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Introduction

In their celebrated study of Harmonic analysis on semi-simple Lie groups
Ehrenpreis and Mautner [E-M] noticed that the analogue of the classical

Wiener Tauberian theorem resting on the unitary dual does not hold for

semisimple Lie groups. A simple proof of this fact due to M. Duflo appears

in [H]. Ehrenpreis and Mautner went on in [E-M] to formulate the problem
on the commutative Banach algebra of the SOs(R)-biinvariant functions in
LY(SL>(R)), and obtained two different versions of the theorem involving, this
time, the dual of the Banach algebra which includes, beside the unitary dual
of G, a part of the non-unitary dual as well. They considered the problem of
a single function f generating the Banach algebra of bi-invariant functions as
a closed ideal. Among the many articles inspired by [E-M] in the interven-
ing years [S1], [S2],; and [B-W] are of particular importance in our context.
In [S1], Sitaram proved one of the theorems of Ehrenpreis-Mautner, in the
setting of a connected semisimple Lie groups ¢ with a finite centre in place
of SLy(R). In [S2] he considers a function f in L'(SLa(R)/S0O2(R)) which is
of finite type under left SO;(R) action to get a sufficient_conditions for f to
generate a dense subspace of L'(SLz(R)/SO;(R)) under left convolution by
LY(SL(R)) functions. In a recent paper of Benyamini and Weit {B-W], such
sufficient conditions are obtained on a family of bi-invariant functions instead

of on a single function, so that the closed ideal generated by them is the entire

algebra of bi-invariant functions in L'(SLy(R)).

In this thesis we obtain Wiener Tauberian (W-T) theorems for the whole
space L (SLy{R)) as well as for LP(SLy(R)) for 1 < p £ 2and a W-T theorem
for IP(G/K) when G is a connected semisimple Lie group of real rank one
with finite centre. Along the way, we examine some related questions as also
anmé of the earlier proofs of the available W-T theorems. Our treatment
relies heavily on the results of [B-W]| and on the characterization of Fourier

transforms of the Schwartz spaces CP(G) obtained by Trombi [T] and Barker
[Ba).



Throughout this thesis & will denote a semisimple Lie group and K will
be a maximal compact subgroup of G. We begin with G = SLy(R) and
K = 505(R). We denote the characters of K by x,, n € Z. A complex valued
function f on  ig said to be of left (resp. right) K-type nif f(kz) = xn(k)f(z)
(resp. f(zk) = xn(k)f(z)), for all k € K and = € G. For a class of functions
F on G (e.g. [P(G)), F, will denote the corresponding subclass of functions
of right type n while 7, will comprise funtions in F,, which are also of
left type m. The principal series representations of SLg(R) are parametrized
by (o,)), where 0 € M and ) € C, and the discrete series representations
are parametrized by the integers. Principal and discrete parts of the Fourier
transform of a function f will be denoted by fy and fp respectively. Unless
mentioned otherwise p will lie in {1, 2).

Ior each p let v = % — 1 and define 87 by

ST={deC||RA| < 2/p-1},
§; denotes the augmented strip {\ € C}|R\| < y+46} for 6§ > 0, Let ', denote
the integers between 0 and n of parity opposite to n. Then for f € LF(G),
(equivalently, for an LP-section of a line bundle over G/K corresponding to n)
the natural domain of the continuous part of the Fourier transform fy is 87
while that of the discrete part fg is I ,1.-

CP(G) is our notation for the LP-schwartz space and CP(G) is the image
of CP(G) under the Fourier transform, The Schwartz spaces are dense in
the respective LP-spaces. Through the works of Harish-Chandra [H], Trombi-
Varadarajan [T-V] and others on semisimple Lie groups these have been pro-
jected as the appropriate spaces for harmonic analysis leading to a coherent
theory. In this set up C*(G) becomes the original Schwartz space C(G) intro-
duced by Harish-Chandra, and C'(SLs(R))o,0 is the Schwartz space defined
in [E-M, p. 415]. Going to the Fourier transforms, in the Plancherel formula
on G (which involves the Sch';vartz space C?), the Plancherel measure was
found to have support on a proper subset of the unitary represehtatiﬂns which
were called the tempered representations. A Hilbert space representation =

13 tempered if its K -finite matrix coefficients define tempered distributions in



the following way:

[ (f(ﬂ)ﬂmrﬂrt>1

where e,,, &, are members of an orthonormal basis consisting of K-finite vec-
tors of . In an analogous way one can define I”-tempered representations as
those principal series representations whose J/(-finite matrix coefficients define
L[P-tempered distributions (see Section 2 for definition). A careful observation
of the Fourier Inversion Formula reveals that these precisely are the represen-
tations responsible for harmonic analysis of C? functions. In view of this it
appears natural that for W-T theorems of L7 functions these representations
will be the appropriate objects to consider.

We recall that the characterization of the image under Fourier transform
has so far been established for CP{@)gp in [T-V], where G is any connected
semisimple Lie group with finite center; for CP(G : F) in [T], where G is of
real rank one and CP(G : F') is the subspace of C?((y) containing all functions
whose K-types are in a finite set F; and also for whole of CP(SL3(R)) in
[Ba], with 1 < p < 2 in the first two cases and 0 < p £ 2 in the last.
The isomorphism CP(G) —s CP(G) is of vital importance for us. In fact,
we use only the weaker fact that (CP(G))mn — (Cp(é))m,,,, is a topological
isomorphism under the Fourier Transform. Equally important is the fact that,
for a given n, only finitely many discrete series representations are relevant.

We make an apparent digression from the main stream of the thesis in
Section 3. The purpose is, however to get an exact analogue of [E-M, Theorem
7], for the case at hand, namely, that of LP-functions of nontrivial spherical
type.

A basic idea used in [E-M] is to find the conditions on an analytic function
on the Helgason-Johnson strip (whicﬁ coincides with 8! mentioned above) so
that the wave packet with respect to it is an L!-function on G. We have tried

to adapt these arguments to the case of nonspherical LP-functions. Unlike

matrix coefficients of the discrete series representations, matrix coefficients of

the (unitary) principal series representations are not Schwartz apace (C*(G))



functions; but their wave packets with respect to the Schwartz space func-
tions (on the representation space ) come down to the Schwartz space C*(G).
Likewise, for any fixed p € (0,2), matrix coefficients of the principal series
representations which dwell inside the closed tube domain &7 are not in CP,
while matrix coefficients of the discrte series outside the domain are. However,
LP-wave packets with LP-Schwartz space functions on 87 are in CP(G).

A question which occurs at this point is, whether the wave packet of a
function F € LP(G) is in LP(G). The answer to this is negative, In fact one
can find an F € LYGop (e.9. F()) = sz for z € C ), for which the
wave packet does not even exist. Stanton and Tomas [S-T] have shown that
the inversion formula for the spherical Fourier transform on a noncompact
symmetric space hold a.e, for f € LP(G/K), 1 < p <2, when fe LY(du{))).
Meaney and Prestini {M-P] found a sharp limit on p for the existence of wave
packet. They have shown that only for % < p £ 2 the wave packet of every
Fe H(Sm))gp converges almost everywhere.

However, sufficient conditions can be obtained for a function ' on the
Fourier transform space so that its wave packet @7 lands in LP(G)op and
also :f’o‘pln = F. Such a sufficient condition involves agssumptions on the order
of differentiability and the rate of decay of the function F'. For G = SLy(R)
and p = 1 this has been observed in [E-M| as a part of the proof of the W-T
‘theorem (Theorem 7).

A more elementary question now arises: what are the relations of the order
of differentiability and the rate of decay of a function on the Fourier trans-
form space with those of its wave packet? For K-biinvariant L' functions
of any noncompact connected semisimple Lie group with finite center, this
question is answered gqualitatively in Gangolli-Warner ([G-W]) and in Sitaram
([S1}]). It has been shown there that for any r,s, there exist integers m,l
so that if F is in C™ and if F' and its derivatives upto order m are of the
order of reciprocal of a polynomial of degree I, then its wavepacket *I’UF:G sat-
isfles sup,eq(l + o(z))” E(m)”zilgiﬂ(gi,:ﬂ,gz) < oo, where g, 92 belong to the
universal enveloping algebra of ge, and deg(g;) + deg(gz) < s.
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These results involve methods which call for change of contour of integra-
tion in the representation space. An advantage with the biinvariant functions
(contrary to the case of functions with nontrivial spherical types) is that, there,
the shift of contour does not encounter any pole. However, poles have to be
tackled as we step out of the biinvariant case and address the same question.

For SLy(R), we deal with functions of arbitrary K-types and compute the

exact mutual dependency of the function and its wave packet in terms of rate
of decay and order of differentiability. -

‘The results we obtain here show that m,! mentioned above are also de-
pendent on p and the K-types involved. Here we have done a careful tracking
of the exact degrees of the polynomials and the order of derivatives which are
latent in the results of [Ba).

A corollary to our result will also tell us precisely what condition on a
function defined on the strip (tube domain for LP- functions of SLy(R)) will
ensure that its wave packet belongs to LP((7) and that the Fourier transform of
this wave packet goes back to the function we have started with. Let us recall
that it would be the fundamental step for getting a W-T theorem for L*(G)p,
which is a nonspherical analogue of the W-T theorem in [E-M] for biinvariant
L'-functions on SLy(R). This part of Section 3 may be considered as an
exercise to understand some of the intricate methods of Barker {Ba), Campoli
C], Trombi (and Ragozin) [T] and their connection to their precursors in
E-M].

The W-T theorem for LP(G),n 18 then further extended to LP(G), to
give an analogue of the L'(G/K) case treated in [52], using the techniques

(involving Cororna theorem) used there,

However, these techniques do not work for the algebra LP(G); it is not
difficult to see that one can not generate the whole of LP(G) starting from a
single K-finite function or finitely many of them. Besides, for generating L?(G)
one has to generate LP(G), for every n. And every LP(G), need be generated
by using the full strength of the generating function f € L*(G), not simply
by the right n type projection of f (which may even be zero |}, In Section 4



we use the result of {[B-W] for an arbitrary family of biinvariant L' functions
on GG as the cornerstone to obtain a stronger W-T theorems for L(G),, and
IP(G), without any K-finite restriction on the generators (Theorem 4.4 and
Theorem 4.5). The later is an intermediate step towards the main theorem
for SLy(R).

The main theorem for SL*(R) shows that if the Fourier transforms of a set
of functions in LP(G) do not vanish simultaneously on any irreducible LP™*.
tempered representation for some ¢ > 0, and if for each M-type at least one of
the matrix coefficients of any of those Fourier transforms does not ‘decay too
rapidly at oo’ in a certain sense, then this set of functions generate LP(G) as
anb L!(G)-bimodule. This result is on the space of all L? functions, p € [1,2),
of SLy(R) without any restriction of K-finiteness on the generators. |

Our next result, in Section 6, is a Wiener Tauberian (W-T') theorem for
Riemannian Eymmétric spaces (/K of non compact type, where & is one of
the following semi simple Lie groups of real rank one: SU(n,1), SO(n,1),
SP(n,1) or the connected Lie group of real type Fj., From now on G will
denote one of these groups.

As mentioed earlier, W-T theorem for symmetric spaces has so far been
proved only for L' functions on the space SL;(R)/SO2(R) in [$2] where the
generator is necessarily K-finite, We have observed above that one of our
theorems (Theorem 4.5) improves upon this result by removing the restriction
of K-finiteness on the generator. In Section 6 we provide an exact analogue
of the theorem for (G as above. More precisely, we show that if the Fourier
transforms of a set of functions in LP(G/K) do not vanish simultaneously on
any irreducible LP~¢-tempered representations relevant for functions of G/ K,
for some € > 0, and if one of these functions has a Fourier transform which
does not ‘decay too rapidly at 0o’ in a certain sense, then this set of functions
generate LP(G/K) as a left L'(G) module.

In switching over from SLo(R) to other groups of real rank 1, one encoun-
ters a number of difficulties which prevent a straight-forward extension of W-T

theorem from SLy(R)/SO2(R) to other rank 1 symmetric spaces. To reduce



the problem to the biinvariant case (of SLy(R)) (S2] and Section 4 of this
thesis have a common way: to find a function g such that the left convolute
g * f of the generator f is biinvariant and this convolute has nonvanishing
Fourier transform wherever f has the same, But unlike those of SL3(R), non
zero K-types are not in general one dimensional and hence can accommeodate
more than one M-type. Note that for a function on G/K with a nontrivial
K —type in the left, the Fourier transform is a matrix valued function. Hence
it is posible that two functions f and g of matching K types {(i.e, the right type
of f i3 the same as left type of g) have non zero Fourier transforms at a certain
representation, yet f % g has zero Fourier transform at that representation.

A more subtle difficulty arises from points A € af where the asymptotic
expansions of the matrix coefficients of the principal series representations
have singularity, As mentioned in Trombi [T}, there are linear dependecies
among these matrix coefficients. Therefore various matrix coefficients of the
Fourier transform of a K-finite function at such a representation are not quite
independent of each other. And contrary to what we have experienced in
SL,(R), those relations are not "reformulation of embedding of discrete series
in principal series" (see [T])

Singularities of the asymptotic expansions of the matrix coefficients of the
principal series representations are the points of trouble. Supposing that we
locate a function f on G/K having the component f, of left K-type m.with a
nonzero Fourier transform fr(}o) at a point A in the strip 8. Our strategy
is to look for a function g of type (0, m), so that §(X) # 0 and then hope to
have m # 0. But if Mg is one of those points of trouble, then it is possible
that even though @Tﬂ’n # 0, we may have tI?gL’“ (z) = 0, so that no function ¢
of the kind we want can exist.

All these give trouble in tailoring a ¢ which will reduce the generator to a
 biinvariant function as in the case of SLs(R). We take help of the results due
to Johnson and Wallach [J-W] and Johnson [J] to bypass this difficuity.

Also, we propose a change in the basic step : instead of making a single

left convolute of the generator to shoulder the responsibility of having nonva-



nishing Fourier transform at all points A, we get, for each point A of the strip,
seperate left convolute gy * f of the generator f such that Fourier transform
of g5 * f is non zero (perhaps only) at the point A. This sharing of responsibil-
ities over the g,’'s eases the process of finding them and helps us to overcome
some of the obstalces encountered. Even in the case of SLy(R)}, this strategy
works and it avoids the lengthy arguments and constructions used in Section
4. However the proofs for SLy(R) in Section 4 are more constructive and more
elementary in nature than this.

In [S2] Sitaram has used Corona Theorem for a similar extension of W-T
theorem from biinvariant L'-functions to L'(SLz(R)/SO3(R))). A disadvan-
tage of using Corona theorem in this context is that it can handle only finitely
many functions and therefore can not be adopted in the above principle of
using seperate gy for every ). Here, on the other hand, we have used full force
of the W-T theorem for biinvariant functions in [B-W| where the generator
set is infinite.

The last two sections, Section 7 and 8 are devoted to a critical examination
of two hypotheses we use in our W-T theorems., The first is about the re-
striction of using a slightly larger strip ST+ for the nonvanishing conditions,
than what is necessary. Slightfy larger domain for the Fourier transforms
of the generating functions is a common feature in all W-T theorems proved
so far, Our theorem inherits this restriction from the W-T theorems for the
biinvariant functions. But we claim that our method of extension, contrary to
the use of Cororna theorem, does not require the augmented part of the strip;
if a W-T theorem can be proved for LP(G),, , without imposing this condition
then the corresponding stronger version of our result will immediately follow.
We have demonstrated it by proving a W-T theorem for L'(PSLy(R)) with
the condition on exact strip extending a recent result for L'{SLa(R))o,0 in
(B-B-W-H2] .

The last section of this thesis is an attempt to identify the set of functions
having Fourier transforms with the required not-too-rapidly-decreasing con-

ditions. We use an uncertainty theorem [S-8] to replace the not-too-rapidly



decreasing condition on the Fourier transform of the generator by a‘decay on
the generator function itself,

Finally, we add a few lines about the Fourier transform we work with. For
our purpose, instead of the operator valued Fourier transform we can actually
use the Fourier coefficients, which are integrals of the function against the
matrix coefficients of the principal and discrete series representations. Thus
for a suitable function f and a representation T, f(qr) is only a formal matrix,
with entries f(M)mn = [ f(z)®™"(z)dz, where 8™" = (n(z)em, €n)-

We end the introduction with a sectionwise summary of the thesis.

Section 1 contains notation and preliminaries for SLa(R).

Section 2 is a continuation of the previous section. It establishes the vo-
cabulary used in this thesis, part of which is not so standard, Here we bring
together some facts in a form which is uniform with respect to p.

Section 3 establishes the relations of the order of differentiability and the
order of a function on 87 with those of its wave packet when G = SLy{(R)}.
As Ja corollary we get a sufficient condition on a function on the strip &7 so
that its wave packet falls in LP(SLy(R)). A purpose of this whale process is
to obtain an analogue of the original W-T theorem for biinvariant functions
of L'(SLy(R)) in {E-M], in the case of LP(SLy(R))n.. We have considered
questions which came naturally in this endavour.

Section 4 has a W-T theorem for LP(S Ly(R)) and for LP-sections of certain
line bundles over SLy(R)/S0,(R) without any K-finiteness restriction on the
generator.

Section 5 serves extra prerequisites needed for groups of real rank one.

Section 6 contains a W-T theorem for rank one siymmetric spaces.

In Section 7 we prove a W-T theorem for L}(PSLa(R)) with ezact non
vanishing condition.

Section 8 contains a reformulation of W-T theorems using a ‘mathemat-

ical uncertainty principle’, and also an application of Hardy’s Theorem for

semisimple Lie groups in the W-T' theorems.
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1 Notation and Preliminaries

Let G be the 2 x 2 real special linear group SL2(R) and g be its Lie algebra

slo(R) of 2 x 2 trace zero matrices. The following elements of g are important

for harmonic analysis:

0 1 0 1 10 o 0 0
-1 0 0 0 0 -1 -1 0
Elements in the group G coresponding to X, H and Y are respectively

cosf siné
kg =
( -8inf cosé )

e 0
ﬂ.t —
] 0 e—t

1 s
0 1
They form the subgroups:
K= {k0eR}, A= {aJt € R} and N = {n,|s € R},
among which K is the maximal compact subgroup SO(2,R) of G. The biin-

ezp(8X), 0€R

i

exp(2tH), t€R

I

exp(sY), s€R.

!

Tlg

variant normalized Haar measures of these three subgroups are:

dk = dky = df/2r, 060 L2,
de = doy = dt, tER
and dn = dn, = ds, s € R,

The Haar measure dz of GG breaks up under the Iwasawa decomposition as

dr = afa)dk da dn, (1)

where o : A — R* is defined by a(a;) = .

We denote the characters of K by xu, n € %, where xn(ks) = e, A
complex valued function f on G is said to be of left (resp. right) K-typen if

flkz) = xu(k)f(z) (resp. f(zk) = xn(k)f(z)), foral k € K and =z € G.

11



For a class of function F on G (e.g. LF(G)), F, will denote the subclass of
functions of right type n while F,,, will consist of funtions in #, which are
also of left type m. Functions of left K-type m and right K-type n are also

referred to as functions of type (m,n). By fm» we denote the projection of f

in left type m and right type n, which is defined (wherever possible) by

fm,ﬂ = -/I{ /Kfm(kl)f’zu(h?)f(klmk’?)dkldk? (2)

It will also be referred to as the (m,n)-th component of f, A function is called
K-finite when it has only finitely many such components.

The projection of f in right K-type m is denoted by f- ., and is given by:

fom = [ Xm(k)f(ak)dk, )

Similarly the projection of f in left K-type m is denoted by f, - and is given
by:

- = | () (k)b (4

For any class of functions F, the subclass consisting of functions with

integral zero will be denoted by F°.

The complexification of g is denoted by g¢ and the universal enveloping

algebra of ge is denoted by Y. The Casimir element {2 of U is defined by:

N=H‘+H-YY. (5)

The center Z of U is generated by §2. For g, g € U, considered as left and right
invariant differential operators respectively, f(g,z, g-) denotes their action on

f by the following rule:
d d
f (X2 Xr) = — = f(exp(tXi)z exp(sXr)) |i=0, s=0.

where X}, X, € g.
For € G, h(x) and k(z) are respectively the A-part and the K-part of z

in its Iwasawa decomposition z = kan, while o(z) = [¢|, where ¢ comes {rom

the Cartan decomposition, & = kjaiks.

12



For z € (G, define

=(z) = fK a(h(zk))~} dk.

'"Then using [Ba, (4.8)] we get E(z) = II)U’UD.

Tty

For any p € (0,2] let v = %-—- 1 and define SY by
ST={AeC||R) £2/p-1}.

Let S; denote the augmented strip {A € C||RA| £ v+ 6} for § > 0, which is
actually SY*%, It is clear that for p € (0, 2) there i3 a p’ in (0, p) such that the
strip corresponding to p’ is S]. Here f; -1 =44

Principal series representations: Let M be {+I} C K, where I is the

identity matrix. Then P = MAN is a parabolic subgroup which may be

| a b
P = caeR, bER ).
0 o}

Let o4 and o. denote respectively the trivial and the only nontrivial irre-

described as:

ducible representation of M, i.e,, M = {o+,0-}. Analogous to the K-types,
we may talk of functions f on G being of M-type o4 and o_. Also, we use

the notation:
-—L:r.;. =g.and — 0_ = 0.
Let |
79 { set of even integers ifo =0y
set of odd integers ifo =o_
and 25 = 2°NZy, 29 = 2° NZ-, where Z, and Z. are positive and negative
integers respectively.

For each ¢ € M and A € C = a* the principal series representation 7, is
obtained by parabolic induction through P. For a fixed o the representations
me,s for A € ab are realised on the same subspace H, of the Hilbert space
Lo(K) (compact picture), Take the canonical orthonormal basis {ex|n € Z}
for L*(K), where e, (kg) = ™, kg € K and ep is the K-fixed vector for the

13



representation. Now {e,|n € Z°} is an orthonormal basis of H,. The action

of mgx(x) on H, is given by:
[Tor(2)en](k) = alh(z~ k1))~ O+ 0 2, (k(z~1k1)) (6)

where z € G, k € K and n € Z°. Then 7, is a continuous Hilbert space
representation which is unitary if and only if A is purely imaginary.
It is known that (m, y, H,) are admissible representations (see [Ba, p.9] for

definition). Hence they are also realized as (g, K') modules, defined by the

action:
- d
Mo (A)v = 7o) (exp 1A)v)i=p (7)
for A € g, v € Hy,. Then
Mo, (X)Eu = 1€y, (8)
Define
— 1 3
E=2H+1’(Y——Y)=( ),
i -1
and

o -1
= —2H +i(Y - Y) =( | 1£).,

Then {X, E, F} is a basis of g¢ and
'II'(E)&” = (TL+ A+ 1)611;-}-21 W(F)En = (n_._ A — 1)311-‘2 (9)

Subrepresentations of 7, ;!

1. For k € Z7°, m, i has a single irreducible submodule H¥ of dimension

k spanned by the basis vectors {e,|n € 279, |n| < k}.

2. For k € 23°, 7o has two irreducible submodules with the bases {ex|n €
Z%,n > k} and {e|n € Z%,n < —k}; they are denoted by H, and

H, _j respectively.

3. The representation m,_po has two irreducible subrepresentations, the so

called mock discrete series. We will denote them by Dy and D_,

14



The representation spaces of Dy and D.. contain, respectively, the basis

vectors e, € L*(K) for positive odd n's and negative odd n's.

Barring the above mentioned cases 7y, is always irreducible. For A & Z7°,
Toa and 7,y are equivalent. For more details on the parametrization of the
representations {7y x|(c,A) € M x C)} and their realisation on L2(K) we refer
to [Ba, Section 4.

The matrix coefficients of the principal series representations are taken
only with respect to the basis vectors e, mentioned above. For m,n € Z°,
the (m,n)-th matrix coefficient =z — {m, \(z)en,e,) of the principal series
representation 7, is denoted by ®;\", It vanishes when either m or n does
not belong to Z7. We here quote from [Ba, Proposition 7.1] the following result

for future use:

Proposition 1.1 {(Barker) Let o € M, mne2® and k € Z°. Then
‘I’::?EU ifand only if n< —k<m orm <k <n,

nn

It is clear from the above proposition that for n and k of opposite parity ¢

is never identically zero. Here n determines o by n € Z°,

Discrete series representation:

Discrete series representations 7 are parametrized by k € Z* and they are

subrepresentations of principal series representations gy for £k € 277, In
fact, mix are the restrictions of 7y, to H, 1 mentioned in (2) above, after
renormalisation of the spaces H, 14, k € Z7°. Their matrix coefficients are
denoted by ¥;"" and ¥™," respectively. Here these matrix coefficients are
taken with respect to vectors e, and e*, which are suitable (positive) multiples
of e, and ey, 80 as to have norm 1 in the representation space of 1, (see {Ba,

p. 30]).
Also from Proposition 7.3 and Proposition 7.4 of [Baj we have:

Proposition 1.2 (Barker) For k € ' and n,m € Z{k),
@E-m — nn’m(k)(ba',lkli
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k) = (k) U,

where k € 279 and n™™(k) is a positive constant which satisfies the in-
equality:
(k) < M(1 + |nf)

for all m,n and fixed k where M i3 a consiant.

For a function f, fir(Dy) # 0 (resp. Fr(D-) # 0) means that fr{oc—,0) has a
nonzero matrix coefficient (fq(cr._,ﬂ))m,n, where e,, and e, arein D.., hence

m,n are positive (resp. in D., hence m,n are negative),

Let

2(k) = {
{n € Z| n < k and of parity opposite to k} if k<O
for any k € Z*. Then {e,jn € Z(k)} denotes the set of vectors forming the

{n € Z| n > k and of parity opposite to k} if k>0

basig of the discrete series mr. Also define
{k € Z| ¥ < k < n and of parity opposite to n} if n>0
Z'(n) = {

and

{k € Z| n < k < —v and of parity opposite to n} if n<0

I, = 2%n).
Then I, i3 the set of points parametrizing discrete series representations which
are relevant to a function of right or left K-type n, and ZY(n) consists of those
elements in I',, which are outside the strip §7. Ior o € M and n,m € Z°,

define
L% ={k € Z27°|0 < k < min{n,m} or max{n,m} < k< 0} (10}

if m.n > 0, and
L7 is empty when m.n < 0,

Then LT" is the finite set of points parametrizing the discrete series having
K-types m,n. It is an important fact for us that only finitely many discrete
series, when resticted to K, contain a fixed K type. (This is true in all
generality as follows from Vogan's theory of minimal K-types. See [Vo|.) We

break up the collection LJ*" into two sets, one parametrizing the points inside
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the strip and the other parametrizing those outside the strip:

LIy = {l € Lg™]|l] £ «}

and

LMY = {l € L7 |l > v}

Note that Lt (y)¢ = Z¥(n).

Definition 1.3 For 0 < p < 2 the IP-Schwartz space, CP{G) is the space
of all C* functions f such that pf . ..(f) < oo for all g1,92 € U and r € R,

where the seminorm g7 .. i8 given by

Progur(f) = sup(1 + 0 (2))"E(2) 7 (£ (51,5, )] (11)

Fourier transforms of CP-functions and LP-functions. Though the fam-
ily of principal series repregsentations m,  are realised on the common subspace
H, of the Hilbert space L*(K) for every X € C, there is difficulty in defining

the operator Fourier transform as

f(ﬂa,,\) = ﬁf(ﬂ, A) = ng,;(m“l)f(m)dm.

flm) = Fa(n) = fc ra(z~") f(z)dz.

The formula defines a bounded operator valued function for I! functions f
when A € 8! and n is a non-zero integer. For f € L?, the operator transform
can be defined almost everywhere on the imaginary axis and on non-zero
integers through the Plancherel theorem, and the definition on this restricted
domain can be extended to the case of f € L2((G) in the folowing way.

- Write f = f1 + f3, where f) € L‘?(G) and fo € L}G). For instance,
fi = Fxq<ny and fo = foxqns13. Then (f2, fop) is defined as above.
And the corresponding transforms for fy are defined by the Plancherel theorem

ae. on WA = 0andon k € Z. For o € ﬂ, we now define, fy(‘?ra,A) =
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Fii(mayr) + fou(ms,) and fa(m) = fip(m) + fap(m), ae. on RA = 0
and k € Z. It can be easily checked that fy and fg are independent of the

decomposition f = fi 4 fa.
The difficulty in extending the operator Fourier transform beyond this

restricted domain forces us to abandon operator Fourier transforms for what

can be called formal matrix Fourier transforms with respect to the basis {e.}.

If f e IP(G), p € [1,2], define:
1. for the principal series representations, 7, with ¢ € M, ) € 87 and
m,n € Z°,

(Fit)mn(0,X) = FR" (7)o 3) = [ £()255 (a™")do

2, for the discrete series represenation m; which has both e, and e,, that

ig, for m, n € Z(k),
(Fodn(h) = FF"(1)0) = [ fe)epm(a)da

These matriz coefficients of the Fourier transform are enough for our purpose.
We will denote the formal matrices by fi and fp. It is convenient to state at

this point some important properties of functions and their Fourier transforms:
1. For f € LP, if m,n are of opposite parity then fi,, = 0.

2, Let m,n,o be such that m,n € 27 and let f be an (m, n) type function
in L?, Then f(,.) =0o0n 8.

3. For two functions f and ¢ of right type m and left type n respectively

with m # n, f * 9 = 0 whenever their convolution is defined.

4. For an [” function f, (fg)m,“(cr, A} is a complex analytic function of

AE S,

5. For two functions f and g, as long as their convolution and Fourier
transforms are defined, f % g = f.§, where the product on the right hand

side is matrix multiplication which remains valid if one of f and § has

only finitely many nonzero entries.
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6. For f € L?{G) and nonzero integer k € 87,

(FB)man(k) = 7™ (k) F1)mm(o, IK])

provided m, n € Z(k), where n™"(k) is a positive number arising from
the renormalisation of the representation space, See Proposition 1.2
and [Ba, p.30| for a description of ™" (k). In particular, (f‘g)mln(k) # 0
if and only if (f};)m,“(k) # 0.

In this thesis we denote the Fourier transform of f with respect to the
principal series representation 7, ) by Fu (75,5) and fy(a, A) interchangeably,
Similarly Fourier transform of f with respect to the discrete series represen-
tation 7y is denoted either by f(m) or simply by f(k).

As an n € Z can determine a o € M by the relation n € Z7, for a function
of right or left K-type n the Fourier transform of f at m, ) can be denoted by
7 (A\) dropping o without any risk of ambiguity.

The definitions and notation of this section are essentially reproduction

from [Ba]. For any unexplained notation in the thesis we refer to the same

source ([Bal).
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2 LP-Harmonic Analysis on SL*(r)

This section is a continuation of the last one and we continue to limit ourselves
to the group SLy(R). Here we plan to put together some of the basic facts in
a form suitable for our use and, on occasion, provide proofs where we could
not locate a ready source for the results, though they must be known to the

experts in the field. Some of the not-so-standard terminology used in the

thesis are also developed here,

Let us recall some facts and definitions. Though we will work out every-
thing in this section only for SL;(R), most of the definitions and results are
relevant and valid in a more general context, especially so for groups of real
rank one. In many places we indicate to what generality the corresponding

results hold, As in the previous section, unless mentioned otherwise, G will

denote SLy(R), p will be in (0,2] and v will always be related to p by the

formulae v = % — 1. A representation of (7 is tempered if its character as a

distribution is tempered (i.e. can be extended to the Schwartz space C?),
Similarly LP-tempered representations are those whose characters as distribu-
tions can be extended to the LP-Schwartz space C¥. Like irreducible tempered
representations, irreducible LP-tempered representations are also irreducible
admissible representations.

For p,q € R we will say that g is conjugate to p if 3 + 1 = 1.

Some Standard Inequalities ;
1. Let E(z) = 9.7, Then
1< E(a)ell < M1+ (1)) (12)
for all ¢t € R, where M is a positive number.

2, For any € > 0 and r € R, there exists an M < oo such that forallz € &
S(2)*(1 +o(a))" < M (13)

where o(z) = |f|, z having the Cartan decomposition z = kiazk2.
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3. There exists an r > 0 such that
fG =(z)(1 + o(z)) " dz < oo (14)
For SL2(R), this r can be taken as any real number greater than 3,

4. {Harish-Chandra) For fixed 91,92 € U, 8 € N and 4 > 0 there exists a
C > 0 and 7,772 2 0 such that

(5 80913 5 92)]
< CQ+[mN) (L + nf) s (1 + [A) T+ (1 + o (2)) 7 E(=)
(15)
for all 0 € M, n,m € 2°, |RA| € v and = € G. Further, for j = 1,2, r;
can be chosen so that r; < deg(g;).

5. For each o € M, define a meromorphic function u(o, ) on C by

(Mrif2)tan(Ar/2)  if o =0y

| (16)
(= A7i/2) cot(Am/2) if o =0o._.

u(o,A) = {

Then there is a constant ¢ such that for all o € M and )\ € iR,
(o, A)] < (1 +[AD). | (17)

This p(o, A) is the meromorphic extension of the Plancherel measure on

C.

For SL9(R) these results are available in [Ba, (3.2), (3.3), (3.4), Theorem 4.1
and (10.2)). However, these (or some analogous results) are true in a more
general context. See [T, Section 4, Proposition 1, Section 6, équatiun& (ii) and
(v)] for the groups of real rank one; see [V, pp.349-340, Theorem 30, Prop 31];

[H-C, Lemma 17,1] for more general groups.

Deflnition 2.1 A measurable function f on G is said to satisfy weak inequal-

¢ty if for suitable constants ¢ > 0 and r» > 0
|f(z)] < cE(z)(1 + ofz)) (18)
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for all z € G. It satisfies strong inequality if for every »r 2> 0 there isa ¢, > 0

such that
|f(z)] £ e E(2)(1 + o(z))™" (19)

for all 2z € 3.

Deflnition 2.2 A measurable function f on G is said to satisfy [P-weak in-

equality if for suitable constants ¢ > 0 and r 2 0
—y \ & r
|f(z)] < cE(z)(1 + o(z))". (20)

where g i8 conjugate to p.
It satisfies LP-strong inequality if for every r > 0 there is a constant ¢, > 0

such that
£ ()] < e E(2)? (1 4+ 0(z)) ™" (21)

Thus, weak and atrong inequalities are particular cases (p = 2) of LP-weak
and IP-strong inequalities. For functions on a group in the Harish-Chandra
class H having values in a complete locally convex space, weak and strong
inequalities are defined in [V, p. 341]. The first inequality in [V, Prop 10| and
the seminorm defined in [V, p. 342, (5)] may be considered as definitions of
IP-weak and strong inequalities respectively for such functions.

The LP-Schwartz space for any p € (0, 2], denoted by C?(() can also be
defined (compare with Definition 1.3) as the space of C*® functions f so that
for every g1,92 € U, f(g1;z;g2) satisfles LP-strong inequality.

Proposition 2.3 If a function f satisfies [P-weak inequality for 1 Sp £ 2

then f is in L3¢ for every e > 0, where g 13 conjugate to p.

Proof. [f(z}] < (1 —I-d(m))"(E(m))%. So, |f(2)|* < ¢'S()** (1 +o(z))" for
some 1’ > 0, & > 0 and ¢’ > 0. Now from inequalities ( 13) and ( 14) above

the result follows. »
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For fixed m,n, the inequlaity { 15) above reduces to
75! (2)] < o1+ (@) (E@) Ae s,

since 1 —y = % and since 11,7 can be taken to be zero. This shows that for
fixed m, n, 7'%'(z) satisfies the L7-weak inequality with a constant ¢ indepen-
dent of A € 87 (but depending on m, n). Therefore, by Proposition 2.3, we

have:

Proposition 2.4 Forag e M, 1 <p <2 and m,n € Z°, and for X in the
closed strip 87, the function z — D'\ (z) is in LI for every e > 0.
Moreover, for fized m,n and e, 1Py [lg+e < K for all A € 87 where

K < o0, Also for every A in S these funcilions are tn L9,

Discrete series al}d [P-discrete series: Discrete series are so named be-
cause the Fourier coefficients with respect to them constitute the discrete di-
rect summand in the Fourier inversion formula of the Schwartz space (C*(G))
functions. A necessary precondition for this is the fact that discrete series rep-
resentations are those whose K-finite matrix coefficients are in C%(G). Now,
if a J(-finite matrix coefficient of a discrete series is not in CP(G), then Fourier
transfom with respect to it can not be a part of the discrete direct summand
in the inversion formula of C? functions. The following definition is made

keeping this in view:

Definition 2.5 An admissible representation is called an LP-discrete series

representation if every K-finite matrix coefficient of it is in C?(G).

As every CP function is in C*(G), the [P-discrete series form a subset of the
discrete series. We will presently see (Theorem 2.8) that any discrete series
outside the strip 87 (i.e. not embedded in any principal series representation
on the strip) is an IP-discrete series representation and they are the only

discrete series of this kind. Let us quote an inequality from [Ba, Section 5}

analogous to ( 15) satisfied by the matrix coefficients of discrete series.
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Theorem 2.8 (Trombi-Varadarajan) Fiz a p € (U,2]. There exists an

ep > 0, and, for each uy,ug € U, constants ¢,ry,re,73 2 0 such that

TP (w5 ug)] < o1+ [ml)" (1 + [n)2(1+ b)) E(z) e (22)

for all k € Z2* for which |k| > v, and for all m,n € Z{(k) and z € G.
From this we have

Proposition 2.7 For 1 < p £ 2, every matriz coefficient of the [F-

discrete geries 13 in LY, where q is econjugate to p.

Proof. Yor 1 € p £ 2, g € [2,00) and therefore (% +e)g=2(q~-1) +&.q =
29 — 2+ €& > 2, where & = e.q. For fixed m,n, k € Z such that m,n € Z(k)
and k£ > v we obtain from the above thorem: [¥7""(z)| < r:'E(:c:)%+£ for some
constant ¢ > 0, which further implies |¥[""(z)]? < ¢S(z)**¢ for some con-
stant ¢ > 0 and ¢’ > 0. Now the result follows by inequalities ( 13) and ( 14)

above, -

Theorem 2.8 (Barker) Let p € (0,2] and k € Z*. For a K-fintte mairiz

coefficient W™ of m the following conditions are equivalent:

(i) Ikl }T:’%-—li
(i) 7" € CP(@G),
(iti) ¥ € LP(G).

See |Ba, Theorem 5.3 and Corollary 5.5] for a proof of this theorem. For
the corresponding result in more generaﬂ context we refer to [T, Section 8,
Proposition 2],

Thus, it follows from the above proposition and theorem that matrix co-
efficients of an LP-discrete series representation are both LP-functions and
L3-functions (and hence in L* !). Theorem 2.8 provides the most convenient

description of these representations as those discrete series representations
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which are not embedded in any of the principal series representations in &7,

the tube domain corresponding to p.

Spaces of Fourier transforms: {see [Ba, Section 9])

Definition 2.9 Suppose that m,n € 2% for 0 € M. The principal part of
the Fourier transforms space for CP(G)n , denoted by Cft}(@)mm consists of

continuous maps
F .8 s C

satisfying the following properties [Ba, p.39):

1. F is holomorphic on S, the interior of 87,

2,
F(=X) = g F(A)  for all X € 87, (23)

where )" is described as (see [Ba 7.1]):

Y
(fm|—1+A)(] I—3+A%+--ﬂn‘+1+ag .
([$|‘”1"}*)(|rmn|—3—}u o || 41-A if |m| > [nl,

oo =g (=1)(rmm)/2 if |m|=|n], (24)

n|—1=A}|nf-3-A ml4-1-A ,
e e e A RS |

3. ﬁ}f';}r(F) <coforallleN,r € R+, where

Pr (£} = sup I(-— EO(L+ADT

J.E.:;':r
4. F(k} = 0if n.m < 0, k is of parity opposite to that of m,n and |k| <
min{|m|, [nf, v},

We quote the fbl]uwing proposition from Barker[Ba, Proposition 7.2] .

Proposition 2.10 Suppose g € M and n,m € 2Z°. Then
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(1) A — @,y is a meromorphic function of A whose only singuiarities
are first order poles at A = k € Z77 such that jm| > k > |n| or
—|m| > k > —|n};

(i) A = @) has zerocs only at the points A = k € 77 such that |n| >
k> [m| or —|nf >k > —|m|;

ﬂ,.ﬂ‘l) m,n

(156) @2 = (i) = ¢l

(1) O = N @7y for all X € C which are not poles of ¢,y

nm

Definition 2.11 The discrete part C'E(@)m,“ of the space of Fourier trans-
forms of CP{G)m n is the set of all functions F': LJ""(y)¢ — C,

Wave packet:

Deflnition 2.12 For ¢ € C4(G)mn the wave packet 7 is given by

0I2(@) = [ e @)le N, 3 € 6. (25)

The existence of the integral is clear from the inequalities ( 15), ( 17) and

property (3) of CP(G)m,. It can be shown that $7:" € C?(G) ([Ba, Theorem

18.2]).
Analogously we define [P-wave packet.

Deflnition 2.13 For ¢ € C% ((-_‘)mﬂ.: the LP-wave packet SH v is given by,
(Sppe)E) = (5) fpazo PN (@)p(o, A)dr (26) .
+ '%;E;E;,;“'“(T)‘P(l) “Im(m) .

Again this [P-wave packet, Syy'p falls in CP(G) ([Ba, Theorem 18.2]).
But note that the the integral term on the right side alone need not be even

a L? function as that would imply that the sum on the right side is also in
I[F(G). Now in case the sum consists of a single term (as will be in the case
of a L'-function of (m,n)-type with m.n > 0), this would contradict the fact
that the matrix coefficients of a discrete series are [ if and only if they are

parametrized by points outside the strip (Theorem 2.8).
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Also define,

(Sgpeiz) = gi-EIEL;“I“(T)ﬂﬁﬁ(Z)‘I’?’m(m)H', (27)

The space C?((G) has a smooth splitting into topological direct sum of CH(G)
and C%5(G) ([Ba] Section 11} which may now be identified with the images of
the spaces C‘%(@) and CE(@) under 8y, and Sp, respectively. Ifurthermore,
for £y, Fp™, defined in Section 1, we have ([Ba, Theorem 18.2])

Theorem 2,14 (Barker)
FI™ : C(Ghms — OB

and
PP C8(Ghmn — O3

are topological isomorphisms. Also (Fy"y ™ =85 and (Fg™')™! =8y

As mentioned earlier we need to deal only with the matriz coefficients of
the Fourier transforms and their spaces, namely Cp(é) mn form,n € 2, And
therefore the only isomorphism theorem we use is the above one,

We end this section with the following discussions:

1. A principal series representation 7 ), is not irreducible if and only if

A u(co, M) has a pole at the point Ap.

2. We recall from Section 1 that the representations D4 and D_ are known
as mock discrete series as their matrix coefficients are not in L*(G) and
hence they do not occur in the discrete part of the inversion formula for
C%(@®). Their matrix coefficients are infact L** for any ¢ > 0. Similarly
for p < 2 the discrete series representations which are inside the strip
87 are mock in the context of CP((). Because their matrix coefficients
are not in LP(G) and therefore have no contribution to-the discrete part

of a function in CP. These matrix coefficients are in L9 for every € > 0

(while LP-discrete series are L?).
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Note that if for a function f € CP(G), g = 0 on the imaginary axis
and hence on the strip 87, then fp is automatically zero on these mock
IP-discrete series. This points out that for L” harmonic analysis the
discrete series which are inside the strip are detached from the discrete

part and, are actually integrated to the principal part.

It is possible to change the domain of integration in formula ( 26) for
S’ w from the imaginary axis (i.e. the unitary principal series) to any
vertical line in 87 which does not pass through any point of reducibility of
the representation (equivalently, where the Plancherel measure y{o, A)
has a pole). Recall that when m.n < O there is no relevant discrete series
for a function of type (m, n). When both m, n are positive and + is not
an integer of parity opposite to m,n, then by this change of contour

( 26) can be reduced to
(SHpe)@) = (o) framy WN)ET (@l N)dA  (28)

For m,n both negative and +y as above, the domain of integration RA =~y
in the above formula ig to be replaced by RA = —v. Note that the
residue of a pole risen from the shift of contour cancels the component in

the inversion formula corresponding to the discrete series parametrized

by that pole.

. It is known that unlike waves on R" (x,(t) = e'**) as well as on any
abelian groups, the matrix coeficients of the principal and discrete series
representations of SL,(R), n 2 2 which do not contain the trivial repre-
sentation vanish at infinity, ( ( 15) and Theorem 2.6.) But the matrix
coefficients of most of the IP-tempered representations do not have the
required decay to be a member of CP(G). Only the matrix coeflicients of
the discrete series ¥ which are embeded outside the strip §7 are in C?
(Theorem 2.8). These W."" decay faster as k — co (see Theorem 2.8).
But then the zero-Schwartz space C? = Nye(o,9CP (see [Ba, Section 19])

does not contain any ¥} either. Note that for C° there is no outside
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of '
the strip, bgcause the strip is now the whole of C
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3 Waves and Wave Packets

This section, aimed towards an exact analogue of the original Wiener Taube-

rian (W-T) theorem ([E-M]) for the case of non-spherical I?-functions, some-
what digresses from the main theme of the thesis. We begin by explaining
how the questions we address here have natural connection with the W-T' the-
orem. However, we may stress that the rest of the thesis is independent of
this section, and in the later sections we will develop W-T theorems, which
are more general,

Recall that though the waves (7.e the matrix coefficients of the principal
series representations) are not Schwartz space functions, the wave packets with
Schwartz space functions on the strip S belong to the c-arresponding Schwartz
space CP((F). A possible question is: what condition on a function (on the
strip §7) ensures that the wave packet with it is in the Schwartz space CP(G)?
This is a key step towards the W-T' theorem for biinvariant functions in [E~M).
Now to tackle the non-biinvariant situation we need good answer to the same
question in a more general context. We obtain a non-biinvariant quantitative
version (Theorem 3.8) of Proposition 3.3 of {G-W] for the group SL,(R). For
this the estimates come out of the work of [Ba]. This makes it possible to
obtain a W-T theorem for I?(SLy(R))pn, 1 S p<2and n€Z.

In this section G = SLy(R) and y = 2 — 1.

Definition 3.1 For a fixed p € (0,2), let 7' = (F'y, F) € C‘}}(é) @ Gf;(é) =
C'P(@) and v = ﬁ- — 1. 7T is said to be K -finite if it is the I'ourier transform
of a K-finite function in CP(G), i.e. if only finitely many components of Fy

and Iy are nonzero.

Definition 3.2 Let T be a K-finite element of C?P(G). T is said to have a

pole neutralizing boundary if for every o € M and m,n € 29, F H (o, £Y)mmn

and Fg(Ly)mn are both zero whenever either + or — is in L7",

Asymptotic expansion of the matrix coefficients: For ¢ € M, m,n €
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Z? and A € C\ Z, there exist power series Tazz* and Tb.z*, convergent for

|z| < 1, such that &°\" has the following expansion ([Ba, 12.1]):
Dot (ar) = (~1) R M DR bpe ™ + e MR e (29)
fort > 0. Here gt = a ‘"(,\) and by == {1- v (A) satisfy

}H(A)(PU',TI bm ?1(_ ) (30)

:'r,k

And the constant terms in the expansions are the e-functions described below.

c-functions : (see [Ba, Section 6| for details.)

0 = ety = ] D(-M/2)T((1 - A)/2)
%6 () = N = T T AN A A+ Y
and
N DOV2T((L +2)/2)
T /AN 3 T,

where A € C — Z and I" denotes the gamma function, From ( 31) and ( 32) it
follows that [Ba; p.24, p.66):

_ Atn— -
1, — 1 e 2,m,
()7 = ety (33
C;ﬂ,ﬂ,'l' — Cm n-i—} crn = ( 1)(11*1;’)/2 mm',~ for m, m-“l ﬂ,?’lr €z’ (34)
0,0,~ _ A [ dx ! '
(‘ﬂ'*l" (/\) = ["" \/Lm (3}2 n 1)1+A/i] fﬂl’ ERA > """1, (35)
— dz -1
el (X)) = [ f T 1)(1“)/2] for A > 0 (36)
Also (see [Ba, p.64))
(o, A) = —i(=1)Im G (N) g™ (V) (37)

These c-functions are meromorphic as a function in A and we will use the

fact that the zeros of ¢"™~ occur at A € Z77 guch that A < —|m| < 0 or

0< A< |m| (see [Ba, Proposition 6.1 (iv)]).

Truncation of the asymptotic expansion of matrix coefficients : Ior

each j € N the j-th truncation of the matrix coefficients @7y are defined as

;Am,ﬂ(at) o ( 1)(m n)/2 -t[EME bkewﬂkt + E—Aiz,i:DukEHEkt]j £ 0 (38)
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Definition 3.3 The j-th truncation wave packet of a function ¢ is defined by

Wopte) = [ @) (@l N, ¢ > ¢ (39)

The range of p: Unlike the rest of the thesis, in this section p will lie in
the range —% < p £ 2 {unless mentijoned otherwise). We may stress that our
decision to restrict p in the above interval is really a matter of convenience,
firatly that for p € (-32-,2) there is no other discrete series inside the strip &7
except those which are already there for p = 1 and more importantly, in that
range of p we need only the constant term (0-th truncation) of the expansion
( 29) in our analysis. In fact % appears to be the natural bound for using only
the constant term, as is evident from the proof of Theorem 3.8.

Now we shall closely examine some results of [Ba] and for our range of p,
will compute the exact degrees of the polynomials (in m,n,t, A etc), involved
in these results, The same method, however, will work for any p € (0,1) to
give analogous results, It is clear from [Ba] that the difference will be in the
degrees of the polynomials involved, and in the order of the derivatives of a

function on &7 and its wave packet.

Lemma 3.4 Let A be such that either RA = 0 or A = +1. Then there

extst 1,72 2 0 and a postlive constant C such that the inequality
(D73 (@) ~OATT (@) < O+ [m)™ (1 4+ [nl)2 (1 + [A)2(L + £) e~ GHE,

holds for allt >0, c € M and m,n € Z°, with ( =0 when RA =0 and

for some ( > 0 when A = £1.

Proof. Let m,ne€ 2?,t> 0and A = £1 or RA =0. Then
273 (YiaY) < Ci(+]m)™ (14 [nf)2 (1 + |A])? Efas) |

< Co(i+m|)" A +in))2 (1 + A2 4 e e (1F0E,
for suitable ry, 79 and where ¢ is as given in the statement of the lemma. For

the first case the first inequality is a consequence of { 15). And for the second

case it is a consequence of Theorem 2.6 (with p = 2) and Proposition 1.2,
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The second inequality follows from ( 12) above. Now,

oo (a H2 + H = (AN —1)/4) = $75(a; @+ YY - (A - 1)/4)
= ®™'(a,; YY)
— --2.‘5 (I)m H(Y: a; Y)

Therefore,
Q7 ag; H +H~(A2=1)/4) < C (1+Im)" (1+nl)™ (1+{M)? (14214 G+,

Hence from Proposition 12.3 (iii) of [Bal, the result follows. N

Lemma 3.5

Let P(A) = A—=1 wheno =04, p<1, and|n| > 1,

= ] otherwise,

Then there exist real numbers M,r and € > 0 such that for m,n € 27 and
8 € N,
(5 ) POV N, M) € ML+ [l (14 4]

for —e < RA < v+¢, and

) (PN (o M) € ML+ mf)" (1 A"

Jor —y —e £ RA < e, where r = 2 when P(A) = A -1 and r = 1 when
P(A) =1,

Proof. Let us first consider the first inequality in the case s = 0, From ( 31)
above it is clear that the value of m is not relevant here and n can be taken
to be 2 0, So we may assume that m = 0 or m = 1 according as o = o4 or
o =o_. Using ( 33) and ( 37) we have,
- 2 P A 11/2 +25 —1 : _
; ~1)/2 P(»\) (ﬂ—l)/’2 At e
_g(—]_)(m )/ -()1.) H rz if c=0.

When the product is taken over empty set our convention is to take the product

term equal to 1. Irom the discussion about the e-functions above, we know
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that the c-functions in the above expression have no zeros in the region i) >
—1. And a careful choice of £; to avoid any integer in (vy,< 4 1) ensures that
any possible zero in the range —e; < A < v + £ in the denominator of the
product term will be cancelled by a zero in P().

Consider the case o = o,.. Let

and let ng denote the first integer which is greater than or equal to ®A. Then
for np < 7 £ § the absolute value of the j-term in the second expression is less

than or equal to 1. Let m = min(p,n/2). Then

A+n—25+1
S| < :
o< [T

We -nDW consider the specific cases.

When P(A) = (A — 1): Here p < 1 and |n| > 1. Hence 1 = 2 and only
possible values of 7y are 1 and 2. When m; = 2, then | P(A)S] £ |("‘+""1)(}“+" 3)|
and when n; = 1, then |[P(A)S}| £ [A+n - 1].

Next we consider the case when P(A) = 1. Then either p > 1 or |n| = 0

or both (as we have assumed o = 0,). Also 79 = 1 or 2 according as p > 1 or
p <1 Butif p <1 then n =0 in this case, Then only possible values of 1;
are 0 and 1. When n; = 0 then clearly n = 0 and hence S = 1 (aq m =n=0).
When 7 =1 then p > 1 and n # 0. Hence [P(\) 5] I(}‘(i"l)l)l

Combining all the cases we have for o =0y,

P(Nagg'u(o, )] < C(1+ (1 +A)"] =)™ (40)

where r = 1 or 0 according as P = (A~ 1) or P =1 for all n,m € Z° and
~£1 £ RX £ 4 +¢€;. Here C is a constant depending on v. In exactly the

same way we can also obtain the relation involving b5, replacing o4 by o_

1

and c ~ by ¢l Now with a carefully chosen £; > 0, we have from ( 35)

and ( 36)
oy ™1™ S CU(L+ (M) and e 7T S CL+IA]). (41)
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From ( 40) and ( 41) we have, for all ¢ € M and v > 0,
[P(Nagg (o M| < M(L+ [n[)*(1+ M) (42)

for some constant M, where r» =1 or 0 according as P=(A—1)or P = 1.

This proves the lemma for 8 = 0.

Now A — P(M)azy p(o, A) is holomorphic in the strip —e; < R < v+&1.
Take any Ap in the strip —£1/2 < R < v4¢1/2 and apply Cauchy’s estimate
on the ball [[A — Ag|| < &/4. Then from ( 42) we get the required inequality,
namely

|(55)°(P(Nagg" (Mu(o, M) £ ML+ [n)) (1+]A)
in the strip —£,/2 < R < v+ £/2 for s > 0. An exactly similar proof will
work for by, "

Also from [Ba, Lemma 15.1] we get:

Lemma 3.6 Letn be +1 or —1 and F(A) be a continuous function on &'
which is analytic in the interior, Lel F(n) = 0. Then for any r,8 € N

there are polynomials pg,...,m in the variable A such that,

sup (14 N)(5)" 5 “‘)1 < MEho sup pe(ADIFOM)  (43)
R <1 IR1| <y

where the degree of each pp is at most s+ and I < 28+ 1. Moreover,

A — F(A) /(X —n) defines a continuous function on S',

- Proof. The inequality follows from Lemma 15.1 of [Ba]. To find the degrees
of the polynomials p; and the order of the derivatives of F'(A) one just needs
to follow the proof carefully, Here we will avoid reproducing the proof {rom
(Ba] and instead refer to the equation numbers whenever necessary.
Let ST = Sj U 59, where
={X eSS > 1)

Sa={Ae&: | < 1}
For S} we apply Leibniz's rule to obtain the existence of a constant M such
that

sup L+ (6/dN)* (22 L ("’)|<Mfup o n\-*-1§<1+\>-\ A= R,
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for I as stated above. Since |\ —n|™5~! <1 for A € Sy, this establishes ( 43).

While considering S; we see that there exists an M such that

sup(1-+ [A)I(¢/dA) (T2 < M sup 1(d/d3)" )

It then follows from [Ba, (15.9) (15.12), (15,13)] that
(d/dx)® (2| < supyes, W8 ()1 /31,

where
Wa(A) = 8! T5_o(=1)5 4 — ) FENX) /K)
However, from the last equation, it follows that there exist polynomials py of

degree < 8 such that
E0) = T P AN FR ().
Now from ( 43) it follows that F'(A)/(A — 7) is uniformly continuous on St

Hence the second conclusion of the lemma. o

Examining [Ba, Proposition 13.4] for the cases we are dealing with, we get

Proposition 3.7 (Barker) Consider the functions A — a,::'f(.l)p(a', A) and
A BN (A (o, ), where myn €27, 0 € M and k € N. Then

1, Form=n=0 or m=n =1 the above functions have no pole. More
generally, for n = 0 or 1 the first function has no pole and for

m = 0 or 1 the second funciion has no pole,
2. If p > 1 then none of the functions has any pole inside the sirip &7,

3. If m,n are of odd parity then even for % g}:i <1 they have no pole in

the strip §”.

4. If m,n are of even parity and % < p <1 then the the functions have
at most one pole in the sirip 8Y. The first function has a pole at

A=1ifn#0, and the second one has a pole at A = —1 if-m # 0.

As p decreases below 1, more and more singularities of the above functions

come inside the strip S§7.
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Proposition 3.7(1) is what simplifies the treatment of the K-biinvariant
functions. It also points out that functions of type (1,1) can be treated analo-
gously. Proposition 3.7 also shows that the case when p = 1 and the K-types
involved are even (but not zero), is the most delicate one, Because when p =1
(and hence «y = 1) then the Fourier transform of a function with only even

K-types m,n does not have, in general, pole neutralizing boundary and the

above fuctions have singularities at k = &1 (see Proposition 3.7(4)).

Now we are in a position to state the main result of this section, which is
proved by a step by step adaptation of the arguments in [Ba, Theorem 15.2].
In writing the proof, whenever no more than an exact reproduction of the
argument from [Ba] is necessary, we merely refer to the appropriate step in

(Bal.

Theorem 3.8 Fiz any p € (%—,2], o€ M and mn € Z°. Let F()\) =
F(o,2) be a continuous function on SY which is analytic on S* and
satisfies the relation F()) = ¢y F(=X) on 8. Assume further that
F(0) = 0 when mn are odd and m.n <0 ,

Let there exist an s € N such that supyeds |(£5) F(a, A)|(1+ |A)* < o0
for allu> 2 andl < s.

Then the wave packet Sp ' I exists and

sgg(l +o(z)) E(z) " ?[(Sy F) gz g2)| < oo,
x

and also

2 n
sup(1 + o(z)) er* (855 T g1; 7; 92)] < 00

for g1,92 € U and for allr € R such that 2r4+1 < s and max{2+r,4-+e}+d <
u for some € > 0, where a; 15 the A-part in the Cartan decomposilion of
z, o(z) = |t| and d = degg; + deggy. When either p # 1 or m,n are odd

orm=n=0, it ig sufficient to take r < 3.

Proof. We first note that in view of the relation (E(a;))™ < €' for t > 0

(equation ( 12) in Section 2), it is enough to prove the second inequality,
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namely

sup(l+o(z))"e P (ST F) g15 %3 92)] < 00

where z, t, g; etc are described as in the statement of the theorem. To prove

the above inequality, first consider the case when ' has pole neutralizing

boundary (see Definition 3.2). For our range of p it means that F'(+£1) = 0
when p =1, ¢ = 04 and m.n > 0,

It is clear from inequalities ( 15) and ( 17) of Section 2, that u > 2 is
enough for the existence of the wave packet S}}‘;‘F. Again from the inequality
(17) and Lemma 3.4 we get for all o € M, m,n € 2% and t > 0,

(21T (00) ~ A3 ar)]
< (32)° Jraco [ FO)] @™ (@) ~CAY™ (@) |(M)] dX
< C(+Imf)r (L+ )2 (1 +8)e™ fpazg [F(AIL +|A]) dA

< C' 4 m)" (1+[n)) (1 +1t) e suppamo(l + [A)* [ F(N)),
for constants C and C', ¢ > 0 and positive real numbers 71,72. Now as

<p<2 ---3“"--—E.'p,fﬂr some &, > 0, we have
() (1+t) e [(STmF) (ay)

< (1 +2)relr(1/2m)2 W™ (ar) + () F@)BT)]
+(1+t)1+"e*‘ﬁr‘°(1+|ml)“1(1+lnl)"* supgpa—o(1 + |A)HEIF(A)),

for all o € H, m,n € Z% and t > 0. Here, the part of the first term on the
right hand side which is within the square bracket, accurs anly when p € (%, 1)
and m,n are even with m.n > 0. Alsol = +1ifm,n>0and! = —11if
m,n < 0. We note that since ¢t > 0, the last term on the right side of (%) is
bounded.

1,1

To estimate the term involving °A_’% (a;) on the right side of (%), consider

Wyrla) = ()2 fon o F(A)e M agg (A)p(a, A)dX
H(=1)m 26 foy o F(N) X5 (Mo, M)dA,

We will shift the integrations involving amﬁ and E:E}" respectively to RA = «

and MA = —v, These shifts will be valid for the following reasons: (i) by the

estimate on F' given in the hypothesis and by Lemma 3.5 above, the contour
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integral over the horizontal line segments will tend to zero as their height goes
to infinity and (i) again by Proposition 3.7 together with the fact J* has pole
neutralizing boundary, the integrand has no pole on RA = —~v and on N\ = ~.

Again by Proposition 3.7 the only pessible singularities to be encountered
in these shifts are poles of order one which occur only when p € (-32-, 1) and
m,n are even. More precisely, the singularity for the integral involving ey’
occurs at 1if |m| > 1, while the singularity for the 0’5" integral occurs at —1
if [n| > 1.

From [Ba, Proposition 14.1, Theorem 14.3] we see that the residue is zero

unless m, n, ! are of the same sign, where ! = 31 and the residue in the a; or

by shifts (according as m,n are positive or negative) is given by:
Qg
=21 (1AL (au).
Therefore, we have, after the shifts,

(1 + t)er [(SFIF)(ar)

< (1 + ) elB(1/2m)? {e7!| fgpay (N Mal0 (N p(o, A)d]
+ €7 faray FO)MBET (N (o, A)dA|} (44)
[(1/27)(1 + £)7 B H | F)(@7™ (ar) —O AP (a))]

+ C (1 + [m[)™ (1 + [nl)"2 supgaco(l + (M) F(N)

for some constant C', where ¢ € M, m,n € 2 and t > 0. As before, the third
term in the above inequality is kept within the square bracket to indicate that
it occurs only when p € (%, 1}, m,n are even and m.n > 0. Also, [ = 41 or
—1 according as m, n are positive or negative.

By Lemma 3.4 there exists ¢ > 0 such that

ol

@37 (@r) —° AL (@) < (14 [ml) (1 + [nf)™2(1 + JU)2(1 + £) H4e PO,

for | = %1 and n,m € Z(l). Thus the third term in { 44) is bounded by

M(1 + t)"“*%‘%*“ﬂ*lm}p (1 + [m)™ (1 + |n|)"?| F(N)],
RA <y
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for some constant M > 0 and positive real numbers ry,79. Now as % — 3
is strictly negative for any fixed p in the range (%, 2|, the above expression is

bounded as required in the theorem. Now as in Lemma 3.5 we define

P(A) = XA-1 ifp=1, oc=04 and |m|> 1

= ] otherwise

We absorb (1 4-)" in the first term of ( 44) within the integral and make use

of the above polynomial to write:

Jpamy FONT + 1) e~ Mal T () p(o, A)dA
e M} F(M)a "*’“(A) (0, A)d (45)

c.r,ﬂ

{
{e MY (PN ey (Mo, N)dA,

When p =1 then F(1) = 0 and P(1) = 0. By Lemma 3.6, % is continuous
on JtA = v, and by Proposition 3.7 P(A)ayy (A)u(o, A) is well defined on

RA = 7. Lemma 3.5 and Lemma 3.6 show that we can perform integration

L&

™ fﬂ?}:—q(l o f\')
)

by parts on the right hand side of ( 45) and obtain
ey PN + £)T e~ ag 7 (M) (o, A) d)

Jramy @ (1 + d/dN) (RS (PO (Wi, X))
Using Leibnitz rule on the right hand side we get,

[ Jramy FA)(A + £)7e™Magg (M) ulo, A)dA

< e T )(i)fmﬂ|(3%)s<%)(ﬁ)f-5( (a5 (A, M) M

Using Lemma 3.5 and the Proposition 3.7 we see that the second term of

the integrand on the right side is bounded by M(1 + |m[)?(1 + |A]}? for some

constant M. Therefore
| Jramy YA + t) e M ag g (M) (o, A)d)]
< Me™(1+ [m|)?supgg,eominy |1+ [N)2(d/dA)* (£ |
fr.)r all o € M, myn € 2° and t > 0. Also as % i3 continuous we replace
A =y by |RA| < <. Then using Lemma 3.6 we get
| framy FOY(L + t) e Mag g (A)u(a, A)d)|
< Me (1 +|m|)? supjpy<y, 0gsgu(l + [A])2H [FE()]
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=

for all 0 € M, m,n € 2% and t > 0 where v = 27 + 1 or 7 according as
P(A)=A—-1or P(A) =1.
[For the b,'y' integral we get a similar result and finally arrive at,

(1+ 1) er (S F)(a)] < Ma(m,n)  sup  (L+ANIFOQN)]  (46)

|'RA| <y,0Ls <y

for all 0 € M, m,n € 2% and t > 0, where v is as above and u = max {4 +
g,24+r} and g(m,n) is a polynomial in m, n.

For g1 = g3 = 1, our theorem follows trivially from ( 46) using Cartan
decomposition on G if I’ has pole neutralizing boundary:.

Notice that for general g;,g0 € U, we justify differentiation under the
integral sign in ( 25) by appealing to ( 15) and ( 17), and get:

( }?,;IP}(QIIE !}'2) = (ﬁl})gﬁﬁk =0 (A)ﬂ:}m“(ghm‘gz)#(gj A)d'}\

2 o (47)
+ EieLm " (l){]} (91,2, g2)1).

Using relations { 9) in Section 1, one can show that there is a finite collection

of polynomials {p{:|o € M,ije I} in m,n, A such that

um

(91:3319‘2) = Et;Efpi;(A m, n)q}n-i-l,m-i-}( )

forall\€C,o e M,m,necZ°and z € (7, where the degree of the polynomial
p7; in A is less than or equal to the sum of the degrees of g1 and g; while the
degrees in terms of m and n are respectively less than or equal to the degree of
g2 and g;. Now one can replace I'(A) in ( 46), by F; ;(A) = p (A m, n) F(A},
Because [} ; satisfies F;;(\) = tp?f"”'ﬁﬂ,j(—-).) on 87, it also has pole neu-
tralizing boundary and it satisfies all the other properties of F' stated in the
hypothesis with u replaced by u — d.

For I' with pole neutralizing boundary, we may leave the proof at this
pﬂint. From here the arguments in [Ba, Theorem 15.1] will directly lead to
the desired result.

Now we remove the restriction that F' has pole neutralizing boundary and

deal with the general case.
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When p % 1 or m,n are odd or m.n € 0, then the above discussion itself
settles the result as any function on the strip 87 trivially has pole neutralizing
boundary. To deal with the case p = 1 and m, n even with m.n > 0, we have to
go through the methods developed by Campoli, Trombi, Ragozin and Barker
(see [C], [Ba] and [T]). Define H' by: |

HY(N) = & e ep)? (48)

ﬂ'.|.|.JI.

for A € 8! (see [Ba, Section 17]). Then the branch of the square root in { 48)

can be chosen such that:

(i) H'(1) =1 and H'(-1) = ",

(i) HI(\) = t,ol‘aHl(—)\) for all A € C,

(iii) H! € C':g(C‘“}'k)-,,,,h1r1 for all p’ € (0,2| (see [Ba, Lemma 17.1])

Let [y(A) = F(A) — F(Q1)HY()). Then Fy will satisfy all the condi-
tions of the theorem and moreover, it has pole neutralizing boundary. Hence
the theorem is true for Fy. On the other hand, Sy H! € CYG)mm since
H! ¢ C1(G)mn. This proves the theorem for F as F(A\) = Rp(A\)+F(1)H(}).x

Corollary 3.9 Let p € [1,2]. If I is as in Theorem 3.8 with s 2 3 and
u> 4, then Sy F ig in LP(G)ma. In fact, if m,n are odd orm =n =0,

or if p > 1 then s > 2 and u > 4 will serve the purpose,

Proof Take r = 2 in the second inequality of the previous theorem, Then it is
clear that (S7;, F')(a:) is of order — ¢"#' and hence is in LP(A, edt). The

result now follows from the decomposition of Haar measure on G. N

Theorem 3.10 If F is as in Theorem 3.8 withp=1, 825 and u > 4,
then (SR’;‘F)“ = [
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Proof. For H € CY(G), we claim that

fﬂ F)HN)p(A)dA = f (SEEFY (A HN (N (19)

The existence of the first integral is obvious from the given growth rate of F
and / and from the inequality { 17), while the existence of the second one
follows from Riemann-Lebesgue lemma ([E-M, Thoerem 5]} for P functions
and again by definition of C1(&) and ( 17). Now as

(i) I is integrable with respect to A,

(ii) S5 Fis in L'(G) (by the previous corollary),
(iii) Sy H is in LY(G) and

(v) (SpHY =1,

the equality of two integrals follows from Fubini’s theorem. This implies that
F\u(d) = (S FYu(}) a.e. on a' with respect to Lebesgue measure. As

#4(A) has exactly one zero on a* (at 0) and the functions are continuous the

result follows. n

An analogue of Theoremn 3.10, when F' is K-finite (Definition 3.1) with
more than one nonzero matrix coefficient, is a consequence of the same in-
equalities we used above because all the inequalities remain valid for finitely

many fixed m,n. We have:

Theorem 3.11 Suppose I : M x 8" — | B(H,) satisfies the following

conditions:

1. F(o,)) € B(H,) for allo € M and X € 8,
2, 'F(.::r, A} has only finitely many non zero malriz coeffictents,
3. A — (o, A) is continuous on 87 and analyﬁ'c on 87 for each o € H,

4, Fnn(A) = @ 3 Fup{—X), for ell m,n, o such that m,n € 29 and % € 57,
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5 Fualek) =04 mn € 27 are of opposite sign, k € 279 and k| <
min{([k[, [n[, v},

6. For some s € N and r; € RY, Bupl(a‘—fi)s Fanlo, V(L +[A)" < o0, where

the supremum is taken over all A\ €87, 0 € M and m,n € Z°,

Then P4 o(ZmnSyy F) < oo for all g1,92 € U and r € R such that
2r +1 € 8 and max{2 + rnd+ e} +d < v for some e > 0, where d =

deg g, - deggs.

Corollary 3,12 If F' 48 as in Theorem 3.11 with s > 5 and v 2> 4 + ¢,

m,n

then the sum of the wave packets EmmSH,pF is in LP(G).

Proof. Follows from Corollary 3.9 in view of the fact that the estimate

on the wave packet obtained in Theorem 3.11 is uniform with respect to m, n.=

When F(}) is not K-finite, it needs summing over m,n and so in that case

the function £ will have to be rapidly decreasing with respect to m, n also.
Application : Wiener Tauberian Theorems

For biinvariant functions in L'(SLe(R)) Ehrenpreis and Mautner proved two
versions of Wiener Tauberian (W-T) theorems ([E-M}, Theorem 6 and Theo-

rem 7). Here we use the analysis done in this section to provide an analogue

of Theorem 7 of [E-M] for LP-functions with K-types (n,n) (essentially the

same method will also work for obtaining an analogue of Theorem 6 of [E-M])}.

In the remainder of this section, p € [1,2).

Theorem 3.13 Let f € LP(Glun N LY G)uy. Suppose that the Fourier

transform ( fg,fg) of f satisfies the following condilions:

L. Ju € C"(87)
2, f’}; never vanishes or the strip and fg never vanishes on the diserete

series which are relevant for an (n,n) lype function.

44



A~ 1 ¥ .
3. SUPye ST |£—,»((f;;()\)) 1e=2")] < oo for somel € N and for  =0,1,...,7,
where » = b when p =1 and m,n are nonzero even numbers, and

r = 2 otherwise.
Then the LY (@), bimodule generated by f is dense in LP(G)yp.
Note that if in this theorem p > 1 then hypothesis 1 is redundant.

Lemma 3.14 For any 6 and & > 0, let DH(@) be the space of functions
X{A) : C — C which satisfy the following conditions:

1. X(A) is holomorphic on &/,
2, X(A).e"“& s bounded m S/,
3. X(A) =X(-A).

Then Dy (G) is dense in Co (G un-

From the description of O_ff(é),h" it is clear that there is no essential differ-
ence between this space and C}, (é){}’g (see Observation in the next section).
Therefore the Lemma follows from the proof of the corollary to Lemma 5.3 in
[E-M], and hence the proof is omitied.

Proof of Theorem 3.13: As Dy(G) is dense in C%(G)nm P (GYxCH(G)um
is dense in CP(G),.,. Take any X(\) € Dy(G). Let F(A) = fi(A) and
(N = FOOLX () = (F(A) e~ ) (e X(2)). From the properties of F())
and X(\), we find that

(1) $(\) € C7(S7) (i) $(3) = (—)) and

(iii) djd'-’i(f‘l = O(WIITF) uniformly in the strip &7 for « > 0 and j
0,1,...,r.

So, by Corollary 3.9 above 8" ¢ € LP(G)pn.

Now let Y € CB(&),n. For ky € L(7)¢ define dplky) = 3. Note
that F'(kg) # O by the hypothesis of the theorem. Then F'(ko)dp(ko) = Y (ko).
Defining ¢ in this way for all points of L3 ()¢, which are only finitely many,
we get in general F'(k)¢op(k) = Y (k) for all those points. And h(z) defined by

}

, n,n 1 TR}
h(z) = ngfﬁ'(-’l‘-) + %Bkemﬂ,h)ﬂ dp(k)L," ()| K]
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is in LP(G)pm as for k € L7 (), ¥, belongs to CP(G)un (see Theorem 2.8).
So, F(\) will generate an ideal containing Dy(&) x C'%(é),h" in LP(G),n. The

theorem is immediate from this step. |

In the proof of the above theorem we have used Theorem 3.8 only for the
case p € [1,2] and m = n.

By a skillful use of an ‘extension of Corona Theorem' due to T. Wolff,
W-T theorem was extended from L!(SELz(R)) to L} (SL2(R)/SO2(R)}) in [S2].
We will proceed in an analogous way to get a W-T theorem for LP(SLy(R) )n.
First let us quote Wolff’s Theorem from [52] :

Theorem 3.15 (Wolff }Let S be a open vertical strip on C and let H*®(S)
denote the set of bounded holomorphic functions on 8. Lét g1, 02, +.0n
and f belong to H®(S) such that L;|gi(A)| = |f(A)] for all A, Then
a1.91 + 2.2 + ..+ Qpgy = % for some a1,a3,...,0, € H®(S).

A consequence of this is:

Theorem 3.16 Let fi, f2,...,fn € LP(G)pyn be such that their Fourier
transforms can be extended to bounded holomorphic functions to an aug-
mented strip S]. Suppose further that for some positive constant KX and
a positive integer I, E;Iﬁ()\)l > Ke " jor all A € 8], and ﬁy(.k), i =
1,...,n, do not vanish stmultaneously at any k € T'yy. Then fi, f2,. ..\ fa
generate LP(G)nn as an LY G)yn module and hence generate IP(G), as

an LYG) module.

Proof. By Theorem 3,15 above, there exist aj, ®9,...,0n € H“‘?(.S?E) so that
Eaiﬁ = e 3 As the ﬁ’s and e~3%" are even function on the augmented
strip, one can choose a;'s to be even. Now EB"H{E{(/\)EO\) = oM 3 Ag
«; i3 bounded holomorphic, e"‘\?ai s Ol(é),hu by the characterization of the
space CY(G), . (see Definitions 2.9, 2.11). Note that the definition of CH(G)
does not provide any restriction,

Now as there is an ' > 0 such that E“A?.E'Mu > e‘“ul it is clear that the

function e~ .e~3*" satisfies all the conditions of Theorem 3.13 and hence gen-
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erate L};(G)n,n- Therefore f1, fa,..., fn generate L?‘-}(G)H,ﬂ' Alsoas fi, fo,..., fn

do not vanish simultaneously on I',, it is clear from Theorem 3.13 that they

generate the discrete part L% (G), ., as well, K

Note that e=*" is the Fourier transform (of some function) with the great-
est decay which fits in Theorem 3.13 and generates L'{(G), ..

Now if f € LP(G), is left K-finite and is of right type n then fy is
a coloumn vector with finitely many matrix coefficients. These matrix co-
efficients are Fourier transforms of projections of f in its left K-types, say
mi,my, ... my, Let us call these projections fi, f2,..., fr. For such an [ we

have,

Theorem 3.17 Let f and fy, fo,..., fr be as above. Suppose that ithe
Fourier transforms fi H, fg iy Jr i can be extended to bounded holomor-

phic functions on S, and for all A € S,
- —14
Silfin(A) = Ke™

for some constants K and |l € N. Suppose further that fip, fap,... [+
do not vanish simultaneously at any point k € T, Then the left L1 (G)-
module generated by f 28 dense tn LP((7),.

The theorem will follow from the proof of a more general theorem (Theorem

4.5) proved in the next section. To avoid repeatation we omit the proof here.
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4 Wiener Tauberian Theorems for SLs(R)

In this section ¢ = SL3(R). We recall two estimates on the matrix coeflicients:

(i) Foro € M, m,n€ Z° and ) € 8, 075 ()| < 1forall 2z €G. ([E-M],
2.9)

(¢) For p € (1,2) and for arbitrary but fixed & > 0, there exists C. > 0 such
that [ |97 (z)|?dz < C, for o € M, m,n € 2° and A € 8¥¢, Here

(', depends on €, and % + % = 1,

The second result can also be stated as: If an admissible representation is L”
tempered, then its matrix coefficients are in L9 for any & > 0, (Follows from
Proposition 2.4, which can be considered as the definition of LP-temperedness)

Reviewing the definition of the space C’f}(@)mm (given in Definition 2.9)
we see that, as 902::{ = 1, in the definition of C'f;((?)",n property 2 reduces
to J/(A) = F(—A) and property 4 is not relevant, Thus the space C5 (G

consists of the continuous maps
F.:8 —C
which has the properties:

1. F'is holomorphic on 3"7, the interior of 87,
2. F(A) = F(-A) for all A € &7,
3. ﬁ};’;jr(F) <ooforallle N, r € RT, where

Ping.e(F) = sup (=) POV + I

AEST

Also recall from Definition 2.11 that Cf;(é)n," is the set of all functions
EF:Z(n) — C.

Observation.

1. Though C%(é),m,, is the image under Fourier transform of functions of

C35{(G)nn relative to the principal series reperesentation, the definition

is independent of n.



2. This definition is in a sense independent of p. The only thing which
changes with p is the width of the strip S and so far we want to use
properties of holomorphic functions on a vertical strip we are always in
the same situation. For p € (1,2), our analysis is rather simpler for
the fact that S does not contain any integer point parametrizing the
discrete series, i.e. no discrete series is embedded in any of the principal

series parametrized by that strip.

Following [B-W|, we define AE(6) to be the space of continuous functions

I": 8] — C satisfying the following properties:
1. F' is holomorphic on .S?g,
2, I'(A) = F(—A) for all A € 8],
3. limpyj—oo F(A) =0 0n ) € S7.

There is a conformal map ¥ from the strip &) onte the unit disc I such
that iR is mapped onto the line segment joining 4 and —4 under it and y(-A) =

—(A), namely,
3 1:(1 - eﬂik/?(-,'*l-ﬁ))
w(}\) (1 4- ewi}»ﬂ(*r-i-é)) ’

re S,

Let A(D) be the algebra of all functions f : b — C which are analytic on
[ and continuous in its closure and let Ag{D) be its subspace of all functions
[ € A(D) such that f(z) = f(—=2) for all z € D and f(?) = f(—i) = 0. Soif
[ € Ap(D), then f oy € AS(S). Then ([B-W, Lemma 1.2]),

Lemma 4.1 (Benyamini-Weit) For every ideal I in Ao(D) there is an

ideal J in A(D), so that I = J N As(D).

(See [B-W, Lemma 1.2}.) From the above lemma and the Beurling-Rudin
Theorem ([Ho, last Corollary on p. 88]) we conclude (following [B-W|) that if

the functions in an ideal I in Ap(IP) has no common zero other than =7, and

if I contains a function whose decay is less than exponential, then I = Ag{D).

Now one can extend Lemma 1.3 and Lemma 1.4 of [B-W} o our context.
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Lemma 4.2 Fiz 6 > 0. Then the space

" fu can be extended holomorphically to S} ﬁ

J = fe OP(G)H,.H‘ —~ . ?
and fi(N)e ¥ € AY(8) for some K > 0

is dense in CP(G)y, (and hence in LP(G),.,.).

A

Proof. Take g € C®(G)un C CP(G)nm. Then Fn(X) = gy(N)ed/m™ e AR(S)
for all m € N, since by the Paley-Wiener theorem ({Ba, Theorem 10.5]) gy is
an entire function of exponential type, Again from Paley-Wiener theorem, it
follows that eX'/™ is the Fourier transform of a function in Cx(G) C CHGpp
Therefore, taking convolution, F,, = [, for some fm € CP((Z) 0, and hence
fm € F. Now for a fixed r, |\ (Fin(\) = Gar(M) = [gar (M)A |1 — &¥’/™|. The
first factor on the right hand side converges to zero on §; as |A\| — co. The
second factor is bounded and converges to zero uniformly as m — o0 on com-
pact subsets of §J. Therefore A"(I3,(A) — g (A)) converges to zero uniformly
on & as m — oo. As I, (M) and gy () are analytic, from Cauchy’s formula
it follows that on the smaller strip &7, the same is true for all derivatives of
A (F(A) ~ gu(2)). Therefore F,,, converges to gp in CP (E)n_ﬂ. Actually this
proves that the set Fi of all F ¢ C'f}((:‘ Ju,n Satisfying,

(i) F is holomorphically extendable to & and
(i1) F(A)e X¥ ¢ AB(6) for some K > 0,

is dense in C%(C?'),hn.
So Fr @ CB(G)py, is dense in CP(G)pp. But {f]f € F} = Fyy & CH(E)en

as for f € F, there is no restriction on its Fourier transform fp, with respect

to discrete series representations. _

Lemma 4.3 Let § > 0. Let a sequence of funclions {f;} and f be of type
(n,n) such that finr, fn € AR(8). If thereis a K > 0 such that

Fa()e™™* € 45(5)
and if the sequence fig()\) converges to f:;(/\)ﬂ_K)‘? in the topology of
AE(6), then EH(A)EK}‘E converges to [y in Cﬂ(é)m topology.
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Proof. It is enough to prove that for each r, the sequence A"(fig(A)eX* —
f1()\)) converges uniformly to zero in the strip 8] as 1 — oco. Because then

the lemma will follow from Cauchy’s formula. Now,
N (Fr(NeE¥ = Fu () = k¥ (Fr () = Fu(Mem 0.

The first factor on the right hand side is a bounded function and the second

factor is a sequence which converges uniformly to zero by the hypothesis. =

At this point we make an observation on the hypotheses of the main the-
orems of this section, Theorem 4.5 and Theorem 4.7. We assume in both of
them that the operator Fourier transforms fy(m,,) are defined for A € St
for some & > 0, to keep the statement relatively simple. However, what we re-
ally need and make use of is only that the matrix meﬂiciehts of the transforms,
(fi)man(o, X), have analytic extensions on §7*® beyond their natural domain
87. The extension of the operator transform is, in fact, a mere notational

convenience,

We now prove a W-T theorem for LF(G),, functions. This is an extension
of Theorem 1.1 of {B-W] which proves the case n = 0, p = 1. As always,

¥ = % — 1. If a function f satisfies the folowing decay condition;

lim sup |(ﬁ;)m,“(it)e}{‘em] > - (50)

|t|-—o0
for all K > 0 then we will simply say that the (m, n)-th matrix coefficient of
the Fourier transform of f is not-too-rapidly-decreasing or does not decay
too rapidly at co. This is obtained from the Beurling-Rudin decay condition,

mentioned above (see discussion following Lemma 4.1) on composition with

P(A).

Theorem 4.4 Let {f*|a € A} be a subset of LP(G),,, where A is an index
set. Suppose that, for some § > 0, each f}} extends halomdmhically to
ng and satisfies li'm,_;‘l_._._.m E}(f\) = 0 in S?. Let there exist an ag € A such
that some matriz coefficient of f3" does not ‘decay too rapidly at oo’

Moreover,
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(a) if the collections {f}}} and {fﬁ} do not have any common zeros on
S] and T, respectively then the LYG)pn-module generated by {f%a € A}
is dense tn LP(G)upn.

(b) for the particular case of p=1 and n =0, if the Fourier transforms

f:’,:ﬁ} do not have any common zeros on S; except the points £1, then the
LY(G)og-module generated by {f®|a € A} is dense in L}(G)§y, the space

of functions with zero integral in L(G)og.

Proof. Since fj} € AN(S) for all @ € A and f*° does not ‘decay too rapidly.
at 00!, by Beurling-Rudin theorem (see discussion following Lemma 4.1), the
algebraic ideal Z generated by f&'s is dense in A§(6).

Fix h € F, where F is as in Lemma 4.2, Then hg(\)e ¥*¥ ¢ AR(8) for

some K > 0. So there is a sequence F, € 7 such that F, — hzy(\)e ¥*.
Since F, € Z and eX* ¢ AB(S), Fre® € T and by Lemma 4.3 FeX¥
converges to hy(A) in the topology of C}}(@)nm. We may assume that the
sequence FyeX* ig in the ideal generated by {fﬁeK{:“i}aEA in C}}(@)",,. for
some K’ < K. Because for any function a{A} € Af(6), a(/\).ﬁ("{";{})"‘ﬂ is in
C?f(é)ﬂ,n*
When p = 1 this shows that the ideal generated by {fﬁ}ngﬁ in C‘}f(@)ﬂ,n
is dense in CL(Gan. If p > 1 then from the facts CH(G)n is dense in
Ch(Glnn and C%(G)yn is a Frechét algebra, it follows that the C}(G)nn-
module generated by {f%}aes in C5(G)nn is dense in CPAC) -

Let {ki|]1 <1 < 7} be the natural enumeration of Z"(n). By hypothesis,
for each k; there exits an 3; € A such that f‘g."(fci) £0.8et A' = {8]1 <i<

r} C A. Let )
’LB(kj)
[5 (k)

g (k;) = 6; 5
for 1 <4, j<r and

g°(ky=0 forallkeTl,, andae A—-A".

Then hp(k) = S oo fg(k)g”(k) for k € I',,. This proves part (a) of the theorem

in view of the isomorphism between CP (@)",ﬂ and C?(G), » and the injective-
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ness of the Fourier transform on LP(G),,,. Part (b) is proved in {B-W Theorem
1.1]. m

Theorem 4.5 Lei n € Z be arbitrary but fired, Let F = {f%a € A}
be a subset of L(G),, A being an index set, such that for each o € A
the Fourter transform f}} of f¢ has a holomorphic extension on S? for
some § > 0, and all the matriz coefficients of fﬁ vanish at nfinity,
i.e., limyy o I(f}}(,\))m,"[ =0 on 8. Let there be an ap € A such that
one of the matriz coefficients, say (Eﬂ)mg,u satisfies the not-too-rapidly
decreasing consition stated in (35).

Also assume that the collections {f&la € A} and {f&|a € A} do not
have any common zere on Sf and [, respectively. Then the left L'(G)
module generated by F is dense in LP(Q@),.

Moreover, in the case p =1 and n = 0, if the collection F does not

have any common zero on S; except at 1 then the left ideal generated

by F is dense in L} (G)3.

Working towards a proof of thig theorem we recall that if f:: (f};, fB) =
Lp(é) then (fB(k))m,n = nm”‘(k)(fg(k))mln for k € 87 where n™"(k) is a posi-
tive number ( see Proposition 1.2). Therefore (f5(k)}mn # 0 < (Fa(k))ma #
0.

Suppose that fB(k) # 0 for all £ € I',,. Then it implies the following:

(a) If nis positive then f has at least one (nonzero component of) left type m
such that m > n, because for every m < n, (fg(n—— 1))ma = 0. Similarly,

when n is negative f has at least one left type m for some m < n.

(b) Let f € L'(Q@),. If n is even and § < 1 then exatly one point in the strip
83, +1 or —1, parametrizes a discrete series representation relevant for
f according as n > 0 or n < 0. So, when n > 0, by above hypothe-
sis fp(1) # 0. In fact, there is a K-type m such that m € Z(1) and
(fB(l))m,n # 0. This is equi-valent to saying that (fy(l))m_n + 0. For
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n < 0 one can have a similar statement. When n is odd neither the
original strip S8 nor the (carefully chosen) augmented strip S} has any
point-parameter of discrete series representation relevant to this K-type
n. For p € (1,2) the strip S and its § augmentation §] can avoid points

which parametrize discrete series representation.

Proof of Theorem 4.5, The fixed n in the hypothesis determines a unique
o € M by the relation n € Z°. Recall that when m € 2? for this o, then m
is of the same parity as n, while integers in Z77 are of parity opposite to n.
Throughout the proof by ¢ we mean this o determined by n. Instead of (o, A)
we may use only A as a parameter of the Fourier transform,

We will first consider the case when p = 1. For.any function f € F and

for any m € Z, let f, - be the projection of f in the left K-type m. That is,

| 2x
fo () = fK Zom(ko) f(koz)d6 = /ﬂ e~im0 £k 2)do.

Then fp, - is clearly an (m, n) type function. Also the (m, n)-th matrix coef-

ficient of fH 1s given by (fH )m,ﬂ. = (fH)m,— — (fr:*—)ﬂ'

The main step of the proof is to associate to each m € Z?, a polynomial
P,,(A) in A which has the property that G,(}) = e~ NP € CY{G)pm. Let

Pn,m denote the numerator of the rational function ¢’y". Then

‘P::T = Pum(A)/Prm(—A) (51)

(see ( 24), Section 2), and

(Jm] =14+ A)(|m] =3+ ) (n]+ 1+ A) if |m] > [n|,
Punm = (-—-1)("_’"‘)!2 if lm| = In|,
(lnl—1-MIn]=83—-A) - (Im{+1- 1) if jm) < nl,

(52)

We define the polynomials P, as follows:
1. When m.n > 0 let P, = pum.

2. When m.n < 0 and m,n are odd, let Pp(A) = pam(A)N2.
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3. When m.n < 0 and m,n are even then P,()) = p, m(2).(1 = A2).

m_— x4

Then in all the above cases e"‘{Pm(A) == tp: y €7 Pp(—A) by (51). There-

fore from the definition of C?((),m (Definition 2.9) it is clear that G, (A) =
e Bu()) € CH{G)nm. Also,
GnN(Fi)m () = e Pu(\)(Fit)m,~(3)
= e Prn(=Ne} "X (f1)m,~(=)
= Gm(-2)(Fr)m,-(—2)

since (fi)m—(A) = @™ (A (F1)m~(=A), fm being an (m,n) type function
and )" = (py"™) 7! (see Proposition 2,10 and equation { 23) in Section 2).
This shows that for all m, Q’m(fg)m__ is the Fourier transform of an (n,n)
type function with respect to the principal series representation m, . It is
obvious that they can be holomorphically extended to the strip 'St'}' and that
lim)y1 00 |Gm (M) (fi )m,—(A)] = 0 as the claims hold for fi's.

Next we want to show that for each A\ € S} there is an m € Z and an
a € A such that Gn(A)(f&)m-()) # O.

It is clear that the only possible zeros of the polynomials p,;m and Fyr in

the strip 8§ are =1 and 0 (when § is chosen carefully). Concentrating on them

we find:

(3) Pam(0) # 0;

(1) if m # 0 then p, (1) # 0 for all n;
if n # 0 then p,o{1) =0

and ppo = 1.
(449) pum(—1) =0 if and only if n = 0 and m # 0.
Therefore the only pnssiﬁle zeros of P,,’s within the strip §* are:
Case (a) if n =0 then P,(—1) =0 for all m # 0.

Case (b) if n # 0 then Fy(1) = 0.

Case (¢) if n.m < 0 and n,m are even then Pp(1) =0
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Case (d) if nm < 0 and n,m are odd then F,(0) = 0.

By hypothesis, for any A € &} there is an @ € A and an m € Z such that
(F%)m,—(2) # 0. If n,m and X does not fall in one of the cases mentioned
above then clearly Gm(A)(F%)m.~()) # 0.

Now consider the point A = 0. This is a possible zero for P,, when n is
nonzero and odd; But in that case n.m > 0. Because otherwise, ¢y = 0
(see Proposition 1.1, Section 1) which would imply that (f%),_(0) = 0
contradicting our choice of m. So case (d) is not relevant here and hence the
function G, satisfies the relation Qm([])(fﬁ)m,_([}) # 0.

Next consider the points 1 and —1. It is enough to deal with the case when
n is even.

IFirst consider that n is even and positive. By hypothesis, there exists an
a € A such that (f2)m-(1) # 0 for scme m € Z(1). Now by the discussion (b)
preceeding this proof, this implies that (fﬁ)m._(l) # 0. Also, as n 2 2 and
m > 2 in this case, (f)m—(—1) = oo (fi1)m,~(+1) and Py, has no zero at
A =1 (see Proposition 2.10). Therefore (fH)mJ_(fl) # 0. Also, sincem > 0
and n > 0, case (b) and case (c) do not occur. Hence gm(::l)(fﬁ)m._(::l) # 0.

Similarly we can tackle the case when n is even and negative.

Finally, if n = 0 then for every & € A, (f&)m (1) = 0 for all m # 0 as
(Ilgfl(z) = 0 (see Proposition 1.1, Section 1). But, then the hypothesis that
f4(1) # 0 for some & € A forces (Ff%)o,-(~1) = (f%)o.~(1) to be nonzero.
(Note that fg— is a (0,0) type function in this cage.} Therefore, Case (a) will

not concern us.

To deal with the discrete part, let us take G (k) = e~* P, (k) forall k € I',..
Now let for &' € T, (F8)m _(k') # O for some o € A. Then m' € Z(k').
Therefore P, (k') # 0 as all the zeros of the polynomial are either between m'
and n or between —m' and —n.

We will now show that Qmﬂfm“ y does not ‘decay too rapidly at oo’. Let

K > 0 be fixed. Take a X/ such that 0 < X' < K. Then
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(f‘f)mu,_ (it) P, (it) eFeM—(it)! [
(ﬁf)mﬂ,_ (‘it) Pﬂm (,i t) E(K—K")e"i—:"‘ BK falt

G (1) F Yo, (i )|

Hence,
Hmsup |Gmg (1) (3 Jme.— (it)eK"'MI > 0

t]—sco

as limsupy . |(fH)mm_(it)e(‘r{_p‘”)"'lll"'tll > 0, EEKJEM| — 00 a8 |t] — 0.
Note that on the imaginary axis only at the point 0, Py, may have a possible
zero which clearly has no effect on the limsup above.

Now for every m, the isomorphism between C*(G), » and its image under
Fourier transform, Cl(é)n_m tells us that there exists a g,,, € C I(G),hm such
that Gma(A) = Gn()) for X € 8} and G p(k) = Gu(k) for k € I',,. Thus we
have established that the set of L}(G),., functions {g,, * o .imeZ’, a €]}
satisfy all the conditions of Theorem 4.4 and hence the ideal generated by
them is dense in L*{G), . But gn * fo_ = gm * f% Therefore the result
follows from the fact that the smallest left L}(G) module of L(G), containing
LY Gy o is all of LY(G),,. This completes the proof for L! case.

The proof for p > 1 will almost follow the above word for word. In fact,

the case p > 1 is simpler as the troublesome points %1 are not in the (carefully
chosen) strip §/. Note that for every p € [1,2), we always get a C};(@)—
function, e.g. P(M)e ', to change the K-type of the Fourler transforms.
So arguments similar to that of the previous theorem will take care of this
situation.

The last part of the theorem, which deals with the special case n = 0 and
p =1, is a consequence of the application of the same argument as above on the

corresponding result for the biinvariant functions (part (b) of Theorem 4.4). ®

Remark. The functions on G of right K-type n in the above theorem may
also be viewed as sections of a certain line bundle over G/K. In fact, for
each character y, of K we can construct a line bundle in the following way.
Let ~, be an equivalence relation on G x C : (g,z) ~» (¢',Z') if and only

if there is a k € K such that ¢ = gk and z' = xu(k™')z. Now if we define
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G Xy, C = GXC/ ~y and p: G %y, C— G/K by p(gz) = gK, then
& Xy, C with the projection p becomes a line bundle over G/K. Now, if s is
a section of this line bundle then it has the representation, s(gi) = 9, 2],
where z, € C is uniquely determined by ¢ € . Hence s determines a unique
function f; : G — C by g+ z,, and it is clear from the defintion of the line
bundle that f; is of right K-type n. Moreover, s — f; is a 1-1 correspondence
between the space of sections of the line bundle G x,, € and the space of maps
on (7 of right K-type n, Borrowing terminology from function spaces through

the correspondence, let I'?(G x,, C) denote the space of L? sections of G x,, C.

Then Theorem 4.5 can be restated as:

Theorem 4.6 Let F be a subset of I'?(( x,, C), such that for each section
in X, the Fourier transform of it has a holomorphic extension on 8?
for some 6 > 0 'and all the matriz coefficients of that Fourier ransform
vanish at infinity, on S;. Let the Fourier transform of one of the section
in F has a mairiz coefficient which satisfy the not-too-rapidly-decreasing
condilion at oo. Also assume that the Fourier transforms of sections
in F do not vanish simultaneously on 8] and T',,. Then the left L'G)

module generated by F i3 dense in IP(G x4, C).

Now we are in a position to consider the final result of this section. Be-
fore stating it let us note that the trivial representation is an irreducible
L'-tempered representation. It is a subrepresentation of the principal series
reprsentation 7, 1 (See Subrepresentation of m,, in Section 1). The
Fourier transform of f(z) with respect to the trivial representation is f; f(z) dz.

‘ 00 __
In fact, since @, ; =1,

/G f(z) dz =/G f(@) @57 () dz = (F(-1))oo = (F(1)oo  (53)

Tt

S0, in the theorem below the hypothesis [ f(z) dz # 0 means that the Fourier
transform of f with respect to the trivial representation is nonzero. Also note

that for a function of type (m,n) with either m or n nonzero, [ f(z)dz =0.
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Theorem 4.7 Let F = {f*|la € A} be a collection of functions in IP(G),
p € (1,2), such that for each o € A the Fourier transform fﬁ has a holo-
morphic extension on M XS? for some 6 > 0. Let all matriz coefficients
fe(a, Ymm [ € F,8 € M, m,n € Z satisfy imyy oo [(FE(0 Al = O
on 8; and let two of the matriz coefficients, one from each parily, not
decay too rapidly at oo, If {f}_}} and {8} do not have any common zero
on M X S]U{Dy,D_} and Z* respeciively, where D, and D_ are the
mock discrete series, then the L(G)-bimodule generated by F is dense
in LP(G).

Moreover, for the case p = 1, if, in addition to above, there is ai
least one ¢ with non-vanishing integral then the ideal generated by 7 is

dense in L'(G). Otherwise, the ideal is dense in L}{G)°.

Proof. As we have seen in the proof of the previous theorem, it is enough
to consider the case when p = 1. For any function f € F let f.; be the
projection of f to L1{G@); for every i € Z.

For i,m € Z let p;, be the numerator of the rational function cp;:: and

P;,, a polynomial in X as described below: (Compare Theorem 4.5)
1. When im > 0, let P, = pim.
2. When i.m < 0 and i, m are odd integers, P, (A) = A?p;m(A).
3. When .m < 0 and 4, m are even integers, Pm(A) = (1 ~ A%).pim(M).

Then for all i,m € Z, Pm(Ne™ € Ch(G)im. By the isomorphism of
CI(@R)im with CL(G)im (Theorem 2.14) there exists a gim € CHG)im
such that Gimg(}) = Pim(N) e for X € 8} and Gimp(k) = Pim(k)e™ €
CL(G);m for k € T}.

Now for each m € Z we construct a collection of functions
Fm = {f*gi,ml'ie Z, | E-’F} = {.f-—,i*gi,ml'ie Z, f E-?:}

contained in L'(G)yn. We will show that the collection 7y, satisfies the condi-

tions of Theorem 4.5 and hence generates LY G
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For each A € §§ we will find a function in ,, which has nonzero Fourier
transform at (o4, A) or at (o_, A) according as m is even or odd. As it has been
observed in the proof of the previous theorem, the zeros of the polynomials

P; ., inside 87 are as follows:
Case (a) if 1 =0 and m 5 0 then Py ,(—1) =0,

Case (b) if i # 0 and m =0 then P, (1) =0

Case (c) if i.m < 0 and %,m are even then P ,,(+1) = 0,
Case (d) if i.m < 0 and i,m are odd then P;,(0) =0,

Therefore, for any point A on the strip S other than 0, 1 and —1, F; m and
consequently the Fourier transform of g;,, is nonzero at A\. Hence for such a
A we easily get a function in F,;,, which has nonvanishing Fourier transform at
(04,A) or at (o_, A) according as m is even or odd. In fact, if f € F be such
that f_; has nonvanishing Fourier transform at ), then the function f  g;

serves the purpose.

Now we deal with the point 0. We shall show that there is a function
f—i* gim in the collection F,, with nonzero Fourier transform at (o,0) or at
(v_,0) according as m is even or odd. When m is even we choose an f € F
and even integers r, s such that the (r, s)-th matrix coefficient of f{o4,0) is
nonzero. Therefore the Fourier transform of f- ¢ x g5 m s nonzero at (o4,0)
and the purpose is served; because, here s,m are even and hence P {0) # 0.

If m is odd and positive, we have to appeal to the hypothesis: fy (D) #
O for some f € F. This implies that there is a nonzero matrix coefficient.
(.F 1 (0~,0)}y, v of the Fourier transform of f, where both u; and v; are positive
odd integers. Then P, ,, does not vanish at 0 as both v; and m are positive.
Therefore the Fourier transform of f_ ., * g, m will be nonzero at (o_, 0).

Again as fH(D._) # 0 for some f € F, there are K-finite vectors ey, and
€y, such that (fH)ug,w(J.._,D) # 0, where ug and vp are both negative odd
integers. If m is odd and negative then P, . does not have a zero at 0.

Consequently the Fourier transform of f~ v * gu,m Will be nonzero at 0,
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Next we consider the points 1 and —1. First note that for odd ¢,m, P,

has no zero at 1. So for odd m we can easily find a function from F,,, with

nonzero Fourier transform at (¢ + 1). So it remains to prove the case when
m 1S even,

Let m be nonzero positive even. By hypothesis there exists f € F gsuch
that fg(1) # 0. This implies that there is a nonzero matrix coefficient
(fa(1))r,.s, Of fB, where 71, 8; are even integers and > 1 as 7y, 8; € Z(1). Then
(Fr(W sy # 0, (F#(1))r,.s, being a nonzero mutiple of (fp(1)), s Now
as (Fu(=1))r,s = @0 (Fu(1)) e, and " 1 is nonzero (see Proposition

2.10), (F(=1))rm,s # 0. Now as both m and s are positive f_g * 9sm

is a function in F, such that its Fourier transform is nonzero at {0, X£1).
And thus we can bypass the difficulties in cases (a) and (c) above when m is
positive. |

Let now m be nonzero negative even., As ﬁg(—l) * 0, for some [ € F
there is a matrix coefficient of its Fourier transform, (fg)ms, which is nonzero
at —1. Then clearly 2 and sy are even integers and < —1 as 79,82 € Z(—1).
Therefore (fi)-5, (04, ~1) # 0. Also, (Fr(1))rpsr = €2 H(fH(=1))rys, and
A = '3 has no zero at 1 (see Proposition 2.10), (7 (+1))rp5, # 0. Since
both m and s are negative, the cases (a) and (c) above will not concern us

and for we find f_ s * g5 m, & function in the collection 7, which has nonzero

Iourier transform at (o, £1).

We will now treat the case m = 0. Here the point —1 can be easily dealt
with as for any (even) i # 0, P,g(—1) # 0. So we concentrate on the point 1.
By hypothesis, there is a function f € F, such that [ f(z)dz = (f(1))oo =
F-of 1) # 0 (see discussion preceeding this proof). So f_p * go, is a function
in the collection Fy which has nonzero Fourier transform at +1.

Thus we have shown that Fourier transform of the functions in F do not
vanish simultaneously at any pr.jint of {o} x 8] where o i 04 OF O acrjﬂrding
as m is even or odd. .

To find a function in F,, whose Fourier transform does not ‘decay too

rapidly at co' we get the matrix coefficient of the parity of m which has that
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property. Let that matrix coefficient be the (a, 8)-th one. Then the (o, m)-
th coefficient of the Fourier transform of f_ 5 * ggn also will not ‘decay too
rapidly co’. Note that the only zero of the polynomial P;,, on the inaginary
axis is at 0.

The collection F,, for m $ 0 satisfies the conditions of Theorem 4.5 and
hence generates L1(G),, under left convolution.

Now as f; * gim = [ * gim, for every m, elements of 7, are right con-
volutions of functions in . So the two sided (closed) ideal generated by F
contains L{G),, for all m. The smallest closed right G-invariant subspace of
L(G) containing L'(G)m for all m € 2 is LY(G) itself. Hence the first part
of the theorem follows. |

If we omit the condition [; f(z)dz # 0, there is no effect on the col-
lection F for m # 0. But it follows from the last part of Theorem 4.5
that, in this case Fp will generate L}(G)}, the space of L!(G)o functions with
integral zero. Note that L'(G),, is contained in L'(G)® for any m # 0; i.e.,
LYG)y = LYG)? (see discussion preceeding this theorem). Hence, in this
case the function f under left and right convolution generates an ideal which
containg L(G)Y, for all m € Z. Since the smallest closed right G-invariant
subspace of L}{G)’ containing all the L {G)? s is LY{G)°, the the second part

of the theorem follows. u

It is clear from the description of CP(&), 0 < p < 2, that following exactly

the same steps we can prove:

Theorem 4.8 Let {f%a € A} be a subset of CP(G), 0 < p £ 2, such
that for each a € A the Fourier transform f§ has holomorphic extension
on M §g for some § > O and all matriz coefficients (fﬁ(a, Dmns O €
M and m,n € 2, satisfy Hm]h]-—aml(ﬁ}(ﬂ: Mmal = 0 on 8. Let two
of the matriz coefficients, one from each parily, not decay too rapidly
at 0o. If {f&} and {f&)} do not have common zeros on the principal

series representations parametrized by M x 8 and on the discrete series
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respectively and if [ fdz # 0 then the {deal generated by {f*|la € A} is
dense in CP(G).

This is an extension of Proposition 5.1 in [E-M] which deals with C!(G)gy.
Now for the zero-Schwartz space, C® = N{CP(G)|0 < p < 2} (see [Ba,

Section 19.] for detail) we can show:

Theorem 4.9 Let F = {f%la € A} be o subset of C*(G). Let two of the
matriz coefficients, one from each parity, not decay too rapidly at co. If
{f&} do not have any common zero on any irreducible subrepresentations

of the principal series representations, then the ideal generated by F is
dense in CYG).

Proof. It is clear that the ideal generated by F in GO is dense in C? for all
p € (0,2] because F satisfies conditions of Theorem 4.8 for all p and C? is
dense in all CP. Now as C? = N{CP(G)|0 < p < 2} the theorem is proved. =
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5 Rank one Symmetric spaces

In this sectim; and in the next one we work with the Riemannian symmetric
spaces G/ K of non compact type, where G is one of the following semi simple
Lie groups of real rank one: SU(n, 1), SO(n,1), SP(n,1) or the connected Lie
group of real type Fy; and K is a fixed maximal compact subgroup of G in each
case. Here we extend the standard notation for SLy(R) as in Section 1 and-
2 to the context of real rank one gi'oupﬁ where the meaning is unambiguous,
and add some more which are required for this case.

Let £ be the Cartan involution corresponding to K. Let g, be the Lie
algebras of (G and K respectively and ¢ + p = g be the Cartan decomposition
with respect to 6. For ¢ € G let o(z) = ||X]|| when z = kexp X (k € K,
X €p). Here |[.|| is the norm given by the Killing form. Also {or ¢ € G, let

2(z) = f o= PHER) g
K

where p is the half sum of positive roots.
Let a be a fixed maximal abelian subspace of p and A = exp(a}. Then
dima = 1, Consider the root space decomposition of g with respect to a. Due

to the one dimensionality of a* all raots will give rise to the same reflection.

In fact, only possible roots in this case are ::%A, +X, £2) (see [G-V], p. 62)
of which only one is simple, and the Weyl group W(A) = Z,. Let G = KAN
be the corresponding Iwasawa decomposition. We denote by M (resp. M )
the centralizer (resp. normalizer) of A in X, Then W(A} = ;."*} Let P(A)
stand for the set of parabolic subgroups of G with split part A. Conjugation
by elements of A on N induces a transitive group action on P(A). Now,
since M normalizes N, the Weyl group W(A) acts (transitively) on P(A).
Let w be the only non-trivial element of W(A) which takes the positive roots
to the negative ones, and let =, € M be such that m(z,) = w € W(A),
T being the quotient map m : M — —ﬁi Then, for P = MAN ¢ P(A),
P = PANY = PAN = P, where N = §(N) = z,Nz;'. Thus P(A)

consists of two minimal parabolic subgroups, namely P and P. Also recall

|

that the only nonminimal parabolic subgroup in our case is & itself.
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The representations w(P, o, A) and 7(P, 0, A) are the principal series repre-
sentations in;:iuced from P and P respectively, where ¢ € M and ) € ag. The
Fourier transform of any right K-invariant function f € LP(G) with respect
to the nonspherical principal series is zero (see Proposition 5.1 below)}. There-
fore, only the spherical principal series representations n(P, mj,A) (o being
the trivial representation of M) are relevant here. We will denote the spher-
ical representation 7(P, 00, A) simply by 7,. This i3 an IP tempered when
A e ST — [A € C||RA| £ 7p}, where v = % — 1 and p is the half sum of
positive roots (see [T, Sec. 4, Definition 1|). The strip 87 augmented by ¢ will
be denoted by S = §7*¢, .

The spherical principal series representations my for A € ai. are realised on
the same subspace, say H,,, of the Hilbert space Ls(K) (compact picture).
Let us fix an orthonormal basis {eq}acz of Hg, of K-finite vectﬂlrs among
which eg is the K-fixed vector. By matrix coeflicients of a representation ) we
will always mean matrix coefficients with respect to this {e,}. The (e, e;)-th
matrix coefficient of ) will be denoted by ®°, For f ¢ LP(G/K) and for A in
the corresponding strip &7, the matrix coefficients of the Fourier transformsg,
(j"m('fr;‘)),,;.,‘.ﬁ.,_]F = [{my(z"1e;, e;) f(z)dx exist and constitute the formal matriz
Fourier transform f(m). For f,g € LP(G/K), if at least one of f(m) and
g(my) has finitely many nonzero entries and if f * ¢ is defined, then (m)(m)
is given by the matrix multiplication (F x g)(my) = F{ma)g(m).

For § € K let a(6) = d(6)7G, where d(8) = degree of § and xs = character
of §. Let dk denote the normalized Haar measure of K. Define c(8) * f and
f*a(d) by

(@) * (e} = [ a(8)(k)  (ke)dk

and _.
(f * a(6))(z) = fﬂ, £(zk)a(8)(k)dk,

where ¢ € (. [ is said to be of left (resp. right) type &§ when a(é) * f = f
(resp. fxa(8) = f). On the other hand by f has no left (resp. right) K -type
§ we mean a(8) * f = 0 (resp. f * a(6) = 0). Here a(6) * f (resp. [ * o(6)}
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ig the projection of f in the left (resp. right) K-type § and we shall denote it
by & (resp. by fs). A function is of type (6,0) (resp. of type (0,6)) when it
is right invariant (resp. left invariant) and its left type (resp. right type) is 4.

We shall now prove two propositions which we need in the next section.
They will extend some of the facts for 5L;(R) mentioned towards the end of

Section 1 to more general groups, in particular for groups of real rank one.

Proposition 5.1 Let f € LY{G), f # 0, be of type (8,0), where § € K is a
nontrivial K -type. Then é restricied to M contains the trivial representa-
tion of M, and the Fourier transform of f with respect to a nonspherical

principal series representation is zero.

Proof. Since f is right K-invariant we can find a bounded biinvariant function
h € L1(G) such that f * i 3 0. It is clear that f = h is right K-invariant
and transforms acc;::;rding to § under left K-action. But fh is a continouous
function, so we may assume f to be continuous. Further, we may translate f
from the left by an element of A and hence assume that f(a) # 0 for some
a € A in the K AK decomposition of G. Now, let g(z) = [y, f(mz)dm, z € G,
where dm is the normalised Haar measure on M. Then g is again of type (6, 0),
and g(a) = [y, f(ma)dm = [, flam)dm = f(a) # 0. The first assertion of
the proposition now follows by noting that g is left M invariant.

For the second part of the proposition let 7 = (=, amHgp) 0 € M and o #
0, be a non-spherical principal series representation of G, and let u,v € H; )

be nonzero K-finite vectors, of which v is of K-type pz). Then,

(Tar(fl,v) = fo flz)(m(z™ ), v)dz
= IKTK’ f{k ﬂ»kg)(ﬂ(k{lﬂ,_lkl_])u, v)J(a)dk) da dk; (54)

= [zt fkra){m(ky o by Yy, v) I (a)dk; da dks.

Here J(a) is the Jacobian of the transformation z = kjakg. Let m{a kT u =

w; then w € H,,. Since 7, )| K is unitary, we have:

(ﬂ(kglﬂ*qlkl_l)u:”) = (ﬂ'(kﬁ_l)w!”) = (w!“(kﬂ)v>'
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Now H, ) = @pEfE‘H u) Where H, is the K-isotypic subspace of type poand @
denotes the orthogonal direct sum of Hilbert spaces. Note that n(ky)v € H),
for all kz € (. Writing w = 2w, (not necessarily a finite sum), w, € H,,
we get (m(ky)v,w) = (m(k)v, wy ). Here again wy, = L, a;w,, i, where

= (degp)? and {wy i = 1, @) is an orthonormal basiz of Hy,.

Therefore, the integral over kg in ( 54) is equal to
il 0 {(wm.'i: m(ke)v)dky = Tl ai{wy, 3, e0) = 0,

by Schur’s orthogonality relations (since y; is a nontrivial representation of

K). | _

Note that in the above situation all the K-types have multiplicity one as
(K, M) is a Gelfand pair and the set of right K-types are precisely those u € K

which pogsess a nonzero M-fixed vector.

Proposition 5.2 Let f, g € CR(G) and § € K. Suppose that f is of right
type § and g has no component with left K-type §. Then fxg=0.
In particular if f € L}HG/K) and g has no component which is K-fized

on the left, then fxg=0

Proof. For z € G,

(Frg)z) = Jofw)ely™ z)dy

= Jolfx Fyk)e(6)(k)dk ) g(y~ z)dy
i (8)(k) (fe f(uk)o(y™ z)dy ) dk
Jie a(8)(k) (Jo f(z)g(kz ‘z)dz) dk
= [o(fic (&) (k)glkz""z)dk) f(2)dz.

Since ¢ has no component of left K-type &,
/ a(6)(k)g(kz"'z)dk = (a(6) * g)(7z) =0,
K

which implies that f+ g{z) = 0. Since z is arbitrary this proves that f¥g =0. ®
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Let us now add some more notation, definitions and preliminaries esentially
from {T]. Instead of giving full details (which is available in [T, Section 6 and
8]) we include only some specific parts which will be necessary in the next
section.

For p € [1,2], CP(G)y,s is the space of all C* functions f of type (0,4)
such that pgj,.(f ) < oo for all g € U and r € R, where I/ denotes the universal

enveloping algebra of g and Py 18 the seminorm given by

ph(f) = sup(l + o(2))" E(z) #|f(g; )| (55)

&l
CP(G)os is the LP-schwartz space of (0, §) type functions,

Let F' = {6,0} be the set of two K-types 0 and &, of which ‘0" is the trivial
one and also, §|M contains the trivial representation og of M. Let the basis
clements ey, ez, ..., ey of the orthonormal basis {e,} of H;, transform according

to 0, and let ep be ag before the K-fixed vector. We denote by Hy, F the

subspace of H,, spanned by ey and {e;,e),...,&} . Fix a minimal parabolic
P and consider the principal series representation n(P, a9, A) = m) for A € C.

Let U be the set of points in ai = C at which there are singularities of the

asymptotic expansions of the matrix coefficients corresponding to vectors ey

and e1,ez...,e;. A detailed description of U is available in [T, p. 103]. Let £

consist of the

(i) matrix coefficients of the principal series representations 7 with respect

to vectors in H;, r at w( and

(ii) the derivatives of these matrix coefficients with respect to A at the points
w¢, where the order of derivatives is less than the order of singularity

o({) of the asymptotic expansion of matrix coefficients at ¢,

where w € W and ¢ € U.

There are linear relations among the elerents of £ and one can construct
a basis for it in a way demonstrated in [T, p. 104]. £ can be indexed by the

set

I=1J{0,1,...,0(¢) = 1}* % {e1,..., e} x W,
(ell | -
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Let I’ be the subset of I which indexes the basis of £. Now if we denote the
matrix coeflicients and their derivatives in £ corresponding to the index 1, by
7(1) then

7(i) = TyepC(i: i )n(i'),

for some constants C'(3 : 4') € C,
Let U, = STNU and L(Hg, r) be the linear endomorphisms of H,, r.
Then CP(G)p s can be defined (see [T, section 8, Definition 1]) as the space
of continuous functions ¥ : §Y — L(H,, r} such that the only nonzero matrix
coefficients of F'()) are (F'(A)eg,e;) fori=1,...,I (i.e. F(}) is a row vector)
and which satisfy the following:

1. F'is holomorphic in <§"', the interior of §7,

2. p5 (') < ooforall r € RT and for all differential operators v on func-

tions defined over C, where

pu(F) = sup HuB(A)I(1 -+ [A]),

|.|| being the norm of the matrix.

3. In the notation explained above
F(3) = Zpepn C(i : /) F (V)

fori€ fp =INS". Also I, = I'NS7, Hereif i = (w,(, 7, ex) EWxUXx
, ]
(0,1,...,0(¢) = 1} x {e1,. .., er}, then F() = (&) (F(A)eo, e lug:

4. For each ) € 87, there is a relation between F(}) and F(wA) ([T, Section
8, Definition 1(2)]) due to the equivalence of principal series represen-

tations 7y and m,). (Details omitted as it will not be required for the

proof of our result in the next section).

With the topology induced by the seminorms pf ., CP(Gos becomes a
Fréchet space. It is isomorphic with CP(G)ps under the Kourier transfrom

(see [T, Section 11, Theorem 1]). Note that for a function which is either left
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or right K-invariant the discrete part of the Fourier transform is absent and
hence the principal part C‘ff(é)o,a = CP(G)os.

The isomorphic image of CS°(G)gs under the Fourier transform is denoted
by C% (é)u,a. By the Paley-Wiener thenrém, C'S“(@)M congists of entire func-
tions F' from S” to L(H,, r) of exponential type (i.e. there exists C > 0, and
for each N > 0, Cy > 0 such that, [P € Cx(1 4 |A)~¥eCRA), which
satisfy relations 3 and 4 above, with 87, I, and I replaced by C, I and I
respectively (see [T, Section 7).
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6 Wiener Tauberian Theorem for rank one Sym-

metric Spaces

In this section G is one of the semisimple Lie groups of real rank one listed in
the previous section. We start with the W-T theorem for biinvariant functions

on such a &G

Theorem 6.1 Let {f®lec € A} be a family of functions in IP(G//K), A
being an index sei, such that for each o € A the Fourier transform fe
extends holomorphically on the strip S? for some € > 0, and vanish at
infinity , that is, limpy e IFE(N)| =0 on 8. Suppose that the functions
o, a € A, do not vanish simultaneously on any point of SY. Moreover let
there be an ap € A such that f satisfies the not-too-rapidly-decreasing
condition at infinity .

limsup || (F2)(t)|[.1eX| > 0 for all K > 0.

[¢]—00

Then the LY G/ /K) module generated by {f|a € A} is dense in LP(G/[K).

We omit the proof of this theorem as it runs entirely along the lines of the
corresponding proof for L} (SLa(R))op in [B-W]. The crux of the matter is that
the space CP((G)gg of Fourier transforms of the Schwartz space functions is
indistinguishable as a function space from the corresponding space for SLo(R).
And the only difference between C‘l(@)n,{; and C? (é)n,g is in the width of the
strip 87, which is the domain of the Fourier transforms.

As in the previous section let F' = {§,0} be the set of K-types, where §| M

contains g and 0 is the trivial representation of K. Also €, €1,€2,.. ., € and

Hg, r are as defined in the previous section,
On our way to the main theorem we need the following :
Observation. For every A € C, the K-fixed vector &g is cyclic in at least one

of the spherical principal series representations among {mex|w € W}. (see
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Johnson and Wallach [J-W] Theorem 5.1 (2),(3),(4) and Johnson [J] Theorem

5.2 ).
For a lixed p let us fix & p' < p. Then it is known that 0% ¢ ¥ c ¢».
When p > 1 we will take p’ = 1. Then we have:

Lemma 6.2 Let A € 57, and let my), be a spherical principal series

representation in which ey 28 a cyclic vector, Suppose that for some
f € IP(Q/K), Flmyy) £ 0. Then, thereis a g € CHG)N CP(G) such that

g * [ 18 a bitnvariant LP-function and ng(?rwA) £ 0,

Proof. For any K-type §, let gf be the projection of f in the left K-type

§. Then & is a (6,0) type function and its Fourier transform is a coloumn
vector.

Now, the condition f(?rw \) 7 0 implies that there is a K type & so that 4/ is
nonzero at myy. If e1,...,e; form a basis for the space of vectors transforming
according to 4 in the representation space Hy, of 7y, then this means that
for some e, in the above set the (e,,¢p)-th matrix coeflicient of the Fourier
transform of f at m,) i3 nonzero. Now as the K-fixed vector ep is cyclic in
Ty, the matrix coefficient {m,){z)eg,er) can not be indentically zero, since
otherwise the closed linear span of {myx(z)eo |z € G} will be a subrepresen-
tation orthogonal to e., contradicting the fact that eg is cyclic in myy. If
A€ ST — {w.Uy|w e W} then it is clear from the description of CL{Ggs and
its isomorphism with C};(G)o s (see Section 5 and also [T, Section 8, Definition,
1} and [T, Section 11, Theorem 1]), that there exists a function g € CHG) of
type (0, 8) such that only the (e, e, )-th matrix coefficient of its Fourier trans-
form is nonzero at myy. It réadily follows that g * f is a biinvariant function
with g * f(mg) 7 0. B

Now when A € 87N {wU,|w € W}, it is not clear how to find a g as
above which will have only one chosen matrix coefficient nonzero, as this time
the matrix coefficients have dependencies among themselves (see Section 3
and [T, Sec. 8, Definition. 1(4)]). We need a more careful argument here

to show that such a ¢ is available, Since e is cyclic for my, its {eo, &r)-
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th matrix coefficient, @E;E can not be identically zero. Also for the same

reason, for linearly independent vectors ey, €3, ..., € € Hgy F 1t can not happen
that L% a;(mua(z)eo, &) = (rwrlz)en, Do ase;) = 0 for all z € G, unless
a; = ag = ... = a = 0. Thus the matrix coeilicients @ﬂ;i, 1= 1,...,L, are
linearly independent functions in £. (However, they may depend on some of
the derivatives of the others; but this will not concern us.) Now, as CI”E;""}i are
linearly independent elements of (C1(G)gs)*, the dual space of the Frechét
space CY((G)g s, an application of Hahn-Banach thorem gives us ag e CH{G)os
such that only the (e, e,)-th matrix coefficient of its Fourier transform is non-
zero at w. One can also appeal directly to isomorphism of C1{(G) with C(G)
[T, Sec. 11, Theorem 1] to get such a g. This proves the lemma for p > 1 as
in this case p’ can be taken to be 1.

When p = 1 we proceed through the same steps; only instead of appealing
to the isomorphism theorem of schwartz spaces CP(G), we use the Paley-
Wiener Theorem (see Section 5) for getting a g as above, By the Paley-
Wiener Theorem functions in C$°(() are entire and ‘of exponential type. Also
CR(G) € CP(G) ¢ CY(Q) for any p’ < 1. From the description of C(G)o 4,
it is clear that a g, with nonvanishing Fourier transform at a given point A is

always available. Hence the lemma follows. _

Note that in the above proof the choice of the function g depends on A.

Theorem 8.3 Let {f%a € A} be a A-indexed family of functions in
[P(G/K), such thal for each o« € A the Fourier transform fe of f has
a holomorphic extension on i" for some € > 0, and all the matriz co-
efficients of f* wvanish at infinity, i.e. limyy| o0 |(f“‘()«))m,n| =0 on &).

Suppose further that the collection {f“' a € A} does not have common

zero on any representation (containing the K -fized vector) parametrized

by SY. Let there be an ag € A such that [ further satisfies the condition.

limsup |[5(F2)6)[) X > 0 for all K > 0, (56)

[t|—e0
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for some 6 € K. Then the left L'(G) module generated by {f|la € A} is
dense in LP(G/K).

Proof. We look at the collection of biinvariant functions:
F={gxf* g€ C{G)NCY(G) and g ig left invariant, o« € A},

where p’ is as in Lemma 6.2. Without loss of generality we agsume that the
strip 8Y = S7%¢ corresponds to p/, i.e. f,- — 1 = 4 + . Because otherwise
v + € can be replaced by min{y + ¢, f,- —1}. Let A € 8. Then there exists a
wp € W such that the K-fixed vector eg is cyclic in my,5. By hypothesis there
is an o € A such that f*(wp)) # 0. Therefore by the lemma above there is a
member g * f¢ in F for which _(T:F"(wu/\) % 0. But g x f* being a biinvariant
function g * fo(A) = g * f%(wo)) (recall that CP(G)op = CP(SLa(R))oo) and
hence ﬁ( M) # 0. Thus the collection F satisfies the nonvanishing condition
of Theorem 6.1,

The not-too-rapidly-decreasing condition in the hypothesis implies that
there is a vector e, € H,, which transforms according to § and satisfies the

condition
HEI{al'l‘ > 0

lim sup || s(F%)(it)n

£} 00
for all K > 0, where 5(?““)(%1:),“{} is the matrix coefficient with respect to the
pair (eu,eg). We find a function g € C(G)gs which is left invariant and the
only nonzero component of its Fourier transform is o, and further |go ., (it)|
is nouvanishing almost everywhere and is of order e*" for ¢ € R. Such a choice
is possible because, except for ¢ = 0, all the representations parametrized
by A = it, t € R, are irreducible representations (see Knapp (K], Theorem
14.15). Therefore, the matrix coefficients are linearly independent since any
linear relation between two matrix coefficients say, (m(z)eg,u) and (n({z)eg, v)
for two linearly independent vectors u,v in the irreducible representation
would mean (mw(z)eg,u — kv) = 0. This implies that the closed linear span of

m{z)ep for x € G is a subrepresentation orthogonal to u — kv, contradicting

74



the irreducibility of . Then g * f2¢ is biinvariant and QTF“ gatisfies the
decay condition of Theorem 6.1. As g & C? for p' < p, all other conditions
of Theorem 6.1 are clearly satisfied. Therefore by that theorem the L1(G)-
module generated by F is dense in LP(()gg. Now as the smailest closed left
L} (G)-invariant subspace of LP(G/K) containing LP(G)op is LP(G/K) itself,

the theorem follows. u
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7 About augmented strip and exact strip

All the W-T theorems we have encountered or proved so far suffer from a
common restriction of using a slightly augmented strip as the space of rep-
resentation, over which the Fourier transform of the generators ought to be
holomorphic and nonvanishing. This more-than-necessary analyticity and
nonvanishing condition in the hypothesis is, in disguise, an assumption of some
extra smoothness and decay on the generators. It has yet another incarna-
tion as the ¢ in the nonvanishing condition on all LP~* representation for the
W-T theorem of [” functions. This is a technical necessity, but not easily
removable,

Only recently Ben Natan et al. has provided in {B-B-W-H 2] (announced
in (B-B-W-H]) the following exact strip version of the W-T theorem for biin-

variant [.! functions of SLa(R):

Theorem 7.1 (Ben Natan et al.) Let F ¢ LY(SLa(R))og. Suppose that
the the Fourier transforms of elements of F has no common zero on S*

and
boo(F) = inf{— Jim sup e log|f(it)| : f € F} = 0.

Then the ideal generated by F is dense in L‘(SLQ(H{))U,D.

In this section we extend this result to prove an exact W-T theorem for
PSLy(R) which is free from the extra restriction cited above. We shall presently
see that the spherical principal series representations and the discrete series
representations parametrized by the odd integers of SLg(R) are the only rel- |
evant representations for PSLo(R). All disrete series representations and the

spherical principal series representations are L!-tempered.

Theorem 7.2 Let F C LYPSLy(R)). Suppose that the Fourier trans-
forms of the functions in & do not vanish simultaneously on any relevant
L'-tempered irreducible representation and 8.o(F) = 0. Then the ideal

generated by F is dense in L1(PSLy(R)).
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Let I be the upper half plane {z € C|Qz > 0}. Then the group of all
M&bius transformations preserving H is isomorphic to the group PSisy (R) =
SLy{R)/{xI;}, where I, is the 2 x 2 identity matrix. This group acts tran-
sitively on H and its subgroup SO,(R) stabilizes the point 7 on H. The unit
tangent bundle of H is also identifiable with PSLo(R).

Let L'(SL3(R))even be the set of those Li-functions which have no com-
ponents of odd parity, i.e., if f € LY{SLy(R))even then fm, = 0 for any odd
m,n € Z. Then LYSLy(R))even is the set of even functions in L!(SLz(R)).
Therefore L1{PSLy(R)) can be realized as L'(SLa(R))even- In fact,

LI(SL2(R)) - LI(SL2(R))EUEH B LI(SLE(R))ﬂdd}

where LI(SLZ(R))UC{[{ hag similar connotation. As there is no non-zero func-
tion with even parity on one side and odd on the other, and since convo-
lution of two functions of opposite parity is zero, L'(SLa(R))even, equiva-
lently L1(PSLs(R)), is a two-sided ideal in L'(SLy(R)). We will denote by
LY(PSLy(R))" the space of functions in L!(PSLy(R)) having zero Fourier
transform at every discrete series. It is clear form the above realization of
the functions of PSLy(R) as the functions of SLa(R) with only even parity,
that for PSLy(R) the only relevant principal series representations are m, 3,
where o i3 the trivial representation of M (i.e. the spherical principal series
representations), As there is no ambiguity, these 7, ,’s will be denoted by ).
Also for the above realisation, the only relevant discrete series for PSLo(R)
are those parametrized by odd integers.

Instead of the method developed in Section 4, here we will be guided by
the following observations. As a result we get a shorter proof which replaces
the long constructive arguments there.

Observations.

1. I'ix a K type n of the group SLa(R). It determines an M type o by n €
7°. Then, for every \ € 87, the orbit {#, ) |w € W} of X (correspoding
to the action of the Weyl group W = Zj) has at least one element

which has an irreducible subrepresentation 7 containing a vector which
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transforms according to the K-type n (see Subrepresentation of 7,2,

Section 1).

2. If 7 is an irreducible representation of SLa(R) then the matrix coefficient
(m(x)er, es) for vectors e,, e, €  can not be identically zero over SLa(R);
since in that case the closed linear span of {w(z)e.lz € G/} will be a

subrepresentation orthogonal to e,, contradicting the irreducibility of =

Before we sketch the proof of Theorem 7.2, let us seperate out the basic
argument employed in the main theorems of Section 4.

There are trouble points in the strip, which are singularities of the asymp-
totic expansions of the matrix coefficients. Except for these points the proofis
rather simple. Suppose that, at a generic point A in the strip &7, a function
[ of right K-type n has only one component with nonzero Fourier transform
and it is the (fn,n)-th component of left K-type m. The proof requires a
function g of type (n,m), preferably in C1(SLg(R)) so that §(Ag) # 0. But if
Ao i8 one of those trouble points, then it is possible that there are m, n so that
OV (z) # 0 for some 2 € G but &)™ = 0. This removes all hopes of getting
a g as required.

But then the trouble really comes from the reducibility of the representa-
tion parametrized by that point, and the situation is saved by the Observation
1 above which tells us that e,, sits inside an irreducible subrepresentation of
either the trouble point itself or of its Weyl group image. In view of the
Observation 2 and the fact that for a function A in LP(SLy(E))pn, n € Z,
h()\) = h{—X) for any ) in the strip 87, it is good enough for our purpose if
we start with a function which has non zero Fourier transform at every irre-
ducible subrepresentation of the representations in the strip. We will make
these points more precise in.the proof below.

Proof of Theorem 7.2. Let Z°+ be the set of even integers. For A € S’
let 7{ be an irreducible subrepresentation of m,) containing eg for some w € W

(see Observation 1 above). Suppose that for f € F, f(ﬂ'g) # 0. Then there
exist 7 and s in Z°+ such that ¢,,e, € 7} and E-,S(TTE) # 0, We find a g'*f* ¢
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Cl (PS L*(R)) and a gkt g (3'31.,;}(1’.’:’.5’112 (R)) such that both g'/* and g"'¢** are
nonzero at w), which definitely exist by definitions of O};(@)g,r and C}f(é)glu
(see Definitions 2.9 and 2.11). Now g'eftx f x g"9" becomes an (0, 0) function
and (Qlﬂf “x fx Hryight)ﬁ(wm # 0. Therefore h = (Qw Yx [ Qgght)ﬁ(h) 7 0.

Let I be the two sided ideal generated by F in L'(PSL,(R)) and let 7'
be the set of biinvariant functions in I, The only pdint on the imaginary axis
where the principal series representation is not irreducible is 0. Therfore for
any given K-type, there exist C' functions with Fourier transforms, nonvan-
ishing everywhere except 0 and of order et (see Theorem 4,7for construction
of such function). Hence it is clear that 6o(F’) = 0 when the same is true for
F.

Therefore I contains a set of biinvariant functions which satisfy the condi-
tions in Theorem 7.1. Hence I D L'(PSL3(R))oo. But the smallest two sided
ideal in LI(PSLQ(R)) containing LY(PSL2(R))oo is LY(PSLa(R))”. Hence
I D CLH(PSLa(R)). In particlar I D CL{PSLa(R) ) for all even n.

Now fix an n € Z°+. There are only finitely many discrete series represen-
tations (parametrized by I',) relevant to n-type functions and by hypothesis
there are functions in 7 which has non zero Fourier transforms on them. We
use similar arguments to tackle them. Let f € F be such that (f,g)r,s(k) # 0
for k € I',, and 7,8 € Z(k). Then we can always find Cl-functions ¢1, g2
of type (n,r) and (s,n) respectively such that they have nonzero Fourier
transform at k. Thus we get g1 * f % g, a function in LY{PSL3(R))y, hav-
ing nonzero Fourier transform at & € I',,. As I', is finite, from definition of
Cﬁ(FﬁR)),hn and its isomorphism with CH(PSLy(R)), », it is clear that
I contains Cb(PSLQ(R))HIH. (Details omitted as this part of the argument is
same ag that of Theorem 4.4)

Hence I contains C{(PSLa(R)),., for all even n. The theorem now follows
as CY{(PSL3(R)), , is dense in L}*(PSLy(R)),» and the smallest subspace of

L'(PSLy(R)) containing L}{PSLy(R))y, for all even n is L}( PSLy(R)) itself.
i
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Using exactly the same arguments we can also prove:

Theorem 7.3 Let F C L}SLy(R)/SO2(R)). Suppose that the Fourier

transforms of the functions in F do not vanish simultaneously on rele-
vant L!-tempered irreducible representations and 8o (F) = 0 . Then the

left L}(SLy(R)) module generated by F is dense in LMSLy(R)/SOa(R)).

Remarks.

1. The only points X in 8! for which =, is not irreducible are £1, The
representation 7 has two subrepresentations which are the two discrete
series representations parametrized by 1 and —1 and the representation
7_1 has the trivial representation, say @ as a subrepresentation. Also
note that f(#) = [ f(z)dz. In view of this and Observations 1 above the
nonvanishing condition in the Theorem 7.2 is same as the familiar one:
Fourier transforms of the functions in F do not vanish simultaneously
on any point on the strip S! and on the discrete series parametrized by
odd integers and also [ f(z)dz # 0 (compare with Theorem 4.7). The
conditions in Theorem 7.3 imply that they do not vanish simultaneously

on any points of S?,

2. Methods developed in [S2] involving Corona theorem can not be used
here. There the use of the Corona theorem needs an extended domain
essentially. Even if we start from this exact strip version of the W-'T
theorem for biinvariant functions, during extension Corona theorem adds

the restriction of bigger strip to it.

3. The Observations and the discussion preceding the proof indicate that
similar proofs are also possible for the W-T theorems for the whole of

SLy(R) (cited in Section 4) which would be much shorter but only at

the cost of constructive and elementary argument.

Status of the problem: If it becomes possible to find an analogue of The-

orem 7.1 for fuctions of type (1,1} of SLy(R), then we can prove a replica of
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Theorem 7.2 for LY(SLa(R)).4q by similar arguments, and together they will
immediately lead to the following exact strip version of the W-T theorem of
SLy(R): |

If F ¢ LY(SLy(R)) is such that the Fourier transforms of the func-
tions in F do not vanish simultaneously on any relevant L'-tempered
irreducible rpresentations and that Soo{Fepen) = 0 and boo(Foaq) = 0. Then
the ideal generated by F is dense in L1(SLy(R)).

Note that no discrete series, when restricted to X, contains e;. Therefore,

lixe biinvariant functions, a (1,1) type function also has no relevant discrete

Series.
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8 Not-too-rapidly-decreasing conditions and Hardy’s

Theorem

In this section we will deal with the following question: What condition on a

function on (' ensures that its Fourier transform i not-too-rapidly-decreasing
at co ?

If fisin C%°(G) then by the Paley-Wiener theorem, { is an entire function
of exponential type (see [Ba,Theorem 10.5]). Hence, using an application
of Phragmen-Lindeléf theorem due to Carlson one can show that if f(/\) ==
O(e %) on the imaginary axis for some k > 0, then f = 0 (see [Ti, p. 185,
section 5.8]). Therefore, it is possible to replace the not-too-rapidly decreasing
condition of W-T theorems by the putting a C¢°-function in the generating
set.

We use a recent result due to Sitaram and Sundari [S-5], a Hardy’s theorem
for SLa(R) and for noncompact symmetric spaces, to replace the not-too-
rapidly-decreasing at oo condition on the Fourier transform of the generator
by a decay condition on the generator itsell. IFirst let us quote the theorems
from [S-8]: |

In the proofs of the W-T theorems in this thesis only the matrix coeflicients
of the Fourier transforms are used, Therefore, a Hardy's theorem for functions
with arbitrary but fixed K -types is enough for our purpose, and hence instead

of the exact statement in [S-S], we provide here the matrix coeflicient version

of the Hardy’s theorem for SLy(R).

Theorem 8.1 (Sitaram-Sundari) Let { be a measurable function on SLy(R).
Suppose that, for some m,n,o withm,n € 2%, | fmn(z)| < C‘mne‘”’”(“‘*)? and
lf}; mn(A)] < C,e BN’ for A € iR, where Cy,, and C; are posilive constants

depending on m,n and o respectively. If aff > % then fo, =0
And for symmetric spaces we have:

Theorem 8.2 (Sitaram-Sundari) Let G be a connected, noncompact semi-

82



G with finite centre. Suppose that [ 18 « measurabie,

on (3 salisfying the following eatimales for
)| < e’ ¢ e ¢ and

gimple Lie group
right K -invariant funciton
some positive constants C, ', o and B8: |flz
[lea(Feoll S C”e‘ﬁ“"i\g, Xxeat. IfaB > ;’;-, then f =0 a.c,

From these we get for SLa(R):

Theorem 8.3 Let F be a subset of IP(SL2(R)). Suppose that F has

nonzero functions f} and f* (not necessarily distinet) so that fori =1, 2,
lféli,u,-(m)l < Oﬁﬂ'”‘”(“’)g, where oy are positive constanls and m;,n; are
even or odd integers according as i = 1 or 2. Also suppose that the
Fourier transforms {fy|f € F} have holomorphic extensions omn S? for
some 6§ > 0 and they vanish at infinity, that is, limp)—oo WO = 0
on S for f € F.

Now, if the Fourier transforms of the functions in 7 do not vanish
simultaneously on any of the irreducible L7 -tempered representations for
some p' € (0,p), then the LY(SLy(R)) module generated by F 18 dense
LP(SL,(R)).

Proof. Take §; = 3—;-: Then, by Theorem 8.1 above, there exist positive con-
stants C1, Cz such that limsupyy—, [ﬁmmh}_}(,\)[ > Cie P for 4 = 1,2 and
A € iR, Therefore, lmsupy |E“|H'_1H().)‘ > e K for all K > 0. Now, a3

F satisfies all the conditions of Theorem 4.7, the theorem [ollows. n

Let ( be one of the connected, noncompact semisimple Lie groups of real
rank one, described in Section 6. Then from Theorem 6.3 and Theorem 8.2

and using similar arguments, we can prove the following:

Theorem 8.4 Let F be a subset of [P(G/K), such that for cach [ in F,
the Fourier transform f has holomorphic exiension on S'g Jor some
§ > 0 and all the matriz coefficients of [ vanish at infinity on S . Also

suppose that for some f € F,
f@)| € Ce | g e,
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and the collection {f|f € F} does not have common zero on SJ. Then,

the left LY(G) module generated by F is dense in LP(G/K).

Remark. We know that C®(G) is densely embedded in every C?(G) for
p € (0,2]. There is a distinguished space of functions on G containing C°(G),
which also (densely) sits inside CP(G) for every p € (0,2]. This space is known
as Zero-Schwartz space (see [Ba, Section 19] and Wallach {W, Section 2.5]) and
is denoted by C%G). In fact, C¥(G) = N{C?(G)|p € (0,2]}. It follows from
the definition that for f € CG), |f(z)| < e*() for all k > 1. Here o(z) is
equal to [t|, where t comes from the Cartan decomposition, £ = kja;ks. One
wonders at this point if a function from the zero-Schwartz space (instead of one

from C2°) in the generating set can substitute the not-too-rapidly-decreasing

condition.
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