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GLOSSARY OF NOTATION

Sets
) the set.{1,2,...,n}, n is any positive integer
n* all nonempty subsets of /2
|| cardinality of the set o
o, 3, ¥ denote the subsets of 72
& complement of the set a relative to i
a\p the set a N B°
alAf -~ theset (aUB)\ (a«Np)
Spaces
R" real n-dimentional space |
R™xn - the space of m x n real matrices
R | the nonnegative orthant of R"
R} the positive orthant |
Vectors
2 transpose of z
zty | the standard inner product between z and y
x>y mt-zy,-foralliEﬁ
>y z; > y; forallt en
supp(z) support of z, i.e., {¢t ER: 2 £ 0}

probability vector a nonnegative vector with sum of its
coordinates equal to one

Matrices

A=(ay;) a matrix with a;;'s as its entries.
We denote the entries of a matrix by the
corresponding lower case letters,
for example entries of B are denoted by b;;

A 5 B ayy ﬁ b;j for all ?:,- j-
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GLOSSARY OF NOTATION (Contd.)

Matrices

A< B
det A

T
Aag

Aa.
Apg
A;,
A;

diag (Ifl]\, y s

v(A)
Pa(A)

- SP(A)

, ()

" Sign Symbols

=B
@

LCP Notations

(q, A)

F(q, A)

- K(A)

- S(q,

Calo)
pos A

a,j < by; for all 4, j

- determinant of matrix A

the identity matrix
the submatrix of A obtained by dropping

rows and columns of A corresponding
& and f respectively

stands for A, 5, A € R™*"

stands for A5, 4 € R™*"

1" row of A

7% column of A

diagonal matrix with a; = g;

~ value of (matrix game) 4
- principal pivotal transoform of 4

~ with resepect to o,

sign pattern of A

nonpositive real

- nonnegative real

L.CP with data g and A

set of all feasible solutions of (q,A)
set of all solutions of (¢, 4)

set of all ¢ such that S(g, A) # ¢
complementary submatrix, o C
cone generated by columns of 4,

{Az:z > O}
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Vo e n,det Age # 0= po(4) € E,}
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MATRIX CLASSES
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5(¢,A) # ¢V g€ R"}

F(g,4) # ¢= 5(0,4) # ¢}
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ABSTRACT

This dissertation deals with a number of problems related to linear comple-
mentarity problem (LCP). Given a real square matrix A of order n and a real
n-vector g, the LCP is to find a nonnegative n-vector z such that Az + ¢ > 0
-~ and z*(Az + ¢) == 0. There is vast literature on LCP, evolved during the last
four decades, LCP plays a crucial role in the study of mathematical program-
ming from the view point of algorithms as well as applications. The inherent
nature of the problem has led the researchers to introduce and study a variety
of matrix classes in connection with LCP. Most of the work of this dissertation
pertains to LCP within the class of semimonotone matrices (F,) introduced by

Faves. Besides, results on the matrix classes @ and @,, which are of fundamen-
tal interest in the theory of LCP, are presented. The usefulness of these results

1s demonstrated through a number of applications. The gist of the dissertation
15 presented below in a chapter-wise summary.

- Chapter 1 is introductory in nature and presents LCP and related material
that is needed for the discussion in the subsequent chapters. In each,of the
chapters from 2 to 8, the first section introduces the background of the contents
of that chapter while the second section presents the related results from the
literature; the subsequent sections are devoted to our work pertaining to that

chapter.

Al-Khayyal (1991) specified a condition (through polyhedral sets) for a
matrix to belong to F, and raised the question whether the same could be
sufficient for membership in Q,. In Chapter 2, while answering his question
in the affirmative, the author further relaxed the condition and obtained a
new one which is sufficient for membership in Q,. It has also been established
that, if A € R™™" satisfies the relaxed condition and ¢ is such that (g, A)
has a feasible solution, then the solutions of (¢, A) can be obtained by solving
a suitable linear programming problem {LPP). Examples of matrices which
satisfy the relaxed condition have been provided. The problem of solving LCP
as LPP has beén studied at length by several authors. 1t is known that when
LPPs have solutions, they have solutions with bases. However, this is not so
with LCP. A linear complementarity problem may hayve a solution but may not
have a complementary basis. The author analyses this aspect in Section 2.4
and provides a sufficient condition under which the existence of complementary

bases can be guaranteed.

In Chapter 3, results pertaining to the matrix classes @ and Q, are pi'e-
sented. Though a number of subclasses of Q and @, have been identified, the

V1



problem of testing whether a given matrix 4 belongs to Q or @, in general,
remains complex. In this regard, we present some elementary propositions
providing sufficient conditions under which the membership jn @ can be as-
serted. The usefulness of these propositions is demonstrated through a number
of applications. Section 3.4 is devoted to our results on @Q,-matrices. Many
of these results are analogies of known results on Q-matrices. The main re-
sults are : characterization of nonnegative @ -matrices, necessary and sufficient
conditions, in some special cases, for a matrix to be completely Q,, suflicient

conditions for principal submatrices of order (n — 1) of n X n to be in @,, and
necessary conditions on Q,-matrices in some special cases. As an application

of characterization of nonnegative @,-matrices, it is established that, if A 4 A
‘is a nonnegative Q,-matrix, both A and A" are @,-matrices.

Results in Chapter 4 are concerned with the class of semimonotone matrices
introduced by Eaves (1971}. In Section 4.3, we settle a conjecture initially posed
by Pang (1979) and later modified by Jeter and Pye {1984) and Gowda (1990).
The conjecture in its modified version states that every copositive @-matrix 1s
“an R, -matrix. A counter example is constructed to show that the conjecture is

false. We derive conditions under which copositive (semimonotone) @@-matrices
belong to R,. It is well known that symmetric semimonotone @-matrices are
completely ¢J. We show, in Section 4.6, that symmetric semimonotone Q,-
matrices are completely Q.. Another important result in this section is the
extension of Pang’s result on E,NQ-matrices which states that if 4 isin E,NQ,,
then every nontrivial solution of (0, A) has at least two nonzero coordinates.
It is established that if 4 is a B, N Q,-matrix and if every row of A has a
positive entry, then’ evez'y nontrivial solution of (D, A) has at least two nonzero

~ coordi nates.

. The results in Chapter 5 pertain to the class of fully semimonotone (E/)

matrices intraduced by Cottle and Stone (1983). Stone (1981) proved that,
within the class of Qu*m&trlCﬁ'S the U-matrices are P,-matrices, and conjec-

tured that the same must be true for E/. It is established that thls conjecture
is true for matrices of order upto 4 x 4 and in a number of special cases (of
- any order}). The special cases include Ef -matrices which are either symmetric
~or nonnegative or copositive-plus or Z-Inartrl ces or E-matrices. In the sequel
we introduce a subclass of Ef the class of fully coposl tive (d /) matrices, and-

| shaw that C'-'r ﬂ Qu C P

Vil



CHAPTER 1
INTRODUCTION

1.1. THE LINEAR COMPLEMENTARITY PROBLEM

This dissertation deals with and is centered around the linear complementarity
problem (LCP). LCP is a combination of a linear and nonlinear system of

inequalities and equations, and may be stated as follows:

Given a real square matrix A of order n and a real n-vector ¢, the lin-

- ear complementarity problem with data A and ¢ is to find a real n-vector z

satisfying the following conditions:

Az +¢>0, o | (1.1)
and z'(Az +q) = 0. | a - (1.3)

We shall denote the LCP with data A and ¢ by (¢, A). By a feasible solution
to (g, 4), we mean a real n-vector z which satisfies condltlons (1.1) and (1.2).

Further, if z also satisfies (1.3), then z is called a solution to (g, A).

LCP is treated as a part of optimization theory and equilit;rium problems.
Though the origin of the subject dates back to the year 1940, it picked. up
momentum only in the mid sixties. LCP has gained importance as it is the
unification of several optimization and equilibrium problems, in particular,
the linear and quadratic programming problems as well as the qullbrlllm
problems ( both physical and economic ) can be formulated as LCPs, It was
the algorithm of Lemke and Howson €1964), which was developed by them to
solve the bimatrix games, that brought the LCP into llmehght Ever since, the

subject has been a fertile ﬁeld for resea,rchers

'LCP has a wide range of applications encompa.ssing fields such as control

theory, economics, engineering, game theory and optimization (see Lemke and




Howson (1964), Cottle and Dantzig (1968), Dantzig and Manne (1974), Cohen
(1975), and Balas (1981)}). Deqplte four decades of extensive research satis-
factory answers have not yet been found to the fallawmg two fundamental

questions :

(i) for a given general matrix 4 € R"¥", what are the conditions under which

(q'aA-) hﬂS a salution fGI' every ¢ - Rﬂ ?

.(ii) for a given general matrix A € R™™, what are the conditions under which

(q, A) has a solution whenever it has a feasible solution ?

Basically these are the questions which have triggered the researchers to stidy
the matrix classes extensively in connection with LCP. Thus th_e study of LCP

has drifted, partially, to the study of a host of matrix classes in relation to

~ linear complementarity problems. Most of the work in this dissertation also

- deals with the study of well knnwn classes of matrices. A br1ef overview of thls

" dissertation is given in the remaining part of this sectwn

In section 1.2 of this chapter we present a brief backgrouncl of LCP Some
1mpartant prehnuna.ry results on LCP are outlined. Since we make use of some
results from Linear ngrammmg ( LP ) and Game Theory, a brief discussion
- on these topics with some imimrtant results is included in sections 1.3 and 1.4,
" The notion of sign pattern of matrices is introduced in section 1.5. Uﬂmg sign
pattern of matrices, several results (in Chapter 5) have been derived. |

- Aganagm and Cottle (1987) gave an 1mpresswe cha.racterxzatmn of Q.-
- 'ma.tm:es within the class of P,-matrices and established that (g, A) can be

- processed bv Lemke's algc:urltlnn with a suitable apparatus to resolve. degen—-

~eracy, when Aisa P, N Q,-matrix (see glossary for definitions P, and Q,).

'Al-Khayyal (1991) apemﬁed a sufficient condition, thmugh polyhedral sets for
a matrix to be in P, and CGIIJECturEd that the same must be sufficient for
membership in Q,. This problem is addressed in Chapter 2. Whﬂe answering

his_question affirmatively we further relax his cmldltmn and. tha.ln a new one

which is sufficient for membershlp in Q,.



Further, it is established that if A € R™™" satisfics the relaxed condition
and ¢ € R" is such that (g, A) has a feasible solution, then (g,4) can be
solved as a linear programming problem (LPP). Thus, the condition specified
by Al-Khayyal and our relaxed condition are both concerned with the rela-
tionship between LPP and LCP. This aspect has been studied at length by
several authors. For details see Mangasarian (1976a, 1976b, 1978), Cottle and
Pang (1978a ,1978b), Al-Khayyal (1989, 1991) . In section 2.3 of Chapter 2 we

identify some classes of matrices and provide two examples which satisty the

relaxed condition.

It is well known that, when LPPs have optimal solutions, they have optimal
solutions with optimal bases. However, this is not so with LCP. An LCP may

“have a solution but not necessarily with a complementary basis. We analyse

this aspect in section 2.4 of Chapter 2,

Despite the vast literature on the subject, there are no efficient methods to

test whether a given matrix belongs to @ or Q.. For 2 x 2 matrices, one can
easily check for membership in @ or Q, graphically. For higher dimensional
matrices, in general, it is very difficult to check this. But, a number of sufficient
conditions are available to assert membership in § or Q;. A large number of
subclasses of Q and @, have also been identified (see Cottle, Pang and Stone
(1992) and Murty (1988)). In this regard, we present some useful elementary
propositions in section 3.3 of Chapter 3 which provide_sufﬁqiént conditions

for membership in Q. The usefullness of these propositions is demonstrated

through ‘a number of applications.

Several properties of @,-matrices are presented 1in- section 3.4,
Murty (1972) gave a characterization of nonnegative Q-matrices. We present a
characterization of nonnegative Q.-matrices and establish several applications
of this result. Jeter and Pye (1985) studied the connections of Q-matrices
with their principal submatrices. While extending these results to Qu-matrices,
we establish that stronger conclusions are possible..  In particular, |

we derive conditions, in terms of principal pivotal transforms, for a n X n



Q,-matrix to have all its principal submatrices of order (n — 1) in Q.. As an
interesting application of this result, we show, in Chapter 4, that a symmetric
semimonotone matrix is Q, if, and only if, it is completely-Q,. The study of

completely Q,-matrices, in general, is a complex problem (see Cottle (1980),

and Fredricksen, Watson and Murty (1986)).

Chapter 4 deals with results on semimonotone and copositi.ve matrices.
Semimonotone class is one of the large classes and contains P, and copositive
matrices among others (see Cottle, Pang and Stone (1992)). If A is such that
(0, A}, the homogeneous LCP, has a unique solution, namely z = 0, then A4 is
called an K, -matrix. The homogeneous LCP plays a Icey role in the study of
LCP (see Cottie, Pang and Stone (1992)). While Agana,glc and Cottle (1979)
proved that F, NQ is same as P, (1.R,, Pang (1979b) proved that semimonotone

R,-matrices are -matrices and conjectured that the converse must be true.
Subsequently, Jeter and Pye (1989) pmduced a counter example to disprove

this. Later Gowda (1990) showed that Pang’s canjecture is true in the case of
symmetrxc m&trlceq Tt is known that symmetrm semimonotone matrmes are

copositive. Jeter and Pye as well as Gowda raised the questlc}n Are copositive

| Q~—mamces contained in R,? As a counter example, we provide (111 Cha,ptel 4)

a 4 X 4 mpﬁmtwe Q-matrix which is not R,.

Alsc: Chapter 4 contains some more results on copositive and semimonotone

e mamces These results prowde sufficient conditions under which Q-matrices;

that are either copositive or sexmmonotnne, belong to R,. Prlmanly, these
' results are of theoretical interest and may not have any bearing on algorithmic
aspects. At the end of the chapter, some examples are pI‘GVIdEd to dlspel some

) thoughts on pnsm ible extens:um of our results.

- Cottle and Stone (1983) mtmduced the classes U and E/ -—matmces and in-
vest:gated their properties. They ﬂbservecl that U C EJr Stone (1981) showed
that U N Q. C P, a,nd conjectured that B/ NQ, C P,. In Chapter 5, we show
~ that this conjecture is true for matrices of order upto 4 x 4 and partially resolve
it for hlgher order matrices. ThlS is done by showmg that if A € E/ ﬂQn and if



every proper principal minor of A is nonnegative, then A € P,. From this key
result, we deduce that the conjecture is true for symmetric matrices. Another
important cc)mllary of the key result is that Q,N E/ C P,, where Q, is the
~ class of completely Q,-matrices. As a consequence of this corollary we identify
large subclasses of Ec{ N Q, for which the conjecture is true. In the sequel,
we introduce a subclass of E/-matrices, namely, the class of fully copositive

matrices (C/) and derive some results for this class. In particular, we show

that C/ N Q, C P,.

As mentioned earlier, Aganagic and Cottle (1987) characterized Q,-matrices

with nonnegative principal minors and established that Lemke’s algorithm,

with a suitable apparatus to resclve degeneracy, prt:-cesses (g, A) whenever
Ae P,NQ, Appealing to this result, we deduce (section 5.4) that, for A

in a number of subclasses of E/ N Q,-matrices, (¢, A) can be processed by

Lemke’s algorithm.

1.2. LCP AND MATRIX CLASSES
The linear complementarity problem with data 4 and ¢ is defined in section

1.1. To facilitate our future discussions we give below another form in which

L.CP is often presented.

Given A € R™™ and g€ R", LCP (q, A) is to find w and z in R" such that :

w— Az = q, R (1.4)
w>0 z>0, o (Ls)
and w'z = 0. (1.6)

For convenience, we call the variables (mord_inateﬁ)_of z as primary variables
and those of w as secondary variables. Conditions (1.4) and (1.5) are called

the feasibility conditions, whereas condition (1.6) is called the complementarity

condition,

. For any ¢ € R" and A € R™", define the sets F(q, A) and S(g, A) by :

F(g,A) = {z€ R : Az+¢>01},  (17)



S(Qaﬂ) = {::EF(q,A) s (Az4¢q )fz == 0] (18) ’

We say that (g, A) is feasible if F(q, A) # ¢. Any element of F(¢, 4) is'called
a feasible solution to (¢, 4). Say that (g, 4) has a solution if §(g, A) # .

Any element of S(y, A) is called a solution to (¢, A). When we say ° let ‘(w, z)
‘be a solution to (¢,A), we mean » € S(q, A) and w = Az +¢. |

Complementary Cones
The concept of complementary cones first appeared in Samuelson, Thrall and

Wesler (1958'). Later Murty (1972) studied them in greater depth and ob-

tained some remarkable results on the number and parity of solutions to linear
complementarity problems.

Definition 1.2.1. Let A € R™*". The set {¢ € R™: q = Az for some z €
R”"} is called the convez cone generated by columns of A and is denoted by

pos A, ‘The columus of A are called the generatma of the cone,
:Deﬁnition 1.2.2. Let A € R™", For any o C 7, the matrix B, defined by
B ; :--—A,.j if § € ev and B,J‘ =r;if 7 € 5’

is cal_lécl a, complemehtary submatrix of { I : —A ] with respect to o and is de-
- noted by C’A(a) If, in add1t10n, det Aaa # 0, then B is called a c&mp!emenm?‘y |

ba.si.s.

Deﬂmtmn 1 2.3. Forany « C #, pos C'A(af), the cone generated by C’A ({1’) s

~called the camplementwy cone of [ I : —A ] with respect to .

| N ote that there are 2" complementary cones (nc:t necessarily dlstmct) F‘ur—

. ther, (¢, A) has a smlutmn if, and only if, ¢ € pos Ca(a) for some o C A,
_ -In adcht:on 1f g € pos CA(a') and det CA(&') # 0, then z € 5(g, A) where

= -(A.:m) lo and 24 = = 0.

| Lemma 1 2.4, Let Ac R"’““. cllld q € R" Tll(‘ll (q, A) has a solutmn 1f and '
'- only 1f there e:h:lst‘; a subset o of 7i such that ¢ helongs to the complementa,ry

: |



cone with respect to a.

Proof. Suppose (¢, A) has solution, say z € 5(¢,A4). Let o = supp(z) and
w = Az + ¢. Then by complementarity, w; = 0 for € a. It is clear that ¢
belongs to the cone generated by C,(a). Conversely, if ¢ belongs to a comple-
mentary cone generated by C,{«) for some e« C 2, then there exists a nonzero
z € R such that ¢ = Bz, where B = (4(a). Define z € R} by z = z; if
t € o and z; = 0 if ¢ € &. It is easy to check that z € S(g, A).

]

Definition 1.2.5. Let A € R"™ " and let o € #. The complementary conc
with respect to « is said to be nondegenerate or fullif det A, # 0. Otherwise it
is called a degenerate complementary cone. Further, if pos C4(«) is degenerate,
then it is said to be strongly degenerate if there exists a nonzero z € R} such

that C4(a)z = 0; otherwise it is called a weakly degenerate cone.

Remark 1.2.6. If a complementary cone is nondegenerate, then it has a
nonempty interior. On the other hand, if it is degenerate, then it must be

contained in a hyperplane.

. Definition 1.2.7. Let A € R™" and ¢ € R"*. The matrix A is said to be
nondegenerate if det Ay # 0 for all & € n*, Any solution z of (g, A) is said to
be nondegenerate if z+ Az +¢ > (. Otherwise it is called a degenerate solution.

A vector ¢ is said to be nondegenerate with respect to A if every solution of

(g, A) is nondegenerate.
Consider the following ei{amples.

Example 1.2.8. Let

- |— - ol

o 1 1 1 1 1] ‘001
A= | 1B:. , O = , D= ° y
11 1 1 -1 1 10

The complementary cones corresponding to these matrices are depicted in fig-

ures A through D on lpage 8.

Note that in the case of A there are 4 complementary cones, all of them distinct



Figure A | | Figure B

Figure C | D  Figure D

Complementary Cones



and nondegenerate, In this case, (g, A) has a unique solution for every ¢ € R?.
In the case of B, there are four complementary cones, all of them distinct

but one of them, namely Cg({1,2}), is weakly degenerate. In this case, (¢, B)
has a solution for every ¢ € R? but not necessarily unique. In the case of

C, there are three nondegenerate and one degenerate complementary cones.
Notice that there are ¢’s for which (¢, C') has no solution but such ¢’s have no
feasible solutions either. Observe that pos Co({1, 2}) is a strongly degenerate
cone, Lastly, in the case of D, we have only two nondegenerate complementary
cones and two degenerate complementary cones. In this case, note that there
are ¢'s for which (¢, D) has feasible solutions but no (complementary) solutions.
Further, note that A is a nondegenerate matrix. Also any z € 5(q,4), where ¢
" is in the interior of any of the complemeptary cones, 18 a nﬂnngenergte solution

of (g, A). This last statement is true for the other three matrices as well.

For any A € R""", we use the notation K(A) for the union of all comple-

mentary cones corresponding to A. Thus, in the Example 1.2.8,
K(A)=K(B)=R?, K(D)= R: UR?,

where R? = {y:y. = —z, z € R}, and K(C) = {z € R*: 2+ z, }‘_:0}.

Principal Pivotal Transforms

Definition 1.2.9. Let A € R"*® and o € n*. Assume that-det 4., 74_0. The
principal pivotal transform (PPT) of A with respect to o is defined as the n xn

matrix given by :

(Aaa)nl "(Aan)_.l Auﬁ
i Aﬁ'a(Am:r)“] | ( A—/Aanr )
‘where ( A/AM ) = Aza — Aaa(Aaa) 'Ags is called the Schﬁr complement
of A with respect to a ( or A, ). We denote the PPT of A with respect to a
by pa(A). | | | | |

Remark 1,2.10. Note that PPT is CIEﬁned only for those o for which
det Aoo # 0. We call such PPTs as legitimate PPTs. Whenever we refer to a

M =
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- PPT we implicitly mean that it exists, When there is no ambiguity, we simply

say PPT instead of legitimate PPT.

" Remark 1.2.11. For a = ¢, we define, by convention, the PPT as the matrix
A itself. And if @ = n, then p,(A4), by definition, is A7 provided it exists.

Further, for any a C it, B = wa(A) if, and only if, 4 = p.(5).

- 'The priﬁcipal pivotal transforms were introduced by Tucker (1963). The
PPTs play an important role in the study of LCP. For details on the subject, see
Cottle (1968), Cottle and Dantzig {1968), Parsons (1970), and Murty (1988).

Definition 1.2.12. Let A € R™", If P is any permutation matrix in

R then PAP' is called a pi*incipul rearrangement of A,

- Lemma 1.2.13. Given any o C 71, there exists a permutation matrix P such

that | ] .
- . | PAP:: A&ﬂ,.Aﬂfﬁ -
. | Aﬁﬂr 'Aﬁﬁ

Proof. Suppose a = {kl., kzy ...k} and & = '.{km.;_l,km'_;__g,. ..y kp }. Define
P € Rﬂxn by : | - ' |

for: €71, pi;j=1if y =4k and p;; =0 otherwise .
With this P note that

PAP' =

- Remark 1.2.14. Observe that in the above lemma, though « is a subset of
i, the order in which « is written is important. For example, for n = 2, take

a = {1,2}. In this case

[Fopm iy

1
. and PAP! = A, But if we write o = {2,1}.; then =

p=

10



Note that LCP with data 4 € R™*™ and ¢ € R" is to find w,z € R" such
that

(I:-A4]| " | =4 (1.9)
p
w>0,2>0 (1.10)
‘and w'z = 0. (1.11)

In the light of Lemma 1.2.13, for any given a C 7, we can rewrite the above

LCP in terms of : )
Acmr Aaﬁf

| Ase Asa
To see this, first note that if P is any permutation matrix, then PP' = P*P = I,

So, from (1.9) we have :

[ PP : —P'PAP'P]| | =g
z
or|] : —PAP'] Pul Pgq. - | (1.12)
- | _ Pz
Note that (1.12) is equivalent to
. 7 : ] 1T } j i
T Wy . Ana An'ﬁ Zex — o . | (113) |
Wa |  Ase  Asa | | % | - ba | |

We shall now present some important results connecting PPTs and LCP. These

results may be found in references mentioned immediately after Remark 1.2.11.

Lemma 1.2.15. Let A € R"™" and ¢ € R". Suppose a € n* is such

that p,(A) exists. Then S(q,A) # ¢ if, and only if, S(p,B) £ -;,6, Where

B = pa(A), Po = —(Aaa) e and ps = ga — M(Am)“lqa '
Further, |S(g, 4)] = 5(p, B )l-

PI‘DOf Suppc:-se .S'(q,A) + ¢. Let (w z) be a solution of (q, ) Then we

have :

W A, Aﬂ;— 2] |
) v e - dor w>0, 2>0, and w'z =0..

|l




Premultiplying the equation by (C'4(@))" ! and rewriting it, we get

- . - - - .
::ﬂ _ B wﬂ — pﬂ’
wﬁ' 3&_] _ p& J
Also .-
- ]
el 10} _ .Zﬂ wﬂ' _ { .
>0, “1 >0, and =w'z = (.
Weg Za i wﬁ_ i Zﬁ.J
In other words, . )
We | L
€ S(p, B).
| Ra

Proof of the converse is exactly in the reverse direction. Hence there 1s a

one to ane correspondence between solutions of (g, 4) and solutions of (p, B).

Consequently, 18{q, A)] = |S(p, B)|. O

Remark 1.2.18. Note q € pos Cy(a) if, and only if, p € pos Cs(a) and p in
the above lemma is called the principal pivotal transform of ¢ with respect to

o (and »’1) Note that, if there exists a principal pivotal transform p of ¢ such

that p > O then it 1s easy to get a solutwn to (g, A) using this PPT.

_Re_mark 1,2.17. From the Lemma 1.2.15, it is clear that complementary
cones corresponding to A and p.(A4) have one to one correspondence through

~ the nonsmgular linear transformation ¢ — (Ca(a))'¢q. Further, ¢ is in the
interior of pos Cs(a) 1f and ﬂnly if, pis in the interior of pos Cp(a),

‘We close our discussion on PPTs with the following results concerning de-

terminants of PPTs. The prnofs of these results may be found in Cottle, Pang

and Stone (1992),

Theorem 1.2.18. Suppﬁsé' A € R and A,, is a nﬂﬁsingular princ.ipa.,l |
submatrix of A, Then the determinant of Schur complement ( A/AM Jof A

| .WIth respect to a is gwen by :

det A
det A e’

def (A /Aw_--)' =
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If, in addition, ' = ( A/A.. ) 1s nonsingular, then :

B D ~(Aaa)"  AgaF!
A () i (1.14)

where D = (Aua)™" + (Ana)™ " Aaa I Asa(Aaa)

Al =

Theorem 1.2.19. Suppose A € R™*"™ and o C # is such that det Ay, # 0. If
M = p,(A) and # is any subset of 7i, then

det A |
a’etAw’ (1.15)

det Mgy =

where v = oo A f3.

LCP and Matrix Classes

As mentioned eﬁrlier; much of the research in LCP has been devoted to the
study of matrix classes and there are several reasons for this, Many of the
matrix classes arose in a natural way from practical applications. For example,
the positive semidefinite matrices ( see glossary for definitions of various ma-
trix classes ) are commonly found in several applications. The class of adequate
matrices, introduced by Ingleton (1966), arose from a study of dynamical Sy S-
tems subject to smooth unilateral conditions. The class of Z-matrices arises in

optimal stopping and capital stock problems (see Cohen (1975), and Dantzig
and Manne (1974)). : |

Another important reason for the study of matrix classes in LCP is that
they offer certain nice features from the view point of algorithms as well as
analytical properties. For example, the question - what are the matrices A
for which (q, A) can be processed by a particular algorithm for any ¢?7 - is of
primary importarice ( from the algorithinic view .paint ). This question has
‘been studied extensively by' several authors (see Lemke and Howson (1964),
Lemke (1965_, 1978), Cottle and Dantzig (1968), Murty (1974), and Watson
(1974)). The other types. of questions which have received great attention in

the literature are : ‘what are the matrices 4 for Wh.i%:h (¢, 4) has a solution for

13



every g (or whenever (g, A) has a feasible solution ) 7; ‘what are the matrices

A for which (¢, A) has a unique solution for every ¢ 7' etc.

The type of questions mentioned above lead to matrix classes such as posi-

tive definite, positive semidefinite, @, Q,, P, P E, R, etc.» We shall discuss
these classes in more detail in the subsequent chapters as and when they be-

come relevant. Many results are concerned with characterization of the matrix

classes in connection with LCP. Basically, there are two types of character-

izations -constructive and mialytical. Usually, the constructive characteriza-
tions ( if efficient ) are useful in verifying whether a given matrix belongs
to a particular class or not, while the analytical characterizations are impor-
tant from the theoretical view point, For example, * A € P if, and only i,
{r e R" : z;(Az); £ 0V i} = {0} ’is an analytical characterization of P
and has been used to derive several results; whereas * A € P if, and only i,
det Apq > 0V a € n” ’ is a constructive characteriz&tion (thdﬁ_gh inefficient )
of P and is useful ( when n is small ) in verifying whether A € P or not. For
more details on the subjéct_LCP, the reader may refer to the excellent books

by _Cai:tle, Pang and Stone (1992) and Murty (1988).

1.3. LINEAR PROGRAMMING
In this section we briefly introduce the Linear Programming Problem and

present some 'results' that are used in the subsequent chaplters.

| Statement of LPP |
- Let A € R™X ", € R" and b € R™, Consider the Linear Progra.mmmg Problem

(LPP) in L'he following form : find 2z € R"” to

© minimize ¢z . - - (1.16)
subject to Az =06, (117
Cand 220, R (1,18)

Ctm__s_i.(_,]__;gr' anot}_ier LPP given by :

14



maximize by | (1.19)
subject to  A'y < ¢ | -~ (1.20)
and y €& R™. | (1.21)

If one of the above two problems is called the primal problem, then the
other LPP is called the dual of the primal LP. In this section we shall call the

first problem, specified in (1.16) to (1.18), as the primal.

Definition 1.3.1. A vector z € R" is called a feasible solution to the primal if
it satisfies the constraints (1.17) and (1.18). If, in addition, the columns of A
‘corresponding to positive z;’s are linearly independent, then z is called a basic _

feasible solution (BFS). Further, theset S = {z € R": Az =b, z 2 'U-} is
called the feasible region of the LPP and z is called an optimal solution of the

LPPif z€ Sand ¢’z <c'z forallz € 5.
.Deﬁnition 1.3.2. If z € § satisfies

2,y €S, 0< A< andzzk_m-}-(l—)&)y]:}m:y:z, =
then z is called an ezireme point of S, . .

Theorem 1.3.3. A vector z € S is an extreme point of §if, and only if, it is

a basic feasible solution of the LPP,

Theorem 1.3.4, If (the Primal) LPP has an optimal solution, then it has

optimal basic feasible solution.

THeorem 1.3.5. If the primal and the dual LPP’s have feasible solutiﬂns',

‘then they both have optimal solutions and their optimum objective values are

~ equal, O

Theorem 1,3.6. Suppose & and j are feasible solutions to the primal and the
dual LPPs, specified in (1.16) to (1.21}, respectively. Then they are optimal to

15



their respective problems if, and only if,

foreachien, &>0=(A%);=cq

This theorem is known as the complementary slackness theorem. Proofs of

these results may be found in Murty (1976).

In the rest of this section, we shall assume that

Ae R be R"and S={z € R" : Az <b}.

Deﬁnitiun 1.3.7. A nonzero vector d € R" is called a direction of § i
r+Ade SVaee S and for all real numberr-.‘. A2 0, Two directions d and

d are said to be distinct if d # Ad for any pGSItlve real number A. A direction
d is said to be an extreme d1rect10n if it cannot be written as a positive linear

combination of two distinct directions, that is, if d = A a’ + Aod*, where d and

d" are any two directions of S and A, and )\, are any two real numbers, then

- at least one of Ay and ), is nonpositive.

‘Theorem 1.3.8. S has finitely many extreme points and extreme directions.

Further, if z!,z%,...,z% are all the extreme points of $ and d*,d?,...,d" are
all the extreme dlrectmns of S, then for every & € S, there exlst )q, )\g, s Aky
~all in [0,1], with A = 1, and nonnegative reals py,pa,...,u such that

=L A’ + S udl.
For deta.lls of pmof see Murty (1976).

~This section ends with the following theorem:.

- Theorem 1.3.9. Assume that rank (4) = n. Then we have .

(a) ifz ié an extreme point of -.5' , then at least n ﬁf the m constraints
of .9 must be .Binding.,.i ., ]{ (Aa:) = b;}| > n, .
(b) 1f cE R“ is such that the LPP .
mm&nuze | c':;r: Isubject to z€5 o _- (1.22)
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has an optimal solution, then there exists an optimal solution # which is an
extreme point of 5,

Proof. (a) Let a = {¢: (AZ); = b;}, and k = |af, Suppose & < n. The columns -
of the k x n matrix A, must be linearly dependent. So there exists a d ¢ /"

such that d # 0 and A, d = 0.
Let @ = {t € m: i ¢ «}. From the definition of «, it is clear that (AZ); < bs.

We can choose a real number g # 0 such that

o

(A(Z £ pd)); < ba.

Letting y = pud, we observe that #+y and § —y arein S, Since y # 0, T+y #
I ~ y. But this contradicts the hypothesis that Z is an extreme point of 5 as

z= E+y)+iE-vy) It follows.that. k 2 n.

(b) Suppose Z is an optimal solution to the LPP given by (1.22). If & is
an extreme point of S, we are done. Suppose not. Let z',z%,...,27 be all
the extreme points of S and let d',d?,...,d* be all the extreme directions of
S. If any of the z's is optimal, we are through, So assume c‘z' > ¢/ for
1 =1,2,.. .i, r. From Theorem 1.3.8, there exist A, Aay..., Ap, all In [0,1],'with

i=1 Ai = 1, and nonnegative reals uy, py,. .., jt, such that

{=1

Since the problem has an optimal solution, ¢!d’ > 0 for § = 1, 2,...,8 ( other-

wise (& + Ad?) — —o0 as A — o0 ). Then,

¢ =c(d Mz’ + Z.ﬂjdj) =Y Nz + > pictd > .c’i"_
=1 =1

=] - og=1

as c'z' > ¢'Z, pj >0 and ¢'d’ > 0. It follows that the LPP has an extreme

point optimal solution,
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1.4. GAME THEORY

A {wo-pers OTL-2ET0-SUM game consists of two players, designated as player I and

player II, each having a finite set of strategies. Let S = {81;82,...,6n} and
T = {#,12,...,1} be the sets of strategies for players I and II respectively.

The game is played as follows, Each player chooses a strategy from his set of
strategies. If (s;,¢;) is the pair of strategies chosen, then player II pays player
I $ aij(ai; < 0 means player Il receives § —ay; ). The m X n matrix A = (a;;) is
called the (player I's ) payoff matrix. The elements of 5" and T are called pure

strategies, If there exist 7g € m and jg € 71 such that ai; < @iyjy < Gijo V1 €T

and V7 € @, then the game is said to have a solution in pure strategies with s;,
ayer II respectively. In this case

and t;, as optimal strategies for player I and p.
o 15 called the value of the game and is denoted by v(A). Often the games

do not have solutions in pure strategies. This forces the pla,yers to choose their

strategies with some probabilities,

Any probability vectors p on S and ¢ on T are called mfa:é.d 3ﬁmf¢g£es for
" the respective players, The real nuinber q' Ap is called the expected pay:jﬁ' with
respect to (p, ¢). If there exist mixed strateg-iesﬁ and g, for I and II respectively,
such I;_hat ' | o |

' T'Ap < §'AP < ¢'Ap
- for all mixed strategies p and ¢ for I and II respectively, then the game is said

fo have a solution in mixed strategies, In this case, # and g are called the

- optimal mixed strategies for [ and II respectively, and § A7 is called the value

of the game and is denoted by v(A).

- The games described above are also called matrix games. We shall now
present a few important theorems on matrix games. For proofs and other

- details see Kapalanasky (1945) and Owen (1982). -

Theorem 1.4.1. (Von Neumann) Every matrix game has .a. solution in mixed

‘strategies, O

B Deﬂnitiqn'1.4.2. A mixed strategy z is said to _be campiately mized if z > 0.
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Theorem 1.4.3. If the value of a game A is positive, then player I has a
completely mixed strategy (not necessarily optimal), p > 0 such that Ap > 0.

Proof of this theorem i1s easy. O

Theorem 1.4.4, (Kapalanasky) If player II has a completely mixed optimal
strategy ¢, then Ap = ve for every optimal mixed strategy p of player 1. Here

v =v(A) and ¢ = (1,1,...,1).0

Theorem 1.4.5. Let A € R"*" and let M be a PPT of A with respect to some
a € n*. Consider the games with payoff matrices A and M, Then v(4) > 0
if, and only if, v(M) > 0.

Proof. Suffices to show one way, Suppose v(A) > 0. Get a probability vector
z such that z > 0 and Az > 0. Let y = Az. We may assume without loss

of generality, that _

F-

A — Ana Anﬁ-
| Aﬁ'a A&ﬁ- i
It can be seen from Lemma 1.2.15, that
. 1 & N
il BV L
| Ya Ta
 Since . o
Ty 1
>0and |7 > {),
Ya | Ta

it follows that v{M) > 0.

Theorem 1.4.6. The value of a game A is positive (nonnegative) if, and only
if, there exists a 0 # z > 0 such that Az > 0 (Az 2= 0). Similarly, the value
of A is negative (nonpositive) if, and only if, there exists a 0 # y > 0 such that

Aly < O(A‘_y < 0) 0

Definition 1.4.7. Let A € R"*", .The_ game A is said to be completely mixed

~ 1f every optimal strategy (for either player) is completely mixed.

Theorem 1..'4.8. (Kapa,la}nas:ky) A matrix game A with value zero is com-

. pletely mixed if, and only if,
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(a) A is a square matrix with rank(4) =n — 1, where n is the order.ﬂf

 the matrix, and

(b) all the cofactors A;; of A ave all different fro.m 0 and have the same

sign, O

. 1.5. COMPUTATIONS WITH SIGN PATTERNS

In chapters 3, 4 and 5, proofs of several results are based on sign structures of

matrices. We devote this section to notations and the nature of computations

involving sign structures. The following notations will be used throughout this

disser@atic-n. |
Sign Syrﬂbols
. stands for negative real numbérs,
_”‘G’ stands for nonpositive .rgaa.l. nun_lllaei:s, :
‘@' stands fa.r 1;ﬂ11liega1tive real numbers,
‘+’_sba,11cls for positive ;:e;.il numbers,

_Deﬂnitiun 1'5 1, Let A € R’"K"‘ A sign pattern of the matrix A is defined
asanmXxn matrix whose entries are either the corresponding entries of A or

then‘ possﬂole s:ugn symbol‘s A sign pattern matrix of A is denoted by .S'P(A)

It ma,y IJL noted that .S'P( 1) is not umquc, Th{. following examples help in

understandmg the deﬁmtlon |

Example'1.5.2. Let . | _

-2 1.0
A=| 3 0 -1
4 -2 1
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Then ) ] ] ) . ]
oA 2 Al |
x *x x|, iy * x|y + ) -,
* k% * — + b 6 1

are all sign patterns of A. Here a ‘+’ in a particular posifion stands for the

corresponding entry. Note that

- 1s not a sign pattern of A as ‘+’ in (1,1) position of the above matrix is not a

possible sign of ay;. The following examples illustrate the nature of computa-

tions with sign patterns.

Example 1.5.3. Let A € R**? be such that

x

@ — &
0 —_
SP(A) = f-—ﬁé} ,
- 0+ 0

Let o = {3,4}. From SP(A..), it is clear that det Ay, < 0. Let B = pal(A).
We shall compute SP(B). From SP(A,,) it is easy to see |

0 +
+ 0

) S_P((AM)—I) — [

SiHCE Bﬂﬁ :.""(Aﬁa)—lAa&:
SP(Bas) = —SP((Aaa) )SP(Aus)

N R U + -
+ 0)[—- 0
S

i+ 0
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Similarly,

d * 0+
e -+ 0
REXIR
= _ o | ,
and - .
SP(Bss) = SP(Ase) ~ SP(Asa)SP((Aea)” Aaa)
& - @ ||~ 0 |
Tle o] e[+ -
e - x  *
e 0] |- 4+
B [ & ] | -
- | Lo
Thus,
o *x k. * B
SP(B)=] ¢
- + 0 0 -+
-+ + 0
Remark 1.5.4. In the above computations we used the ‘=’ sign to equate

the sign patterns. Clé&rly this is not in the strict mathematical sense as we

.have:_ not defined the equality of two sign patterns formally. However, we hope
that the reader understands what is intended to be conveyed through these

computations,

'Example 1.5.5. Let = |

& 0 — —
sPy=| X

0
0 +
++00

Further assume that the all t]1e dlagc:\nal entries of every legitimate PPT of

B | A are nannegatwe Let o = {2 3,4). Clea.rly det AM < 0. Let B = p,(A).
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Using the adjoint formula we can check that

0

SP((AH'H)_I) == —
| 0

+ =5 o
o o +

Note that
SP(Baa) = —SP((Aaa)™')SP(4ua)

0 00 4+ | %
—_ v U 0 A
0 + 0|+

1

%

Similarly SP(Bsa) = SP(Asa)SP((Aaa)™!) = [+ — 0]. By hypothesis, b;; > 0.
Thus o ' o

d + -
— 0

SP(B) =

A
= 0

o o + &

+ o o
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CHAPTER 2
LCP AND LINBEAR PROGRAMMING

2.1. INTRODUCTION

The main purpose of this chapter is to provide an answer to a question raised
by Al-Khayyal (1991) in his paper on * Necessary and sufficient conditions for
the existence of complementary solutions and characterizations of the matrix
classes ) and Q,.” He proved that a matrix A € R"*"™ belongs to P, under one
condition on A and questioned whether that condition is also suﬂiclent to con-
clude that A belongs to Q,. While answering this question in the° affirmative,
we estabhished that solutions of (¢, A) can be obtained by solving a suitable
linear programming problem, provided A satisfies the condition and (g, A) has
a feasible solution (see Murthy (1993)). Further, the condition is relaxed to

obtain a sufficient condition for membership in Q,. Two classes of matrices

which satisfy the relaxed condition are identified.

It is known that, unlike LPP, instances of linear mmplenmntarity problems
may have complementary solutions without having complementary bases. We
study this aspect in section 2.4 and provide a sufficient condition under which
the existence of complementary bases can be assured, These results have some

interesting a,ppli.ca,tions as will be seen in the subsequent chapters.

It is well estﬂhlished that linear programming problems can be formulated
as linear .cqmplementarity problems. It is natural to ask whether the converse is
true. In other words, one is interested to know for what class of problems, solu-
tions of LCP can be obtained by solving suitable linear programming pmbluna

This problem has been 5turl1ed extensively by several authors,

Mangasarian (1976a, 1976b) proposed the idea of solving LCPs as LPPs
and obtained a number of conditions on the matrices under which solutions of
LCPs can be obtained by solving suitable LPPs. Later he introduced the slack
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linear complementarity problem through which he enleyged_ the eless of linear

complementarity problems considered earlier by him (see Mangasarian (1978)).

In a classical approach to the above problem, Cottle and Pang (1978a)

studied the problem through the concept of least elements of polyhedral sets.
luced the class of hidden Z-matrices (the name appeared in Pang

They introd _
(1978)) and showed that many of the problems considered by Mangasarian

fall out as special cases of their results, They also cite their computational
experience on solving LCPs as LPPs. They further enriched their results in
Cottle and Pang ( 197813) For additional details on the subject see Pang (1977,

19?9), Al-Khayyal {1989, 1991), and Mengesarlan (1979a, 1979b).

In a similar attempt, Al- Kheyyal (1991) studied the existence of solutions
to LCPs through polyhedral sets (reeultmg from transposes of matrices in ques-
tion) and obtained necessary and sufficient conditions for the same. Extending
his results, he obtains sufficient conditions for membership in @, P and P,-
matrix classes. He raised the question whether his sufficient condition for P, is

~ also sufficient for memberehlp in &Q,. As mentlened eerller, our mam ob jective

of the chap ter is to answer this queetmn

: Aganagic and _Cettle (1987) £AVE A CONS trueﬁive ehereeterizatien of P, (“IQ;,-
matrices and showed that if A € P, N Q,, then Lemke’s 'elgerithm, with a -
suitable apparatus to resolve degeneracy, processes (g, A) for any ¢ € R"’ An
elgerlthm is said to process (g, A) if it either finds a solution or exhibits that

the problem has no solution. Since the answer to ALK hayyal’s question is in
the affirmative, hlS euﬂiment condition for P, is also sufficient for membership

mP ﬁQu
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2.2. PRELIMINARY RESULT'S

Consider the LCP (¢, A), where A € R"*" and ¢ € R". We shall present some

important definitions and relevant results from the literature,

Let A ¢ R**",

Definition 2.2.1. A is called a Z-matrix if a;; <0 Vi,3, ¢+ # 75 The class of
Z-matrices is denoted by Z. |

Definition 2.2.2. 4 is said to be a P-matrix (FP,-matrix) if all principal

minors of A are positive (nonnegative).

Definition 2.2.3. A is called a Minkowski matrix if it is in P N Z. The class
of all Minkowski matrices is denoted by K. | |

Theorem 2.2.4. (Mangdsarian, 1976a). Suppose (g, 4) has a feasible solution.
Assume that there exist X,Y € R*"*" N Z and r,s € R} such that AX = Y

~and X + s'Y > 0. Then every optimal solution of the LPP

- '
minimize p‘z subjectto Az+¢>0, 2> 0

is a solution of (g, A), where p=r+ A% D

Definition 2.2.5. Let S be a nonempty subset of R"., An element Z € S is
called a least elementof S'if 2<2V 2€ 8.

Definition 2.2.6. A ma'trix A € R is called a h'id.den Z-matfix 1f there
exist X,Y € R""N Z, and r,s € R} such that AX =Y and Xir+Y%s >0,

Remark 2.2.7. Note that, if S has a least element, then it must be unique.

Theorem 2.2.8. (Cottle and Pang, 1978a). Let A € R"™*" be a hidden Z-
matrix and let X and Y be as in the Definition 2.2.6, Suppose (¢, A) has a
feasible solution. Then the polyhedral set § = {x eER":Yz+¢2>0, Xz >0}
has a least element Z. Fur_ther, z = X7 solves (g, A) a,nd,ca.xi be obtained by
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solving the LPP

minimize c'z subjectto Az+¢ >0, z 20, (2.1)

where ¢ = X ~'r for any r € RY .
Déﬂnition 2.2.9, Let A € R*™". A is said to be a Q-matrix if (¢, A) has a
solution for every ¢ € R"™. A is said to be @Q,-matrix if (¢, A) has a solution for
every q satisfying F(q,A) # ¢

The following theorem characterizes the existence of solution to linear comple-

mentarity problems.

Theorem 2.2.10.(Mangasarian, 1979b). Let A € R"*" and ¢ € R". Then
(g, A) has a solution if, and only if,the LPP

minimize (r'+s°A)z

| ~ subjectto Az+q¢>0, 220
has an optimal solution for some i*, s € RY such that an associated dual optimal

variable u satisfies

| (I —AYu+r + A's > 0.
Further, le;ac:h optimal solution of the above LPP is also a solution of (g, A).

~ Theorem 2.2.11.(A1-Kh_a,yyai, 1991). Let 4 € R™™ and ¢ € R™. Then (g, A)
~ has a solution if, and only if,there exists a 7 € RY such that 7 < e, and the LP

_  minimize g% subject to Av<e—§, v2 —j (2.2)
has an optimal solution ¥ satisfying (A—-D*ﬁ <e Heree=(1,1,...,1) e R". -

. Using this theorem Al-Khayyal derived sufficient conditions for 4 to bein Q,

P and P,. These conditions are finite (constructive) conditions but ineflicient.

o Cﬂn_sider,fi € Rxn Let e = (11_1,;_,,1)‘ € R", Define thle;-sets Vi, for
Vy={ve R" . Aty < e.,. v> —fe}, (2.3) . |
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and V={veR":(4~1I)v<e]. (2.4)
Denote the closure of the set V by cl(V). Obviously, ¥4, 6 € [0,1], and cl(V)
are all polyhedral sets containing the zero vector., We use the notation Ext(V;)

for the set of all extreme points of V.

Theorem 2.2.12. (Al-Khayyal, 1991). Let A € R™**", The set V;, defined -
above (§ = 1), is bounded if, and only if, the value of (the matrix game ) 4 is

positive, Further, if V| C 17’, then A4 1s a @-matnx, O

Theorem 2.2.13. (AI-Khﬁyyal, 1991). Let A € R™™", The set V7 is a subset
of V (subset of cl(V)) if, and only if, each extreme point ¥ of V; satisfies the

following condition :

for each ¢ € n,

either {(Atﬁ),‘ =1 and o; > 0: (ﬁf 2 0:)}
- (2.5)

or {(A4'%); <0 ((A'9); < 0) and 5 =—1}. O

Theorem 2.2.14. (Al-Khayyal, 1991) Let Ae ™™ If Y E_:_V, then 4 € P.
If Vi C cl(V), then 4 € P,. - -

Let A € R™*" 'a,ncl. let & € n*. Consider the system :
IAnf{;rz::r S 01 Aﬁaza ._>.. 0: o »~ 0. | . (26)
Definition 2.2.15. A € R™*" is said to have property (T), if for every a € n*

the existence of solution to the system (2.6) implies there exists a nonzero

vector ¥q, > 0 such that
y,i,ﬂ- Apsa =0 and yfmAau& <0

Theorem 2.2.186. (Aganagic and COttle,'iQS"{;). Let A € 'R"‘_”“.._ﬂ Pu Then
A € Q. if, and only if, A and each of its principal pivotal transforms has
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.pmperty (T). Moreover, when A € P,N Q,, for any g € R" Lemke’s algorithm
will either find a solution .to (g, 4) or else exhibit that (¢, A) has no feasible

a

solution.

 2.3. SUFFICIENT CONDITIONS FOR @, AND P,NQ,

Al-Khayyal (1991) raised the following question in his concluding remarks !
Does V| C cl(f:’) imply that A is a Qo-matrix 7 As .mentioned earlier, the
answer is in the afirmative. In fact, we will show that V; C cl(V) indeed

implies that (g, A) can be solved as an LPP.

Theorem 2.3.1, Let A € R"™". If there exists a 8 € (0,1} such that

Vo € V), then every extreme point v of V; satisfies the following condi-
~ tion:

for each 7 € 1,

either {(A%); =1and v >0} or {(A%)i<landuv;=—6}. (2.7)

Proof. Let v be an extreme point of V. Suppose for some i € 7, (Atv); = 1
~and v = —8. Then (A= D'); = 1+ 86 > 1. This implies that v does not
belong to cl(V), which contradicts the hypothesis that ¥; G cl(V). Thus, out
 of 2n inéqu&]ities defining V}, at most 1 of them can hold as equalities, Since

. v is an extreme point of V4, and rank ([I: —~A ]) = n, by Theorem 1.3.9, it
follows that at ieast.n constraints must be binding, Hence exactly n of the 2n
- constraints must be binding. Therefore, if (A'v); < 1, then the corresponding
v; > —8 must hold as an equality. That is, v; = —8. On the other hand, if
(A'v); =1, then,as V, C el(V), (A); —v; <1, and hence v; > 0. O

.Thedrem 2.3.2, Su;ﬁljogﬂ A € Rn..xﬂ. .As'_sume that for some 6,0 < 8 < 1,
Vs © cl(V). Then A is Q,-matrix. - | .

Proof. Consider the fdllowing' linear program (2.8) and its dual (2.9) :
llﬁnimize cjfv s.ubject to A'v <e and v > —'-Ge.,. (2.8) -

| minimize e’(_z-lf fw) subjed_t to w— Az = g, and z >0, w.g 0, (2.9)
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where e = (1,1,...,1)! € R",

Suppose ¢ € R" is such that F(q, A) # ¢, i.e., (¢, A} has a feasible solution.
Since v = 0 is a feasible solution of (2.8), both primal (2.8) and the dual (2.9)
have feasible solutions and hence have optimal solutions. Let (w,Z) be any
optimal solution for the dual, From Theorem 1.3.9, we can choose an optimal

solution 7 for the primal which is an extreme point of V3. Then ¥ and (@, %)

satisfy the complementary slackness conditions given by :
5.(1— (A%);) =0 V i€, (2.10)
and 155(9 - 2_),') =0V €. | (2.11)

Since 7 is an extreme point of V4, and Vj C cl{ 17), it must satisfy (2.7). Our
claim is that (@, Z) is a solution of (g, A). Suffices to check complementarity
condition @'z = 0. If for some index 7, (A'D); = 1, then #; > 0 (because of

(2.7)) and hence § + ©; 2 8. Then, from (2.11), we have w; = 0.

On the other hand, if 7 is such that (A'd); # 1, then from (2.7), we must
have (A'9); < 1 and 9; = —6. This implies 1 — (A'0); >- 0. From (2.10}, then,
 we must have 7; = 0. Thus, for each i € 7, either w; = 0 or Z; = 0. Therefore,

w'Z = 0 and (1, Z) is a solution of (¢, A). It follows that A € Q,.

Remark 2.3.3. Note that the sets V4, 6 € [0,1)], are monotonically increasing
in 8. That 1s,1f § < g, then V3 C V5. Taking # = 1, we answer Al-Khayyal's

question in the following corollary.

Corollary 2.3.4. If V; C cl(V), then A € Q..

Proof. Follows from Theorem 2.3.2 and Remark 2.3_.3.

~ Corollary 2.3.5. Suppose (g, A) has afeasible solution. Suppose that there ex-
ists an optimal solution ¥ of the primal (2.8) satisfying (2.7) for some & € (0, 1).
Then every qptimal solution of the dual (2.9) is a solution to (g, 4).

- Proof. This follows from Theorem 2.3.2 and the fact that every pair of opti-
mal solutions for the primal and the dual satisfies the complementary slackness
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conditions (2.10) and (2.11). C
Corollary 2.3.6. If V; C c(V), then 4 € P, N Q..

Proof., This follows from Theorem 2.2,14 and Corollary 2.3.4. O

Consider the following relaxed condition @ for some 8 € (0, 1],

(A'v);=1=v;>-0Vi€n. | (2.12)

Remark 2.3.7. Note that, if any extreme point v of V; satisfies (2.7), then it
also satisfies (2.12). And if V) C cl(V), then every extreme point of V; satisfies

both (2.7) and (2.12).

Theorem 2.3.8, If there exists a 6 € (0, 1] such that every extreme point v of
Vp satisfies (2.12), then A € (.. Further, every solution of the LPP given by |

(2. 9) is a solution of (g, A).
Prﬂof of tlus theorem is exactly similar to that t:}f Theorem 2 3.2. O

For any matrix A’, cc}nsider the conditions :
ai; <0 V i€ fi,'a;j g 0V, ts5 and Zaﬁ--< ~1Vj € :r'z, - (2.13)

Cai; >0 "cf { € i, QUSUV'LJ,z#_}, and Ea,J> -1V¥yen, (2.14)

i=1

Wllefe A= (a,J) R’”‘"

The.urem 2.3.9. Suppose A € R™" satisfies either (2.13) or (2.14), Then A
18 a (Jo-matrix and every optimal solution of (2.9) is a solution of (g,A). |

Proof. SuPpasé.A satisfies (2.13). We will show that every element v of
- Wi={ze R": 4t <e, x> —e) satisfies (2.12). Fix v € V;. Suppose there
- exists an index ¢ such that (A*v); = 1 and v; = 1. Then o |

TG T Z ﬂJIUJ""l

| -?:11.?#*
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Since v; > —~1V j and a;; > 0V 5 # ¢, we have
T Tl
Z aivj 2 — Z @i
y=1,771 7=1,7#1
Adding —a;; on both sides, we get :

1= Zaﬂvj > Za_,, > 1,

1=1

The last inequality follows from the hypothesis. This contradiction yields the

desired result. A similar proof can be given when A satisfies (2.14).

Remark 2.3.10. It may be noted that the matrices satisfying either (2.13) or
(2.14) are already covered by Mangasarian, In fact, if A satisfies (2.13), then
—A is a K-matrix, that is, —A is PN Z-matrix, If A satisfies (2.14), then it is

a Z-matrix,
We give below two more examples of matrices which satisfy the condition

(2.12). .

Example 2.3.11. Consider the matrices

5 —9 —10 3 —_3 2
A= 8 2 2|, B=|-6 -8 —5
-9 -1 0 [-uﬁ 4 4

Consider the matrix 4. Let v € V;. Suppose (2.12) is violated for some
i € {1,2,3}, say i = 1. Then (A%); = 1 = v, = (6 + 9v3)/8. Substituting this
in (A'v), < 1, we get a contradiction. So ¢ # 1. Similarly we can show that
¢ # 2 and i # 3. Hence A satisfles (2.12) and 4 € Q,. Similarly one can show
that B € Q,. Obviously A and B are not P,-matrices. Therefore, they do not

sa,tlsfy Al-Khayyal's cnndltlon

It is interesting to note that A and B are hidden Z-matrices. To see this,

let S ] o
o 3 0 -—1-, 205 —9 —25
}’__

X=1-201 0f, ¥Y=|-14 2 -12
-10 2 A

-
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Then observe that 4X = Y, and both X and Y are K-matrices. Thus A is a

hidden Z-matrix.

To see that B is hidden Z-matrix, let

10 =4 3 -3 0
U=10 1 -‘i“-;:- cand V=| -6 -8 0
61

00 1 | -6 -4 7]

Then BU =V, [j ‘s o K-matrix and V is Z-matrix. Hence B is a hidden

Z-matrix.

2.4, LCP AND COMPLEMENTARY BASES

In linear programming problems, the existence of a solution to the problem
always ensures the existence of an optimal basis, However, this is not the case
with LCP. A linear complementarity problem may have a complementary so-

lution without having a complementary basis. Consider the following example

| - taken from Mohan (1992).

- Example 2.4.1. Let

‘00 0 0 0
0 0

A= 000 and ¢ =
. 10 -1 0 ~1
0 0 -1 ~1

- Recall the definition of a complementary basis given in Definition 1.2.2, It 1s

clear that any solution (w z} of (q, A) cannot have a complementary b&SlS even

though it has a cmnplementary solutwn na,mely, z = (1, 1,0, O)‘

‘Thus, in general, the existence of a complementary solution need not neces-

. sarily imply'the existence of a complementary' basis. However, the existence of

complementary bases can be asserted in some spet:lal cases. This is established

~ in the results that follow These results have some mterestmg applications

whlch will be dealt in cha.pter.s 3 and 5.
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Definition 2.4.2. Let A € R™". Say that A has property (D}, if the following

implication is valid for all o € n” :

det A, =0 = columns of A, are linearly deﬁenden-t.

'

Definition 2.4.3. Let A € R**" N P,.

(a) A is said to be column adequate if A has property (D),
(b) A is said to be row adeguate if A* is column adequate,

(¢) A is said to be adequate if A is both column adequate and row

adequate.

Remark 2.4.4. The class of matrices having property (D) is rather large. Ob-
viously it contains column adequate matrices and all nondegenerate matrices.

Theorem 2.4.5. Suppose A € R"™". - Assume that A has property (D)..If
g € R" is such that (g,4) has a solution, then (¢, A) has a solution which

corresponds to a complementary basis.

Proof. Since S(g¢,A) # ¢, choose z € S(g, A). Let o = supp(z), If a = 4,
then z = 0 is a solution of (g, A) and the corresponding complementary basis is
I. Suppose o # ¢. Without loss of generality, assume o = {1,2,..., k} where
k< n. Ifdet Ayq # 0, then Cy4(a) is a complementary basis for (¢, A). Suppose
det Aqe = 0. Then, by property (D), there exists a d, ¢ R such that

Aody, =0, dy #0.

since z, > ), we can choose a real number A such that z, — Ad, =2 0 and at
least one coordinate of z, — Ad, is equal to zero. Define Z € R. by | |
Fo = Zoq — Ad, and zz = 0.

Then S - |
B AZ 4+ q=Agza — AAidy + ¢ = Az+q2 0:
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Let w = Az + ¢. Since z, > 0, w, = 0 and hence d*(Az + q) = 0,
where d* = (d',0') € R™. Note that

Az +q) - AFAd

3(Az + q) (since Ad = A 4dy = 0)

Z(Az +q) — Ad{Az + q)

0.

Thus z € S(¢, A). Let B = supp(Z). It is clear that |B]| < |a]. If det Agg # 0,

then C'4(3) is a complementary basis for (¢, 4). Otherwise we can repeat the

above process to get a new solution whose cardinality of its support is strictly

less than |3]. It is clear that in a finite number of steps (at most n) repeating

E(AZ +q)

H

the ahove process we end up in one of the following situations :

'
(a) (g,4) has a solution with a complementary basis,
- (b) 0is a solution of (g, A).

[

In either case (q,A) has a solution with a complémentary basis.

Cnrqllary _:2.4;6. Suppose 4 € R**", Assume that A s::itisﬁés any of the

~ following conditions :

(a) . A is column adequate,

- {b) A is nondegenerate,

- Then for any ¢ € K(A), (g, A) has a solution with a complementary basis. =

Proof. Follows from Remark 2.4.4 and Theorem 2.4.5.
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CHAPTER 3
THE @ AND Qo MATRICES

3.1. INTRODUCTION |
In this chapter we prove some results concerning the matrix classes @ and Q..

The sharpness of these results is demonstrated through several applications.
An elegant characterization of nonnegative @Q,-matrices, which is very useful
for vertfication, is established. Many results on Q-matriées are extended to Q-
matrices. We prove some results providing sufficient conditions for principal
submatrices (of order n — 1) of a n X n Q,-matrix to be in Q.. These results

are quite useful in proving several results in Chapter 5.

The study of existence of solutions to linear complementarity problems has
been the heart of the subject. As mentioned in Chapter 1, there are two
approaches to find out the existence of solutions b LCP - canstructive and
analytical. In constructive approach, one actually produces' a solution to the
problem, under suitable assumptions, by means of an algorithm. On the other
hand, in analytical approach one ensures or asserts that a solution to the prob-
lem exists (or does not exist) by means of equivalent formulations, In this case,

‘usually the actual solution to the problem is not known. Both the approaches

have led to the study of matrix classes.

As mentioned in Chap.ter 1 the fundamental classes of primary importance
are the @ and Q,-matrix classes. Recall that A is a Q-matrix if (¢, A) has a
solution for every ¢ € R"; and A is a Q,-matrix if (g, A) has a solution whenever
g is such that F(q,A) # ¢. The class Q was introduced by Murty (1972), and
Q. was introduced by Parsons (1970). The efforts to characterize these two
classes have not been qu}; successful, 'Apparently, the possibility of deriving

efficient characterizations for these classes is very remote (see Murty (1988)).

However, a large nmﬁber of subclasses of Q and Q) have been identified.

The positive definite matrices, P-matrices and regular matrices (see glossary
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for definitions) are all subelaeses lef Q). P-matrices were initially introduced by
Fiedler and Ptak (1962). Samuelson, Thrall and Wesler (1958) characterized
this class as : A € P if, and only if, (¢, A) has a unique solution for every
g € R". The class of regular matrices was introduced by Karamardian (1972)‘

Watson (1974) described some non-Q matrices through sign variations of prin-

cipal minors. Using the celebrated algorithm of Lemke and Howson (1964),

Lemke (1965) established that ‘copositive-plus matrices are contained in Q.-
matrices. In the same paper he obtained some remarkable results on existence
of solutions to LCPs through constructive characterizations, Later Eaves (1971)

enla.rged this class to L and proved, using Lemke's algorithm, that L C Q He

also characterized the class @, and proved that A € @, if, and only if, the _umon
of complementary cones eerr_espending to A 15 a convex set. Some other sub-
classes of {J,-matrices are the adequate matrices introduced by Ingleton (1966),
the Z-matrices first studied by Fielder and Ptak (1962), and sufficient matrices

introduced by Cottle, Pang and Venkateswaran (1989).

Our results in, thls chapter pertan to the study of the matrix classes Q e,nd
Q.. In generel glven a A€ R"""’ it is difficult to check whether A € Q or not
‘This is so even when n = 3 or 4. Finite chara,eterlza.tlens for Q and Q, may
be fc:rund in Agenegm and Cottle (1978) and Murty (1988). However, these are
of little use for checking whether a given matrix is Q(Qu)-me,trlx or not, In
section 3.3, we present some elementary propositions which prmude sufficient
- conditions for membership in Q. Through a number of examples taken from the

.llterature, we demonstrate that these elementary propositions, are very useful
in venﬁeatlon for membershlp in Q. In section 3. 4, we extend some known
results on Q-matrices to Q,-matrices and obtain sufficient conditions under
which principal submadtrices (of order n—1)of an xn Qn—matrlx to be in Q,.
Also we present an interesting characterization of nonnegative Q,-matrices.
~ Section 3.5 presente some results provldmg necessary conditions for a matrix
to be i in §,. The results of sections 3.4 and 3.5 turn out to be extremely useful

“in settling some open problems. Before presenting our results, we present some

- _knc}wn results on Q and Q,-matrix classes i in eeetmn 3.2.
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3.2. PRELIMINARY RESULTS

Throughout this section, we shall assume that A € R™" and ¢ € R".

Theorem 3.2.1. Q C Q,.

Proof. Obvious from the definition.

The next three theorems are on the invariance propert:ies of @Q and Q..
The first two of them may be found in Watson (1974) and the third in

Parsons (1970) and Tucker (1963).

Theorem 3.2.2. If D and E are any positive diagonal matrices in R", then
A€ Q(Q,) if, and only if, DAE € Q(Q.).

Proof. Suppose A € @,. We will show that DAE € Q,. Let ¢ € R" be such
that F(q, DAE) # ¢. Get w,z € R’ such that w — DAEz = q. Then we have
DD Yw—~DAEz = q or equivalently D"'w — AEz = D~!q. Since D and E are
. positive diagonal matrices, (D~ !w, Fz) is a feasible solution of (D¢, A). Since
A€ Q,, (D7q,A) A) has a solution, say (y, z). Let # = Dy and # = E~'z. Then
@ >0, 2> 0and w'z = 0. Also, by feasibility of (y,a:) we have y— Az = D~1q
or equivalently Dy — DAEE-‘z = ¢q. Thus & — DAEZ =1q. Hence ( Z) is

a solution of (g, DAE). Therefore, DAE € Q,. Conversely, if DAE is in Q,,
then A = D'DAFE"! € Q,. A similar proof can be given in the case of Q.

The above theorem says that rows and/or columns of A can be positively

scaled without dlsturbmg its Q(Q ) property

Theorem 3.2.3. Suppose A € Q(Q,). Then PAP* = Q(QD) for any permu-

tation matrix F.

Proof. Observe that for any ¢, (w,z) is a solution of (g, A) if, and only if,
(Pw, Pz) is a solution of (Pq, PAP*), The theorem readily follows from the
fact that PP! = P'P = I and that both P and P! are nonnegative. a

Theorem 3.2.4. Let M be any PPT of A. Then A € Q(Q,) if, and only if,
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M€ Q(Q,).

Proof. Let o € # be such that M = p.(A4). Then A = go(M). Suflices
to show that 4 € Q(Q,) implies M € Q(Q,). Suppose A € {,. Fix any ¢

such that F(g, M) # ¢. By letting ¢ = Cx(a)g, we nﬁ-terthat-F(rg’A)r[ £ ¢,
| Z We, .

In fact, if (i, Z) is a feasible solution of (§, M), then ( f ] T 1) isa

| Wx 25 ]

feasible solution of (¢, A). Since A € Qo, (g,4) has a solution, say (w,z).

:
Then ( o \ e ) is a solution of (G, M). Therefore, M € Q,. A similar

w& 1 zﬁ
proof can be given for the case of Q.0

Definition 3.2.5. A matrix M € R"" is called an S-matrix if the value
of (the matrix game) M is positive. M is called an S,-matrix if the value is

nonnegative,

Recall, from Theorem 1.4.6, that M € $(5,) if, and only if, there exists an
:cER" such tlata:r,é(]and A/I:t:>0(M:ﬂ>(]) S |

Theorem 3.2.6, Every.Q-—matmx is an S-matrix,

Pl‘Dﬂf LEt. qu—- —".E, :.‘HIIE.'IIE £ — (1 1 1)4‘. ' R, Suppose A. E Q Then
(g, A) has a selutmn In particular, t11e1e ex13ts 2 € F(q,4). Then, |

Az-i-’q:Az——ezOor Azz.f:}ﬂ.f

Since z € F(q, A), z > 0. Obviously z == () -as Az > 0.; Thus A € .5' a
The following theorem exhibits the relatidnship between Q and QD _'
Theorem 3.2.7. Q = Q. N.S. . .

- Proof. Since Q@ C @, and Q € S, we need to show Q, NS C Q. Suppose
A€ Q. NS Fix any g e R". Since A € S, there exists a z € R such that
Az > 0. Obvzﬂusly we can choose a positive real A such that AAz+¢ > 0. This

‘means Az € &Y(q, ) SIIICE'- A € Q,, S(q, A} 75 @. Since g was arbitrary, it
f(}ﬂOWS thalz AE€Q, The theorem follows ul | | |
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The fo]lc:wing. theorem due to Jeter and Pye (1985) has some interesting
applications (see ref Gowda (1990), Murthy, Parthasarathy (1993)).

Theorem 3.2.8. Suppose A € Q. Let o = 7\ {1} for some ¢ € #i. Then either
Aua € Q or (e;, A) has a solution u such that (4u); = —~1, where ¢; = I,

We shall prove an extended version of this theorem in section 3.4, By

replacing @, by @ in Theorem 3.4.6 we get a proof of this theorem.

Definition 3.2.9. A € R"*" is called a regular matrix if_there existsa d € HT

such that for all A > 0, {Ad, A) has unique solution, namely (Ad,0). The class
is denoted by R. A is called an R,-matrix if (0, A) has a unique solution, |

The class of regular matrices was introduced by Karamardian (1972). The

class R, was first considered by Garcia (1973) under the name E*(0). In the
following theorem we list a few important subclasses of Q. For definitions of

various classes refer to glossary.

Theorem 3.2.10. If A is in any of the following classes, then 4 € Q:

(a) positive definite matrices,
(b) P-matrices,

(c) R—ma,tricés,

(d) E, N R,-matrices,

(e) E-matrices,

(f) C,N R,-matrices,

(g) positive matrices.

Definition 3.2.11. Let A € R"*", Then K(A) = {ge R": S(q,A) # ¢}is
called the union of all complementary cones corresponding to 4, S
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Theorem 3.2.12.{Eaves, 1971). Let A € R**", Then the fﬂllowing are equiv-

alent :

(a) A€ Q.
(b) pos{I:~A]=K(A)

(c) K(A)is a convex set

The following classical theorem is due to Lemke. He gave a constructive
proof of existence of solutions to LCP with matrices of the type M mentioned

in the theorem below,

Theorem 3.2.13. (Lemke, 1965). Let A € R"*" and let e = (1,1,...,1) €

R” Then M =

*'-.-E‘.i-t

A / . :
- } € Rintix{ntl) is 5 Q,-matrix.

!

Later Eaves (1971a) generalized this by replacing e by (any) positive vector

d. We prove this, in a more general form, using the above theorem.

'_Corc;llary- 3.2,.14. Let A € R**". _Léﬁ'd,f € R ..

Then M =

A d

- o],

is a {J,-matrix.

Proof. Let D and F be the diagonal matrices in R™" with ** diagonal |
- entries as d; and f; respectively, 7 = 1,2,...,n. Obviously D and F are positive |

- diagonal matrices. Let B = D' AF~1, By Theorem 3.2.13, -

- From Theorem 3.2.2,

- But D 0
0t 1

- | J

B e

=3 D..
—e! 0| Q_
‘Dol B e]l[F OHGQ
01| e 0|0 1 >
B e rF 0 _-r A d
—et 001 [ ~f 0

- a .1
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We close this section with the following theorem which lists some subclasses

of QQ,-matrices.

Theorem 3.2.15. Suppose A belmngs to any of the following classes :

(a) adequate matrices

(b) copositive-plus matrices
(¢) hidden Z-matrices

(d) L-matrices

(e) nonpositive matrices

(f) positive semidefinite matrices
(g) . sufficient matrices

(h) Z-matrices

Then A € Q..
3.3. ELEMENTARY PROPOSITION AND ITS APPLICATIONS

In this section we first prove an elementary proposition which provides a suf-
ficient condition for a matrix to be a Q-matrix. See Murthy, Parthasarathy

and Ravindran (1993b). We, then, apply this to show that several well known
examples taken from Cottle, Pang and Stone (1992), Jeter and Pye (1989),
Murthy, Parthasarathy and Ravindran (1993a), and Kelly and Watson (1979)

are in Q. We make use of the proposition in Chapter 4 as well.

Proposition 3.3.1. Suplﬁnse A e R Assume that. A;, = Ag.,. Furthef,
assume that Ay, Ags € @, where o = {1} and # = {2}. Then 4 € Q. |

Proof. Fix ¢ € R". Suppose ¢; > ¢;. Since A,q € Q, there exist w,, 2, € R*™!
such that | |

.wﬂ"—Aaa’za&:Qn: 2620, w20 and w;z:::-:O' -

42



Wy +q; — q2 and z; = 0, Clearly w = (w;, w,')" and z = (0,2,)" are

Let wy =
in RS (as ¢ 2 q). Also w'z = wl2, =0 and
g - - - ru-
t Ala2a g1 - .
w— Az = — = = (.
W i Araa ] Yo |

Therefore, (g, A) has a solution.
If g1 < g2, then we can get a solution to (g, A) using a solution of (g8, Apg),

which exists as Agz € Q, in a similar way. As g was arbitrary it follows that
A€ @ D

Remark 3.3.2, In the ahove proposition, obviously, there s nothing special

about indices 1 and 2 and the result holds good when 1 and 2 are replaced by

any 7 and j, 7 # J.
We shall now give several applications of this proposition. Our ﬁrst example

s taken frnm Murthy Parthasarathy and Ravindran (1993&)

o Examp_]e 3.3.3. Consider the matrix given by :

{06 01 1)
| 0 011
. 1 -1 1 0

-1 101

N-:::-I;e that Ay = A, and A.. and Agp are in C, N R,, where a = {2,3,4} and
= 11,3,4}. From Theorem 3.2. 10, Am, Aﬁ-g E Q Invc:ukmg the proposition,

we conclude tha,t A€ Q.

The next exmnple is taken from Jeter and Pya ( 1989)

Example 3.3, 4. Let A be given by

0 0 0 0 1]
0 0 0 01
1 -1 0 0 1
-1 1 0. 01
0 0 -1 -1 1




Agaiﬁ we have 4; = A; and A,, and Agg are in E, N R,, and hehice are
Q-matrices (@ = {1}, 8 = {2}). Hence the proposition implies that A € Q.

¥

The following example is taken from Murthy, Parthasaréthy and Ravindran

(1993a).

Example 3.3.5. Let A be given by :

0 01111
0 011 11
1 -1 1111
1 -1 1111
-1 11111
1—-11111_

Note that the matrix is a C,-matrix. Further, 4; = A; and for o = m
and 8 = {2}, AgasAss € Q (as they are'in C, N R,). By the proposition, we
conclude that A € Q. In fact, in the aforementioned reference, the proposition

was repeatedly used to show that every 5x 5 principal submatrixis a Q-ma'trix.
The following example is taken from Watson(1976).

Example 3.3.6. Consider

-t

1 -1 4
A=14 -3 1
| 'l 0 0,
Let o = {1} and M = Po(A). Then
11 -4
pa(A)=14 1 —15
1 1 -4 .

and
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are both Q-matrices, Appealing to the proposition, we conclude that M, anc

hence, A are @-matrices.

The following proposition shows that the assumptions of Proposition 3.3.1

can be slightly relaxed.

‘Proposition 3.3.7. Let A € R**", Let o and 4 be such that & = {1} and
g = {2}. Assume that Ay = A9y where § = {3,4,...,n}. Further, assume
that (111 < oy, d9g g ayn, and Aﬂﬁ, Aﬁg = Q- Then A € Q.

Proof. Let ¢ € R". Without loss of generality we may assume that ¢ > ¢a.
Since A, € Q there exist wg, 2z, € R} such that (wa,2,) is a solution of

(9o, Aae ). Define w and Z by

- - - -
_ w1 . 0 | S

— | and Z = {, where wy = wg + g1 — ¢2 + (@13 — agy)2s.
We S | |

= - - by

It is easy to vemfy that (w, 2) is a solution of (q, /-1) Smce g was arb:ltmry 1t

fallﬂws that Ag€ Q 0

‘Remark 3.3.8. As in Remark 3.3. 2, the indices 1 and 2 in the above prc}po-
sition can be replaced by any ¢ and j such that i # 5.

The followmg examples are taken from Cottle, Pang and Stone(page 520,
1992). |

"Example 3.3.9, Let

- . . -~ r' "

-1 | -1 1 3

1 2 '1 | _ G 6 6

A=1 2 -1 1(. Then M=4""'=| 1 =1 3
o 3 3 -3

1 1 0 B

~ Note that M satisfies the assumptions of Proposition 3.3,7 and hence M & Q.
| Therefﬂre, A€ Q | |

o The follawmg e}_ample is due to Howe (see Cﬂttle, Pang and Stone (page 576
| 1992)) |

45



Example 3.3.10. Let

4 3 3

4= 3 —4 6

3 3 —4 6

6 6 6 -4

Scaling the last row we get :

q

-4 3 3 6

M = 3 -4 3 6

3 3 ~4 6
3 3 3 -2

Let « = {1,2,3} and f = {1,2,4}. It may be verified that M-} > 0. From
Theorem 3.2.10, Mﬂa is in Q. Since |

€ ¢

Proposition 3.3.7 implies Mg € Q. Invoking Proposition 33.7 é..g;,in, we con-
clude that M € Q. Since @ property is invariant under positive scaling, A € Q.

The following example is taken from Kelly and Watson (1979).

Example 3.3.11. Let

91 25 —27 —36
7 3 -9 36
12 12 -20 0|’
4 4 —4 -—8|

e | .

Let B be the PPT of A with respect to a = {2, 3}.
Let D = diag[1/16,1,2/3,1/4] and E = diag[3,48, 48, 1].
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Then . .
| 2 -11 3 6
: 2 —-20 9 1b
(' =DBE = 5 _8 9 §

2 -8 6 4

Let a = {1,2,3} and f = :[1,2,4}. Using Proposition 3.3.7, (e and C,gﬁ are
in Q. Another application of Proposition 3.3.7, implies C' € . By Theorem

3.2.2, B € Q and by Theorem 3.2.4, A € Q.

Proposition 3.3.12. Suppose 4 € R™*" is such that @y < min {ag1, as},
aze < min {ay, azz}, and asz £ min {a13,a23}. Further, assume that
Ap = Agg = Azg, where 8§ = {4,5,...,n}, Let «,f and ~ be such that
a ={1,2), §=1{1,3), and 3 = {2,3}. If Aua, Agy, and A, are in Q, then

A€ Q.

Proof. Fix ¢ € R". Without loss of generality, we may assume ¢; > q; > ¢a.
| Sincﬁ_'Am € Q, there exists a solution (Wy, 2o) t0 (ga, Aaa). Define

wy = wg -+ 9’1 - q2 + (313 = ﬂqa)zsa_ﬂﬂd Wy =wWs+q2—¢3 + ({'-123 - ﬂaa)za_-

- From the hypothesis, both w; and w, are nonnegative. Then it is easy to verify
that w = (wljw;;w;)‘ and z = (0,0, z)! is a solution to (g, A). Since .q was

arbitrary, A € Q.

The fnll:jwing example 1s taken from Cottle, Pang and Stone (page 598,
1992), where we show that (g, A) has at least two solutions for every ¢ € R,

Example 3.3,13. Let

-4 3 6 |
3 —4 6
A=| 3 3 -4 6
6 6 6 —4 6
6 6 6 6 —4
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Let a, 3 and v be such that @ = {1,2}, B = {1,3}, and 5 = {2, 3}. Note that

4 8
Apa = App = Ay = 6 —4 6
6 6 —4 |

It is a well known fact that A, has 2 or 4 solutions for e:very p € R® (see
Murty (page 107, 1972)). Invoking Proposition 3.3.12, we conclude that (g, A)

has at least two solutions for every ¢ € R®.

3.4. SOME RESULTS ON Q,-MATRICES

In this section we present a number of results concerning Q,-matrices. Some
of them are extensions of known results on Q-matrices. In particular, we give
an interesting characterization of nonnegative Q,-matrices.Though simple, it
has some nice ap'plications as will be shown in the sequel, We start with the

following result on Q-matrices (see Murty (1988)).

Theorem 3.4.1, Suppose 4 & R"’x-“ N Q. Assume that A; > 0 for some : € 7.
Then A,. € Q where o = m

Proof of this theorem follows from that of its extended version given below,

Theorem 3.4.2. Suppose A € R 0 Q.. Assume that 4; > 0 for some
2 € n. Then A,, € Q,, where a = F}- |

Proof. Without loss of generality, we may assume that ¢ = n.. 1

Suppose Aaa & Qo Then .there exists a § € R*T such that F(§, Aas) # ¢ but
5(§, Asa) = ¢. Define ¢ € R" by q, = § and ¢, = 1. Choose z & F(g, Ana).
Define z by z, = 7 and z, = 0. Since 4, > 0, z € F(q,A), A.SAEQU,
there exists an 2 € S(q,A). Since 4, >0, ¥ = A, ¢ +q, = A,z +1 > 0.
This implies z, = 0. But then To € ‘S(ga,Am) which contradicts that

S(qn., Ane) = ¢, Hence A, € Q..

‘As an a.pphca,tmn of this theorem let us consider the followmg example

taken from Stone (1981).
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Example 3.4.3. Let | )

0 0

Stone shows that A € Q, by producing two vectors p and g in R*N K(A) such
that $(p + ¢) ¢ K(A). We shall prove that A ¢ Q, using Theorem 3.4.2.

Since Az, 2 0, by Theorem 3.4.2,

q

. 0 o
B = Aye = 1} | €Q,, wherea={1,2,4}.
0

o o O
. O O

L

Since By, > 0, by Theorem 3.4.2, Bgs € Q., B = {2,3}. But Bgp 1s not a
Qn-matrix This is a contradiction. Hence A € Q).

'-Rmnark 3.4.4. We make use of Theorem 3.4.2 in Chaptex 5. Arguments there

will be similar to the one in the above example.

Sufﬁment Conditions for (n -1} x{n — 1) Principal Submatrix of a

Q{,-Matrlx to be in Q,,

The follciwmg ther.}rem 1S an a.nalcgy c:f Thenrem 3.2.8 for Qﬂ-ma.trices

~ Theorem 3.4.5. Suppose A € R™*N1Q,. Let i € fi and a = TI]. Then either

A, E Qn or there exists a u € R} such that u € S(e;, 4) with (Au); =

wheree; = I;, | - | | .

Prdof. Without loss of generality take 7 = n. Suppase_'Am ¢ Q,. Then there
exists a § € B such that (g, Aaa) # ¢ but 5(7, AL} = &. For each posi-
-~ tive integer k&, define ¢ = q/k, g% = 1, Observe. that (g%, Apa) # ¢V £k > 1.

This 1s because for any z, € JF'(-;;',._.,I.,r M), Lz,_-, € F(g*, Asa) Y £ > 1. Then
F(q"‘ A) # $ for all positive integers & sufficiently large. As A € Q,, S(¢*, A) #

¢ for all k sufficiently large. So each ¢* lies in a complementary cone for all
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k sufficiently large. Since there are only finitely many complementary cones,
there is a complementary cone containing a subsequence g, g%, g%, ... of q~.
Since g* converges to e, and as the complementary cones are all closed, ey also
lies in a complementary cone containing the subsequence ¢%. Also note that
for each k > 1, if z* € S(¢*, A), then 2} > 0 as otherwise it would imply that
5(q, Aaw) # ¢. Thus, for all k sufficiently large, g* lies in a complementary cone
with A, as one of its generators, Therefore, e, lies in a complementary cone
with one of its generators as A, and hence there exists a u € S(en, A) such

that (Au), = —1. O

Theorem 3.4.6. Suppose 4 € R™*"NQ,. Let i € 71 and & = {7}. Suppose A
satisfles Property (D) defined in Definition 2.4.2, 1ie., for all
v € n*, det A, = 0 implies columns of A, are linearly dependent, Then

either 4,, € @, or there exists a § C 7 satisfying :

(a) i€pB,

(b) det Agg #0,

(c) M; <0, where M = pg(4),

(d) u€ S(e;,A)., where uﬁ. = — My and ug = (, and

. (E) (Au)l = —1.

Proof. Without loss of .generality take : = n. Suppose Ase & Q,. Then .
there exists a § € R*! such that F(q, Ase) # ¢ but S5(q, Aaa) = ¢. For
each positive integer k, define ¢* by ¢& = g/k, and ¢F = 1. As F\(§, Am) o
¢, F(¢*, A) # ¢ for all & sufficiently large. Since A € Q,, for all k suf-
ficiently large, there exists a solution (w*, 2*) of (¢*, A). By Theorem 2;4.5,
we rha.y assume, without loss of generality, that (wk,zk-) corresponds to com-
plementary basis with 8y = supp(z*). Then det Ca(Br) # 0 for all k suf-

ficiently large. Since 7 has only finitely many subsets, one of its subsets

must repeat infinitely often in the sequentie B, B2, 03,.... Again, without
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loss of generality, we can assume f; = f for all & sufficiently large. Then

det C4(B) # 0. Note that for cach k, zF > 0, as otherwise it will imply that
5(G, Aaa) # ¢ which is a contradiction, Thus n € p. Hence we have :

Ty a4 Tk [k |
{1 Agp wf | — q*g V k sufficiently large .
0~ Apgs | | %5 43

Since det C4(B) # 0,

1 1 [ &

[ w1 [ 1. —A- - :
w}? = L —Aa5(Ap) 1 qf V k sufficiently large.
) L0 —(Ae) | [ 95
wk ] 0
Note that as £ — oo, ¢~ — e,, and hence '} f R gl
Z'ﬁ | I uﬁ |
where | L , _ _
i ~1
va | | Dot —Aae(Aee)™ | _ _ap
lug | | O ~(App)™"

where M = pp(A). Since vz 20, upg 20, M, <0

Elﬂd H = (Ut ""ﬂ‘fﬁn)t - S(ﬁﬂ, )
Obviously (Au), = ~1 as wf = 0 for all k& sufﬁc:ent]y la.rge unphes v = (O,

L T

| Thls completes the proof of the theorem.

Cur_ﬂlla_-ry 3.4.7.. Suppose A € R™™ N Q,. Assume that A satisfies Property
(D) defined in Deﬁnitinn 2.4.2, If every legitimate PPT M of A is such that
v(M") > 0, then every pnnc:pal submatrlx of A of order (n — 1) is in Q..

Proof. Suppose there exists an « C 7 such that |¢| = n—~1 and A, & Q.. By

Theorem 3.4.6, there exists a PPT M of A such that M, < 0 where {k} = a.
This implies v(M*) < 0 which contradicts the hypothesis. It follows that every

principal submatnx cnf A nf Grder (n — 1) 1s In Q,. O

- C_o_rollary 3.4.8. S_uppose A e R ﬂ'Qu. Assume that A satisfies Prop-
~ erty(D) of Definition 2.4.2. Lt:l__: k€ n and let o = {k}. If for every B C #t such
- that k € A and v((pa(A))") > 0 whenever pg(A4) is well defined, then A, € Q..

Proof. Follows from Theorem 3.4.6.
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Definition 3.4.9. Let A € R"*" and o € n*. Say that A is ¢-nondegenerate
if det Agg # 0 for all B € n* such that o C §, If |o| = 1, say o = {k}, then we

say A is k-nondegenerate provided A 1s o-nondegenerate.

Corollary 3.4.10. Suppose A € R*"*™ N Q,. Let k € © be such that A is

k-nondegenerate. Let # = {k}. If v((goa(A)) ) >0V such that t € «, then
Aﬁﬁ S Qn |

Proof. Follows from the proof of Theorem 3.4.6. O

Characterization of Nonnegative Q,~-Matrices

Murty (1972) gave the following characterization of nonnegative (Q-matrices.

Theorem 3.4.11. Suppose A € R**" is a nonnegative matrix. Then A is a
Q-matrix if, and only if, ¢;; > 0 V ¢ € #u.

Definition 3.4.12. A € R"™" is said to be completely Q (completely Q,) if
for all @ € n*, Aya € Q (Aaw € Q,). These classes are denoted by @ and @,.

Completely @-matrices were studied by Cottle (1980) in which he gave
several characterizations of the same. He remarked that characterization for
Q,-matrices must be harder to obtain, In Fredricksen, Watson and Murty

(1986), characterizations for Q,-matrices of order less than or equal to three
were obtained. Characterization of Q, for general matrices appears to be a

formidable task. However, we characterize @, in some special cases.

Lemma 3.4.13. Suppose Ae R*""isa nonnega,twe matrix. Then A € Q.._, 1f -
a,nd only if, 4 € Q,.

Proof. Suffices to s_h{jw that A € @, implies A € Q,. Let o be a proper subset
Of fi. Take any i € &. Since A;, > 0, by Theorem 3.4.2, Ags € Q., where

= {i}. If a = B, we are done. Otherwise choose j € 8\ , and drop the row
_and column, correspandmg to 7, from Aﬁﬁ to get Ay where v = ;5’ \ { J} Slnce
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Ags € @, and A;p > 0, we have again 4., € §,. We can continue this process

until we reach the conclusion that A, € Qo O

In the theorem below, we give a characterization of nonnegative Q-

madtrices.

Theorem 3.4.14. Suppose A € R"*" is a nonnegative matrix where n 2> 2.

Then A € Q, if, and only if, the following implication is valid :

for every it €0, A; #0=a;4>0,

Proof, {Necessity) We shall prove this by induction on n. It is easy to check
this when n = 2. Assume that the result is true for all (n—1) x (n—1) matrices,
n > 3. Let A € R"™" be a nonnegative Q,-matrix, Suppose 4;, # 0 for some
t € . Let § be such that a;; > 0. If 7 =i we are done. Suppose j # ¢. Choose
any k € {7,7} (wecan do thisas n > 3 ). Let o = {k}. Then by Lemma 3.4.13,
Al € Q.. -By choice of k, A;, # 0. By indu:itiqn, we must have a; > 0.

(Suﬂicienc‘y) ‘Assume that a;; > 0V 2 such that A; £ 0.
Let @ ={t €n:a; > 0}. Then

- 1 r

Au’a Anﬁr Aéa' Aaﬁ-
Aﬁ,& Aﬁﬁ- ' 0 0

J — J

H

Suppose g € R" is such tha,t F(q,A)_ 75 ¢. Then we mﬁst have qﬁ,?j_,'O. Since
Aaa 15 .m}nnega,tive with all its diagonzﬂ e_ntries positive, by Theorem 3.4.11,
Asa € Q. Let 2z, € S(quy Ana). Then (21,0°)" € S(q,A). As ¢ was arbitrary,
A E Qn' ) .. : ' | ' : '

~ Corollary 3.4.15. Suppose A € R™*" is nonnegative nanﬁuﬂ matrix. Then
A € @, if, and only if, there exists a principal rearrangement of A of the form

sut:h_._t_-:hat?A.mE Q. l |
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Corollary 3.4.16. Suppose A € R™", Assume that A 4 A’ is a nonnegative

*

Q,-matrix, Then 4 € Q,.

Proof. Let B = A+ A'. From Corollary 3.4.15, there exisi;e a C 7 such that
B,. is nonnegative Q-matrix (with all diagonal entries positive} and B,z =
0, By, =0, Bssz = 0 (because B is symmetric). Note that z‘Az = Le! Bz for
all z € R}, Thus if ¢’Ax = 0, then (A + A%)z = Bz = 0. Therefore, 4 is
~ copositive-plus and hence belongs to Q,. (see Corollary 4.2.11) O

Corollary 3.4.17. Suppose A and A’ are nonnegative Qﬂ-me.trleee Then
A + A! belongs to Q,. O

The fellewing examples illustrate the application of the above ehere,eterize,-

tion theorem.

Example 3.4.18. Let

00 —1.0 | a1 21, 2]*'
400 o1y o -3 104}

10 00 _ -1 00 1

01 00 ' -1 -2:1 0

Note that A; > 0 If AeQ,, then A € Qn, where o = {1 2 4} But by
Theorem 3.4.14, Aoo & Q.. Hence A & Q... |

Next cenelder B. Let M = g::a(B) where a = {3, 4} Then
2 4 2 1
1 1 40
1 2 01
(1010
Theorem 3.4.14 straightaway nnphee that M &’ Q.. Therefore, B & Q,. We

generalize this feature in the following corollary,

Corollary 3.4.19. Suppose M € 'R“’f"" is given by

=48]
i
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where A € R'**, B ¢ R¥*(n-8) (C ¢ R-¥I%k and P € R-Rx(n=k} - A ssume

that B > 0, ¢ <€ 0, and P is a permutation matrix other than_I(ﬂ_k). It

A > CP'B, then M & Q..

-Prﬂaf.. Let D be the PPT of M with respect to P, As P is a permutation
malrix, PP* = P'P = ], We have :

' A—-CP'B BP! ]

D =
- PC P

Note that D > 0. Further, P’ is a permutation matrix other than Ij,_;) as P
is so. Therefore, U has a nonzero row with the corresponding diagonal entry

zero. Invoking Theorem 3.4.14, we conclude that D, and hence, M are not

(J,-matrices.

The following corollaries are direct consequences of Theﬂrem 3.4.14,

' Cora]lary 3.4.20. Suppose A € R**" is a nonnegative Qu—ma,tnx Ifa;=0
-forailzen,thenA*—-*[]D | : L

Corcallary 3.4.21. SUppose A € R"” is a nonnegative @Q.-matrix. If 4 is

nonsingular, then A is completely Q.

3.5, MORE RESULTS ON Q,-MATRICES

In this we present some conditions under which a matrix cannot be a Q,-matrix,

| These results are useful in resolvmg some open problems in LCP (see Chapter
&), |
Thearem 3.5.1. Suppose A € R™", Let k €7 and let o = {k} Assume

tha.t A satlsﬁes the fo]lowmg conditions:

(a) Anrnr. 5 0:
: (b) Qig > 0 for some ¢ € ci:, and -

(o) ,Aﬁ:.é 0.
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Then A & Q..

Proof. Note that the assumptions of the theorem imply ¢ # k. Since a; > 0,
there exists a ¢ € R" such that ¢; <0, ¢; >0V j € R, 7 #1and Fq,A) # ¢
Let 2z € F(qg,A). Since A,, £ 0, wemust have z; > 0. Notethatas: #k, ¢ > 0
and wy, = (Az)x + g > 0. This implies (¢, A) cannot have a complementary

solution, Therefore, A & Q,. O .

Theorem 3.5.2. Suppose 4 € R"™" wheren > 3. Let ¢ = (@13, Q14 - -+, Q15
and h = (l’.‘Iga, ody ey Gzn). Assume that a1 = dgg = O, dyg > 0 and aa > 0, If
A € Q,, then A cannot satisfy any of the following conditions : |

(a) g<0andh20

(b) ¢g20and h £0.

Proof. Suppose A satisfles condition (a). Since a,5 > 0, there exists a ¢ € R"
such that ¢; <0, ¢; > 0 for every 5 # 1, and F(q, A) # ¢. Hypothesis implies
that for every z € F(q, A),z > 0. Since 4y, > 0, wy = (42)2 + ¢z > 0. Thus
(g, A) cannot have a complementary solution. This contradicts that 4 is in Q..

Hence A does not satisfy (a). Similarly, we can show that A does not satisfy
(b)' D . . ' . a

In the above theorem the indices 1 and 2 can be replaced by any i and
ht# ] | |
Theorem 3.5.3. Suppose 4 € R¥*3N Q,. Then SP(A) cannot be equal to

any of the following :

e

oo 0| [6- @
(@) « « [ O] & &
|+ © 0 + x 0

o

Proof. Suppose SP(A) is given by (a). As as; > 0, there exists aq€ R® such
that SP(q) = (+,+,~)" and F(q,A) # 4. Let z € F(g, A). Then z > 0.
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Since A;. > 0 and ¢; > 0, wy = (Az); 4+ ¢ > 0. This implies (¢, 4) cannot have
a solution. This contradicts the hypothesis. Therefore, SP(A4) cannot be equal
to the sign pattern given by (a).

Suppose SP(A) is given by (b). Note that A; > 0. By Theorem 3.4.2,
Ao € Q, where o = {1,3}. Observe that

r .
sPa.) =] 91,
- + 0

By Theorem 3.4.14, A € Q.. From this contradiction it follows that A cannot
have the sign pattern given in (b), D
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CHAPTER 4
SEMIMONOTONE MATRICES IN LCP

4.1. INTRODUCTION

Our main results in this chapter are outlined as follows. We settle a conjecture,
initially stated by Pang (1979b) and later modified by Jeter and Pye (1989),
and Gowda (1990), by constructing a counter example. The conjecture, in
its modified version, states that C, N Q@ € R,. In Murthy, Parthasarathy and
Ravindran (1993a), we proved that, for n < 5,if A € R**"NC,NQ and if every
3 x 3 principal submatrix of A is also @, then A € R,; and commented that
it may not be possible to extend this to higher dimensions. While addressing
this prﬂblem, we establish that the result is valid even when n = 6 and obtain
sufficient conditions, for the general case, for copositive matrices to be H,.
Further, we establish that for every n > §, there exists a copositive Q-maitrix
which is not R, but A,, € R, for all « C 1 such that |a] < n—4, Some of these
results are extended to semimonotone Q-matrices (see Murthy, Parthasarathy

and Ravindran (1993b). These results are primarily of theoretical interest and

may not have any bearing on the algorithmic aspects of LCP.

It is known that if A is symmetric semimonotone Q-nia.trix, then A is com-
pletely @. We will establish that if A is symmetric semlmonoﬁona Qn-matrlx
then A is completely Q,. Pang (1979b) showed that if A is semimonotone Q-
matrix, then every nontrivial solution of (0, A) must have at least two nonzero
cc:ordina,tes We will show that if A is semimonotone Qu-matrix and if evéry
row of A has at least one positive entry, then every nontrivial solution of (0, A)

must have at least two nonzero coordmates

The class of semimonotone matrices is one of the largest classes studied in
connection with LCP. It encompasses a large number of well studied classes such
as positive definite, positive semideﬁnite; P, P,, and copositive matrices. This

class was introduced by Eaves (1971) as an extension of strictly semimonotone
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matrices {though not with the same name) studied by Cottle and Dantzig
(1968). The name “semimonotone matrices” was proposed by Karamardian
(1972), The main property of this class is that if A is in this class, then (¢, A)

has a unique solution for every ¢ > 0. A geometrical interpretation of this

tact is that any complementary cone of [ I : —A |, other than pos!, does

not intersect the nonnegative orthant in the interior. Another interesting and

important result is that if 4 is a semimonotone matrix and if (0, A) has a

unique solution, then 4 is a Q-matrix,

4.2, PRELIMINARY RESULTS

Copositive Matrices

Thls class is an extension of posi tlve sexmdeﬁmte matrzces A ppa.rently, Motzkin

. was the first to study this class
 Definition 4.2.1. A € B™" is said to be

. (a) copositive if 2! Az > 0 Vz € R},
(b) stﬁcﬂy capa.sz'tz'ﬂe 1f m"A:r: > 0V E Ri, T # O
(c) copﬂ.s;twe-plus 1f Ais copositive and the fc:llc:wmg 1mp11ca,tlun holds

['fA:I:-—U a:>0]=¢'(A+A)a:-U

(d) capmztwe .smmf A 18 copos:twa and the followmg Jmpl:l-::a,tlon holds

[:t:>0 A:L>0 m'A:r-O]z:}A‘;uf(O

TheSe classes are d&noted as follows : C, stands for c0p051t1ve matrices, C
for strlctly copositive mat:mes, C} for copositive-plus, and C for copositive-

- .star matrmes

| Deﬁmtmn 4.2. 2 Let Y be any c:lass of Ieal square ma.trices Forany Ae€Y,
| sa,y thﬂt A 18 colnpletely Y pmwded Ano € ¥ for aH & € n*, where n is order c}f- B
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A. The class of all cdmpletely Y matrices will be denoted by Y. When A€,
we say that ‘property Y is inherited by all principal submatrices of A’.

Theorem 4.2.3. Let A € R"*", Let D € R"™ be any positive diagonal
matrix. Then A € C, if, and only 1f, DAD' e C,.

Proof. Suppose A € C,. For any z € R}, let y = D*x. Obviously y € K.
Note that 2*DAD'c = y*Ay > 0 as A € C, and y > 0. Thus DAD* € C,,.

The converse follows from the fact that-D™! is a positive diagonal matrix and

A= D YDADY (D). O

Remark 4.2.4. In view of the above Eheorem, any copositive matrix can be

converted to another (equivalent) copositive matrix with all its diagonal entries

as either 0 or 1. This is because, if A € C,, then a;; >0V 1.

Theorem 4.2.5. Let A € R™". Then 4 E. C, if, and only if, Z(A+ A*) e C..

Proof. This is a direct consequence of the fact z'Azx = %.’Et(/-l + Az,

"Theorem 4.2.6. If A € C,, then A is completely C.;,

Proof. Let A € R™" N C,. Let a € n". Let #,.€ R, Define z € R" by
Zo = T, and zz = 0. Then 2t A o2y = 2°A2 > 0 as A € C;. Thus AMEC

As o was arbitrary, it follows that A is completely C,. O

‘Theorem 4.2.7. If A € C’D'", then A is completely C,*

Proof. Suppose A € R"" N C}. Let a € n*, Suppose x4 € R'ad is such that
2t Aaa®o = 0. Define 2 € R} by 24 = 2, and zn. = 0, Then 2*Az =z} ApoTy =
0. Since A € CF, (A + A')z = 0. Therefore, 0 = (A + Az = (Aue + AL )2,.
From Theorem 4.2. 6, Aua € C,. Hence A, € CF. As o was arbitrary, it fﬂHOWS

that every principal submatrix of A is also a C*-ma,tmx 0

Theorem 4.2.8. Suppose A € R™™ N C,. Then for all o € n*, v(Aq) is
| nonnegative, that is, A € S,. If, in addition, A is symmetric, then the following -
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implication is valid :
[z € R}, 2'Az=0]= Az 2 0.
Suppose v( M) is negative. Then there exists a (proba-

such that ¥4 Ase < 0. Define z € R} by 24 = yo and
gt Acate < 0, which contradicts that A € C,. Thus

Proof. Fix a € n’.
bility) vector y, € .RL_
rs = 0. Then z*Ax =

v{ Awa ) 15 nonnegative. |
We shall prove the second part by induction on n. The assertion is trivially true

when n = 1. So assume that the result is true for all (n — 1) x (n — 1) matrices

satisfying the hypothesis, n > 1. Sﬁ_ppnse A€ _R"'x“' is symmetric copositive
matrix. Let = € R} be such that z'Az = 0. We have to show Az > 0. Suppose

(Az); < 0 for some i € 7. Then, for any real A > 0, we have :

(e; + );:r:)' (ei + Ax) = 0, where ¢; = I; (because A e C )

i, 2MAZ); + ai > 0, where A = (a;;) (because A= At}

But then, we can choose A sufﬁcienﬁly large (positive) so that the last ine_qﬁali by

15 violated, This leads to a mntmdictiou. Hence, we must have A:I: 2 0.

The following theorem and its proof may be fﬁund in Cottle Pang and
Stone (page 179, 1992}, '

. 'Theare_m 4.2.9. Suppose A € R"**NC,. For any q € Rﬁ, if the Iimplication-

[z 20, Az >0, Az = (] - 2tq >0 B (41) -_

is valid, then (g, 4) has a-solﬁtiﬂn.,

. T'l:lecire-m'?i 2.10, Let 4. € R™"N Ct. If ¢ € R" is such that (¢, 4) has a

feasible smlutmn then (q, A) has a mlutmn

Prc:of Suppase (g,A) has a feafslble solutloll Let z. € R be.any vector
_satlsfylng Az > 0 and z'Az = 0. Since A € CY, we have (4 + AY)z = (
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or Atz = —Az < 0, Choose any =z €. F(q,A). Then Az 4+ ¢ 2 0, z 2 0.
Premultiplying both sides by 2%, we get 2'Az +2'¢> 0. As 2’4 <0 and z 2 0,
it follows that z'q > 0. Invoking Theorem 4.2.9, we conclude that (g, 4) has a

solution.

Corollary 4.2.11. C} C Q,.

Proof. Follows from Theorem 4.2.7 and the above theprem.

Corollary 4.2.12. Suppose A € R™*" N C. Then A € Q.

Proof, Let ¢ € R". If z € R issuch that z’Az = 0, then, by strict copﬂsitivii?y
of A, z = 0 and hence z'q = 0. Invoking Theorem 4.2.9, we conclude that (g, A)

has a solution. As ¢ was arbitrary, we conclude that A € Q.

Theorem 4.2.13. C C Q.

Proof. This is a direct consequenﬁe Corollary 4.2.12 and the fact that strict

copositivity of a matrix is inherited by all its principal submatrices.

Semimonotone Matrices

Definition 4.2.14. Let A € R"*", A is said to be a semimonotone matrix if
for every z € RY such that z # 0, there exists an index k € 71 such that z; > 0
and (Az); 2 0. A is said to be sirictly semimonotone if for every € R} such
that z # 0 there exists a k € 7 satisfying z; > 0 and (Az); > 0. Semimonotone

and strictly semimonotone matrix classes are denoted by E, and E respectively.

"Theorem 4.2.15. If A e R"*" ﬂEﬂ, then A,, € E, for all a € n*.

Proof. Fix « € n* Let 2y € RI °l be such that z, # 0. Define 2 € R} by
Ty = Zg and z5z = 0. Obviously 0 # x > 0. Since A € FE,, there exists a k € &1
such that 2, > 0 and (Az)s 2 0. Aszs =0, k € a. Also (A,._-_,,m.:r:,;,,)Jrc = (Am)k > 0,
Hence AM c F,, -

62



Remark 4.2.16. Note that every copositive matrix is in F,. Also F, & I,
(see page 185, Cottle, Pang and Stone (1992)).

Theorem 4.2.17. Let A € R"™ ", The following statements are equivalent :

(a) A€ E,
(b) (g, A) has a unique solution for every ¢ € Ry,
(¢) v(AL )=20Vaen”
(d) v(d)z20Vaen®
(e) A'eg E,
Proof. (a) = (b). Let ¢ >0 &nd assume that z € S(g, 4). We will show that
- z2=0. Suppﬂse Zp > 0 for some k € 7. This implies wy = 0, where w = Az +q.
Then (Az) + q& = 0 and hence (Az)y = —qi < 0. This holds for any k € 72

such that 2 >0, and {k € A : = >0, (Az} > 0} # ¢. This contradicts that
A € E, o- Hence z = 0 and (¢,0) s the only solution of (g, A).

~(b) = (c). Suppose v(ALl ) < O for some « € n*. Then there exists a

~ probability vector z, € Rt I such that 0 # a4, 2 0 and :Lf,ALn, < 0. Define

g € R" by . = —Ascra and ¢z be any positive vector in Rlal satisfying
05 + Ar:u:rmn > 0. Define z € R} by z, = & and 25 = 0. Then z # 0. Note that

0 and z are hoth | in $(g, 4). This contradicts (b), Hence (b) = (c).

(¢) = (d). - We shall prove this by induction on n. The result is trivially
true when n = 1. Assume the result to be true for all real square matrices

~ of order less than or equal to n — 1, n > 1. Suppose A € R™" is such that

( )= 0Y CB-E n*. By induction hypothesis, V(Aw) 2 0Vaen®, o#i.
__ -.If posmble, let v(A) < 0. Then there exists a probability vector y € R} such
- that ytA < 0. Since U( W) > 0 Va # A, we must have y > 0 By Theorem_ -

1 4,4, there exists a prc:nbablhty vector z € R’j_ such that Az = v(A4)e, where.:.__
= (1,1, .+ 1)' € R". But then z‘A‘ = v(A)e! < 0 which implies U(A‘) < 0

.-'a contradictxon Hence v(A) 2 0, By 111duct1on the result follaws
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(d) = (e). Suppose A' ¢ E,. Then there exists a z € R} such that z %
0 and (Alz); < O for all £ € o = supp(z). Note that a # ¢. We have
Al 2o = (A'z)y < 0. That is, % Asa < 0. This contradicts (d).

Hence A' € E,. |

(e) = (a). Since (a) = (b) = (c) = (d) => (e), 4 = (A4%)" € E,. This completes
the proof of the theorem. O

Theorem 4.2.18. Semimonotone property is invariant under principal rear-
rangements. That is, for any n > 1,if A € R"™" N E,, and P € R"™" is any

permutation matrix, then PAP' € K,.

Proof. Let P € R™*" be any permutation matrix and let z € R} be such that
z # 0. Define y = P'z. Then y € RY and y # 0. Since A €' E, thére exists an

¢ &€ i such that y; > 0 and (Ay),— > 0,
Since PP' = P'P =1, (Ay); = (AP'Py); = (AP'z); >.0.

Then there exists a 7 € 7, such that
(Py); >0 and (P(AP')); > 0.
Since y = Ptz and (Py); = (PP'z); = z;, we have

z;>0 and (PAP'z); 20,

Therefﬂre, PAP'c E,.

Theorem 4.2.19. Let A € R"*" be symmetric. Then '

(a) i A€ E,if,andonlyif, A€ C,

(b) if Ac Eif, and only if, A € C.

Proof. (a) If A € C,, then from the definitions of E, and C, it is easy to

check that A € E,. |
We shall prove the converse by induction on n. If n = 1, the single entry of A

must be nonnegative as A € E,. Hence 4 is copositive. Assume that the result
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1s true for all real square matrices of order less than or equal to n — 1, n > 1.
Suppose A € R"*" N E, and A = A'. Suppose A &€ C,. Then there exists
ay € R} such that y'Ay < 0. Since, by induction hypothesis, every proper
principal submatrix of 4 is in C,, ¥ > 0. Since A € E,, there exists v € R
such that z # 0 and Az > (0. Choose a real A > 0 such that y — Mo > 0 and
at least one coordinate of y — Ax is zero. Then as Az > 0 and y — Az > 0, we

have (y — Az) Az > 0. Also, asy > 0 and A > 0, Ay*4z > 0. Note
0>yt Ay = (y — Az) Ay — Az) + Ay'dz + Ay — Az) Az > 0,

The last inequality follows as (y — Az} has at least one zero coordinate and by
induction hypothesis (y — Az} A(y — Az) > 0, and the other two quantities are

nonnegative. The above contradiction imphes that 4 € C,,.

Similarly we can establish (b).

RecaH the definitions of Pﬂ, R' 'R,-matrix classes. In the rest of this

section we present some results on semimonotone matnces relating to these

matrn{ classes.

Theorem 4.2.20. (Agana,gm and Cottle, 1979) Suppﬂse A E R"" N P,. Then

the following statements are equw&l&nt

(a}A E R (b)A c R, .(G}A = Q

| 'Thearem 4.2. 21. (Pa.ng, 1979b). Suppcse Ae R"x" NE, If Ae€R,, then
A G Q. |
Theorem 4.2, 22 (.Palig, 1979b). Suppﬂse Ae R NQnNE, Then the

'system : :
| CAz=0, z>0 I (4.2)

has no solution. Further, every nontrivial solution of (0 A) has at least two

nonzero coordinates. In partlcular these asser tmns holds good for A € RN

.,C’ ﬂQasC' C E,.

Proof Suppose (4.2) has a sc:lutmn say . Then ztAt =0, This means in the -
matrix game Al player I1 has a completely mixed strategy. |
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By Theorem 1.4.1 and Theorem 1.4.4, there exists a probability vector y such
that Aty = 0. Henee A = 0. This tiaplies that v(A) € 0. But then A ¢ Q, a

contradiction. It follows that (4.2) has no solution.

Theorem 4.2.23. (Pang, 1979b). Suppose A € R N@nNc, If Ais

symmetric, then

Proof. Suppose there exists an z such that Az = 0, ¢ 2 0, 2 # 0. Then
0 = z'A! = z'A. This implies that v(A) < 0 which contradicts the hypothesis

A€ Q. Hence the result follows.

Theorem 4.2.24. (Gowda, 1990). Suppose A € R™" N E,. Suppose A Is

symmetric, Then the following statements are equivalent ;

()AcR, ()AEC (J4eQ

Theorem 4.2.25. (Cottle, 1980). Suppose 4 € R"*". Then the following

statements are equivalent :

(WAcE (DHAES ()AeQ (d)AeV

Theorem 4.2.26. (Jeter and Pye, 1985). Suppose 4 € R™*" ﬂ Q. Let o € n*,
Define ¢ € R" by g, =0 and ¢5 = (1,1,...,1)". Then either Ay, € @ or there
exists a u € S(q, A) such that (Au); = —1 for some i € a.

4.3. THE COUNTER EXAMPLE

Aganagic and Cottle (1979) characterized the class of Q N P,-matrices ( see
~ Theorem 4.2.20). Pang (1979b) extended it (partially) to E, class and estab-
lished Theorem 4.2.21, He conjectured that the converse must be true, 1.e.,
E,.NQ C R,. However, this was disproved by Jeter and Pye {1989) through
their counter example given in Example 3.3.4. This is an example of 2 E, N Q-
| matrix which is not R,. They conjectured that it must be true for copositive Q-

matrices, that is, C,NQ C R,. Gowda ( 1990) proved that Pang’s conjecture for
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- symmetric copositive matrices (see Theorem 4.2,24). He too mentioned that the
result is unknown for general (assymetric) copositive matrices. We settle this

conjecture through the following counter example (see Murthy, Parthasarathy

and Ravindran (1993a)).

Counter Example 4.3.1. Consider

0 0 1 1

: 0 1 1
A= 0

1 -1 1 0

-1 1 0 1

Note that . |
s'Ar =zl +af + w3+ 2924 2 0V € Ri.

- Thus A € C,. Let z = (1,1,0,0)". Then z € S(0, A). Hence A ¢ R,. In
Example 3.3.3, it was shown that A€ @ Thus A€ C,NQ but A & R,. |

‘Theorem 4.3.2, For every integer n > 4, there exists M € R™" M C, ﬂ'Q
such that M ¢ R,. |

Proof. For n = 4, we have the above example. For any integer n > 4 define
A 0

M = -
0 Iy

?

where A is given in Caunter-lﬂxém_ple 431 It s easy to check that
MeRYNC,NQand that A¢ R,. O | '

- Theorem 4.3.3. The set of Q-matrices in R"*" is not open for n > 4,

Proof. Define, for n > 4, Mk c R**" by

__— _ P % 1]
Ar | S
Mt = | . , where Af=| * % b
AR B R S R 1 ~110
- -1 101

_'lNgte__ that _fgr ._e'ac.ll iilteger k> 1, A" as well as M* are in C'u.
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claim : A*¢ Q for all k > 1.
Let g = (—4, ~4, —1,—1)!, Then it can be verified that (g, A*) has no solution

for all k > 1. For another proof of this claim see Remark 4.4.8. It follows
that {p, M*) has no solution for all k¥ > 1, where p = (¢%,0')' € R*. Thus
MY QV k > 1. But M* converges to M as k tends to co. Here M is as
defined in proof of Theorem 4.3.2. Since each M?* is copositive, it follows that

the set of copositive @-matrices is not open in B**™ for n > 4,

Remark 4.3.4. Kelly and Watson (1979) showed that the set of nondegenerate
Q-matrices in R"*" is open when n < 3 and produced & counter example in

R4 to show that the set of nondegenerate Q-matrices is not open.

Jeter and Pye (1985) proved that R”**NC,NQ C R,. Tt is known that

Pang’s conjecture is frue when n < 3,

Theorem 4.3.5. Suppose 4 € R"*" N E,, where n < 3. Then A € R, if, and
only if, A€ Q | |

Theorem 4.3.6. Suppose 4 € R*"*" N C, N Q, where n € {4, 5}, If Aga €
Q V «a C #i such that [;rl =3, then 4 € R,. |

‘We shall omit the proof of this theorem as it will follow from 2 more general
theorem (see Theorem 4.4.6). The following is an example éf a 6 x 6 C, N Q-
matrix which is not an R,-matrix. In this example there are 3 x 3 principal

submatrices which are not Q-matrices.

Example 4.3.7. Let

0 011 11
0 01111
4] 1-1.1111
1 -1 1111
-1 11111
-1 11111, |

It is easy to see that A € C,. In Example_ 3.3.5, it was shown that A €Q.
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Since A +A, =0, A€ R, Thus 4 € C,NQ but A € R,. Note that A, Z Q,

for o = {1,2,3}. This can be seen as follows : Suppose

0 01
Aea =10 0 1|€Q
~1 1
.

Since Ay, > 0, by Theorem 3.4.1,

App = € Q, where 8 = {1,3}

By Themem 3.4.11, Agg &’ Q. This -::::mtradmtmn leads us to conclude that
Ava € Q.

The above theorems and observations tempted us to raise the following

question (Murthy, Parthasarathy and Ravindran (1993a)) :
Suppose 4 € R™"NC,NQ, n>3, and Aw € Q YV o € n* such that ‘ﬂ:l = 3.

Can we conclude that A € R,?

The answer is “yes” when n = 3,4,5 or 6. This is proved in Theorem

_4.3'.6 and Corollary 4.4.9. However, the answer is “no” when n > 7. This is
established in Theorem 4.5.1. In fact, the answer provided is much more than

what is desired. We shall close this section with the following observation,

Obs'ervatinn 4.3.8. Recently we noticed the example given by Jeter and
Pye (1989) will itself serve the purpose of countering their conjecture that
C.NnQ C R, Note that PPT of A, gwen in Example 3.3.4, WJth respect to

| {5} is given by

0 01 11
0 011 1
M= 1-1111
-1 1111
001'171J

Being a PPT (}f a - matnx ﬂ/f is Q~111&t11x Obviously M is a. copositive

o matrlx
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In a way we are'glad to have missed this initially because we could come

up with the simple and powerful Proposition 3.3.1 and its derivatives in the

process of constructing the Counter Example 4.3.1.

4.4. SUFFICIENT CONDITIONS FOR C,NQ,E,NnQ C R,

In this section we shall present some results on copositive as well as semi-

monotone -matrices and provide some sufficient conditions under which

C.NQCR,and E.NQCR,.

Theorem 4.4.1. Suppose 4 € R**"NC,N Q. Let o be a proper nonempty
subset of 1. Let B = A,,. Suppose there exists a vector z & R[ ol such
that * > 0 and Bz = 0. Let ¢ € R" be defined by ¢ = 0 and ¢z =
(1,1,...,1)* € RS, Then there exists a u € S(g, A) such that (Aujy +1 =0
for some k € &. Further, (Au), =0 and uz = 0 for all u € S(q, 4).

Proof. Since Bz =0, z > 0 and B € C,, by Theorem 4.2.23, B & Q. By
Theorem 4.2.26, there exists a u € S(g, A) such that (Au)k +1=0 for some
k € &. Next, suppose z is any solutlon of (¢, A). Then we have

z‘(Az +q) = Az + ztes = 0.

As A € C, and z > 0, we must have zz = 0 and 2{ 402, = 2'42z = 0. So
2, Bzoa = 0. Also 0 < (Az +q), = (Az)a = AqaZa = Bz,. Let T = z,, Then, for

any real ) > 0, we have ;
(z — AE)'B(z — AZ) = 2'Be — A#' Bz ~ A\z' B3 +’A25*3f (4.3)

Since x > 0, for all sufficiently small A > 0, we have z — A% > U As
B >0, Br =0and B e C,, we have:
for all sufficiently small A > 0

0 < (v - \2)'B(z — AZ) = —Az'Bz + A?5 Bz

Dividing by A and taking limit as A — 0%, we get z'BE < 0 Since z > 0 and
BZ 2 0, we must have Bz =0, This comple.tes the proof of the theorem. O
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Remark 4.4,2. Theorem 4.4.1 may not hold good for semimonotone matrices

in general, Especially, the last assertion of theorem may be violated. The

following example demonstrates this fact.

Example 4.4.3. Consider the example of Jeter and Pye (1989) given by

0 0 0 01

0 0 0 01
A=} 1 -1 0 01
-1 1 0 01
0 0 -1 -1 1

We have seen, in Example 3.3.4, that A € Q. Let o = {1,2,3} and = =
(1,1,2), Let ¢ = (0,0,0,1,1) and v = (2,1,0,0,0)!. It may be verified that
u € §(g, A) with (Au);+1= 0. Also uy = us = 0, but (Au), # 0 as (Au); = 1.

Thus, 4 dc_ies not satisfy the second assertion of Theorem 4.4.1.

Lemma 4.4.4. _Stippo_se A€ R™" nC,NQ. Suppose there exists a z € (0, A)
such that |a] = n — 1, where @ = supp(z). Then there exists an z € R} such
that = #£0, |8 < n—-2, § C a, (Ax), = 0and (Az)z = 0, where 8 = supp(z).

Further, there exists a v C 7 such that [y =n—2and A, ¢ R,.

- Proof. Assume, without loss of generality, z, = 0 and 2; :> 0 V i % n. Then
& = {n}., Since z € S(0, A) and z, > 0, Aya2q = 0. By Theorem 4.2.22,
Ao ﬁE’ Q. By Theorem 4.4.1, there exists a u € R such that u, = 0, u, #
| 0, (Au)n = —1 and (Au), = 0. Since z, > 0, we can choose a positive real
A such that 2q — A, > 0 and z; — Au; = 0 for some 7 € a. Let z = 2z — Au.
Sincé g, =1, = 0, ¢ 2 0. N_oté that % (0 for otherwise 0 < (Az), =
C MAu), = -A <0, Also z; = 0, 2, = 0 and (Az)s = (A2)a — MAu)s = 0.
- Further, (Az), = (4z), ~ AM(Au), > 0 as Az 2 0 and (Au), = —1. Since
zn =0, f = supp(z) C a. Let v = a\ {j}. Clearly z,, is a nontrivial solution
of (0, Ay). Hence Ay € R,. Also |y|=n —2. This cc:mpletes' the proof of the

~ lemma. O

 Lemma 4.4.5. Suppose 4 € R™"NC,NQ, n > 3. Assume there exists
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a z € R} satisfying || = n — 2, 24 > 0, (Az)q = 0 and (Az)z 2 0, where
o = supp(z). Then there exists an 2 € R} such that |[f] < n—3, zp £0, BC o
and (Az), = 0, where 8 = supp(z). Further, there exists a v & 7 such that

ITI =1n—3 and A-ﬂ E’Ru*

Proof. Since (Az), = Aqa?e =0 and z5 > 0, by Theafem 4,.2.22 A, & Q. By
" Theorem 4.4.1, there exists a u € S(q, 4), where ¢ € R" 1s g_iveneby ¢a = 0, |
and gz = (1,1)! satisfying uz = 0, (Au)a = 0 and (4u); = -1 for some
j € & Note that u, # 0. Since z, > 0, we can choose a positive real A such
that 2, — \u, = 0 and 2z, — Aug = 0 for some & € a. Let z = z — Au, Then, as
25 = ug = 0, x5 = 0. Since 2x = zx — Aux = 0 and k € ¢, |B| < n — 3, where
B = supp(z). As (Az)a = (Au)a = 0, (Az)s = 0. Lastly, note that z = 0
implies Az = AAu which is not possible as (Az); > 0, (Au); = —1and A > 0.
Hence x # 0. Since z5 = 0, zg5 # 0 and § = supp(z) C «. Let v = a \ {k}.
Then 8 C %, |y] = n — 3 and =z, is a nontrivial solution of (0, A,,). Hence

A.. & R,. This completes the proof of the lemma.

Theorem 4.4.6. Suppose A € RV*"NC, where n > 4. Assume that A satisfies

any of the following conditions :

(a) A.a € R,V o € n* such that |a| =n 1
(b) A.o € R,V « € n* such that || =n — 2

{c) Aqa € R,V a € n* such that |r:r[-én—3

Then A € Q if, and only if, A € R,,.

Proof. If A € R,, then by Theorem 4.2.21 and the fact that C, C E,, A € Q
(irrespective of the conditions (a), (b) and (c)). | |
Conversely, assume that A € Q. | | |

Case (a). Suppose A satisfles (a). Assume, if possible, that A ¢ R,. Then

there exists a z € 5(0, A) such that 2 # 0, Since 4 € @, by Theorem 4.2.21, z

must have at least one coordinate zero, Assume, without loss of generality that
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= 0, But then z., is nontrivial solution of (0, Aag), Where a = m: which

contradicts the hypothesis (a). Hence 4 € R,.

Case.(b) Suppcise A satisfies (b). Suppose A € R,. Then there exists a

z € 5(0, A) such that 2 # 0. Let o = supp(z) Because A € @ and A satisfies
(b), we must have [a| = n ~ 1. By Lemma 4.4.4, there exists a 7 C 72 such
t

hat |y| =n—2 and A, € R,. This contradicts hypothesis (b). It follows that
A€ R, ' ' - '

- Case (c). Suppose A satisfies (c). Suppose A € R,. Let z € 5(0,A4), z # 0.
Let « = supp(z). Suppose |a| = n — 1. By Lemma 4.4.4, there exists an
r € RY such that z # 0, |supp(z)] < n -2, supp(z) C «, (Az)s = 0

and (Az); > 0. Note that 2 € S(0, A). If |supp(z)] < n — 2, then condition (¢}
is violated. So we must have |supp(z)| = n— 2. But then Lemma 4.4.5 impliés

that Ay, ¢ R, for some v with |y| = n — 3. This contradicts (c). This implies

| Isupp( )| < n—1. By condition (c), |supp(z)| =n — 2. By Letama 4.4.5, there

exists a (n — 3) X (n — 3) principal submatrix of A which is not H,. This once

agaln contradicts the hypﬂthems Hence it follows tha,t A€ R,. Tlns completes

the proof of theorem. D

Corollary -"-1.4.7._ Suppbse A € RN C,. Assume that all diagonal entries of
A are positive, Then A € R, if, and only if, AeQ. D

Remark 4.4.8. In Theorem 4.3.3, it was asserted that A* € Q V & > 1.
This can be proved using Corollary 4.4.7 as follows. Note that sum of first two

columns of 4% is equal to the zero vector. Thus A* '¢ R,. Since the dxa,gﬂna.l

entries of A¥ are all positive, Corollary 4.4.7 implies A* & Q.

Coro]lary 4.4,9, Suppose A € Rﬁx{’ nc, N Q If A, € Q Y « such that
lo:[""*S thenAeR | | | |

Proaf If Am € Q for all _such that lae] = then, as C, g E,
Thearem 4.3.5 1111131163 Aoa € R, fm all o Wlth ]CEI = 3 By Theorem 4.4.6,
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Ace R,

Remark 4.4.10. Theorem 4.3.6 also follows from Theorem 4.3.9 and Theorem
4.4.6. '

The following example shows that none of the conditions (a), (b) and (c) of

Theorem 4.4.6, is necessary.

Example 4.4.11., Let

0 1 0 1

-1 0 0 1
A= |
1 0 01_‘
0 -1 -1 1|

By

Clearly A € C, N R, and hence A € Q. Let a = {1}, § = {2,3} and
~ = {1,2,3}. Then none of A,, Agp and A,, is in R,. Thus none of the
conditions (a), (b) and (c) is satisfied by A. Yet, A € R,.

Theorem 4.4.12. Suppose A € R"*" N E,, where n > 3. Suppose A satisfies

any of the following conditions !

(a) every principal submatrix of A of order n — 1 is an"R,-matrix,

(b) Aue € R, ¥V @ € n* with |a] <n -2,

Then A € R, if,'and Ionl'y if, A€ Q.

Proof. If A € R,, then, by Theorem 4.2.21, A € Q. Conversely, assume that
A€ Q. Let us consider the case (b) first. Assume that A satisfies (b). To the
coﬁtrary, suppose A & R,. Then there exists a z € 5(0, A) such th_af; z+# 0. By -
Theorem 4.2.22, z ¢ R}, . Let a = supp(z). As every principal submatrix of
A of order less than or equal to (n —2) is in R,, we must have || =n —1, We
may assume, for simplicity, that & = {n}. Let B = A, and let Z = 2,. Then,
observe that Bz =0, Z > 0. By Theorem 4.2.22;3 Z Q. By Theorem 3.2.8,
‘there exists a u € S(e,, A), where e, = [, such _tha,t'(A_u),- > 0V i e o and

T4



(Au), + 1 = 0. Note that u 3 0. There are two possibilities : y,, = 0 or u, > 0.

Suppc-se U, = Q.
Since z, > 0, we can choose a real A > 0 such that 2 = z—Au 2 0 and @; = 0 {or

some ¢ € a. Without loss of generality, assume 1 = n— 1. Then 2,y = 2, = 0.
Note that, if 2 = ru, where » is a real number, then as 0 3 z > 0 and u 2 0,

we must have r > 0. But then

< (A:z ),,, = (Aru), = r(Au), = —r < 0.
This contracliction implies that = % 0. Note that
(Az)n = (Az)n — AMAu)y > 0 as (Au)p = -

Let #={1,2,...,n—2}. Then 25 =0, Let 8§ = supp(u). Since u € S(e,, 4),

we have Aggug (Au)e = {) and uﬁAMw == 0
As u # 0, up # 0. This would imply that Ay ¢ R,. By hypﬂthesm (b), we

must have (8] = n — 1 and 8 = «. Hence u, > 0 and A.,u, = 0. Then
(AI);} = (Az)g — A(Au)g = 0 as (Az)g = (Au)p = 0. This implies Aﬁﬁ ¢ R,
~which is a contradiction to (}J) Thus “u, = 0" is ruled out.

Hence Uy > 0.

claim : u; = 0 fcu some ¢ & fi. ) | |
Suppose t > 0. Then, Au + ¢, = 0 or 2 LAl = ~e, < 0. This implies v(A*) < 0.

' By Theorem 4.2.17, ’U(A‘) = 0, Since u is comp]etely mixed strategy, A‘y = (J,
y is an optimal strategy for player. I (see Theorem 1.4.4). In other W01ds,
- there exists a y € R such that y #.0 and A'y = 0. Then y'A = 0 which
“would imply that v{Ad} < 0. But this is not possible as A € Q. Hence the

“claim is valid. - Assume, without loss of generality, that u; = 0. Since every

prmclpal submatnx of 4 of order less than or equal ton —21sin Ra, w; >0

~fori = 2 SIS 1 Let 8= {1}. Then we have
| Aﬁﬁuﬁ = (A‘H.}ﬁ — (hf, (27}, :3‘. 0

'.'where q - (0,0,...,0, - | 1) € R, Repeatmg the argument similar to the

above, we cnnclude that there exists a o € R}~ such that § # 0 and v'Ags = 0.



Let v € R} be defined by v; = 0 and v = 2. Note that if vs > 0, then we get

a contradiction as follows :
0= (vf,Aﬁﬂ)uﬁ = UE(Aggu,g) = UE(Q“) = =V, < 0.

Thus vg must have at least one coordinate zero. Let 8 = supp(v). Then [8] <

n — 2. Since vhAggs = 0 and § C f, we have viAgp = 0. Since
0 % vy > 0, v(Ags) < 0. But by hypothesis, Age € B, N R,.
By Theorem 4.2.21, Agy € Q. Thus v(Age) < 0 leads to a contradiction to

hypothesis (b). It follows that u, > 0 is also not possible, Therefore, A € R,.

We shall now prove the theorem under the hypothesis (a). Suppose A satisfies
(a). Suppose A & R,. Let z be any nontrivial solution of (0, A}, By Theorem
4.2.22, z; = 0 for some ¢. Let o« = 7\ {i}. Note that z, € 5(0, Aqy) as 24 # 0,

and |
Apaza =0, 2o > 0.

This contradicts the hypothesis (a). It follows that A € R,. This completes
the proof of the theorem. O - |

4.5. EXAMPLES OF COPOSITIVE, SEMIMONOTONE
Q-MATRICES THAT ARE NOT R, -

Looking at Theorem 4.4.6 and Theorem 4.4.12, one is tempted to raise the

following questions :

Question 1. Is it possible to prove Theorem 4.4.6, under the assumption

t_ha,t every principal submatrix of A of order (n—4)is R,?

Question 2. Is it possible to prove Theorem 4.4.12, under the assumption

that every principal submatrix of A of order less than or equal to (n— 3)

1s R,7?

The answer to Question 1 is “No.” In fact, for every n > 5, there exists a
A€ R NC, N Q such that Ay € R, YV acn such that | < n — 4 but
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‘A ¢ R,. Question 2 remains open as of this writing. Our belief is that the

answer is “No.”

Theorem 4.5.1. For every n > 5 there exists a copositive (Q-matrix satisfying

the following conditions

(a) Aaq € R, ¥V @ € n* such that |o] < n— 4,

(b) A€ R,.

Proof, Consider the matrx

‘11 0.. 0 1 -1
1 1 0 ... 0 -1 1
11 1 ... 0 -2 -z 1

A= - . ¢ |, where z = ——
' ’ ' ﬂ,—'4
I 1 0 1 —2 —x

1 1 ~—z — T

11 —a ~r T xr |

First observe that A € C,. To see this, let y € R}. Then

n—2

y Ay = yi + s + 2niye + (y1 + v2) Z yi + ysAeoye,
=3

where 8 = {3,4,...,n}. Note that, to show that y*Ay > 0, it suffices to show
ys Aseye > 0. Since Agy is symimetric and all its leading principal minors are

all nonnegative, Agg is positive semidefinite. Therefore, y5Agye > 0 and hence

A€ C..
Clearly A s not R, as the vector

EE '(0-022, 2n—-4n-——4) € 5(0, A).

Let o= {n} and ﬁ {n—1}L Note that A(ﬂ_l) = A,. In order to show Aisa
Q- matrlx it is sufficient to show Aqe and Agp are Q-matrices (see Propamtmn |

3 3.1 ) We W1ll in fact show Aﬁﬂ and Aﬁ'ﬁ are H,-matrices,
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Suppose A,, is not R,. Then there: exists a vector Y = (Y1, Y2, vy Uno1) € Rl
such that A,y =w withy 2 0, w2 0 and y'w = 0. As the first row i1 A, 1s

nonnegative with the first entry equal to 1, by the complementarity condition
th = 0. From the last row in A,,, we can infer that there exists an index j # 2

or n—1 such that y; > 0. We may assume, without loss of generality that j = 3.
We now have y; = y,—1 > 0 and y3 > 0, Thus (A..y)s = (1 - ﬂ_q)yg + 3 > 0.
But this contradicts the complementarity condition. Hence we must have y; = 0
and y2 = 0. Since y is a nonzero nonnegative vector, we assume, without loss

of generality, y5 > 0 . This implies y,,_y > 0. Also y,—1 = (n—4)ys. Now
it follows that (Aaa¥)2 = ~Yn-1 which is negative. It leads to a contradiction.

In other words, y; = 0 for every ¢ = 1,2,...,n — 1. This proves A, is an

H,-matrix. Similar arguments show tha.t Aﬁ,g is also an H,-matrix, Hence A

is a Q-matrix which is not R,.

It 1s easy to check that every principal submatrix of A of order less than or

equal to (n — 4) is an R,-matrix, This campletes the proof of the theorem.

Note that in the above matrix A there is however at least one pmnmpa,l
submatrix of order (n — 3) which is not @ and hence not' R, - for example

take the submatrix omitting the first two rows and the last.row along with the

corresponding columns,

Example 4.5.2, When n = 5, 4 can be written eﬁplicitly as :

11 0 1 -1
11 0 -1 1
A=|11 1 -1 -1
1 1 -1 1 1
11 -1 1 1
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Example 4.5.3. When n = 7,

11 ¢ 0 0 1 -1
11 0 0-0 -1 1
11 1 0 0 -1 -3
A=|11 0 1 0 -} -4
11 0 0 1 —3 —3
R e i T
]

We are not able to settle Question 2 mentioned earlier. Consider the fol-

lowing example with n = 5.

Example 4.5.4. Let

-~

L2
2 1—-3-_--34_
A= ]-2 + 1 -1 4
L1 1 4
-1 =1, 0 2 4

Observe A is a semimonotone matrix but not copositive, It is @ but not R.,.

@ property may b_e_. proved using Proposition 3.3.7, and regarding f,, note that
‘the sum of the first four columns gives the zero vector. Here every 2x2 (n—3 = 2

for n = §) principal submatrix is R, with the exception of just one submatrix

which is

. r . =

1 —1
-1 1|




4.6. RESULTS ON SEMIMONOTONE Qo-MATRICES

Theorem 4.6.1. Suppose A € R**" N E, N Q.. If A is symmetric, then A is
in Q,.

Proof. We will show this by induction on n. If n =1, there is nothing to
prove. Assume that the result is true for all real square matrices of order less

than or equal to n — 1. Suppose 4 € R"*"NE,NQ, and 4 is symmetric. Let
o be any subset of 7 such that |a| = n — 1. Without loss of generality, we may
assume that & = {n}. Suppose A,y & @, Then by Theorem 3.4.5, there exists
au € R? such that Au+ e, > 0, u'Au 4 u, = 0, and (Au), = —1. Since A is
symmetric Fy-matrix, A is copositive. Asu > 0 and v'Autu, =0, u'du=0
and u, = 0. Since A is symmetric copositive matrix, it follows that (Au) = 0
(see Theorem 4.2.8). This contradicts (Au), = —~1. Hence; Ava € Qo As o
was arbitrary, it follows that every (n — 1) x (n —'1) principal submatrix of A

is in Q,. By induction, it follows that A € Q,,

Pang (1979b) proved that if A is a B, N @-matrix, then every nontrivial
solution of (0, A) must have at least two nonzero coordinates. Paraphrasing, if

A is a E, N Q-matrix, then A cannot have a diagonal entry zero and all other

“entries in the corresponding ‘column nonnegative. We have the fol]owing results

for Q,-matrices in this direction.

Theorem 4.6.2. Suppose A € BR*™*" N E, N Q,. Assume that for some
0, Jo € M, @i, = 0 and a;j; > 0. Then there exists a & € 7o such

that ag;, < 0.

Proof. Since a;,j, is positive, we can choose a ¢ € R" such that ¢;, < 0, g; > (
for all j # 1p and F(q,A) # ¢. Since A € Q,, S(q,A) # ¢. Let z € S5(q, A
and let o = supp(z). Let § = a\ {i}. Since az;, = 0 and ¢, <0, 8 # 0.

Since zg is positive, we have

0= Agiyzi, + Apszg + gp.
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 Note that g3 > 0. If A, 20, then
Aﬁﬁzﬁ = =4 — z:’nAﬁiﬂ < 0,

which in turn implies that v(A4;) < 0. This is not possible as A € E,. There-
fare, Ay, must contain a negative entry, Thus, there exists a & € 7 such that
Qriy < 0, O

Corollary 4.6.3. Suppose A € RV" N E, N Q,. Assume that every row of A
contains a positive entry. Then every nontrivial solution of (0, 4) contains at

least two positive coordinates. O
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CHAPTER 5
FULLY-SEMIMONOTONE MATRICES

5.1. BACKGROUND

Multiplicity of solutions to LCP has attracted several researchers. In partic-
ular, uniqueness of solutions to LCP has been of special interest. A result of
Samuelson, Thrall and Wesler (1958)- which was later discovered by Ingle'ton
(1966) independently- states that a matrix A € P if, and only if, (g, A) has a
unique solution for every ¢ € R", Confining uniqueness to only those ¢ which
lie in the interior of union of complementary cones, Cottle and Stone (1983)
introduced a new class of matrices called U-matrices (see also Stone (1981)).
A matrix A is said to be in this class if (g, A) has unique solution whenever
g is 1n the interior of K(A). F‘urther, they enlarged this class by demanding
uniqueﬁess of solutions to (¢, A) only for those q_’s'whit:h lie in the interior

of any full complementary cone; and called it the class of fully-semimonotone

matrices (EY).

Unfortunately, the literature on these classes, EJ and U, is very limited.
We are not aware of any nice characterizations of these classes other than
those given in the aforementioned references. In Cottle and Stone (1983),
it was established that P C U Q E!. Further, Stone (1981) showed that

o N U C P, and raised the following conjecture.

Conjecture 5.1.1, The class of fully semimonotone matrices within the class
of Qo-matrices is contained in P,. That is, Euf N, C P,

In this chapter, we establish that the conjecture is valid for matrices of
orde: upto 4 x 4. Fur_therf we establish the same for symmetric matrices of
general order and identify and prove that the conjecture is valid for a number
of subclasses of R"*" N E/ for any positive integer n. Within E/, R5~matﬁces
are {J-matrices. Thus, Eg N, CQCQ,. Itisof interest to know whether
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L Ef NnQ or E‘f N R, is c:ontmned in P,., Recently, Sridhar (1994) proved that
Ef AR, C P,, We are not aware of this result having been mentioned in

the literature. The question of whether B/ N Q is contained in P or not still

remains an open problem,

In section 5.2, we present some elementary properties and known results
on fully-semimonotone matrices and some related material that will be needed
in the subsequent sections. Section 5.3 presents our main results on matrices
~ of general order. In section 5.4, we establish Conjecture 5.1.1 for matrices of

order 4 % 4 and show that it is valid for 5 x 5 and 6 x 6 matrices with some

additional assumptions.

5.2. PRELIMINARIES

Definition 5.2.1. Let A€ R"*". Aissaidtobea fully—senumonotone matrix

if A and all its (leg:tlmate) PPTs are semimonotone matrlces The class of

fully- -semimonotone matrices is de_nﬂted by Ef.

Remark 5.2.2. Note that the four examples given I Exmﬁple 1.2.8 are all EE{ -
- maftrices. It may be observed, fram the corresponding figures in that exa;mple |

that if a ¢ is in the mtermr of any complementary cone, then ( q, A) ha.s unique
salutmn Tlus IS 2 geametrm characterlzatmn of the class of fully-sem1monotone

'matrlces
Example b:2.3, Let 4 = g ] Note that A € E Alao -
PQ(A) =1y ¢ Eo, where o = {1}. Observe the Figure E on next page.

Note that any ¢ in the interior of the full cone corresponding to B = {1,2}
has two solutions - one with —A and the other with [~A, I3] as complementary
bases. For instance, if ¢ = (=2, ~1)%, then z = (1,1)* and z = (2, 0)‘ are two

~ distinct salutmns of (g, A), that S, 2,7 € S(g, A), and z ;é z.
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Figure E

Deﬂnltlon 5.2.4, Let Ae R""" and g€ R". A solution (w z) of (g, A) is

said to be nondegenerate if w + 2z > 0. g is said to be nondegenerate with
respect to A if S(q, A) # ¢ and every solution of (¢, 4) is nondegenerate. |

Remark 5.2.5. If ¢ is nondegenerate with respect to A, it means that whenever
g € pos Cs(a), for any «, then it is in the interior of pos C'A(a) In other words,

"¢ is nondegenerate with respect to A if, and only if, it does not lie on the

boundary of a_.hy complementary cone

Theorem 5.2.6. Suppose A € R™". The following statements are equivalent.

(a) AcES

(b) for every g nondegenrate with respect to A, (¢,A) has a unique so-

- lution,
Proof. Follows from Lemma 1.2.15 (see also Theorem 5.2.17).
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Remark 5.2.7. The geometrical interpretation of Theorem 5.2.6 is that if ¢ lies
in the interior of any full cone, then through a principal pivotal transformation

¢ can be transoformed into the interior of the nonnegative orthant in such a

way that the transformed LCP has unique solution.

Observation 5.2.8. It is clear, from the definition of Euf and the fact that PPl

is an equivalence relation, that every PPT of a E/.matrix is itself a E/-matrix.

2

Inheritance and Invariance Properties of E/ ,

Theorem 5.2.9. Suppose A4 € R“"“HE;'. Then Ay € B!V a € n*, Further,
if P is any permutation matrix in R"™", then PAP' is also a E/-matrix. |

Proof. The first assertion is obvious because any PPT' of A, 1s a principal
submatrix of a PPT of 4. The second assertion follows from the fact that

every PPT of M with respect to any o € n* is also a PPT of 4 with respect
to some 4 € n*, where M = PAP' Since B, is invariant under principal

rearrangements,. the result re&dlly follows. O

Theorem 5.2.10. Suppose Ae R*"NEJ. Let D and E be any positive
diagonal matrices in R"™*, Then DAE € E/, In other W{)I'ds Ef prﬂperty is

invariant under pos:tlve row and column scaling.

Prcmf. Suppose

‘where a € n*, Let

. M _ DAE -::: Dﬂ'ﬂ' 0 Aﬂﬂ' .Aﬁﬁ ‘EEEEI 0
| . | | 0 Dsa || Asa Aaa || 0 FBas
- _ : M__ DnaAqrnEgﬂ- D&a’AaaE‘ﬁ
" . Dﬂ'nAﬂ-ﬂEﬁﬂ ‘DﬁﬂAﬂ'ﬁEﬁfﬁr ]

| _Observe that det (DMAMEM) & 0 if, and only if det A, # 0. Therefore PPT
0f M with respect to « is well deﬁned if, and only if, PPT of A with respect
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to o is well defined. Suppose det A,o 7+ 0. Then

EMAw)'Dsy  —Ei(Awa) ' Awalaa
SOE(M) — 1] -
i D&&Aﬁa(Am:r) Daa Mcmr

where m .
Hﬁ& — D&ﬁA&&Eﬁﬁ . DﬁﬁA&ﬂ(Ana)ulAa&E&ﬁ
- Dﬁ*ﬁ'(Aﬁ& — Aﬁa(Aaﬁ)nl Aaﬁ)E&&-

Simplifying p.(M), we get :

'EZl 0, pzt o
(A) = | T o(M o 9.1
Pa(A) OD&&_?()_ 0 Fra | (5.1)
| EZl 0 DIl .
Since p.(A) € E,, and | and are both positive.
| U Dﬁﬁ- 0 Eﬁﬁ'

diagonal matrices, the right hand side matrix of (5.1) must also be in B, (it

is easy to check that E, property is invariant under row and column (positi?e) o

scaling, Thus, p,(M) € E,. The theorem follows.

Remark 5.2.11. We are not aware of an explicit mention of Theorem 5.2.10 |
or the formula (5.1) in the literature. However, Cottle gives a similar formula.
relating the transpose of PPT of A to the PPT of A (see page 73, Cottle, Pang

and Stone (1992))..

Remark 5.2.12. From the definition, it is clear that EE_" C Eu. Since P, C F,
and every PPT of a P,-matrix is alsg P,, it follows that P, C Ej . Thus,

P,CE/CE,.

Observe that .P,_q. property as well as E, property are both préserved under
transposition. But this is not the case with E/. Consider the following example.

Example 5.2.13. Let

=

10
A=|-1.01
010
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Note that A has two PPTs, namely,

0 ~1 0 (00 1
D=1 00 and C= (0 0 1
1 00 110

It easy to check that the value of any principal submatrix of any of A, B and
C is nonnegative, By Theorem 4.2,17, A, B and C are E,-matrices. Hence
A€ E;:‘:' Now look at

0 -1 0
At=11 0 1
0 10, |
Note that ] )
0 —1
0a(AV=| 0 0 1 |¢E,where a={2,3}.
| B ) S

Note that p,(d4') ¢ E, and hence A' ¢ E/.
Recéll that for 4 € R**% the union of complementary cones is given by

K(A)y={g€ R*: S(¢,A) £ 8}.

Definition 5.2.14. Let A € R*", A is sé,id to he a U-matrix if for all
g€ R (qg,A) has a unique solution whenever ¢ is in the interior of K(A).

. Remark 5.2.15. From Theorem 5.2.6 and the above definition, it follows that
U C E/. Since (g, 4) has a unique solution for all ¢ whenever A € P, PCU.
- Thus P C U € E/. The following example shows that these inclusions are

proper,

Example 5.2.16, Let

| -1
. A= 0 :
| L . _ 1 | 1 - |
 Observe that A _is a U—m’atrix_ but is not a P—Inatr_ix. Whereas
o -1 '
B = U
.'. 1 0 .-..
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is E/-matrix but not a U-matrix.

As mentioned earlier, the classes U and E’ were introduced and studied by
Cottle and Stone (1983) (see also Stone (1981)). We present some results from

Cottle and Stone (1983) which are relevent to our discussion in the sequel.

Theorem 5.2.17. Suppose A € R**" N E/ and det A,, # 0 for some « C 7,
then for all # C 7 such that

B # a, pos Ca(B) N interior (Cy(a)) = ¢

Theorem 5.2.18. Let A € R"*". Then A € U if, and only if, either A ¢ E

or there exists e, # C 7 and 2, 7 € 7i such that

(a) a#0,1#,

(b) ( det Ay)( det Agp) # 0 and there exists a nonzero vector v € R”
SLIGII that v‘B = 'U'tM = U, where B = (Cg(d))'{‘f} and M = (Oﬁ(ﬁ)){i},

(c) there exists z € R*"! with z > 0 and Bz € pos M.

Theorem 5.2.19. Let AIE R™™ N Etf N Q,, then A ¢ U if, and only if there .

exists o, 8 C n and i, j € 7 such that

(a) a# B, i#],

(b) ( det Aua)( det Ags) # 0 and there exists a nonzero vector v € R*
such that v'B = v'M = 0, where B = (Ca(a))g) and M = (Ca(8))

_ (c) (Cau(a)); and (C4(f)),; are on the oppi:isite sides of span B = span
- M, where “span B " stands for subspace generated by columns of 5.

Theorem 5.2.20. Q,NU C P,

. Even though Conjecture 5.1.1 is true in a number of special cases, it re-

mains an open problem. In this context two q’ues't'ions that can be raised
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1

re: (i) s E/NQ a subset of P,? (ii) Is B/ N R, a subset of FP,? The ques-
tions are relevant because @ is a subset of @, and within E;' , R, 1s contained
in . Recently Sridhar (1994) settled the latter question usiqg degree theory.

We present the proof, briefly introducing the relevant material.

Deflnition 5.2.21. Let A € R"™*" N R,. Let ¢ € R" he such that |S(g, A4)| <
co. For any z € S(g, A), define the index of z, denoted as 1,(A4), as det Aon/|det Aual,

where o = supp(z). Define degree of A at q as :

deg(A,0) = 3. ix(4).

2€5(q,4)

The degree as defined above is .well defined. Further, the value of deg( A, q)

is the same for all ¢ € R" for which [S(g,A)] < co. This common value is

called degreé of 4 and will be denoted by deg(A) (see Cottle, Pang, and Stone
(1992}). The following theorem relates degree of an R,-matrix with that of its
PPTs (sec page 595 Cnttlt* P:mg, and Stone (1992)) -

Theorem 5. 2 22. Let A€ RM*" N RcJ Suppme det Ana 74 U fm some « € n*

Then |
.  deg(a(4)) = (det A/l det A, deg(4).

Theurem' 5.2.23, Let 4 € R™¥" NE/ N R,. Thén deg(A) = 1.

| Proof._ Follows from the fact that for any"q > 0, |S(q, A)| =_.. _1."a,n'd det Agy =

- Theorem 5.2.24. (Sndhar (1994)) Let A € R“”"ﬂEf ﬂR Then A belcmgS-
to F,.

Proof. Suppose, to the Lontrmy, assume that det A,_Lm' < 0, for some o« € n*
- Let M = p,(A). Then from Theorem 5.2.22, it follows that deg(M ) =
_Thls contradicts Theorem 5.2.23. Hence it follmws that Ae P,

In the rest of thls se:ctlon we present some results on Nn, E n N, and

almost P ma.tnces These are needed for our results in the next sectlon
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Definition 5.2.25. Let A € R™*"™. Say that A is an almost P,-matrix (almost
P-matrix) if det Apy 2 0-(det Ay > 0) forall v € n*, « # i and det 4 < Q.

Definition 5.2.26. Let A € R™*™, Say that A is an IN,-matrix ( IN-matrix )
if for every o € n*, det Ay < 0 ((det Apa <0).

Remark 5.2.27. Obviously the IN, and N properties are inheritance prop-
erties. That is if A € N, (A € INV), then Ay € Ny (Asa € N) V a € 0.
Further, N, and IN properties are invariant under principal rearrangements.

It is a well known fact (see Pye (1992)) that a matrix A is an almost Fy-
matrix (P-matrix ) if, and only if A is nonsingular and A7} is an IN,-matrix
(N-matrix). A matrix A is said to be an N-matrix if it can be obtained as
a limit of a sequence of N-matrices. If A € R"*" is an N-matrix, then there
exists a nonempty'subsét a of 7t such that A,. and Azsz are nonpositive, and
- Aus and A;, are nonnegative {see Mohan, Parthasarathy and Sridhar (1990),
Mohan and Sridhar (1992), and Parthasarathy and Ravindran (1990)).

Theorem 5.2.28. Suppose A € R™™" is an almost P,-matrix. Let B = A™'.

Then there exists a'nonempty subset o of 7 satisfying :

B.::m S. 0: Bﬁﬁr S 0: Bﬂ'ﬁ’ Z 0 and B&cr .:.?.. 0.
Proof. Suffices to show that B is an N-matrix. It is easy to show that for
all positive ¢ sufficiently small, 4 + &l is an almost P-matrix. Therefore,
(A + &)™ is an N-matrix for all positive ¢ sufficiently small. Note that
(A+el)"? converges to B as € converges to 0 and hence B is an N-matrix.

5.3. PROPERTIES OF E/ N Q,-MATRICES

In this section our main goal is to establish the validity of the long standing
Conjecture 5.1.1 for a number of subclasses of R™" N B/ N Q,-matrix class

for any general n. We shall start with the following lemma.
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Lemma 5.3.1. Let A € R"™*"n E,NN,. Suppose A < 0. Then there exists a
principal rearrangement M of A such that M is a strict upper triangular matrix,
that is, my; = 0 for all ¢, € @ such that ; > j. In other words, there exists
a permutation matrix P € R"*" such that PAP*® is a strict upper triangular

matrix,

Proof, We shall prove this by induction on n. If n = 1, the result is trivially
true. So assume that the lemma is valid for all square matrices of order upto
(n—1), n > 1. Now assume A € R"*" satisfies the hypothesis of the lemma.

If every column of A has a negative entry, then, as’ A < 0, we have
e'A <0, where e=(1,1,...,1)' € R™

This implies v(A) is negative. This contradicts the hypothesis that A € F,,.

Hence A must have a zero column. Suppose A;=0. Then mterchange the first
~column and j* column and then the ﬁlst row and j** row. 'In the resultmg
matrix the first column will be zero. Since both E, and N, properties are
invariant under prmmpal rea,rra,ngements the new matrix is also in E,N N..

Hence assume, without loss of generality, that A; = 0. Let & = {2,3,...,n}.
Then A,, € R("“l]"("'” NE, NN, Also A,, £ 0. By induction hypothesis,
| :there exists a permutation matrix P & R(”‘“”"(“ 1} such that PA, . Ptisa StI‘lCt

Upper triangular ma,tmx Let

p=|t !
I-U P-.
- Then | -_ . |
o o i Bt ] '
PAP! = Vo AiaP |
K PAMP*

| Smce .PAMP‘ is a , strict upper trlangular matrlx 80 is F’AF‘t o

| Theﬂrem 5.3.2. 'Suppose Ae RMP*NE,NN,. Assu;t’ne that A 1S nnnsingula,r.

91



Then there exists a principal rearrangement
U
’ Aﬁﬂ A[il‘.‘ﬂ' i
of A such that a # ¢, o # i, Aas, and Azsz are nonpositive strict upper

triangular matrices, and Aas, and As. are nonnegative matrices,

Proof. Since A is nonsingular IN,-matrix, A7 is an almost P,-matrix. By The-

orem 5.2.28, there exists a nonempty subset « of 7 such that A,, and Azz are

nonpositive, and A,z and Azn are nonnegative matrices. Since A is nonsingu-

lar, & # fi. By Lemma 5.3.1, there exist permutation matrices M € Rl*1¥lol and
L € RiaIxial gych that M A, M and LAzz L' are strict upper triangular matri-

ces. Let . ]
M 0
. 0 L i

Then =~ ) )
| : B
P AP MA, M- MA_.L

| | LA&E,Mt LA&&Lt
Since Az,, Aaz, M, and L are all nonnegative, we ha.ve LAMM ‘ > 0 and
MA.sL* 2 0. This completes the proof. O | |

P =

Theorem 5.3.3. Suppose A € RV*" N E/ ﬂ Q.. Assume that every proper

principal minor of A is nonnegative., Then A belongs to P,.

| Prnof. Suffices to show that det A > 0. Suppose det A < 0. Then A is an
almost F,-matrix and hence A~! € N,, Since A™'is a PPT of A, A €
BEB/NN,NQ, Let B= A-'. Then by Theorem 5_.3.2, there exists a prin-
cipal rearrangement of B such that B,, and Bss; are nonpositive strict up-
per triangular matrices, and B,z and Bj, are nonnegative matrices for some

o € 7 with o # ¢ and o 75 2. For simplicity, we assume a = {1 2,...,k},
k < n. Observe that |

b; >0Vi, jensuchthati>j (5.2)
In particular, B, > 0. By Theorem 3.4.2’, Bgs € @, where-ﬁ. = m Note
that, from the above observation (5.2), the last row of By, is nonnegative. By
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Theorem 3.4.2, B, € Q,, where v = {1,2,...,n—2}. Thus it can be seen that

all the leading principal submatrices of B are in (.

We will now show that Bo(rery = 0 which will in turn lmply that B (;;.f_l) = 0

leadmg to the contradiction that B is singular,

Let .
| Bcrcr Ba
M= { (k+1) |

Bey1a 0
Being a leading principal submatrix of B, M belongs to Q,. If Ba(ks1) has a
positive entry, then by Theorem 3.5.1, M & Q,. Hence B,41) = 0. It tollows

that A belongs to F,. O

We shall now identify a number of subclasses of . B/ for which

- Conjecture 5.1.1 is valid.
Corollary 534 Suppose A € R**" N EJ N Qy. Then A belongs t.o P,

" Proof. We prove this by induction on n. If n = 1, the result is obviously
true. Hence assume that the result is true for all real square matrices of order
less than or equal to n —1,, n > 1. Suppose A € R™" N E! N Qg Then
Ape € RF-1X(-1) Ef nQ, for all @ € n*, By ‘induction hypothesis,
Aea € P, for all & € n” with [of < n. By Thearem 5.3.3, 4 belﬂngs to

PO _
'Corollary 5.3.5. Suppc:se A & R™" E/. .Assume tha,t A satlsﬁes any one

of the followmg conditions :

(a_) A s nﬂnllégative Qd'Fmatri}{
| | (b) A+ Alisa nonnegﬂ,tive Qn-matrix
| (9) Als symmetric Qumairix
- (d) /-1 is a Z-matnx

{e) Ais &-E-Jnatri}{' |
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(f) A is a copositive-plus matrix.

Then A belongs to P,.

Proof. This is a direct consequence of the above corollary and the fact that if
A satisfies any of the conditions (a) to (f), then 4 is in Q, (see Lemma 3.4.13,
Corollary 3.4.16, Theorem 4.6.1, and pages 181, 196, 201 of Cottle, Pang and

Stone (1992)). O -

A Note on a Topological Aspect of E/

It 1s a well known fact that the set of P-matrices is an open set. Intuitively one
feels that the interior of the set of E/-matrices in R™™ should coincide with
P-matrices of R™*", Qur aim, here, is to show that this is indeed the case. We
are not aware of a specific mention of this result in the literature. Gur main
interest here is to establish this as an application of our Theorem 5.3.3. The
following results are fairly well known (see Cottle (1980) and Cottle, Pang and

Stone (1992)).

- Theorem 5.3.6. Suppose A € R"*" N E,. Then for every positive ¢, A + &l ’

is In ' and hence in Q.

Proof. One can easily check that if A € EB,, then A+ el is _in F. The second
assertion follows from Cottle’s (1980) result, £ = Q. O

Lemma 5.3.7. Closure ({ R™" N P) = R"™*" N P,
Proof. Folio#.rs from the fact that if A € P,, then A + el € P for 53;11 e> 0.0
Theﬁrem 5;3.8. Let T={Ae€ R™": A€ Eg} Then

. interior(T') = Rﬁx“ N P

Proof. In the light: of Lemma 5.3.7, it is sufficient to show that if M is in the
interior(T"), then M belongs to the interior of R*""NF,. , N
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Since M € interior{ T ), there exists a § > 0 such that
Bsy(M)={A € R"":|[M - Al <é} CT,

where [|.|| is any norm on R™", We will show that if 4 € Bs(M), then A € P,.

This will then imply that M is an interior point of {4 € R"™" : A € B},
Observe that A € Bs(M) implies A +¢I € Bs(M) for all positive ¢ sufficiently

small. Also A+¢l € E/ for all positive ¢ sufficiently small. By Theorem 5.3.6,
qciently small. By Corollary 5.3.4, A+¢l € P,

A+el € Q for all positive £ su
for all positive ¢ sufficiently small. It follows that A € P, as R"*" N P, is a

closed set. Therefore, M is an interior point of R*™" N P,. Since interior of

RN P, is P, the theorem follows.

Theorem 5.3.9. Suppose A € R*™" N E/, where n < 3. If all the diagnn&ll

entries of A are positive, then A is a P,-matrix.

Proof, If A 1sa2X 2 Ef-matrlx, then it is easy to check that even with one
dlagﬂnal entry pDSlthe, A has to be a P,-matrix. Now suppose A is a 3 X 3

" matrix satisfying hypothesis of the theorem. Assume, to the contrary, that A
is not a P,-matrix. Then A is an almost Py-matrix. Let B be the inverse'uf A.

Then B is an N N E!-matrix and must have all diagonal entries Zero. Slnr.:e
all diagonal entries of 4 are positive, §; and bj, must have the same sign for
all i # j. Since B is in E/, this would imply that B is nonnegative, But then
“det B must be positive which is a contradiction. Therefore, A is Py~matrix.

From the above theorem a logical question that can arise is that ; If 4 is
in R™™ N E} and a; > 0 for all 7, then is true that A belongs to P, ? Our

investigation for n = 4 prmred that this is not true for n > 4. Cunmder the

following example

- Example 5.3.10. Let '

2 -1 1 2

VU T T I
-1 21 -1
2 -1 -2 2




Tt can be checked that A is an almost P,-matrix and that all the PPTs of A
are E,-matrices. Thus, A is a E/-matrix with all diagonal entries positive but

Ad P, as det A < 0.
Fully Copositive Matrices

Definition 5.3.11. Let A € R"""™, Say that A is a fully copositive matrix if A
and all its PPTs are all copositive matrices. This class will be denoted by C.

Remark 5.3.12. As C, C E,, it is obvious from the definition that Cuf C EEf

Observe that positive semidefinite matrices and permutation matrices are Cc{ -
matrices. Further, if A € R"™*"N.C/, then Ayq € C’;f for every o € n*.

Example 5.3.13. Let
| T _ r

5] 0 1] 0 —1
a=| Y] B=lY Y, andc= .
11 10 0 0

Note that A is P-matrix (and hence EY) but not a fully copositive matrix
(A~! does not belong to C,). B is fully copositive matrix but not a positive

semidefinite matrix. Lastly C' is E/-matrix but not a fully copositive matrix.

The following theorem establishes that within the class of symmetric ma-

trices there is no difference between C/ and E‘f :

Theorem 5.3.14. Suppose A € R, Assume that A is symmetric. Then A
belongs to C! if, and only if A belc:angs to Ef

5y we need to show that Ef C C'f Suppose A € Ef
Since A is symmetric, A € C,. Let a € n* be such that det Aos # 0. We will
'ShDW that p.(A4) € C,. Let B = p,(A). Since A is symrnetnc (Am) = Ao
| and (Aqs)' = AM Therefare |

Proof. Slnce Cf C E’

(Awa) 0
_ _ 2 0 (AlAw) |
| Sinc_e Ae B!, (As) !, and ( A/Aua ) are both E,-matrices. Obéerve, also,

that both (As.)~", and ( A/As. )} are symmetric. Therefore, (A..)~", and

= ty _
(B+5Y
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. ( A/A,. ) are copositive matrices, Hence % (B + BY) is 8 copositive. Since
z'Bz = ;z'(B + B')z, it follows that B € C,. Since a was arbitrary, it follows

that A € C{{. O

Recall that for n < 3, if A € R™*"NE/ and if ay > 0 for all 7, then 4 € P,
In Example 5.3.10, it was shown that this assertion does not hold good for

n = 4, However, for 4 in C/ we have the following results.

- Theorem 5.3.15. Suppose A € R™*™"n C'l;f. Assume that a; > 0 for all ¢ € 7,
Then A € P,.

Proof. We prove this by induction on n. If n = 1, then the result is trivially
true. Assume that the result is true for all (n — 1) x (n — 1) real matrices,
n > 1. Suppose A € R™** n C/ and a;; > 0 for every ¢ € f2, Observe that
for all @ C 7 with Ja] = n~ 1, Ag, satisfies the assumptions of the theorem.

. _SﬁPPOSE":AQf P, By incuction hypothesis, 4 is an almost P,-matrix. Then
detA <0 and A™' € CF M N Let B = A" ', By Theorem 5.3.2, there exists

a subset o Gf n such that :
qﬁ# # i, Bm_’i_ﬂ BMSO BM>UandBM?_D

Smce B e C‘u, we must ha,ve Bm = 0 and Byy = 0 W:thout loss of generahty,

we may assume | | . N .

. B=| _0'  Hea
o - Baa 0
Let k = . Smce B is nonsmguhr we must have |af = [afl = k. It is easy to

 see, from the structure of B, that if we dmp any row and the correspnndmg
~ column from B, then the lesultmg (12 ~ 1) X {n'—1) I)rlnc:npal submatux of B
must be smgular Let = {1} ‘Then | -

| Whiﬂ;h contradicts the ];y;ﬁbﬁhﬁ.ﬁis. It folloﬁrs that A belongs to P,

| Curnllary 5 .3.16. Suppose A € R**" C'f Assume that 4 has at most one
zero diagonal entry. Then A belangs to B,
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Proof, The proof is exactiy similar to the proof of the above theorem. Note
that induction hypothesis works because if A has the property that it has at

most one zero diagonal entry, then every principal submatrix of A also has this

property.

Our next goal is to establish that C/ N Q, C P,

Definition 5.3.17. Let A € R™™ and let & C 7 be such that pos Cu(a) is
full. Let B = Cy(a). Then pos By is called a facet of pos Cs(a) provided

Bl=n—1.

Definition 5.3.18, Let A € R"*" and let o, C 7 be such that pos Ca(a)
and pos C4(8) are full cones, Say that the cones pos C‘A(a) and pos Cy(B) are
incident to each other on a hyperplane H if the relative interior (with respect

to H) 5 of H M pos Cu(a) Npos Cy(fB) is nanempty

Lemma 5.3.19. Suppose A € R™*" N C/. Suppose «a is a nonempty subset
of 2 such that pos Cy(e) is full and is incident to R} (= pos C4(f#)). Then

det A, > 0.

Proof. We shall prove this by induction on n. When n = 1 the lemma is
obvious. Assume that the lemma is valid for all matrices of order n — 1; n>1,
Let A € R™" satisfy hypothesis of the lemma along with a subset a of .
Let B = CA(C}.‘) Since A € CZ, pos C4(a) and R cannot intersect in the
interior. For simplicity, we assume S = pos I, I3, . , In] M pos Cy(er). Note
that the common hyperplane containing the facets of posI and pos Ca{ @} is
given by H'= {z € R" : z; = 0}. Choose {n — 1) linearly independent
vectors ¢, ¢%,...,¢" Y from the relative interior of S. Let B, B, .. B;(n-l)
be the generators of the facet (of pos C4(a)) containing S. Then there ex:sts a

nonsingular matrix X (strictly positive) of order (n — 1) such that
[qlqur vy q{n—l)] — '[Bi'l ) B:'m: vos 'B‘l'(.ﬂ—l)]'X'

From this it follows that the first coordinates of B“,B,g, oy Biin-1) are equal
to zero. Note that as A€ C/ I, camml: be a generatar of pos C'A(a') HBHCL

t
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l € a.

Case (i). —A,1 &€ H.

In this case we must have o = {1} as otherwise the interior pmnts of the line
segment joining — A, and ¢' will belong to interiors of two cones- pos C4(a)

and pos [~Ay, Is, Is, ..., I,]. This is not possible as A € C/ (follows from
Theorem 5.2.17 and the fact that C/ C E/). But if a = {1}, as pos Cy(«) is

full and A4 - Cc{‘ det Aﬁﬂ = @11 > 0.

Case (ii}). —A; € H.
Since pos Cy(a) is full, we must have a k € 7 such that —A; € H. Without

loss of generality assume k = n.

Suppose a| < n,say (n = 1) € a Let f=7a\{n—1} and let M = Agg. It
can be verified that M tﬂgether.with o satisfies the assumptions of the lemma.
That is, pos Cpr(a) is full and is incident to R“'1 on the hyperplane H =
A{(z1y0 0y Zn-2)y2a)' € R™1 02y = 0. By induction hypothes:ls, det M’M > 0.

But My, = Aaq and hence det Ay, > 0

Suppose IrJ:] =n. Since S C pos[—Ays,...,—A -], there exists a positive
vector (£1,...,%(-1))° such that |
|' (23 a2 cern A2(n—1) I — 0 -
| G-ty Gz e Quen)net) | | Zeny ] |0

Ifay >0foralli €y ={2,...,(n—1)}, then it follows that v(A,,') is negative
which is a contradiction. Hence there must exist an index & 6 v sudh that

| o | ._ N 0. 0
a1 < 0. But then for 6 = {1, k}, Agg = o &’ O’u, which cc:-ntradlcts
Qi1 Qpk

that 4 € C'f It follows that IrJ:] cannot be equal to n. ThlE completes the

proof of the lenuna 0

“L'emma 5.3.20. Suppaée Ae R™*nCY, ASsurhé that «, ,3 C # are such that
pos Ca(a) and pos Ca(B) are full. If pos Cy(a) and pos C4(8) are incident to
~ ench other (with respect to a common hyperplane containing the facets ), then

-
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det Aaq and det Ags have the same sign.

Proof. Let M = po(A). Note tliat the principal pivotal transformation merely
transforms the cones of K(A) to the cones of K(M) through the nonsingular
linear transformation ¢ going to Cx(a)~'q¢. In particular, pos C4(c) gets trans-

formed to R? and pos C4(f) to posCy(y) where v = a A f. As pos Ca(a)
and pos C4(B) are incident to each other, it follows that R} and pos Cp(y) are .

incident to each other. By Lemma 5.3.19, it follows that det M., iz positive.
From Theorem 1.2.19, it follows that det A,, and Agg have the same sign, O

Theorem 5.3.21. Suppose A € R"*"NCS N Q;. Then 4 € P,

Proof. Let o € n* be such that pos C4(a) is full. Let ¢° € interior pos C4(«).
Let » > 0 be such that B,(¢°) C posCys{a). Since A € Q,, K(A) is convex.

Define the set

P={ge R":q=Ap+ (1~ Ne for some A € {0,1] and some p € B.(¢°)},

where ¢ = (1,1,...,1) € R" Clearly P is an open set and is contained in
the interior of K(A). Note that for any § and v, if P N pos C4(B) N pos Ca(v)
is nonempty, then pos C4(f) and pos C4(v) are incident to each other and by
Lemma 5.8.20, det Agg and det A, have the same sign. From this it is clear

that there exist § = g, a1,...,0 = a € 7, m 2 1, such.that pos C’A(a;)'is

| full for cach i {1,2,...,m}, and pos C4(e;) and pos Cﬁ(t‘lf-n) are incident to o

each other for ¢z = 0,1,...,m — 1. From Lemma 5.3.19 and Lemma 5,3,20, it

follows that det A,_.m 1s positive, As a was arbi-tra,ry, this completes the proof

of the th-ec}rem. o

Remark 5.3.22. It may be observed that Lemma 5.3.19 is valid when C/ is
replaced by U. This gives an alternative proof of Stone’s result that U NQ, C
- P,. Unfortunately the lemma is valid for Eg -matrices when n < 3 and fails for

n 2 4. The following serves as a counter example.
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Example 5.3.23. Let

o

T —

L
O 20 e
1

0
1
0
1 0

!

r
ek
O = O o

T

It can be checked that A € B/ and pos — 4 is incident to R** (on the
hyperplane H = {z € R"™": z; = 0}). However, det A < 0. It may be worth

noting that A is not a Q,-matrix. This can be seen as follows, Since A;, > 0,
if 4isin Q,, then A, o = {2,3,4}, must also be in Q,. But from Theorem

3.4.14 we can see that A,, is not in Qu

- Sign Structures Gf Eg-Matrices-

The following results on sign structures of E/ -—matrlces are crucml in eatabhsb

mg the reaults of next sectmn

~Theorem 5. 3 24. Suppc.-se A E R”“2 M EJr Then .S'P(A) cannot be equdl to

any of the following :

""Féﬁ-_" T =1, [+ +1 . [o+"

_. Pr(}clf It is easy to check that the value of any matrix having the above sign

pattern given by (a) or (b) is negative and hence cannot be a E, -matrix, |
It A has the s:gn pattern as in {c), then the second diagonal entry of pa(A) is
negative, where o = {1}, Hence A cannot have the sign pattern given by (c)

Similarly we can show that A cannot have the sign pattern given by (d). O

Thearem 5.3.25. Suppose A € Rﬂ“"‘3 NE/. Then SP(A) cannot be equa.l to
~any of the following :

.'
*

I
.
H.
*
]

K= .
'_(a,) + 0 + | (b) | * 0...'.. H{d) | —
* +".0_J, L+ | |

+ o %
o -
F amina ¥
o
o

-+ D

o - io1



® — *
“ Proof. Suppose SP(A)=1{ 4+ 0 -

* + 0
Let M be a PPT of A W]th respect to « = {2,3} . Then note that
0 +
SP(M,.) = SP((Aaa)”") = L 0 . Further,

SP(M.::&) — SP(“_(Acrcr)_lAnﬁ)

= SP(_(AHI:,)"1)SP(A¢,&)

0 - | [+ %
—_ 0__*- -

_Similarly,_.S'P(M&a) = (%,—~). Since M is a PPT of a E‘{-—matrix, mq = O.
Thus, | |

& -
SP(M)=| %

%
0
4

r::+

S

Note that SP(Mgzg) = ® -(_) , where f = {1,3}. This implies M&' E7,

This shows that SP(A) cannot be equal to the one given by (a). Similarly we
can show that SP(A) cannot be equal to the one given by(b)

Suppose SP(A) is given by (c¢). Choose z; > 0 such that (13 + agszs) is
negative (we can do this as SP(A) implies that a3 < 0 ). Now choose 23 >0
~such that '(a“ + asn s + az ;) is negative (we can do this also as a3; < 0 ). Let |
z = (1,29,z3)". Then z'A < 0, This contradi.c.ts the hypothesis that A E-El{. |
Hence SP(A) can not be equal to the one given by (c). A similar argument
will show that SP(4) cannot be equal to the one given by (d). O .

Coro'llary 5,3.26. Suppose A € R**" N EJ. Then no principal submatrix
of A or any of its principal rearrangements can have any of the mgn patt.erns
listed in Theorem 5.3.24 ancl Theorem 5.3.25. | |
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Proof. Follows from the fact that every principal submatrix of E/-matrix is

also 1n Et{

Theorem 5.3.27. Suppose 4 € R**°, Assume that SP(A) is equal to one of
the following sign patterns: |

D D ® o
+ (0)| — 0 +
0 + 0

—

B D
@[+ 0

s —

If ay9 +ayz >0, then A & E.:{

Proof. Suppose A € E/. Since a;3 + a3 > 0, we may assume, without loss
of generality, that a)2 > 0. If ¢;; > 0, then, by Corollary 5.3.26, A & E/!.
So ay = 0. But then the first diagonal entry of p,(A) is negative, where

= {2,3). This contradlcts our supposition that A € E/. It follaws that

AgEf -
Suppose SP(A) is given by (b) Let B;= w.(A), where o = {2, 3}. Then

(e @ @
SP(B)=|[+ 0 +
[+ + 0

Since a15 4+ a3 > 0, it can be seen that b, + b1.3 > 0. From the earlier argument

B &’E{{ Therefore, A & E{{.D o

5.4, E.{ﬂ Qu-Ma_ﬁrices of Orde_r Less Than 7
- Theorem 5.4.1. Suppt}s_e Ae RPn E;f N Qo. Then A G-Pn-

| 'Prdof. In view of Theorem 5.3.3,-it 15 :sufﬁcient to show that:AM € P, for all
aC {12, 3} such that || = 2. Since A € E/, a;; > 0 for all i. Suppose there
exists an o C {1 2,3} such that \crl = 2 and Asq € P, Since E/ N Q, property

' is invariant under prmmpal rearrangements We may assume, mthout loss of
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generality, that o = {2,3}. Since Ay« € R¥*N E/ and Ane ¢ P,,

SP(A) = :

0
-+
By Theorem 4.6.2, a14 < 0 and a5 < 0. By Theorem 3.5.2, we must have either

(@z21,a31) < 0 or (ag,as) > 0. Since (aiz,a13) < 0, (az1,aa) > 0 (Corollary
5.3.26). But this will contradict Corollary 5.3.26. Hence, it follows that A

belongs to F,.

We now establish Conjecture 5.1.1 for 4 X 4 matrices. The outline of the

proof is as follows. We first show that every 2 x 2 principal submatrix of a
R** N E/ N Q,-matrix is in P, (see Lemma 5.4.3) and then show that every

- 3 x 3 principal submatrix of a R‘”"_’1 N E/ N Q,-matrix is in P,. Then invoking

Theorem 5.3.3, we conclude the result.

Lemma 5.4.2. Suppose 4 € R*™n QD Assume that az; = ay - 0-, and aay
and a3 are positive. Then there exists a PPT B of A such that, subject to

principal rearrangement,

533 — b44 - O, b31 > 01 b34 >0 and b43 :)0, - (53)

Proof. Let o = {3,4}. From Theorem 3.5.2, it follows that A, # 0. If
A, contains a positive entry, then it is easy to see that A or a prinqipal
- rearrangement B of it will satisfy (5.3). If A,s has no positive entry, then it

must have a negative entry. Let M = p,(A)., Then M3z = Mg = 0, and may
‘and mys are positive. Also M. ; will have a pﬂSltave entry Then a principal

‘rearrangement B of M will satlsfy (4. 1)

Lemma 5.4.3. Suppose A e R n E;r N Q.. Assume that agsz = ayq = 0,
az4 > 0 and a43 > 0. Then A;, and A; both must have negative entries. -

Proof. Let o —_-.'{2, 3,4} and f = {1, 3,4}. 'Frbm th’e_hypothesis, Ao and Agp
are not in P,, If A, is nonnegative, then by__Theorem-_3.4.2, Awa € RPN
E/nQ,, and by Theorem 5.4.1, A, € P,. This contradiction implies that A; o

104



must have a negative entry. Similar argument shows that A; must contain a

negafive entry, O

Lemma 5.4.4. Suppose 4 € R™n E/ N Q,. Then every 2 x 2 principal

submatrix of 4 is in B,

Proof. Suppose A has a 2 x 2 principal submatrix which is not in P,. Let

o« = {3,4}. Without loss of generality, assume A, & F,. Then, we must
have a3 = a4y = 0, and a3y and a3 positive. In view of Lemma 5.4.2, we

may assume, without loss of generality, that as; i3 positive. By Theorem 5.3.25
and Corollary 5.3.26, we must have a3 > 0. Since A € E;', a1 and aq9 are
nonnegative. By Theorem 4.6.2, a3 < 0 and this in turn implies az;, = 0

(Corollary 5.3.26). By Theorem 3.5.2, we must have :

either gy > 0 Di’ a4 > 0.

- Suppose a4 > 0,
- Then by Corollary 5.3.26, a4 > 0 ELlld by Theorem 4.6. 2, ay < 0,

Since ao, < 0, a4 = 0. Thus,

(o - & o |
spAy=|*® T 7.
e + 0 0 +

+ 0 4+ 0

" Note that @y < 0, as other wise it would contrﬁthct Lemma 5.4.3.
B}f Thec}rem 5 3. 27 (143 — CI.H = (., Thﬁﬂ

® - 0 0
* & — -
SPpa(A)=| = 0
'~ 0 + 0

This cantradicts. C'.orollary 5.3.26. So we mt.ls't have aqi < 0 and a4 > 0. This
~in turn implies a3 > 0 (Corollary 5.3.26), a1y < 0 (Theorem 4.6.2) and a4y = 0
" (Corollary 5.3.26). Let § = {1,2,3} and v = {1,2,4}. Observe that A3 and
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A, are nonnegative. This implies that Agg and A, are in P,, which m turn

implies that aj3 = aq4 = 0. Thus,

r@*ﬂ—-
| * @ — 0
SPA=14 0 0 4
0+ + 0

As Agg € Q,, by Theorem 3.5.3, we must have a2 < 0. Observe that

f+ — - 0
* + 0 -
SP(palA))=1 o _ o &
- 0 + 0]

This contradicts Corollary 5.3.26. Hence every 2 X 2 principal submatrix of a

RN E;' N Q,-mmatrix must be in P,. O

| Theorem 5.4.5. Suppose 4 € RN E/n Q.. Then A belongs to F,. .

Proof. By Lemma 5.4.4, every 2 x 2 principal submatrix of A isin P,. If every.
- 3 X 3 principal submatrix of A is also in P,, then by Theorem 5.3.3, A € P,.
Suppose there exists an a C {1,2, 3, 4} such that |a] = 3 and Ava & P,
Since EY N Q, property is invariant under principal rearrangements, we may
‘assume, without loss of generality, that o« = {2,3,4}. Since every 2x 2 principal
submatrix of A is in P,, we must have det A,, < 0 and (A )™’ E_E;f nIv,.
Let B = p,(A). Then B & Egﬂ Q.- Note that Byy = (Aaa)™' € B, N N,. By

Theorem 5.3.2, we can assume, without lﬂss_ of generality, that

@_'c:m(D-
o S

- 0
SP(Baa) =1 0
_ e

|

Since B, is ndnsingular, by > 0, bgy > 0, and bys < 0. Siﬁce'B € B/NQ,, all
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its 2 X 2 principal submatrices are in P,. This implies byy = by3 = 0. Thus

_Q * *-
Qa —
SPB)=| " 0
* 0 0 4+
ok + 0 OJ

From Theorem 4.6.2, b;; and &4 must both be negative. This in turn 1mplies
that by, and by are both nonnegative. If b3; < 0, then we can choose a ¢ € R
with SP(g) = (+,+, —, +)* satisfying F(q,A) # ¢ and S(q,4) = . So bz

must he positive. But then

—

i
SP(A)={ ~
*

* K
0 0O
- 0

0
- 0+ 0

S

This contr&dwts Corollary 5.3.26. It follows that every 3 X3 principal submatrix

of Aisin P, Invc}kmg Theorem 5.3.3, we conclude that A belongs to P,

The fﬂllowing result is due to Jeter and P-ye 1989). We give an altematwé
~ proof of this using Theorem 5.4.5 and Theoremn-4.2.20.

- Theorem 5.4.6, Suppose A€ R™n E/D Q.. Then A belbngs to R,.

Proof. Since @ € Q,, by Theorem 5.4.5, A € P,;,. From Theorem 4.2.20, it
fqllows ‘that A belongs to R,. O

._ In Murthy, Parthasarathy and Ravindran (1993b), 1t was shown that if
- A e ¥ Efﬁ o, and @i > 0 for all 2, then AeP, In this direction we have

~ the fGHOWIHg result for A € R5*5,

Theorem 5.4.7. Suppose 4 € R‘r’}‘E’ﬂ)‘f)—'ﬂQﬂr Ifa,. > 0 for allz €{1,2,...,5},
| then A belongs to B,

'Pr't)-nf Since AE Ef and ag > (0 for all 7, by Theorem 9.3, 9 every 3 X 3 prln— .

cipal Submatux Df Aisa P -md,trlx If every 4 x 4 prmr:lpal submatrix of A isin
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F;, then by Theorem 5.3.3, A € P,. Suppose 4 has a 4 x 4 principal submatrix
which is not a P,-matrix. Without loss of generality, assume A,, € F,, where
a = {1,2,3,4}. Then, by the above observation, det A,, is negaﬁive and
(Aaa)™? € B/ N N,. Let B = (Aaa)”!. By Theorem 5.3.2, there exists a

principal rearrangement of B whose sign pattern is :

0O B B 06 6 @&,
either (a) v e e or (b) v 0o e,
® @ 0 o 0 0 0 @
& @ 0 0 D6 B 0

We may assume, without loss of generality, that SP(B) itself is given by either
(a) or (b). Suppose SP(B) is as in (a). Note that det B < 0.

. det B
Since ayy = —£2, where = {2, 3,4},

a11>0-'="1"b42:>0, .()_34{08.11(11?23}0.

Similarly,
age > 0= 047 >0, big > 0.
aga_::0=>bg4>0.
d44>0=#'b31>0, boz > 0, b9 < 0.
Then i} i
o '- 0 - + @
SP(B) = 00 + +
. . @ —_
-—_ + 0-
Let D = p,(A). Then
. 0 - + & x|
0 0 + + =«
SP(D)=|+4+ & 0 - «
| + + 0 =%
*  *x Kk Kk @_
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Write D = (d;;). If dys 2 0, then D, > 0, and Dgg & El{ N Q,, where § =
{1,3,4,5}. But Dgg has a principal submatrix with determinant negativé. This
contradicts Theorem 5.4.5. Hence dys < 0. By Theorem 4.6.2, d5; < 0. Let y =
{1,2,6}. Then v(D.,,) is negative (observe SP(D.,.)), which contradicts the
hypothesis that A is in E/. Thus, B cannot have the sign pattern given'by (a).
So B must be given by (b). But this sign pattern is ruled out because it implies

that a4y = 0 which contradicts the hypothesis. It follows that A is in P,.
f

Corollary 5.4.8. Suppose A € R***N B/ N Q. Assume that all the diagonal
entries of A (or any of its PPTs) are positive. Then A belongs to R,.

Proof. If A (or any of its PPTs) has all diagonal entries positive, then A
belongs to P,. Smce Aisin Q, A belongs to R,. O

Theorem 5.4.9. Suppose A € Rﬁ":ﬂ N Ef N Q,. Suppose A satisfies the

~ following conditions ;

(a) ag > 0foreveryi€ {1,2,...,6),
(b) A has property (D),

(c) for every PPT M of A, v(M*) > 0.

Then A belongs to P,

Proof. Note that Corollary 3.4.7 implies Ay € Q, for all o C ‘{1 2,...,6}
with |a| = 5, By Theorem 5.4.7, A,, € P, for every o C {1 2,...,6} such
- that |a| = 5. By Theorem 5.3.3, A belongs to P,. O |

‘Concluding Remar_ks

- Aganagic and Cottle (1987) gave a mnstructlve charactenz&tmn of F,N Qﬂ and
- showed that Lemke’s algorithm processes (g, A) when A is in this class. Hence N
for all the cases for wh_lcll we ha,ve estabhshed Conjecture 5.1.1 this result w111
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apply. We believe that Conjecture 5.1.1 can be established even in the case of
5 X & matrices using sign patterns. It can be shown, using sign patterns, that
if Ae BE/NQ, and every principal submatrix of A of order (n — 2) is in P,
then A belongs to P, (this also follows from Theorem 5.3.3).
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