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Chapter 1

Introduction to Digital Topology

1.1 Introduction

Digital topology provides a sound mathematical basis for object classification,
counting and labeling, border tracking, co'ntuur filling, thinning, segmentation and
many other image processing applications. An important characteristic of topo-
logical properties is that they are invariant under translation, rotation, and more
generally under any elastic deformation. The analysis of three dimensional (3D)
digital images has generated increasing interest with the rapid growth of 3D image
processing applications including computer vision. 3D digital images are common
input/output media in the several application domains of image processing, pattern
recognition and computer vision among which 3D medical imaging is of particular
interest. In medical imaging, applications like Computed Tomography (CT), Mag-
netic Resonance Imaging (MRI), Positron Emission Tomography (PET), Ultrasound
Echography (UE), Single Photon Emission Computed Tomography (SPECT), Digi-



tal Subtraction Angiography (DSA) are widely used in producing 3D digital images
that carry many important information about organs inferior to the human body.
These images are routinely used by the doctors both for diagnosis of abnormalities
in the structure and function of organs and also for therapeutic treatment planning.
Lee and Rosenfeld [65] pointed out the fact that many organs are highly flexible and
change shapes due to external forces or due to their own functions. For example,
the heart always changes its shape with heart beats. However, these deformations
generally follow elastic deformation rules. This phenomenon gives importance to
topological features such as the numbers of components, tunnels, cavities etc, in
the 3D digital images of interior organs. These are invariant under elastic deforma-
tion. These topological numbers, useful for organ identification, may also be used
for diagnosis and therapeutic planning. For example, the usual number of passage-
ways through the heart is used as a pathology. Udupa [136] discussed about the

applications of digital topology in three-dimensional medical imaging.

This thesis is devoted to the study of topological properties in three dimensional dig-
ital space and their applications to image processing. Rosenfeld and Kak {105| and
Chaudhuri and Dutta Majumdef 22] among others discussed about the importance
of geometrical and topological properties in digital image analysis and recognition.
A well-developed theory of topological properties of 3D digital images may be found
in [96]. A survey on digital topology was reported by Kong and Rosenfeld [51]. In
general, digital topology deals with binary images (although some works (98,103
were reported on the topology of gray-tone images). In a binary digital image a
point is either a black (object) point or a white {non-object) point. We mainly

consider binary images and in the remaining part of the thesis ‘image’ will refer to

‘binary image’ unless stated otherwise.

The black points in an image may be grouped as a set of connected components. A
component may contain tunnels and cavities. A cavity is a 3D analog of 2D ‘hole’
where white points generate a bounded component. A tunnel on the other hand,

does not generate a component of white points. However, a component contains a



tunnel if it generates a solid handle or a hollow torus. An open-ended hollow cylinder
also has a tunnel. In 2D there is no concept analogous to tunnel. It may be noted
that the numbers of components, tunnels and cavities in an image correspond to its
- Oth, 1st, and 2nd Betti numbers [65] respectively. Alike Euler characteristic, these
numbers are also topologically invariant, Both the Euler characteristic and these
numbers can be used for global description of an object and also for object classifi-
cation (33]. A point whose binary transformation does not change these topological
invariants of an image is called a simple point (76,111,113,114,131]. Simple points
have wide applications in homotopy preserving transformations including thinning,
Thinning [32,69,70,76,79,111,114,117,122,123,128,130,131] is a useful preprocessing
tool for image analysis and recognition since it produces a compact representation
of an object while preserving its topology and shape. Such a compact representa-
tion is easier to trace and helps in recognizing an object. Practical applications of
3D thinning were discussed in [122,70]|. 3D thinning is used for recognizing ‘DNA’
structures and human organs such as lungs, bronchi and for many such computer
vision applications. It has another important application in ima,gé coding and data
compression. For such cases, the algorithms must have the property that an object
can be reproduced from its thinned version. Unfortunately, none of the thinning
algorithms [32,69,70,76,79,111,114,117,122,123,128,130,131) in 3D, though the list

1s certainly not exhaustive, had adequately addressed this aspect.

Segmentation produces a structured representation of an object and plays an im-
portant role in feature selection and extraction that helps in object recognition and
description. Topology also provides a sound mathematical tool for 3D object seg-
mentation [73,115]. For this purpose point classification [115] (e.g. edge points
and inner points of surfaces or curves, different types of junction points etc.} is
first achieved by analyzing local topological parameters like the numbers of com-

ponents, tunnels, cavities etc. Results of point cla,smﬁca.tlan are then applied for a

meaningful segmentation [115] of 3D objects.



1.2 3D Digital Topology: Concepts and Defini-

tions

Before we proceed further, we detail the fundamentals of 3D digital topology.
Naturally, the basic issues have been discussed many times before in the digital
topology literature. As a consequence, most of the results to be presented in this
section are well-known, although not necessarily in the form they will be given
here. General references are too numerous to list, however, a thorough and lucid

discussion in this context is given in [53,54].

1.2.1 Digital Image Space and Voronoi Neighborhood

In digital tﬂpolc;gy, digital points are often referred as grid points [53]. A digi-
tal image space (referred as digital picture space in [51,563]) is defined by a triple
(V, «, 8) where V is the set of grid points we often refer as image set and «, # are
two binary relations between the points of V. Two points p,g € V are «a-adjacent
(F-adjacent) if {p,q) € a (respectively (p,q) € B); o, B are also called adjacency
relations. Two a-adjacent (B8-adjacent) points are often referred as a-neighbors
(G-neighbors). We call a closed line segment between two a-adjacent ($-adjacent)
points as a-line (3-line) (referred as o-adjacency and f-adjacency in [53]). Adja-
cencies are mostly based on Voronoi neighborhood [2] of the grid points. Voronoi
neighborhood of a grid point p is the set of all points in the Euclidean 3-space those
are at least as close to p as a.ny' othér grid point.. In a Voronoi adjacency relation,
two grid points are adjacent if their Voronoi neighborhood: 1) share a face, 2) share
an edge, or 3) share a vertex. A Voronoi adjacency in which every grid point is

adjacent to exactly n other grid points is also referred as n-adjacency relation.

In this thesis we mostly consider digital images in 3D cubic grid £ % (Z is the set of
all integers), although we review important works in other three dimensional grids



also. Therefore, a need arises to respecify the adjacency relationships in the light
of 3D cubic grid. A digital image in 3D cubic grid Z° is often represented in a 3D
binary array where each array element is uniquely mapped to a point of 3D cubic
grid. Each array element with a value of ‘1’ or ‘0’ represents that the corresponding
grid point is black or white respectively. Three Voronoi adjacency relations exist in
3D cubic grid namely, 26-adjacency, 18-adjacency, and 6-adjacency relations. Let

p1 = (%1, J1, k1) and p; = (43, J2, k2) be two points in Z°. Then

1. P1, Pz are 26-adjacent if max(lzl — 1:2‘, ’jl - jgl,. “Cl - kgl) = 1,
2. p1, py are 18-adjacent if they are 26-adjacent and |83 —43 |+ |71 — 2|+ | k1 —k2| < 2,

3. p1, pp are 6-adjacent if |ty — 13| + |51 — 52| + k1 — ko = 1.

An (a,f8) | o, 8 € {6,18,26} digital image refers to a 3D digital image in (Z°, a, §)
while an (e, 8) | &, § € {4,8} digital image refers to a 2D digital image in (2%, e, §).

1.2.2 Three Dimensional Digital Grids

Three different digital grids are mostly considered in 3D image processing liter-

atures depending upon the tessellation of 3-space, Following is the description of

these digital grids and their possible adjacency relations:

1. 3D cubic grid: The points with integer co-ordinates (7,7, k) are the grid
points. This is the most popular digital grid in three dimension. The Voronoi
neighborhood of each grid point in this case is a cube and the Voronoi adja-

cencies of grid points are 6-, 18-, and 26-adjacencies.

2. 3D face centered cubic grid: In this case the points with integer co-
ordinates (¢, 7, k) where ¢ + 7 + k is even, are the grid points and the Voronoi
neighborhood of each grid point is a rhombic dodecahedron. Just two Yoromnoi

S,



adjacency relations exist in this grid and they are 12-, and 18-adjacency rela-

tions.

3. 3D body centered cubic grid: In this case the points with integer co-
ordinates (1,7,k} where ¢ = 7 = k& (mod 2}, are the grid points and the
Voronoi neighborhood of each grid point is a truncated octahedron. Only one

Voronoi adjacency relation exists in this grid and it is a 14-adjacency relation.

1.2.3 Digital Image

-~

In the remaining part of this thesis points will refer to digital grid points un-
less stated otherwise, A binary digital image (referred as binary digital picture
in [51,53]) or simply a digital image P is defined by a quadruple (V,, §, B) where
V is the image set, B is the set of black points in P, a-adjacency and f-adjacency
relations are used for the points of 8 and V — 8 respectively. Obviously, V — B is the
set of white points in . An «-line between two black points is called a black-line
while a -line between two white points is called a white-line. For a digital image
P =(V,a,pB,B) we define another digital image P = (V,B8,a,V — B) where P is
called the inverse of P. A digital image (V, @, 8, B) is finite if 8 is finite. In this

thesis we consider only finite digital images.

1.2.4 Regular and Strongly Normal Digital Image Space

Restrictions are imposed on the adjacency relations in a digital image space to
avoid awkward and pathological situations [53]. A 3D digital image space (V, @, §)

is regular [53] if it satisfies the following two conditions:

1. no a-line or f-line passes through a point of V other than its end points, and

2. an a-line never meets a #-line with which it does not share an end point.

6



A regular 3D digital image space (V,a, ) is strongly normal [53] if it satisfies all

the following conditions:

1. V= 2%
2. two 6-adjacent points of V are both a- and f-adjacent,

3. two a- or (-adjacent points are a,lwa,ys 26-adjacent,

4. given any unit lattice squa.fe, either both diagonals are a-line or both diagonals

are (3-line or one diagonal is both a- and $-line, and

5. in every image on (V, o, §) whenever a black component is either a-adjacent

or fi-adjacent to a white component, the black component is 6-adjacent to the

white component.:

1.2.5 Digital Fundamental Group

Here we define the digital fundamental group. A P-walk is a curve v : [0,1] — E°
(E® is the Euclidean 3-space) where 4(0) and (1} are black points and there exists

a positive integer k such that all non-negative integers 1 < k satisfy:

1. 4(1/k) is a black point,

2. v(¢/k) is equal or adjacent to ~y((¢ + 1)/k), and

3. «y is linear in the closed interval [¢/k, (£ + 1) /k].

The length of the P-walk is k. Let v; be a P-walk from p to ¢ and let -y; be another
P-walk from ¢ to r. Let the lengths of v and 7, be my and m4 respectively, The

product of +; and «4; denoted as 4,.7;, is defined as follows:

= | mllmy+ my)z/my), if 0 < z < my/(my +ma),
nlz) { Y2 ((mny + mz)ﬂ:/ﬂ_lz —~mq/ma), if mi/(mi+ m;) 5 z < 1.

(



A P-walk « is a P-leop if ¥(0) = ~4(1} = p and is said to be based at p. Two
P-loops with same base point are said to be equivalent if they are fixed base point
homotopic in E® — W where W is the union of all white-lines of P. Let [A]p denote
the equivalence class consisting of all P-loops that have the same base point as A and

are equivalent to A. For two P-loops A; and A, with the same base point, [A1]p.[A2]p
is defined to be the equivalence class [A1.A2]p. We define the digital fundamental

group as follows:

For a digital image P in a regular digital image space, the digital fundamental group
with base point p denoted as (P, p), is defined as the group of all equivalence classes

[A]p where A is a P-loop based at p, under the ‘.’ (product) operation.

1.2.6 Continuous Analog of a Digital Image

The continuous analog of a 3D digital image 7 in a strongly normal digital image
space, is a polyhedral set and is denoted as C(P). Following methodology is required
to define C(P). |

e Every unit lattice square is divided into two (1,1,4/2) triangles in one of the

folloiving three ways:

1. When the four corners are all black or all white then the diagonal each
of whose endpoints has co-ordinates that sum to an even integer, divides

the unit lattice square.

2. When the corners are not all black or all white but one of the diagonals

is a black-line or a white-line then it is used to divide the square.

3. When .the corners are not all black or all white and neither diagonal is
a black-line or a white-line then select the diagonal that joins a black

_point to a white point to divide the square.



o Let T3(P) be the set of all (1, 1,\/5) triangles obtained by dividing all unit
Jattice squares as above. Every unit lattice cube is divided in one of the

following two ways:

1. A unit lattice cube K is special if there are three black-lines and three
white-lines in K both of which form a (\/5, V2, \/ﬁ) equilateral triangles.

Let e;, ez, €3, €4, €5 and eg be the edges of these equilateral triangles.
The seventh edge e is the diameter of K, parallel to the vector (1,1,1),
if 1t is not perpendicular to the triangles. Otherwise e; is the diameter
of K, parallel to the vector (1,—1,1). Thus, K is subdivided into six

3-simplexes each of whose edges is an edge of K or one of the €’s.
2. When K is not special i.e. ordinary then K is divided into twelve con-

gruent 3-simplexes, each of which has a face in T3(P) and a vertex at the
centroid of K.

o Let T3(P) be the set of 3-simplexes obtained by dividing all unit lattice cubes
as above. The augmented black point set of P is the union of the set of black
points of P with the set of centroids of every ordinary cube K satisfying at

least one of the following two conditions:

1. One of the four diameters of K is a black line.

2. K contains a simple closed curve of black-lines not contained in a face

of K and no diameter of K is a white-line,

o A triangle of T3(P) is a black triangle if all its vertices lie in the augmented
set of black points. Similarly, a 3-simplex of T3(P) is a black 3-simplex if all

its vertices lie in the augmented set of black points,

Based on the above procedure, the continuous analog is defined as follows:

For a 3D digital image P in a strongly normal digital image space, the continuous
analog C(P) is the union of the augmented set of black points, the set of black-lines,
the set of black triangles and the set of black 3-simplexes of P.
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Interested readers may refer to Kong, Roscoe and Rosenfeld (53] for more detailed

discussion on digital fundamental group and continuous analog.

1.2.7 Paths and Curves in Digital Image

Let S be a non-empty subset of V. A point p € V is a-adjacent to 5 if p s a-
adjacent to some point of 5. Similarly, two non-empty subsets of V are a-adjacent
if a point of one subset is a-adjacent to the other subset. An cx—pﬁh between two
~grid points p, ¢ € S is a sequence of distinct points p = pg, Py, "+, Pn in S stich that
p; is a-adjacent to p;ry for 0 < ¢ < n. Let 7 be an a-path py, p1,-++,ps and p be
a point a-~adjacent to p,. We use m,p to denote the a-path pg,p1,+:+,pn,p. Also,
spt(m) is used to denote the set of points {po, p1,* **,pn} unless stated otherwise. An
o~curve is an o-path pg, p1,-++,pn such that p; | 1 < ¢ < n is a-adjacent to exactly
two other points of the a-path. An o~path pg, 91, +, p, is an a-closed pe,th if po is
a-adjacent to p,. An a-closed curve is an a-closed path ¢ such that every point of
¢ is a~adjacent to exactly two other points of ¢. An a-closed curve with more than
three points is called a non-trivial a-closed curve. Let ¢, ¢1, +, ¢n denote n+1 non-
trivial c-closed curves. We say that they are independent if for every ¢ there exists
a sequence (though not necessarily unique) ¢,,¢, **°36,._, of other n non-trivial
a-closed curves such that after their valid removal (taking one at a time according
to the sequence) ¢ remains. Valid removal of ¢;; at the jth step means the removal
of the set of points spt(¢;,) — ((Uﬁz?ﬁ spt(¢;,))U¢) subject to the condition that it is
non-empty. Let S be a non-empty finite subset-of V. A set A of independent non-

trivial a-closed curves of S is a maximal set if any other non-trivial a-closed curve

- of S when included in A makes it’s non-trivial a-closed curves.dependent. It may

be noted that S may have more that one maximal sets of independent non-trivial
a-closed curves. Let Ay, Ag, -+, A, be all possible maximal sets of independent
non-trivial a-closed curves of S. Let a; be the cardinality of A;. Maximum possible

independent non-trivial a-closed curves in S is max{a;,az, - ,a,}.
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1.2.8 Components, Tunnels, Cavities and Background

Let S be a non-empty subset of V. Two points p,g € S are a-connected in S if
there exists an a-path from p to ¢ in S. An a-component of § is 2 maximal subset
of S where each pair of points is a-connected. For a digital image P = (V, , 8, B)
an a-component of B is a black component while a -component of V — 8 is a
white component. In a finite digital image there is a unique unbounded white
component [51] and it is called the background. Let X,Y be two subsets of ¥ and
let X be connected by its given adjacency relation’. We say that X surrounds Y if
Y is a subset of a finite component (in X sense) of V ~ X. A white component of
P that is adjacent to and surrounded by a black component S is called a cavity in
S. As pointed out by Kong and Rosenfeld [61] it is quite hard to define a tunnel
although the number of tunnels has a precise definition. The number of tunnels in
a polyhedral set is the rank of its first homology group [56]. According to Kong,
Roscoe and Rosenfeld [53), if a polyhedron S' is derived from another polyhedron
S after é.dding n ‘solid handles’ to S or removing the interior of a ‘n-holed solid
polyhedral torus’ from the interior of S, then the number of tunnels in §' is equal
to the number of tunnels in S plus n. Following [53], the number of tunnels in
a 3D digital image may also be defined as follows: let By, B;,:-+, B,, be the black
components in a 3D digital image P and let p; € B; for 1 < ¢ < n. Then the number
of tunnels in P is the sum of the ranks of abelianizations of the groups n(P,p;). A
black point is a border point if it is adjacent (in the sense of white points) to a white
component, otherwise it is an interior point. The border of a black component is
the set of all border points in it. Similarly, the interior of a black component is
the set of all interior points in it. Let X,Y be two non-empty subsets of V such
that X C Y. We say that X is a-connected in Y if every two points p,¢ € X are
a~connected in Y. The number of a-components of X in Y is defined similarly.

L

ITaking the example of the image 7, for X containing only black points, adjacency relation is a.
For X containing only white points, adjacency relation is §. For X containing both black and white

points, adjacency relation of X is to be specified explicitly.
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1.2.9 The Euler Characteristic

The Euler characteristic of a polyhedral set S C E®, denoted as x{S5), is defined

by the following axioms [51]:

1. x(8) =0if § = ¢,
2. x(S)_ =1if S is non-empty and convex,

3. for any two polyhedra X and Y, x(X UY) = x(X) + x(Y) — x(X nY).

For any arbitrary triangulation of a set S, the value of x(5) is equal to the following

alternating sum [51]:

x(S) = the number of points in § — the number of edges in S
+ the number of triangles in § — the number of tetrahedrons in S.

Also, the Euler characteristic of a set S C E° is equal to the number of connected
components in S minus the number of tunnels in S plus the number of cavities in
S [51]. For example, the Euler characteristic of a hollow cube is two since it has one
component, one cavity and no tunnels; the Euler characteristic of the border of a
rectangle is zero since it has one component, one tunnel and no cavities. For further

development on the Euler characteristic interested readers may refer to [40,75].

An é.:na.logﬂus definition of the Euler characteristic is introduced for a digital image
P which is denoted as x(P) Each digital image is associated with the polyhedral
set C(P) i.e. the continuous analog of P [53]. The Euler chata.cteriatic‘x(P) of a
digital picture is defined as x(P) = x(C(P)) [561]. |
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1.2.10 Some Definitions in 3D Cubic Grid

All the definitions of this section are applicable in 3D cubic grid Z°. Let p be a
point in Z3. N,(p) denotes the set of all a-neighbors of p including p itself. For
example, Nag(p) denotes the set of 27 points in the 3 X 3 X 3 neighborhood of a
point p including p itself. Throughout the thesis Nas(p) is denoted as N (p). The set
of points of N(p) excluding p is denoted as N*(p). We classify the points of N*(p)

according to their adjacency relations with p as follows:

1. An s-point is 6-adjacent to p,
2. an e-point is 18-adjacent but not 6-adjacent to p, and

3. a u—;ﬁo:'nt is 26-adjacent but not 18-adjacent to ».

Nomenclature of the points of N (p) is explained in Figure 1.1, In Figure 1.1, p,, p,,,
Doy Py Py Py denote the east, west, south, north, top and bottom points respectively.
Similarly, p,., denotes the top-east point and so on. Let p, ¢ be two points in Z°,
N(p, q) is the set of points 26-adjacent to both p and ¢ i.e. N(p,q) = N(p) N N(q).

Let x = (kg,k1,k;) be an s-point of N(p) where p = (lp,{;,0;) i.e. |k;—1] =1
for some ¢ and k; = [; for all 1 # j. We define sur face(z,p) as the set of points
k;. It may be noted that a surface(z, p)

Il

(mo, m1,me) € .N(p) such that my
contains nine points and exactly one of them is an spoint of N(p). Let z =
(Ko, K1y k2) be an e-point of ¥ (p) where p = (lp,!1,1;) i.e. |ki—U;] =1 and |k;—1;| =1
for some distinct ¢, 5 and kj, = I for h 5% ¢, h # 5. We define edge(z, p) as the set of
points (mg, m1,mz) € N(p) such that m; = k; and m; = k;. It may be noted that

an edge(z, p) contains three points and exactly one of them is an e-point of N(p).

Two s-points a,b € N(p) are called opposite if they are not 26-adjacent. Otherwise,
they are called non-opposite s-points. Let a,b,c denote three non-opposite s-points

of N(p}. Then we define the following two functions:
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Figure 1.1: Nomenclature of the points in the 3 X 3 X 3 neighborhond of a point
p. Clock-wise from top-left corner — neighborhood representation, back vertical

plane, middle vertical plane, and front vertical plane.
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e(a,b,p) =¢q| ¢ € N*(p) and 6-adjacent to a,b,
v(a,b,¢,p) = q | g € N*(p) and 6-adjacent to e(a, b, p), e(b, ¢,p), e(c,a, p).

For example, if a,b,¢ denote the points p,,,p.,p, in N(p) then according to the
above definitions e(a, b, p) and v(a,b, ¢, p) will denote the points p,, and p,,, re-
spectively. It may be noted that e(a, b, p) is an e—poinﬁ while v(a, b, ¢,p) is a v-point

of N{p). We define three more functions as follows:

fi(a,p) = ¢ | ¢ € N(p) and 6-adjacent to a,
f2(a,b,p) = q | ¢ & N(p) and 6-adjacent to fi(a, p), e(a, b, p),
fs(a,b,p) = ¢ | ¢ & N(p) and 6-adjacent to f:(a,d,p), f2(b,a,p).

-

Let (a,d), (b,¢),(c, f) denote three distinct unordered pairs of opposite s-points of
N(p). Let condition C; be ‘z € {b,e,c, f}; condition C; be ‘z,y € {b,e,c,f}
and Z,Yy are ncin-opposite’; condition Cy be ‘z € {b,e,c,f} and z € {p,,Ps,Pw }';
condition Cy be ‘z,y € {b,e,¢,f}; z,y are non-opposite and z € {Pg ., P, } and
condition Cy be ‘z,y € {b,e,¢, f}; z,y are non-opposite and z,y¥ € {p,,PsPw }'-
We define a middle plane and an extended middle plane of N(p) as follows:

M(a': dyp) = {-'-U ‘ Cl} U {e(:':,y,p) ] CE}:
S.M.(ﬂ«, d:p) - M(ﬂ-,d,p)U{fl(ﬂ:, P) ‘ Ca}U{fz(fE,y,P) I 04}U{f3($: y:-p) | 05}'

We call M(a,d,p) and £ M(a,d,p) as middle plane and extended middle plane of
N(p) respectively. It may be noted that M(e,d,p) contains eight points while

£ M(a, d, p} contains fifteen points.

Let P = (Z°,26,6,B) be the image under consideration. For every point p € Z°%,

we define two images as follows:

(2°,26,6,(N(p) N B) U{p}),
(Z2°,26,8,(N(p) N B) — {p}).

N(p)
N (p)
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In other words, p is always white in N (p) (i.e. p is deleted) while p is always black
in N(p) (i.e. pis added). For any other point of N(p), the color in N(p) or N(p) is
the same as the color of corresponding point in P. For any point of Z% — N(p), the
color in N (p) or N{p) is always white. For a set of point S C Z3 the 26-envelope

£(S) of S is defined as follows:
£(5) = U N(p) - 5.

pES

1.3 3D Digital Topology: Current Status

The research on digital topology started with the simple but important idea of us-
ing different adjacencies for black points and white points [25,107]. Both Gray (30)
and Park and Rosenfeld {86] made extensive studies on digital geometry. Based
on the notion of finitely presented Abelian group Mylopoulos and Pavlidis [82,83)
made a theoretical study on the properties of quantized space and their higher
dimensional generalizations. Tourlakis and Mylopoulos [129] also considered the
topological aspects of higher dimensional digital space. Rosenfeld [96] introduced
the basic concepts of digital topology for three dimensional array with mathemat-
ical rigor and soundness. He defined the concepts of connectedness, cavities, holes
(tunnels), surroundedness, border, background, arcs, curves etc. and their topolog-
ical properties. Kong and Rosenfeld |51] made a thorough survey on 2D and 3D
digital topology which may be used as an introductory lesson for a researcher in

this field. In fact it helped us a lot to do our work for this thesis.

1.8.1 Classical Topology in Image Processing

A few interesting publications [43,44,45,46,47,63,37] on the application of classical
topology in digital image processing are found in the literatures of digital topology.
Kovalevsky [63] and Herman [37] made a study in this respect. In his paper [63),
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Kovalevsky proved that every finite Ty-space is an abstract cellular complex and
based on that theorem he made a fundamental claim that “the topology of cellu-
lar complex is the only possible topology of finite sets”. Herman [37] recognized
the claim of Kovalevsky in a more generalized version. He replaced the finiteness
condition which makes the results applicable to image analysis over infinite domain
e.g. the infinite 3-space tessellation into equal sized cubes. Herman established his
claim by showing that: 1) every finite Ty-space is a limited sparse Tp-space, 2) ev-
ery limited sparse Tp-space is a limited partially ordered set, and finally, 3) every
[imited partially ordered set can be transformed to a (limited) cellular complex by
complementing with a ‘dim’ (dimension) function. He also pointed out that the def-
inition of ‘dim® function attached with the definition of cellular compléx “is quite
different from what is ‘natural’ in image processing”. Finally, he concluded that
cellular complex is rich enough; however, a ‘right’ topology for image processing

depends on a particular choice of the ‘dim’ function.

Khalimsky [43,44,45,46,47| introduced an approach of representing an image by
locally finite Ty-space. He defined the topology of the set of integers with the basis

as follows:
{{2k+1} |ke Z}U{{2k— 1,2k, 2k + 1} | k€ Z}.

The topology of Z™ is a product of n copies of this space. This space is often referred
as Khalimsky n-space. In Khalimsky n-space, a point is a pure point if its co-
ordinates are all even or all-odd, and a mixed point otherwise. In three dimension the
Khalimsky-adjacencies are the 26-adjacencies with at least one pure point together

with all 6-adjacencies between two mixed points, Khalimsky-adjacency is a non

Voronoi adjacency.

17



1.3.2 Digital Image Space and Adjacency Relation

In the definition of digital images two different adjacency relations are associated
with each digital image space, one for black points and the other for white points.
The novel idea of using different adjacency relations for black points and white
points emerged at the early stage of digital topology and was first recommended by
Duda, Hart and Munson [25|. Rosenfeld and Pfaltz [107] discussed this aspect and
explained with example that if same adjacency relation is used for both black and
white points then the discrete analog of the Jordan curve theorem does not hold.
Later Kong, Roscoe and Rosenfeld 53] made a rigorous study to define proper
restrictions on adjacency relations of black points and white points. Dei)ending on

these two adjacency relations they defined two classes of digital image space namely

regular digital image space and strongly normal digital image space. Moreover, they
discussed about many important topological properties (e.g. the continuous analog

property, the discrete Jordan curve theorem etc.) of such digital image space.

1.3.3 Continuous Analog and Digital Fundamental Group

In a fascinating paper (53] Kong, Roscoe and Rosenfeld related the digital topology
of strongly normal digital image space with the topology of the Euclidean space.
They defined the concepts of digital fundamental group — an analog of fundamental
group for digital images, and discrete digital fundamental group — a discrete version
of digital fundamental group [53]. In the same paper [53] they defined ‘continuous
analog’ C'(P), a polyhedral construction for the digital image P in a strongly normal
digital image space. In this connection Kong et. al. [53] described ‘continuous
analog properties’ and established that C(P) holds these properties. They also
proved that the digital fundamental group of a digital image P in a strongly normal
digital image space is naturally isomorphic to the (classical) fundamental groups
of C(P). Moreover, they discussed many important properties of the Euclidean
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space those have analogs for strongly normal digital image space. The concept of
digital fundamental group and continuous analogs were also discussed in [59,61].
The concept of continuous analogs of digital image had previously been used by
Kong and Roscoe [62,55], by Kong and Khalimsky [57) and by Kopperman, Meyer

and Wilson [62].

1.3.4 The Jordan Theorem in Digital Topology

Rosenfeld {95,109] established the discrete analogs of the Jordan curve theorem for
2D digital images. In [95] he established for a (4,8) digital images that a simple
closed curve not contained in a unit lattice square creates at least two white com-
ponents and in [109] he strengthened the claim that it creates exactly two white
components. In [102] Rosenfeld showed that the same result holds in (8,4) digital
images also. Stout [125| presented interesting proofs of these theorems. Morgen-
thaler and Rosenfeld [77] established a three dimensional analog of the discrete
Jordan curve theorem for (6,26) and (26,6) digital images and called it as the Jor-
dan surface theorem. In a series of papers Reed and Rosenfeld [91,92] made a further
study on three dimensional digital surfaces and the Jordan surface theorem. Using
continuous analogs Kong and Roscoe [62] proved the Jordan surface theorem for
(26,8), (6,26), (18,6), (6,18) and many other kinds of digital images. Khalimsky [47

presented the Jordan curve theorem for his digital images. Kopperman et. al, [62
established the Jordan surface theorem for Khalimsky’s three dimensional digital

images.
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1.3.5 The Euler Characteristic and Other Topological In-

variants

The Euler characteristic, components, tunnels and cavities are important topolog-

ical invariants that have many applications in image classification and recognition

among others. In a 3D image the numbers of components, tunnels and cavities de-
note its Oth, 1st and 2nd Betti numbers {65] respectively. In [96] Rosenfeld defined

components, cavities, background and established their topological properties with

mathematical rigor.

In 3D digital topology ‘tunnel’ [51,53,111,113,114,115,116] and ‘hole’ {76,95] refer to
the same topological concept. Unlike components and cavities it is not possible to
define a ‘tunnel’ although the number of tunnels has a precise definition {96,51], The
number of tunnels in a polyhedral set is the rank of its first homology group [56}.
According to Morgenthaler, a component S contains no tunnel if each closed path
in S is reducible i.e. equivalent to a degenerate closed path of single point, Kong,
Roscoe and Rosenfeld (53] presented a physical sense about the number of tunnels
in a polyhedral set. They [53] also gave a formal definition of the number of tunnels
in 3D digital image. In a series of papers [111,113,114,115,116|, we have presented a
rigorous study on the existence of tunnel as well as the number of tunnels in 3 X3 x 3
neighborhpdd using (26,6) adjacency relation. We have proposed the necessary
and the sufficient condition for the existence of tunnels in {111,113]| and have also
defined the number of tunnels {111,115] in 3 X 3 x 3 neighborhood. In {114} we have
established the claim of [111,118] about the existence of tunnels while in (116] we
have established the claim of {111,115] about the number of tunnels. A detailed

discussion on the number of tunnels in 3 X 3 X 3 neighborhood may be found in

Section 2.3.2.

Kong et. al. [53] gave a formal definition of the Euler characteristic of a digital
image using continuous analog concept. Several publications on computation of the
Euler characteristic of digital image could be found in the literature [14,15,26,139].
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Dyer (26] proposed an interesting algorithm of computing the Euler characteristic of
a 2D digital image from its quad-tree representation. In [14], a recursive algorithm
was proposed for computing the Euler characteristic and other additive functionals
of an n-dimensional digital image from its array representation. Bieri [15] modified
their previous algorithm of computing the Euler characteristic and other additive
functionals of an n-dimensional digital image from its n-tree representation. In [139]
Voss proposed an interesting approach to computing the Euler characteristic of an
object in n-dimensional homogeneous grid. In [115,116| we have described a parallel
algorithm to compute the Euler characteristic of a 3D digital image from iis array
representation. While other algorithms work on the number of all :-dimensional
elements for 0 < ¢ < n in a polyhedral representation of a digital object, our
algorithm is based on detecting the change in the numbers of black components,

tunnels and cavities in the 3 X 3 X 3 neighborhood of a point due to its deletion.

1.3.6 Topology Preservation in 3D Digital Space

A few definitions of what is meant by topology preservation or topological equiv-
alence in 3D digital space, can be found in the literature [50,51,76,129,70]. Kong
and Rosenfeld [51] made a survey on topology preservation in digital space. We
intend to discuss topology preservation to some detail as we consider this to be a
concept of vital importance in digital topology for many real-life image processing
applications. Tourlakis and Mylopoulos [129] gave a sound definition of topological
equivalence for finite (4,8) and (6,26) digital images and their higher dimensional
analogs. According to them two finite digital images are topologically equivalent if
and only if one can be transformed to the other by seq[uentia.l binary transforma-
tions of sixﬁple points. This criterion of topology preservation claims a definition of
simple point independent of the notion of topology preservation. Kong and Rosen-
" feld [51] mentioned the following criterion of topology presérvation on the basis of

Morgenthaler’s [76] discussion.
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Criterion 1.1 Let P = (2%, «,8,B) be a 8D digital image. Let P, = (Z°, 0,3,
B — D) be the tmage obtained by deleting the set of potnts D from B. This deletion

preserves topology tf and only if all the following conditions are satisfied:

1. Each black component of P, contains exactly one black component of Ps.
2. Each white component of Py contains exactly one white component of Py.
8. Each closed path of B can be digitally deformed in B to a closed path of 8B —D.

4. If one closed path ¢ in B — D can be digitally deformed in B to another closed
path & in B — D then ¢ can be digitally deformed to ¢ in B — D.

The definition of the phrase ‘can be digitally deformed’ by Morgenthaler [76] is
only appropriate for (6,26) digital images and there is no base point that remains
fixed [51]. In the above criterion Conditions 1 and 2 preserve one to one correspon-
dence between black components and white components respectively in P, and 7.
On the other hand, Conditions 3 and 4 together preserve one to one correspondence

of solid handles and torus (in connection with tunnels) in P and P,.

Kong [54] proposed the following criterion of topology preservation in 3D digital

space based on the concept of digital fundamental group.

Criterion 1.2 Let , = (2% «,,8) be a 8D digital image. Let P, = (Z°, o, 3,
B — D) be the image obtained by deleting the set of points D from B. This deletion

preserves topology sf and only if all the following conditions are satisfied:

1. Each black component of P, contains ezactly one black component of P,.

- 2. Bach white component of P, contains exzactly one white component of P,.
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3. For each point p € B — D, the tncluston mapi¢: 5 ~ D — B induces a group

rsomorphism 1, : w( Py, p) — 7(P1, p).

4. For each point ¢ € Z° — B, the inclusion map 7: Z®*—-B — Z°— (B — D)

induces a group isomorphism j, : n(P1,q) — 7(Ps,q).

As mentioned by Kong and Rosenfeld [51] Criterion 1.2 is more stringent than Crite-
rion 1.1. Conditions 1 and 2 of both the criteria are exactly the same. Conditions 1
and 3 of Criterion 1.2 together imply Conditions 3 and 4 of Criterion 1.1. Also,
it is possible to find an example where all the four conditions of Criterion 1.1 are

satisﬁed while Condition 4 of Criterion 1.2 is not satisfied.

Kong [50] proposed another definition of topology preservation as follows: let P,
be obtained from a 3D digital image P, after deleting a set of black points. This

conversion from P, to P, preserves topology if and only if C(P;) can be obtained by
collapsing [41] of C(5;).

Ma [70] presented a sufficient condition for topology preservation in connection with
3D parallel thinning. We state his sufficient condition for topology preservation in
(26,6) digital images.

Criterion 1.3 A parallel reduction operator D is topology preserving in a (26,6)
digital smage P sf both the following conditions are satssfied by D:

1. Each set of black points of P that ss deleted by D and 1s contained tn a unit

latlice square 18 a simple set.

2, D never deletes a black component of P that' is contained in a unit latiice

cube,
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A set of black poinis S 1s a simple set in P tf § can be arranged tn a sequence

D1, P2, "' 3P SUch that each p; s a stmple point in P after deleting the points
P1y° "y Pi-1- |

Ma [70] also established similar conditions of topology preservation for (6,26), (18,6)
and (6,18) digital images.

1.3.7 3D Simple Point

Simple point has applications {70] in many homotopy preserving operations of im-
age processing e.g. shrinking, thinning etc. While the concept of 2D simple point
was realized by simple conditions in early seventies [95,83], the concept of 3D simple
point has been realized by straightforward conditions very recently when we have
presented the characterization of 3D simple point [111,113,114| based on connect-
edness of the points in 3 X 3 X 3 neighborhood. Basic difficulty in defining 3D simple
point is the concept of ‘tunnel’ in 3D that does not exist in 2D. In [111,113,114] we
have established that the existence of tunnels in the 3 X3 X3 neighborhood of a point
p can be defined by connectedness of points in N{p). Some characterizations of 3D
simple point exist in literature {129,76,131]. Tourlakis and Mylopoulos [129] gave
a characterization of simple point applicable in any number of dimensions. They
used the term ‘deletable point’ instead of simple point. Morgenthaler [76] used the
notion of tunnels while Tsao and Fu [131] used the notion of the Euler characteristic
to characterize 3D simple points. The elegance of cur characterization (111,113,114]
of 3D simple point lies in the fact that it neither uses the notion of tunnel nor the
Euler characteristic. An efficient algorithm to detect 3D simple point using the
notions of ‘dead-surface’, ‘dead-edge’, ‘effective point’, ‘isolated point’ and ‘geomet-
ric class’ has been proposed in [111,113]. The algorithm has been further modified
in [114]. A detailed discussion on the theoretical aspects of 3D simple point may
be found in Section 2.2 and Section 2.4. The computational aspects of 3D simple

point are elaborately described in Section 3.4.
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1.3.8 Object Thinning, Labeling and Border Tracking

Although 3D thinning has a lot of interest in 3D image processing [122,70], only a
few publications [32,69,70,76,79,111,113,114,117,122,123,128,130,131] are found in
3D thinning. Based on preservation of the Euler characteristic, Lobregt et. al. [69]

proposed an algorithm for detecting simple points applied in 3D thinning. Un-

fortunately, their algorithm fails in some situations as pointed out in [113]. Mor-
genthaler {76 described a parallel thinning algorithm based on his notion of ‘end’
point. His notion of ‘end’ point is different from the notion of end point of curves
or edge point of surfaces, Based on path connectivity, Srihari et. al. [122] described
a sequential boundary removal algorithm for 3D thinning. They also discussed
about the practical applications of 3D thinning. Tsao and Fu [130] proposed a
parallel 3D thinning algorithm based on the notion of surface connectivity, In
the same paper {130] they pointed out that in 3D parallel thinning situations may
occur where each of two points preserves topology when deleted separately while
topology preservation is violated when the same two points are deleted in parallel.
They gave solution to this problem by imposing an additional topology preservation
check in 3 X 3 middle planes of deletable points. Hafford and Preston [32] extended
the concept of sub-fields {28] in 3D and developed a parallel thinning algorithm
for tetradecahedral tessellation. Mukherjee et. al. [79] extended the 2D thinning
algorithm SPTA [84] to develop a 3D thinning algorithm. In [71] Ma suggested

sufficient conditions of 3D parallel reduction operator that preserves topology for |
(26,6), (18,8), (6,26) and (6,18) 3D digital images. In |70|, he established the topo-
logical soundness of his early results on parallel reduction operator [71] using the
notion of minimal non-simple set. He also discussed many interesting properties of
minimal non-simple set. In [117] we have presented a parallel thinning algorithm
for 3D objects and studied its topology and shape preserving properties. Behavior
of the thinning algorithm around different types of corners have been studied in
the same paper. The notions of shape points and open points have been introduced

which lead to good quality skeletons as verified by experimental results. Robustness
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of the thinning algorithm under pseudo random contour noise and rotation has been

studied and the results have been presented in [117].

Border tracking algorithms have applications [1368] in medical image processing
such as detection and display of isolated internal organs from 3D CT data. Artzy,
Frieder and Herman [10] proposed an efficient algorithm of border tracking in three
dimensional (18,6) digital images. Herman and Webster (35] established the topo-
. logical correctness of the algorithm. Udupa, Srihari and Herman [134] gave a border
tracking algorithm that can be applied to any dimensions. Gorden and Udupa [29]
presented an efficient border tracking algorithm for three dimensional digital im-
ages. In [135] Udupa and Ajjanagadde discussed the application of object Jabeling
algorithms {93,86,120,133,1] to three dimensional medical image display. In the
same paper [135] they presented an algorithm for tracking all connected surfaces

and for generating information about the connected objects in a three dimensional

digital image.

1.3.9 Topology Based Segmentation

Local topological parameters may be used to produce a meaningful segmentation
of 3D objects [73,115] from their surface skeletal representations. Segmentation
produces a more compact and highly structured representation of an object which
is useful in recognition and analysis. Malandain et. al. [73] presented a topology
based segmentation of digital surface. They used the classification of points in
the Euclidean 3-space and directly applied to digital space that leads to undesired
situations some of which were discussed by them [73]. Their approach of point
~ classification used the numbers of adjacent object components (called as C* in [73])
- and adjacent background components (called as C in [73]) of a point in its 3X3 X 3
neighborhood. The concept of using 18-neighborhood 111 computing C was first
proposed by Saha et. al. [111]. In [115] we have developed a segmentation approach

of 3D objects from their surface skeleton. Our point classification method has been
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based on the change in the numbers of black components, tunnels and cavities in the
3 x 3 x 3 neighborhood of a point under its binary transformation. The classification
method [115] has the property that it produces exactly one curve of junction points
when two or more surfaces join and produces exactly one junction point when one
or more curves join a surface or two or more curves join themselves. This property
was violated by the classification method of [73|. The results of point classification
method have been applied for a meaningful segmentation [115] of 3D digital objects.

The segmentation method has also been supported by experimental results [115].

1.4 Scbpe and Layout of the Thesis

In Chapter 1 after presenting basic concepts and useful definitions of 3D digital
topology the current status has been surveyed. We have discussed diflerent existing
definitions of topology preservation in 3D digital space, 3D simple points and their

applications to object thinning and segmentation.

In Chapter 2, at first, we make an in-depth study on 3D simple point. We establish
a theorem that defines the number of tunnels in 3 X 3 X 3 neighborhood in terms of
the connectedness of points which was a ‘bottle-neck’ in characterizing 3D simple
points. In this connection the notion of minimal separator is introduced. An efficient;
characterization of (26,6) simple point is developed. The theorem defining the

number of tunnels leads to an effective measure of local topological changes under

binary transformation of a point.

In Chapter 3, we investigate the computational aspects of 3D simple point and
the measure of local topological changes in the context of image processing. Effi-
cient algorithms are developed to detect (26,6) simple points and to compute local
topological parameters (these parameters also characterize a measure of local topo-
" logical changes under binary transformation of a point) using the concepts of “dead-

surface’, ‘effective points’, ‘geometric class’ and some other interesting properties of
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3 X 8 X 3 neighborhood. A parallel algorithm is also developed for computing the
FEuler characteristic of a 3D digital object.

In Chapter 4, we develop a new shape preserving parallel thinning algorithm for
3D digital images. Along with topological aspects we discuss about non-topological
aspects of the 3D thinning algorithm. We study the quality of skeletons around dif-
ferent types of corners and make an extensive study on the behavior of the algorithm
under pseudo random contour noise and rotation using shape distance measure. The

parallel thinning algorithm is also supported by experimental results.

In Chapter 5, we describe a topology based 3D object segmentation approach
from its surface skeletal representation. At first we classify the points to detect
the junction points in a digital surface. For this purpose we use local topological
parameters of every point. After detecting the junction points, the information is
applied to develop a new segmentation method. Finally the results of segmentation

of different 3D objects are presented and discussed.

In Chapter 6, we present the conclusion of the work and suggest some directions

for future research.
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Chapter 2

3D Digital Topology Under

Binary Transformation

2.1 Introduction

Most of the binary image Lprocesing techniques (e.g. shrinking, thinning, ero-
sion, dilation, closing, etc.) need sequential or parallel transformation of points
under some predetefmmed constraints. One such useful constraint is the topol-
ogy preservation mostly used in shrinking, thinning and other homotopy preserving
transforms. In this chapter we cnnsider the issues concerned with topology preser-
vation in 3D digital space. Topology preservation mainly deals with the question
— whether the binary transformation of a point (or a set of points) preaerves.the
topology of an image or not. However, it is also inte:esting to answer the question
— if the binary transformation of a point (or a set of pbints) at all changes the

image topology then is it possible to have a measure of the change? If ‘yes’ then
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Figure 2.1: (a) Deletion of p splits one black component into two. (b) Deletion of p

removes a tunnel. The 3 X 3 X 3 neighborhood configurations of p are same in both

(a) and (b).

how to measure and what is the measure? This measure gives us an idea about
the loss of topological information in relevant operations. This information may
be used in classification of points, junction detection, meaningful segmentation of

digital surface representations and in other relevant applications.

In this thesis, we restrict ourselves to the binary transformation of single point.
A point whose binary transformation does not change the image topology is re-

ferred as simple point [76,130,129,51]. One major hurdle in characterizing 3D

simple point is the concept of ‘tunnels’. In Section 2.3.2, we establish a theo-
rem [111,113,114,115,116] that defines the number of tunnels in 3 X 3 X 3 neighbor-
hood. Based on this theorem, an efficient characterization [111,113,114] of (26,6)
simple point is developed in Section 2.4. A measure of the topological changes
under binary transformation of a point has a lot of interest which is another con-
tribution of this chapter. For example, the deletion of a point may remove a black
component of split a black component into two or more black components. Further,
the deletion of a point may remove or create tunnels. Similarly, the transformation
~ may remove or create cavities. We measure the-topologica,l cha.nges' in an image
under binary transformation of a point in terms of these numbers. As mentioned
in [65], using any local window analysis it is not possible to measure this change

in the entire image. For example, see Figure 2.1. In Figure 2.1(a), the deletion of
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the point p splits one black component into two while in Figure 2.1(b) the deletion
of p removes a tunnel from the image. It may be noted from Figure 2.1(a) and
(b) that the 3 X 3 X 3 neighborhood configurations of p are same in both the cases.
Therefore; we confine ourselves to the computation of the topological changes in the

3 X 3 X 3 neighborhood only. This measure of local topological changes is presented

in Section 2.5.

2.2 3D Simple Point

2.2.1 Discussion

In an image P = (Z3%,0,8,8B), a point p € B8 is a simple point if :and.only if
its removal from B preserves the topology of P. As considered by many au-
thors [69,51,76,130}, topology preservation in the 3 X 3 X 3 neighborhood under
binary transformation is the.necessa.ry and sufficient condition for simple point. In
other words, a point is a simple poinﬁ if and only if its deletion does not change the
numbers of black components, tunnels and cavities in its 3 x 3 X 3 neighborhood. It
may be noted that various definitions of topology preservation in 3D digital space,
presented in Section 1.3.6, are not equivalent to each other. However, the differ-

ent definitions of topology preservation uniquely characterizes simple points [51).

In other words, the different definitions of topology preservation are equivalent for

sequential deletion of one black point,

For the qoﬁvenience of the réader, we.dembnstrate_the idea of simpl_e points in (26, 6)
connectivity. Let P, = (Z*,26,6,B) be an image and let A, = (Z°,26,6, B ~ {p})
be obtained from P, after the removal of p € B from B. The following topological
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changes may occur in P; under the above transformation [111]:

1. one black component of P; is removed in P (at most one black component

may be removed due to deletion of single point),

2. one black component of P splits into two or more black components in A,
3. one or more tunnels of P; are removed in P;,
4. one or more tunnels are created in P,

5. one or more cavities of P, are removed in A,

6. one cavity is created in 7 (at most one new cavity may be created due to

deletion of single point).

It may be noted that (1) occurs if and only if p is not 26-adjacent to any black point.
In other words p has no black 26-neighbor. Either (2) or (3) occurs if and only if the
deletion of p creates two or more black components in its 3 X 3 X 3 neighborhood.
Either (4) or (5) occurs if and only if the deletion of p creates one or more tunnels
in its 3 X 3 x 3 neighborhood. Finally, (6} occurs if and only if the deletion of p

creates a cavity in its 3 x 3 X 3 neighborhood.

We present a few examples to illustrate simple points in (26,6) connectivity. In
Figure 2.2, deletion of the point p creates two black components in its 3 X 3 X 3
neighborhood. In Figure 2.3, deletion of p creates a tunnel in its 3 X 3 X 3 neighbor-
“hood. In Figure 2.4, deletion of p creates a cavity in N(p) while in Figure 2.5, the
deletion of p removes a black component from its 3 X 3 X 3 neighborhood. Thus,
p is not a (26,6) simple point in each of Figures 2.2- 2.5. On the other hand, in
Figure 2.6, deletion of p leads to exactly one black component without tunnels and
cavities in its 3 X 3 X 3 neighborhood. Thus, in Figure 2.6, p is an example of (26,6)

simple point.
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Figure 2.2: An example of (26,6) non-simple point. Deletion of the point p creates
two black components in its 3 X 3 X 3 neighborhood.
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Figure 2.3: An example of (26,6) non-simple point. Deletion of the point p creates
a tunnel in its 3 X 3 X 3 neighborhood. |
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Figure 2.4: An example of (26,6) non-simple point. p is the hidden point just below
the point ¢. Deletion of the point p creates a cavity in its 3 X 3 X 3 neighborhood.
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Figure 2.5: An example of (26,6) non-simple point, Deletion of the point p removes

a black component from its 3 x 3 X 3 neighborhood.

A

s

Figure 2.6: An example of (26,6) simple point. Deletion of the point p leads to
exactly one black component without tunnels and cavities in its 3 X 3 X 3 neighbor-
hood. |

34



2.2.2 Previous works

Morgenthaler [76] proposed a characterization of 3D simple point as follows:

Characterization 2.1  Let P = (2% «a,3,B) be a 8D digital image. A point
n € B 18 a simple point 1f and only if the following four condittons are satssfied.

1. The number of components of BN N(p) ts equal to that of B N N*(p).

2. The number of components of ((Z% — B) N N(p)) U {p} s equal to that of
(Z° - B)n N*(p).

3. The number of tunnels in BN N(p) ¢s equal to that in B N N*(p).

4. The number of tunnels in ((Z° — B) N N(p)) U {p} #s equal to that in (Z° -
B) N N*(p).

Kong and Rosenfeld [51] presented a simpler characterization of simple point (as
mentioned by them this characterization is essentially due to Tsao and Fu [130])

using the Euler characteristic.

Characterization 2.2 A black point p 15 a stmple point in.a 3D d:'g:'tal :'mﬁge
P=(2Z% a,f,B), where (o, ) = (26,6) or (6,26), if and only if the following three

conditions are salisfied:

1. Ezactly one component of N*(p) N B {s adjacent to p.

2. Exactly one component of N(p) — B {s adjacent to p.
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8. x(2%,e,8,BN N(p)) = x(Z°% e,8,8 N N*(p)), where x(:) 1s the Euler char-

acteristic,

In [130),' Tsao and Fu made the following observation on 3D simple point: let
P = (2% a,B,8), where (a,8) = (26,6) or (6,26}, be a 3D digital image. Let
p = (%o, Y0, %) be a black point of P. Let P,, P,, P; be three co-ordinate planes
T = Zo, ¥ = Yo, and z = 2, respectively. Then one can find a 2D digital image
P, in P, as P, = (2%, d,0',B,), where 8, = {(y,2) € Z% | (z0,¥,2) € B} and
(¢!, B") = (8,4) if (o, 8) = (26,6) and (o', 8') = (4,8) if {«a,B) = (6,26). Similarly,
one can define other two 2D digital images A, and P, in P, and P, respectively.
Tsao and Fu [130] observed that if p is a simple point in at least two of 7., 7, P,
then p is a simple point in P, A simple point p in P, means that the point (o, 20) is
a simple point in P, and similarly for P, and P,. Tsao and Fu proposed the result
for (26,6) and (6,26) connectivity. Kong and Rosenfeld [51] mentioned that this
result is true for (6,18) and {18,6) connectivity relations also. However, the above
condition is sufficient but not necessary for p to be a simple point, and so it is not

a characterization of simple points.

Characterizations 2.1 and 2.2 of 3D simple points are not attractive from compu-
tational point of view since they use the concepts of tunnels (Characterization 2.1)
and the Euler characteristic (Characterization 2.2). Towards developing a com-
putaionally attractive solution, in Section 2.3.2 we establish a new definition of the
number of tunnels in 3 X 3 X 3 neighborhood [111,113,114]|. This uses only the con-
nectivity of points of 3 X 3 X 3 neighborhood. This results in a new characterization
of (26,6) simple point [111,113,114) in Section 2.4 that neither needs the concept of

tunne!s nor the Euler characteristic.
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2.2.3 Formal Definition

To reach the new characterization of 3D simple point we start with Characteriza-

tion 2.2 as a definition of simple points. However, it is observed that this character-
ization is also valid for p € Z° — B. Therefore, we start with the following definition
of (26, 6) simple point which differs from Characterization 2.2 in the only respect

that here the definition is valid irrespective of whether p is black or white.

Definition 2.1  Let P = (2°,26,6,B) be a 3D digital image. A point p € Z° 1s

a stmple point in P if and only if the followsng four conditions are satisfied:
mp Yy g

1. Ezactly one 26-component of N*(p) N B is 26-adjacent to p.
2. Ezactly one 6-component of N(p) — B {s 6-adjacent to p.
5. x(N(p)) = x(N(p)).
It may be noted that the Definition 2.1 of simple points is independent .Gf the notion

of tunnels (as x(-) may be defined without the notion of tunnels). Therefore, we

can define the number of tunnels using the notion of simple points.

2.3 3D Simple Point: Prerequisite

As a prerequisite to the characterization of (26,6) simple points detailed in Sec-

tion 2.4 we need to define the followings:

(a) the number of black components, tunnels and cavities in N (p),

(b) the number of black components, tunnels and cavities in X (p).
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Note that the key contribution of this section is to define the topological parameters
of (a) and (b) using only the connectivity of points of 3 x 3 X 3 neighborhood. The
topological parameters of (a) are defined by Proposition 2.1. For (b), the number of
black components of N (p) needs no further clarification while the numbers of cavities

and tunnels are defined in Equation 2.1 and Theorem 2.1 respectively. However, the
proof of Theorem 2.1 demands a new look of the connectivity relationship through
minimal separator which is detailed in Section 2.3.1., Henceforth, we consider Z°

as the image set and (26,6) connectivity relation unless stated otherwise.

Definition 2.2  Shrinking is a process of sequential transformation of b}ack simple
points (see Definition 2.1} to white in an tmage as long as the image contains
any black simple point. Let P = (Z°,26,6,8) be a 8D digital image. Let P’ =
(Z°,26,6,B') be a shrunk version of P. Then B' C B and B' contains no simple

posnt.

Definition 2.3  Let z = (21,23, x3) and y = (Y1, ¥, ys) be two points in Z°. Four
sets on z,y are defined as follows: rt(z,y) = {(21,2,2s) | (21,22,23) € Z° and
max (zi, %) 2 2 2 min(z;,4:), for 1 <t < 3}; rit(z,y) = {(21, 22, 23) | (21,22, 23) €
Z° and max (z;, %) > 2z > min (z;,4;), for 1 <1 < 8}; rts(z,y) = ri(z,y)—rii(z, y);
rts*(z,y) = {p | p € rts(z,y) and p is 6-adjacent to rti(z,y)}.

Proposition 2.1 The numbers of black campanents, tunnels and cavities in N (p)

are always 1, 0, O respectively.

Proof. Let (a,d), (b,e), (¢,f) be three distinct unordered pairs of opposite
s-points of N (p). In N (p), a v-point v(a,b,¢,p) is 26-adjacent to the black points
{p, a, b, c, e(a,b,p), e(b,c,p), e(c,a,p}} N B. For all possible .cambina.ﬁions of B,
v(a,b,c,p) is a simple point in N(p) (see Definition 2.1). Thus, we can remove

all black v-points during the shrinking process of N (p). After removing all black
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v-points from N (p), an e-point e(a,b, p) is 26-adjacent to the black points {p, a, b,
¢, [, ela,e,p), e(b,e,p), ela, f,p), e(b, f, p)} N B. For all possible combinations of B,
e(a, b, p) is also a simple point in N (p) (see Definition 2.1). After removing all black
y-points and e-points from N (p), an s-point a is 26-adjacent to the black points
{p, b, ¢, e, f} N B. Again, a is a simple point in N(p) for all possible combination
of B (see Definition 2.1). Thus, all black s-points may be removed during the
Ishrinking pmcess of N (p) and the black points of N (p) may be shrunk to p which
is single black component without cavities. Further, x(Z°, 26,6, {p}) equals to one.
and thus, the number of tunnels in (Z3,26,6,{p}) is zero’. Hence, the number of

black components, tunnels, and cavities in N (p) are 1, 0, O respectively.

In N (p), the unbounded white component contains the set of points Z° — N (p).
It may be noted that p is the only white point in N (p) which is not 6-adjacent to
Z® — N(p). Therefore, the set of white points of N(p) is not 6-connected i.e. {p} is
a white component of N (p), if and only if all the 6-neighbors of p are black. Hence,

F

the number of cavities in N{p) is stated as follows:

1 if all 6-neighbors of p are black, | (2.1)

number of cavities in N(p) =
| 0 otherwise.

2.3.1 Minimal Separator

In this section we develop a new approach of defining connectivity of a set of points
through the concept of minimal separators. Also, we find out the exhaustive set of
minimal separators (with respect to 26-connectivity) of N (p). This formulation is

useful to establish some propositions which are the building blocks of Theorem 2.1.

Definition 2.4 Let S be an a-connected non-empty subset of Z° where a &
{6,18,26}. A minimal a-separator of S is defined as a minimal subset ¥ of S such

1the Euler characteristic is the number of components minus the number of tunnels plus the

number of cavities
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that ¥ — 8 1s not a-connected. The minimality is achieved in the sense that for any

proper subset X of ¥, 5 — X 1s a-connected,

Using the above definition of minimal a-separators, the c-connectivity of a set of

points may be stated as follows:

Proposition 2.2 Let S be the set ri(z,y) for some z,y € Z° and let X be
a subset of S. Under this assumpiton, X s not a-connected if and only if there

exists a minsmal a-separator of S, say ¥, such that ¥ C § — X and at least two

a-components of S — F intersect with X,

Proof. Let us consider the “If part® and the “Only if part” of this proposition

separately as follows:

If part
Let us assume that there exists a minimal a-separator ¥ such that ¥ ¢ § — X, and

two a-components of S — ¥, say A; and A, intersect with X. From the definition
of minimal a-separators it follows that a point of 4; N X is never a-connected to a
point of Ay,NX in S —%. Now, F C S —-—X and X C S imply X C § ~ 7. Thus,
a point of A; N X is never a-connected in X to a point of A; N X. Hence the “If

part” is established.

Only i+f part

Let us assume that X is not a-connected. Let two a-components of X be X; and
X,. Let us define two sets as follows; E = (Upex, Ma(p)) NS and E' = E - X,
Now, X; is an a-component of X implies that Z#2NX =¢ r.e. ' C 8§ — X, Again
X1 is an a-component of S — E' and X; C § — (F' U X;). Thus, § — E' is not
a-connected, Obviously, X; and X, belong to different a-components of § — E'.
From E' we can find a minimal a-separator ¥ C B' i.e. ¥ C 8§ — X such that one

a-component of S — ¥ contains X; while another a~component contains Xz. One of
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the methods of finding ¥ from E' is as follows: remove a point from E' which is not
a-adjacent to the component of § — E' containing X;. This process is repeated as
long as F' contains any removable point. It goes without saying that this process
is bound to terminate within a finite number of steps for the simple reason that
the whole set-up is dealt with finite number of points. Finally, E' is assigned to 7.

Hence the “Only if part” is established,

Although we impose a restriction on S in Proposition 2.2, it remains valid for any a-
connected S. We impose this restriction for two reasons: (a) the proof is valid under
this restriction (the approach of getting ¥ in “Only if part”), (b) we are interested
about the subsets of N (p) which fulfills the restriction. However, it would be of

interest to find a generalized version of this proof.

Proposition 2.3  Let ¥ be a minimal a-separator of a non-emply a-connected
set S C 2° such that X,,X,, -++, X, are a-components of S — ¥, then each point

of ¥ is a-adjacent to all X;s for i =1,2,++-,n.

Proof. Let us consider that there exists a point p € F such that it is not a-
adjacent to an a-component of § — ¥, say X;. Since Xj is an a-component of S — 7,
X, is not a-adjacent to any point of § — (¥ U X;). Again, Xj is not a-adjacent to
p. It implies that X, is not a-adjacent to any point of § — ((F — {p}) U X1). Thus,
X, is an a-component of S — (7 — {p}). Hence, § — (¥ — {p}) is not a-connected.
This contradicts the definition of minimal a-separators.

It may be noted that N(p) is the set rt(z,y) where z = (5, + 1,5, + 1,kp + 1) and
y = (tp, — 1,4, — 1,k, — 1) assuming that p = (i, Jp, kp). Therefore, Proposition 2.2
is true for any set lying within N(p). In the remaining part of this section, we
find out the set of all ﬁossible minimal 26-separators of N(p). In this section, ¥ (p)

represents a minimal 26-separator of N (p) unless stated otherwise.
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Proposition 2.4  F(p) contains p.

Proof. This proposition is proved by contradiction. Let us assume that p & ¥ (p).
Then p € N(p) — F(p). Further, every point of N(p) is 26-adjacent to p. Thus, each
g,r € N(p) — F(p) are 26-connected by the 26-path ¢,p,r. Hence, N(p) — F(p) is

26-connected. Contradiction!!

Proposition 2.5  F(p) does not contain any v-point.

proof. This proposition is proved by contradiction. Let us assume that a v-
point £ € F(p). Hence (N(p) — F(p)) U {z} is 26-connected by the definition of
F(p). Let us consider two points ¢, € N(p) — F{p) which are not 26-connected
in N(p) — F(p). As q and r are 26-connected in (N (p) — F(p)) U {z}, there must
be a 26-path g = po, p1,***, D0, T, Pit1s* "y Pn = 1 in (N(p) — F(p}) U {z}. Since,
z is a v-point, every two points of N(p,z) are 26-adjacent to each other. Thus,
p; and pi.; are 26-adjacent to each other. Therefore, there exists a 26-path ¢ =
Doy PLy*** s Pis Pitls* 'y Pn = r from g to r in N(p) — F(p). This contradicts the
assumption that ¢ and r are not 26-connected in N(p) — ¥ (p). .

Proposition 2.8  N(p) — F(p) contains exactly two 26-components.

proof. Let us assume that N(p) — F(p) contains more than two 26-components,
- say, Xy, X, +, X, According to Proposition 2.5, ¥(p) contains no v-point. Let 5
~ be the set of all s-points of N(p). Then N(p) — S is always 26-connected, Thus,
N(p) — 8' is 26-connected for all S' C S. Therefore, F(p) must contain some e-
point. Let a,b, ¢ be three mutually non-opposite s-points of N(p) and let f be the
' s-point opposite to c. Without loss of generality, let us assume that e(a, b, p) € F(p).
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By definition, N (p, ¢(a, b, p)) is the set of all points of N(p) which are 26-adjacent
to e(a,b,ﬁ). N{p, e(a,b,p)) is equal to {p, a, b, e(a,b,p), ¢, ela,c,p), elb,ec,p),
v(a,b,c,p), f, ela, f,p), e(b, f,p), v(a,b,f,p)}. According to Proposition 2.4, p
belongs to ¥(p) and e(a, b, p} belongs to F(p) by assumption. Also, a,b must belong
to 7(p). Otherwise, (N(p) — F(p)) N N(e, e(e, b, p)) is 26-connected (as all points of
N(p, e(a, b, p)) are 26-adjacent to both a and &) and ¢(a, b, p) € F(p) is 26-adjacent
to exactly one 26-component of N(p) — F(p). Hence, ¥(p) — #(p) is 26-connected
according Proposition 2.3. Contradiction!! Therefore, a,b € F(p). Rest of the
points of N(p,e(a,b,p)) can be divided into two subsets {¢, e(a,c,p), e(b,¢,p),
v(a,b,c,p)} and {f, ela, f,p), e(b, f,p), v(a,b, f,p)} such that every two points
belonging to that same subset are 26-adjacent. Hence e(a, b, p) is 26-adjacent to
at most two 26-components of N(p) — #(p). Thus, N(p) — F(p) contains at most
two 26-components. By the definition of #(p), N(p) — F(p) contains at least two

26-components. Hence, N(p) — ¥(p) contains exactly two 26-components.

Proposition 2.7  Let z be an s-point of N(p). If ¥F(p) sntersects surface(z, p)
then surface(z,p) — F(p) 1s not £6-connected.

Proof. Let usconsider that F(p) intersects surface(z, p) and sur face(z,p)~F(p)
is 26-connected. Let y be a point in surface(z,p) N F{p) and let vy, vi, vs, and
vg be four v-points belonging to surface(z,p). It may be noted from N(p) that
for any point ¢ € surface(z,p), N(p,q) C U, N(p,v;). Facts that vy, vy, v5, v4 €
N(p) — F(p) (see Proposition 2.7) and they are 26-connected in sur face(z,p) ~ ¥ (p)
imply that UL, N(p, %) — F(p) is 26-connected and is a subset of the same 26-
component of N(p)—F(p). Therefore, N (p,y)—F(p) is a subset of one 26-component
of N(p) — F(p). Hence, y is adjacent to exactly one 26-component of N (p) — 7(p)
and N (p) — ¥(p) is 26-connected according to Proposition 2.3. Contradiction!! C

Proposition 2.8 Let z be an s-point of N(p). Then e:'t_he.} surface(z,p) N 7 (p)

" 18 empty or it contains x and _cmct!y- two e-points.
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Proof. Let us consider that surface(z,p) N 7 (p) # ¢. Then surface(z,p)~ ¥ (p)
is not 26-connected according to Proposition 2.7. Each point of surface(z,p) is
26-adjacent to z and hence z € F(p). According to Proposition 2.5, the v-points
of surface(z,p) do not belong to 7{p). Thus, surface(z, p) N F{p) must contain at
least two e-points (as surface(z, p) — F(p) is not 26-connected). We shall show that
surface(z, p) N 7 (p) contains z and exactly two e-points. If this is not true, let us
assume that three e-points e(a, z, p), (b, z, p) and e(d, z, p) belong to surface(z, p)N
F(p) where a,d are opposite s-points and a, b, z are mutually non-opposite s-points
of N(p). Let e be the s-point opposite to b. Under this situation, one of the following

cases must occur:

(a) v(a,e,z,p) and v(a,b, z,p) belong to the same 26-component of N(p) — F(p),
(b) v{a,b,z,p) and v(b,d, z,p) belong to the same 26-component of N (p) — F(p),

(¢) v(b,d,z,p) and v(d, e, z,p) belong to the same 26-component of N(p) — F(p),

or

(d) v(b,d,z,p) and v(a,e,z,p) belong to one 26-component of N(p) — F(p) while
v(a, b, z,p) and v(d, ¢, z, p) belong to the other 26-component of X (p) — F(p).

For each of the Cases (2)-(c), the e-point being 6-adjacent to both the v-points
(mentioned in cnrrespﬂnding case) is 26-adjacent to exactly one 26-component of
N(p) — 7 (p). Hence, the contradiction following Propositions 2.3 and 2.6. Now, we
consider the situation when none of the Ca,se_é (a), (b), (¢) occurs whereas Case {d)
~ occurs. It follows that e(e,z,p) € F(p) as v(e,e,z,p) and v(d,e,z,p) belong to
distinct 26~-components of N(p) — F(p). As ul(a,e, z, p) and v(a, b, z,p) are not 26-
connected in N(p) — 7(p), N(p,v(a,e,z,p)) N N(p,v(a,b, z,p)) must be a subset of
F(p). Hence, the points a. € F(p). Again, v(a,b, z,p) and v(b,d,z,p) are not 26-
‘connected in N (p) — ¥ (p) implies that b € F(p). Similarly, d € #(p) as v(b,d, z, p)
and v(d, e, z, p) are not 26-connected in N(p) — ¥F(p) and e € #(p) as v(d, e, z,p) and

~ v(a,e, z,p) are not 26-connected in N(p) — F(p). Again, v(a,e¢,z,p) and v(b,d,z, p)
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are 26-connected in N{p)— 7(p). Hence, neither N{p,v{a,e,z,p)) N{N(p) - F(p}) =
¢ nor N(p,v(b,d,z,p))N(N(p)— F(p)) = ¢. Thus, the points e(a, ¢, p) and e(b, d, p)
belong to N (p) — F(p). Similarly, the points e(a, b, p) and e(d, €,p) belong to N (p) —
F(p) as v(a,b,z,p) and v(d,e,z,p) are 26-connected in N(p) ~ F(p). Moreover,
in N(p) — F(p), the following pairs of points are not 26-connected to each other:
(1) e(a, e,p) and e{a,b,p), {2) e(a,b,p) and e(b,d,p), (3) e(b,d,p) and e(d, e, p), and
(4) e(d,e,p) and e(a,e,p). Thus, the points y, e(a,y,p), e(b,y,p), e(d,y,p) and
e(e,y, p) belong to F(p) where y is the s-point of N¥(p) opposite to z. We can find
a set X = {p, z, e(a,z,p), a, e(a,y,p), v, e(d,y,p), d, e(d, z,p)} which is a proper
subset of ¥(p) and N(p) — X is not 26-connected. Hence, the contradiction that
#(p) is a minimal 26-separator of N (p). |

Proposition 2.9  F(p) contains a 6-closed path 7 of s-points and e-points.

proof. As F(p)—{p} is non-empty, ¥ (p) meets a surface of N(p). Let F(p) meets
sur face(zy, p) such that {z;,e12} C F(p) N surface(z,p), where e, 3 is an e-point
of surface(z;,p). Thus, we can find a 6-path 7, = z,,€;13 of s-points and e-points
in ¥(p). The e-point e;, belongs to another surface of ¥ (p), say surface(z;,p).
According to Proposition 2.8, surface(zs,p) N F(p) contains z,, ey, and another
e-point, say, ez 3. Thus, we can extend m; to another 6-path m; = my, x2, €23 of four
s-points and e-points in F(p). Let us assume that there exists a 6-path m_; =
T1,€1 9, s Ti—1,6-1; Of 2 % ({ — 1) number of s-points and e-points in F(p). We
would like to show that either e;._; is 6-adjacent to a point of m;_; other than z;_,

or m;—; is extensible to another 6-path &; = mi_1, zi, € 441 in F(p).

Let us assume that e;_y; is not 6-adjacent to any point of m;_; other than =z;_;.
Each e-point of N(p) is 6-adjacent to exactly two s-points. Therefore, €;_;; is 6-
adjacent to an s-point z; other than z;..;. By assumption, z; does not belong to
spt(m;-1). According to Proposition 2.8, F(p) N sur face(x;, p) contains the points
€14, Z; and another e-point, say ¢;+1. Note that in N(p}, one e-point has exactly
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two 6-adjacent s-points and no two e-points are 6-adjacent. Hence €41 does not
belong to spt(mi-1) as z; & spt(mi-1). Thus, m; = m;—y, zi, €441 Is a 6-path in F(p).
Hence, a 6-path ;.1 is always extensible in ¥(p) unless ¢;_, ; is 6-adjacent to a point
of m;—1 other than z;-1. Moreover, the number of s-points and e-points is finite in
N{(p). Thus, there exists a 6-path, say 7; where ey ;41 is 6-adjacent to a point of m,
other than z;. Hence, we may conclude that we would get a 6-closed path « in the

limiting case of including all s-points and e-points or earlier.

Proposition 2.10 Let m be a 6-closed path of s-points and e-po:’nt.s of N{p).
Then ¥ (p) = {p} U spt(n).

Proof. According to Proposition 2.4 and Proposition 2.9, {p} U spt(n) is a
subset of F(p). We shall prove this proposition by showing that F(p) is a subset
of {p} U spt(r). We do this by finding the exhaustive set of 6-closed paths of
N(p). In N(p), there are only sixty three possible 6-closed paths of s-points and
e-points. Moreover, they can be grouped into six geometric classes (two 6-closed
paths belong to the same geometric class if and only if one can be changed to the
other by rotation in integral multiples of 90° about different axes with p as origin).
Six 6-closed paths of s-points and e-points one from each geometric class are shown
in Figure 2.7. Numbers of possible 6-closed of s-points and e-points corresponding
to Figure 2.7(a)—(f) are 8, 12, 3, 24, 4, and 12 respectively. It may be noted that
for each cases N(p) — ({p} U spt(~})) is not 26-connected. Thus, F(p} is a subset of

{p} U .spt(?r). Hence, ¥ (p) = {p} U spt(r).

2.3.2 Number of Tunnels in N(p)

In this section we establish a theorem that defines the number of tunnels in X (p).
To prove the theorem we start with a definition (Definitions 2.5 and 2.6 given
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Figure 2.7: All possible geometric classes of 6-closed paths of s-points and e-points.
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below) of the number of tunnels in a restricted class of digital images. An intuitive

discussion is given in favor of the definitions as follows:

Following Kong et. al. [563], a 3D digital image » = (Z°,26,6,B) contains no
hollow torus implies that the number of tunnels in the image equals to the number
of solid handles. Let us consider an image P = (Z3%,26,6, 8) where B C rts(z,y) for
some z,y € Z3 (in other words all black points lie on the border of a rectangular
parallelepiped). Since the set of black points of P is a subset of the border of the
rectangular parallelepiped ris(z,y), it cannot contain a hollow torus. Otherwise,
at least one point of rti(z,y) must be black. Thus, the number of tunnels in 7
is équal to the number of solid handles in B. Again each solid handle of B leads
to an independent non-trivial 26-closed curve of black points in a shrunk version
of the image. Moreover, P can contain at most one cavity that occurs only when
all of the points of r¢s*(z,y) are black. In that case all black points of P are 26-
connected and also P cannot contain any solid handle i.e. P cannot contain any
tunnel. In a shrunk version of P, each simply connected black component (i.e. a
black component containing neither a cavity nor a tunnel) leads to a black point
having no black 26-neighbor. Based on this discussion we put forward a formal

definition of the number of tunnels to prove Theorem 2.1.

Definition 2.5  Let P = (23,26,6, B) be a 8D digital fimage where B C rts(z,y)
and rts*(z,y) C B for some z,y € Z3. Under this assumption, the number of

tunnels in P 1s zero.

Definition 2.8 Let P = (Z3,26,6, B) be a 8D digital image where B C rts(z,y)
and rts*(z,y) — B # ¢ for some z,y € Z* and let P! = (2°,26,6,B') be a shrunk
version of P. Under this assumption, the number of tunnels in P is eq’ua[ to the

number of independent non-trivial 26-closed curves in B'.

Proposition 2.11  The number of tunnels in N(p) is zero when all the s-points

are black (i.e. N(p) contains a cavity), otherwise the number of tunnels in N (p) ts
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equal to the number of independent non-trivial 26-closed curves in X. Here, X 15

the set of black points tn a shrunk version of N (p).

Proof. In N(p), the set of black points N*(p) N B C rts(( + 1,7 + L,k +
1),(s — 1,7 — 1,k — 1)) where p = (i,j, k). Ageln, the set of spoints of N(p) is
the set rts*((t + 1,7 + L,k +1),(z — ~ 1, k - 1)) Hence, this proposition is a

straightforward consequence of Deﬁmtmne 2.5 and 2.6.

Henceforth, the following notations are used in this chapter subsequently:

B(p) : N*(p) N B i.e. the set of black points of N (p).
W(p) : N*(p) — B(p) i.e. the set of white points in N*(p).
) : the set of white s-points of N(p) i.e. the set white 6-neighbors of p.
W.(p) : the set of white e-points of N (p).
W..(p) : Wa(p) UW,(p) i.e. the set of white 18-neighbors of p.

B'(p) : the set of black points of N'(p).

(p) : the set of white s-points of N'(p).
W, (p) : the set of white e-peinte of N'(p).
W, (p) : W,(p) UW,(p).

Proposition 2.12 In X (p), if two opposite s-posnts are white and other four

s-points are black then the number of tunnels in N (p) 1s ezactly one.

Proof. Let {a,d), (b,e), and (¢,f) denote three distinct unordered pairs of
opposite s-points of N(p) and let a,d be white while b, e,c, f be black in N(p). In

that case all e-points and v-points are simple points of N(p) (see Definition 2. 1).
Thus, a shrunk version of X (p ) contains the set of black po1nte {b,e, e f}. Again,
b,c.e, f is one and only one independent nen-trma,l 26-closed curve of black points

in the shrunk version of N(p). Therefore, e,ceerdmg to Proposition 2.11, N(p)
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contains exactly one tunnel.

Proposition 2.13  Let P' = (2°,26,6, B") be a shrunk version of some 8D digital
image such that: (1} B' C rts(z,y) for some z,y € Z®, (2) B' contains no cauity,
and (8) mazimum possible independent non-trivial 26-closed curves in B' is n. Let
p be a point in B' such that: (1) N*(p) N B' contains ezactly two 26-components,
(2) N*(p) N B! contains no tunnels, and ($) the number of 26-components in B' is
same as that of B' — {p}. Under this assumption, mazitmum possible independent
non-trivial 26-closed curves in B' — {p} is ezactly n— 1. In other word,.removal of

p from B' removes exactly one independent non-trivial 26-closed curve from B'.

Proof.  The difference in the Euler characteristics of 8' and 8' — {p} is equal
to that of N{p) N B’ and N *(p) N B'. The difference in the Euler characteristics of
8' and B' — {p} equals to the difference in the number of 26-components in B’ and
B' — {p} minus the difference in the number of tunnels plus the difference in the
number of cavities. By assumption, the number of 26-components of B' and that
of B’ — {p} are same. Also, the number of cavities in 8’ is zero. The number of
cavities in B’ — {p} may be at most one and it occurs only when the removal of p
creates a cavity in its 3 X 3 X 3 neighborhood. In that case all the 6-neighbors of
p must beiong to B! (see Equation 2.1) and N*(p) N B' must be 26-connected. But
it contradicts the assumption that N*(p) N B’ contains two 26-components. Hence,
B' — {p} does not contain any cavity. Since, B' contains maximum n independent
non-trivial 26-closed curves, the number of tunnels in B’ is n (see Definition 2.6)
Therefore, the difference in the Euler characteristics of 8’ and B' — {p} is n minus
the number of tunnels in B!~ {p} i.e. n minus the maximum number of independent
non-trivial 26-closed curves in 8'—{p}. The Euler characteristics of N (p)N B is one
(see Proposition 2.1). By assumption, the numbers of 26-components and tunnels
in N*(p) N B' are two and zero respectively. Following the same logic as in the case
of cavities in B’ — {p}, the number of cavities in N*(p) N B’ is zero. Thus, the Euler
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characteristic of N*(p) N B' is two. Therefore, n minus the maximum number of
independent non-trivial 26-closed curves in B' — {p} is equal to minus one. Hence,

the maximum number of independent non-trivial 26-closed curves in B' — {p} is n

minus one.

Proposition 2.14  Let z,y be two s-points in W,(p) such that they are not 6-

connected in Wy, (p). Under this assumption, z,y are not 6-connected tn W, (p).

Proof. Before we begin the proof let us develop some necessary background.
Let (a,d), (b,¢€), '(c, f) denote three distinct unordered pairs of opposite s-points of
N(p). As mentioned earlier shrinking is a process of sequential deletion of black
simple points. Let B;(p) and W}, (p) denote the set of black points and the set
of white s-points and e-points respectively, after the completion of ith step of the
shrinking process on N (p) (at each step one black simple point is deléted}. Let p'
be a 26-neighbor of p. We define a 3D digital image as follows:

Ni(p,p) = (2°,26,6, Bi-a(p) N N*(p")).

Thus, N: (p, p') is a digital image with the set of black point as B;—1(p) N N*(p'). The
point p' is removable at 1th step of shrinking if and only if p' is a simple point in

B;-1(p). By definition of shrinking we have

o B:(p) C Bi-1(p), and Bi-1(p) — Bi(p) = {p'}, where p' is deleted at ith step.

o If p' is a v-point then Wi 1(p) = W} (p), otherwise, W} !(p) C W} (p), and
We(p) — W, (p) = {p'}. '

Coming back to the proof, we prove .this propositi_on by the method of contradiction.
Let us assume that the proposition is not true ie. z,y are 6-connected in W, (p).
Since, they are not 6-connected in W,.(p) but are 6-connected in W, (p), there must
be some ¢ such that z,y are not 6-connected in W}, '(p) but are 6-connected in
W: (p). If this is true then B;_1(p) — Bi(p) must be an e-point or an s-point.
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At first, let us consider the case that B;_1{p)— B:(p) is an e-point, say e(a, b, p). Since,
z,y are not 6-connected in Wi l(p) but are 6-connected in Wi (p) i.e. Wi i(p) U
{e(a,b,p)}, each 6-path between z,y in W',(p) contains e(a,d,p). Again a 6-path
of W! (p) between z,y through e(a,b,p) must contain the points a,b (no e-point
of N(p) is 6-adjacent to e(a,b,p) and a,b are only s-points which are 8-adjacent
to e(a,b,p)) i.e. a,b & B;_1(p). Since the 6-path between z,y in W}, (p) contains
~a,e(a,b,p), b, without loss of generality we can assume that = is 6-connected to a
and b is 6-connected to y in Wi 1(p). According to our assumption, z is not 6-
connected to y in Wi 2(p). This implies that a is not 6-connected to b in W}, *{p).
Thus, both the sets {e(a,c,p), ¢, e(b,c,p)} and {e(a, f,p), f, e(b, f,p)} intersect
with 8;_1(p). Otherwise, qa, ¢(a,¢,p), ¢, e(b,¢,p), bor a, ela, f,p), f, e(b,f,p), b will
lead to a 6-path in Wi !(p). The set of black points of X;(p, ¢(a, b,p)l) is a subset
of {v{a,b,c,p), ela,c,p), ¢, (b, ¢c,p), v(a,b, f,p), e(a, f,p), f, e(b, f,)}. This may
be derived as follows:

Bi—-l(p) C N*(P),
N*(p) n N*(e(a,b,p)) = {a,b,v(a,b,c,p),ela,c,p),c,e(b,c,p),
v{a,b, f,p),e(a, f,p), fre(d, f,p) },

and

a’Ib e Bi—-l(p)
imply that
Bi-1{p) N N*{(e(a,b,p)) C N*(p) N N*(e(a,b, p)) ~ {a,b},
Bi-1(p) N N*(e(a,b,p)) C {v(a,b,c,p),e(a,c, p),c e(b,c,p),
v(a,b, f,p),e(a, f,p), f.e(b, f,p)}.

From the set of black points of {;(p, e(a, 8, p)) one can find two non-empty subsets

(Bi~1(p) N N*(e(a,b,p))) N {e(a,c,p), ¢, e(b,¢,p)} and (Bi—1(p) N N*(e(a, b,p))) N
{e(a, f,p), f, e(b, f,p)} such that no two points taking one from each subset are

26-connected in {v(a, b, ¢,p), e(a, ¢, p), c, e(b,c,'p), v('a,, b, f,p), e(a, f,p), f, e(b, f,p)}
- and hence they are not 26-connected in a smaller {or equal) set B;~1 (p)NN*(e(a, b, p)).
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Thus, the black points of N;(p,e(a,b,p)) are not 26-connected and hence ¢(a, b, p)

is not a simple point in B;_;(p) (see Definition 2.1). Contradiction!!

Let us consider the situation that B;_;(p) — Bi(p) is an s-point say a (a # z;a # y).
Thus, every 6-path of W! (p) between z,y contains a. Again, a 6-path of W, (p)

from z to y through a must contain one of the following two types of sequences.

Sequencel: b, e(a,b,p), a, ¢(a, ¢,p), ¢ (b, c are non-opposite).

Sequence2: b, é(a., b,p), a, e(a, e,p), e (b, e are opposite).

Following similar approach as in the case of e-point it can be shown that B;-1(p) N
N*(a) is not 26-connected for both the sequences, In other words a is never a simple
point in B;_1{p) (according to Definition 2.1). This leads to the same contradiction

as earlier, Hence, z,y are not 6-connected in W, (p). )

The following corollary is a straightforward consequence of the above propasitit}n.'

Corollary 2.1  The number of 6-components of W,(p) in W,.(p) 1s less than equal
to that of W,(p) in W, (p).

Proposition 2.15  The number of 6-components of W, (p) in W,,(p) is less than
equal to that of W,(p) in W,.(p).

Proof. .Following the notations detailed in the proof of Proposition 2.14 if this
proposition is not true then at ith step of shrinking of N (p) an s-point is deleted
which is not 6-connected to any point of Wi(p) (Wi(p) = W.(p) N Bi(p)) in W,,(p).
Let a be the point which is deleted at sth step. By assumption, a is not 6-connected
to a point of W¥(p) in W', (p). Thus, at least one point of the sets {b,e(a,b,p)},
{e,e(a,e,p)}, {c,e(a,c,p)}, {f,e(a, f,p)} must belong to B;_y(p). For all these pos-
sibilities x (Ni—1(p, a)) is zero. According to Proposition 2.1, x(Z°, 26,6, B;-1N N (a))
is always one as a € B;_;(p). Hence a is not a simple point in B;1(p) according to

Definition 2.1. Contradiction!! - | 3
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The following corollary is a straightforward consequence of Propositions 2.15 and

Corollary 2.1,

Corullary 2.2 The number of 6-components of W,(p) in W, (p) is ezactly the
same as that of W,(p) in W,,(p).

Proposition 2.16  No non-irivial 26-closed curve of B'(p) contains a v-point.

Proof. If this proposition is not true, let us consider a non-trivial 26-closed curve
o0, 3,0y, 2+ in B'(p) (a non-trivial 26-closed curve contains at least four points)
where v is a v-point. From N(p) it may be noted that for any v-point g, every
two points of N(p,q) are 26-adjacent. Thus, z,y € N(p,v) and are 26-adjacent.
Hence the contradiction that .-, z, v,'y, z,+ -+ is a non-trivial 26-closed curve (y is

26-adjacent to three points of the 26-closed curve).

Proposition 2.17 N(p) contains no tunnel when W,(p) fs 6-connected in W,.(p).

Proof. According to Proposition 2.11, N (p) contains no tunnels when W,(p) is
empty. To prove this proposition we shall show that B'(p) contains no non-trivial

26-closed curve when W, (p) is non-empty and 6-connected in W,.(p). According to

Proposition 2.16, non-trivial 26-closed curves of B'(p) do not contain v-points.

First, we consider the cases when non-trivial 26-closed curves of B'(p) contain only
s-points. Then B'(p) contains at least four s-points. Let (a,d), (b, ), (¢, f) be three
distinct unordered pairs of opposite s-points of N(p). When B'(p) contains exactly
four s-points, the s-points of B'(p) are either of the form {a, d, b, ¢} or {a,d, b,¢}. In
the first case we cannot find a non-trivial 26-closed curve in B/(p) as b is 26-adjacent
to all the three points q, d, c. In the second case where B'(p) contains {a, d,b, e}, the
s-points ¢, f, € W, (p) are not 6-connected in W,,(p) as a,d, b,e ¢ W,,(p). According
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to Corollary 2.2, W,(p) is not 6-connected in W.,(p) implies that W,(p) is not 6-
connected in W, (p). Let us consider the case where B'(p) contains five s-points,
say {a,b,c,d,e}. The point a is a simple point (see Definition 2.1). Hence the
contradiction that B'(p) is a shrunk version (consequently, 8'(p) contains no simple
point). When B'(p) contains six s-points, W,(p) is empty. Hence the proposition is

proved when the non-trivial 26-closed curves of 8'(p) contain no e-point.

We shall show that the proposition is true when a non-trivial 26-closed curve of
B'(p) contains an e-point. Let us assume that the proposition is not true i.e. W,(p}
is 6-connected in W,.(p) and B8'(p) contains a non-trivial 26-closed curve. Let ¢ be
a non-trivial 26-closed curve in B'(p). Let e(a,b,p) be an e-point in ¢.- According
to Corollary 2.2, W,(p) is 6-connected in W,.(p) implies that W,(p) is 6~connected
in W,,(p). As e(a,b,p) belong to B'(p) both a and b belong to W,,(p). Otherwise,
e(a, b, p) is a simple point in B'(p) (see Definition 2.1). ‘The point e(a,b, p) lies in
the non-trivial 26-closed curve ¢. So, e(d,b, p) must be 26-adjacent to two points
of ¢ which are not 26-adjacent to each other. Therefore, both the sets {e{a,c,p),
¢, e{b,c,p)} and {e(a, f,p), f, (b, f,p)} intersect ¢ (note that ¢ does not contain
v-points). By assumption, a,b are 26-connected in W,, (p). Let 7 be a 6-path from
ato b in W:a (p). Thus, e(a,b,p),n is a 6-closed path of s-points and é-points and ¥
= {p, e(a, b,p)} Uspt(r) is a minimal 26-separator of N(p). The cases, F C N{p) —
(8'(p) —{e(a,b,p)}) and spt(¢) C B'(p) imply that ¥ C N(p) — (spt(¢) — {e(a, b, p}).
Also, one 26-component of N(p) — F contains {e(a, ¢, p), ¢, e(b, ¢, p)} N spi(¢) while
the other 26-component of N(p) ~ 7 contains {e(a,f,p), f, e(b, f,p)} Nspt(¢). Thus,
spt(¢) ——--{e(a, b,p)} is not 26-connected. Hence, the contradiction that ¢ is 26-closed

curve (removal of one point from a 26-closed curve cannot disconnect the 26-closed

curve into two or more 26-components).

 Proposition 2.18  Let a,b € W,(p) be two non-opposite s-points of N(p) such
that a,b are not 6-connected in W,.(p). Under this assumption, the number of 26-

components of B'(p) 1s same as that of B'(p) — {e(a, b, p)}.
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Proof. According to Proposition 2.14, a,b € W,(p) are not 6-connected in W,,(p)
implies that a, b are not 6-connected in W,,(p). Therefore, ¢(a, b,p) € 8'(p) and both
the set {e(a,c,p), ¢, e(a, f,p)} and {e(b,e,p), ¢, e(b, f,p)} intersect B’(p). Thus,
e(a, b, p) is not an isolated point of B'(p). Therefore, the number of 26-components
of B'(p) — {e(a, b,p)} is not less than that of 8'(p). Let us assume that the number
of 26-components of B'(p) — {e(a, b, p)} is more than that of B'(p). In that case there
must be two point z,y € B'(p) —{e(a,b,p)} such that they are 26-connected in 8'(p)
but they are not so in B'(p) — {e(a,b,p)}. Following Proposition 2.2, there must be
a minimal 26-separator ¥ of N(p) such that ¥ C N(p) — (8'(p) — {e(a,b,p)}) and
z,y belong to two distinct 26-components of N(p) — ¥. As z,y are 26-connected in
B'(p), ¥ must contain e(a, b,p). Again, a minimal 26-separator cnntainiilg e(a, b, p)
contains both a and b. Thus, ¥ = {p, e(a,d,p)} U spt(w) where 7 is a 6-path
of s-points and e-points from @ to b not containing e(a,b,p). Further, ¥ = {p,
e(a,b,p)} U spt(n) C N(p) — (B'(p) — {e(a,b,p)}), 7 contains only s-points and e-
points and does not contain e(a,b,p) together imply that spt{r) € W, (p). Hence,

the contradiction that a, b are not 6-connected in W,,(p).

Proposition 2.19  Let a,b € W,(p) be two non-opposite s-poinits of N(p) and
they are not 6-connected in W, (p). Under this assumption, N*(e(a,b,p)) N 8'(p)

contains no tunnel.

Proof. It may be noted that fy(a,b, p) is a 6-neighbor of e(a,b,p) and it does
not belong to N*(e(a,b,p)) N B'(p). Let X be the set of all s-points and e-points of
N(e(a, b, p)) belonging to N*(e(a, b,p)) — B'(p). It may be noted that all s-points of
N(e(a, b, p)) belonging to N*(p) — B'(p) are 6-connected to fa(a,b, p) in X. Also, all
points of N (e(a, b, p)) belonging to N*(e(a,b, p)) — N*(p) (note that B'(p) C N*(p))
are 6-connected to f3(a, b, p) in X. Thus, the set of s-points of N (e(a, b, p)) belonging
to N*(e(a, b, p)) — B'(p) is 6-connected in X. Hence, N*(e(a,b,p)) N B'(p) contains

no tunnel a.'ccording to Proposition 2.17. | | C

Prdposition 2.20 Let 7,y € W,(p) be two non-opposite s-points of N(p) and
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they are not 6-connected in W,,(p). Under this assumption, removal of e(z,y,p)

from B'(p) removes ezactly one tunnel from J?(P)

Proof. Following Proposition 2.11 we establish this proposition by showing that
removal of e(z,y,p) from B'(p) removes exactly one independent non-trivial 26-
closed curve from B'(p). Let (u,v), (w,z), (v, 2) be three distinct unordered pairs
of opposite s-points of N (p) (by assumption, z, y are non-opposite s-points of N(p)).
According to Proposition 2.14 z, y are not 6-connected in W,,(p). Considering this,

we draw the following three inferences:

1. e(z,y,p) € B'(p) otherwise z, e(z,y, p), v leads to a 6-path in W,,(p),

2. {e(u,z,p),u,e(u,y,p)} N B'(p) # ¢ otherwise z, e(u, z,p), u, e(u,y,p), ¥ leads
to a 6-path in W,,(p), |

3. {ﬂ(‘U, T, p),‘U, E(v!yi p)} N Bf(p) # ¢ otherwise r, e(v, m:p): v, B(Uiyip)i y leads
to a 6-path in W,,(p). '

It may be shown that 8'(p) N N*(e{z,y,p)) C {v(v,z,y,p), elu,z,p), u, e(u,y,p),
v(v,z,y,p), e(v,z,p), v, e(v,y,p)}. Every two points of {v(u,z,y,p), e(u,z,p),
u, e(u,y,p)} are 26-adjacent to each other and the same is true for {v(v,z,y,p),
e(v,z,p), v, e(v,y,p)}. Again, B'(p) N {v(u,z,y,p), e(u,z,p), v, e(u,y,p)} and
B'(p) N {v(v,z,y,p), e(v,z,p), v, e(v,y,p)} are two non-empty subsets of B'(p) N
N*(e(z,y,p)) such that no two points taking one from each subset are 26-connected
in {v(u,z,v,p), e(u,z,p), u, e(v,y,p), v(v,z,v,p), (v, z,p), v, e{v,y, p)} and hence
they are not 26-connected in a smaller set B'(p) N N*{e(z,y,p)). So, B'(p} N
N*(e(z,y,p)) contains exactly two 26-components, namely, 8'(p) N {v(u,z,y,p),
e(u, z,p), u, e(u,y,p)} and B'(p) N {v(v,z,y,p), e(v,z,p), v, e(v,y,p)}. B'(p) con-
tains no cavity because z is a 6-neighbor of p and z ¢ B'(p). As follows from

- Propositions 2.18 and 2.19, the number of 26-components of B'(p) is same as that
of B'(p) — {e(a,b,p)} and also, N*(e(a,b,p)) N B'(p) contains no tunnel. Therefore,
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according to Proposition 2.13, removal of e(z,y,p) from B'(p) removes exactly one

independent non-trivial 26-closed curve from B'(p).

The number of tunnels in §(p) is defined in the following theorem which is one of

the major contribution of this chapter.

Theorem 2.1  The number of tunnels in N(p) is one less than the number of
6-components of W,{(p) tn W,,(p) when W,(p) is non-empty. Otherwise, the number

of tunnels in N(p) is zero.

proof.  The ‘otherwise’ part of the theorem when W,(p) is empty (i.e. all s-
points are black) immediately follows from Proposition 2.11. To prove the theorem
for W,(p) # ¢, we use the method of induction. Let n denote the number of 6-
components of W,(p) in W, (p). It follows from Proposition 2.17 that for n = 1,

oy,

N (p) contains no tunnel. We shall show that for n = 2, N(p) contains exactly one

tunnel and for n > 2, removal of one tunnel from N (p) leaves exactly n —1 number

of 6-components of W,(p) in W,.(p).

For n = 2, one of the following cases may occur:

Case 1: W,(p) contains exactly two opposite s-points which are

not 6-connected in Wu(p),

Case 2: W,(p) contains at least two non-opposite s-points which

are not 6-connected in W,.(p).

By Proposition 2,12, N (p) contains exactly one tunnel for Case 1. For Case 2, let
us consider two non-opposite s-points a and b which are not é-connected in W,.(p).
Since a, b are not 6-connected in W, (p) the e-point e(a, b, p) is black i.e. e(a,b,p) €
B(p). Following Proposition 2.14, e(a,b,p) € 8'(p). According to Proposition 2.20,
the removal of e{a, b, p) from B'(p) removes exactly one tunnel from N(p). Again,
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after the removal of e(a,b,p) from B'(p), W, (p) becomes 6-connected in W, (p) U
{e(a,b,p)}. Thus, N(p) contains exactly one tunnel.

To prove the induction part, let n (> 2) 6-components of W,(p) in W,,(p) be
Wy, Wy, -+, Wp. Let us consider that the theorem is true for n — 1. Following

Proposition 2.20, we need to establish the following two statements to prove the

theorem:

1. There exists an e-point e(a,b,p) € B'(p) such that the s-points a € W; and
b € W; for some ¢ 5 j, and

2. the number of 6-components of W,(p) in W,,(p) U {e(a, b,p)} is n — 1.

Since n > 2, let us consider three s-points a € Wy, b € Wa, ¢ € W3, Then at least
two s-points among a, b, ¢ are mutually non-opposite. Let us consider that a,b are
mutually non-opposite. Moreover, a,b belonging to different 6-components of W: (p})
in W,,(p), they are not 6-connected in W,,(p). Thus, the e-point e(a, b, p) & W, (p)
i.e. e(a,b,p) € B(p). Also, none of the points of W, (p) except a,b is 6-adjacent
to e(a,b,p). Thus, Wy UWo,Ws, -, W, are the 6-components of W,(p) in W, (p) U
{e(a,b,p)}. Hence, the number of 6-components of W,(p) in W,,(p} U {e(a,b,p)} is

exactly n — 1.

]

Corollary 2.3 The number of tunnels in N (p) is independent of the color of
v-points.

Corollary 2.3 is a straightforward consequence of Theorem 2.1.
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2.4 A New Characterization of Simple Point

In this section we establish a new characterization of (26,6) simple point. The

Definition 2.1 is considered as the definition of (26,6) simple point.

Proposition 2,21  Let P = (2°,26,6,B) be a 3D digital ymage. A point p € _2'3

ts a simple point tn P if and only tf the following three conditions are satisfied:

1. N (p) contatns ezactly one black point,
2. N(p) contains no cavity,

8. N(p) contasins no tunnel.

Proof. To prove that Definition 2.1 and this proposition are equivalent we have
to show that Conditions 1-3 of this proposition both side imply Conditions 1-3
of Definition 2.1 (‘A both side implies B’ means ‘A implies B and also B im-
plies A’). Condition 1 of this proposition and Condition 1 of Definition 2.1 are
identical. Condition 2 of Definition 2.1 implies that p has at least one white 6-
neighbor. .Cansequently, N(p) contains no cavity (see Equation 2.1). Thus, Con-
dition 2 of Definition 2.1 implies Condition 2 of this proposition. According to
Proposition 2.1, x(N(p)} is one. When Conditions 1 and 2 of Definition 2.1 are
satisfied we have x(N(p)) = 1 ~ the number of tunnels in X (p). Thus, Condi-
tions 1-3 of Definition 2.1 imply Condition 3 of this proposition and consequently,

imply Conditions 1~3 of this proposition,

4

We have to show that the inverse is also true. Following Equation 2.1 and Theo-
rem 2.1, Conditions 2 and 3 of this proposition imply that p has at least one white
6-neighbor and the set of white 6-neighbor is 6-connected in the set of white 18-
neighbors of p. So, the set of white 6-neighbors of p is obviously 6-connected in
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the set of white 26-neighbors of p. In other words, p is 6-adjacent to exactly one
white component of N*(p) — B(p). Thus, Conditions 2 and 3 of this proposition
imply Condition 2 of Definition 2.1. Further, Conditions 1-3 of this proposition
imply that x(N(p)) is equal to x(N (p)) which is one. Hence, Conditions 1-3 of this
proposition imply Conditions 1~-3 of Definition 2.1.

The major results in characterizing (26,6) simple points [111,113,114] are compiled

as follows:

Characterization 2.3  Let P = (Z°,26,6,B) be a 3D digital fimage. A point
p & Z° is simple point in P if and only if the following four condsitons are satisfled:

1. p has at least one white 6-neighbor,
2. p has at least one black 26-neighbor,
3. N*(p) N B s 26-connected, and

4. the set of white 6-neighbors of p 1s 6-connected in the set of white 18-neighbors
of p.

The above characterization of (26,6) simple is a straightforward consequence of
Proposition 2.21, Theorem 2.1 and Equation 2.1. It may be noted that the con-
cept of simple point defined by Characterization 2.3 is valid for both deletion and

addition.

2.5 A Measure of Topological Changes

Recalling the issues of establishing topological changes due to the binary trans-

formation as detailed in introduction, in this section, we describe such a measure
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of topological changes in the 3 X 3 X 3 neighborhood. For a point p under binary
transformation, this measure generates a change vector which has three elements.
The first element defines the change in the number of black components in N (p);
the second element defines the change in the number of tunnels in N (p) while the
third element defines the change in the number of cavities in N{p). The numbers
of black components, tunnels and cavities in N(p) are defined in Proposition 2.1.
The number of cavities in N(p) is defined by Equation 2.1 while the number of tun-
nels in N (p) is defined by Theorem 2.1. Following corollaries are straightforward

consequences of previous discussions.

Corollary 2.4 Let P = (2°,26,6, B) be a 3D digital s§mage. Topological changes
tn the 3 X 3 X 3 nesghborhood of a point p € B due to the removal of p from B are

stated as follows:

1. change in the number of black components = the number of 26-components of

N*(p)n B -1,

2, chaﬁge in the number of tunnels = the number of 6-components of W,(p) tn

W.,.(p) — 1, when W,(p) is non-empty and ‘0’ otherwise, and

3. change in the number of cavities = ‘1’ when all the 6-nesghbors of p are black

and ‘0’ otherwise.

Corollary 2.5 Let P = (2°,26,6,B) be a 8D digital image. Topological changes
sn the 3 X 8 X 3 nesghborhood of a potnt p € Z° — B due to the addition of p to B

are stated as follows:

1. change in the number of black components = 1— the number of 26-components

of N*(p) N B,
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2. change in the number of tunnels = 1— the number of 6-components of W,(p)

tn W,.(p), when W,(p) is non-empty and ‘0’ otherwise, and

9. change in the number of cavities = ‘—1’ when all the 6-neighbors of p are black

and ‘0° otherwise,

2.6 Conclusion

In-this chapter, we have established a theorem that defines the number of tunnels
in 3 X3 x 3 neighborhood. Using this theorem we have developed an efficient
characterization of {26,6) simple points. This characterization is valid both in case
of addition as well as deletion of simple points. The theorem defining the number of
tunnels in 3 X 3 X 3 neighborhood leads to an effective measure of topological changes
in the 3 X 3 X 3 neighborhood of a point under binary transformation. Overall, this

chapter gives us a quantitative sense about the topology preservation under binary

transformation.
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Chapter 3

3D Topological Operations: A
Computational Approach

3.1 Introduction

A straightforward and efficient characterization of (26,6) simple point as well as
an effective measure of local topological changes under binary transformation have
been developed in Chapter 2. In this chapter we study computational aspects of
three topological operations based onl the results developed in Chapter 2. This
chapter may be considered in three modules. The first module is a discussion on
a previous work due to Lobregt et. al, [69] on detection of 3D simple point that
is presented in Section 3.2. The second module is the new theoretical approach
proposed by us and subsequently used in the topological operations established in
Section 3.3. In that connection the concept of geometric class of 3 X 3 X 3 neighbor-
hood is described in Section 3.3.1. In the third module we describe the algorithms
for three useful topological operations in Sections 3.4 to 3.6. At first we develop
an algorithm for detection of (26,6) simple points in Section 3.4. After which we -
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describe the algorithm in Section 3.5 that computes local topological parameters
(these parameters also define local topological changes under binary transforma-
tion). The algorithm, described in Section 3.8, computes the Euler characteristic

of a 3D digital image in a parallel manner.

3.2 Previous Works on 3D Simple Point Detec-

tion

Several works could be found in literature 76,111,113,114,129,17,131] on theoretical
aspects of 3D simple point. On the other hand, just a few publications were reported
on its computational aspect before we have made an extensive study {111,113,114]
on the same. Lobregt et. al. [69] made a meaningful effort to solve the problems of
3D simple point from computational point of view. Their algorithm of 3D simple

point detection is based on the notion of the Euler characteristic preservation. We

shall make a brief descri:ption of their approach.

Let S; be a netted surface that encloses an object or a cavity. Let n;, ¢; and | fs

denote the numbers of vertices, edges and faces in S; respectively. Then

e

ng—e + f; =2 —2h; (3.1)

where h; denotes the number of tunnels in S}'. The connectivity number N is defined

for a 3D image as follows:

N =) (2-2h) (3.2)

1

According to their definition, a point is a 3D simﬁle point if and only if its deletion
preserves the connectivity number in its 3 X 3 X 3 neighborhood. To test the preser-
vation of connectivity number, the 3x 3 x 3 neighborhood of a point p is divided into
eight partially overlapping 2 X 2 X 2 cubes (centered around each vertex or nodal
point ; of p) and for each of which the contribution N; to N is computed separately.
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. There are 2% = 256 possible configurations in a 2 X 2 X 2 cube. For a configuration
value c, Nﬂ(c) (here, 6-connectivity is used for object points and 26-connectivity for

non-object points) is computed as follows:

1) When all object points of the 2 X 2 X 2 cube are 6-connected then contribution
(¢) :
Ng’ to N is

(¢)
N = nle) ._2.. f4 (3.3)

where, n¢} is the number of nodal points of S} at the center of the 2 X 2 X 2 cube,
el) is the number of edges of 8} which join the center of the 2 X 2 X 2 cube and f (<)
is the number of faces of S} which touch the center of the 2 X 2 x 2 cube. It may

be noted that n) is either zero or one and when n{® = 0 then €!¢ = f{c) = 0.

2) When the object points of the 2x 2% 2 cube are not 6-connected then contribution
N to N is

g(c) - gg_") | f(ﬂ)

L (3.4)

Ne(ﬂ) = kn°)

where, n{?) , el©) and f{<) bear the same meaning as above. The number of edges

shared by two object components of the 2 x 2 X 2 cube is e{’) and k is the number

of object components.

When 26-connectivity is used for object points and 6-connectivity for non-object
points, N (3) is equal to Ng° (-) here ¢ is the complementary configuration of ¢. For

example, if ¢ = 11011100 then & = 00100011, Thus, N{&* = N{*; also, N{§") =
N(zzﬂ)

As discussed above, the algorithm of 3D simple point detection due to Lobregt
et. al. [69] is based on preservation of the Euler characteristic in the 3 X 3 X 3
neighborhood of a point. Unfortunately, the Euler characteristic preservation is a
necessary condition for toﬁolagy preservation but not a sufficient condition for the

same. The Euler characteristic of an object equals to the number of components
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Figure 3.1: An example where Lobregt et. al.’s algorithm fails to detect that p is

not a simple point.

minus the number of tunnels plus the number of cavities in it. As a result, if the
deletion of a point in an image splits one black component to two and creates one
‘tunnel in the transformed image then the Euler characteristic of the first image
will be exactly the same as that of the second. However, these two images are
not topologically equivalent. Such a situation may occur in 3 X 3 X 3 neighborhood.
Consider an object in the 3 X 3 X 3 neighborhood of a point p as shown in Figure 3.1.
In Figure 3.1, 26-connectivity is used for object points and 6-connectivity for non-
object points. Although p is not a simple point (deletion of p creates a tunnel and
splits one object component into two) deletion of p preserves the Euler characteristic.
The algorithm by Lobregt et. al. [69] makes a mistake by certifying p as a (26,6)

simple point.

3.3 The New Theoretical Approach

As described in Chapter 2 both the characterization of (26,6) simple point and the
measure of topological changes in 3 x 3 x 3 neighborhood under binary transforma-

 tion invoke with the difference between N (p) and N (p) in terms of the numbers of
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black components, tunnels and cavities. In Chapter 2 it has also been shown that
the numbers of black components, tunnels and cavities in N (p) are always ‘1°, ‘0’
and ‘0’ respectively. Thus, the work essentially boils down to the computation of

the numbers of black components, tunnels and cavities in N (p). We establish an in-

teresting theory that results in an efficient computation of these numbers in N (p).
This theory is applied to develop efficient algorithms for simple point detection,
computation of local topological parameters and the Euler characteristic computa-
tion. Let &(p), n(p), and 6(p) denote the numbers of black components, tunnels,
and cavities in N (p) respectively. They are referred as topological parameters of
p. As described in Section 2.5, £(p), n(p), and §(p) also define local topological
chz;nges under binary transformation of a point. We use following two important

and useful properties of N(p) to develop above mentioned three algorithms.

Property 3.1  Let z be an s-point of N(p) and y be a point of surface(z,p).
Then for any point g € N(p), ¢ is 26-adjacent to y implies that q ts 26-adyacent to

ml

Property 3.2  Let © be an e-point of N(p) and y be a point of edge(z,p). Then
for any point q € N(p), q is 26-adjacent to y implies that q is 26-adjacent io .

Proposition 3.1  If an s-point z is black tn N () then £(p) 15 independent of the

color of other points of surface(z,p).

Proof: Let S denote the set of black points of N(p) and let y # z be a point
on surface(z,p). To establish the proposition we shall show that the number of

26-components of S — {y} and that of SU{y} are the same. If this is not true then

one of the following two cases must occur,

Case 1: None of the points of 5 — {y} is 26-adjacent to y. In other words, the
number of 26-components of S U {y} is greater than that of § — {y}.
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Case 2: Two or more 26-components of S — {y} are 26-adjacent to y. In other
words, the number of 26-components of § —{y} is greater than that of SU{y}.

By assumption z is black i.e. z € § —{y} and y € surface(z,p) i.e. y is Zé-adjacent
to z. Hence, Case 1 could not occur. About Case 2, let us assume that two points
g, r €S ~ {y} belong to two different 26-components of S — {y} and they are also
26-adjacent to y. Since, g,r are 26-adjacent to y they are also 26-adjacent to z (see
Property 3.1). Thus, ¢,r are 26-connected in S — {y} by the 26-path ¢, z,r. Hence
the contradiction that g, r belong to two different 26-components of S — {y}. Thus,
neither Case 1 nor Case 2 may occur and hence the number of 26-components of

S — {y} is the same as that of S U {y}.

Proposition 8.2  If an s-point z 1s black in N(p) then the number of tunnels in

"

N(p) fs independent of the color of other points of surface(z,p).

Proof. According to Corollary 2.3, the number of tunnels in N {p) is independent
of the color of v-points. To establish the proposition we shall show that the number
of tunnels in N (p) is independent of the color of e-points of sur face(z,p). Let
S denote the set of white s-points of N (p) and let S’ denote the set of white s-
points and e-points of N (p). Let y be an e-point of sur face(z,p). According to
Theorem 2.1 the number of tunnels in N (p) is equal to one less than the number of

6-components of S in 5'. We shall show that the number of 6-components of S in
S' — {y} is the same as that of S in S' U {y}.

It follows from N (p) that no two s-points are 6-adjacent and also no two e-points
are 6-adjacent. This implies that a 6-path of s-points and e-points must be an
alternating sequence of s-points and e-points. Thus, a 6-path of s-points and e-
~ points between two spoints through y must contain two s-points of N (p) which are
- 6-adjacent to y. It follows from N(p) that y being an e-point, it is 6-adjacent to
éxactly two s-points of N(p). By assumption z is black ie. z& S'U{y} and y €
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surface(z,p) i.e. y is 6-adjacent to . Thus, there exists no 6-path in S’ U {y}
between two s-points of § through y. Hence, two s-points of § are 6-connected In
S' U {y} implies that they are 6-connected in S' — {y}. Also, it is obvious that
two s-points of § are 6-connected in S' — {y} implies that they are 6-connected in
S'U{y}. Hence, the number of 6-components of S in §' — {y} is the same as that
of § in ' U {y}.

In Chapter 2, we have presented an expression for the number of cavities in N (p)

by Equation 2.1. Here, we are repeating the same expression for a better reference.

(
1 if six s-points of N(p) are black;

6(p) = ¢ ° ) (3.5)

0 otherwise.

Thus, 6(p) is a function of s-point configuration of N(p). According to Proposi-
tion 3.1 and Proposition 3.2, &(p) as well as n(p) are independent of the color of

the points of surface(z,p), when the s-point z is black.

Definition 3,1 For an s-point s € N(p), surface(z,p) s defined as a dead-
surface of N(p) if = is black. A v-point or an e-point is defined as an effective point
of N(p) if it does not belong to any dead-surface,

Corollary 8.1  With a known s-point configuration of N(p), we can compute
E(p), n(p), and 6(p) from the effective point configuration of N(p).

Corollary 3.2  With a known s-point configuration of N(p), we can compute

n(p) from the effective e-point configuration of N(p).

Corollary 3.3 With a known s-point configuration of N (p) , the effective point
configuration of N(p) determines whether the point p is a simple point or not.
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Corollary 3.1 is a straightforward consequence of Proposition 3.1 and Proposition 3.2
and Equation 3.5 while Corollary 3.2 is a straightforward consequence of Corol-
lary 2.3 and Proposition 3.2. Corollary 3.3 is a straightforward consequence of

Characterization 2.3, Proposition 3.1 and Proposition 3.2.

Proposition 3.3  If an e-point z 15 black in .f?(p) then £(p) 1s independent of
the color of other points of edge(z,p).

t

Proof:  Let S denote the set of black points of N (p) and let y # z be a point
of edge(z,p). We establish the proposition by showing that the number of 26-
components of § — {y} and that of S U {y} are the same. If this is not true then

one of the following two cases must oceur.

Case 1: None of the points of S — {y} is 26-adjacent to y. In other words, the
number of 26-components of S U {y} is greater than that of S — {y}.

Case 2: Two or more 26-components of S — {y} are 26-adjacent to y. In other
words, the number of 26-components of S — {y} is greater than that of SU{y}.

By assumption z is black i.e. x € S —~ {y} and y € edge(z, p) i.e. y is 26-adjacent
to z. Hence, Case 1 never occurs. About Case 2, let us assume that two points
| q,lr € S — {y} belong to two different 26-components of S — {y} and ¢,r are 26-
adjacent to y. Since, ¢,r are 26-adjacent to y they are also 26-adjacent to = (see
Property 3.2). Thus, g,r are 26-connected in S — {y} by the 26-path ¢,z,r. Hence
the contradiction that g, r belong to two different 26-compomnents of S — {y}. Thus,
neither Case 1 nor Case 2 may occur and hence the number of 26-components of

S — {y} and that of S U {y} are the same.

]

- According to Corollary 2.3, Equation 3.5 and Proposition 3.3 we see that ¢£(p), n(p)
and §(p) are independent of the color of other points of edge(z, p) when the e-point
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x is black.

Definition 3.2 For an e-point z € N(p), edge(z,p) is defined as a dead-edge
of N(p) if = ¢s black. A v-point is defined as an isolated point of N (p) if it neither
belongs to a dead-surface of N(p) nor it belongs to a dead-edge of N(p). A v-point
1s defined as a dead-point of N(p) if it belongs to a dead-surface or it belongs to a
dead-edge of N(p). |

Proposition 8.4  Let y be a black isolated point of N(p). Then {y} is a black
component of N(p). |

Proof; We shall prove this proposition by contradiction, Let us assume that
{y} is not a black component of N (p). Hence, {y} is 26-adjacent to some other
black point of N (p), say z. By definition, the set of black points of }:/(p) is a
subset of N*(p) and hence z € N*(p). It follows from N(p) that no two v-points
are 26-adjacent. Thus, z € N*(p) and z is 26-adjacent to y together imply that
either z is an s-point or an e-point of N(p). Let us consider that = is an s-point.
Thus sur face(z,p) is a dead-surface of N (p}. ‘Again it follows from N (p) that if a v-
point is 26-adjacent to some s-point 2 then the v-point must belong to surface(z, p).
Thus y belongs to surf ace(z, p) and hence y is not an isolated point. Contradiction!!

Considering = as an e-point we can reach to the same contradiction in the same

way. Hence, {y} is a black component of N (p).
]

Proposition 8.5  Let all the siz s-points of N(p) be white. Then £(p) is equal
to the number of black isolated points plus the number of 26-components in the set

of black e-points of N(p).

Proof: According to Proposition 3.4 each black isolated point is a black compo-
nent of N (p). By assumption, the s-points of N(p) are all white. Thus the number
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of black components of N () equals to the number of black isolated points plus the
number of 26-components in the set of black e-points and black dead-points. It is a
straightforward consequence of Proposition 3.1, Proposition 3.3 and Definition 3.2
that the number of black components in N (p) is independent of the color dead-
points. Thus the number of 26-components in the set of black e-points and black
dead-points is equal to the number of 26-components in the set of black e-points of
N{p). Hence €(p) equals to the number of black isolated points plus the number of
26-components in the set of black e-points of N(p).

3.3.1 (Geometric Class

We describe an interesting observation on N (p). Let us consider an image P; with
the set of black points B;. Let us consider another image P, with the set of black
points By such that the points of B, N N(p) are obtained by some rotation (integral
multiples of 90°) in three dimension about different axes with p as origin on the
points of ByNN(p). It is interesting to note that p is a simple point in 7, if and only if
p is a simple point in 7. Moreover, the changes in the numbers of black components,
tunnels and cavities in N (p) under binary transformation of p are exactly the same
for both P, and P,. For example, let us consider that 8, N N{p) = {p, Po) Pew s
Prws Prws Pow } 30d Ba N N(p) = {p, Pyy» Psps Psws Prgs Prs }- 1t may be noted that
the points of By N N(p) is obtained by anti-clockwise rotation of 90° about y axis
with p as origin to the corresponding points of B, N N (p). It is easy to verify using
Characterization 2.3 that p is not a simple point in both P; and 5. Also both for
Pi and P, the deletion of p creates exactly two black components and one tunnel
in N(p). Thus all possible configurations of N(p} may be grouped such that two
configurations belong to the same group if and only if one can be transformed to the
other by some three dimensional rotation in integral multiple of 90° about different
axes with p as origin. In that case we only need to know the topological information

of one member of each group. However, the number of groups becomes very large
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when we consider all possible configurations of ¥ (p}. So, we only concentrate to all
possible s-point configurations of N (p) and name each group as ‘geometric class’.

Geometric classes of s-point configurations of N(p) are defined as follows:

Definition 3.8 Two s-point configurations of N(p) belong to the same geometric
class if and only if one can be transformed to the other by some three dimensional

rotation tn tntegral multiples of 90° about different azes with p as origin.

Possible geometric classes of s-point configurations, corresponding numbers of ef-
fective points (n.) and the number of s-point configurations belonging to each geo-

metric class are described as follows:

Class 0: Six s-points are black. The number of effective points (n.) is zero. Only

one s-point configuration belongs to this geometric class.

Class 1: Five s-points are black. The number of effective points (n,) is zero. Six

s-point configurations belong to this geometric class.

Class 2: Two pairs of opposite s-points are black. The number of effective points

(n.) is zero, Three s-point configurations belong to this geometric class.

Class 3: One pair of opposite s-points and two non-opposite s-points are black.
The number of effective points (n.) is one, Twelve s-point configurations

belong to this geometric class.

Class 4: One pair of opposite s:points and another s-point are black, The number

of effective points (n,) is two. Twelve s-point configurations belong to this

geometric class.

Class 5: Three non-opposite s-points are black. The number of effective points

(n.) is four. Eight s-point configurations belong to this geometric class.

Class 8: One pair of opposite s-points are black. The number of effective points

(n.) is four. Three s-point c'onﬁgura.tic)nls' belong to this geometric class.
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Class 7: T'wo non-opposite s-points are black. The number of effective points

(n.) is seven. Twelve s-point configurations belong to this geometric class.

Class 8: One s-point is black. The number of effective points (n,) is twelve, Six

s-point configurations belong to this geometric class.

Class 9: No spoint is black. The number of effective points (n.) is twenty. Only

one s-point configuration belongs to this geometric class.

According to Corollary 3.3 and Corollary 3.1, simple point as well as topological
parameters of N(p) are functions of effective point configuration of N(p). Thus, if
n, = 0 as in Classes 0-2, we at once know the topological parameters of N (p) and

also we can say whether p is a simple point or not. In other cases as in Classes3-9
where n, > 0, we use a look.up.table. For a given s-point configuration there are
2"+ possible effective point configurations. An effective point configuration can be
thought of as an n,-bit binary number, For example, consider a Class 5 situation
with eg, ey, €3, €5 denoting the four effective points. Then a 4-bit binary number is
generated such that its ¢th bit denotes the color of ¢ (i.e. ‘1’ when ¢; is black and
‘0’ otherwise). For example, a 4-bit binary number ‘1010’ denotes an effective point
configuration where ¢; and e, are white while e; and e3 are black. For each such

effective point configuration there is an entry in the look.up_table which contains

the necessary topological information.

3.4 Detection of Simple Point

According to Corollary 3.3, after finding the s-point configuration of N (p) we can
- decide whether p is a simple point or not from the effective point configuration
of N(p). Depending on the s-point configuration we actually switch to one of the
possible sixty four céses. However, from the point of view of actions to be taken,

all the sixty four cases may be classified into three groups as follows:
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Group 3.4.1:  (s-point configuration belonging to Class 0-2)
The number of effective points is zero. So we can at once know whether p is a
simple point or not. For Class 0 and Class 2, p is never a simple point while p is

always a simple point for Class 1.

Group 3.4.2: (s-point configuration belonging to Class 3-8)

The number of effective points is non-zero. A look_up_table is used for each geomet-

ric class. Since different s-point configurations may belong to the same geometric
- class, we consider one s-point configuration base; (a set of black s-points) from

Class 1. Let base; has n; number of effective points. An ordered set EFO(base;) of

these 7 effective points is defined as follows:
EFO(bese;) = {€0,€1," ** ) €n;—1}

where g, €1, *+,€,,_1 are the effective points of N{p) with the s-point configuration
base;. An effective point configuration for the s-point configuration base; is denoted
by an n; bit binary number whose sjth bit denotes the color of e;, For each such
configuration of effective points there is an entry in the look_up._table. Each entry
needs one bit that contains a ‘0’ or ‘1’ (one bit) flag to denote whether p is a simple
point or not. The look up.table needs 2™ entries i.e. 2™ bits (here n; is the number
of effective points for 1th geometric class). Only one look_up.table is sufficient for
all s-point configurations belonging to the same geometric class. Let us call the
look_up.table for sth geometric class as LUT _stmple_point;. To illustrate the fact

let us consider an e—point'cenﬁgure.tien T belonging to Class ¢ such that:
T = Rot(u, base;)

where Rot(u,base;) is a function that generates a set from base; such that the 7th
element of the set is obtained from the jth element of besei- after the rotation u
with p as origin (here, 4 is a sequence of rotations about different axes in integral
‘multiples of 90°). The same look_up_table may be used for the s-point configuration

Y with its ordered set of effective points EFO(T) as follows:

EFO(T) = Rot(u, EFO(base;))
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That is jth element of EFO(T) is obtained from the jth element of EFO(base;)
after the rotation 4. It is worthy to mention that computation of EFO(T) is not
required during runtime. Instead, it is precalculated and implicitly stored in the
program. -More specifically, within the program there is a case for a particular s-
point configuration T. Af that place the ordered set of effective points EFO(Y)
is known to the program and it calculates the effective point configuration value

accordingly.

Group 3.4.3: (s-point configuration belonging to Class 9)

As described in Section 3.3.1 only one s-point configuration belongs to this class,
Here, the number of effective points is twenty, A straightforward application of
the look up_table described in Group 3.4.2 needs 2%° bits i.e. 128 Kbytes. So, we
modify the form of the look_up.table. We classify Group 3.4.3 into two sub-groups

and proceed as follows:

Sub-group 3.4.83a: (all e-points are white) |
All »-points are isolated points. According to Proposition 3.5, £(p) equals to the

number of black v-points. Also N (p) never contains a tunnel. Hence p is a simple

point if and only if exactly one wpoint is black.

Sub-group 3.4.3b: (at least one e-point is black)
Here, p is not a simple point if any of the following situations occurs — 1) the set

of black e-points is not 26-connected, 2) there is a tunnel in N (p), or 3) there is a

black isolated point.

At first we find a black e-point of N (p). If an e-point z is black then there may be
at most 2! possible configurations of other e-points and hence the look_up_table

LUT _stmple_pointy contains 2'! entries. An ordered set EEO(z) of these eleven |
e-points is used to calculate their configuration value. The address of an entry of
LUT _simple_pointy corresponds to a distinct configuration of EEO(z). At each
entry of LUT _stmple_points we store the following information — 1) whether the’

set of black e-points contains' more than one 26-components or if there exists a
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tunnel in N (p), and 2) the set of isolated points. Since z is black at most six v-
points can be isolated points. An ordered set of these six v-points is named 150(z).
For each entry of LUT .ssimple_pointy a one byte word ! is used in which (0-5) bit
“positions denote the set of isolated points in JSO(z). The 6th bit position of / is
‘1’ if the set of black e-points contains more than one 26-components or if there is
a tunnel. The 7th bit position always contains a ‘0’. To determine whether p 1s a
' simple point we generate a one byte word w whose (0-5) bit positions denote the
configuration of I§O(z) while 6th and 7th bits are ‘1’ and ‘0’ respectively. Thus p
is a simple point if and only if the bitwise AND operation between | and w leads to
zero. The look_up_table LUT .stmple_pointy now needs only 2** bytes i.¢. 2 Kbytes,

instead of 128 Kbytes in its earlier form.

An e-point can be rotated in integral multiples of 90° about different axes (with p as
origin) to reach another e-point. Thus we can use single look_up_table for different
e-points in the same fashion we have described for different s-point configurations
belonging to the same geometric class. However, here we need the rotational trans-
formation on both EEO(z) and I50(x). At this point it should be made clear that
rotation is not required at runtime to evaluate EEO(X) and ISO(X). In contrast,

for each e-point X, EEO(X) and ISO(X) are precalculated and implicitly stored

in the program.

'3.4.1 The Algorithm (simple_point)

As described above our procedure of simple point detection has two parts, which
‘are — (a) a priors knowledge, (b) run-time computation. The a priori knowledge in-
cludes the precalculation and stﬂragé of all the look._up_tables LUT _stmple_point;,
' 3< <09, Also, for each s-point configuration T belonging to Class ¢, 3 <t < 8§,
the ordered set of effective points EFO(T) is precalculated as discussed earlier and
implicitly stored in the program to compute the entry value of LUT _stmple_point,.
- Similarly, in case of Class 9, for every e-point z, EEO(z) and ISO(z) are precalcu-
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lated and implicitly used in the program. It should be mentioned that the a priori
knowledge is independent of the input image to be processed. Thus once generated,

the knowledge can be used for any other image later on.

During the runtime, for any point p € Z9% of an input 3D image P, we use the
following procedure (simple_point) to detect whether p is a simple point or not. Here
bitwise. AND(z,y) is a function that returns the result of bitwise AND operation

between two bytes z,y.

procedure stmple_point (p)

T = s-point configuration value of N (p);

switch(T)

Group 1.a: /* T belongs to Class 0 */
flag = 0;

Group 1.b: /* T belongs to Class 1 */
flag = 1;

Group l.c: /* T belongs to Class 2 */
flag = 0;

Group 2: /* T belongs to Class 3-8 */
let T belong to Class?, 3 <1 <8§;
7 = configuration value of EFO(T);
flag = LUT_éimple_point,-[j];
Group 3: /* T belongs to Class 9 */
if an e-point of N(p), say z, is black then
1 = configuration value of EEO(z);
w = configuration value of I50(z) + 2°%;
r = bitwise_. AND(w, LUT _stmple_pointy[t]);
if r = 0 then
flag = 1;
else

flag = 0;
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else /* all e-points are white */
if exactly one isolated point of N (p) is black then
flag = 1;
else
flag = 0;
return(flag);
end procedure stmple_point;

In the above algorithm there are sixty four cases for all possible s-point configu-
rations. For convenience we do not mention all the sixty four cases. Instead, we
- mention different groups where each group is a representative of all cases of s-point

configuration with corresponding geometric class.

3.5 Computation of Local Topological Parame-

ters

As discussed in Section 2. 5, the measure of topological changes in the 3 x 3 x 8
| nelghborhood of a point p € Z® under its binary transformation essentially com-
putes the numbers of black components, tunnels and cavities in N (p). The numbers
of components, tunnels and cavities in .k?(p) i.e. £(p), n(p) and 6(p) respectively,
are also referred as topological parameters of p. In this section we shall describe an
efficient approach of computing these parameters. According to Corollary 3.1, after
finding the s-point configuration of N(p) we can compute £(p), n(p) and é(p) from
the effective point configuration of N(p). The algorithm switches on the s-point con-
figuration. Similar to Section 3.4, all the sixty four cases of s-point configurations

~ are classified into three groups as follows:
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Group 3.5.1: (s-point configuration belonging to Class 0-2)
The number of effective point is zero. The values of £(p), n(p), 6(p) are stated as

follows:

Class0: €(p) =1, 7 0,6
Class 1: &(p) =1,n(p) =0,6
“Class 2: £(p) =1, 7 1, 6

Group 3.5.2: (s-point configuration belonging to Class 3-8)

This case is similar to Group 3.4.2 of Section 3.4. The only difference lies in the
structure of look up tables. There are only six s-points in N(p). So, N(p) may
contain at most five tunnels and it occurs only when all s-points are white while all
e-points are black (see Theorem 2.1). Also N(p) may contain at most eight black
components and it occurs only when all wpoints are black and all other points are
white. Moreover, for Classes 3-8, 6(p) is always zero. Thus, for each entry of the
look_up_table one byte is used whose lower order four bits store the value of é(p} and
~ higher order four bits store the value of n{p). The look_up_table of ith geometric
class needs 2™ entries i.e. 2" bytes and it is referred as LUT topo_para; (here n; is

the number of effective points for ith geometric class).

~ Group 3.5.3: (s-point configuration belonging to Class 9)
Similar to Group 3.4.3 of Section 3.4 one of the following two sub-groups is followed:

* Sub-group 8.5.3a: (all e-points are white)

He're, n(p) = 0, 6(p) =0, and £(p) = the number :jf black p-points.

o ii?ub-group 3.5.3b: (at least one e-point is black)

- Let us consider that an e-point z is black. Let B,(p) denote the set of black e-points
of N(p). To compute ¢ (p) and n(p) (here, 8(p) = 0) we allocate two bytes for each

entry of LUT .topo_paray that store the following information:

4. th# number of tunnels in N (p),
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2. the number of 26-components of B,.(p),

3. the set of isolated points of N(p).

The higher order four bits of the first byte store the value of n(p) while the lower
order four bits of the same byte store the number of 26-components of B,(p). The
lower ordér six bits of the second byte denote the set of isolated points (6th and
7th bits are always zero). For example, if the first and second bytes of certain entry
of LUT topo._parag is ‘00110010’ and ‘00010001’ respectively, then n{p) = 3 and
the number of 26-components of B,(p) is 2 while Oth and 4th points of ISO(z) are

isolated points.

The look_up_table LUT topo_paras needs only 2 x 2'' bytes t.e. 4 Kbytes. Let
w be the configuration value of the points of ISO(z). A bitwise ‘AND’ operation
between w and the 2nd byte of corresponding entry of LUT fopo_parag results in
the set of black isolated points of N (p).

3.56.1 The Algorithm (topo_para)

During the runtime, for any point p of an input 3D image P, we use the following
pmcedure (topo_para) to compute the topological parameters {(p), n(p), and é(p).
In the following algorithm LUT topo_paray[7)[0] denotes the first byte of yth entry
of LUT .topo.parag while LUT topo_parag|j][1] denotes the second byte of jth entry
of LUT topo_paray. Also z /zp denote the value of lower/higher four bits of the

| B’yte T.

procedure topo_para (p)

T = s-point configuration of N(p);
:f;:w*itch('-r)‘

lxroup L.a: /* T belongs to Class 0 */

82



é(p) = Lin(p) =0; 6(p) = 1
Group 1.b: /* T belongs to Class 1 */
~ €(p) = 1;n(p) = 0; 8(p) = 0;
Group l.c: /* T belongs to Class 2 */
_ ¢§(p) = 1, n(p) = 1; 6(p) = 0;
Group 2: /* T belongs to Class 3-8 */
let T belong to Classt, 3<1<8;
§ = configuration value of EFO(T);
¢(p) = LUT topo_para(s):;

n(p) = LUT topo_para;|s|n;
b =0
- Group 3: /* T belongs to Class 9 */
if an e-point of N(p), say z, is black then
¢ = configuration value of EFO(z):
w = configuration value of 7§0(z);
r = bitwise, AND(w, LUT topo_para;(7][1]);
¢(p) = LUT topo_para;[t][0]; + number of ‘1’ bits in r;
n(p) = LUT topo_para1}[0];
5(p) = 05
| . else /* all e-points are white */

¢(p) = the number of black v-points;
~n(p) =0
- 6(p) = 0;
- return(€(p), n(p), 6(p));
end procedure topo.para;
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3.6 The Euler Characteristic

A review on the Kuler characteristic of 3D digital image is presented in Section 1.2.9
and Section 1.3.5. Here we present a new approach [116] of computing the Euler
characteristic of 3D digital image in a parallel mode. We use following two propo-

sitions [115,116] to compute the Euler characteristic of a 3D digital image.

Pmposition 3.6 For a 3D digital image P, the Euler characteristic x(P) equals

to the number of black components minus the number of tunnels plus the number of

cavities in P.

Proposition 8.7 Let P = (2%,26,6,8) be a D digital image andlet p € 8 be a
black point of P. Under this assumption, the Euler characteristic of Pis equal to the
Euler characteristic of (V,26,6, 8 —{p}) plus the change in the Euler characteristic
in N(p) due to the deletion of p.

Both Propositions 3.6 and 3.7 are important in our approach of computing the
Euler characteristic of a 3D digital image. While Proposition 3.6 is motivated by
the discussion in Section 1.2.9, Proposition 3.7 is considered by others [51,69]. The
change in the Euler characteristic in the 3 X 3 x 3 neighborhood of a black point
p due to its deletion is equal to the Euler characteristic of N (p) minus the Euler
characteristic of N (p). A recursive definition of x(V, 26,6, B) is stated as follows:

1. X(v:26:6: B) =0if B = QS;
2. for any point p € B,
" x(V,26,6,B) = x(,26,6,8 — {p}) + x(N (p)) — x(N(p)).

(3.6)

84



3.6.1 The Euler Characteristic in 3 x 3 x 3 Neighborhood

As mentioned in Section 2.4, the numbers of black components, tunnels and cavities
in N(p) are ‘1’, ‘0’ and ‘0’ respectively. Hence, x(N(p)) =1 — 0+ 0 = 1. Thus our
work boils down to the computation of the Euler characteristic of & (p) which then
leads to the estimation of the numbers of black components, tunnels and cavities in
N(p). According to Corollary 3.1, after finding the s-point configuration of N (p),
the change in the Euler characteristic in the 3 X 3 x 3 neighborhood of p can be
computed from the effective point configuration of N{p). The algorithm switches

on the s-point configurations. Similar to Section 3.4, all the sixty four s-point

configurations are classified into three groups as follows:

Group 3.8.1: (s-point configuration belonging to Class 0-2)

The number of effective points is zero. The changes in the Euler characteristic are

as stated follows:

Class 0:  x(N(p)) — x(N(p)) = -1,
Class 1:  x(N(p)) — x(¥(p)) =0,
Class 2 x(N(p)) — x(N(p)) =1

Group 3.8.2: (s-point configuration belonging to Class 3-8)
This case is similar to Group 3.4.2 of Section 3.4. The only difference lies in the

structure of look up tables, Each entry of a look.up.table stores x (N (p)) — x (¥ (p))
that needs single byte, The look_up_table of sth geometric class needs 2" bytes and

it is referred as LUT _euler.change; (where n; is the number of effective points for

{th geometric class).

Group 3.6.3: (s-point configuration belonging to Class 9)

~ Similar to Group 3.4.3 of Section 3.4 one of the following two sub-cases is followed.
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Sub-group 3.6.3a: (all e-points are white)

& Ay

Here, x(N(p)) — x(N(p)) is computed as follows:

x(N{p)) — x(N(p)) =1 — the number of black »points.

Sub-group 3.6.3b: (at least one e-point is black)
To compute x(N(p)) — x(N{p)), each entry of LUT .euler_changey needs two bytes

which store the following information:

1. 1 — the number of 26-components of B,(p) + the number of tunnels in N (p),

and

2. the set of isolated points of N (p).

The first byte of each entry stores the value of ‘1 — the number of 26—can€1p0nents
of B,(p) + the number of tunnels in N(p)’. The lower order six bits of the second
byte denote the set of isolated points (6th and 7th bits are always zero). The
look up_table LUT _euler _changey needs only 4 Kbytes. A bitwise ‘AND’ operation

~ between the configuration value w of I§0(z) and the 2nd byte of corresponding

entry of LUT . euler_changey results in the set of black isolated points of N (p).
Hence, x(N(p)) —x{N(p)) = value of first byte of LUT .euler_changes — the number
“of black isolated points. For example, let configuration value of EFO(z) be ¢ and the
1st.and 2nd bytes of ith entry of LUT _euler_changeg be ‘00000001’ and ‘011000100’
respectively. Let configuration value w of IS0 (z) be ‘00000100°’, Then the number

of black isolated points is ‘1’ and (N (p)) — x(N(p)) =1 - 1=0.

The Algorithm (euler_change)

For any point p of an input 3D image P, we use the fqllow.ing procedure (eu-

| 'ld'r_changg) to compute x (N (p)) — x{¥ (p)).
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procedure euler_change (p)

T = s-point configuration of N (p);

switch(T)

Group l.a: /* T belongs to Class 0 */
elch = —1;

Groupl.b: /* T belongs to Class 1 */
el.ch= 0;

Groupl.c: /* T belongs to Class 2 */
el.ch = 1;

Group 2: /* T belongs to Class 3-8 */
" let T belong to Class ¢, 3 <1< 8:
J = configuration value of EFO(Y);
el_.ch = LUT euler_change;|j];
Group 3: /* T belongs to Class 9 */
if an e-point of N(p), say z, is black then
1 = configuration value of FEO(z);
w = configuration value of 180(z);
r = bitwise. AND(w, LUT _euler change;[][1]);
el.ch = LUT -topo_para;[t][0] - number of ‘1’ bits in r;
else /* all e-points are white */
el.ch = 1 - the number of black v-points:
return(el_ch);

end procedure euler_change;

3.6.2 The Euler Characteristic of Digital Image

In Section 3.6.1 we have described an efﬁcient_ algorithm to compute the change
in the Euler characteristic in the 3 X 3 X 3 neighborhood of a point p that occurs
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due to its deletion. Using the algorithm euler_change, the Euler Characteristic
of a 3D digital image can be computed according to Equation 3.6. A parallel
implementation of the method is possible using the concept of sub-fields 28], The

parallelization is based on the following concept.

If two points p,qg € B are not 26-adjacent then

iy

x(V,26,6,8) = x(V,26,6,8 — {p,q}) + x(N(p)) — x(N(p)) + x(N () — x(N(q))

To conceive maximum parallelization in the algorithm eight sub-fields Oy, Oy, +, O7

are defined as follows:

Or={2xit+ [,2X534+¢,2xk+h) , t,J, k=0, %1,£2, ..

3.7
f:g:he{o,l}&nd22)(f—|—21xg_l_zﬁxh:z} ( )

- such that two points p,qg € O; are never 26-adjacent. The Fuler Characteristic of
a 3D digital image can be computed in eight steps and at each step the algorithm

uses the following equation:

x(V,26,6,8) = x(V,26,6,8 ~0)) + . x(N(p)) — x(N(p)) (3.8)

peE0 N8

where 3 ,c0.ns X(N(p)) — x(N(p)) can be computed in a parallel manner.

3.7 Conclusion

In this chapter we have given algorithmic forms of three important topological oper-
ators simple_point, topo_para, and euler_change. The algorithm ssmple_point detects
~ whether a point is a simple point or not; topo_para computes local topological pa-
rameters of a point p i.e. the numbers of black components, tunnels and cavities

~in N(p) while euler_change computes the change in the Euler characteristic in the
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3 x 3 X 3 neighborhood of a point due to its deletion. The most naive and trivial ap-
proach for these operations is to prepare a look_up_table for all possible black/white
configurations of the 3 x 3 X 3 neighborhood that needs 2*° entries. In other words
the loak_u.p_.table for simple_point needs 2%° bits i.e. 8 Mbytes and the look_up_table
for topo.para or euler_change need 2%° bytes i.e. 64 Kbytes. On the other hand,
in our approach the look_up.table needs 2 Kbytes for stmple_point and 4 Kbytes
for topo_para or euler_change. Moreover, only for Class 9 these operations need
the configuration of all the twenty six points of the 3 X 3 x 3 neighborhood. For
Classes 0-8 they need the configuration of lesser number of points (see Groups 3.4.1~

2, Groups 3.5.1-2, and Groups 3.6.1-2 in Section 3.4, Section 3.5, and Section 3.6.1

respectively).

Application of simple_point in 3D object thinning is discussed in Chapter 4 while
the application of topo_para in 3D object segmentation is discussed in Chapter 5. In
this chapter we have described an application of euler_change to develop a parallel

algorithm for computing the Euler characteristic of a 3D digital image.
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Chapter 4

Parallel Thinning For 3D Objects

4.1 Inti'oduction

This chapter is concerned with a new parallel thinning algorithm for three dimen-
sional (3D) digital images. Many image processing techniques such as smoothing,
filtering, thinning and segmentation are of interest in various applications to 3D im-
age processing, The objective of 3D image thinning is to produce a medial surface
representation (sometimes an arc representation) that preserves the topology and
maintains the shape of an object as much as possible. Thinning makes a compact
representation of an objéct and hence is computationally attractive for future anal-
ysis. However thinning is not guaranteed to produce a meaningful representation
of an object unless the object is piecewise “elongated” or “flat-shaped”. That is the
object is composed. of parts each of which has the property that (at least) one of its

dimension is much less than the others.

One of the important uses of thinning is to decompose an object into meaning-
ful segments [115|. In Section 1.3.8 we have studied previous works on 3D thin-
ning {32,28,69,79,122,131,70,71]. Unfortunately none of the previous researchers
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studied the behavior of their algorithms around different types of corners. Also they
did not study the robustness of their algorithms under noise or rotation. In this
chapter we describe a parallel thinning algorithm based on our works (114,117,118].

We consider the aspects of our thinning algorithm stressing its behavior and ro-

bustness under pseudo random noise and rotation.,

Theoretical aspect of the proposed thinning approach that produces a medial surface
representation of 3D object is described in Section 4.2. At the end of this section
we discuss an approach that produces a medial arc representation of an object from
~ its surface representation. The parallel thinning algorithm is described and the
. experimental results are presented in Section 4.3. The robustness of the proposed
algﬂrithm under pseudo random contour noise as well as rotation is studied with
respect' to 'shape properties. The results are described in Section 4.4. A comparative

“study between our approach and the existing approaches is presented in Section 4.5.

4.2 The Thinning Approach

We initially consider thinning as an approach of producing a medial surface repre-
sentation of a 3D digital object that preserves the topology and maintains the shape
of the object to the maximum extent. It may be necessary in some applications to
produce a medial arc representation of an object. We call this transformation pro-
© Ccess as arc‘-thinning and consider it at the end of this section. The proposed thinning
approach producing a medial surface representation is an iterative erosion process
t];é.t consists of two steps namely primary-thinning and final-thinning. The results

'.._ID:F these steps are called primary-skeleton and final-skeleton respectively.

"l""l"ur thinning approach exploits the information from two versions of an image
Jmphmtly stored throughout the thinning procedure One image version denotes
" iﬁue black/white conﬁguratmn before the current iteration while the other denotes

::;: 1e current stage of the processed image. Here, it is worthy to mention that simple
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points are always detected on the current version of the image while the shape
preserving constraints are mostly defined on the image version before each current
iteration. This idea is quite different from other works [131,32] where only one
version of image is used for thinning. In this context we particularly note that only
one image is physically stored throughout the thinning algorithm, although we refer
to two image versions. Two image versions are realized from one physical image
by the way of interpreting the values of image points. This concept will be more
clear from the subsequent discussion. At the beginning of the algorithm when we
- read an image, every white point is assigned a large negative number, say —mazint
and each black point is assigned ‘0’. At the beginning of execution all black points
are unmarked, As the erosion continues, some of the black points are deleted and
~ some are marked. Once a point is marked it is never deleted in subsequent steps of
erosion during primary-thinning. Each iteration is denoted by an iteration number

t. A threshold value thr is defined during 7th iteration as follows:

thr = —mazint + 1.

If during ¢th iteration a point is found deletable then it is assigned the value thr.
Thus a point having value greater than or equal to thr is black before the iteration.
- Otherwise, the point is white before the iteration. A point with negative value is
~currently white while a point with non-negative value is currently black. In this
way, two image versions are realized from single physical image. A point with zero
‘value is an unmarked black point. A point is marked by assigning the iteration

number ¢. Thus a point with non-zero positive value is a marked point.

f‘ht this point it should be made clear that in this work, 1terat10n and scan are two
| u:mpletely different concepts. A scan is a (point by point) traversal of the entire
. ‘nage when subjected to the thinning process. On the other hand, an iteration
13 completed after considering the entire outer-layer of an object through proper
.vpology and shape constraints. An iteration may consist of one or more scans
|:wh1ch case the operation in each scan is generally different. The set of points

.ofigidered for erosion during an iteration defines the outer-layer for that iteration.

92



Before we describe the thinning procedure let us present some definitions and con-
ditions in this context. In the following definitions and conditions (a,d), (b,€) and

(¢, f) denote three distinct unordered pairs of opposite s-points of N (p) unless stated

otherwise.

Definition 4.1 During an steration a black point p ts an s-open point +f at least

one s-point of N(p) is white before the iteration.

Definition 4.2 During an steration a black point p is an e-open point if p is not
an s-open point and an e-point e(a,b,p) ts white while the points fi(a,p), f1(b, p)

are black before the iteratton.

Definition 4.3 During an iteration a black point p is a v-open point if p 1s
neither an s-open point nor an e-open point and a v-point v(a, b, ¢, p) is white while

the points fi(a,p), f1(b,p), fi(e,p) are black before the iteration.

‘The set of s-open, e-open and v-open points defines the outer-layer in an iteration.
It is understood from the above definitions that the labeling of points as s-open,
e-open and v-open points is made once before each iteration. In the definition
of e-open points, the extra condition * fi(a, p),f1(b,p) are black’ is used to include
the points marked as ‘e’ in Figure 4.1 while to exclude the points marked as ‘X’ in
Figure 4.2. If the points marked as ‘X’ are included as e-open points i.e. considered
for erosion in the particular iteration then the sharpness of the corner is lost in the
next iteration. Similarly, the extra condition ‘fi(a, p),f1(b, p), fi{e,p) are black’ is

used in the definition of v~-open points to preserve the sharpness at the meeting

corner of three surfaces.

|||:301hditi0n 4.1 During an steration a point p satisfies Condition 4.1 if there
“ezist two opposite s-points a,d € N(p) such that £ M(e,d,p) contains a 6-closed path
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- Pigure 4.1: Demonstration of e-open points. The point marked as ‘¢’ is an e-open

point. Here, points marked as ‘s’ are s-open points,
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Figure 4.2: The points marked as ‘x’r'.are excluded as e-open points to preserve the

~ sharpness of the corner. Here, pnint's marked as ‘s’ are s-open points. |
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of white points encircling p and each of sur face(a,p) and surf ace(d,p) contains at

least one black potnt before Lhe steration.

A 6-closed path of £ M(a,d,p) encircles p if it contains two points of £ M(a,d,p) N
{pp,DysPgt 1t is worthy to mention that in this thesis a path or a closed path is a
sequence of distinct points (see Section 1.2.7). It may also be noted that a 6-path
of white points encircling p defines a tunnel [111,113,114,115] in the backgruﬁnd.
Thus one may guess that this condition characterizes an arc-like shape. The second

part of the condition ensures that the arc-like shape must be at least three points

elongated.

Condition 4.2 During an tteration a point p salisfies Condition 4.2 if there
ezists a pair of opposite s-points (a,d) such that d € {p,,ps,py }, @ is white, d or
fi(d, p) ts white and each of the sets {e(a, b,'p), b, e(b,d,p)}, {e(a, ¢, D), ¢, e(c,d, p)},
{e(a, e,p), ¢, e(d,e,p)}, {e(a, f,p), [, e{d, f,p)}, {v(a,b,¢,p), e(b, c,p), v(b,e,d,p)},
{v(a,b, f,p), e(b, f,p), v(b,d, f,p)}, {v(a,c,e,p), e(c, e p), v(c,d,e,p)}, {v(a,e, f, p),
e(e, f,p), v(d,e, f,p)} contains at least one black point before the iteration.

Condition 4.2 characterizes a surface-like shape and the second part of this condition

that each of the eight sets (mentioned in the condition) contains a black point,

ensures that the surface must be at least of size 3 X 3 points.

Definition 4.4 During an tteration a black point is a shape point if 1t satisfies
Condstion 4.1 or Condition 4.2,

Thus a shape point is either an arc-like shape or a surface-like shape. It may also

. | be noted that shape points are labeled once before each iteration.

- tfi@onditioﬁ 4.3 _Dur:'ng an tteration a point p .édt:'sﬁes Condition 4.8 if for each
“middle plane M(a,d,p) of N(p) — either all e-points in M(a, d,p) are black before
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the ftcrat:’an or the current black points of M(a,d,p) generate single 26-componeni

without any tunnel [114,115],

The black points of the middle plane M(a,d, p) generate a tunnel if and only if all
the s-points of N(p) belonging to M(a, d,p) are currently black.

Definition 4.5 During an steration a function is defined on the black/white

configuration before the steration as follows:

true if a and fy(d,p) are white while d is black,

thick{a,d,p) =
(4, ) {f&ise otherwsse.

-

Condition 4.4 A point p satisfies Condition 4.4 sf thick(a,d,p), where d €
{pgsDss Py}, 18 true and the current black points of each of M(b,e,p) and M{e, f,p)

generate single 26-component without any tunnel,

Condition 4.5 A point p satisfies Condition 4.5 if thick(a, d, p) and thick(b, e, p),
where d,e € {p,, D, D, }, are true and the current black points of M(c, f,p) generate

stngle 26-component withoul any tunnel.

" Condition 4.8 A point p salisfies Condition 4.6 if thick(a,d, p), thick(b,e,p)
and thick(c, f,p), where dye,f € {p,,ps,Dw }, are true.

Definition 4.8 During an steration a black point 18 an erodable po:'ﬁt tf it 15 a

stimple point and satisfies any of the Conditsons 4.4, 4.5 or 4.6.

4.2.1 Primary-Thinning

 As mentioned earlier primary-thinning is an iterative procedure and iterations are

| i'..continued as long as any point is deleted in the last iteration. Each iteration is

06



.mmmmwymm.ma ﬂ
# mm,mrm,mrwnzmﬂ ﬂ

Figure 4.3: Problem of eroding all simple e-open points. (a) Original object.

(b) Surface-skeleton when all simple e-open points are eroded.

completed in three successive scans. During the first scan the set of unmarked s-
- open points is used for erosion, An unmarked s-open point is marked if it is a shape

point. When it is not a shape point, it is deleted if it is a simple point, otherwise it is
left unmarked. During the second scan the set of unmarked e-open points is used for
erosion. It may be observed from Definitions 4.2 and 4.4 that an e-open point can
never be a; shape point and hence is never marked. However an undesired situation
may occur as shown in Figure 4.3 when all unmarked e-open points satisfying the
constraints of simple points {111,113,114] are deleted. To overcome this problem
- an additional constraint, namely Condition 4.3, is imposed on the deletion of e-
open points. It may be noted that the Condition 4.3 basically checks 2D topology
'préserva.tion in each co-ordinate plane passing through the candidate point and

containing one of its white (before the iteration) e-points. Thus in the second scan

an unmarked e-open point is deleted if it is a simple point and satisfies Condition 4.3.

During the third scan the set of unmarked v-open points is used for erosion. An

unmarked w-open point is deleted if it is a simple point.
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Figure 4.4; (a) An output of primary-thinning. (b) Properly thinned output after

final thinning,

4.2.2 Final-Thinning

From the definition of shape point it may be understoed that a two-point thick
slanted surface may occur in primary-skeleton. Final-thinning is necessary to get
a proper skeleton for such cases, This is a single iteration procedure and the it-
eration consists of single scan. During this scan a black point p (irrespectivé of
whether p is marked or unmarked) is deleted if it is an erodable point. In Fig-
ure 4.4.(a), we show an _:jutput of primary-thinning, The output of final thinning
for corresponding pattern which is properly thinned is shown in Figure 4.4.(b). Also,

final-thinning produces similar thinned output for two-point thick slanted surfaces

(like Figure 4.4.(a)) in different directions.

4.2.3 Shape Preservation Around Corners

| Intuitively it is obvious that the quality of skeleton gets affected by the sequence in

-which the points are deleted when outer-layer is defined on the current version of the
. processed image. This problem does not occur when the image before each current
. 'itera.t'ibn is oonsidered to Iabel the outer-layer. It is already mentioned that in the

- proposed algorithm the outer-layer i.e. the set of different open points are labeled
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- Figure 4.5: Problem of considering 6-contour points for erosion during each itera-
tion. (a) Original object. (b) Skeleton using 6-contour points. (c) Skeleton using

- s-open, e-open and v-open points separately for erosion.

before each current iteration. Even if the outer-layer is labeled before each current

iteration, it may improperly behave around different corners. For example, if the
set of 6-contour points?® is used as outer-layer theh an undesired situation may arise
“as shown in Figure 4.5. On the other hand, if the set of 26-contour points® is used
as outer-layer then it produces a proper skeleton for the object of Figure 4.5.(a) but
fails to do so for the object of Figure 4.6.(a) (see Figure 4.6.(b}). The approach of

using s-open points, e-open points and v-open points for erosion in three successive

'a black point having a white 6-neighbor before the current iteration is a 6-contour point

22 black point having a white 26-neighbor before the current iteration is a 26-contour point
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Tigure 4.6: Problem of considering 26-contour points for erosion during each itera-

_f":::._ioﬁ. (a) Original object. (b) Skeleton using 26-contour points. (c) Skeleton using

_':.'5=-:-.open, e-open and v-open points separately for erosion.
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scans of each iteration as described in Section 4.2.1, produces proper skeletons for
both the objects as shown in Figures 4.5.(c) and 4.6.(c) respectively. Proper skeleton
means that the sharpness of meeting corners of two or more surfaces is preserved.
Our approach is applied on different cth_er types of junctions with varied angles and
rotations and the skeletons obtained are quite satisfactory. A quantitative study on

the behavior of the algorithm under rotation is demonstrated in Section 4.4.2.

4.2_.4 Contour Noise Handling

Since noise is a part of real life, a good thinning algorithm should be robust enough
to preserve the shape of skeleton under noise. Unfortunately it is not easy to
specify the noise points from an image. We consider a model of noise which consists
of adding simple poiﬁts of the background to the object or deleting simple points
from the object. The probability to change the type of a point is the measure of the
noise. Thus single point protrusions or dents on the contour are created as noise
in the proposed model and we ensure that they do not produce undesired skeletal
parts or branches. The definition of shape point serves the purpose. Branches are
allowed to grow only from the shape points. Conditions 4.1 and 4.2 for shape point
arrest the creation of undesired branches from a single point protrusion or dent. Our
technique of contour noise handling is supported by experimental results shown in
Figures 4.7-4.11. Also, a quantitative study on the behavior of the algorithm under

pseudo random contour noise is demonstrated in Section 4.4.1.

425 Arc Thinning

~ Depending on the applications we may need arc representation of an object. We
present a schematic description of the procedure that produces a medial are repre-
sentation of an object from its surface representation. To avoid ambiguity we call
6 hls procedure as arc-thinning. Arc-thinning is also an iterative procedure with
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two steps, namely primary-arc-thinning and final-arc-thinning. The results of these
steps are called primary-arc-skeleton and final-arc-skeleton respectively. Here too
we memorize two image versions in the same way described earlier. At first, we put °
forward some definitions in this context. In the following definitions (a,d), (b, €]

and (¢, f) denote three distinct unordered pairs of opposite s-points of N(p).

Definition 4.7 During an steration a black potnt p 1s an s-open-surface point
if the points a, e(a,b,p), b, e(b,d,p),d are all white before the iteration.

- Definition 4.8 During an steration a point p ts an e-open-surface point if it
ts not an s-open-surface point and at least one point from each of the sets {a},
{e(aa b:P): 8(&,6,13)}, {”(a*: blclp)}.l {e(b,¢e,p)}, {u(b,c,d,p)}, {e(b, dip)J e(c,d,p)},
{d} is white while each of the sets { f2(a, b, p), fs(a, b, p), f2(b,a,p), f1(b,p), f2{b,d,p),
fa(b, d,p), f2(d,b,p)} and {fi(a,¢,p), fs(a,c,p), fale,a,p), file,p), fa(e,d,p),
fs(e,dyp), fa(d,c,p)} contains at least one black point before the iteration,

During arc-thinning, the set of s- and e-open-surface points define the outer-layer
and they are labeled once before each iteration. It may be noted from the above
definitions that for an s-open-surface point there is a 6-path of white points between
two opposite s'—points through another s-point. For e-open-surface points there is a
6-path of white points between two opposite s-points through an e-point. In case of
 e-open-surface pbints the second condition is imposed to preserve the sharpness of

corners during thinning (similar to the reasons explained for Definitions 4.2 & 4.3).
 Definition 4.9 A black point is an arc-shape point if it satisfies Condition 4.1.

Thus an arc-shape point is an arc-like shape which is at least three-point elongated.

- Similar to shape points arc-shape points are also labeled once before each iteration.
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Definition 4.10 A black point p v's an arc-erodable point if — 1) every middle

plane of N(p) contains at least one currently black point, and ti) p ts a simple point.

Each iteration of primary-arc-thinning is completed in two scans. During the first
scan an unmarked s-open-surface point p is marked if it is an arc-shape point.
Otherwise, if p is a simple point then it is deleted else it is left unmarked. During
the second scan an unmarked e-open-surface point is deleted if it is a simple point.
Otherwise, the point is left unmarked. Final arc-thinning is a single scan procedure.

During this scan a black point p is deleted if p is an arc-erodable point.

4.3 The Parallel Thinning Approach

In this section we describe a paralle] thinning algorithm based on the approach
discussed in Section 4.2, Some shape and topology constraints are checked to mark
“or to delete a point. The most important problem faced by a parallel thinning
algorithm is that two points p,q individually satisfy the necessary topology con-
straints of deletion but if both of them are deleted together then the topology
constraints may be violated [130]. This condition may occur only when p, g are
26-adjacent. This is because the topology constraints for a point p are defined
in its Zﬁ—ﬁeighbﬁrhood N(p) only. So, if two points p, g are not 26-adjacent then
N(p)Ng=4¢, N(g)Nnp= ¢, and obviously pfig = 4. To solve this problem we use
the concept of sub-fields [28,32]. An image is partitioned into eight disjoint subsets
such that no two members p, ¢ in the same subset are 26-adjacent. Hence the mem-

bers of each subset may be used for parallel erosion. Eight subsets O, Oy, - Oy
are defined as follows: | |
={@xt+f,2xi+g2xk+h)|5k=0,%1,+2,.-.; (4.1
fig,he{0,1} and 22 x f+2' x g+ 2° x h = I}
such that two points p,¢ € O; are never 26-adjacent. Each scan of the thinning
aﬁl_;gc:rithm may be completed in eight cycles and at /th cycle the image subset O,
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is subjected to parallel erosion. The parallel algorithm requires m?®/8 processors
for an image of size m X m X m and it needs 8 cycles to complete each scan. The
image size means the size of the smallest rectangular parallelepiped that encloses
the set of black points. It is also possible to implement the algorithm with m®/8n
processors for an integer n and in that case each scan requires 8n cycles instead of
8. The concept of sub-fields in two dimensional hexagonal tessellation was earlier
proposed by Golay (28] where he used three sub-fields to ¢arry out one scan of
topology preserving skelefonization. This concept was further studied by Hafford
and Preston [32] in three dimensional tetradecahedral tessellation. They used six
sub-fields to carry out one scan of topology preserving skeletonization. However
they used only one version of image while thinning. On the other hand we use two

versions of image throughout the thinning algorithm.

To test the effectiveness of the proposed algorithm it is applied on synthetically gen-
erated 3D objects as shown in Figures 4.7-4.11. In Figures 4.8—4.11 the background
~ is made dark to render a better visual effect. The 3D objects in Figures 4.7-4.11

may be enclosed in minimum rectangular space of size 44 x 41 x 44, 63 X 136 x 35,
- 79X 79 x 31, 81 X 42 X 62 and 72 x 116 x 72 respectively. Figure 4.7 contains typical
additive and subtractive noises. Figures 4.8-4.11 have both noiseless and noisy ver-
‘sions. The noise in Figures 4.8—4.11 is generated in a pseudo random manner while
the noise in Figure 4.7 is imparted manually to incorporate all typical possibilities.
Art:-thinning i8 considered on Figures 4.7-4.8 only (meaningful result cannot be
obtained by arc-thinning for Figures 4.9-4.11). In Figure 4.7 the thinned surface
and arc representations show the desirable shape despite noise. The surface and
arc representations of both noiseless and noisy versions of Figure 4.8 as well as the

surface representations of Figures 4.9-4.11 are visually satisfactory.
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(b)

(€)

Figure 4.7: Results of thinning. (a) Original object. {b) Skeleton. (¢) Arc-skeleton.
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4.4 Shape Analysis Under Noise and Rotation

To study the behavior of the proposed algorithm under noise and rotation we define
a shape distance function for 3D digital objects that will be useful in this context.
A shape distance metric for 3D objects in E® was proposed by Banerjee et. al. [12]
and Dutta Majumder [72], They considered a subset A in E* as an object if — 1) 4
is compact, 2) Interior(A4) is non-empty and connected, and 3) Closure(Interior(A))
= A, The shape distance is defined as follows: let C be the class of all objects
in E® which have the center of gravity at the origin (0,0,0) and have unit volume.
Any rotation of a,nr object in E® about the origin (0,0,0) is determined by the
corresponding rotation of the system of axes. This rotation is specified by three
angles f,w and % in [0°,360°] where @ is the angle between the new and the old
r-axis, w is the angle between the new and the old y-axis and v is the angle between
the new and the old z-axis. Let A,y denote the rotated form of an object A in C,
where 8, w and ¢ determine the new system of axes. It is clear that A,y 1s in C.
Rotation defines an equivalence relation on C. This equivalence relation is denoted
by R. The shape of an object is defined as an equivalence class generated by R in
C. Let v be the family of all such equivalence classes i.e. of all shapes. Dy is a
distance function on C such that for A, B & C

Di(A, B) = Lebs (A — B) U (B — 4)),

where Lebg is the Lebesgue measure in E°. As shown in [12] D, defines a metric on
C. D, is a distance function on C such that for A,B € C

D;(4, B) = min D (A, By,u,y)

D, is a metric on 7.

We propose a modified shape distance function between two objects in a 3D digital
space that may be useful for estimation of shape distortion in thinning under noise

and rotation. According to our requirement we restrict ourselves to the assump-
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tion that the distance function is applied on the objects with normalized size and

rotation.

Definition 4.11 DTy is a distance function between two points py = (1, Y1, 21)

and py = (2,Y2, 22) as follows:

DT\(p1,p2) = \/(331 — z3)? + (y1 — ¥2)? + (21 — 22)°

DTy ts the Euclidean distance function between two points of E°.

Definition 4.12 DT, is a distance function between a potnt p and.c finite set

of points S as follows:
| DT2(p: S) = IgEiélDTl(P,q)

Definition 4.13 The center of gravity (%,7,%Z) of a finite set of poinls S =
{(ziy¥iyzi} | 1 =0, ,n} 18 defined as follows:

?==U ﬂ:,'_ g = E?:G yi_ 5 = E::;D 2
S ] A |5

where | S | denotes the number of points in S.

Definition 4.14 A posttion normalized set norm(S) fs derived from a finite set

of points S as follows:

norm(S) = {(x; — Z, % — ¥, 2 — F) | (zi, 4, %) € S}

where (%,T,Z) 1s the center of gravity of S.

Definition 4.15 DTy is a distance function between two finite sets of points 5y

and S, as follows:

ZpEnarm(Sl) DTy (P, norm(sg)) + EﬁEnurm(Sn} DT, (P, norm(sl))

DTy (51, 8) = 5| 5|
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We are noting that DT3 is not a metric because it does not satisfy the triangle

inequality. The issue of investigating alternative distance function of DTy that are

metrics, is listed in Chapter 6 as an important future work.

4.4.1 Shape Distortion Under Noise

To find shape distortion by a thinning algorithm under pseudo random contour
noise we add random noise on a 3D digital object according to the model presented
in Section 4.2.4 and then estimate the shape distortion in the skeleton. Let Sk(X)
denote the skeleton of a 8D object X. Let X denote the noisy version of X. To find
the distortion of shape in the skeleton under noise we compute DT5(Sk(X), S k(X )).
A comparative study between the percentage of noise in X and DT3(Sk(X), Sk(X))
gives a quantitative sense about the robustness of a thinning algorithm under noise.
A comparative study on the objects of Figures 4.8-4.11, under different amount of

noise, is shown in Figure 4.12.

4.4.2 Shape Distortion Under Rotation

We study the shape distortion by the thinning algorithm under rotation. Let [X]g,y
denote the 3D digital object obtained from a 3D digital object X by a rotation where
0, w, ¢ determines the new system of axes with the center of gravity of X as the
origin. Let Sk(X)suy denote the rotated form of Sk(X) where 8, w, ¢ determines the
new 'system of axes with the center of gravity of Sk(X) as the origin. It is worthy to
mention that {X s,y is a rotation in digital space while Sk(X)suy is a rotation in the
Fuclidean 3-space. Even if the digital rotation introduces error, we need to map the
rotation of input image in digital space as it is subjected to thinning subsequently.
" However, for skeleton the Euclidean rotation suffices as shape distance is measured

between two finite sets of points in Euclidean space, To estimate the shape distortion

i |

under rotation we compute DTs(Sk(X)puy, Sk([X)owg)). An experimental study of
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Figure 4,12: Shape distortion analysis under pseudo random contour noise for the
objects of Figures 4.8-4.11,
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‘shape distortion on the objects of Figures 4.8-4.11, under different rotation about

the z-, y- and z-axes, are shown in Figures 4.13, 4.14 and 4.15 respectively.

4.5 Comparative Study

In the literature of 3D thinning there are publications [32,28,69,79,122,130,131,70,71]
where the topology preservation is ensured during thinning. On the other hand,
shape preservation has received less attention, especially in noisy images. Tsao and
Fu.[130] in particular considered the issues of parallel thinning in 3D cubic grid.
Hafford and Preston [32] considered parallel thinning in tetradecahedral tessellation
using the concept of sub-fields. Lobregt et. al, [69] and Ma [70,71] considered the

issues related to topology preservation in parallel thinning, However, they have not

discussed the issues of shape preservation. Mukherjee et. al. [79] and Shrihari [122]
considered the issues of sequential thinning., Therefore, it is logical to compare our
method with Tsao and Fu [130]. They considered path connectivity and surface
connectivi'ty for topology preservation. While they introduced the concept of end
points to avoid excessive erosion, their methodalogy lacks the treatment of noisy

images with no special mention of shape preservation about corners.

In contrast we have introduced the concept of open points that produces desired
skeletons around corners as discussed in Section 4.2.3. The idea of shape points,
detailed in Section 4.2, have helped us to tackle the noises in pa,rticular: Subjec-
tively, the methodology of utilizing two image versions have generated significantly
improved result over Tsao and Fu [130], The Figure® 4,16 (the original image and its
thinned versions following Tsao and Fu's algorithm [130]) and Figure 4.17 (thinned
versions following our algorithm) are the experimental evidence in support of our

claim.,

“Reprinted from Tsao and Fu (130}
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Figure 4.16: Results of thinning by Tsao and Fu’s[130] method. (a) Original object.
(b) skeleton obtained by Tsao and Fu’s method. (c) Arc-skeleton obtained by Tsao

and Ifu’s method.
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Figure 4.17: Results of thinning by our method on Tsao and Fu’s{130] ob-
ject. (a) Skeleton obtained by our methdd. Cormpare this with Figure 16.(b).

(b) Arc-skeleton obtained by our method. Compare this with Figure 16.{c)
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4.6 Discussion and Conclusion

A new parallel thinning algorithm of 3D digital images with topology and shape
preserving properties has been developed in this chapter. To preserve topology
we have applied the concept of simple points [111,113,114]. On the other hand the
concept of sub-fields |28] has been used for parallel implementation. The concepts of
open points and shape points have been introduced and applied to 3D thinning. The
role of open points in producing proper skeleton around different types of corners

has been justified. Also, the shape points are found to be robust under noise.

We have used two versions of the image — one before the current iteration while
the other being the currently processed image. The necessity of two image versions
in parallel thinning has been justified. This concept has made a major improvement
in the quality of thinned image. The results of application of the parallel thinning
algorithm on several synthetically generated 3D objects and their noisy versions
have been presented. We have also described an algorithm that produces a medial

arc representation of an object from its surface representation.

In practice the shape of a skeleton gets distorted under noise and rotation. The
distortion, among others, characterizes the goodness of an algorithm. To estimate
the degree of distortion we have used the concept of shape distance. The robustness
of our algorithm under pseudo random contour noise and rotation has been studied
and presented with examples. Because of digital nature of the image space, a shape
may be distorted under rotation. This distortion is also reflected in the skeleton. A
part of the skeletal distortion shown in Figures 4.13-4.15 is because of this reason.
It is understood from Figures 4.13-4.15 that shape distortion is maximum for a
rotation around 45° and it is quite expected. Also for this thinning algorithm the
shape distortion increases more or less linearly with the percentage of noise. This

work can be applied for finding meaningful parts of 3D objects.
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Chapter 5

Topology and 3D Object

Segmentation

5.1 Introduction

Recent developments of three dimensional images as an effective interactive media.
(e.g. 3D imaging in medical science) have motivated scientists in exploring three
dimensional image processing to a greater detail. An automatic interpretation of 3D
digital images is a challenging and definitely an important step for many applica-
tions. Since 3D digital images involve a large volume of data, feasible steps toward
an automatic interpretation demand a compact and well structured representation
of 3D images. In the previous chapter, a parallel 3D thinning approach has been de-
scribed that produces a compact representation of an object while maintaining the
topology as well as the shape. While thinning produces a compact representation,

segmentation helps in producing a structured representation of an object.
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In this chapter we describe a segmentation process [115] based on topological prop-

erties, The major steps of this segmentation process are as follows:

1. Derivation of surface skeletal representation of an object.
2. Computation of local topological parameters of surface skeletal points.

3. Classification of surface skeletal points into different types of points (e.g. curve
inner point, curve edge point, surface inner point and surface edge point) and
detection of different types of junction points (e.g. junction points between

curves, between curves and surface and also between surfaces).

4, Segmentation of surface skeletal repr-esenta;tiun into meaningful parts.

The proposed approach segments a surface skeletal representation into surfaces and
curves without junction. More specifically, a segmented part belongs to one of the

following categories:

1. a simple surface patch (topologically equivalent to a rectangular sheet),

2. a simple cylindrical surface (topologically equivalent to a hollow cylinder),
3. a simple closed surface (topologically equivalent to a hollow sphere),

4. a simple curve (topologically equivalent to a straight line segment), and

5. a simple closed curve (topologically equivalent to a circle).

The segmented parts along with their depth information may be used to repre-
sent an object as a compact structure of simple geometric feature restricted by a

predetermined feature set.

The steps of thinning an object to a surface skeleton is discussed and a parallel

algorithm is developed in Chapter 4 while an efficient algorithm of computing the
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local topological parameters is described in Chapter 3. In this chapter, we first
describe the method of point classification [115} in Section 5.2, The segmentation
approach [115] is discussed in Section 5.3. A comparative study between our ap-
proach and that due to Malandain et. al. [73] has been presented in Section 5.4.
Finally the results of application of the segmentation process to several synthetically

generated 3D objects are presented in Section 5.5.

5.2 Point Classification

In Chapte'r 3 an efficient procedure topo_para is developed that computes the topo-
logical parameters £(p), n(p), and é(p) corresponding to a point p. It is worthy
to recapitulate that £(p), n(p), and 6(p) represent the numbers of black compo-
nents, tunnels and cavities in N (p) respectively. We describe their applications to
the classification [115] of different types of points as surface edge point, curve end
point, surface or curve inner point and different types of junction points in a surface
skeleton representation. The results of this classification method are applied for a

meaningful segmentation of 3D objects.

In a 2D skeleton we can imagine only three types of points namely curve end point,
curve inner point and junction point of curves. However, in a surface skeleton of
3D object, different types of junction points may occur (e.g. junction of surfaces,

junction of surfaces and curves, and junction of curves).

As an example, let us consider a surface skeleton representation shown in Figure 5.1
where different points of importance are marked as p;, ¢t =1,2,-++,8. These points
along with their £(p), n(p), and 6(p) values are described as follows:

i

e p; is an edge point of surface (S E-type),
E(p1) = 1L,n(p) = 0,6(p1) = 0;
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Figure 5.1: Demonstration of different types of points in a surface skeleton repre-
sentation (see the text for details).

Table 5,1: Initial decision table for skeleton point classification.

Name

&(p) | n(p) | 6(p) Point type assigned

0 0 0 I-type l N1

1 0 0 S E-type or CE-type N,

2 0 0 C-type Ns
>2 0 0 CC-type Ny
1 1 0 S-type or CC-type Ng
>1 _:??_1 0 | 8S§-type or SC-type or C'C-type Neg

1 >1 0 —S.S'—type or §C-type or CC-type Ny

1 0 1 | §S-type or SC-type or CC-type Ns
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Table 5.2; Final decision table for skeleton point classification.

In this table ‘ASP’ is an abbreviation of ‘26-adjacent skeleton

point’.

Name Neighborhood analysis Point type
Ny exactfy one ASP C E-type
N, more than one ASPs S E-type
N5 all ASPs are N3 or Ny CC-type
Np not all ASPs are N3 or N, S-type
Ng all ASPs are N3 or N, CC-type
Ng | not all but some ASPs are N3 or Ny | SC-type
Ng no ASP is Ny or IV, SS-type
Ny all ASPs are Ng or Ny CC-type
Ny | not all but some ASPs are N3 or Ny | S5C-type
Ny ) no ASP is N3 or Ny S5-type
Ny all ASPs are N3 or Ny CC-type
Ny | not all but some ASPs are Ns or Ny | SC-type
N3 no ASP is Ns or N, SS§-type
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e p, is an inner point of surface {S-type),
E(m) = 1,n(pa} = 1,6(pz) = 0;

e p; is a junction point of surfaces (SS-type),
¢(ps) = 1,n(ps) = 2,6(ps) = 0;

o p4 is a junction point of surfaces and curves (§C-type),
E(pé) — 24;7?(?4) = 1,6(P4) = 0;

o p; is an curve end point (C E-type),
'E(PE) — 1177(175) — Uja(pﬁ) = 0;

‘e pg is an inner point of curve (C-type),
E(pﬁ) — 2: W(Ps) = 055(196) = 0

o py is a junction point of curves (C'C-type),
&(pr) = 3,n(pr) = 0,6(py) =0;

o ps is an isolated point ([-type),
E(pﬂ) = 0, W(Pa) = 0,5(133) = ().

From the above example it may appear that 6(p) does not have any discriminating
power. However, as shown in Table 5.1, there is a situation (last row of the table)
where 8(p) takes a value ‘I’ and hence discriminates against other cases. By an-
alyzing all feasible combinations of &(p}, n(p), and 8(p) we develop Table 5.1 for

automatic detection of different types of points,

It may be noted from Table 5.1 that Ny, Ng, N4 signify unique point type while Ny,
Ng, Ng, Ny, Ny signify two or more point types. Therefore, using Table 5.1 we can
get a partial classification of skeleton points in one scan. However, from this partial
classification one can arrive at unique classification using another scan. During the
second scan we observe the 26-neighborhood of any point not uniquely decided by
Table 5.1 and use Table 5.2 for unique classification. Thus, in Table 5.2 only A3,

Ns, Ng, N7, Ng points are considered.
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Figure 5.2: Extension of §S-lines. (a) and {b) The §5-line (shown black) obtained
using Table 5.2. (¢) and {d) The SS-line after the extension process.
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Figure 5.3: The SC-type junction point (shown black) cannot be detected using
Table 5.2. | |

Figure 5.4: An example where the extension process is not needed.

At the end of second scan the classification process is completed except for a small
problem illustrated by Figures 5.2 and 5.3. In Figures 5.2.(a) and 5.2.(c), the hidden
points immediately below the vertical 6 X 6 rectangle are all white points. Also in
Figures 5.2.(b) and 5.2.(d), the hidden points immediately below the vertical 5 x 6
rectangle are all white points. In Figures 5.2.(a) and 5.2.(b), the §S-line (a 26-
path of §5-type points) should be extended to reach surface edges as shown in
Figures 5.2.(c) and 5.2.(d) respectively. In Figure 5.3, the curve-line (a 26-path of
G-fjrpe or C'C-type points) meets the surface and we have to find out the junction
point between the curve-line and the surface. On the other hand, in another example
shown in Figure 5.4, the §S-line should not be extended at two ends. However, as

discussed below it is possible to identify these cases and act accordingly.
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Eztension of SS-lines
At first we put forward some definitions.

Definition 5.1 A function D 1s defined on two points p,q as follows:

Fl

0 fp=yg;
1 if p is an s-point of N(q);
D(p,q) =< 2 if p 15 an e-point of N{(q);

; 3 if p s a v-point of N(q);
| o0 i'fPEN(Q); .

Let S be a finite set of points. Using the above function we define q as one of the
nearest points of p in S ifVr€ S, D(p,r) 2 D(p,q). It should be noted that a point

may have more than one nearest points tn a set of points.

Let Sgr denote the set of all SE-type points in a surface skeleton. Let p be an
end point of an §S-line (an end point has at most one 26-adjacent S5-type point).
Let 55, denote the set of all §S5-type points of N (p) excluding p and let S, denote
the set of all S-type points of N(p) excluding p. We observe every SE-type point
g € (N(p) — £(55,)}) N Ssg and flag according to the following algorithm:

if Sgg N N*(q) contains more than two 26-components then

Hag g¢;
else

if the number of tunnels in Sgg N N*(q) is greater than zero then

flag g;
else

if Ssg N N*(g) contains less than two 26-components then

if 3r € S, N N*(q) — £(5S,) such that D(q,r) < D(g,p) then
select one of the nearest points of ¢ in S, N N*(q) — £(55,), say ¢;

flag t;
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Note that after the last ‘else’ statement the flagged point (if at all) is not ¢ but a
point ¢ nearest to g in S, N N*(¢) — £(5S,). Finally, all flagged points are renamed
as §S-type points. If the algorithm is executed on Figures 5.2.(a) and {b) then we

obtain Figures 5.2.(c) and (d) respectively.

Finding junctions between the curve and the surface

Let p be a C-type or CC-type point and let S be the set of S-type, SC-type and
S S-type points of N (p). Let Sy, 8;,-+,8, be the 26-components of §. For each S;
such that S; contains no SC-type or SS-type points, one of the nearest points of p

in 5 is declared as an SC-type point. The SC-type junction point of Figure 5.3 is
detected by this algorithm.

5.3 The Segmentation Method

Using the results of the point classification method described in Section 5.2, we
detail a segmentation method [115] of three dimensional digital objects from their
surface skeletal representations. Let 5 denote the set of all skelefon points and let
J denote the set of all S5-type, SC-type, CC-type points (s.e. all junction points).
Let §' = § ~ (£(J) U J). Two or more surfaces and curves meet each other at
junction points. In other words more than one surfaces and curves are connected
around junction points. Thus the set of 26-components of S’ represents different
segmented surfaces and curves of the surface skeleton. However, some undesired

situations may occur for some surface representations. These situations along with

their solutions are described below.

For a surface representation shown in Figure 5.5.(a) an undesired tunnel is created
in §' ag shown in Figure 5.5.(b). Moreover in Figure 5.6.(a) the tail-like part is
lost as shown in Figure 5.6.(b). To solve these problems we use two more steps as

follows:
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Figure 5.5: An example where an undesired tunnel is created in S' (see the
text). (a) Original surface representation with the junction points shown black.

(b) 26-components of §'. (c) Final segments.
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nal surface representation with the junction points shown black. (b} 26-components

of S'. (¢) Final segments {the right-most segment represents the tail-like part).
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Step 1 Let 8!, 8!,:--,5! be the 26-components of S'. Each & is extended to

ES] as follows:
ES! =8{U(£(S))nS).

Step 2 Each extended component ES/ is further extended to reach final compo-

nents F'S! as follows:

FS8!'=ES!U(E(ES)NJ).

Finally all F'S/s as well as all 26-components of J — U, F'S; are declared as seg-
mented parts. Steps 1 and 2 are used to solve the problem of undesired tunnels
shown in Figure 5.5.(b) while the 26-components of J — Ujo F'S{ restore the lost
tail-like parts shown in Figure 5.6.(b). Figures 5.5.(c) and 5.6.(c) demonstrate the

final outputs obtained using these steps.

5.4 Comparative Study

Malandain et. al. [73] also considered segmentation of 3D surface using topological
features. They made some classification of points in E° where every point type
classification is unique and applied the same classification in digital domain. The
unique classification table creates undesired situations some of which were described
by them. Also Figure 12 of [73] has a junction of surfaces which is not a curve but
a surface of three-point width. This creates further problems in segmenting the

surfaces. Such a situation does not arise in our approach. Also in {73} no mention

was made to efficiently compute the numbers of adjacent object components (re-
ferred as C* in [73]) and adjacent background components (referred as C in [73]) of
a point in its 3 X 3 X 3 neighborhood. On the other hand, our algorithm fopo_para
~ is an efficient approach of computing the parameters related to topological segmen-
tation which are characterized by Table 5.1. The concept of using 18-neighborhood
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Figure 5.11: An example where two surfaces can not be segmented by the proposed
method.

images and the results are illustrated in Figures 5.7-5.10. Figures 5.7.(a}-5.10.(a)
are four binary images displayed by 3D surface rendering. The size of the smallest
rectangular parallelepiped to enclose these images are 71 x 114 X 71, 77 X 77 X

29, 79 X 40 X 60 and 72 X 116 X 72 respectively. Backgrounds are made black
to produce better visual effect. Figures 5.7.(b)-5.10.{b) are corresponding surface
skeleton representations obtained by applying the thinning algorithm described in
Chapter 4. In Figure 6.8 the original image and the skeleton are displayed from
different angle to produce a better view. Figures 5.7.(c)~5.10.(c) demonstrate the
corresponding segmented parts using the method described in Sections 5.2 and 5.3.
These segmented parts along with the depth information derived from a thinning
algorithm can be used to represent an object by a set of simple geometric features

restricted by a predetermined feature set,

The segmentation process is based on observing topological junction points. Non-
topological segmentation is not possible by this method. Figure 5.11 is an example
wliere the two surfaces can not be separated. In this case the segmentation could

be done by analyzing the abrupt change in surface normal direction.
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Chapter 6

Conclusion

The work presented in the thesis is an attempt towards an advancement in the area
of three dimensional digital topology. At the same time this work has tuned up
the topological concepts with image processing applications, An in-depth study has
been made on the current status of the digital topology. The basic concepts and

useful definitions have also been presented.

First of all, the topological effects in a 3D digital image under binary transformation
of a point has been considered. A theorem has been established that defines the
number of tunnels in 3 X 3 X 3 neighborhood which was definitely a ‘bottleneck’
in 3D digital topology. Based on this theorem a new and efficient characterization
of (26,6) simple point has been presented. One of the attractive features of this
characterization is that it only uses connectedness of points in 3 X3 X 3 neighborhood.
Using the theorem defining the number of tunnels in 3 X 3 X 3 neighborhood an

effective measure of local topological changes due to binary transformation of single

point has been developed.

In this thesis a set of interesting properties of 3 X 3 X 3 neighborhood has been ob-

served and an in-depth study has been made. This has resulted in new concepts like

138



‘dead-surface’, ‘dead-edge’, ‘effective points’, ‘isolated points’. These concepts have
been used to find out the don't care points (i.e. the points whose color can be ig-
nored) while collecting local topological information of a point. Further, the concept
of ‘geometric class’ has been introduced, All these concepts have been assembled
to develop algorithmic forms of three useful topological operators: 1) simple point
detection, 2} computation of local fopological parameters (these parameters also
define the local topological changes under binary transformation), and 3) change
in the Euler characteristic under binary transformation. One important feature of
these algorithms is that they need the configuration of all the 26-neighbors of a point
only in the worst case and in most of the situations they need the configuration of

lesser number of points. A parallel algorithm to compute the Euler characteristic

of 3D digital images has been developed in this connection.

Subsequently an application of simple point concept in 3D thinning has been consid-
ered where we have developed a parallel thinning algorithm for 3D digital objects
that preserves the topology as well as the shape. To preserve topology we have
applied concepts of simple points while the concept of sub-fields has been used for
parallelization. The concepts of ‘open points’, ‘shapeé points’ etc. have been intro-
duced and applied to 3D thinning. The role of ‘open points’ in producing proper
skeletons around different types of corners has been justified. Also, ‘shape points’
have been found to be quite robust under noise. We have introduced the concept
of using two image versions in thinning and have justified its necessity in parallel
thinning. This concept has made a marked improvement in the quality of thinned
image. The results of application of the parallel thinning algorithm on several Sy 1I-
thetically generated 3D objects and their noisy versions have been presented. We
have also described an algorithm that produces a medial arc representation of an
object from its surface skeleton representation. After studying the quality of skele-
tons around djfferent types of corners, we have made an extensive study on the
behavior of the algorithm under pseudo random contour noise and under rotation

using shape distance. The study has revealed that shape distortion in skeleton in-

creases more or less linearly with noise while in case of rotation, this distortion is
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maximum around 45°.

Finally, we have described the role of digital topology in segmentation of 3D digital
objects from their surface skeletal representations. After finding the surface skeleton

of a 3D digital object and computing local topological parameters of surface skeleton

points, the segmentation method has been completed in two steps: 1) point classi-
fication, and 2) segmentation into meaningful parts. Local topological parameters
have been used to develop the point classification method which properly classifies
the surface skeleton point and successfully detects different junction points. One
important property of the point classification method is that it produces exactly
oné 26-curve of junction points when two or more surfaces meet. Also, exactly one
junction point is generated when one or more curves meet with a surface or meet
themselves. After detecting the junction points, the results have been applied to
develop a segmentation method that produces meaningful segments of 3D digital
objects. The results of application of the segmentation method on synthetically gen-
erated 31 objects have been presented. A limitation of the segmentation method
has been pointed out that the method cannot segment the cases when two surfaces

sharply meet at their edges producing no topological junctions.

We state the directions of future research that may evolve from this thesis:

1. Investigation of proof for the generalized version of Proposition 2.2,

9. Characterization of simple points that is valid in any regular 3D digital image

space,

3. Measure of local topological parameters that is valid in any regular 3D digital

image space,

4. Robust parallel thinning algorithm for 3D digital objects in a selected domain

of application.

5. Thinning algorithm of 3D digital objects using distance transformation method.
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6. Investigation of alternative distance function of D73 that are metrics.

7. Segmentation of surface skeletal representations analyzing the change in sur-

face normal direction.

8. Representation of 3D objects by simple geometric features restricted by a

predetermined feature set.
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Appendix A

A.1 List of Notations

3D:  three dimension.

o:  adjacency relation,

B:  adjacency relation.

§(p):  number of cavities in N(p), see page 68.
n(p):  number of tunnels in N(p), see page 68.
£(p): number of components of N (), see page 68.
n( }:  digital fundamental group, see page 8.

¢:  null set.

1This liat; of notation is provided for better readability. This list is neither exhaustive nor the

formal meaning of notations are always presented here.
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X():  the Euler Characteristic, see page 12.
T: s-point configuration, see page 76.
(V,a,8): digital image space, see page 4.
(V,e,8,8): digital image, see page 6.

[X]owy:  an object in Z° from the object X < Z° after the rotation 9,w, ¥, see
page 112, '

Agup: an object in E° from the object A C E® after the rotation 8,w,, see
page 110,

B:  set of black points, see page 8.
B(p):  the set of black points of J?(p), see page 49,
B'(p):  the set of black points of N'(p), see page 49.

B.(p): the set of black e-points of N'(p), see page 81.

Bi(p): the set of black points after the completion of ¢th steps of shrinking of

i

N (p), see page 51.

C(): continuous analog, see page 8.

Di():  a distance function between two shapes, see page 110.
Dy():  a distance function between two shapes, see page 110.
DTy(): a distance function between two points, see page 111.

DTy ( ): adistance function between a point and a finite set of points, see page 111,
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DT3( ):  a distance function between two finite sets of points, see page 111,
e-point:  an 18-adjacent point which is not 6-adjacent, see page 13.

e( ):  afunction from Z° to Z3, see page 13.

edge( ): an edge of 3 X 3 X 3 neighborhood, see page 13.

£(): 26-envelope, a function producing a finite subset of Z® from a finite subset

of Z3, see page 16.

E®:  the FKuclidean 3-space

EFO(): an ordered set of effective points, see page 76.

EFEO(): an ordered set of effective e-points, see page 77.

EM(): -a,n extended middle plane of 3 >< 3 X 3 neighborhood, see page 15.

euler_change(p):  computes the change in the Euler characteristic in N(p) under

deletion of p, see page 87.

fi{):  afunction from Z° to Z%, see page 15.

fa():  afunction from Z° to Z°, see page 18.

fa( ):  a function from Z 3 to Z°, see page 15.

¥: minimal separator, see page 39.

F(p): 26—I;ﬁnima1 separator of N(p), see page 39.
ISO(): an ordered set of isolated points, see page 78.

LUT _simple_point;:  look up table of simple point detection for 1th geometric
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class, see page 76,

LUT topo_para;: look up table of topological parameter computation for ith

geomeftric class, see page 81,

LUT _euler_change;: loock up table of the Euler change computation for ith

geometric class, see page 85.

M{): a middle plane of 3 X 3 x 3 neighborhood, see page 15.
N Fp): the set of a-neighbors of p including p itself, see page 13.
N(p): 38X 3 x 3 neighborhood of p including p, see page 13.
N(p,q): the set of points a-adjacent to both p and ¢ including p, g, see page 13.
N*(): 8 x3 X 3 neighborhood of p excluding p, see page 13.
N(p): (2% e, 8,(N(p) N B)U{p}), here pis black, see page 15.
N(p):  (Z%, e, B, (N(p) N B) — {p}), here p is black, see page 15.
N'(p):  ashrunk version of X (p), see page 49.

f(e,r): (2% a8, (Bros(p) 0 H(s) - {5}), sce page 5L.
norm(): a position normalized set, see page 111.

P: digital image, see page 6.

P_

P.  inverse digital image of P, see page 6.
P!:  a shrunk version of P, see page 38.

p,: apoint of N(p), see Figure 1.1 in page 14.
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a point of N{p), see Figure 1.1 in page 14.
a point of N{p), see Figure 1.1 in page 14.
a point of N(p), see Figure 1.1 in page 14.
a point of N(p), see Figure 1.1 in page 14.
a point of N(p), see Figure 1.1 in page 14.
a point of N(p), see Figure 1.1 in page 14.
a point of N(p), see Figure 1.1 in page 14.
a i)oint of N(p), see Figure 1.1 in page 14.
a point of N(p), see Figure 1.1 in page 14.
a point of N(p), see Figure 1.1 in page 14.
a point of N(p), see Figure 1.1 in page 14.
a point of N(p), see Figure 1.1 in page 14.
a point of N(p), see Figure 1.1 in page 14.
a point of N(p), see Figure 1.1 in page 14.
a point of N(p), see Figure 1.1 in page 14.
a point of N(p), see Figure 1.1 in page 14.
a point of N(p), see Figure 1.1 in page 14.

a point of N(p), see Figure 1.1 in page 14.
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Pryps @ point of N(p), see Figure 1.1 in page 14.
Pryw: @& point of N(p), see Figure 1.1 in page 14.
Ppst & point ot; N(p), see Figure 1.1 in page 14.
Drcp: a.lpoint of N(p), see Figure 1.1 in page 14,
Prew: @ point of N(p), see Figure 1.1 in page 14.
Pry: & point of N(p), see Figure 1.1 in page 14.
p,: apoint of N(p), see Figure 1.1 in page 14.
Rot( ):  a rotation function, see page 76.

rt(z,y):  {(21,22,2) € Z2° and max (z;,4;) > 2; > min (z;,y;) for 1 <7 < 3}, here
L = (-'3115521m2):y = (ylayiiyﬁ) € Z°, see page 38.

rtt(z,y):  the set of interior points of ri(z,y), see page 38.

rts(z,y):  the set of border points of ri(z,y), see page 38.

rts*(z,y):  the set of border points of r¢(z,y) which are 6-adjacent to ri¢(z,y),
see page 38.

s-point:  a 6-adjacent point, see page 13.

stmple_point(p):  detects whether p is a simple point or not, see page 79.
spt(c-path): the set of points in the a-path, see page 10.

surface( ): asurface of 3 X3 X3 neighborhood, see page 13.

Sk(): surface skeleton of a digital object, see page 112.
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thick{ ):  a function with true or false value, see page 96.

topo_para(p):  computes topological parameters of p, see page 82.

p-point:  a 26-adjacent point which is not 18-adjacent, see page 13.

v( )

a function from Z° to Z°, see page 15.

V.  image set, see page 4,

W(p):  the set of white points of N*(p), see page 49.

We(p): the set of white s-points of N(p), see page 49.

W,(p):  the set of white e-points of X/(p), see page 49.

W..(p) the set of white 18-neighbors of p, see page 49.

W!(p) the set of white s-points of X'(p), see page 49.

W!(p): the set of white e-points of N'(p), see page 49.

W!(p): the set of white s-points and e-points of N!(p), see page 49.

W (p): | the set of white s-points and e-points after the completion of sth steps.

of shrinking of N (p), see page 51.

Z:  the set of integers.

2

{(3,7,k) | i,5,k € Z}.
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