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Introduction

Let G be a connected locally compact unimodular group acting transitively on a
locally compact space X. For a function fon X and g € G, define 9f by 9f(z) =
flg.xz), z € X. One of the recurring themes in analysis is the question of when a
function fin a given function space F(X) will have property that Span{?f: g € G}
is dense in (X ). If X = R and G = R, the celebrated Wiener-Tauberian theorem
answers this question completely for the space L'(R): The span of the translates of

f € L'(R) is dense in L'(R) if and only if the Fourier transform f of f is nowhere

vanishing on E,

If 2p € X and Hy = {g € G : g.wg = 2}, then Hy is a closed subgroup of &
and the homogeneous space G/ Hy can be identified with X under the identification;
- gHy < g.zg. If, further, Hp is compact and the algebra of compactly supported func-
tions on G which are bi-invariant under H, is commutative, then the pair (G, Hy)

is called a Gelfand pair. In this thesis, we analyse the basic problem stated above

for three well known Gelfand pairs:

Case (1): Let X = R", n > 2. For G we take the group M(n) of orientation
preserving rigid motions of R™ Any element o of M(n) is given by (T,u), T €
S0(n), vo € R", its action on R" being given by o.v = T'v+uy, v € R", Here SO(n),
the special orthogonal group, is the collection {A: Aann x nreal matriz, AA* =

I,detA = 1}. The group law in G is given as follows:
(T,)(S,w) = (TS, Tw +v), (T,0), (S,w) € G.

' For zq = 0, the origin (0,0, ...,0) in R"™, the corresponding Hy = SO(n). Hence
the homogeneous space M(n)/SO(n) can be identified with R"™. It is a well known

and easy fact that (M(n), SO(n)) is a Gelfand pair. In Chapter 2, for a function

1



fe LNX)NIP(X), 1< p < co, we give conditions on the Fourier transform of f

which ensure that the span of G-translates of f is dense in LP(X).

Case (2): In Chapter 3, we consider the space X = H™ with the action of the
group ¢ = HM(n). Here H" denotes the n-dimensional Heisenberg group and
HM{(n) is the Heisenberg motion group, a semi-direct product of H" and U (n), the
group of n X n unitary matrices with entries in €. A typical element in H® will be
denoted by (z,t), 2 € €™, t € R and a typical element in HM{(n) will be denoted by
(0, 2,t), o € U(n), (2,t) € H*. The group law in H" is given by:
1
(z,t)(w,s) = (z+w,t + 5 + §Im 2.70), (2,t), (w,s) € H".
The group law in HM(n) is given by:

1
(0,2, t)(r,w,8) = (cr,ow+ 2,8+t -Q-Imaw.}?), (0, 2, 1), (T,w, 8) € HM(n).

The group HM(n) acts on H " in the following way

' 1
(0,2,t).(w,8) = (ow + 2,8+t + §Im ow.Z).

If 2o = (0,0), the identity element in H", then Hy = U(n). Thus we can identify
the space HM(n)/U(n) with H™ in this case. It is a well known fact that the pair

(HM(n),U(n)) forms a Gelfand pair ([2]).

For f € L'(H"), we have the notion of the group-theoretic Fourier transform
(-see Section 3.3). (In the case of R™ one considers the usual (Euclideah) Fourier
transtform. However for a ﬁon—abeiiaﬁ group, the natural generalization of the tra-
ditional Fourier transform is the Dperator valued "group-theoretic" Fourier trans-

form.) In the spirit of results in Chapter 2, we give conditions on the group-theoretic

Fourier transform of f which guarantee that Span{sf: g€ HM(n)} = L'(H™).

Case (3): Here we take X to be a symmetric space of the noncompact type and

of real rank 1 and & to be the connected component of the group of isometries of
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X. In this case G turns out to be a connected noncompact semi-simple Lie group
with finite centre and of real rank 1. Further if K is the subgroup of & that leaves
a given point zyg € X fixed, then K is a maximal compact subgroup of G and
the homogeneous space G/K can be identified with X, Again, the pair (G, K) is a
Gelfand pair ([18]).

For functions on X, there is a notion of the Helgason-Fourier transform
(-see Section 4.2). Given a function f € L*(X), we find conditions in terms of
this transform that ensure that the G-translates of f span a dense subspace of
L%(X). For a non-trivial function f € LP(X)N L*(X), 2 < p < co, it turns out
that the G-translates of f always span a dense éubspace of I7(X ). We also briefly

review some older results for LP(X), 1 < p < 2, in terms of the Helgason-Fourier

transform.

In Chapter 1, we consider certain questions related to the Pompeiu problem-

the Pompeiu problem can be thought of as a special case of (1) above in the setting

when the function f in question is the indicator function of a set of positive finite

measure in X.



Chapter 1

The Pompeiu transform

1.1 Introduction

Let X be a locally compact Hausdorff space and p a fixed non-negative Radon
measure on X. Let G be a group of homeomorphisms of X with the further property
that the G-action is transitive and leaves g invariant. Fix B, a relatively compact

measurable subset of X, with positive measure.

For a function f € L} (X), define the Pompeiu transform Pg(f) of f as the

loc

following function on G:

(Po(F))(e) = |, Fiu g€ G

A natural question to ask is: Under what conditions i3 f uniquely deter-
mined from the knowledge of Pgp(f)? To put it more ma,thematimﬂy, deter-

" mine those function spaces on which Pg 1s injective.

(The question above is very similar to the basic problem in the theory of the

Radon transform - can a function f on R" be recovered from the knowledge of its

integrals on all hyperplanes? See [20].)



b,

Lhis problem was initiated by Pompeiu in 1929 ([27], 128]), in the setup when
X is R? p is the Lebesgue measure and G is the group of translations of R?
Pompeiu conjectured that for the unit disc D in R?, Py, is injective on C(R*), the
space of continuous functions on R*, This is not true as can be seen by considering
the following: Let 1 denote the Euclidean Fourier transform of the characteristic
function 1p of D. Let 23 € R? be chosen such that ip(mg) = () (such an =,

exists). Then the non-trivial continuous function f(z) = e¥®%9 {5 in KerPp. Here

(,) denotes the usual inner product on R®. In fact, for an arbitary spherically

symetric, relatively compact measurable subset & of R", with positive Lebesgue

measure, Py is never injective on L} _(R™) ([36]).
We shall study the Pompeiu transform in the following cases:

Case (1): X = R", n> 2, 1 the Lebesgue measure on R". For G we take the group
M(n) of orientation preserving rigid motions of B". Any element o of M(n) is given
by (T,w), T € SO(ﬁ), vp € K", its action being o-v = Tv+ v, v € R", Here SO(n),
the special orthogonal group, is the collection {A : Aann x nrealmatriz, AA =
I,detA = 1}. The homogeneous space M(n)/SO(n) can be identified with R" via

the identification o050(n) < o - Q, where Q is the origin (0,0,...,0) in R"*.

Case (2): X is a symmetric space of the noncompact type and G is the connected

component of the group of isometries of X. For i, we take the canonical G-invariant
measure on X. In this case G turns out to be a connected noncompact semi-simple
Lie group with finite centre. Further if K is the subgroup of G that leaves a given
point xy € X fixed, then K is a maximal compact subgroup of G. Also the map

gK — g -z, gives an identification of G/K with X

Thus, in both cases that we are interested, X can be realised as a homogeneous

space (7/K, for a suitable compact subgroup K of G and so we can bring in the
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machinery of harmonic analysis on the group G in order to study the Pompeiu

transform.

An important result for case (1) is the following theorem of Brown, Schrieber

and Taylor ({11]):

Theorem 1.1‘.1 Let B be a relatively compact subset of R™ of positive Lebesgue
measure. Then Pp is injective on L, .(R"} if and only if for each a € © \
{0}, 1z, the Buclidean Fourier transform of lg, considered as a function on
C", does not vanish identically on C, = {(z1,23, ..., z,) €C": 22 + 22+ .+ 2=
a’}. (Here 1p is the characteristic function of B and since E is relatively

compact, 1 extends to an entire function on C". )

Actually, Brown, Schrieber and Taylor ({11]} proved the result for C{R")}, the space
of continuous functions on R"™ However by using convolution with continuous

approximate identities in L'(R"), the result can easily be extended to L] _(R™).

1t is proved in [10] that if the set F'is of the form B, x Ey x -+« x E, . then Py is
injective on Cy(dR"™), the space of continuous functions vanishing at co. However, it is
shown in [36] that if F' is spherically symmetric then Py is not injective on C;U(R“).
The example given in [36] for f € Ker Pr actually belongs to Cy(R™) N LP(R") for
every p > f—%"l- On the other hand, it is easy to show that Py is injective on L?(R"),
1 € p £ 2. Thus, it is natural to ask: In general, what decay conditions on
- fe Co(R™ will force f=0 when PE fI: 0 ? Motivated by a result of Thangavelu
([44]) on sﬁherical means, we show that if f € C’U(R“) NIPRY), 1 <p < %,

then indeed f= 0 if Ppf = 0. In view of what has been said earlier, this is

the best possible result in general (i.e. without assuming anything about the

‘shape’ of E).



There is a result analogous to the Theorem 1.1.1 for symmetric spaces of the
noncompact type and of real rank 1, This result is implicit in the work of Berenstein

and Zalcman ([9]) and Berenstein and Shahshahani ([8]). It has also been recorded

by Bagchi and Sitaram in (3], Here we state it in a slightly different fashion.

Theorem 1.1.2 Let X, u, G be as tn the case (2). Further assumelthat X 18
of real rank 1. Let E be a relatively compact measurable subset of X of positive
measure. Then Pg is injective on L, (X) if and only if for each A €@, the
function b 15, b) is a non-trivial function on K/M. ( Here 15 denotes the

Helgason-Fourier transform of lg, the characteristic function of B ).

(For unexplained terminology, see Section 4.2.)

In the spirit of the result for case (1), we show that in case (2), Pg is
ingective on IP(X), 1 < p < 2. (See (31).) This is a generalization of the main
result in [37]. In view of the counter ezample in [85], this is the best possible

result in general i.e. without assuming anything about the shape of .
1.2 Notation, terminology and preliminary results

Most of the notation and terminology we follow is fa,irly standard - see, for example,
[32]. D(R™) will denote the space of C*-functions of compact support, S(R")
the Schwartz space of rapidly decreasing functions, £/(R") the space of compactly

supported distributions, S’(R") the space of tempered distributions. For each

A > 0, define ¢, as follows:

pa(z) = f e du, o € R,

on—1

" Here (-, -} denotes the usual inner product, S*~1 is the unit sphere in R" and dw is
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the canonical (probability) measure on ™!, Then for A > 0,
Gﬁ’h(m) = (), (}‘lml)_n/gﬂ Jn/2-1 (/\‘{EI),
(-see [39]) where J, denotes the Bessel function of order v on R. (See [25].)

Define ¢, ; by:
dk
bap(e) = =5 dr(2) |,

(Thus ¢ro = ¢,.)

Note that if f € L?(R"),1 < p < o0, then f can be viewed as a tempered
distribution and hence f, sometimes also written as f*, its Fourier transform, makes
sense as a tempered distribution, If T'is a radial tempered distribution, then so is
7' and if further T is compactly supported, then 7' is given by a smooth function
and T(v) = T(¢|y). For a distribution T} Supp T will denote the (f;ﬂosed) support
of T\ For any function g, Z, denotes the set {z : g(z) = 0}. If ¢ is a continuous

function on R" define g# by g¥(z) = /s o )g(k zydk, © € R". Here dk is the

normalized Haar measure on SO(n). Then ¢ is a continuous radial function, and

further, if g € LP(R™), ¢¥ is also in LP(R"). For o > 0, let M, denote the sphere

{ve R": |lv| = a},

Next we record three lemmas that will be needed in the next section ([31}).

" Lemma 1.2.1 Let T be a non-trivial radial distribution of compact support

such that T vanishes on M, for some a > 0. Then there exists an annulus

A ={zeR":a—¢e< |z < a+e},e> 0, such that T has no other zeros in

this annulus.

Proof : Let A()) = T'(v) = (T} ¢5) where |[v]l = A. Then from the compactness of

the support of T it follows easily that h extends to an even, entire function of A
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with A(a) = 0, the lemma follows easily from this observation.

N
Lemma 1.2.2 Let A > 0 and let f=>) ap¢rp. If fe LP(R™), 1 <p< =N then
k=0

aﬂ:——a1=---=aﬁ;m0.

Proof : Recall that ¢,o(z) = ¢,(x) = C, (r|z|)" J.(r|z]), where v = & — 1. Us-
ing the formula 2(¢7*J,(t)) = —t7"J,.1(t), for t € R, we can explicitly compute

drr{x) = f;;’;- +(2)+=». From the asymptotic behaviour of the Bessel functions (-see

[25]):

9\ /2 1 1
L} &2 | ~— — YT — —
J,(t) (ﬂ‘f}) COS (t 2v?r i ?r)

as t — co, we get that, when & > 0 and [z| — oo,

dri(z) = C - L I COS ([:1:[ — (v + &) — %w) + terms involving higher powers of 'I_-'%I'

From this it easily follows, using polar coordinates on R"™, that oo Gk P4 cannot

be in LP(R"), 1 < p < 2% unless each a; = 0.

n—17

Lemma 1.2.3 Let T be a tempered radial distribution. Suppose Supp T = M,
N

for some A > 0. Then T = Zﬂ'k Pk, fOr some constants ag, a1, -+, ay.
k=0
N
(It is easy to see that the Fourier transform of ) a; ¢y« considered as a tempered
k=0

distribution is supported on M,. The above lemma is the converse of this state-

ment.)

Proof : Define a distribution S on B* = (0, c0) by (S,4) = (T ¢), where ¢(zx) =

W(|z]), ¥ € D(R™). Since T is radial and has support away from the origin, S is

well defined. Also Supp § = {A}. Therefore there exist constants a; such that § =
N ar 6%, Here 6f denotes the k-th distributional derivative of Dirac distribution

¥ » supported at A. Now as T is radial, it is determined by its values on radial



Schwartz class functions on R™. For such an f,

- o

(ﬂf)z(T:'f)":(S:h);

where h(r) = #(z), lz| = r. Hence (Ty ) = (i oar6f, ), using the fact that
S =N 4,65 Also, for @ with || = r, h(r) = f(z) = [ f(y) é:(y) dy. Therefore

e dFh
(6.;.;:' h’) = (Hl)k E:E s )

i

(—1)F f f(y) drily) dy = (1) (da s )

and as a consequence = 3.1 , a} ¢y r, for some constants a.

1.3 The Pompeiu transform for R"

We start with a generalization of Thangavelu's result in [44], (-see also [1]), from

which our main result for case (1) will be deduced ([31]) :

Proposition 1.3.1 Let T'c E'(R") be non-trivial and radicl, Let1 < p < -IE“—HT

If fe IP(R") and f*T=0, then f=10 a.e.

Proof : By convolving f against an approximate identity, if necessary, we can
assume that fis continuous or even smooth. Suppose now f= 0. We will show that
this leads to a contradiction. Since translates of f are also ‘killed’ by convolution
_ against T, we may assume that f(0) # 0. Hence f# is also a cﬂﬁtinuuua function,
f#(0) # 0, and since T'is radial, one can easily verify that f# x T'= 0. Also, f#
is in I?(R™). Thus we may assume, by replacing f by f#, that fis a non-trivial,
continuous, radial function (in I?(R™)). Since f is non-trivial, f is a non-trivial
tempered distribution. Hence Supp f is non-empty. Also, there exists 0 # vy €
Suppf. (Otherwise, if Supp F= {0}, it will follow that fis a non-trivial polynomial
and this contradicts the fact that f € IP(R") and p < 00.) Since f is also radial,

if o = |jyll, M, C Supp £ Since T'is compact, T'is given by a smooth function.
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Thus (f*T)" = Tf and since (f*T)" = 0, it follows that Suppf C Zpa. Thus
M, € Suppf C Zra. By Lemma 1.2.1, there exists ¢ > 0 such that the only zeros
l of T in the annulus 4, = {v € B" : a —¢ < ||v]] < a + €} lie on M,. Thus
we have Supp f N A, = M,. Now choose a non-trivial, radial ¢y € D which is 1
in a neighbourhood of M, and zero outside A¢. Then 3 ]E is a non-trivial radial
distribution and Supp pr = M,. But ¥f = (f:,b* f)h and 1) * f is therefore non-
trivial. Further it is in ZP(R™). (Since 9 € D, € S and hence 1 *If € LP(R").)
Using Lemma 1.2.2 and Lemma 1.2.3 it follows that 2,3 * f = 0. This gives us the

desired contradiction because ¥ x f is non-trivial !

Coming to the question of injectivity of the Pompeiu transform in case (1),

ie.X =R" G= M(n), n> 2, we have the following result ({31)]):

- Theorem 1.3.2 Let F be a bounded Borel set in B", with positive Lebesgue

measure. Then Pg is injective on LP(R"™), if 1 < p < =&,

Proof : Let 1 < p £ 2% and let X = {f ¢ LP(R") : Ppf = 0}. Then it is

n—1

easy to show that f € X if and only if f* Iz = 0 for all T' € SO(n), where

14(z) = 14{—2) = 1_4(z). From this it follows easily that X is a closed subspace

which is moreover closed under translations and rotations. Suppose X # (0}. Using

the above observations it is easy to show that there exists a non-trivial fe X f

continuous. Thus f* Irg = 0 for all T € SO(n) and it will follow that f * i% = 0.
But 1% is a non-trivial, compactly supported, radial distribution and hence by

Proposition 1.3.1, f = 0, which gives us a contradiction. Thus X = (0) and the

proof of the theorem is complete.

As pointed out in the introduction to this chapter, this is the best possible

result in general (i.e. without assuming anything about the ‘shape’ of I).
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1.4 The Pompeiu transform for symmetric spaces of the
noncompact type

Turning to the case (2), i.e. X is a symmetric space of the noncompact type and G
the connected component of the group of isometries of X, we can modify the main
result in [37] to show the following, which appears in [31]I without a proof. (The

case p = 1 had been considered in [37].)

Theorem 1.4.1 If E is a Borel subset of X of finite positive measure (with

respect to the canonical measure on X ), then Pp is injective on IP(X), 1 <

p<2.

( Note that in this theorem we are not assuming that F is relatively compact.)

We postpone the proof of this theorem as it will follow from a more general
result, Theorem 4.2.6, in Chapter 4. In view of the results in [35], this is the best
possible statement in general (i.e. without assuming anything about the ‘shape’

of E). Thus the behaviour for symmetric spaces is slightly different from that for

‘Euclidean spaces ~ the main reason for this being the difference in the asymptotic

behaviour of the corresponding ‘elementary’ spherical functions.
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Chapter 2

R" with the Euclidean motion group action

2.1 Introduction

The question of injectivity of the Poﬁpeiu transform, as considered in Chapter
1, for the case of ™, n > 2, is closely related to theorems of the Wiener-Tauberian
type. For any function fon R™ and any g € M(n), let 9f be the function 9 (z) =
flg.z),z € R". Then the injectivity of Pz on I’(R"),1 < p < ;—f—_’—‘l-, n > 2, 18
equivalent, by duality, to the condition that Span{flp : g € M{(n)} is dense in
LUR™), 1/p+1/q = 1. Motivated by this observation, and in view of the important

role played by the Fourier transform in the proof of Theorem 1.3.2, we consider the

following question in this chapter:

If fe L{RYN LI(RY,1 < g < o0, what conditions on the Fourier
transform of f will be equivalent to the condition that Span{9f: g € M(n)} is

dense in LI(R™)?

Note that for g = 1, and for .B™ acting on itself by translations, this question
is completely answered by the celebrated Wiener-Tauberian theorem (- see theorem
9.4 in [32]) : For a function f in L'(R"™), the closed subspace spanned by the

translates of f is all of L}(R") if and only if the function f never vanishes on R™.

13



(Later on, in Chapter 4, we consider a similar question for symmetric spaces

of the noncompact type.)

Analogues of Wiener’s theorem, even in the one dimensional casei.e. K acting
on itself by translations, when p # 1 or 2 are quite hard (-see [13], Section 58).
Therefore it is surprising that for I7(R"},n > 2, and with the action of the

group of rigid motions, instead of the group of translations, we are able to get

reasonably complete results !

2.2 LP-analogues of the Wiener-Tauberian theorem for
R™ with the M(n) action

Throughout this section we assume that n > 2. For a given function f in L!(R") N
LYR"),1<g< o0,let S={r>0:f=00n M}, where M, = {@ € R": ||z| = r}.
Let X = Span{ff: g € M(n)}. Clearly § is a closed subset of R*. The rest of the

notation and terminology we follow here is as in the Section 1.2, Then we have
(131]):

Theorem 2.2.1 (1) Let f € L'(R"). Then X is dense in L'(R"™) if and only

o

if f(0) # 0 and S is empty.
(2) Let f€ L(R™) N LY(R"), 1< q¢< 2%, Then X s dense in LY R™) if and
only if S 18 empty. |
(3) Let f € LY(R") N LY(R"), 2% < q < 2. If every point of S is an isolated
point, then X is dense in LY R™).
(4) Let fe LY(R")NL{(R"),2<g < 2% If S is of zero measure (with respect
to the Lebesgue measure on R"), then X is dense in LY R™).
(5) Let fe€ LYR™ N LI(R™), 22 < g < oco. Then X is dense in LY(R™) if and

only if S is nowhere dense.

14



~ Proof : (1) The proof follows easily from the classical Wiener-Tauberian theorem.

(See Proposition 9.4 in [32].)

(2) Suppose X is dense in LI(F"), 1 < ¢ < fﬁ If S is nonempty then consider
¢, for some r € §. (Here ¢, is the function introduced in Section 1.2.) Then
¢, € LP(R") where 1/p+1/q=1, since p > 2%, Using the fact that F vanishes on
M, and that ¢, is radial, it can be proved that [9f ¢, = 0 for all g € M(n), which

contradicts the fact that X is dense in L?. Hence S is empty.

Conversely, assume S is empty. Suppose X is not dense in LY. Then there

exists a non-trivial A € LP(E”), 1/p+ 1/q = 1, ffji < p < oo such that [fh =
0,‘0}9 € M(n). Then arguing exactly as in Proposition 1.3.1, we can assume A to
 be smooth and radial. It will follow that h % f = 0. Convolving A with a smooth
compactly supported approximate identity we can even assume that h is bounded.
Since f may not be smooth, fh may not make sense! However by Theorem 9.3 of
(32], which is essentially the Wiener-Tauberian Theorem in disguise, we can still
conclude that Supph C Zm. (See also Proposition 6.1 in [11].) Since h is a radial
distribution, if ¢ € Supph , then {y : ly|| = ||l=||} € Supp k. Thus, since S is empty,
0 can be the only possible point in Supp h. If Supp b = {0}, then A is a non-trivial

polynomial and this is impossible since h is also in I? with p < oo. Therefore,

Suppfz is empty. Hence h =0 a. e., a contradiction.

(3) Suppose X is not dense in LY(R™), 2% < g < 2, Then arguing exactly as in

(2) above, there exists a non-trivial smooth radial bounded 2 € L*(R"™), 1/p+1/q =
"1 with 2 < p < %1 such that h * f = 0. As before this implies Supph C Zp 1L
Supph = {0}, then h must be a polynomial and this contradicts that A € L? and
p < oo. Hence as in (2), there exists » > O such that M. C Sﬁppﬁ. But then

r € 8. Since each point of 3 is an isolated point, there exists an ¢ > 0 such that
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(r—e,r+€) NS ={r}. Consider the annulus A, ={z € R":r—¢ < |lz|]| <7+ €}.
Choose ¥ € D(R") as in the proof of Proposition 1.3.1. Then Supp@bﬁ = M,
Equivalently Supp () * h)* = M,. Also since 9 € S(R™) and h € LP,4) % h € LP.

Using Lemma 1.2.2 and Lemma 1.2.3, and the fact that a,?}*h c LF'(R"') 2 <p< f_‘”- ,

we conclude that 7 * h = 0 exactly as in the proof of Proposition 1.3.1. But then

- this contradicts that Supp (¢ * h)A = M,.

(4) Suppose X is not dense in LY(R"), 2 < ¢ < 2%, Then, as before, there
exists h € LP(R™), 1/p+1/q =1, a non-trivial radial function such that A f = 0.

Since > 2“ < p < 2, his defined as a function. Therefore fh = 0. This together with

the fact that A is radial and § is of zero measure in R* , implies that h is zero a.e.

in K", But then A =0 a.e., a contradiction.

(5) Assume X is dense in LY(R"), #& < ¢ < co. Since §'is closed in R", the
fact that S is nowhere dense is equivalent to saying that S does not contain any
non-empty open interval. So if S is not nowhere dense, then there is some annulus
Ay, ={z € R": 1 < |z|| < rs},72 > 71 > 0 such that each f is zero on A,, ..
- Choose ¢ € S(R") non-trivial and radial such that Supp?ﬁ C A, ., Then f'qz =0
Le, fxy=20:Alsoy € I/”(R*"), 1/p+1/q = 1. Since 9 is radial, this implies that

[9f1y =0 for all g € M(n). This contradicts the fact X is dense in L9,

To prove the ‘if’ part we need the following observation : For a radial h &

\ {0} by the following expression:

LF(R™),1<p

i.+1 ¥

hy) = [ h(z) dyi(@) o, y€ B\ {0},

As for each A > 0, ¢, € LY(R"),Vq > _1, the integral on the right hand side makes

sense. Using the asymptotic behaviour of ¢y, A € R*, and the dependence of the

behaviour with respect to the parameter A (-see the explicit formula for ¢y given in
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Section 1.2}, we can show that A — o h(x) ¢r(z) dz is a continuous function on

Rt Hence A is a continuous function on R™ \ {D}.

Coming back to the proof of ‘if’ part in (5), suppose X is not dense in L?, Then
as before there exists a non-trivial radial h € LP(R"), 1/p+1/q= 1,1 <p < 2&,
with A* f = 0. Since fis also in L, fis continuous on R”. Also f*hAisin L? (since
L'+ L7 C IP) and the Fourier transform of f* A is given by the continuous function
fhon R\ {0}. Therefore, fh = 0 on R™\ {0}. Again by assumption, S is nowhere
dense, for any M,,a > 0, there are points as close to M, as we like where f does
not vanish. Therefore k vanishes on these points. Since h is radial this implies that

it vanishes on spheres arbitrarily close to M,. By continuity of & on R™\ {0} we

- conclude that h=0on M,a>0ie, h=0onR"\{0}. But then h =0 a.e., a

contradiction.

Remark 2.2.2 In the case p = 2, the condition ‘'S is of zero measure’ is both
a necessary and sufficient condition in (4) of Theorem 2.2.1. This follows
easily from the Plancherel Theorem. Also in this case, it i3 enough to assume

that fc L%, instead of the more restrictive conditton f € L' N LA

Remark 2.2.8 The most general formulation of the classical Wiener- Tauberian
theorem is actually for a famidy of functions. Since in the later chapters we

state analogous results for a single function only, to keep the exposition uni-

~ form, we have restricted ourselves to treating a single function in the Theorem

2.2.1. However Theorem 2.2.1 can be formulated for a family of functions in

the following way:

For a family {fa}eer tn LHRMYNLI(R™),1 < gL 00, let § =Nger{r > 0:
fo=0 on M. Let X = Span{%, : g € M(n), a € I}. As before, S is a closed
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subset of R*. The arguments given in Theorem 2.2.1 actually work for the

family fa, @ € I and we have the following:

(1) Let fo € L'(R"), a € I. Then X is dense in L'(R™) if and only if there

exsits an &g € I such that fﬂﬂ.ﬂ(O) # 0 and S is empty,

(2) Let fo € LNR")0 LU(R"), 1 <g< 2% acl Then X is dense in LY(R™)
if and only if S is empty.

(8) Let fo € LN{R™ N L‘*‘(R”) 2“ Sqg< 2, el Ifevery point of S is an
isolated point, then X is dense in LY(R").

(4) Let fo € L'(R")N LA(R"),2< ¢ < 22, o€ I. If § is of zero measure (with
respect to Lebesgue measure on R ), then X is dense in LY(R"™).

(5) Let fo € LYR™) N LYR"), 22 < g < o0, for each a € I. Then X is dense

i LA(R™) if and only if S is nowhere dense.

Since we were considering the injectivity of the Pompeiu transform on L?-
spaces, in Chapter 1, we need not have confined ourselves to bounded Bore!l sets F.
We could equally well have considered Borel sets (bounded or unbounded) of finite
' positive measure. Note that on any L*, even in this case, Pp can be defined exactly

as before. As a corollary to Theorem 2.2.1 we have the following result ;

Corollary 2.2.4 Let E be a Borel subset of R of fintte positive measure. Let
S={r>0:1=0 on M,}. Then I

(1) Pg is injective on LP(R™), 1 < p < Zfl, if and only if § is nowhere dense.
(2) If S is of measure zero, then Pg is injective on LP(R"), 2;"1 <p<2.

(8) If every point of S is an isolated point, then Pg is injective on LP(R™), 2 <

p< 2?1

— n—

(4) Pr is injective on LP(R"), - 2"”’ < p Koo, if and only if S is empty.

Proof : All the statements above, except for p = 1, follow by duality. The case
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p =1 can be proved quite easily using the same ideas as in case (5), Theorem 2.2.1.

Remark 2.2.5 For a bounded Borel set of positive measure conditions (1), |

(2) and (8) of Corollary 2.2.4 are automatically guaranteed.)

Remark 2.2.6 From the Remark 2.2.2, it follows that in the case p = 2, the
condition ‘S 15 of zero measure’ 18 both a necessary and sufficient condition

for Pr to be injective.
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‘Chapter 3

H™ with the Heisenberg motion group action

3.1 Introduction

In this chapter, we prove a Wiener-Tauberian type theorem for the n-dimensional
Heisenberg group H™ with the Heisenberg motion group HM(n) acting on H". For
f € LY(H™), we have the notion of the group-theoretic Fourier transform. (In the
~case of R" one considers the usual (Euclidean) Fourier transform. However for a
non-abelian grouI'J} the natural generalization of the traditional Fourier transform is
the operator valued group-theoretic Fourier transform -see Section 3.3.) In the spirit

of Theorem 2.2.1, we would like to get conditions on the group-theoretic Fourier

transform of f which guarantee that Span{s%f: g€ HM(n)} = L}(H"™). In order

to answer this question, we make crucial use of a theorem of Hulanicki-Ricci [23]

about the ideals in the commutative Banach algebra of "radial" L!- functions on

H". Finally we should mention that the analogue of Wiener’s theorem for the two

sided action of H" on itself has been known for sometime - see for example [26],

46).

Here we recall some facts about H?", its representations, special Hermite func-

. tions etc.

20



Let H" = " x I denote the n-dimensional Heisenberg group endowed with

the group law
(z,t)(w, 8) = (2 4+ w,t + s + %Imz - 7).

It
Here z-wW = Z.Zj 'Tﬂ?, for z = (31, ...,.ZH), W = (wl, ..,._.’LUH)‘
j=1
For each A € R = R\ {0}, we have an irreducible unitary representation

of H" realised on L*(R"), the action being
M%) $(€) = €M MT=D g(E +y),

for z =z +1iy, ¢ € L4 R"), £ € R". Upto unitary equivalence these ) give all
the infinite dimensional irreducible unitary representations of H™ (see [15]). "We

also have another family of one-dimensional irreducible unitary representations .,

w €™, given by

Yoz, t) = %2 (z,t) € H".

The representations my, for A € R' together with x, for w €C™ exhaust all the

irreducible, pairwise inequivalent, unitary representations of H™.

Throughout this chapter IV denotes the set of non-negative integers. Con-
sider the orthonormal basis {®, : & € N"} of L*(R") consisting of the nor-
malised Hermite functions. These Hermite functions can be given explicitly as
follows: @q(z) = T12 haylz;), for & = (2y,...,%n), @ = (@i, ...,an) Where fy(y) =
(2kk!ﬁ)?(—1)k$(e”“yz)eyﬂi, y€ R, k=0,1,2,... Moreover @, is an eigenfunc-
tion for the Hermite operator H = —A + |z|? on R™ with the eigenvalue (2|c| + n)

Here o] = ay + ... + .

The special Hermite functions ®,p are defined as follows:
@ag(z) == (2'?1'):2&<7T(.Z)q:)ﬂ, ‘Dﬁ)Lﬂ(Rn)
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where m(2) = m;(2,0). The system {®,5}. s forms an orthonormal basis for LA (@),

We also have the useful formulae : For multi-indices p and m,

_n /J.! 1, 1 _ L1142
Dppm, u2) = (2m)72 P (=) 2" LT (2) e
pt #() (2m) ((u—l—m)') (\/5) p‘.()
-1 ﬂ! 1 2 L2
D, yaml(2) = (2m) 72 1 (——=)" 2™ L™ (z) e 1%
wwim(z) = (0m) (L (o e
Here we have used the notation
= ml pel oy,
2™ = 2T L2,

m - LE]’ 1
L) = Tz (5.
j=1

where L (¥) is the k-th Laguerre polynomial of type o > —1. Therefore, ®,,(z, .., z,)

=®, (|21, .., [2,]). Hence each ®,, is real-valued. Further let
1
bu(z) = L (Glal?) et

denote the k-th Laguerre function, where L} ™! denotes the k-th Laguerre polynomial

of type n — 1. Then
di(2) = (2m)* Y Boa(2).

o=k

If Fi, F, € LY@") and A € R', we define F| %, F, the A- twisted convolution

of F1 and Fg by

Fl * Fg(z) — [‘:}n FI(Z - T_JU) Fg(ﬂ)) Ei%fmz.ﬂi dw.

Then it can be seen that

DA 54, D%, = (2m)7 b5, D),

cxY

r

-Whe_re @Aﬁ(Z) — ‘M% (I)aﬁ([)‘l%z)'

22



A reference for the results on Hermite functions, special Hermite functions,

twisted convolutions etc. is [43].

3.2 The Gelfand pair (HM(n),U(n))

The compact group U(n), of n X n unitary matrices with entries in €, acts on H™

via the automorphism
o(z,t) = (02,t), o € Un), (&t) € H".

Therefore we can form the Heisenberg motion group HM{n) = H" x1U(n), as a

semi-direct product of H" and U(n). The group law in AM(n) is given by:

(0,2, t)(r,w, 8) = (or,ow+ 2,8 +1 -+ —Q-Ima*w - Z),

for (o, 2,t), (r,w,s) € HM(n). The group HM(n} acts on H" in the following way
1 _
(o,2,t)(w, 8) = (cw+ 2,8+ 1+ -Q—Imr:rw ' Z).
The group U(n) is a maximal compact subgroup of HM(n,).
Henceforth we also write G for HM(n) and K for U(n).

Let L'(H") be the closed subalgebra of K-invariant functions in L'(H™). As
shown in [2], L' (H™) is a commutative Banach *-algebra with respect to the usual
convolution on H". (K-invariant functions on H"™ are sometimes referred to as
Mradial functions".) Note that functions on H" can be identified with functions on
G that are right K-invariant. Thus LY{(H™)" can be identified with L'(K\G/K),

the subalgebra of L!(G) consisting of all K-bi-invariant functions on G. Further for

- h9€E L}‘(I_:Z"“)ﬂ = LY K\G/K), f+g = f*c g where %, %g denote the convolutions in

H™ and G respectively, Hence L'(K\G/K) is also a commutative Banach x-algebra
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and therefore (G, K ) is a Gelfand pair. (See [21] for details about Gelfand pairs

" in general and [5], [6] and [7] for the Gelfand pairs associated with the Heisenberg

group in particular.)

Remark 3.2.1 For f,g € L'(H™), it is not in general true that f+g = f+*¢ g.

However for functions f,g € Ll(H"‘)Ij (i.e. radial functions), it is indeed the

case that fxg= f*gg.

Let N be any locally compact topological group and Ky be a compact subgroup

of N. Let m : N — U(H) be an irreducible unitary representation of N on a
Hilbert space H. We say that = is a clags-1 representation for the pair (&, Ky) if

the restriction of w to K contains the trivial representation of Ky, L.e., the space

Hy={veH:nlk)v=nvVke Ky} # (0).

In case (N, Kp) is a Gelfand pair, i.e., if the algebra {f € L' (N) : f(kizks) =
f(z), k1, ky € Ky, © € N}, is commutative with respect to usual convolution on N,
it is known that, for m, H, Hy as above, dim Hy = 1. The function  — {(7{x)vg, vo),
z € N where vy € Hp is such that ||zl = 1, is called the elementary spherical

function corresponding to .

For more details on Gelfand pairs and elementary spherical functions etc. see

[16], [21].

It is a well known fact that the vector fields

d 1 &
= A T AYia :1121 y
% Ox; 2Yigy "
g 1 &
P e LA R 3121 ’
“ By, 2igy T henm
0
P = 2
Jt

form a basis for the Lie algebra of right-invariant vector fields on H". The Heisen-
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berg sublaplacian £ is defined as follows: £ = — el (X jﬂ A y;?)

A family {pat}rers ke of class-1 representations for the pair (G, K) (see [40])

is defined as follows:
For A € R' and & € N, define
Hyp={f: H* = C smooth: Lf = |\|(2k +n)f, Tf = ra,\f,/{g,] | f(z,0)dz < oo}.

An inner product (-,-) on H sk 18 given as follows

(f,9) = @m)" A" /(D’" F(z,0) g(z0) dz.

Let H) 1 be the completion of Hy y, with respect to (+,-). Let ®X(z) = |A[1 D (|AI2z),
z € R". Then the functions 2} 4(2,t) = (my\(2,8)07, ®3), o, € N", with |8| = &,

form an orthonormal basis for Hy . Define

eailo, 2, t) flw, ) = f((o 2 t) " w, s)),

for (o,2,t) € G, f€ Hyy, (w,8) € H* Then pyy is a unitary representation of G.

The following can be essentially found in [40] :

Theorem 3.2.2 The representation pyy defined above is an irreducible unitary

class-1 representation of G. The corresponding bounded elementary spherical

function ey is given as

klln— 1)!
ek 2,8) = (k‘"(l-ﬂ,-—- i)

e (1N 2),

(0,2,t}) € G. The restriction of py to H" breaks up as the sum of (f!'(tf'__ll))!!

irreducible representations, each of which is equivalent to the representation
m of H®. Moreover, for A\, \1 € R, k, k1 € N, p, i 15 equivalent to py 4, if and

| only *Lf)\= Al,k:kl.
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The irreducibility and pairwise inequivalence of p, ,’s are proved in [40]. Also the

fact that the restriction of py, to H™ breaks up as the sum of f,é" ":11)),' irreducible

representations, each of which is equivalent to the representation 7, of H™ has been

observed in [40]. To see that p,; is class-1 for each A ¢ R’k c N, note that the

function
-} k+mn— 1)
Biat) = N S By(at) where Ny = Gt
|8|=k ' '
= N.TeM(@2mi Y Dpp(|A|12)

B=k
N ¥ e gy (A1)
Nk_‘:i? eikﬁLEwl (%iAHZIE) B—%H"zfg

1

}

(using results quoted in Section 3.1) is the essentially unique K-fixed vector in H) ;.

The corresponding elementary spherical function ey, is therefore given by

(pi’s,k(ﬂ-! 2y t)Eﬁ} Eﬁ)H,xlk
(pk,k(e: &, t)-Eia Eﬁ)fﬁlga

e;hk({:r, 2, t)

where e is the identity element in U{n). Hence the above expression becomes

(2r) A [ Bi(e,2,8)™ (w, 0)) B (w, o) du
= 0™ AP [, B (w, 0)(2,0)™) B(w,0) duw
@) AP [ 3 (mal(w,0) (2, 8)™) €2, 83) 3 ma(w, 018, 8] du

|

af=k 1=+ _ -
= N 'e™¥ ./(]3‘" pitimz 0 H) () ) D2s(w) dw.
|| =k=|4]
Since ®} () = ®* (—z) and P, is real-valued, the above is equal to
N—-l —1il /@n JJ‘J’ﬂ'l,:a.'“uc.w @A 'HJ) {[),}f;ﬂ(w) day.
|a|=k=|5|
= Nyle ™ 3" &, % Dpp(2)
al=k-14
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- ;:1 G“‘*ii}-.f- l [%;Iﬁl (Qﬂ-)% 5{:’)‘3 {I}iﬁ(z)

Nelte?™(2me Y @), (2)
lor| =k

Note ™M g A2 2).

|

)

I Since ey (0, 2, ) is independent of choice of o, we also write e, (7, ) for e, i(o, 2, t)

for any o € U(n).

We now describe another set of class-1 representations of (G, K'). Consider
the one dimensional representation x,(z,t) = e*¥% w @™\ {0},(z,t) € H", of
H". Let Ky ={k € K : k2w = w}. Then Kj is a closed subgroup of XK. Let p,, be the
induced representation obtained by inducing ., @ 1 from H" x Ky to A" x K = G,
Here 1 denotes the trivial representation of Ky and X, ® 1(k,2,t) = e**3, for

(k,z,t) € H" x1 Ky. The representation space of p,, is described as follows: Let
H, = {f: G— € continuous : f(geg) = (XX 1)(90)f(9), 90 € H" x Ky, g € G}.

Therefore for f € H,,(0,21t) € G,

f((e, z,t)(o,0,0))
(Xw ® 1) (8, 2 t)f (‘-Ta 01 O)
eiRew.i f(ﬂ', 0, 0):

f(a,2,t)

and hence f can be viewed as a function on K. Let H, be the completion of H,

~with respect to the inner product
(f: g) — Kf(k)mdk:' L9 € ﬁw-

The induced representation p,, is given by :

pw(o, 2, t) F(mw,s) = f((n *ltu,s)(cr, z, 1)), f€ Hy,, (0,21t),(nw,s) €G.
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Then p, is an irreducible unitary representation of G, with fy(o,2,¢) =
QE?%_IE*'R“”'E as the essentially unigue K-fxed vector. Here {1,,_1 is the total sur-
face measure of the unit sphere in R*". (See [5] for details.) The corresponding

elementary spherical functions n, can be computed to be the fa'llowing

2" — D J—1(7)2])
(0, 2, T) = (]|} y

where 7 == |w| > 0 and J,.; is the Bessel function of order n — 1. Moreover, py i8
equivalent to py if and only if |w] = |w'|. Also the trivial representation of G is

clearly a class-1 representation with the elementary spherical function 7y = 1 on G.

We also write n.(z,t) for n:{0, z,t} for any ¢ € U(n). Since we know that e; 4
with A € R*, k € IN and n, with 7 > 0 are all the bounded elementary spherical

functions for the pair (G, K), (see, for example, [2]), the above discussion completes

the description of these in terms of class-1 representations of (G, K). The connec-

tion between representations and elementary spherical functions for Gelfand pairs

associated with solvable Lie groups has been studied in detail in [5].

3.3 A theorem of the Wiener-Tauberian type for L'(H")
with the HM(n) action

We first state the Wiener-Tauberian theorem for L!{(H")" due to Hulanicki and Ricci

23]

Theorem 3.3.1 (/28]) Let J be a closed ideal in L'(H™)! and suppose that
(1) For any A € R’k € N, there exists some f € J such that

Jf(z,t) esr(z,t) dzdt # 0.

(2) For any > 0 there exists some f € J such that [ f(zt) n{zt)dzdt # 0.
Then J = L (H™,
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To state the analogue of the Wiener-Tauberian theorem for the action of G on H"

we set up some notation,

Let H" denote the equivalence classes of irreducible unitary representations of
H". For h € L'(H"), we define the "group-theoretic" Fourier transform on H" as
follows : Let 7 be in H™ with H. as the corresponding representation space. Then

w(h) is the bounded operator defined by

w(h) = /} h((z )" (s ) dadb,

where the integral is to be interpreted suitably. The assignment 7 ~» w(h}, defined
on H" is known as the "group theoretic" Fourier transform of A. Thus for each
A€ R, my(h) acts on the Hilbert space L*(R") and for each w € €%, xw(h) (is a

scalar and) acts on the 1-dimensional space @\

For each A € R' and k € N, let Py be the projection on the k-th eigenspace
My, = Span{® : |a| = k} of the scaled Hermite operator H) = —A + [A|*|z[* on
R". Recall ®(z) = |\|? 0,(|A|iz), =z € R™

Remark 3.3.2 If we take the Fock space model for describing the infinite di-
mensional representations of H* (see [15]), then the A-dilated Hermile func-
tion @ corresponds to a nonzero multiple of the polynomial 2% = 2" 2™...2,"™".
Hence the subspace My, of L*(R"™) can be identified with the space of homoge-
neous polynomials of degree k in n-variables 2y, ..., 2. The na,tuml action,
(up)(z) = pu='.z), u € Un), of U(n) on this space is érreducible. Thus
L3(R™ = @ M, can be thought of as the decomposition of the representa-

tion space of my, into irreducible subspaces for the K-action, after L(R") is

identified with the Fock space model.

For a function h on H", define %h(z,t) = h(g.(2,1)), for g € G,(z,t) € H". We are
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now in a position to give conditions under which Span{sf: g G} = LI(H "), for
a given function f & L'(H"). These conditions are purely in terms of the group

theoretic Fourier transform of f ({29]).

Theorem 3.3.3 Let f € L'(H"). Then Span{gf: g € G} = L'(H") if and only
if :
(1) my(f) Pax #0 for each Ae R' and k € N.

(2) For each v > 0, there exists w e C" with \w| =r such that x,(f) # 0.

(3) 1(f) # 0, where 1 is the trivial representation of H™.

Remark 3.3.4 If we define fo(z) = [f(z,t)dt,z € C" then the condition (2)

above can be rewritten as follows: For each r > 0, fg, the FEuclidean Fourier
transform of fy, does not vanish tdentically on 5., the sphere of radius r in

R™. Also condition (8) is equivalent to fo(0) s 0.

Proof of Theorem 3.3.3: (a) (Sufficiency of the conditions (1), (2) and (3).)
Assume that the conditions (1), (2) and (3) of the theorem are satisfied. As observed

in Section 3.2, the given function f on H™ can be thought of as a right K-invariant

function on G via f(ff; 2y t) = f(zn t):- (U: Zy t) € G. Define f*(ﬂ'a 2y t) — f(f'r:- Zy t)_l =

fl=o"12%), (o,2,t) € G. Then f*is aleft K-invariant function on G. Hence f' ¢ f
is a K-bi-invariant function on G. Equivalently, it can be viewed as a K-invariant

- function on H™.

We claim that the closed ideal generated by f* *¢ f in L'(H '“')Ij is the full

algebra L1(H ")H. Note that once we establish the claim, the theorem follows from

the observations

L h*(f* ¢ f) € Span{9f: g€ G}, for h € Ll(H""")Ij and hence LJ*(H"")Ij =
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LME\G/K) C Span{sf: g€ G} C LNG/K) = LN H™),

2. The smallest closed subspace of L'(G/K') containing L'(K\G/K) and invari- |
ant under the (left) G-action, is all of LN{G/K).

To prove the claim, consider

f (f* *q f)(2,1) exslz t) dzdt
= [(f" 46 £) () (prule, 2 0) B, BY) izt
/ (f* *¢ £)(z,t) e ™ Nl d(| A2 2) dz dt
[ 46 D e NG @mE 3 (m(2)2, B) dede

|ar|=4k

N (2m)1 3 (m(f* *c ) 25, 23).

|| =k

~Again an easy computation shows that

m(f *¢ f) = f ¢ [Y(z,t) T (2, t) dzdt
/II"fU(H) ‘f* f < t) ﬂl(“ﬂﬁ: t) du dz dt

Jg Tl £)

1

where my . (2,t) = ma(u.2,t), (z,t) € H*, u € U(n). Therefore,

f (f**a f)(2,t) eyp(2,t) dzdt
= N (2m): Zf (T f F*) @5, B)) du

o=k U(n)

[l
S
S
3

[ =

(]
T~

.

a
R >

e

=

Hence [(f*xq f )z, t) esplz, t) dzdt = 0 & |7y ()P} = 0, for all & such that jo| =
k and a.e. u € U(n). Now as the irreducible representation ), has the same central

- character as 7y, by the Stone-von Neumann theorem (see [15]), ). is equivalent
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to my. Also for each u € U(n),A € R" we can choose an intertwining unitary
operator my(u) : L2 (R™) — L*(R™) such that my(u) my(2,t) = mau(2, t)m,(u), for
all (z,t) € H* and v — my(u) : U(n) ~ U(L*(R")) is a continuous projective '
representation of U(n). Therefore, the condition [(f* %¢ f)(z,t)en{z,t)dzdt =0 is
equivalent to my(u) my(f) ma(u) ™' ®¢ = 0, for all u € U(n), and « such that |o| = k.
Now for each A and k&, by the Remark 3.3.2, M, ; can be identified in the Fock space
model with polynomials of degree k& in n-variables 2y, 29, 2z,. Also in this case,
m(u) can be chosen to be the natural action of u on polynomials. Since this action
preserves the degree of a polynomial, m,(u) sends M, ; onto M, ;. Hence the above
is equivalent to my(f )Py = 0. The condition (1} in the hypothesis implies that this
is not the case. Hence [(f* *¢ f)(2z,t) ey i(2,t)dzdt # 0, for any A € R" k € N.

Also for 7> 0, we have

ff* xa (2, 1) n2, t)a'.zdt
/%nh/{;n f ¥ o f ) IRE((u.w).E)dudzdtil

where w € €™ is such that |{w| = 7. Again using the fact that (f* +¢ f){z,t) =

Jotay (F* F*)(w.z, t)du, we have [(£* %6 £)(z 6)n,(z,t) dzdt = const. fypy [Xuul £ du

~ for a non-zero constant. Therefore,

[ 50 Pzt mlat) deds =0

if and only if Xuw(f) = 0, for all w € U(n). This in turn is equivalent to fy =
0 on the sphere S, of radius 7 in €'". But the condition (2) in thé hypothesis
implies that this is not the case. Hence [(f* *¢ f)(#,t) nr(2,t) dzdt # 0, for 7 >
0. For 7 = 0, [(f* *¢ f)(2,t)dzdt = | [f(2,t)dzdt]* # 0, by the condition (3)

in the hypothesis. Hence the Wiener-Tauberian theorem of Hulanicki and Ricci

(23] bolds for the closed ideal {h * (f* #¢ f): h € L'(H")"} generated by f* #¢ f
in LN E™ e, {h* (f *¢ )+ h e LH{HEHY} = EY.
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(b) (Necessity of the conditions (1), {(2) and (3).) The fact is that the con-

ditions in Theorem 3.3.3 are also necessary for f € L*(H™) to have the property

that Span{sf: g€ G} = L'(H™). This is because if any of the condition (1), (2)

or (3) is violated for f, then it is violated for every 9f and hence for every function

in Span{?f: g € G}. On the other hand, the conditions (1), (2) and (3) do hold

for the function h(z,t) = e e , (2,#) € H", which is also in L'(H"). Hence h

cannot be in Span{if: g€ G}.
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Chapter 4

Symmetric spaces of the noncompact type

4.1 Introduction

Throughout this chapter X will denote a symmetric space of the noncompact type
and of real rank 1 (though many of our results will be valid even for symmetric
spaces whose rank is greater than 1), We refer the reader to [19], [22] for facts

about symmetric spaces.

Let & be the connected component of the group of isometries of X and K the
subgroup of G which leaves a given point pg fixed. Then K is a maximal compact
subgroup of G and G/K is diffeomorphic to X under the mapping gK = g-m, ¢ &
G. (Indeed this mapping is a real-analytic diffeomorphism.) Moreover as X is of
the noncompact type and of real rank 1, G is a connected noncompact semisimple
Lie group with finite centre (and of real rank 1), For functions on the symmetric
space X, one has the notion of the Helgason-Fourier transform. In this chapter,
motivated by the results in the Chapter 2, we cqnsider the span of the G-translates
of an LP-function, for 2 < p < oo, using the Helgason-Fourier transform as our

main tool. We also briefly indicate how some older results for L, 1 < p < 2, can be

reformulated in terms of the Helgason-Fourier transtorm.
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The main result of this chapter is the surprising fact that if 2 < p < o0,
any non-trivial f € L? N L? has the property that Span{g/ : g € G} is dense in
IP(X). Along the way, we also establish an L*analogue of this Wiener-Tauberian

theorem in terms of the Helgason-Fourier transform. (Such an L2-result is probably

not surprising to the experts. A very general L%result for Gelfand pairs, appears

in [42]) Elsewhere somewhat easier fact that +f 2 < p < oo, any non-trivial
fe IPnL! generates LP{X) (in the sense described above) has already been

recorded ({38} and (31]) without proof. We also give a proof of this using the

Helgason-Fourier transform as our main tool.

A function fon X can be thought of as a right K-invariant function on G i.e.
flzk) = f(z), 2 € G, k € K. Since K is compact and & is unimodular, there is a
canonical G-invariant measure dx on X = G/K such that J; f{g)dg = [y f(z)dz
for right K-invariant f Here dg is the Haar measure on . Thus we can think
of L?(X )(= LP(G/K)) as a closed subspace of LP(G). The set of L? functions on
G which are bi-invariant under K i.e. flkizks) = f(z), k1, k2 € K, & € G will
be denoted by LP(K\G/K ). Note that a K-bij-invariant function on G can also be
thought of as a function on X invariant under the natural action of K on X, Note
that if f and h are functions on X, we can form the function f*# on X. To do this,
we think of f and A as functions on G and perform the convolution on G, noting
that if f and A are right K-invariant functions on G, then so is f#* h. Finally, we
-~ continue with the notation that if kb is a function on X and g € G, then % is the

function defined by %hiz) = h(g.z), z € X

We briefly review some facts about semi-simple Lie groups and Lie algebras.
For any unexplained notation, concept etc., we refer the reader to [18];. [19]. Let
G = NAK, ¢ = N AP K be the Iwasawa decomposition for the group G and
its Lie algebra G respectively. For each g € G, let A(g) € A,u(g) € K,n(g) € N
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denote the unique elements such that g = n{ g)expA(g)u(g). Let ¥ denote the set
of roots of G with respect to .4 and 3> denote the subset of positive roots. Let p be
the half sum of positive roots counted according to the multiplicity. Let A* denote '

" the real dual of A and "4&3‘ its complexification. Also, let M be the centralizer of A

in .

The "elementary spherical function" ¢,, A € A%, for the pair (G, K} is then

given by the following expression:

6x(9) = [ P09 g, g€ G

Since X is of real rank 1, dim A* = 1. Therefore A* = Rp and A’(‘y = {'p. We
identify Ap € .ﬁi’(‘g with A € €. Hence p is identified with 1 € €. Thus, in the

sequel, by ¢, for A € € we actually mean ¢,, Fach ¢, is a real analytic K-bi-

invariant function on G with ¢(e) = 1, where e denotes the identity element of G.

Also {¢x}, . exhausts the collection of the "elementary spherical functions" on G.

- Further ¢, = ¢, if and only if v = . (See [21] for details.)

For a K-bi-invariant function f on G, the spherical Fourier transform f of £ is

defined as follows:

=

f(A) = fo( 9)9-1(g) dg
for all A € ¢ for which the integral exists. (Thus if fis a compactly supported

continuous K-bi-invariant function on G, then f()) is defined for all of @)

Remark 4.1.1 It is a iu;ell known fact that ¢, ts bounded if aﬂd'onlﬂy if A€
S = R+i[~1,1] and in fact |p(g)| SL,VAE S, g€ G (see [21]). Also for each
fized g € G, A — ¢\(g) is a holomorphic function on . Hence, using all the
above facts, it can be shown that for f € LME\G/K),A s f(A) is a bounded

continuous even function on S which is holomorphic in the interior S® of S

([21]).
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Also for 1 < p < 2, if A is in the open strip S2 = R + i(—v,,v,} where
v, = 3 — 1, then it follows from the asymptotic behaviduw of ¢ ([18]) that
or € L9, where 1/p+ 1/q = 1. Therefore, if f € IP(K\G/K) and X & S |
then the integral [f$, converges absolutely. Hence for f € I*(K\G/K), f())
is defined in the open strip S = R+ i(—'yp,.fyp) and one can show using the
holomorphy of A — ¢,(g), for each ¢ € G, that f()\) defines a holomorphic

function in the strip S.

4.2 The Helgason-Fourier transform and LP-results for
2<p< o0 |

For suitable functions f on X, the Helgason-Fourier transform of f, which we again

denote by £, is a function on € x K/M. Let k=kM e K/Mand z = gK € X be

arbitrary. Then by A(z, k) we mean A(k 'g). With this notation, we define f as

follows:

FOuR) = | fa)elH0eaeh g,

where & = kM for all () k) € © x K/M for which the integral exists (-see [22]).
(Thus if fis a compactly supported continuous function on X, then f is defined for
all of @ x K/M.) Note that if fis a K-bi-invariant function on &, or what is same as

a (left) K-invariant function on X, then the Helgasan—Fouriei' transfdrm f()\, fc) of f

is independent of k and in fact coincides with the spherical Fourier transform f(A)

defined earlier. By abuse of notation, in future we write f(A,k) instead of fr, k).

To prove the L? analogue of the Wiener-Tauberian theorem, we need to extend

the notion of the Helgason-Fourier transform to L* functions on X. This is done

using the following Plancherel theorem for X (—sge .[22]).

Theorem 4.2.1 ([22]) The Helgason-Fourier transform f— 7 is an isometry
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of Ce(X), the space of continuous functions on X with compact support, into
L*(R™ x K/M, |c(A)|"® d\dk). Further it extends to an isometry of L*(X) onto
L*(R™ x K/M, |c(A\)|"*dAdk). Moreover, for f,, f, € L*(X),

fX filz)falz) dz = % fR /M FAE) fo (0 K) [e (V)72 dk d).

Remark 4.2.2 The function |c (A)|™* occuring in the Plancherel theorem above
can be explicitly written down (-see [18]). The function {c(A)|™* is a C®
function on R with at most polynomial growth. (See [18].) Further a subset
E of B has zero Lebesgue measure if and only if E has zero measure with

respect to |c(A)] 7 dA.

For the rest of this section the measure |c (A}|™ dA dk will be denoted by dy.

We also need the following fact, which is a mild strengthing of Lemma 1.4,

page 226, in [22].

Lemma 4.2.3 Let f ¢ € L*X) be such that f+¢ € L*(X). Suppose further

that ¢ i1s K-bi-invariant. Then

(£%6)"(\k) = BN k) ae. (A K) € B x K/M

Now we prove a Wiener-Tauberian theorem for L*(X ) in terms of the Helgason-
Fourier transform. A general L? result for Gelfand pairs is proved in [42]. However
the result in [42] is stated in terms of the group-theoretic Fourier transform. See

Section 4.3, for the connection between the Helgason-Fourier transform and the

group-theoretic Fourier transform in our case.

Theorem 4.2.4 Let fe L2(X) be such that the set {A € R: f(\ k) =0 ae k}
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is of zero Lebesgue measure on K. Then the Span{%f : g € G} is dense in

L2(X).

(Note that by the Remark 4.2.2, the condition that a subset £ of R is of zero
Lebesgue measure is equivalent to the condition that it has zero measure with
respect to |c(A)|7%dA. Also the theorem above is an analogue to the part (4), case

- q = 2 of Theorem 2.2.1.)

Proof : Suppose Span{% : g € G} is not dense in L*(X). Then there exists a
non-trivial function hy € L*(X), such that [y 9f(x) he(z)dz = 0, for each g € G.
Set U = { € LX) : [y *f(x)l(z)dn = 0,¥g € G} = {$ € LX) : f+¢ = 0}
where ¥( g) = ¥(¢7'), g € G. Then U is non-trivial since by assumption it contains
the non-trivial function hy. As U is closed and invariant under the left G-action,
é * hy € U for any ¢ € C,(G). Further as hy € L*(G/K) is uon—tri.vial, we can
~ choose a ¢ € C.(G), which is also left K-invariant and such that ¢ * h¢ is again
non-trivial. (Otherwise, ¢ * ho(e) = 0 for any such ¢. This in turn implies that hyg

is orthogonal to C, (G/K) and therefore to L*(G/K) = L*(X).) Hence there is a

non-trivial Ay = ¢ * hy € U such that b, is also left K-invariant. But then f*h =0

where A(g) = hi(g) = M(g™!), g € G and h is also a non-trivial left K-invariant

function in L?(X ). Consequently ( f+* k)" (A, k) = O for almost all (A, k) with respect
to the Plancherel measure dy = |c(A)|"2dA dk on R x K/M. Also by Lemma 4,2.3,
(fxh)"(Ak) = A(A)FN k), a.e. du(A, k). By assumption, the set {A € R f\ k) =
0 a.e. k} has zero Lebesgue measure and‘ therefore by Remark 4.2.2, zero p measure.,

As a consequence, A(\) = Oa.e.du(r). As h € L*(X), the Plancherel theorem for

L2(X) then implies that h is a trivial function, a contradiction.

(Note that the condition given in the I'neorem 4.2.4 is also necessary for the

Span{9f : g € G} to be dense in L4(X). (See also Remark 2.2.2.) Suppose F is a
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set of positive measure with respect to the measure ¢ (A)|=*dA on R such that for
A € B, f(\ k) =0a.c. k. Then we can choose a left K-invariant function h € L2 (X)
such that A()) is supported in E. Hence h(X) f(A\ k) = Oa.e. By reversing the .
arguments given in the proot of the Theorem 4.2.4, we have a non-trivial h € I?(X)

which is orthogonal to the Span{ : g € G} in L*(X).)

Next we take up the case of L? for 2 < p < co.

Theorem 4.2.5 Let f € LA(X) N LYX),2 < p < oo. If f 25 a non-trivial

function, then Span{sf . g€ G} = LP(X).

Proof : Suppose hy € LY X ), 1/p+ 1/g =1 is such that [y %(z) ho(z) dx = 0, for
“each g € G. As before, the space U = {¢ € LX) : [y 9f(z)(z)dz = 0,V g €
G}y = {¢p € L*(X) : f+1 = 0} is closed and invariant under thé left G-action.
Moreover, by assumption, it contains the non-trivial function hy. Therefore as in
the proof of Theorem 4.2.4, there exists a non-trivial h; € U such that h; is also left
K-invariant. Thus the fact that [y 9f(z) hi(z) dz =0, V g € G, implies that fxh = 0.
Here A{ g) = hi(g) = hi(g7Y), g € G. Also his a non-trivial left X-invariant function
in LI(X),1 < g < 2. Now f € L*(G). Therefore by Kunze-Stein phenomenon, (see
(12]), f* h € L*(X). Consequently, ( f+h) (A k) = 0 a.e.du(A, k). Also as h is
K-bi-invariant, another mild strengthing of the Lemma 1.4, page 226; in [22] shows
that ( f*h)~(\ k) = R(A)F\, k) a.e.dp(), k). Hence h(A) f(A k) = Oa.e.dp(), k).
As h is a non-trivial K-bi-invariant function in L%(G), 1 < ¢ < 2, by Rémark 4,1.1,
| )\1 R fz().) is a non-trivial holomorphic function in the open strip R + i(—7,, )
in the complex plane. Therefore its restriction to B can vanish only on a set of
Lebesgue measure zero. But then, by Remark 4.2.2, the measure lc(A)|™*dA on R
is absolutely continuous with respect to the Lebesgue measure on B, Consequently,

f(\, k) = 0 a.e. du(), k). But then the Plancherel theorem for X implies that f =0
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a.e., a contradiction.

The case of a function f € LP(X) N LX) is somewhat easier to handle. It is

considered in [38] and [31], where the following result is recorded without a proof :

 Theorem 4.2.6 Let f € IP(X)NLYX),2 <p < oo. If f is a non-trivial func-
tion, then Span{yf : g€ G} = LP(X).

(Note that the case p = 2 is also included in the above statement. )

Proof : Since fe LH(X)NLYX), p > 2, fis also in L*(X). For any function ¢ on

(s define ¢*(g) = ¢(97'), g € G. Then if ¢ is non-trivial function in L3(G), ¢* +¢ is a
continuous non-trivial function on G. Indeed, ¢**d(e) = ||¢||2. Hence f*+ fis a non-
trivial function. As fis a right K-invariant function on G, f* is left K-invariant and
f** f is therefore a non-trivial K-bi-invariant function on G. Moreover as fisin L,

sois f* f. Thus ( f** f)7(}) is a holomorphic function in the strip 5°, by Remark

4.1.1. Arguing exactly as in the Theorem 4.2.5, if Span{¢f: g € G} # I?(X), then
- we can find a non-trivial kA in LI(K\G/K),1 < ¢ < 2, such that f+h = 0. As a

consequence, f** f+h =0 and so ( f** f)"(A\)h(A) = Oa.e. But (f** f)~()) is a

L

non-trivial holomorphic function and this forces h(A) = O a.e. du(A). Hence h = 0,

a contradiction.

An immediate corollary of the above theorem is the following which appears

in [31] without a proof.

Corollary 4.2.7 If I/ is a Borel subset of X of finite positive measure, then

Pr is ingective on [P(X),1 <p < 2.

Proof : The case when p = 1, has been proved in {37]. The case when 1 < p < 2,
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follows by duality, using the Theorem 4.2.8.

Although we restricted ourselves to a symmetric space of real rank 1, the
Helgason-Fourier transform is defined in a similar way for symmetric spaces of ar-
bitrary rank. Also, the Plancherel theorem holds for a symmetric space of arbitrary
rank (see [22]). By using arguments similar to the ones employed above, we can
show that the Theorem 4.2.6 and the Corollary 4.2.7 hold for a symmeftric space of
arbitrary rank. However in the next section, the fact that rank X is 1 is needed

and so for uniformity in exposition we have imposed this condition.

Again, in view of the counter example in [35], Corollary 4.2.7 is the best

possible result in general i.e. without assuming anything about the shape of &.

Also note that unlike in the Euclidean case, we only need o assume that & is of

finite measure; we do not need the fact that it is relatively cnmpacf;.
4.3 Some results for LP-spaces, 1 <p < 2

In this section, to give a flavour of results analogous to Theorem 4,2.4, for LP-spaces,
1 < p < 2, we reformulate an old result from [38], which is proved for the case when
p = 1, in terms of the Helgason-Fourier transform. We also give an analogue of this

result for the case when 1 < p < 2, which follows from slight modifications in the

nroof for the L'-case.

The exact analogue of the classical Wiener-Tauberian theorem for L'{R), is
no longer true if one considers the commutative Banach algebra LMK\G/K) of K-
bi-invariant Li-functions on G. (G, K are as in the Section 4.1.) In [14], Ehrenpreis
and Mautner gave an example of f € L'(K\G/K) such that f never ?alliS.heS on

the maximal ideal space R+i[—1,1] of L} K\G/K) but still the algebra generated
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by fin LY{K\G/K) is not dense in L'(K\G/K). However, when G = §L(2, R},
they were able to show that if for f ¢ LYK \G/I{ ), f is nowhere vanishing on the
maximal ideal space of LY{K\G/X) and "f does not go to zero too fast at co", then
the ideal generated by fin L' K\G/K) is indeed dense in L'(K\G/K ). Since then

several modified versions of Wiener’s theorem have been obtained, see for example

14, (33).

Coming back to the result in [38], we first describe some more basic facts

about harmonic analysis of functions on X,

Now, for the harmonic analysis on functions on X i.e. functions on ¢ which are

right K-invariant, only the so called class-1 principal series representations {7}, o

of G are relevant. These representations are all realised on Z*(X/M ) in the following

way:

(13 ( 9)v) (k) = MDA 400,10V g€ G, ve LUYK/M), k = kM € K/M.

Let vp be the constant function 1 on K/M. Then vy is the essentially unigue K-fixed

~vector for the representation my, A €€ i.e. ma(k)vyy = vyVhk e K.

For A € R, the corresponding principal series representation w, is unifary
and irreducible. Therefore, for f € LX), mf) = fo f{9) m-1( g dg, defines a
bounded operator on L*(K/M). Let v be any K-finite vector in L*(K/M) for the
representation mx, A € R, (i.e. Span{my(k)v : k € K} is finite dimensional), then
m( f)v = 0 if the projection of v on € ﬁ}u is trivial. Thus in this case, the group
theoretic Fourier transform A — #»( f), is completely determined by its action on

the vector vy. Hence for f & L(X), the group-theoretic Fourier transform can be

thought of as a function from R into L*(K/M) in the following way: A — m,( f)ve.

To keep the exposition simple, we further restrict ourselves to functions on X
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which are also left K-finite. A function f on LP(X) s called left K-finite if the

(left) K-translates of f span a finite dimenstonal subspace. Then for a function
f € LI(X), which is also left K-finite, it can be seen easily that f(), k) exists for
XA € R and k € K/M. Furthermore, f(},.) € L¥K/M). It is then immediate from

the definition of #_, that
(ma( flvo) (k) = F(A k), k= kM € K/M.

If fis left K-invariant i.e. if fis a K-bi-invariant function in L*(G), then as remarked
earlier, f(A, k) is independent of k and equals f()), the spherical Fourier transform

of f at A. Therefore, in this case we have

T f)vo = f(?\)ﬂu-

These relations establish the connection between the Helgason-Fourier trans-

form of f and the group-theoretic Fourier transform of f.

Again for f € LP(X), 1 < p < 2, which is also left K-finile, it can be seen
easily that f(, k) exists for all k£ € K/M and A in the open strip ST = R4i(—p, 7p),
where vy, = %——1. In fact, for each fixed k, A — f(X, k) defines a holomorphic function

in the open strip 5.

We now refofmulate the result in [38], in terms of the Helgason-Fourier trans-
form. From now onwards, we take X to be the upper half plane, i.e., X = {® + iy :
z,y € R,y > 0}, equipped with the Poincare metric (see [24]). Then X can be
realised as G/K where G = SL(2, R) and K = SO(2). Then the Theorem 4.1 in

[38] can be stated as follows:

Theorem 4.3.1 Let f € LX) be also left K—finite. Assume that for some
e > 0 and for some k € K, the function A — f()., k) extends to a bounded

holomorphic function in S¢ = R+il-1—¢,1 +¢€]. Further assume that for each
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AESE,
[Fe} Nz = M e

for some positive constant M and positive integer I. Then Span {5f: g € G} i3

dense in LY(X).

As remarked before, a slight modification in the proof of Theorem 4.3.1, gives

the following:

Theorem 4.3.2 Let fe I7(X), 1< p <2, be also left K—finite. Assume that

W

for some € > 0 and for some k € K, the function A — f(\ k) extends to a
bounded holomorphic function in Sf = B +i[~vy, — €,7p +€|. Further assume
that for each A € S,

| F ey 2 Mle™)

for some positive constant M and positive integer [. Then Span {9f . g € G} is

dense in LP(X).

In view of the connection between the Helgason-Fourier transform and the

group-theoretic Fourier transform, we have not given the proof of Theorem 4.3.1.

Finally we should point out that much stronger results have been obtained recently
by R. P. Sarkar (-see [33] and {34]). However, to keep the exposition simple and

as a sample of results obtained in this direction we have described the somewhat

weaker result from {38].
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Concluding remarks

In this thesis, we have been mainly interested in L' and L*? analogues of
the classical Wiener-Tauberian theorem for certain homogeneous spaces. While in
Chapter 2 and Chapter 4 we have also been able to deal with the case p # 1,

in Chapter 3 we restricted ourselves to p = 1. Hence to complete the picture, it

would be interesting to obtain LP-analogues of Theorem 2.2.1 for the Gelfand pair
(HM(n),U(n)) i.e. for the HM(n) action on H™. Another direction is to consider a
locally compact group &G acting on itself by both left and right translations. While
a lot of work has gone on in the case p = 1 for various classes of groups (-see for
example [17], [26], [33], [46]), very little has been done in the case p # 1. For the
special case of G = M(2), motivated by Theorem 2.2.1, we have been able to obtain

such a result. We briefly describe it below - the details can be found in [30).

For G = M(2), we have the principal series representations {m,}.~q. Each
T, @& > 018 an irreducible unitary rtapresenta,tioﬁ of G realised on H = L*(S%, %d@),
where S' = {e" : 8 € [0,2n]}. Further the representations m,'s are pair-wise in-
equivalent and the Plancherel measure of G is "supported" on this series of rep-

resentations. (See [41] for details.) Let f € LYG). For each a > 0, define the

operator-valued Fourier transform f, of f, by:

fla) = | fo)malg)dg
Set S = {a > 0: fla) =0} and X = Span{"f% : g;, ¢, € G}. Then we have the
following result ([30]):

Let fe LP(G)NLYG),1 < p < oo.
1. For 1 < p < 3, Xis dense in L?(G) if and only if 8 is empty.

2. For 2 <p <2, Xis dense in LP(G) if each point of S is an isolated point,
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3. For 2 £ p <4, X is dense in LP(G) if S is of zero measure (with respect to

Lebesgue measure on R').

4. For 4 < p < 0o, X is dense in LP(G) if and only if S is nowhere dense.

Note that the result is for p > 1. For the case when p = 1, the reader is

referred to {17], [45] and [46).
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ERRATA

Theorem 4.3.1 and 4.3.2 should read as follows:

Theorem 4.3.1 Let f e LY(X) be also left K—finite. Assume that for some € > 0

and for each k € K, the function X — f(\, k) extends to a holomorphic function in
S = R+1i(~1—¢,1+¢€). Further assume that there are positive constants M, M,

and a positive integer ! such that the following "boundedness" and "not too rapid .

decay" conditions are satisfied:

supsesio | [ FOR)x(k) dkl < M,
for all characters x of K (i.e. ¥ € K) and

”f()h ')”LE(H/M) > M, IE"’KHI, VA € §4°,

Then Span {9f : g € G} is dense in L*(X).

Theorem 4.3.2 Let f € I?(X),1 < p < 2, be also left K—finite. Assume that
there exists € > 0 such that for each k € K, the function A\ — f()\, k) extends to a

holomorphic function in S;*” = R+1i(—7,—¢€, v, +¢). Further assume that there are

positive constants M;, M, and a positive integer ! such that the following conditions

are satisfied:
Sup g0 | /K FO k)x (k) di| < M,

for all characters v of K and

[Kie¥ ez = My ]e‘}‘ml, VA € S;*".

Then Span {9 : g € G} is dense in LP(X ).



