensional subset of the planar affine group. This constraint allows these
contours to be discriminated from other affinity related image curves.

As well as extending this idea to other object relations, like rotational symme-
tries, the approach can be extended to the most general planar object to image
transformation - a projective transformation. Unlike the affine case, lines joining
corresponding image points are not parallel in general, in projective images. How
the symmetry restricts the transformation between corresponding image curves to
a subset of the full projective group and how the projective invariants will be used
to detect symmetry related contours are the key issues to be discussed in the next

chapter.
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Chapter 4

Symmetry in Projective Images

4.1 Introduction

In this chapter, we concentrate on the projective extensions of chapter 3. We assume
. the object to image transformation is approximated by planar projective group, Like
affine case, since projective transformation form a group and a reflection due to a
bilateral symmetry is a particular type of projective transformation, there may exist
a symmetry, if one side of the contour could be mapped to the other projectively
(8 dof). However, we show in section 4.2 that the image transformation is actually
a subset of the plane projective transformation and has four degrees of freedom.
These along with the use of projectively invariant properties are used in section 4.3
to develop an efficient algorithm for symmetry detection and verification.

The mathematical framework is established in section 4.2. The image to object back-
projection is decomposed into two matrices - one responsible for the perspective
and affine transformation (4 dof) and the other for similarity transform (4 dof}.
Since, we are interested in back-projection modulo similarity {translation, rotation
and isotropic scaling), the necessary constraints are presented in section 4.2.2 to

determine the perspective and affine distortion.

Under perspective as well as skewing there is perspective “fanning”, see figure 4.1,
The edge image of the top face of a cookie cutter in figure 4.1 is unsuccessfully
unskewed using the back-projection algorithm detailed in chapter 3 [52], assuming
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Figure 4.1: The projective image of a cookie cutter. The effect of perspective “fan-
ning” is clear. The edge image of the top face of the object and a pair of guiding
vectors are shown, Local symmetry line and the vector collinear to the direction
Joining corresponding points of a bilaterally symmetric contour are the guiding

vectors.

image projection to be affine. This is shown in figure 4.2. The reader may care
to pause at this point to view figure 4.18 which demonstrates an improved back-
projection following methodologies developed in this chapter; however, the image

projection, in this case, is assumed projective.

We have shown that two co-planar symmaetries are needed, in general, to uniquely
determine the “unskewing” matrix and the aspect ratio of the plane. Similar to
affine case, as in chapter 3, if the camera aspect ratio is known, the back-projection
matrix determines orientations of object plane relative to the camera. Finally, a
test for non-co-planarity is given for two symmetric objects from a single image.
The results are illustrated in section 4.4 with examples from images of real scenes

followed by discussions.



Figure 4,2: The edge image of figure 4.1 is unskewed following back-projection algo-
rithm of chapter 3 [562] assuming image projection to be affine. Because of perspec-
tive “fanning”, the image could not be unskewed exactly. The constraint enforced
18 that the guiding vectors are orthogonal in the object plane,
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4.2 Mathematical framework

In the most general case there is a projective transformation between object and
image planes. Figure 4.3 illustrates the situation under consideration: the image
contours v and ' are the images, assumed to be under projective transformation,
of two corresponding sides, I’ and I' respectively, of a planar object with a bilateral
(mirror) symmetry. The key attributes of projectivity are properties like collinearity
of points, intersection of lines and the cross ratio which are preserved. In particular,
parallelism or length ratios on parallel lines as in the affine case are not preserved.
For example in figure 4.3, mid-points of AA" and BB’ give the symmetry line of the
object; however, the projected symmetry line will not necessarily pass through the
mid-points of aa’ and bb'.

4.2.1 TImage transformation

The following theorem explores the image transformation between the 1mage curves
vand ~' in more detail. In particular, it fixes notation that will be used subsequently
to back-project images.

Theorem 3 Suppose two curves v and ', as in figure 4.8, are the images of two
corresponding sides of a planar object unth bilateral symmetry, Suppose further
that tmage projection can be represented by a projective transformation. Then the
transformation between v and ' has the following properties:

1. v and v are related by a projective transformation. That 1s, 1f X ts a point on
~ then there 15 a point x' on +' such that:

!

x! = Tx (4.1)

' ' . " . f _
where T 15 a non-singular 3 x 3 matriz, and X and %' are homogeneous three

vectors,

2. The projective transformation T satisfies the following constrasnts:
(a) T* = kI, where k 15 @ scalar.
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Figure 4.3: v and o' are the projective images of two corresponding sides of a planar
object, I' and I respectively, with bilateral symmetry. Since projective transforma-
tion does not preserve parallelism and in particular mid-points, the imaged symme-
try line may not pass through the mid-points of aa' and bb'. Following theorem 3,
the symmetry axis is given by the line (e; x e5). The eigenvector e, is collinear to
lines joining corresponding points of the imaged bilaterally symmetric object.

(b) The fized points of T are: a line of fized points; and, a fized point (not
on the line) through which there is a pencil of fized lines.

A projection with these properties (s a collineation of period two, also known
as a 2 cyclic homography, and a planar harmonic homology [69].

S. The matriz T has efgenvectors {e;,e;,es}. Two of the eigenvalues, corre-
sponding to e, and eq say, are equal. The third, corresponding to e, s distinct

and non-zero. The symmetry azis 1s given by the line (e; X eg). Corresponding
points, b' and b, are collinear with e, as shown in figure 4.8, The line b'b
intersects the symmelry azis fn a point by say, and the four collinear points

b, by, b' and e, have a harmonic cross-ratio,

4. The transformation has four degrees of freedom.‘ It can be determined from
two correspondences,

The proof is given in appendix A.2. Note that the projective transformation T is
a non-singular 3 X 3 matrix with only four degrees of freedom instead of the usual
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4.2.2 Back-projection

Following [52], in this section we consider thé extent to which we can back-project
images under projective transformation. The following analysis is similar to (affine)
back-projection detailed in section 3.2.2; the extra difficulty, however, arises due
to perspective “fanning”, Note that step 3 of theorem 3 gives the direction e,
which is collinear to all the correspondence directions due to a bilateral symmetry.
The vanishing point corresponds to e;. On the object corresponding points are
collinear with this point at infinity since the lines joining corresponding points are
parallel, Therefore, the notion of guiding vectors, as in chapter 3, could not be
used in this case unless the perspective distortion is removed. We show in the
following theorem that with two or more symmetries, the image could be uniquely
back-projected modulo similarity.

Theorem 4 Suppose we have an (un-caltbrated) image of two co-planar symmeiric
objects then the tmage can be back-projected unsquely, modulo a similarsty, provided
that the two symmetry azes are neither parallel nor orthogonal in the object plane.

Proof

First some notation for back-projections, Suppose the linear back-projection relat-
ing the object and image planes is given by:

X =Ux | - (4.2)

where, x is the 2D image vector represented in the 3D homogeneous coordinate
frame, X is the corresponding three-vector in the back-projected planar scene, and
Uis the 3 X 3 linear transformation matrix with det U > 0 responsible for back-
projection. Note that U defines a projective transformation with eight degrees of

freedom,

Referring to theorem 3, the constraints for back-projection are:

—

Ml

‘see chapter 2

- 87



1, The intersection of the correspondence lines (e1) must be at snfinity for paral-
lelism n the back-pr?Jﬂctt'on. This is expressed projectively by requiring that
ey transform to a point (q) on the line at infinity, 1.

2. The correspondence direction (e1) and the symmetry line (e2 X e3) must be
perpendicular in the back-projection. This is expressed projectively by requsr-
ing that the intersection of the four points, namely, intersection of symmelry
line and 1y, g, and the two eircular points ((1,1,0) and (1,~—1,0)*) have a
harmonic eross-ratio.

The back-projection is achieved in two stages:

Stage 1. Removing the perspective distortion, leaving only affine.

Stage 2. Removing the affine distortion.

Each stage generates a 3 X 3 transformation matrix, and the back-projection matrix
is the product of these two.

Stage 1. Removing the perspective distortion

Suppose there are two symmetries (a and b). Referring to theorem 3, the directions
collinear to the corresponding points of the bilateral symmetries a and b, are given
by €¢ and e! respectively. The line through these two points, say !, is given by,

I = e X Ei = ("1: Zza!a)t - (4'3)

In removing the perspective distortion, we find the 3 X 3 transformation matrix, Ty,
which takes I’ to L. A point pe on lo, must be of the form po = (p%, Pk, 0).
Note that if point transforms as p' = Tp, then line transforms as ' = T, Hence,
T, i1s given by, |

1 0 0
0 1 0} (4.4)
L m(ll/fa) —Uz/ls) 1 |

i

Tp
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Stage 2. Removing the affine distortion

The affine distortion is removed following back-projection algorithm presented in
chapter 3 [62]. First, the transformation Ty is applied to ey, e, and ey for symmetries
a and b. Suppose, the transformed symmetry lines are given by (e’ x e2') and
(¢ x e}) and the vectors representing symmetry correspondences are given by e?
and ¢ for symmetries a and b respectively. By construction, e? (and, also et') is
of the form (p, ¢,0) which is a line parallel to y = (p/q)z.

If, we express the symmetry line ((e;" X eg') or (e} x eg’ ) and the correspondence
direction (e‘i‘Ir or e'{') as 2D guiding vectors, say, m and n respectively, for any
bilateral symmetry, these will back-project to vectors respectively parallel to and
orthogonal to the symmetry axis. In the object plane (modulo similarity), therefore,
the scalar product (T,.m).(T,.n) = 0, where, T, is the 2 X 2 transformation matrix

responsible for affine distortion. Consequently (52],

m'T, Tyn = 0. (4.5)

The matrix V = T!T, is clearly symmetric and it is positive definite. Based on the
methodologies developed in section 3.2.2, let the components of ¥ be given by:

8]
V= ﬁ ﬁ ’ (4'6)
then we have from equation (4.5)
o
(Men; meny +myn, myny) | 8] =0 (4.7)
L

This is a linear constraint on a, 3,4, Two such constraints determine the ratio
a:f :~, Referring to section 3.2.2, the sign is fixed by the requirement that V is

positive definite, so that trace V=a+~v2>0.
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Two symmetries generate two constraint equations (4.7):
ol
M ﬁ =
v | |

where -
manl minl + mlin!

M — I
2
| mini ming + mgni

(4.8)

min
m,n

LR

Provided the matrix M is of rank 2 this uniquely determines the ratio {a: 8: 4}. It
can be shown that M drops rank if any of the vectors {m!,n!, m? n?} are parallel,
hence the clause in the theorem. Note that parallel lines in the object remain

parallel in the image after affine transformation,

The optimal solution when there are more than two symmetries or constraints is
discussed in section 4.4. The back-projection matrices T, and T, could be obtained

from linear least square solutions of equations (4.3) and (4.7).

Having determined T, and T,, the composite back-projection matrix U is given by,

U=T,T, ' ' (4.9)
where, T, 18 a 3 X 3 maftrix of the form |
[ 4y tyg O]
Ta = | U21 U2 ¢
0 0 1

4.3 Deteéting symimetries

We have followed the same methodologies as in chapter 3 to detect symmetry. Kven

though the projection (I' — « andI' - +) isbya general pro jective transfarmation,
as shown in section 4.2, the image curves  and 4 are related by 2 (4 dof) p'lzfna.r
projective subgroup. In this section, we describe how these results can be utilized

to detect efficiently such image pairs and their reflectional aymmetry axis,

are used as index functions which avoids the cost of an

The projective invariants cti |
in our case} search over transformation param-

eight-dimensional (four-dimensional

60



eters [64]. The three stages of an implemented algorithm are described in the
following sections.

4.3.1 Generating and matching projective invariants

Two curves that are related by projective transformation have the same projective
invariants. The converse is not necessarily true, but invariants can usefully be used
to generate hypotheses for matching, which can subsequently be tested. Briefly,
following the footsteps of affine invariants in section 3.3.1, a function I(I') of a
curve T' is an fnvariant if I(y) = |[U[*I(I') where - is the image of T' (refer to
figure 4.3) under the projective transformation as defined in equation (4.2). The
exponent w is the weight of the invariant, If w = 0 then the invariant is absclute,
~ otherwise it is relative, Note that in order to determine local symmatries, the
invariant cannot depend on global properties of the curve. Examples of (semi-local)
projective invariants for smooth curves are given below.

Matching on invariants can be implemented as an O(n) complexity process by the
use of hashing (where n is the number of curves) |62,64].. We have implemented the
simpler O(n?) algorithm, since n is small in the cases we have experimented with.

It is straightforward to implement the more complicated algorithm.

Projective semi-local invariants

We use canonical frame to calculate projective invariants. Since, four points define a
projective representation, we determine four stable distingusshed points of each curve

and map them to the four vertices of an unit square (Canonical frame with vertices
at (0,0), (1,0), (1,1) and (0,1)). We calculate area and moment of the transformed
curve in the canonical frame. These are used as indexes to find the matching curve
pairs. Distinguished points are curve “markers” that can be determined before and
after a projective transformation. They include points preserved by projectivities
(such as inflections, bi-tangent contact points, “cast” tangents), see figure 4.4, A

number of examples on real images are shown in figures 4.6 and 4.9.
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Figure 4.6: Distinguished points are marked on the projective scene of spanner and
scissor of figure 4.5,

4.3.2 Determining the pi‘ojective transformation

Having found two curves with matching invariant(s), the next stage is to determine
If the curves are related by a projective transformation matrix T. This is achieved
using distinguished poinis on each curve, and determining the transformation be-
tween these point sets. At least four matching points (two correspondences) are
required to determine T. Note, points are ordered by the curve so the correspon-

. dence problem is greatly simplified.

If the curves are projectivity related then one side can be superimposed on the other

applying transformation matrix T. An example is shown in figure 4.10. Note that
accuracy of the reflection depends on number of extra correspondences (minimum

two correspondences for 4 dof of T) between the matching curves. In that case, T is
overdetermined and evaluated using pseudo-inverse techn:que which is deta.1led in

section 4.3.4.
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4,3,3 Verifying subset membership

As noted in section 4.2.1, if two curves are symmetry related then two correspon-
dences (four matching points) are sufficient to determine the projective transfor-
mation (4 dof). If the transformation matrix does not obey the properties derived
in section 4.2.1, theorem 3 in particular, then the two curves cannot be symmetry
related and as a consequence inter-curve reflections, as in figure 4,10, will not work.
When more points are available, the form of the transformation is used as a con-
straint (via a Lagrange multiplier) in a least squares estimator. Details are given
in the next section.

4.3.4 Implementation and results

Feature extraction Image contours are extracted using a local implementation
of the Canny [15) edge detector, For a non-convex curve, following Rothwell et
al [63), we exploit concavities by constructing a bi-tangent across the concavity
calculating convex hull to the edge point set. Note that the point of tangency and
bi-tangent line are covariant to projection, If the length of the bi-tangent line and its
-~ maximum distance from the curve it is encompassing (concavity height) are greater
than some thresholds, then the two points of tangency constitute entrance and exit

points of a significant concavity.

The next step is to find further two points of tangency to the curve using tangent
lines starting from entrance points of the concavity (cast tangents). These points
can also be evaluated as before by constructing convex hull to the significant con-
cavity only, These view-independent four stable points constitute a distinguished
frame which can be mapped to a canonical frame. The four distinguished points or
projective basis points of the significant concauities of the spanner and the scissor
(figure 4.5) are shown in figure 4.6, Figure 4.7 shows the significant concavities of

the spanner of figure 4.5 when mapped to the canonical frame.

For a convex curve segment, semi-differential invariants [4] may be used by fitting
b-spline to the curve segment and determining curve inflection points. |

Concavity matching For each closed contour in the scene, matched concavities
are detected using projective invariant indexes (area and moment of concavities
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Figure 4.7: The transformed curves of the two significant concavities of the spanner
in figure 4.5 are shown when mapped to the canonical frame with co-ordinates at

(0,0, (1,0), (1,1) and (0,1).

Table 4.1: Projective invariant indexes of significant concavities of figure 4.9. M,
and M, are the moments about z and y axes respectively.

invarisat Dyele spanney Scimor Hex spanner Spanner
Aren (Onuonfeal frame) | 1,84 141 1.4 | 1.61 | 2.9 2.13 1,13 1,18
My (Oanonleal frame) | 872 | 664 | 808 | 4TI | @8G | 804 | .837 | .38
My (Qanopleal Frame) 1,719 "Y.683 | 1531 | 1,81 | 2.836 | 2.277 | 1460 | 1,808

- mapped to the canonical frame) as described in section 4.3.1. Corresponding points

in the matched concavity pair are determined from the tracing order (clockwise or
anti-clockwise) of the image contour from which concavities are extracted. These
point correspondences are used to determine the projective transformation between

corresponding curves,

Figure 4.9 shows the significant matching concauvities extracted from the local}y
Symmetric objects of figure 4.8, The concavity distinguished points are mar:'ked in
figure 4,9, Projective invariant indexes used to match the concavities are given in

the table 4,1,

65



i
'\.".

e
o

Py
oot n

oy

o) Droeh

—a

R,
e

T
-

T

H

3 A e T
z:. - - ! " - . -
.: .il:lhr:"'-'l -ﬁ-‘\! Fé g e e el

SRR

g
o

iﬂ*'é*] e
e T

'EE id%f i -!I..ﬁt
-*fli:”?” i

i

- e P
TR




Table 4.2: Improvement of projective transform T using 4-point correspon-
dence for the spanner in figure 4.10. Note that, referring to theorem 3,
two_of the eigenvalues of T (corresponding to e, and es) should be identical.

Using 2-point correspondence Using 4-point correspondence |
eigenvalue | corresponding eigenvector | elgenvalue | corresponding eigenvector |
-0.9793 {-1.6681, 0.5431, 0.0} -1.0000 {-1.8792,0.5431, 0.0} |
1.018 {-0.6982, -0.9172, 0.0} 1.0001 {-0.7311, -0.9544, 0.0} |
0.9884 {12.9872, -3.8431, 1.0} 1.0000 {13.1844, -3.9740, 1.0}

Projective transform The next step is to determine the projective transforma-
tion T arises from an imaged reflectional symmetry between the matching concav-
ities. Necessary equations are detailed in section 4.2.1. Since, there is a bilateral
(reflective) symmetry, it can be shown that a necessary and sufficient test is that

T? = AI ' (4.10)

 In this way the non-symmetric object in figure 4.8 is eliminated as shown in fig-
ure 4.9, |

In practice, T determined from the two basis points (of each concavity) is not suf-
ficiently accurate; so extra correspondences are included via pseudo-inverse. The
 bi-tangent points (other than concavity entrance and exit points) determined in fea-
 ture extraction stage provide extra correspondences, In straightforward notation,

‘equation (4.1) is rewritten as

PX =Q | (4.11)

where X is an eight-vector formed from the elements of T. This is solved using a
pseudo-inverse as

x- = P’ (PP‘)"Q - _ (4.12)

~ Figure 4.10 proves the point where one side of the symmetry axis of the object is
- reflected to the other using T evaluated applying pseudo-inverse. Table 4.2 shows
o the improvement in projective transform T using pseudo- inverse.,
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Figure 4.10: The curve Q, is the “reflection” of the curve @ using projective trans-
formation computed from four point correspondences,

An alternative method for improving the accuracy of the projective transformation
is to minimise differences between the curve on one side and the other side superim-
posed or reflected (so it should be identical). This is done with the initial estimation
of matrix T and improving it (T) iteratively. The steps involved are as follows:

1. Evaluate an approximate T from two point correspondences.

2. For a bilateral symmetry, say v and 4" as in figure 4.3, one side is reflected to
the other (as Q,, reflection of @, is mapped to the other side P in figure 4.10)

using T evaluated in step 1.

3. For a number of points along the curve P, say every 5th edgel, measure the
perpendicular distance between P and Q,. Vertical Scanning from the selected

points of P gives the corresponding points of Q..

4. Tterate to minimise the sum of squared perpendicular distance using Levenberg-
Marquardt method [57]. For N points along P, a x? merit function is built

x*(a) = i[xp — Txq)’

1=1

" where a is an eight-vector formed from the elements of (8 dof) T. xp and xg
are points along P and Q respectively. The merit function is minimised from
the gradients of x* with respect to parameters a. The detail methodology is

~ provided in [57). An example is shown in figure 4.11.
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230 314

Figure 4.11: Example of use of improved T using iterative method. The Qr is the
reflection of Q on P. The co-ordinates of two point correspondences, used for initial
~ estimation of T, are shown.
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Figure 4.13: Symmetry detection by construction. As the intersection points are
preserved under projectivity, the line joining s; and sy gives the symmetry line.

construction.

From the properties of the projective transformation matrix T, representing reflec-
tion, the symmetry axis is also given by the eigenvectors of T~*. To see this, remem-
ber that if point transforms as x = TX, then a line transforms as 1 = T~'L = )l
Note that two (non-zero) eigenvectors represent the symmetry axis and the line-
joining corresponding pairs of points, vtz. ad’ and &' (as in figure 4.13) respec-
tively.
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Table 4.3: Angles between the symmetry axes and correspondence directions before

and after unskewing for objects in figure 4,14.
Objects Spanner | Opener

Initial Angle | 93.4 01.7
Final Angle | 000 | 0.0

4,4 Applications

4.4.1 Back-projection

Here we determine the ba,ck-prnjectian. of the image to the object plane using the
results of section 4.2. Note back-projection does not require camera aspect ratio

(or any of the camera intrinsic parameters).

Accurate back-projection requires accurate determination of the eigenvectors of the
matrix T (refer theorem 3). In practice we find that four point correspondences and
use of a pseudo-inverse, following equation (4.12) are sufficient to determine T to a

satisfactory accuracy.

After removing perspective distortion (refer to stage 1 of section 4.2.2), the guiding
vectors can be mapped to the unskewing frame, an intuitive and simple construc-
tion detailed in chapter 3. Also see figure 3.12. The unskewing of affine distortion
(refer to stage 2 of section 4.2.2) could be achieved following back-projection al-
gorithm of section 3.4.1. As mentioned in chapter 3, if there are more than two
symmetries, where a least squared solution is required, then the above method is
not easily generalisable. However, the formulation of section 4.2.2 is not restricted,
Its application in a least-squared solution is described below.

Figure 4.14 is a scene consisting of two locally symmetric objects. The result of
unskewing the objects of figure 4,14 is shown in figure 4.15. Table 4.3 gives the
angles between the symmetry axes and correspondence directions before and after

unskewing the objects of figure 4.14,

Similar to affine case in section 3.4.1, if an object contains several local symmetries,
the object alone is sufficient to determine the back-projection (provided the usual

conditions are satisfied).
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Figure 4.17: Back-projected edge image of the object of figure 4.16.
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Figure 4.18: The edge image of figure 4.1 is back-projected removing beth per-
spective and affine distortion. Compare this with the back-projection achieved in
figure 4.2 where only affine distortion is removed.
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Figure 4.20: Bac ‘O] '
: Back-projected image of multiple objects of figure 4,19
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Figure 4.21: Camera and world plane geometry. Slant (¢) and tilt (r) angles of the
‘world plane are shown with respect to the camera co-ordinate frame.

4.4.2 Slant and tilt determination

If the camera aspect ratio is known, so that camera projection is scaled orthogra-
phy, then slant and tilt of the object plane is recovered for the affine camera in
section 3.4.2 [62], Here, we determine parameters for camera calibration from back-
projection matrix U, Refer to figure 4.21. The world plane is expressed in camera .

coordinates as

Z=pr+qytr (4.13)

Followmg 28] and the notations followed by them, the induced frame X and ¥ axes
in the world plane has its centre (0, O, ) and its X axis in the same plane as of
camera z axis. Hence the induced frame position and orientation depend only on
p, ¢ and r. We assume that camera is calibrated and camera parameters like focal

length and optical centre are known. Further a rotation, (say) @ and translation,
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(say) ¢; and t,, within the plane maps the induced coordinate frame onto the world
frame. This means that the projective transformation is represented by the six
parameters p, ¢, r, 8, ¢, and t,. Therefore, the back-projection U is given by [63],

U=M(p, q).H(r, 0, t, t,) (4.14)

where M(p, ¢) is the central projection matrix and H{r, 0, ¢;, ¢,) is an equiform
matrix, Following [63], we write

1 =p ]
n mn
M= O -:; 0 (4.15)
2 ~¢ 1
n mn o
and i ' .
e —s 8t — ct;
H= |8 ¢  —cty— sts + (4.16)
0 0o r

where, n = /1 + p%, m = /T4 p? + ¢*, ¢ = cos § and s = sinf. The back-projection
matrix U is given by,

(mc'__ pgs) —(ms + pge) ([sty — cteJm + ctypg + stzpq)

U=k sn? cn’ —{et, + st,)n’
—(mpe +sq)  (mps—gqc) ([cts — sty]mp + [cty + stz]q + mnr)
(4.17)
Comparing equation (4.17) with
A B C |
U=|D E F - (4.18)
G H 1 ]
where U is evaluated following equation (4.9). We find that:
2 o g2 2
D+ E ____1+_p (4.19)
DG+ EH g
and EG-—DH.? (1+7p*+¢)p
= (4.20)

(DG+EH) g’

Eliminating ¢ from equations (4.19) and (4.20) gives a cubic In p? with only one pos-
itive real root, which we can solve apart from the sign ambiguity in p. Substituting
the value of p in equation (4.19), solves for ¢.
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Table 4.6: Slant and tilt values for the projective camera.
Image Symmetry | Circle | Measured

o T ol T o
figure 4.14 | 48| 78 | 51| 87 52
figure 4.16 [ 32| 63 |35 69 35
figure 4,19 (44| 70 |47 (74| 45

Representing p and ¢ in the spherical polar coordinates, which has several advan-
tages and most familiar to human perception, the slant (o) and tilt (7) of the induced
frame with respect to camera coordinate axes is given by o = cos™1({1+p?+¢%} /%)

and 7 = tan"'(q/p).

The slant (o) and tilt (v) angles calculated for images of figures 4.14, 4.16 and 4.19
are given in the table 4.6. The results are compared to (a) slant and tilt obtained
by a method which back-projects a circle under perspective [63]; (b) approximate
measurements from the camera position.

Similarly, k, r, 8 and {;, {, can be evaluated |63] using p and g values calculated
earlier: | |

. D? + E
- (1 + p?)?
Ul = kM |g]
= kr(l+p +¢)
r o= J%l-(lﬁ-pz%-qg)l/z
§ = tan"'(D/E)
AEt, + BEt, = —CE
BDt, + BEt, = —BF

4.4.3 Planarity tests

Suppose two symmetric planar objécts are not c;}-p_lanar; can this be detected from
the image? If the objects are not co-planar then equation (4.5) may not have a
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4.5 Discussions

We have shown applications of image constraints due to reflectional symmetry in
chapter 3. Here we have extended the same to a more general form of transformation
namely projective transformation. In particular, bilateral symmetry restricts the
projective transformation between corresponding image contours to a four dimen-
sional subset of the planar projective group. This constraint allows these contours
to be discriminated from other projectivity related image curves. We discuss is-
sues relating extending these ideas to 3D objects and for other object relations in

chapter 7.

At this point, we may claim that object images up to similarity transform could be
recovered even from the “skewed” scene due to non-fronto-parallel viewing. This is
achieved without utilising any knowledge of the camera parameters or the view point
information and only using local symmetry information, which are in abundance
both in natural or man-made objects. Having said this, we present an almost real
time implementation of an existing symmetry detection algorithm for planar shapes

under similarity transform in the next chapter.
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Chapter 5

Symmetry Analysis using Wave
Propagation

5.1 Introduction

In recent years, the wave diffusion algorithm [65] has attracted considerable atten-~
tion because of its potential to evaluate almost all the perceptually relevant symmetry
- set of a 2D shape. However, in chapter 1, we have noted that its drawback is the
slow execution time caused largely due to the diffusion step. In the next section,
we recall the theoretical basis of the wave process and show why the diffusion step

is, indeed, necessary.

Originally, Blum (9] suggested the analogy of a prairie fire (“Grassfire”) as the basis
for a perceptually plausible parallel algorithm for computing the SAT [9]. Various
numerical algorithms have been developed to implement the “grassfire” on discrete
images (e.g. Rosenfeld and Pflatz [61], Mott-Smith [47] and Montanari [46]), Given
an area A of dry grassland, if the fire starts at the edge of A and if all factors other
than the shape of A are excluded, then the propagating front of the fire contains
important information about the shape A. The correspondence between A and the
- set of quench points 5 together with the function ¢ expressing the time at which the
fire reaches the quench point set S correspond to the SAT of A. Unfortunately, this
simple quenching model, which amounts to solving the heat or diffusion equation
with initial conditions determined by the boundary of A, allows each boundary
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point of A to participate in just one local symmetry, as required for the SAT. The
SLS (11], symmetry set [32] and PISA [40] require a boundary point to participate
in several local symmetries: in terms of the grassfire, advancing wave fronts have
to be able to pass through each other, suggesting adoption of the wave equation
instead of heat/diffusion. Scott, Turner and Zisserman [65) have implemented this
wave process to detect the symmetry set. The wave fronts are also extended outside
the image matrix. They have noted that without some damping on the wave front,
the wave process becomes numerically unstable and so they have added a diffusion
process to the wave front. This has generated the desired result but made the
algorithm more cpu-intensive, Consequently, the methodology has lost its practical
significance inspite of its success in symmetry detection. At this point, the reader
may wish to compare figure 5.5 with figure 5.7 both of which are supposed to give
symmetry sets of a hammer (after post-processing) using wave process, the later
(figure 5.7) being generated without adding diffusion to the propagating wave front.

We present a parallel implementation of the wave diffusion algorithm on a trans-
puter network in section 5.3. Though many workers in computer vision talk about
the possibility of parallel implementation of their algorithms, few actual implemen-
tations have been reported (See [12] for a useful collection), Even fewer parallel
implementations have been reported for *higher level” processes such as the com-
putation of shape descriptions. Our algorithm has been implemented in a loosely
coupled MIMD transputer network and significant speed up has been demonstrated.

It has been realized that similar result as in wave diffusion method could also be
achieved by replacing the wave front as a stream of particles, This idea, which
we call normal transform, is implemented in section 5.4. This has generated an
almost real-time symmetry detection algorithm without the extra burden of parallel
hardware. The work described in this chapter is also partially covered in [48].

5.2 Wave diffusion algorithm

The issue to be addressed is why a diffusion step is needed, since the meeting points
of the two wave fronts (originating from the image contour) give the desired sym-
metry set points and since the addition of a diffusion process reduces the efficiency
of the algorithm, The mathematics of wave generation (70| shows that a numerical
implementation of the wave process and the condition that two wave fronts interact
at the same place at the same time (for symmetry), depends on the progressive
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Figure 5.1: “Perfectly flexible” string for wave generation.

damping of the wave front. To see this, consider a perfectly flexible string of uni-
form density p stretched to a uniform tension between two points z=0and z = {

‘as shown in figure 5.1,
Since, by assumption, the string offers no resistance to bending, the tension is

tangential to the string at each point. If T and T are the tensions at points A and
B respectively and since all motions are assumed transverse (i.e. perpendicular to

the x-axis)

Ticosa = Tyco8 =T = Constant - (5.1)

Resolving in the u-direction for the small element AB,

*u , | ’ | |
pés w7 = Tpsinf — Tysine (5.2)

Using equation (5.1) and approximating the length of AB, &s by fx, and also
assuming small transverse displacement of the string, |

p?it:’:tanﬂutma | o (5.3)
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But, tan  and tan § are the gradients of the string at points A and B respectively
and are given by, |

bu bu . |
an o (Sm)A anﬁ (55'3)5 (5.4)

the partial derivative being required as u — f(z,t). In the limiting case 65 = 6z =
small distance,

[ bu § (bu Su
tanfg —tana = _(6$)A+5x3; (E)-i—] (‘5-'“3),4

6%y . .
6z | == + higher order in éz (5.5)
6z J ,

I}

Using equations (5.3) and (6.5) and letting §z — 0, we can write,

8%u 6%y |
P = i (8:6)
§2uw 1 6%
5 A (51

where, ¢* = -'*-E and c is the wave constant. This is the wave equation for 1D which we
will subsequently use for symmetry detection, This equation describes the motion
of the string or simulates a wave process assuming

e the mathematical “string” has a continuous distribution of mass, and

¢ the displacements are small,
In contrast, in a numerical implementation of the wave process,

e the physical string is composed of large ._but finite number of individual pa;'ti.
cles (in our case forming an equi-spaced, quantised grid), and | |
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Because of the poor conditioning of second order partial derivatives and quantization
errors, the shape vector loses its coherence and preservation of the distribution of
the flow field. Now this instability can be reduced by choosing a low propagation
speed (dictated by wave constant c), Therefore, a need arises which will impose a
restriction on the wave process by lowering the propagation speed with a damping
effect. The diffusion process provides such facilities, The diffusion equation is

&%y 1 6u
522 - RiG1 (5.11)

where « is the diffusion constant., It can be shown that the propagation speed
decreases according to the square root of the time elapsed {66]. The combined wave
and diffusion process proposed in (65| has the following desirable features.

e It imposes a constraint on the wave process reducing non-linear changes or
unexpected pulses.

o It reduces quantization errors reducing propagation speed.

o It also imposes a consistent smoothing on the flow field towards the desired
distribution. The propagating front has a flat crest compared to a sharp peak,
This results in a larger window for overlapping/meeting of two wave fronts

which is the necessary and sufficient condition for symmetry point generation.

¢ Finally, from the property of diffusion process, it propagates a weaker influence
as the distance of the flow field from the source increases. This is particularly
important in the case of symmetry detection, since “weak” symmetries {due
to noise etc.) should give weaker responses compared to “strong” symmetries

(perceptually relevant).

In theory, the combined process will carry on indeﬁnitely given fixed initial values.
Gong [66] suggests that the speed of propagation (Cus} and the time for stopping
the process (Tyq) should be chosen according to | |

| 1 | .
- _— | o {5.12
Cya = c+'logl o . o ( )
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Twa = ' (5.13)

where | is the distance of propagation; however this is an experimental prediction
rather than theoretically verified relation.

5.2.1 Implementation of wave diffusion process

Edge images are extracted from the 2D images {of real objects) vsing the Canny edge
operator 15|, The edge pixels are set to value 1 whereas pixel values are elsewhere
0. The standard numerical implementation [65] of wave and diffusion equations is
followed. Note that in case of 2D image, the wave and dlffusmn processes solve

u(~,t) and the corresponding equations are

1 6%*u
Viu = F
c? 612
1 6u |
Viu = —— 1
| oy (5 14)
respectively. Initial conditions are,
du
W Olhoo = F(5,9) and S| =0
6t |,.o

where f(z,y) is the 2D (closed) edge contour. The numerical values of wave and
diffusion constants are taken as ¢? = 0.05 and k% = 0.01 respectively. Each iteration

consists of the following steps,

1. Wave process

¢ Compute V’uh:f i—} -l- usmg standard 3 X 3 convolutmn kernel.

| | 2 |
o Compute the acceleration %‘i‘ﬁ' e = ¢ Vi,

==ty

a0



4 82m

o Compute the velocity & =~ =22 513

6t lt=t;+1/2 ¥t L:t;

]

o Compute the displacement ul,..; /3 = ul,,, + %L—t-+1 "

2. Diffusion process
o Compute ‘;”u]lt:”_,_l/:z and Vzu'ltzt.-+1/2‘
¢ Compute the displacement uf,_, ., = 1.1|t=t-“,_|_1/2 + Jﬂ"?’ufmml/z and

fu ia 272!
k“Viu'|,_ :
ot t=t;+1 5t t=t;+1/2 + | |L.-t,-+1/2

pp——
i

the velocity

3. Store accumulated energy {u(v,1)]* into accumulated energy store.

4. Update and record energy maxima at the corresponding iteration number.

This combined wave diffusion process is to be executed for a number of iterations
determined by the user. The output image with accumulated energy gives the
symmetry set of the image. Note that the local symmetries will show up at early
iterations whereas global/reflectional symmetries, in general, will be evident at the
Jater stage, | |

The execution time necessary for each iteration can be estimated from the complex-
ity analysis of the algorithm. For a n X n image with a 3 x 3 Laplacian mask size,
convolution computations will be of O(n?) for the entire image which (convolution)
is again performed three times for every iteration. Even ignoring others, finally to
record accumulated energy, O(n?) evaluation of [u(~,t)}* is required for each iter-
ation. Therefore, even though the combined wave diffusion process computes the
symmetry set, the method loses its practical significance unless a faster version of
the algorithm is realizable. We have implemented the algorithm in a transputer
network obtaining a significant speed up as detailed in the next section. The re-
sults of implementing the algorithm on transputer network is presented in the next

section.

5.3 Parallel implementation of wave diffusion al-

gorithm

The basic problems to be taken care of in mapping an algorithm onto a loosely
coupled coarse grained network of processors such as transputers are
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e to keep inter-processor communication to a minimum,
¢ to maximally balance individual processor loads, and

e lack of parallelism due to task precedence.

To balance loads, the tasks must be distributed evenly and thus processor commu-
nication increases. Therefore we have a trade-off between communication overhead
and processor loading. To find the task precedence or the granularity of tasks, we
analyse the data dependency, or sequential threads, in the algorithm. In the case

of the wave diffusion algorithm,

o there is no global spatial dependency. Note that the generation of a symmetry
axis depends on the meeting of two wave fronts. But, since a local (pixel
based) convolution approach is taken, the process does not need to know the
positions of the image edges a priori.

o there is intra-iteration dependency. As noted in subsection 5.2.1, in each
iteration, the image is subjected to a wave process followed by a diffusion
process, then finally calculation of energy maxima, This sequential order
inside an iteration cannot be altered (See [65)).

o there is local dependency since each pixel is dependent on immediate neigh-
boring pixels (8 neighbors for 3 X 3 convolution mask) as a result of the

convolution operation.

Therefore, in distributing the wave diffusion process over a transputer network, if
step (2) above is distributed, the whole image matrix has to be communicated in
the processor network in every iteration due to intra-iteration sequential thread.
In contrast, only a row of pixels has to be communicated (due to 3x3 convolu-
tion) across the network for every iteration if the image is divided into parts and
- distributed beforehand, Therefore the architecture of the network is

¢ the root transputer communicates to all the processors the number of itera-
tions selected by user.

e the root transputer divides and communicates the parts of the image to indi-
vidual processors, | |
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Figure 5.3: Tree architecture for distributed system for wave diffusion process.

e each worker transputer (including the root transputer) runs an identical task
(step 1-4 of subsection 5.2.1). |

e each task contains two threads - a “wave thread” performing the wave/ diffu-
sion process and a “communication thread” which sends/ receives overlapped
rows for convolution during every iteration. Note that images are sliced along
the width (or height whichever is less ) only instead of both width and height
to reduce the communication overhead. |

Use of threads introduces an additional limited amount of parallelism inside the
task. Since all the transputers in the network run the wave thread for an identical
number of iterations, the processors are balanced and “almost” synchronized (there
will be communication delay due to multiplexing of communication thread). There
may be any number of transputers but the limitation in communication is due to
the number of channels (which is four) available to each transputer. The overall
processor architecture is the tree structure shown in figure 5.3. Note that the nodes
(except those that have no child) additionally have a multiplexer thread running to
receive message from an arbitrary number of input ports and to pass them through

a single output port.
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Postprocessing

This i1s a crucial step in analyzing symmetry from the images subjected to wave
diffusion algorithm. The perceptually relevant symmetry set will show up only
after proper postprocessing. We have found the following steps to be satisfactory
though we must mention that the parameters influencing symmetry localization are

image dependent.

1. Thresholding the wave/diffused image based on gray values. Note that we are
not converting the image to a binary function; instead gray values less than
the threshold are made zero. |

2. Thresholding the processed image based on pixel density. Stray pixels due to
image noise or jagged edges are eliminated.

3. The next step is non-mazimal suppression. Note that, the gray value dis-
tribution in wave/diffused image will have a flat crest compared to a sharp
peak. In a 3 X 3 window, we select the central candidate pixel if it has gray
value more than at least five of its neighboring pixels. This turns out to be
satisfactory for all the images we have worked with. |

In addition to this, we have implemented a simple line linking procedure based
on best first technique. In case of a break in symmetry line, the pixel with gray
- value closest to the current pixel value in a 8 X 3 window is marked as a potential

candidate.

The parallelization of postprocessing stage is quite straightforward. Root transputer
will broadcast the threshold value for pixels, pixel density over a user selected
window and the parameter for non-maximal suppression. Since, postprocessing is
done only once after the requisite number of iterations for wave diffusion process,

there is no communication overhead due to overlapping rows (or columns) of the
image window, |

Results

INMOS T800 series transputers are used each delivering 15 MIPS CPU and 2.4
Mbytes/sec data communication rate. Note that the communication delay at this
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Table 5.1: Comparison of processing time (in sec.) of real images subjected to wave
diffusion process. |

Image

Sixe

Iterations

Seqn. tlme

3Transeputer

ATransputer

iTi-ml!:-uttr

8Transputer |

Hammer

1Tax 443

60

140

119

108

'

Bl

Spnnner

142 X882

e

101

T4

a8

b

l

Flier

383 x 383

&b

238

108

181

188

149

high speed of data transfer between two transputers should be almost negligible
for a single row of an image. But, as each image is subjected to a minimum of
60 iterations (depending on image size), and since at each iteration a minimum
of six times a row (or column) has to be communicated (two overlapped rows for
each convolution), the total communication time is not insignificant. Moreover,
slight communication delay during the initial iterations has increasing effect as the
iteration number increases. These can be observed by the difference in processing
time of (say) initial 10 iterations and 10 iterations at a later stage.

Figure 5.4 shows the application of wave diffusion algorithm on the edge image
of plier (as detailed in subsection 5.2,1) implemented on the transputer network.
Figure 5.5 is the snapshot of energy value of the edge image of hammer after 60
iterations of wave diffusion process. Figure 5.6 is the symmetry set of the hammer
after postprocessing the image in figure 5.5. Figure 5.7 shows the result of wave
process on the edge image of hammer without incorporating diffusion process in
the wave thread., This proves the importance of diffusion process in the symmetry
detection algorithm. Figure 5.8 is the symmetry set of spanner. Note that, though
the rotationally symmetric points are somewhat diffused, partially because of post-
processing, all the perceptually significant symmetry segments could be obtained

using wave diffusion algorithm.

The total processing time in seconds (which includes CPU time, communication
time and the transputer I/O time ) for the image against the number of transputers
used is given in table 5.1, The speed up factor (we define as the ratio of total
processing time with a single processor to that of a multiprocessor ) is shown in the
graph in figure 5.9. It is noted that the speed up is lessened as the size of the image
increases. Processing time of the sequential implementation is evaluated on the

SUN SPARC station and for consistency the same C-code is used for both the cases
except the additional communication protocol and configuration files necessary for

parallel C,.
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Pigure 5.6: Symmetry set of hammer after post processing of the image in figure 5.5.
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Figure 5.9: Speed up achieved in processing time against “ideal” .

5.4 Normal transform

Considering the implementation of the wave diffusion process, we see that if .we
replace the wave front with hypothetical particles, we should get similar results
provided the particle profile maintains the “shape” vector. The constraints, as

earlier, are

o that a particle moves with constant velocity from the edge contoyr in both
directions (as in wave propagation), |

o the particles must move in a direction “normal” to the “shape” profile, and

o a hypothetical “flow through” property of particles needs be implemented
numerically so that they maintain their “normal” direction even after collision,

The collision path of the particles will give the symmetry set similar to the wave
diffusion process. The “fow through” property is easily implemented with aq ac-
cumulator array (of image size) which will monitor the movements of particles an
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will flag on the location whenever it will detect more than one particle at the same
instant in a quantised grid, The algorithm is extremely easy to implement and
consequently fast in execution and also easily parallelizable. But it suffers from the
same problem as noted in wave diffusion process namely the digitization error in
calculating normal vector at the edge point. We have 1mplemented two different

methods both of which give reasonably good results.

First, we approximate the contour with a B-spline [1]. A cautious strategy is fol-
lowed by taking large number of vertex points in the approximating polygons so
that almost every detail of the 2D closed contour can be replicated. If we represent

the curve parametrically as follows:

w-—-{ () |y € (to,41) (5.15)

y(t)

The normal to the curve at ¢ = ¢, is given [24] by,

I —= a:(tl) + ty'(tl)
y = y(ty) — tz'(¢)

where 2’/(t) and y'(2,) are the values of 9 and % at ¢ = ¢; respectively. The higher
the number of divisions between (£,?;) the more the quantization error is reduced.

The second approach approximates the contour with a collection of small straight
line segments. Five consecutive pixels are approximated to a straight line using
orthogonal regression and the normal is drawn from the mid-point (third point).
The normal direction is determined from the eigenvalues/eigenvectors of the regres-
sion matrix of the set of five points. To take care of the quantization error {which
increases with the number of iterations), the accumulator array (which keeps track
of the collision path of the particles) flags a potential symmetry set point if more
than one particles are detected in a pre-defined neighborhood of a quantlsed grid

instead of a smgle grid point,
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Figure 5.10: Symmetry set obtained using normal transform after fitting b-spline
to edge contour of the knife.

Postprocessing

To reduce the quantization error and to differentiate between noise pixels to the
symmetry set points, an approach similar to relaxation labeling is implemented.
Following Brady and Asada (11}, given a “putative” symmetry set point,

¢ look for support for the likelihood that it is indeed a symmetry set point by
seeking others in the same direction within some error distance from the point

under investigation.

o if such polnts are available, then increase the confidence that this point is
a symmetry point after fashion of relaxation and interpolate intermediate

points. Else discard the point as a noise point.

Results

Examples of symmetry set using normal transform method for a set of mechanical
tools are shown in figures 5.10 and 5.11. Both the images are subjected to line
linking algorithm as detailed earlier. For these figures, the algorithm is terminated
when all the particles reach the image boundary. The processing time is insignificant
compared to wave diffusion process and is essentially instantaneous. Note that fairly
good results are obtained even in case of “jagged” edges of chisel after line linking.
The important difference of this approach in contrast to wave diffusion process is
that it has a comparatively “violent” effect in the case of image noise or missing
edge pixels where as this effect will be much reduced by the smoothing action of

the combined wave diffusion process.
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~ Figure 5.11: Symmetry set of a chisel with “jagged” edges after post processing as
detailed in section 5.4,
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5.0 Discussions

We have explained the role of the diffusion process in detecting symmetries from
the mathematical basis of the wave equation and shown numerically stable result
could only be obtained by using the combined effect. As this leads to an inefficient
symmetry set detection algorithm, our MIMD implementation of it gives a viable
alternative with considerable speed up in the processing time, Normal transform
- method is equally attractive and has given comparable result with respect to parallel
wave diffusion implementation. We explore alternatives of MIMD parallelization of
wave diffusion algorithm in chapter 7. Once the practicality of these symmetry
detection methods are established, symbolic description of shape based on these

techniques could as well be developed following [48].

So far, we have shown that symmetry set could be evaluated efficiently for planar

shapes under projective, affine or similarity transform exploiting geometric proper-
ties of shape or emulating simple physical phenomenon. In the next chapter, we
show an application of this symmetry set for solving a model based object recogni-

tion problem.
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Chapter 6

Symmetry Set Matching using
Simulated Annealing

6.1 Introduction

Shape matching is a classical problem addressed by computer vision researchers
over the years. In this chapter, we present the methodology to find the best match
between the symmetry set of a planar shape with that of a candidate model of
the model base. Symmetry sets are generated using the parallel wave diffusion
algorithm described in chapter 5. As noted earlier, because of the damping in wave
front, we expect shape representation using this technique to be more noise-robust
compared to other numerical techniques of symmetry generation.

We have an integrated model graph [54] combining symmetry sets of all the models
in a given model base, The obvious advantage of building a model base using
symmetry is reduction in data storage and consequently reduction in search space
during matching. In case of globally symmetric shape, only a half of symmetry set
is enough for shape matching. Since, only the perceptually relevant information are
stored in the model base, the symmetry points have a better discriminatory power,

The matching constraints between the symmetry set of the image and the inte-

grated model graph combining all the models are expressed as an energy function,
Simulated annealing technique is used to minimize the energy function to find the
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best match. The method of simulated annealing [38] is a technique that has at-
tracted significant atfention as suitable for optimization problems of large scale,
especially ones where a desired global extremum is hidden among many, poorer,

local extremum,

In the next section, we detail steps of feature extraction and model building given all
the perceptually relevant symmetry sets. The energy function with the constraints
of matching of symmetry sets and its minimization using simulated annealing are
described in section 6.3, The experiment along with the result is given in section 6.4.
Note that the symmetry generation using wave diffusion algorithm is also a function
of time of propagation of wave front, variation of which results in variation of
feature set parameters, However, in section 6.4, we show the key result that even
for variation in the time of wave propagation, our minimization technique gives a
perfect match. This is followed by discussion. |

6.2 Feature e:{traction

/s .

To state the criterion for shape description,

e the algorithm should take care up to similarity transform of the shape partic-
ularly, rotation and scaling,

o It should be able to distinguish between shapes which are different even at a
coarse scale of description. The description should be reasonably stable and
robust for minor changes in image such as due to noise or illumination changes

etc.

e It must be fast and possible to implement in parallel hardware.

As detailed in (48|, similar to the notion of canonical frame described in earlier
chapters, feature extraction and shape matching constraints are evaluated in a rep-
resentative frame. The symmetry sets of the image and all the candidate models
are described in the representative frame which takes care shape representation up
‘to similarity transform (up to a certain rotational (r) ambiguity, discussed below).
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The steps involved to map the symmetry set of a planar shape to the representative
frame are |

1, detection of major axis,

2, transformation of symmetry set to the representative frame, and

3. evaluation of feature attributes of transformed symmetry set.

Detection of major axis For a region A in R?, in this case edge contour of
the object subjected to wave diffusion process or normal transform, with centre
of gravity (%, §), the (Rimann) integrals [,(z — Z)(y — #)da, [,(z — £)*da and
f4(y — §)*da are well- defined [41] and finite (z and y denote the co-ordinates of the
points in A). The major axis passing through (z,7) makes an angle § (¢ € (0,7}
with the x-axis where,

_ 2f4(z—Zz)(y—§)da
fan 20 falz — 2)*da — [4(y — §)*da

To increase noise robustness, weighted scatter matrix may also be used to evaluate
the orientation of the major axis,

The major axis direction is invariant upto similarity transform. The intersection
points of the major axis (extended in opposite directions starting from the centre
of gravity) with the image contour give two stable points. In case of more than two
such intersection points, the point pair which is at maximum distance apart are
chosen. For shapes with multiple major axes, the one with minimum angle to the

x-axis (in anti-clockwise direction) is selected.

Figure 6.1 is the edge image of a DC10 aircraft whose major axis and the centre of
gravity C is calculated. The intersection points, A and B, of the major axis with

the edge contour are shown.

The symmetry set of the edge image of figure 6.1 after 80 iterations of wave diffusion
algorithm and non-maximal suppression [48] is shown in figure 6.2.
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F'i_g'ure 6.1; Edge image of DC10 aircraft with major axis and contour intersection
points A, B and centre of gravity C.

Figure 6.2: Symmetry set of the edge image of figure 6.1 after 80 iterations of wave
diffusion algorithm followed by post processing.
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Figure 6.3: Symmetry set of figure 6.2 in the canonical representative frame.

Transformation of symmetry set to the representative frame This two-
point set (A, B as in figure 6.1) is transformed to a canonical representative frame
with basis points at (1, 0) and (-1, 0) on the x-axis of the orthogonal axes system.
Ignoring translation and considering rotation and scaling, the transformation is

given by,
x = MX : (6.1)

where X and x are two-vectors before and after mapping to the representative frame
respectively and M is the 2 X 2 transformation matrix. With scaling factor A and

major axis angle (anti-clockwise, with respect to x-axis) S,

" cosf sinf

—~sinff cosf (6.2)

Two-point set constraints evaluate A and f and thereby matrix M, from equa-
tion (6,1). All the symmetry points of the 2D shape are then mapped to the
canontcal representattve frame using the transformation matrix M. The candidate
models of the model base are also described in this same frame.

The symmetry set of figure 6.2, after mapping to the canonical representative frame
using the points A, B and the basis points (1, 0) and (-1, 0), are shown in figure 6.3.

This mapping to representative frame takes care of scaling and rotation upto a
certain ambiguity. Because of change in order of mapping of A, B to the basis

108



points, there may be a 7 rotation associated with each mapping. This has to be
taken care of in case of feature matching when the presence of feature in the direction
both (say) ~ (with respect to x-axis) and (7 + 4) are to be checked. The symmetry
axis segment(s) with orientation close (within a threshold) to the major axis (or the
x-axis after transformation to the representative frame) gives the global symmetry
line. For globally symmetric shape, only half of the symmetry set (say upper half
of the x-axis) is required for matching. The models which have global symmetries

are also stored in the same fashion.

Other not-so-robust techniques to detect global symmetry line(s) are also investi-
gated. For a globally symmetric shape, if each symmetry segment is represented by
a vector S;, 3_ 8, will give the global symmetry line. We assume that the curve seg-
ments are approximated by polygon chains. In this case, the additional computing
burden is to determine the direction of the symmetry vectors, The initial and final
points of all symmetry segments could be obtained from the iteration numbers of
the wave diffusion or normal transform method.

Evaluation of feature set Extraction and determination of feature primitives
and their attributes from the symmetry set are discussed in [48], For current im-
plementation, we assume each symmetry axis segment to be either straight line or
curved symmetry axis, fitted to a circular arc. However, extension of this method-
ology to axis segment approximated by cubic b-spline is quite straightforward. We
ignore single bright points in the symmetry set due to rotational symmetry; though
we admit its importance in case of shape representation. We present here one sim-
ple framework to represent and compare both linear and circular symmetry axis

segments,

All symmetry set points are traced and the co-ordinates are recorded taking top-
left corner of the image as (0,0). A simple test similar to iterative endpoint fit
and split arc segmentation algorithm [35] is implemented. For a segment, defined
by end points (z1, 1) and (z,, ya), let L = {(: ) laz + by + ¢ = 0}, where
a’ + 5% = 1. For any point (z,, y,), let d, be the distance between L and (,, Yr);
d, = |az, + by, + ¢|. For all the points in a given axis segment if d, > d.,,, the
segment is either a curved symmetry axis else a segment combining more than one
linear /curve segments; the point (z,, ¥,) is the break point. The data points of the
sub-segment are approximated by a straight line, Next, we fit circle to the same set
of data by minimizing |
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Figure 6.4: Feature attributes of a symmetry segment, The same representation
scheme is used for both linear and circular segments.

N

e = (V(zi—a)? + (3 - b)? - R)’

1=l

where, for N set of data points, ¢, is the error of circle fit with centre at (@, b)
‘and radius R. The evaluation of circle parameters (a,b, R) are discussed in [35}. If
for two consecutive circular segments, the parameters {a, b, R) are sufficiently close,
the two segments are merged to form a single circular segment.

After describing symmetry set consisting of only linear and circular arcs, we repre-
sent symmetry segment as a feature primifive with 5-tuple attribute. Referring to
figure 6.4, the attributes are (!, m, {{/a), 8;, 8;). The Euclidean length between
the end points of the symmetry segment is [, the co- ordinates of the middle point of
which is m (m,,m,). The angles 8 and 8, are shown in figure 6.4, The parameter
(!/a) is a simple measure of circularity of the feature primitive where a is the arc
length of the symmetry segment. Therefore, in case of straight line, (I/a) will take
a value of unity. | |
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6.3 Shape symmetry matching

We pose the model matching problem as a relational graph isomorphism problem.
Each node of the graph represents a feature primitive (linear or circular segment)
with feature attributes (({, m, ({/a), 0y, 82), defined above) as node attributes. The
arc strength between two nodes, we define as the relational attribute between the
nodes, is determined from the Euclidean distance between the mid-points (m,, m,)
of two primitives. This distance value, within a threshold, represents relational arc
strength. Thus each node may have more than one refational arc. The three stages

of matching between the image and the model graph [67] are

1. structural matching of number and type of nodes,

2. relational attribute matching of arc strength, and finally

3. node attributes madtching of feature primitives.

Instead of sequential processing of each of the above steps, we express the con-
straints of a perfect match as an energy function considering all the above aspects

of graph matching together. The energy function is then minimized using simulated
annealing technique.

6.3.1 Energy function for matching

Following [54], an integrated model graph is built combining feature primitives of
all the models.” Suppose, a network of two-dimensional binary matrix V of X rows
and Y columns are constructed, X rows represent the maximum number of feature
primitives in the symmetry set of an image. Y columns represent X x Z feature
primitives of Z number of models, each with a maximum of X number of primitives.
The matrix element Vij, can take value 1 (ON state in network paradigm) when
- 1th feature primitive of the image matches with the jth feature primitive of the
pth model of the integrated model graph, otherwise Vijp = 0 (OFF state}, Note
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that though V is of two dimensions, the suffix ¢ represents row whereas both J
and p represent the column dimension of V, which is a standard notation in neural
network paradigm, The necessary constraints for a perfect match are as follows.
The corresponding energy terms are given in the brackets.

o Each row and each column of matrix V should have one 1, (£}).

e Total number of 1 for V should be maximum X , (Fa).

¢ Primitives of the image are inhibited to match with primitives of different
models, (E's).

In addition to these, the cost function due to relational (£} and node attribute
(Ey) matching are added to the energy function. The state of V after minimizing

the energy function represents a match.

The energy function [5], E, is given by,

B =F +F+Es+FEy+ Fy (6.3)

where,

Ey = A/ZZ Z Z ZVanﬂp +- B/ZZZ Z Z VitpVimp

{ §,4% | p t 1 m, iEm p

A and B are positive constants, 1,7 represent row (primitives of image) and {,m
(primitives of model) and p (a model of the integrated model graph) represent

column of V.
Ey=Cl2(2 )% Vap — X)*
T

C is a positive constant, When two symmetry sets, each containing X primitives
are perfectly matched, this term becomes zero, If for two shapes, sy, s,. there is a
difference in number of feature primitives, X should take the minimum of X of Sy

and X of 382,
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P g, p#g ;] m

Ey = D/2Z Z (Z;Vnp)(zzvim)

D is a positive constant, p and ¢ are the two different models of the integrated
model graph representing column of V, the other variables being the same as E,.
As earlier, if there is a mismatch in number of primitives (X), dummy primitives

are to be appended to evaluate Es.

The cost function due to relational attribute matching is given by,

.E4 == F/2ZZZX l:v!'lpvfmpWR”CR(i!j!p) -' CR(Zim!p)”
i 4 I. m .P

F is a positive constant. The absolute difference of the relational attribute between
- tth and jth nodes of the image graph and the {th and mth nodes of the pth model of

 the integrated model graph is given by |Cg(t, 7, p) — Cr(l,m,p)|. Wk is the weight
- or priority of the cost.

The cost function for node attribute mismatch is given by
Fyg = G/ZEZZVinWNCNGJ:P)
i | 9

G is a positive constant. Cn(t,l,p) is the cost due to node attribute mismatch
between the tth node of image and the Ith node of the pth model of the integrated
model graph. For current implementation, the sum of the squares of the Euclidean

distance between the 5-tuple node attributes ({, m, (//a), 8, 02) gives the cost
function. Note that weighted distance between the node attributes may also be

used. Wy is the weight of the cost.

6.3.2 Optimization by simulated annealing
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For a given state a of the binary network V, the probability of its state change (OFF
to ON or reverse) p;, depends on the energy gap, AE, between the previous and
the current energy state of V. This is computed [20] using the non-linear function:

1

Pil@) = T e AR ()T (6.4)

This- follows from Boltzman probability distribution and it uses stochastic binary
state to escape non-global minima dur'~g optimization. Proper selection of control
parameter T (analog of temperature) a..c its annealing schedule influence the prob-
ability distribution during minimization, We have tested two annealing schedules,

given below for the symmetry matching problem.

Tnczt = Tcu-rrcnf- (1 - Tfnctar) (6‘5)
Tt = Tt (6.6)

In equation (6.5), new temperature T}, is evaluated reducing the current temper-

ature Tourrent DY a constant factor (1 - Tyoepor). In equation (6.6), Tzt is calculated
dividing a constant C, with the current iteration number I of the minimization

process.

The temperature distribution for equations (6.5) and (6.6) are shown in figures 6.5
and 6.6 respectively.

6.4 Experiment

We have experimented with different sets of model base, one of which is reported
here. The model base is shown in figure 6.7. The edge images and their corre-
sponding symmetry sets, after 95 iterations of wave diffusion algorithm and post-
processing as detailed in chapter 5, are in the model base. Note that all the models
are described in the representative frame. Since the shapes are globally symmetric
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Table 6.1: Binary network V after minimizing the energy function for 85 iterations.
Columnwise, first 12, then 10 and next 11 nodes represent feature primitives of
747, Airbus and DCI0 aircraft symmetry sets of the model base respectively. Rows
represent the nodes for features of figure 6.3.

000000000000 0000000000 01000000000
000000000000 0000000000 00010000000
000000000000 0000000000 00000010000
000000000000 0000000000 00000100000
000000000000 0000000000 00000000001
000000000000 0000000000 00000000010
000000000000 0000000000 00100000000
000000000000 0000000000 00000001000
000000000000 0000000000 00000000100

i.e. there are ejrmmetry segments coinciding with the major axes of the shapes or
x-axis (of the representative frame), only half of the symmetry set (the upper half
of the x-axis) is used for graph matching,

We find the best match between the transformed symmetry set of figure 6.3 with one
of the candidate models of figure 6.7. The energy function between the image and
the integrated model graph is minimized using simulated annealing with constant
values A = B = C = D = G = 200 and F = 500, This is to give more priority to the
relational attribute matching since the symmetry set in the model base are similar
structurally., All other weights are taken as unity for the current implementation.
We have tested both the annealing schedule, given in equations (6.5) and (6.6). We
observe that for both the cases, after approximately 85 iterations of minimization
process, the network V becomes almost stable and reaches a “thermal equilibrium”.
Also the change in energy state (AE) becomes tnsignificant, The processing time
including I/O is approximately 45 minutes in a SUN3 implementation, The matrix
V after 85th iterations, shown in table 6.1, gives the perfect match between the

symmetry sets of the image and the model.

This technique could identify the perfect match of a model (after 95 iterations of
wave process) to an image of figure 6.2 which is generated only after 80 iterations
of wave propagation algorithm, This, as claimed in the introduction, gives an
advantage in reducing the processing time ef the candidate i unage whose match is

to be found.
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Figure 6.7: Model base consisting of symmetry set of 747, Airbus and DC10 aircfa,ft.
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6.5 Discussions

We have formulated a symmetry matching problem as minimization of an energy
function. In the minimization process, both the local and global information are
combined together and feature primitives of all the models are compared to that of
the image at the same time. The conventional steps like hypotheses generation and
verification could be excluded. This is more so because of the inter nodes cooper-
ative voting and /or mutual inhibition (between the image versus different models)
of the match of feature primitives. Because of stochastic behavior of simulated an-

nealing process, chance of achieving global minima is higher. Though the process
is cpu intensive, a faster alternative could be achieved by exploiting the inherent

parallelism in the energy minimization process. We discuss this in the next chapter
indicating the future directions and potentials of this research.
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Chapter 7
Conclusion

7.1 Summary

~ We present a set of algorithms to detect and utilize local reflectional symmetry,
In the first part, we have demonstrated that, despite the effect of “skewing” and
“fanning” in the image plane due to affine or projective transformation of an object,
bilateral symmetries could be detected using geometric invariance properties. These -
symmetries are then used to back-project images modulo similarity transform. This
is achieved without using any model base or intrinsic camera parameters. In the next
phase, the parallel implementation of the wave diffusion algorithm or the normal
transform method provides almost all the perceptually relevant symmetry set for a
planar shape under similarity transform. We finally utilize this as a cue for model
based symmetry set matching. The structural and relational matching constraints
give an energy function, which is optimised using simulated annealing.

To critically evaluate the computer vision algorithms developed in this thesis, we
analyse their performances in the light of following desirable properties of shape

description methodologies.

Speed A major failing of most current shape description algorithms is the time
taken to compute even trivial shape descriptions. These lead to large amounts
of computer time being necessary to generate a description sufficiently rich
to enable inspection or recognition. The symmetry detection algorithms and
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their uses, presented in this thesis, are fast and practically viable. In fact,

a major alm of chapter 5 is to epeed up the otherwise attractive process ef
symmetry detection using wave diffusion. The symmetry matching using sim-
ulated annealing is cpu intensive and thus far below the expectations so far as
the speed is concerned. However, because of the inherent parallelism, the min-
imization of energy function using sirmulated annealing could be implemented

in paralle] hardware.

Robustness We have demonstrated performances of the algorithms with a num-

ber of images of real objects. Though, we admit that too much of “unpleasant”
features or noises have been avoided, the local symmetry constraints we have
utilized are quite applicable to real situations. Since, for symmetry detection,
application and matching, we have utilized only the local information, the
algorithms will expect to perform much better 50 fa.r as noise robustness and

occlusion are concerned

Generality  Generality is an impertant'iesue' in shape description, We have

shown our algorithms perform reliably for a variety of object classes, The
real scene with multiple objects, some of which are even partially symmet-

ric or non-symmetric, are taken as test objects. Since, the constraints for

back-projection and the constraints for symmetry set matching assume no-
special pre-conditions, a reasonable amount of generality has been achieved.
In case of symmetry matching, we do not claim this methodology to be rich
and exhaustive enough to cover a wide variety of real scenes, the issues and
limitations are being discussed in the next section. However, the process of
building energy function is general enough to take different feature sets and

optimization techniques.

Extendibility Though, algorithms for 2D shapes are certainly of value, the ul-

timate goal is to extend these ideas for 3D shapes. There are two definite
possibilities of our contributions: The first approach is based on other object
relations like exploiting rotational symmetries while the second one is extend-
ing these ideas to 3D shapes. We dleeuse el] these issues in detail in the next

section.

7.2 Future direction

1.

Chapters 3 and 4
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Applications of anti-symmetry set [8] in case of affine images and the semi-
- differential invariants [4,33) in case of projective images to detect local sym-
metry will be an important extension in combining invariance properties with
the symmetry. This is particularly of importance, for images of convex shapes,
which we have not dealt in detail.

Similar back-projection constraints can be derived for other object relations.
For example a planar object with two-fold rotational symmetry induces the
following constraints on the projectivity related corresponding image curves:

(a) T* =1
(b) IT+1I|=0
(c) IT-I]#0

and similarly for n-fold rotational symmetry {with T" = I), T being the matrix -
responsible for inter-symmetric-curve transformation.

- Exploiting object specific heuristics, such as, fitting conic(s} (which back-

projects to a circle) to a set of data points of a skewed scene, and its rela-
tionship to the eircular points, (1,¢,0)* and (1, ~#,0)" may be used to unskew
a “skewed” scene. This idea can also be extended for any object or its part

with rotational symmetry.

Another extension is to affine/projective images of 3D objects with bilateral
symmetry. Exploiting this constraint facilitates the recovery of 3D structure
and pose from single images. It can be shown that, for affine views, structure
can be recovered, modulo a Kuclidean transformation, to a four parameter
family of symmetric objects that could have given rise to the image [25], If
the object has two orthogonal bilateral symmetries, the shape can be recon-

structed modulo similarity.

Chapter 5

The parallel implementation of wave diffusion process opens up a few key is-
sues which need to be explored. The idea encapsulated in the parallelism of
wave process is to find a parallel ridge finder of a blurred shape using Gaussian
convolution by local iteration of a binomial mask. A simple hill-climbing tech-
nique may be implemented for this. Single instruction multiple data (SIMD)
hardware could be a possibility for implementing such algorithms; however,
communication overhead in this case may be a critical issue. A viable alter-
native may be an architecture like Connection Machine where every point in
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the image plane has an associated processor. The idea of detecting symmetry
in this case will be very similar to the normal transform method proposed
in chapter 5. Reformulating wave propagation as message propagation, each
processor will “watch” for two or more messages to “pass almost overhead”
from different directions “almost simultaneously”. Simulation of similar type

of implementation is reported in [12].

Chapter 6.

The potential of the shape matching process could be widened by investigating
some of the limitations inherent in the wave diffusion process. For instance,
the possible problem introduced when two sections of curve of very different
lengths interact to produce symmetries and also, the behavior of the process
when a lot of wave energy converges on the same spot - a potential rotation-
ally symmetric point, which we have avoided in our analysis. Analysing only
the linear and circular features have restricted the analysis. This may be ex-
~ tended to curve segments approximated with cubic b-spline. As an alternative
" to the transformation of symmetry set to representative frame, specially for
" noisy and occluded scene, the energy function may be upgraded to take care
 rotation, scaling and translation of planar shape. A thorough investigation
needs to be done to evaluate the constants, weights and priorities of different
costs of the energy function, and also a set of other annealing schedules, all of
which influence the minimization process and the processing time. The mini-
mization of energy function for matching using Hopfield net could as well be
a possibility. Finally, a fruitful extension will be to implement this matching
process on a parallel or neural hardware for real-time applications.
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Appendix A .

A.1 Proof of Theorem 1

Suppose two image curves 4 and 4, as in figure 3.1, are images of two sides of
a planar object with bilateral symmetry, and image projection can be represented
by an affine transformation. Then the transformation between ~ and 4' has the

following properties:

1. v+ and ' are related by an affine transformation. That is, if x is a point on «
then there is a point X' on 4’ such that:

x'=Ax+Db

where A is a non-singular 2 X 2 matrix, and b is a two-vector.

Proof The first statement is a straightforward consequence of the group
closure property for affine transformations. Since the two sides T' and I'¥ of
the object (see figure 3.1) are related by a reflection (which is affine}, and
since imaging is assumed to be affine, the two imaged sides ¥ and 4' are also

related by an affine transformation.

In more detail, and to fix notation, cjbject curves T and I are related by a
reflection, i.e. if X is a point on I' then there is'a point X' on I'' such that:

X' =8X+Bs N (A.1)

where 8 is a reflection matrix (S| = —1). Under the image transformation

equation (3.4)
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X = Ux+B

X' = ix'+B
Combining these with equation (A.1) gives:
x' =Ax+b

where

ulsu
b = UEI(SB—FBS-"B)

o
i

2. The affine transformation {A,b} obeys the following constraints:

(@) =1
(b) A+I|]=0
(c) A—T|=0

Proof The first part is straightforward:

A = Ulsy
A = UTisty
= U

I

The image correspondence x ++ X' relates points transformed according to the
first part of the theorem. So x' = Ax + b and also x = Ax' +b. Consequently,
applying this transformation to a point x on < maps it to a point x' on «/, -
and applying the transformation again maps it back to x:

x = A(Ax+Db}+b
— A2X+(A+I)b

Since this is true for all x we have:
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(a) Again A? =1
From this it follows that A has eigenvalues +1.
(b) A+D)b=0 '
Hence |A +I| = 0, since b is non-trivial, and b is an eigenvector of A
with eigenvalue —1, |

(c) If x is on the (imaged) symmetry axis then x' = Ax + b = x and hence

(I-A)x=b (A.2)

This is true for all points on the axis. Consequently, (A — I) must be
of rank 1 (i.e. [A — I| = 0) with the kernel of (A — I) defining the axis
direction a i.e. (A —I)a = 0 which means that a is an eigenvector of A
with eigenvalue 1.0 | |

3. The matrix A has eigenvectors a and b with eigerivalues +1 and —1 respec-
tively. Vector a is paralle] to the symmetry axis, vector b is paralle] to x' —x.

Proof All that remains to be shown is that b is parallel to x' — x. Note
corresponding image points are joined by parallel lines since these lines are
images of parallel lines on the object. Recall that the eigenvectors of A are a
and b with eigenvalues +1, —1 respectively. a and b span the image, so that

for some a, §:

x — X = aa + b,

Applying A to both sides, and reversing the order,

xa — fb = Ax' — Ax
= X—Xx
= —aa—fb

from which it follows that o = 0, so that x — x' is parallel to b as required.

4. The transformation has three degrees of freedom. It can be paraméterised by
a,b;, b, where:

a —b,(1+a)/by | I [b, |
=| -b1-a)/p.  -a b=1y,| A3
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Proof Solving the equations [A+ I[=0and |A — I| = 0 for A gives

B a 5
“ 1'*-;'1i —a

where a and b are two parameters. This also satisfies A? = I. The requirement
that Ab = —b determines b in terms of a, b, and &,

The three parameters represent the symmetry line (two degrees of freedom)
and the correspondence direction (one degree of freedom).

5. With this notation, the image (skewed) symmetry line is: (1 — a)b,z + (1 +
a)b,y — bzby, = )

Proof This is the particular solution of equation (A.2).

A.2 Proof of Theorem 3

In the most general case there is a projective (rather than affine) transformation
between object and image planes. As in the afline case symmetry in the object
plane constrains the transformation between image curves,

Suppose two curves v and 4, as in figure 4.3, are the images of two corresponding
sides of a planar object with bilateral symmetry. Suppose further that image pro-
jection can be represented by a projective transformation. Then the transformation

between + and +' has the following properties:

1. 4 and +' are related by a projective transformation. That is, if x is a point on
~ then there is a point x' on 4 such that:

x' = Tx | (A.4)

where T is a non-singular 3 X 3 matrix, and x and x’ are homogeneous three-

vectors.
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Proof This follows from group closure under projective transformations; If
‘the object reflection is the projective transformation X' = 8X, and the object
to image projection is

x = UX
x' = X/,

then the transformation between 4 and 4' is given by the conjugate projectiv-
ity:

T =Usy~!,

2. The projecti'{re transformation T satisfies the following constraints:

(a) T? = kI, where k is a scalar.

(b) The ﬁxed points of T are: a line of fixed points; and, a fixed point (not
on the llne) through which there is a pencil of fixed lines.

A projection with these properties is a collineation of period two, also known
as a 2 cychc homography, and a planar harmonic homology [69). |

Proof

(a) We have the image correspondence X +» X' so that x' = Tx and also
x = Tx'. Consequently, applying this transformation to a point x on 7
maps it to a point x' on 4, and applying the transformation again maps

it back to x:

x = T(Tx)
T?x

Since this is true for all x, T? = kI.

(b) This can be proved analytically but is seen most simply by considering
the projection geometry in figure 4.3. On the object, points on the sym-
metry axis are mapped by the reflection to themselves - so this is a line
of fixed points. Correspondingly, the imaged symmetry line is a line of
fixed points. The only other fixed point (not on this line) is the point at
infinity (where parallel lines joining corresponding points intersect). In
the image this is transformed to-the vanishing point of the lines joining

corresponding points.
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3. The matrix T has eigenvectors {e;, e,, es}. Two of the eigenvalues, correspond-
ing to e; and es say, are equal, The third, corresponding to e; is distinct and
non-zero. The symmetry axis is given by the line e; X e;. Corresponding
points, x' and X, are collinear with e;. The line x', x intersects the symmetry
axis in a point X; say, and the four collinear points X, x; x' and e; have a
harmonic cross-ratio.

Proof For a line | of fixed points two degenerate eigenvectors must lie on
the line. To see this represent a point on the line as x = xe, + ves. Then

X' = T(ke; + ves)
= A(kes + veg)

(where e; and e are eigenvectors of T with eigenvalue A) which is the same
point. Thus the symmetry line is given by e, X es. The vanishing point
corresponds to e;, the other fixed point. A similar argument to the above
shows that any line passing through this point is a fixed line under T. On the
object corresponding points are collinear with this point at infinity (since the
lines joining corresponding points are all parallel), so in the image x’ and x,
are collinear with e;. |

On the object the four points X', X, the intersection of their common line with
the symmetry axis and the point at infinity have a harmonic cross-ratio. This
is preserved by projectivities, Hence the four image points x'; x, e; and the
intersection of their common line with the symmetry axis, have a harmonic

cross-ratio.

4. The transformation has four degrees of freedom. It can be determined from
two correspondences.

Proof These correspond to the symmetry axis (two degrees of freedom) and
the vanishing point (two degrees of freedom). Two point correspondences,

x; ++ X} and x3 « x; gives four constraints:

X'l = '.TX1 |
Xy, = TX
x; = TX}
Xy = TX':

which is s_uﬂident to determine T.

128



Bibliography

1] Leendert Ammeraal. Computer Graphics. John Wiley, UK, 1986.

2] Kalle Astrom. Affine Invariants of Planar Sets. Technical Report Report No.
7005, Lund Institute of Technology, Department of Mathematics, 1992,

3] D. H. Ballard and C. M. Brown. Computer Vision. Prentic-Hall Inc., USA,
1982. |

4] E. B. Barett; P. M. Payton, and M. H. Brill. Contributions to the theory of
projective invariants for curves in two and three dimensions. In First DARPA-

ESPIRIT Workshop on Invariance, pages 325—-328, 1991,

5] J. Basak, S. Chaudhury, S. K. Pal, and D. D. Majumder. Matching of struc-
tural shape descriptions with hopfield net. International Journal of Paiiern

Recognition and Artificial Intelligence, 7(2):377-404, 1993.

6] 1. Beiderman. Recognition-by-components: a theory of human image under-
standing. Psychological Revtew, 94:115-147, 1987.

7] A. Blake and C. Marinos. Shape from texture: estimation, isotropy and mo-
ments. Artifictal Intelligence, 45:323—-380, 1990.

8] A. Blake and M. Taylor. Grasping visual symmetry. In Proceedings of 4th
International Conference on Computer Vision, pages 724-733, 1993.

9] H. Blum. Biological shape and visual science (part i), Journal of Theoretical
Biology, 38:205-287, 1973.

[10] H. Blum and R. N. Nagel. Shape description using symmetric axis features,
Pattern Recognition, 10:167-180, 1978.

(11] J. M. Brady and H., Asada. Smoothed local symmetries and their implemen-
| tation. The International Journal of Robotics Research, 3(3):36-61, 1984.

129



[12'] J. M. Brady and G. L. Scott. Parallel algorithms for shape representation. In
Parallel Architectures and Computer -Vision, pages 97-118, Oxford University
Press, Oxford, UK, 1988. |

[13] J. M. Brady and A. Yuille. An extremum principle for shape from contour.
PAMI, 6:288-301, 1984.

[14] R. A. Brooks. Symbolic reasoning among 3-d models and 2-d images. Artificial
Intelligence, 17:285-348, 1981. | |

15] J. F. Canny. Finding edges and lines in images. PAMI, 8(6):679-698, 1986.

[16] J. F. Canny and B. R. Donald. Simplified voronoi diagrams. In ACM Sympo-
sium on Computational Geometry, 1987.

(17] J. H. Connell and J. M. Brady. Gener'a.ting and generalising models of visual
objects. Artificial Intelligence, 31:159-184, 1987,

18] M. C_‘;. Cdrballi_s. Recognition of diSoriented shapes. Psychological Review,
95:115-123, 1988.

(19] J. L. Crowley and A. C. Parker. A representation for shape based on peaks
and ridges in the difference of low-pass transform. IEEE PAMI, 6(2):156-170,

1984,

20] Lawrence Davis. Genetic Algorithms and Simulated Annealing. Morgan Kauf-
mann Publishers, London, UK, 1987,

[21] P. Eades. Symmetry finding algorithms. In Computational Morphology,
pages 41-51, Elsevier Science Publishers B.V., North-Holland, 1988.

22] P. Eades and A. Lee. Perception of Symmetry. Technical Report Report No.,
52, University of Queensland, Department of Computer Sc_ience, 1985,

23] Olivier Faugeras. Three-Dimensional Computer Vision - A Geometric View-
potnt. MIT Press, Boston, USA, 1993.

24] 1. D. Faux and M. J. Pratt. Computational Geometry for Destgn and Manu-
facture. John Wiley, UK, 1986.

25] R. Fawcett, A. Zisserman, and J. M. Brady. Extracting structure from single
 affine views of 3d point sets with one or two bilateral_sy_mmetries. In. Proceed-

ings of British Machine Vision Conference, 1993.

130



[26] M. Field and M. Golubitsky. Symmeiry in Chaos: A Search for Pattern in
Mathematics, Art and Nature. Oxford University Press, Oxford, UK 1992,

[27] M. Fleck. Local Rotational Symmetries. Technical Report Report No. AI-TR-
852, MIT, Boston, USA, 1985

28] D. Forsyth, J. L. Mundy, A. leserman, C. Coelho, A. Heller, and C. Roth-
well, Invariant description for 3-d object recognition and pose. IEEE PAMI,

13(10):971-991, 1991,

29] H. Freeman. Computer processing of line drawing images. Computer Surveys,
6(1):57-98, 1974. -

[30] S. A. Friedberg. Finding axes of skewed symmetry. Computer Vision, Graph:'ﬁs |
and Image Processing, 34(2):138-155, 1986, |

31] Jonas Garding. Shape from Surface Markings. PhD thesis, Royal Institute of
Technology, Stockholm, Sweden, 1991,

(32] P. J. Giblin and S. A. Brassett. Local symmetry of plane curve. American
Mathematical Monthly, 92(10):689-707, 1985.

(33] L. J. Van Gool, T. Moons, E. Pauwels, and A. Oosterlinck. Semi differential
invariants. In Geometric Invariance in Computer Vision, pages 157-192, MIT

Press, Boston, USA, 1992.

[34] W. E. L. Grimson. Object Recognition by Computer - The Role of Geomctrm
Constraints, MIT Press, Boston, USA, 1990.

[35] Robert M. Haralick and Linda G. Shapiro. Computer and Robot Vision,
Addison-Wesley Publishing Company, NY, USA, 1992, -

36] R. Horaud and J. M. Brady. On the geometric interpretation of image contours.
Artificial Intelligence, 37:333-353, 1988,

(37] T. Kanade. Recovery of three dlmensmna,l shape of an object from a single
view. Artsficial Intelligence, 17; 409—460 1981.

38] S. Klrkpatrlck C. D. Gelatt, and M. P. Vecchi. 0pt1mlzat10n usmg simulated
anneahng Science, 220:671-680, 1983, | -

[39] Y. La,mda,n J, Schwartz, and H. Wolfson. Object recognltmn by affine mvarla.nt
matching. In Proceedings of Computer Vision and Pattem Rccognbtt:on, 1988,

131



[40]

- |41]

142]

43]
[44]

M. Leyton. A process-grammar for shape. Artificial Intelligence, 34:213-247,
1988.

Ja-Chen Lin. Universal principal axes: an easy-to -construct tool useful in
defining shape orientations for almost every kind of shape. Pattern Recognition,

26(4):485-493, 1993.

D. G. Lowe. Perceptual Organszation and Visual Recognstion. Kluwer Aca-
demic Publishers, Boston, USA, 1985,

D. Marr, Vision. Freeman, New York, USA, 1982,

S. Marshall. Review of shape coding techniques. Image and Vision Computing,

7(4):281-294, 1989.

145]

46)
47

[48]

[49]

50]

[51]

52|

R. Mohan and R. Nevatia. Perceptual organization for segmentation and
description. In Proceedings of DARPA Image Understanding Workshop,

pages 415—424, 1989.

U. Montané,ri. A method for obtaining skeletons using a quasi-euclidean dis-
tance. Journal of the ACM, 15:600-624, 1968, |

J. C. Mott-Smith. Medial axis transformations. In Picture Processing Psy-
chopictories, Academic Press, NY, USA, 1970,

D. P. Mukherjee and J. M. Brady. Symmetry analysis through wave propa-
gation, 1993. Communicated to International Journal of Pattern Recognition

and Artificial Intelligence.

D. P. Mukherjee and D. Dutta Majumder. Implementing wave propagation on
transputers for symmetry detection. In Proceedings of 8rd International Con-
ference on Advances in Pattern Recognition and Digital Techniques, Calcutta,

pages 149-158, 1993,

D. P. Mukherjee and D. Dutta Majumder. Shaj:e symmetry matching using
simulated annealing. 1994. Communicated to ~ IEEE Transactions on

Systems, Man and Cybernetics. | o

D. P. M.ukherjee_ and A. Zisserman.' Shape from symmetry - detectiﬁg and
exploiting symmetry in projective images. 1994. An intermediate draft,

D. P. Mukherjee, A. Zisserman, and J. M. Brady. 'Shape- _frot:ri '_syl'nmetry_. -
detecting and exploiting symmetry in affine images. 1993. Accepted- in Proc.
Royal Society, Series A. | | |

132



(53] J. L. Mundy and A. Zisserman(Ed.). Geometric Invariance in C '
sion. MIT Press, Boston, USA, 1092, ¢ in Computer Vi

54] N. M. Nasrabadi, Li Wei, and Chang Y. Choo. Object recognition by hopfield
neural network. In JCCV’90, pages 325-328, 1990.

155] S. M. Pizer, W, R. Oliver, and 8. H. Bloomberg. Hierarchical shape description

via the multiresolution symmetric axis transform. J[EEE PAMI, 9(4):505-511,
1987.

156] J. Ponce. Ribbons, symmetries, and skew symmetries. In Proceedings of
DARPA Image Understanding Workshop, pages 1074-1079, 1988.

57) W. H. Press, S. A, Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerica
Recipes in C. Cambridge University Press, UK, 1993.

158] 1. Reid. Recognising Parameterized Models from Range Data. PhD thesis,
University of Oxford, Oxford, UK, 1991.

159] H. Rom and G. Medioni, Hierarchical decomposition and axial representation
of shape. PAMI, 15(10):973-981, 1993.

[60] A. Rosenfeld. Axial representations of shape. Computer Vision, Graphics and
Image Processing, 33:156-173, 1986,

[61] A. Rosenfeld and J. L. Pflatz. Distance functions on digital pictures. Pattern
Recognition, 1:33-62, 1968, -

62] C. A. Rothwell, A. Zisserman, D. A, Forsyth, and J. L. Mundy. Canonical
frames for planar object recognition. In Proceedings of ECCV2, pages 757~

772, 1992.

[63] C. A. Rothwell, A, Zisserman, C. Marinos, D. A. Forsyth, and J. L. Mundy.
Relative motion and pose from arbitrary plane curves. Image and Vision Com-

puting, 10(4):250-262, 1992,

[64] C. A. Rothwell, A. Zisserman, J. L. Mund}r, and D. A. Forsyth. Efficient model
library access by projectively invariant indexing. In Proceedings of Computer

Viston and Pattern Recognition, pages 109-114, 1992,

65] G. L. Scott, S. Turner, and A. Zisserman. Using a mixed wave/diffusion prqceSs
to elicit the symmetry set. Image and Vision Computing, 7(1):63-70, 1989.

[55] Gong Shaogang. Parallel Computation of Visual Motion.. PhD thesis, Un’i_v&r—
| Bity o_f Oxford, Oxford, UK, 1989. | | |

133



167] L. G. Shapiro and R. M, Haralick, Organisation of relational models for scene
analysis. IEEE PAMI, 4(6):595-602, 1982, |

(68] K. Y. Shiu-Yin. Shape from Contour Using Symmetries. Technical Report Re-
port No. CSRP 141, University of Sussex, Sussex, UK, May, 1989.

[69] C. E. Springer. Geomelry and Analysss of Projectsve Spaces. Freeman, New
York, USA, 1964, -

[70] G. Stephenson. An Introduction to Partial Differential Equations for Science
Students. Longmans, London, UK, 1968, |

(71] K. A. Stevens. Slant-tilt: the visual encoding of surface orientation. Biological
Cybernetics, 46:183-195, 1983,

[72] N. J. Strachan. Recognition of fish species by colour and shape. Image and
Vision Computing, 11(1):2-10, 1993

(73] A. Thornham, C. J. Taylor, and D, H. Cooper. Object cues for model-based
image interpretation. In Fourth Alvey Vision Conference, 1987,

[74] F. Ulupinar and R. Nevatia. Recovery of 3-d objects with multiple curved
surfaces from 2-d contours, 1993, An intermediate draft.

(75] J. Wagemans. Skewed symmetry: a nonaccidental property used to perceive
visual forms. Journal of Fxpert Psychology: Human Perception and Perfor-

mance, 19(2):1-17, 1993.

[76] Isaac Weiss. Geometric Invarianis and Object Recognition. Technical Re-
port Report No. CAR-TR-632, University of Maryland, Centre for Automation

Research, 1992,
77] H., Weyl. Sym.mctry. Princeton University Press, Princeton, USA, 1952.

[78] A. P. Witkin and J. M. Tenenbam, On the role of structure in vision. In
Human and Machine Vision, pages 481-543, Academic Press, NY, USA, 1983.

134



