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INTRODUCTION AND SUMMARY

This thesis deals with an asymptotic study of estimators in some

discrete time and continuoua tims models,

The first part deels with time series data modelled by moving
averages and autoregressive processes. Higher order asymptotics beyond
asymptotic normality, of the usual sstimators have been dealt by
Phillips (1977,1978), Durbin (1980), Ochi (1983), Tanaka (1983),
Fujikoshi and Ochi Clgﬂd). a(n"%/z) or 0(n ") expensions aro ubtained
by these authore undsr the aséu;ptinn of normelity of errors, Thafraasop
for this wes the lack of suitable. expansions for ﬁbrmaiizad sums of
dependsnt random uactnra, 'Recently Gotzs and"Hipp (léaz).have'baen'able
to amipe this problem, They_ﬁaue obtained Edgawmrth expanaiﬁn-forwnnr-

malized sums of maékly dependsnt random vectors under fairly gsnaral

unnditinns.

We start by showing that these recent results of Gotze and Hipp
(1583 ) enable us to derive general.aaympﬁutic expansions for the . distoiw

l-r‘l .

bution of asutocovariances from certain linear processes of the form

. - |
Y, = 5 &8¢ Nhﬂra (Si) are leleds with QUFFiDiEntlY high oxder

t r=g F twr .
moments. The main conditions imposed are sxponential decay of the
) aéquancé (6r) and Cramarts condition on (El,ﬁi)- These rssults are
applisd to moving average and autmregréasiua processes (of any order )
under sﬁhbility conditions. Edgsworth expansions of any order (depending |
upon the ekistenca of moments of .El) Par fhe distribution of the usuai'

pstimators follow from the main result, The Berry~Esssen bounds in all

these situations hold as a corollary. These are. ths aontents of Chapter l.



 (11)

Having proved that the normal approximetion is of the GrdE:
D(n"l/z), 1+ is natural to enguire whether théra is a better approxXima-

 tione This idea stems from the recent concept of bootstrap.

The bootatrap 1s haaic lly a nunfparametrin procedure and was
intrnduoad by Efron (1979441952) Sincé then, it has also been used in
Jarametric aituatlans- Its perFurmanca an simulated data, both in para-
metric and non~parametric situéyians is quite encouragings GSee a.gp'

Efron (1979,1982°,1985), Bickel and Freedman (1983), Freedman and Peters

(1984a,byp) oto.
| o S |

Simultaneously, various authors have t;ieﬂ’tm provide theorstical
justifinatiun as.to'wh§3thié method performa well. The main works iﬁ
" this direction are by BLDRBI and Freedman (1980 1981), Singh (1981),
' Beran (1982 ) and Babu and Singh (1984). Theaa resulta dealk wmth agcLTacy
of the bootstrap approximation in uariﬂua 8enNses (E.g. aaymptntin NOTME -
lity, Edgeworth expansions etc.) mainly for sample mean type statistics
(or their functionals), quanﬁiles etee in the i.1i.d. situation, whars

the basic asymptotic distribution theory is normals For nice functionals,.

the buntﬁtrap apprnximatiuh_ﬁutvpaffnrma the normal approximation.

It was anticipated by Uariﬁus,autnmra_that the hbootstrap would
work (in the sense of yialding the same aéymptntic distribution as for
the urigiﬁal statistic) even in dependent situations provided the
- resampling takes care of thes dependencs prﬁpﬁrly.irﬁraadman_(1984) CONee
firms this by showing that it doss work for two stags lsaat.squares g8 tl~
mates in linear auturégraasiuna with pmssible‘éngananua variables ortho-

gonal to srrors.



- (iif)

In Chapter 2 us show that the bootstrap not only works, but,
as in the.i.i.d. case, Works well in autnragressiane which satisfy the
usual stahility condition. In fact, the bootstreppsd distribution of
the least squarses estimates approximates the original distribution with
an errer n(n'd/z). The idea is to develop a hootstrap Edgﬁwﬁrth
expansion parallsl to the ariginal Edgeuorth expansion. (For this no
gxtra conditions are needed).' Thallaading term of these two expansions
. agres and thé difference is D(n_lyz). Thus the bnntatfap apprﬂkimatimn

~ beats the normal epproximation almost surely.

In Chapter 3, we prove simllar results for the moment estimators
in moving average models. The usual invertibility condition is assumsd

‘along with moment conditions and Cramax!s condition for 4the--erTons.

‘The second peart deals with aﬁymptotins of estimation for cone
| tinuous time data modelled by stochastic differential equations. Here

the observable quantity is X, .(0 < £ £ T) uhich satisfies the stochastic

diffsrsential egquation
dX(t) = f£(&,X(%))dt + du(t)

where W(t) is a_standard'Brownianrmotiﬂh. The problem is to mstimate &

'_'and study its asymptotic prnpértiea ag T =>m@.
| K -
- The particular (linwar) case, P(Byx) = T ai(B)bi(x), has besn
- | - | i=1
daaltﬁby séﬁergl authors, @.ge Taraskin (1971, 1974), LeBreton (1977),
Broun and Heultt (lQTS),lkulinic (1975)1 Lee and Kozin (1977) Etc.'Thase

authors show that the melee. is weakly/strongly donsistent, aaymptntiﬁally



(iv)

normal and e??icient-undar the main assumption of existence of a

stationary ergodic distribhtiun;

The mel.es in the non-linear cass.haa been considered by
Kutavante (1977), Prakasa Rac énd Hubiﬁ (1981) and otherea Prakasa
Rao and Rubin (lQBl) ﬁrGUad the strong cunsiaténay and éaymptntiu:
nnrmalit? of the Melese when the"pa:amater --sbﬂca ;'ia [,’.-.'L,lj, under

the assumption of statioparity and argadicifyi

T_ In Chapter 4, ue'traét the non=linear case Qith the ﬁauametar
spage a3 the unit ball of BRd; Strong consistency and asymptotic
normality of the m;l;a: are proved, Ws do not agsume statlonarity and
ergadigity.- However, the conditions wWe impose are easier tﬁ verify
under the éhnuE assumptiuns. The main technique is to uss Kolmogorov
type inaéualitiea Prom the theory of diffusion processes. Thess are
- used to get probabilistic bounds for supremum of certain pruﬁaéﬁaa,

and are of independent intereste

The spirit of Chapter 5 is in a sense Bayssian. Suppose thers
18 a prior probsbility on the parameter space. A classical theorem for
pnétéﬁiuré lnusaly stated says'that the posterior density given the

! to a normal density

© ided. abservatiore (X,), 1< n, converges in L
ﬂnder a fixed Eﬁ. -See,LeEam (1955, 1958)s Thie result was sxtendad to
discrate time ﬂarkuu processes by Borwanker, Kallianpur and Prakasa Rao
(1971). 1In the context of diffuaiuh,procesaes,.Prakasa Rao (1981)
proved the resylt in a special.liﬁsar c'asrle. anl:l Erxtahdad it to diffusion

fields ip Prakasa Rao (1983). With tha'halp of techriques deualppad in



(v)

Chapter 4 and a formula for mrdiﬁary differentiation under stochastic
integrals due tu'Karandikar (1983), we obtailn this theorem for non=-
linsar diffusions. A5 nmnsaquenﬂes, the Beyss estimators and Mele e
axrea TJ'-/2 squivalent a.s. and hence the asymptotic bshaviour of the

Bayss esﬁimatmfs are same as those of the mel.c« shown in Chepter 4.

In Chapter 64 we have mads a small attampt to study the rate of
sonvergence of the melsss to normality. Mishra and Prakasa Rao (1985)

atudied the cess f(8,x) = =8&b(x), & > 0, Their results yisld the
wl/5 |

model dX(t) = w~8X(t)dt + dW(t) dis the continuous time analogue of

rate O(7 Y when applied to the case ‘b(x) = %, But note thsat Ehe
the first order asutorsgressive prooess with i.i.d. N{0,1) errors.
Giuén the results of Chapter l, better rates are ﬁatUrally axpected for
this model, We obtain the Berry~Esseen bound of the order 0(T™/%)
for the normalized meles. The proof involves a suitable changs of
measure and an application of Ito's Furmuia. The éenéral non=1inear

case seems to be hard and perhaps new'tanhniquaa are heeded to deal with

this situation.:
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CHAPTER 1

FOGEWORTH EXPANSIONS FOR AUTOCOVARIANCES
FROM LINEAR PROCESES WITH APPLICATIONS

1.l Introduction

A wide class of time.sexies models epecify the nbseruatinhe (?t)
in the form of & linear process Y, 5 érst , Where (Ei) ig an
. =0 | |
1.1.d, sequance. The usyal ARMA (p,q) modsels pelnng ta this class, The

- M
autocovariances n El Yth_, y & = 0ulseee,p (or their slightly
psrturbsd furms) play an important rule in time series analySLE._ |

Under mild conditions, these autocovariancas haua-an aéymptatic
nmrmal.diatributinh. Blume and Wittwer (1981) dariueﬂ convergence rates
fPor individual autucovariancas;' Kersten (1984) gensralized'this to vector
of autonuuariancés under decay conditions on (6 } ‘and moment conditions
aﬁ (B e Tha HRNH (p,q) models satisfy these conditions. The rates

ubta::.nad are D(n" /2 +8) fur sofe £ > G.

lla assume stronger conditions (exponential decay of tha'cunétanﬁs

1’8i)) to obtain higher ordex appro-

- ximations (Edgewnrth axpansiuné)'For the distributidn of the autbcnva-

(ér) ‘and Cramer's condition on (&

- riances, This Is done by applying racent results nf Gotze and Hipp (1983)

'The ARMA (p,q) models satisfy oL condltluna.

The Berry-Essean bound holds as a cﬂrullary. HuwauEr, the Berpry-
| Essesn bound is expectad tu hold under much weaker conditionse. For axample

the Cramer's condition EQEms superfluous., But_thia_uas not our primary aims



So this ﬁnssibility was not explored, Ue were intersstesd in exploiting
the expansions. | |

As applications of theses expansions, we obtaln Edgeworth expansions
for the distribution of the least squares sstimators in autaragrasaiua-
processes and the moment estimators .in moving average pracasses.- Thase
results remove the_rathep strict condition of normality of arrors aaauﬁed
| by seuergl authors to derive Edgamﬁrth axpansions of the méximum likeli~

~ hood estimate for the autoregressive parameterss See Remark 1.3.2(5).

Tha validity of these expansions. alsc give rise io fhe pussibility
of bootstrapping the distribution of certain estimators in autoregressive
- and moving average processses with high accuracy. These are the subject

- matter of the Chaptera 2 and 3,

This chapter ie a revised form of Bose (19650).-

- 1ls2 The _main results .

Let (Yt) be a linear procsss such that Y = Z érat-m
whafa Wg assums the following conditions on (6r)-'and (61) :

(c1) (81) is an Lei,de saduendé such that

Eat = 0, Eai = 1, EEi(-8+l)< @ for some s > 3,
@ H
(C2) ¥ largem, X lﬁrl < o exp(=am)y &> 0
| B r=m |

(C3) .(Bl’si) satisfies ths Cramer's Bnnditiun,-i.ar}

36> 0,d>0 D% (L1l >dy LE axp(it'(al,ai)_)l_ < Lle$.



Qafine the uariablea Xit = Y Yt-i-ﬂji’ i =0y)1ysneyp and lset
l

X, = (Xnt’“”’(pt) vo0(142,1)

ie the theoretical autocovariance of ordsr i, ie.s,

IHEra Gi

t'ji_= YV eeg S04 :

Hssuma.further that .

| R
(C4) T = linm D(n”i/2 25 Kt) is positive definite.
| n=—> o t=l |

Note that under our conditions (Cl) anpd (C2), T ==((Gij)) gxists and

is glven by (Rnderémn'(197l), PP-475)_,

g..= 2 (0_,,0 ,.+0 ) +Oiﬁj(EBi ~1) " eea(le2.2)

o r+i. o+ i r-iar-l*-:]
The sarliest warks on asymptotic expansion for dependent variables
are those n? Statulsuiciua (1969,'1970), Gotze and Hipp (1978) and

Durbin (1980)s For our purposes, the recent work of Gotze and Hipp (1983)

is most covenient. We take the help of the following results of Gotze

and Hipp (1983 ).

Let (Xt) br.a 'Iﬂk'. valued reindt}rn variables on (Q ; 3‘( y F‘);

Introduce the following conditions.
Let there be O~fields ﬁ:)j (urite of |} i)j) =0.) and a> 0
o o i=e - |

such that
C(1.201) EX, =0W¥t.

‘C(l.2.2) CEHX T LB L, < ® ¥t -f‘c:.r some 8 2 3.



rtm | |
c(l2.3) 3JF vy _ed — SEI Xy = Yoo I £ ceaxp(= am),

C{le2.4) ¥ A 3?\);: Be;z):ii*m’
LP(A 11 8) - P(RIP(B)I £ _c;axp(- am) .

C(l245) S dy 5>03¥% ¢l > d,
rri-m

ElE exp(it’ & X}/ Dy d#ni<l~8< 1,
| j=n_m J J | |

D(l’;?.ﬁ) v AE ﬁgﬁg y ¥ Nypym,

EIP(A/ 2 30 3 # 1) =P A/ D, 0< 13 < mp)l < ceexp(= m).
| _1/2 I |
C{(142a7) 1im 0(n 5 Xt) exists and 1s positive definite.
| n=> @ t=1 | |

Define the integer 5 < s by

8 =

[ B _if’ 6 is sven
0o |

Swwl if E. is odd.

Let mn - be the usual Fuﬁctian associated with Edgeworth_ekpan—
, .
sions. Lst ¢E be the normal density with mean 0 and disperaion

matrix Ly wharE"E is as'dsﬁined balouw,

| | g | | n
Define § = n_:u./z_ L XL 9 &= lim D(n"l/2 % 'xt).
| o =l n—»m £=1 |

The ?Dllqwing.results are due to Gotze and Hipp (19é3).

Theoram 1.23'1. Let £ & ]Hk —3> R denots = measurable f’l_lrictiun such
Cthat  IF(x)1 < M1+ ix 1l ) for every x & R". Assume that C(l.241) -

C(le2.7) hﬁld. Then thera_sxists a positive cnnatént ¢ mot depending



on f and M, and for arbitrary k > 0 there exists a positive constant

C depending on M but not on £ such that

ler(s) = Jray 1< outryn™) + o(n~(e248)/2)

" whers m(F,n"k) = jﬁsup(lf(xfy) w f{x)1 8 Iyl g_n-k)¢z(x)dx.
The term o(.) depends on f +through M only,

Corollary 1i2,2 ¢+ Under assumptions C(le2.l) ~ €(1,2,7) we have.uniformly

for conveX maasurabls C C R ki -

P(sn's c) = wn,s(c) +ﬁ(n"(3421/2).

For non-nagatiua intégral k-vactors q = (gl,...,ak) define

Q Q.
Dq'="'""'""'l ¢ o "'"""""‘"'""5 - ’

> 1 3%

Xy Ky

K

Theoram l—._‘Z-B : Let f3 R" ~>»R denote an infinitely differsntiable

| | e k
Punction such that [P(x)}{ < M(L+ (x Il ) for svery x € R" and
'lDa?(x)llglmaﬁl + hx % for avery non~hegative integral Ke-yesctor with

pt‘SitiUE constants Na ’pa‘l AESUITEE_-C(I.-Z:]—) - 8(112-4) and B(llzl'?) hﬂld#.
~ Then

Ef’(Sn) - jfdwn,s =in(nﬂ(5-2)/2)'

Thanrem laéﬁﬁ t Under conditions t(;.E.l)'u-B(l.Zid) and 8(1-2.7),

E(1+ IS uE“_)‘i'( 15, 11 > ((s=2)1og n)/?) = o(~{o2/2),

We shall also nsed the following lemma to prove our main theurém__



LEHIFHE llzls | LEt HI = (Ai’ i — Q’l’iil'p)’ B' - (Ui’ i = U,l,ll!,‘p) |

Whﬁre A — z (Ui’I‘S + Ui-E)BS § _.:1..“""" U,l,--nfp »

Then undsr (84), there exist T, € > 0 such that for all ¢ with

1 10= 1, P(IE'A, £'B11 271) > € > 0.

Proof. First note that tﬁa diéperaian.matrix_ﬁf A 1s given by
D(A) =27 + C:JN, .where . . | ee0{1s2,3)
C_ =2(1~E eY) < 0
@ = ((Uiqj)) and. L 1s aé defined in (la2;2).

From the dampacﬁnesa of the unit ball, 1t suffices ta show. that
there is such a choice of N and € for every fixed t. Choose such a

t and write ¢t = tl + t2

Fix a > 0 (to be chosen).

uih_e?a tl-l- tys £, € ((_a'i', 1= 0,1y00asp))e

Case l, |l tl I > ¢s In this Ca5a,

| p |
CuetAkteN 2 telel > af 3 05)YP >

Cass 2 + |l t, f > L= In this case, Il t'A, t'BI d t'al and
U(t'a) = t'D(A)t = t' (2% + cﬂwh)f .
Note that t'Nt = &' N&, < ( l;, 0%)
R B NS Kaak

- Ci=0

Lot -?\l be the s_rnaltlltasﬁi eigah ualu_s_mf"_ 2()\1 > 0)e Choose a such



. B - '
that IC I( & Uz)a.< Ao Thus V(£'A) > A, > 0. This proves the lemmae

Wse now state our main theorsme

Theorem 1.2.6 3 Under conditions (Cl) ~ (C4), Theoreme (1.2,1), (112;3),

(1.2.4) and Corollary (l.2;2) hold for Xt dafinad by (lﬁ?.l).

Remark l,2.7 8 Obviously, corresponding to the theorems of Gotze anpd
Hipp, parts of the above theorem hold even when appbupriate conditions

from (pl),_-(ca) are druppad{

Proof of Theorem 1.2;5 s le have.tu verify that conditions C(1.2,1) =-
_' c(1.2;7__) hold for the process (X.)s Take i)j = a.(sj) = the O~field
generated by sj. Conditians €(1e2.1), C(14244) and C(1.2,6) hold
 triuially. C(1.2.2) follous from (Cl). ©(1.2.7) ie assumption (Eﬁ);

It remains to check C(142.3) and C{1e2.5).

,i-li’Y' ) LUhErEIl

anm Phm

Let Ynm = (Y
m | mtd
Yinm - (TED 6reﬂhr)(r§:ﬂ_6r8n-i_r) - di’ i = D'.l'--ljjm .

U m R

Hence X, =Y, = (rEU 6ran—r)(ri 6r8n_1.¢ —Ir*D rgnﬂi—r)
el @ m
* EU 628n~1 r)( ED 6r8n—r ) riﬁ rsn-T)
ELY, =X A< [E( % éren-r)z ] [E( ) 6 e . )2 ]1/2
i p=0 ) psrhictl L Ne=i~=-T
i 0
+ [E( % 6.6 _._r)z Jl/z [ZE(. s 6e ) ]1/2
p=g T N~i- | p=mel * AT
< o z 6&4Y2,



Condition (C2) ensures that C(1.2.3) is satisfiad.

It remains to chock E(l-%;éjn In what follows, . shall denote

a random variable such that B and En are lndspendent.

, T m
For 0 <1 5_p,'j=2_m xij:= j:ﬁ-m Yij_i + B
=03 + £ A o where,
n inm n in
rrem
Ainm =I3=§+i (63 r%j_i_nérej;m-i 65-i~n f? 6r8j—r)
rrHm
By o = j=§+i 6j-n6j—i—n'
Note that Ainm and Bn ZANE i;ﬁdependant_ 'H-_n and Binm --b-cri as

m-—>m. Let (8?) be i.i.ﬂi, (Sﬁ) ‘and (Sj) independent and

* ,A* ag A, A with €,'s replaced by

¥* E; |
e¥ & e, b A
+ Define nm inm ! Tpm i

J ] inm

%t * | | |
Ei S (Ainml 1= D,l’ill’p) #‘(ﬂi, 1= D"l’ifi!p) where
 iwl | .cn' |
<4 + vis *
A, = 8. Y. .+ % (&Y. .+ 0., .Y.) =20
i 550 $'3-4 jii (O5¥5 * O54¥y) = 2804

which on aimplificatinn yields,

an . "
A, = I (Ospe T 0, 0080 1= 0ylyeeuype
8 w ()
870
| | rtm | -
Thus EE exp(it' 3 'xj)/ﬂj , JF 0l
o J=n=m B

P B ' 2 !  %Il ; o
=. £ + - ' . T
=EJE exp(4 LA+ AT .Enm_)/ ,‘aj y 3 #nl

¢ ds LA ' - 1ot t .
< (1 )E( ug P-nmf t8 IE‘_?_ dY + P(ll ¢ Rone 88 112 d)



Hence C{1.,2,5) will follow if 4 d, dyy € » 0 such that |l t ]l 2 d,

and all large n,m impliss,

P(N 'A% , t'8B 112 d) >€> 0. This follows if there exists
Ny € > 0 such that for all lit il = 1,

P(lt'a &' Il21n) > € for all lazge n,m. cea{1.246)

Suppose (1,2.,4) is not true. Then thers exists sequences Cﬂm),
(6m) tending to zerc and (tm) such that W& 1l =1 and

' ] | , | o
F’(Iltmﬂn y thnm ¥ Zjﬂﬁg 5.ém' Without loss of generality, assume that

m
(tm) converges (otherwise take a subssegqusnce) to some t o Note that

Anm and Bnm are not dependent on. n and A " =» A and Bﬁm-ﬂé-e.

| n
The above lnequality shows that Ilt;ﬁ, t B1l = 0 uhich is & contradic-

tion to Lemma le2.5. Thue 3(1;2;5) is verifled and- the theorsm follouws.

Remarke l.Z2.%

(1) The autocorrelations are smooth Punctions of the autocovariancess
Edgeworth expansions for autocovariances thus yield expansions for the

- autocorrelations toos A justification is not hafd to give. This is

. avallable in Bhattacharya and Ghosh (1976).(thair Lemma 2,1). Deducing

here would juét he repetition, so we chose to omit it.

(2) @Note that as a corallary to Thsorem 1.2.6,.tha Berry-tssean bound
' n y .

holds Fdr'-Sn #-n_;/z E.Xt. However, the Cramer!s condition is conjec-
| b=l | -
. -l/2 %8
tured to be superfluouse Kersten (1984 ) obtained rates o(n ),

2k

£ > 0 under conditions E}Ell < @ for some K 2> 2 and

. m N« - |
maxX( 3 62 . 3 6?) < K r"zk

1 for I’-2U+lf
i=p-l . j=r-l
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It seems plausible that a slightly stronger form of this decay
condition shall yiesld the Berry~Essesn bound. However, this was not

cur aim and the idea was not pursued.

(3) Extension: to vector~valued processes involves no new ideas and

involves only more notations and algebra.,

(4) The ARMA (p,q) models satisfy our conditions by caleculations

of Kersten (1984, page 528),

1l.3. Applications
(A) Nouing'auarage Process
Let (Yﬁ) be a MA(2) process,
Y£ =.Et*+ &18t“1*+ €, o Where (Ei? tféﬁisfies (cl)

and (CS).

The moment estimators (slightly perturbed) are given by

' ‘_l n
= n L Y, Y
aQn =] K™ Kkm2
-1 N . 0
€& _ =n_ LYY /(A+n" T YY )
1n L=l k™ kel kel k' Ke
Note that 0 =1 + a? + 2
0 1 a?
Ul_=CL1(l +'a2) s
"32 -_'-.CIZ Eind. Gj={3‘d~|jl?_3-

Tﬁ prove that L is positive definita, sufficas to show (saa_(l,213))t
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G .. +0 )+a(02+5+02_'$).=n ¥ s # O

impliES a "':Elz=[]i

Taking s = 1,2,3 in the ahove expression,
a(. '+:'L+a;2+ 2)-{-&10.'.(1'1* ) =
1% 17 % %

2 2,
ala1(1.+ az) + az(l e az) = 0

ay0y + 8,0, (1 + @) =0,

which clearly impliss 8, = 8, = Oe

Thus we havs asymptutic pXpansions for the random vector

n a -
(kzl(yk Kl Gl)} kzl(Yk ) “Uz))j which in turn--}’iﬁlldﬂ

-1/2

fagymptutic sXpangsion for the joint distribution of nl/z(a

-0l y azn-qz')

by Lemma 2.1 of Bhattacharya and Ghosh (1978),

Remark 1.3.1

The same principle applies to higher order models, but solving
for estimates of ai,i-ﬁ’ab from the moment equations bescome cumbersome

with increase in p.
(8) Autoregressive process

Let Y- = 9Yt~l + St where (B ) satisfies (C1) and (83) and

|8l < 1. The least squarss estimate of B ia glven hy

n | .
s = 5 VY, ./ 8 Y.,
n bl ¢ te-l__ =1 tel
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which is a smooth function of autocovariances.

To prove that % dis positive definite with p = 1, as in the

previous sxample, it suffices to show that

al(:::s + a__B) + .:-12(u213__{_!_3 + Ul-e) =0 ¥s#0 impli_ea
that al = 8, = C.
Taking s =0 and 1 in the above sxpreasion,

ZGUal + 25132 =

20,8, + 92(02 + oo) = 0

D | .
since Y, = £ 8. , it sasily follous that
ootk

Hence the above equations reduce to

4+ 2a, = (

91 2

| 7 _
ZBEI*+I(&-+ B )az = 0

l. &

The matrix o is mop=singular. Thus a., = a, = (.
28 B+8 | . Z |

Hence we have asymptotic expansion for the random vector

~1/2, 0 2 1 N | | |
Y2 3 (Yeuy = =3)s Z (VY. y ====)) which in turn
f=1 l-8° =1 1.8
o , : N 12 _
yiclds asymptotic expansion for normalized 8 5 iee ( 2) (8 ~8),
. \ ' r n

1.8
Remark le3e2 |

(1) - This result is stronger than a(nfd/z) expansion in Bose (1985a).
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(2) As a consequence of the above results we also have the Berry=~Esseen

theorem for En, viz.

ap [P~ 8) < %) ~F (x) | g eV,
x € IR .1-B

(3) Note thaﬁ Theorem l.2.6 remains valid for Xt = Yt—lﬁt if we

assume the following weaker conditionst

2-—“‘-1,518 15+l

k X < ® for some s > 3.

(c1)" es, =0, Ee

(82)' 81 - gatisfies Crameris condition.

Hemce under (C1)' and (c2)' we have Edgeworth expensiocns for the

Doy2 oy =12
distribution of ( & Yt_l)n (ah-.e), since

t=1
B ~8= I Y & J{ T (v" .)
N by L b / ) tel

(4) The same principle applies t0 l.S.o. frum higher order éuturegream-

sions. Ue shall elaborate on this in Ehapter 2

(5) Quite a few authors have devoted themselves to ubﬁaining Edgamdrth
_Expansinns fqr the meleses in time series models. See s.ge Phillips (1977-78),
Durbin (1980), Uchi-(;QBS), Tanaka (1983), Fujikoshi and Ochdi (1984). ALl
these works aséuma the restrictive condition of npormality of errors. As

oun rasults show this is unnecessary, 1f we consider lsseee oOr mament

satimators in place of melees in the absence of distribution assumptions.

(6) The polynomials involved in the expansions ars not hard %o [z}
and involve only cumbsrsome algebra. Alsoc note that application of
_Thearem.l.E,Emalaﬂ«yialdé“apprﬁximatiansiFﬁr the mmménts of the estimators

considerad.
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(7) As mentiaoned in the introeduction of this chapter, the approach
of this chapter shall bs used in the next two chapters to study the

bootstrap principls in thess two dependent models, viz, autoregressive

and moving average medels.



" CHAPTER 2

BOOTSTRAP IN AUTOREGRESSIONS

2.1 .Intrnductian ¢ In this chapter, weg shall bs angaged in studying
the probabilistic aspects of bootstrap approximation for distribution

of parameter sstimates in autoregressive models. & foew words about

the bootstrap is pertinenﬁ'hera.' We shall not go into a formal descrip-
tiDnIGf the bootstrap procedurs, since by now it is quite well Kknoun.
inétaad, we shall provide an indication of the literaturs available

(which, by no means is claimed to be exhaustive).

The boqtstrép wasg intrqducéd by Efron (1979, 1982).' Sincg then;,
ﬁhare has been a fast growing literature on the topic. Thesa move in
tuo directions, one complimenting the others Empirical Eﬁidanca has
suggested that the bootstrap performs usually very well. Relsvant
references for thasélara Efron (1979, 1982), Bickel and Freedman (1983),
Daggett and Freedman (1984 ), Fresdman and Peters (1984a,b,c). Simulta-
neously, there hava been attempts to provide theuretical justificatlion
aé to mhy this methﬁd performs well, Thess results provide ﬁn lnsight
into the wﬁrking of the bootstrap procedure, We would liks to mention
the papers by Bickel and Freedman (1980, 1981), Singh (1981), PBeran (1982)
and Babu and Singh (19845. Thess rgﬁults deal with accuracy of bootstrap
approximation in various SE8N8BS (e.g; asymptotic nurmality, Edgewarﬁh
expansions otc. ), méinly For sampié mean typse statiﬁﬁics (or thair func-—
tionals), quantiias'etc- in the i-i.d..aituatiun, where the baain a8 ympe-

tqtic'diatributiﬁn_than:y is normals A recent paper by Abramovitch and



| singh (1985) deals with modifications and hooktstrap approximations of
statisties admitting Edgaﬁurth expansions. Babu {1984) has ahouad that a

- modifipation of the bootstrap ' works " {in the aénse of ylelding the
same asympiotic digtribution as for the Driginal statistic) when the

basic asymptotic distribution is Chi-square., Athreya, Ghuéh, Low and

Sen (1984) derived lew of 1érge numberé and asymptotic normality of
bootstrapped U-gtatisticss Most af the 5haua'resaarnh haé ﬁunnéntratad

on univariats éituatinna, whereas the potential of the bootstrap in multi-
variate situations is clear. INE refer to the works of Babu and Singh
(1983) aﬁd Bsran and Srivastava (1985), An example‘uflﬂabu (1984) shous
the importance of exlstence of. momsnts fox thelﬁmutstrap to Works

Athréya (1984a,b,c) in a éEEiEE of papers has axPlD:ed in detalil the
limiting bootetrap disf?ibutiﬂn under weak moment conditions. These

show in.particular thét, in general tha limiting diﬂtributimn is nn@ freea
of the sample sequence ﬁf ubsarﬂatiﬂns- Further study in this area ssems
to be daairéble (8eqe whether proper censoring makéa the bootsirap work

or Whether it works for self normalizing statistics)s The bootstrap has
been also studied in aample survey problems, by Blckel and Freedman (1984)
and Rao and Wu (1985 ). Heoenﬁly,_ﬁnnualhas been on bootstrap in regression
problemse. WUe refar the rsader to Frsedman (1981), Shurack.(IQBE), Delaney
and Chatterjee (1984), Wy (1985)-and the references contained £herain. |
One of the reasons for ths_gruwing interest in bootstrap procedure is the
ever lncreasing computational facilities. There have appearsd in quick
slUccession reuiéw artiﬁles Bege by Eerah'(lgﬂd),'ﬁfrun and Tibshirani .

© (1985) and " popular " articles s.ge by Efron and Gong (1983) and Peters
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and Freedman (1984) which indicate the popularity of the procsadure.
Among the many possibilities of epplication of éhm bootstrap is its
use to obtain better confidence intervals and better approximations mf
quantiles than given by the normal theory. We refer to Efron (1984)
and Babu and Bose (1986 ). An article by Schenker (1985) shous that
the uéa of the bnatsﬁrap confidence interval might be disastrous if
appliad indiscriminately. To round off this brief indication of the
avallable literature we mention the paper by Rubin (1981}, whi;h intra-

duces a Bayesian analogus of the bootstrap ¢ this notion does not seem

to have been pursuead.

The bootstrap cann0t1in general work for depsndent processes $
‘Singh (1981) proﬁidﬂs an exampla. However, it was antiﬁipated thatl
the_bdutstrap.would:atill work if éhe dependence is taken care of whiles
resamplinge Fréadman (1954) confirms this by showing that 1t does work
for certain linear dynamic models (s.9. for twWo stage least squares
'-aétimates_in linear aufnragrésaiuns with possible axaganedUE variabhles
orthogonal to srrors). To the author's knowledge this is the only .
thaﬁrstical mﬂrk auailabla for bootstrap in debendent mociels. Hnwauéf,
there has been empirical uprk for dependsnt model& %+ thse rafafencés are
| cnntéinad in thuaa.already citeds While writing thia-thaais,rthe author
has come across a paper by Ghﬂttaijea (1935) which deals mith'empiricél
work in ARMA models. |
Dur aim iﬁ this.Eﬁaptar is to study the buutsfrap in autoregres-

sions. Resampling is possible mhidh takes care uf.fhe dapendehce. In
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Chaptar 1, we showed that Edgeworth expansions can be obtained for the
distfibutiun of the normalized least squares asﬁimata. Tha main idaa_
here is to develop an analogous expansion (of order D(n_l/z)) for
the bootstrap distribution., The leading terms of these expansions are
same and the differahce is u(nfd/z) .8, Thus thsxbuntstrap baats

the normal approximation.

l'In Saction 2, wa obtain a(n"%/z) sxpansion for the distribution
of less,e. in Ffirst order autoregressions vis a route different from that
in Bhapter‘lr since this is mors cunueniEﬁt-whilE dealing with the boot~
_stfép appfﬂximatinn.- which, is dealt in Section 3. in-Sactinﬁ 4, uwg
outline how results of firet arder autorsgresslons can be extandad to
higher order autaregresaimns. This treatment shows £ha difficulty'nf
obtaining general EdgeWorth expansions for les.e. in highef order auto-
regressiana; Howsver, Eucﬁ an expansion is uaiid for a nartain randomly
normed version of l.s.s. (see Remark 2.;;25 andy in any uasé Expansion'
of order n(n";/z) remains valid with usual normlng. Ue aléq remark
abmut gxtensions of the results to vector=valued case and to Ehe case

where the ie.i.ds errors need not have known mean and variance.

This chapter is a revised anm of Boss (19855)_.



2,2 Une term Edgeworth expansion of the l.s.e.

Lat (Yt) be a first order autoregressive process satisfying

Yy =8Y ), T €, =011, %2,... coslZe2el)

8] < 1, (&) ieieda~F_, E€ =0, v(e, ) = 1.

We introduce the following assumptions s

(ALY E Si(sfl) { @ for some s > 3.

(A2) (El,Ei) satisfies Cramer's cundiﬁinn, 1.8 for svery d > 0, there

exists & > 0 such that  sup | £ exp(it' (& ,82))!*CEXP(-6).
Bt i > d 1m L

Given the observations Yu’Yl""’Yn.’ the leS.o. Bn of B8 satisfies

the squation

n - 2 )
8 -8 = (t-z-—l Yt-—l"t)(ti LAY A vee(2:2,2)

Also note that the following equation holds

(1-8) 3 fous = Vo= Yo+ 28 : Vo1 ™ : °
N t=1 b=l
| eeal{242,3)
| | . |
Let .Xt = (xltr,xzt) whers Xlt = Ytﬂlgt’ X2t =-8t-l-

In Chapter 1, we derived asymptotic expansions for the distribution

of normalized _En. However, to deal with the bootstrap approximation, it

is convenient to work with X, instead of autocovariances.

t
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— 8 if 8 1is sven
Define Em =

. sg~l if s 18 odd

To obtein an expansion for (Xt)’ we use Theorem l.2.l of

Chapter 1 and verify the conditions C{1.2.1) ~ c{l.2.7) of Chapter 1.

~ We take Z’j = U(Bj) = 0~figld generated by Eij. Utder assump=
tion (A1), C(1.2.1) and C(1.,2.2) holds C{le2.3) is easily verified.

£{1.2.4) and C(1.2.6) hold automatically. Clearly

0 if t#t'

[}

cnu(xltl,xlt,)

(1-89)1 57 t=¢

il

1"

CGU(XZt ,th,) 0 if t # t!

i

U(Ei) if t = t' and

N
Thus £ = 1lim D(n“l/2 b3 X{:)
N~ t=1

11

(1~%)
which verifies C(1.2.7).
U(

We show now that under (A2), c(l.z.s) holds,

n+m
ElE exp{it' £ X, )/5.,3751-.1
J=n-m

rrm |
= E1E exp(it, I Y, 8.+ it,E )/8 y J1FnNnl.
I |
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rrtm rtm (pn . \
But LY, &, = L L B€E 2
j=n =l i=n  t=0 J=l=t" ¢
D i
=g ¥ 8% 1o tE z  gdming
"t=0 T T e ;
+ terms involving €., J # n.
- m rrtm . .
Led A = X Stﬁ Lt and B = 25 -Bahlwng. .
N iop [ LN 3

Note that ﬂh and Enm are independent.

Using independence aof (Si), the above sxpectation
. ) .
= £ | E axp(:_tlsn(ﬂn-l— aﬂm) + :.tzan)/aj , J#nl e06(2.244)
< exp(=8)P( il t Mz d)+ PO t & d)

: |
uhere t_ = (tl(an + Enm), tz).

M
| . s t
4-22 where Z are iid Zl T= , B St'

Note that Hn + .Enmr-——-‘? Zl i 2

Choosse [( such that El</( <1 and P(i21+22| >/()>Ei.

Then we have
2 2, .2 2
= + +
PCILe 12 d) = P(E (A +8 )"+t > d)

>PUA +B ) > 45 1f nei” > d = &Y
= n nm° = - "1
--a'p()z_l + 2,1 24) > 0.

Thus 4 € > 0, and m  such that

P(H_11>d)>€ ¥ nm>m o This verifies C(L.2.5).
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_ =Yz ] ~1/2
1f 9 = (I"I | E Yt"lst y 1

(52"1))p then we have the
i t=l t

?ft‘ﬂ:T
et

following theorem as an immediatse consequence of the above discussion.

(See Theorem 1.2.1).

Theorem 2.2,1 ¢ Assume (A1) and (A2) hold. Lat f ¢ m2 -3 R denote

S
a measurable function such that lf(x)l‘slm(l+'llx || D) W inﬂiz. Then
there exists a positive constant & not depending on f and M, and

for arbitrary Kk » 0, there exists a positive cchstant C depending

on M but not on f such that

£ r(s) - fran 1< coulr,n) + o(n™(220)/2)

whers .w(f,n"’k) '_—"_jsup(lf(xw) -~ f(x)l s Uyl £ n"k)(Pz(x)dx. 95, is
the normal density with zero mean and coveriance matrix Z. - is the
usual function associated with Edgeworth axpansions. The term

D(HH(E~2+6)/2) depends en f through M only.

Wg immediately have the Fullnwing corollary.

Corallary 2.,2,2 ¢ Hasume.(ﬂl) and (A2). Then uniformly for convex

measurable € (_ Fiz,

’S(D) + ofn

ol G om2 )/2)‘

P(Sne B) = L]ln

. Theorem 2.2.1 is not directly applicable o (1-92)"1nl/2(9n..g).
Nevertheless, we have the following theorem which is enough to study the

accuracy of bootstrap approximation.

Theorem 2,2,3 Assume (Al) and (A2)s Then there exists a polynomial p

~in one variable which is a continuous function of © and moments of
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(thfj ’ 5§ ~1) of order less or equal ta 3 such that
X
1/2 -~ ~l/?
P((—Ls )% (8 ~8) < x) = j (1+ 0™ 2p(y)9(y)dy + o(n™H?).
l---_-E*l ? 5
Proof 3
N (1-«92)“'1/2
n__y1/2 1
(=——=5)7"(8 ~8) = 172
Y 1+ (29x1+>{2)+ﬁn
N
where Xl = n_l/2 > Yt let
=1,
= Y B o), b e
2 - t y Ry 7D o 'n’’
t=1
Let Blﬂ{ lel_Z_"_b.logn}

8, =4 X1 2 b :mgn} _

_{ 3/4 }
B, = 1 lﬁnl_?_blugn
By Theorem 2.2.1, for sufficiently large b,

P(El), P(Bz) s n(n"l/z) and obvigusly P(EC’;) = n(n-l/z).

c o e
On Elﬂ B, l—]El:,l, we have,

- ;”éz)l/z(an -8) = % (1= ) Y2 (1 oM (28x + X, )+ o(n7H?)

: _ (/(Ix_i-nnl/zxjnx)(xlgx)ﬂlfz_l_D(n-l/Z)
| f ees(2.2,5)
\ : /28 ~1/2
where X = (1,0), X = (xl,xz), and A = / ] .
- | | . - ~1/2
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Now the result follows from Theorem 2.2.1 and the following lemma due to
Babu and Singh (1984) (which is essentially a version of Lemna 2.1 of

Bhattacharya and Ghosh (1978)).

Lemma 2244 : l.et [ - (Xl’lll’xk) be a UEDtDl‘, L = (Lij) be a KXk

matrix and Q@ be a polynomial in k variables. Llet M > max(luijl,

_ _ y=l
Iuijl’ Ixil, lLijl’ Iah.l) where (Uij) = V, (uij) =\ and &, are

coefficients of Q. Let 11> f >0 and b = (;lnl/z}"l. Then

theres exists a polynomial p 4in one variable, whoss cosfficients are

condiinuous functions of 'Ki? Lij’ Vigr U and &, such that

!ﬂ (1L+ n"l/ZQ(Z)(PV(Z)dZ = 'LrL (1+ bnp(y))fp(y)dy+ D(nﬁl/z)

_ )
whers A ={ Z s f.2+n /2,07 < (4 qx)l/z}-. The of.) term depends an

M and [D.

2.3 The bootstrap approximation

In this section we assume {Al) and (A2). As a oconsequence,

D(Sl,Bi) is positive dsfinpits.

Given the l.s.e, Bn, we " recover®™ the errors by

A :
Si = YiﬂgﬂYi—l y 1 = l,..-,n-

: ~ I~
Let Gn(.), denote the empirical distribution Punction of €,5...,8

Lt

(i.80 the distributian which puts mass 1l/n at sach Ei’ 1= leseugl)e
LT,

* o - -
ot e £ & — £ .
Let Fn(x) G (x=& ) uhere € =n iil {
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5 .
Lat (E:i)r 1=0,+ 1, +2,00ee be iid with Fi(.). (Strictly speaking

;n’ but we shall drop the suffix n to sase notations).
Ev)
GiUEﬁ (ei)’ i — B’ + l’ + 2’.4,. ganerata Yi by

we should write &€

thy #*
= 8 Y )y

Y =l *

é;.. i=D’il,i‘_2,-il-
Pretend that Qn is unknown and obtain the l.sss. of En from the

pEEUdD"data Yi;:, 1 = D’l,lil ,n by

' n 0
9:“( AR MRS R

-1
jeq LA O )

B AP BT LU
Hence

(1--9?1)"‘3‘/2 nl/z(e-";-an) = (1~9i)"l/2 n/2 z Vi g8 /n B Yol

the bootstrap equivalent of (la---Q-z)-"l'/2 nl/z(ﬁn-ﬁ).

In this section we make the convention that the presence of (%) denotes

that we are dealing with the bootstrap quantity and hencse expectation etce.

% . *
are taken undex (Ei) iid F_ given Y s¥iseee,Y .

To state and prove the main theorem we need ths fullnwing lemmas s

The paper of Gotze and:Hipp (1983 ) shall be simply referred as (GH) in

the sequel.

n
| — Vi %
Let Hz(-) denote the characteristic function of n 1/ X Zj y

- where 2? is a certain truncation (as in (GH)) .DF

¥ o, % % N2 W2 %D *, W2 - v
= £"7 - . g = F (E . UWe omit the explicit
X5 = (Yo 485 &5 =0 )o Here ¢ " =E (6 7). Ve P

definition of Zz since this shall not ba_Uaed in subsequent calculations.
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a
Lomma 2.3,1 3 ¥ It 1l < Cen®  we have

. J.' . o ‘ --E:D
0%H (8) = & ()1 € eo (1t B) )1+ 1t 15 1% exp(c i & 1%)n /2

for some €° < ;/2, and C depends on the boupds of an (= 44h moment
% AL - ] » .
- of Xj). una(t) denotes the Fourier transform of y_ _, the eigned
9

measure associated with the Edgeworth expansion of X?- 0% is the usual

differsntial operator with la i< s+ 3.

This lemma is proved in (GH) “and hence we skip the proofe.

_ _ _
E
Lot I, = {t ont < hengen?Y

12 ={t 2 Blnl/2 < III tll <L E:"lnl'/z} whare B.‘L is to be

chosen later and 0 < € € 1 is fixede

Lomma 2.3+.2 § Under (Hl); (AZ), we have, for almpst evory sequence

YE,Yi,vhur Ehd N !{Ir ! 5_ 6,

j .I Dcﬁ—li(t) ldt = ﬂ(n“l/z).

1/2 ~1_1/2

!

7 < lielg e

Proaf § A careful look at the proof of Lemma 3.4370f GH shows that it

suffices to show that

% i % | | |
E |E AZ/,Z)j, i # jp i< 1 unifermly in t € I, and p = l,...,[

2
J tm.
# ~1/2 P w - .y :
where Ap = gxp(itn 5 Zj)' For definition of [ and jo» one
| J=3, =m |
P

" can consult GH., UWe omit thesé definitions since they are not used sxpliw

citly in our caelculation.. .. . . S . .

-
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But note that the effect of truncation is negligible and it sufficss to

deal with
Jp"i‘lﬂ
_ K o =~l/2 * g : :
6 o = E 1E exp(itn oz XJ.)/Ej y 3 # 3p 1
J=J . =~
P
@ rrm .
If Fim is the distribution of % 8¢ ¢&" R gl—dl=n ¢*
t=0 I [..]— j=n+l a j

. - ' -
then writing tl =-tln %/2,t2 = tzn 1/2, we have

5Em = JﬁlJﬁexp(itixyi*it;xz)dFi(x)ldfim(y) (80 (2.2.4))

KT
Note that a.s., an =>F whers F is the distribution of 214-22,_

O *
Z;= 5 gﬁst and by Levy's theorem F is continuous.
t=0

Further F* = F 845
n O

L,9l, iid <1

1772 1

| %
Noting that the convergence of an to F is uniform we have
ey | { 2
6nm - § = f] f exp(z.tlxy-l-_itzx _)dFm(x)) dF(y) aus.

uniformly on compact sets of (ti ,té) le8e¢ uniformly over ¢t E 12 and

b? Cramer's condition © < 1. This proves the lemma,
Lemma 2.3.3 ¢ Assume (ALl), (A2) hold. For sufficiently small Cis
we have for almost every sequence Y 1Y 0000y

5 ID%}:(t)l dt = o(n™?y,

tel,

Proof ¢ As in Lemma 2.3.,2, it is aUFficient'tn deal_with ﬁriginal variaw

bles instead of truncations. As befnra, we proceed as in Lemma 2.3.2
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] * % % %
following GH but use a different estimate for E |E Ap/ ﬁbj’ j# jp

(sea Lemma 2.3,2 for definition of Hz). We have to deal with

% # K o mL/2 % -1/2
5nm-E | E axp(lt / (!’-‘. +B )+1t2n / )/3 :Jflﬂ
o
" £ %
A = £
where A_ ED Bn Nt ?
‘[ﬁm [ ]
B:: = 5 pl=n ¥
m oy’ ]
8 <A+ 8" 15 )
nm = n nm =

Eﬁ[:lﬁ%exp(it n ;/2 (A 4-8 )*‘1t n 1/2 *2)/8 j#Enl
1C1a” + g 1< b)]
N nm ™

For large b, the first term is < 1/2,

In the second term, the inner expsctation

[ 3.1.3

| t £~ 1}
o2 Y n %, % #2 73
=1 -5 D( n')tn f n3/2 Ele el
vhere t' = (t,(A +8 ), t) and (Y] <1.
¥ Y mm’? 2 | -
In the asbove expression the last term is
<L P MBI @h Wi = et , 7
=6 " "3J2 "gn "NOFE yp T nt'on
EJE | _
il & ll - .y ¥ SB4Se 2.5
i B ""'""""""6 n HeSe nnt:LnQ that !Jz """"'""'_9' E “Bl, El ”
| IIIt H.2
< a y where « is as small as we pleass by taking

€ sufficiently small,
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*2Z Adala
) m‘} D(E:l y

Aqain note that D(s"; e X

82),mhich is positive definite,

»* %
and on {t A+ B [< h} Wa have,
N nm o~

t i
e H2 ¥ %2 b 2 , .
e D(El e )tnii‘D(Bn,&:n )[2n e ™ g1 if €, is small
and hence second term of 6im is bounded by
8 —- ”t”+ ___%.__ 6‘- -1'!'2 %+ e
oom = & £ (1 5 t D( € )tn)I(lAn Bnm!ih)
it 112 2
<@ +E(1.--=2——-I(|A +a H<b)?\(2)llt 1)
*2
where h (E ) = gmallsst eigen value of D( ) and hence

¥\ 8.5 2
8 .
M(Z) ==>x(D(e, ,67) > 0
If b is large such that P { IA' + B | <b] >%, we have that

i, % % (2 2 24 ¥, % 42
3 + 8 s -
| (A" + 8 )" (A" + 8 | <b) =€ (A +B )

i

% , 3k % 2
<[E(nn )4P(1A +B l?:»b)]]/
<7 ,N sufficiently small by choosing b large snough.
- X o
(Note that E*_(ﬁna- S;m)4 LR E(Z + z ) , where Z. and Z, are

1l 2
f,{,m

iid, Z, = © avtet).

1 =0
And thus
o ieu? N (2 ) .
Ut # 1'"n *
&y o S @I+ E (L~ ~S LA B. <b)(t +t(A +B )))
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This term in turn is dominated by

2 2
Ht il 1] £ |l
@ = + 1~ Y - (whers )Y > a)
2
< exp(=- 0 ALl ).

= g

2
This shous that 6};m < P+ exp( =5 -!-{—TE-—I-!- ) where £ < -2-'1 A look at the

proof of Lemma 3.43 of (GH) shows that this provss tha lemma.

Our final lemma is stated in Babu and Singh (1984) and is a modified
version of a2 lemma in Sweeting (1977). This lemma shall be used in

Chapter 3 also,.

Lemma_2,3.4 ¢ Let P and K be probability measures and U be a signed
measure on I!-'{k. l.Let f be a measurabls function such that ME(f‘) < m

for some e > 2. Further let o =K(x ¢ x|l £ 1) ,}:?J_: and

B = ‘(HMIIE*‘-2 K(dx) < ®. Then for any 0 < €& < 1,
wl/ 4
IJFd(P-&)I < (2&:-—1)"1[ B_(J.-cn)/a] 146/ +B& B
8 (L 1% 1®)KE(P - 0)1 ()

+ sup jw(F,ZS, x=y ) |G [dy
1x it < s/ | '

uhare Kg(dx) = kK(e™'dx) and B = QSNS(F)j(l-P Fx )P+ 11 )dx,

ms(f) = 5up(1f"'|| X IIE)"J‘ | f{x) ]

x .

. Further we have for any 0 < x| <1, 0 <6< 1,
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j W(F:‘er")’)m(}’)dy £3 j“(frér)’)(p (}")d}'

et ],

| 1 )
+ Eﬂi‘ﬂﬁ(f) Il x il exp{ ~ = x| )e

We are now in a position to state the theorems on bootstrap.

t. - n . n -
Let 5" = n 1/2( ) Y '* 2 (5%2'-5*2))-
2 J""l J j=l J

q=1
Theorem 2.3,5 ¢ Assume (Al), (A2).

Let f 3 ]R2 ~> R be measurable and | f(x)! < M(1+ 1l x I G).

Then we have

| E'(sT) ..J PO+ 0™ 2a(x,0))df , (x)| < m6_+cii(r 6 2)

Eﬂ

where a(x,n) denotes a polynomial (of the Eame form as p) in X whose
coefficients are continuous function of the moments of Yjul‘i and f8§2

of order 3 or less, 6n== m(n_ / ) and is indepsndent of e
¥ gt *2 |

g €
“n = (Yaﬂl i’ 3

Proof ¢ The proof follows using Lemmas 2.3.1 ~ 2.3.4. We omit the details
since they would be repetition of arguments given in Babu and Singh (1984)

for the il.i.de case.

Theorem 2.3,6 ¢ Under assumptions (Al) , (A2) we have, for a.c. (Yi),

' P*((_J.-'a y~/2.1/2( (8" -8 ) < f (1+ n- /EP(V)J(P(y)dy'** o(n™Y?)

= P((—25)(8_-8)<x)+ o(nH?)
' ] - 9

where p(+) is a polynomial with coefficients continuous Fuﬁctions of B.
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Proof 3 Note that

' 1/2
x (1
2\~1/2 1/2, %
(1~8) /24 (6, ~8) = Y NI
14 n (29)(14')(2)-1*9”
A n A
where X'; = nY?2 5 Y: 18;
L=l -
* “1f2 0 %2 %2
Ky = X (st -0 )
t=1 n
# ~l, %2 %2
Ptn 3 (YL"I ""Yn )-

. SR
As 1n Theorsm 2.2.3 define B+ 8 4 El3 analogous to By 18, s 83
| *, % ¥,
Theorem 2.3.5, P (Bl), PF(E[Z), P%(B?; . are u(n 12 )} and on

'{- %
“n an ﬂ E;G we have as Before

(1 _gi)-l/znl/Q(B-: "E'n) _ (}( ‘Ixﬁ-+ n.;.l/zx—n-lﬂ:}ex)u TE-;; /()-.1/2 + u(n--l/?.)

{ " .28 ’ -1/2
where £ = (1,0), X (xl,xz) A" = f and

"(1 - 92)-1 0
5= n '
n D U(s"’;z)

The theorem now follows from Lemma 2.2.4, and Theorem 2.3.5. (Note that

b #2 3t
the moments of (X l 5 1 j ﬁz)under E  converge almﬂst suraly to
those of (Xj l .y 82 -1) by ergodic theorem, and undsr our assumptions

E’n —> E.E*)-
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Remark 2.3.7

The assumption of stationarity of (Yt) was made since the
calculations (esge of &) in this case is simpler. Ths results hold
aven 1f this assumption is dropped. This is fairly obvious, since the

asymptotic structure does not change and the results of €H go through.

In the next section vwe move over to higher order autoregressions.
We shall see that analogue of Theorem 2.3.6 is valide Houwsver the dis-

tribution of the l.s.s. doss not seem to admit an Edgsworth sxpansion of

order s {see Remark 2.4.1).

2.4 Edgsworth expansions amnd bootstrap in higher order autorsgressions

Let Y, be a stationary auvtoregqressive process satisfying

¥
e
= + | 'R s fte
Vg = 2 Bi¥ey ™8 (2+401)
i=1
where (Et) satisfies assumptions (Al), (Az2). Wo also assume
that
B p~J | |
(A3) Roots of 3 sz = 0 lies within the unit circle. Hers g =1.
J=0
m .
Under our conditions, Yt = % 6r8t—r
r=()
o
where - c,a>0 apd Nn Y ¥ N }_NO, 2 Iﬁrl_ < ¢ exp(-~an).

=N

civen: (Yl I*""Yn)’ the least squares equations are
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- -~ - n ~
S = LYY
N in ) t t-l
r
3
P 2 Telep
- - A i
- N, M n Il
where 35 _ = I LY, LY cee n Y. LY
n t=] te-l ey (A R =1 E~l t=p
M
2
I ¢
=1
q‘ n
' 2
DY |
=] t=~p
Using equation (2.4s1), this can be written as
n »
S o
n 9ln Bl tEl thlst
| . |
B -8 n Y, E
Let Ui = CﬂU(YD,Yi)p i= l’l.i' ,(P"l)-
It is well known that
P o= Un Gl voo Gp-& is pDBltlUEthFlnitE.
O
UD [ e




Define Koy = VioiCrr 1= Lovesyp
| 2
X = & o
ptl,t t 1

I
Xp = Xy geee X

£ ), 2) =G(Ej)-

ptlyt X

It can be easily checked that

n %0
1im o(nY/? g X,) = ,
n=—>m =l 0 U(El)

which is positive definits.

As before, to obtain asymptotic expansion for the distributicn of

-1/2 )
n b Xt, we use Theorem l.2.1 of Chapter 1. K
t=1 |

Conditions C{(1.241) = C(le2¢4) and C{1.2.6) ars immediate and
it remains to check C(1.2.5). Below B shall stand for random varia-

=

bles which are independent of e

Lot &' = (tyye00,t, byy) € R P
Then & n;m X, =% 52+n;:m ; £y, .€.tP
e L A T i
il
Observe thet Y, B, =€ rED 08 ;.o tR i 3=n
= ’néjwi—nsg + B3 ifh fmi >

li
m.
|
—ty

jwi < n but 3> ne
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ntm p
Hence X & t.Y. .€,.
j=n og=1 F TR I
P o
=& 2 t, I o6& |
N soy & Lop T 0=der
p mtm
+ & nt o) £

H

P i Mai
3
n [ Loty I OF T 5r85+i+n;]

1n r=(] T [l =D
. M=, |
= 5 € 1 = .o o .
Bi.nm ED r ptitn? ¢ Lyessyp

Note that %i, 1L = l,...,py A, and B m  BTE independent and

in inm
Mo Y iAn inm? 1 = lyece,p E 11 32* L = dyeseyp
whars Zil and Ziz are indepandent'fmr every i and
PCDU(Zil, Zjl) = EDU(Zizg Zj?.) -:..". Ui..-j .

Thus the limiting dispersion matrix of an is positive definite.
rrm

E|E exp(it'- T Xj)/‘z}j’ i#nl
j=n=m

2
— F I E + 8 E. 1
£ 1E exp(i(t,,. ,tp) wZom T R 0/ 51 3 # 0l

it

ﬁ_exp(-ﬁ)P(H b H_g_d) +P(le 1< d) cee(2.42)

whers tnm = ((tl"'fftp)znm’ ﬁp+1)-
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0
Y 2 2 2 2,42
Su t = =
ppose that utn,_iilti+tp+lg_dl d™ /L

where 0 < <1 is to bs chosen.
Then P(lt 112 d) >P((a'z )* > 4°) uhere lHall =1,
nmo = T nm’ < ]

. Lat hl""’bp+l De (p+l) points in qu+l and lst r© > 0 be
saﬁh that |

l=='(zjl + zjz, § = lyeaseyp) E B(bi,r)) >0 ¥i=1,...,p and

B(bi yT) i = l,s0e,p are such t_hat not all (bl""’bp*-l) lis in
a given hyperplane of dimension (p-~l). This is passible since the
dispersion matrix of (Zjl + ij, J = Llyeeaygp) is positive definite.
Choase [ sufficiently smalls Then for any a with lail = 1,

{x : (a'x)® < )(2} does not intersect at least ome of the balls.

Flancs p((a.znm)Z Z "2) = i=1TT. g(P’rl)(Z"m ® 8lbgem))

and 1im inf of the right hand side is positives. Thus there exists

Ny M large enough and € > 0 such that

2

P(Ilthmll _?_d2)>8>ﬂ L lltllzgdi, N2N s> @ e

0 0
Condition C{l1.2.5) follows now from (2.4.2) and the above fact.

Hence we have asymptotic expansion for the distribution of

N
_n"l/z T Ky
=]

Ramark 2.4.1 ¢

The above arguments also shoW that if conditions (ﬁl):anﬂ
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(A3) hold and €, satisfies Cramer's condition, then the distribution
of n_l/2

Y

t
S i ] — s a0 *
n(gn ,E) admits an Edgeworth expansion. Here Bn (gln’ ’gpn)

: |
To get an asymptotic expansion for 8, with usual normalization

we proceed as follows,

Define Yt == Yt ’ Zt = €.
» 0
Yt--p+l a
J4 pxl - A pxl
Bﬂ <8'l.¢- g“l E'FI
'Ip-l 0

It is easy to see that (2.4.1) is equivalent to Y, = BY, , + Z,_ which gives

PP | Y ~ 1 .y ﬂr' PO
. = ! | -+ soelZadyy
VeVe = Bpoa Yo B 7 28V 00 * 2%y (2.4.3)
Let A L2 5F . g o= s 7

Clearly A =8 4 Dp(ﬁ"l). Hence from (2.4.3),

2 e oo ! - N - ~ 1 ~
3 -8B B =nt W Z,Z, + 2Bn Los Vo 12t 0,(n by L (2.4.4)
3 n t=1 £=1
PR | _ i N
Note that X = E Yth satisfiss the equation L = BB + 1
Whers fﬁ = 1 0 sse 0
0 0 ...0
0 0 ...0
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Fquation (2.4.4) yields,

' 1 B
(Bn-2)+ H(Bn—-i‘.)B =n - ¥ (2.7

B ~X can be solved unigusly from this sguation and

N
B =~)2=0 [. L Z = + ]
A=Z=Gy|n til( (Lo =1 )+ 2 Bn til Y. 1%t ez+-ap(n )

where GI’GZ are indepsndent of n but depend on 91,..,Bb4.

- n —"
Let vV = X
n =] 1t
E X
g=1 PU
ﬂ 5y, 3. 1
| n - n M
= (B -7 z..)"l "1/2 V_

ol

= E"l[ I+ (an-z:)azr"l]' o/

Un which is esqual to

-1,

- | . N H.ﬁl _ _ & ﬂ | _
El[I+G(n 1/2 5w {(Z 2 H')-l—ZBnl 2 )GZ 1 ni/z‘u'
1 t t t-l £ r
=1 | t=1
| no | |
Lat B, = {nhl/zl Yy X., | 2 c lﬂgn } ’ 1 = l,--u,-(p+l)-
i g=p 1E . _
n
HZ g x

Since we havs asymptutic.expansimns'fur the distribution of n
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it follows that for a large o, P(Ei)'= o(n-a/z) Mi= 1,eees(p+l),

ptl
on N B, similar to squation (2.2.5),
j=1 *
2 .- - . n ' ~ - 1;. : _
nl/ (8 --E)=Eln 1/2 L X | +nl/2g' SO X LN + o.(n 1/2)
aly = 1t o 1 P
n EE
A oX LK.
E—.l Pt T
xﬁ_ﬁ]/‘?‘ix't, 111(2-‘3'5>
t=l

Thus by multidimensional version of Lemma 2.1 of Bhattacharya and

Ghosh (1978) or of Lemma 2.2.4, quoted from Babu and Singh (1984) we have

the following theoremn.

Theorem 2.442 ¢ Unden assumptions (pl) -~ (HS).

X

P

- . X
aup lP(nl/ZE]’/z (8 ~8)3x) - J (l+n“l/2P(g))(P(g)dz | = o(n™H?)

where p is a polynomial whose coefficlents are continucus functions of

moments of Yj isj, i= l,l’t-,p and 8‘2_:.':.""'1, of order thres or lesg.

The distribution can be bootstrapped as in the case p = L.

~ B
Here e, =Y, -~ & B Y

e = Ve m 2 ByaVen B haeeens
i=l -

Compute the empirical distribution function as hefore and proceed exactly

as bhefore. UWe have the following“muitidimansiunal version of Theorem 2.3.6e
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Theorem 2.4.3 ¢ Under assumptions (Al) ~ (A3), for a.e (Yi),

¥, 1/2 % -
sup | F*(n/28¥ (8" =8 ) < %) =p(nY 25 (8 ~8)<x) | = o(n™Y ).
X
- _ “1/2 o F
‘roof s As in the case p=1, the bootstrapped n 2 Xt admits
_ t=1
an bdgeworth expansion. Representation analogous to (2.4.5) holds for

1/2

the bootstrapped n (Qh-#g), yielding the bootstrap analoguse of

Theorsm 2.4,2. As before, by erqgodic theorem the bootstrappsd moments

Jg.
of Y converges to thoss of Y 'Ej' Thus an application of

j"i 3 g=-i
Theorem 2.4.2 completes the proof.

Remark 2.444

2

The assumptions E St = {0 E Bt = 1 may seem to be too restrictive.
Actually these restrictions were imposed to keep the proofs simpler. e
skatch below how the case &t €, = My E Ei = o° can be tackled. We illus-

trate the cese p =1 onlye

The model in this case is,

= e i Al) =~ (A but
Y, =8Y , +E + MU uhere ( t) satisfies (Al) ~ {(A3) bu

E E:i == 0‘2 >0 apnd M and 02 are unknowri.

Under assumptions (A1) -(AE), Edgsworth expansion is valid for the

distribution of

1/2, " o, * N9 -
Y23 (v -ay), I mg)s B (Yma)) e(2i06)

| 2
where a, EYt, 0, = EY Yt-l and Gy = EYt. :
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Estimatas an and “h of & and M are obtained by solving

)
b (v-s-v -Ju.)--u
M fael
: ( )

and ¢ Y. -ev Hu- = 0,
=1 el t~l

An estimate wﬁi of ,Uz' is given by.

P -
Un=nl E (‘f Vi M)z.
b=l
Thue, the sstimates 8, K and O are all smooth Punctions of
n N n 5 |
% Yt’ b} Yth_l and & Yt except for terms which can be neglected.
t=1 t=1 t=l
Thus for a suitable normalizing factor B, the distribution of
l/zﬁ(ﬁ- -5) ‘admits an EdgsWorth expansion upto oln" / ), with the

leading term as §(x), and the coefficients involved in the polynomial

2
in the sscond term ars smooth functions of &, K, 0 and of momants of

Y and Yi of order less or equal to three. 8 can be explicitly

IR AP

calculated and depends on &, 4 and moments of 81.
The empirical distribution is computed by putting mass l/n at
A | . :
each Ei = Yi-ﬁnYlﬁl-Mh, i = lyseeyne Proceeding as in the case M=0,
dz = 1, an asymptotic expansion is valld for the bootstrapped version of
| -1/2 S :

(2.4+6), which yields.an expansion of order o{n Y/ ) for the distribu-
tion of nl/ZB (Ei"eh) where  ﬁn is the uarianca—nﬂrmalizihg Factor,

the bamtétrap squivalent of B« The leading term of this expansion is

alsoc @(x) and.tha pulynumial:inualued'in the second term is of the



same form as that in the expansion of nl/zB(Qn-Q). By Eradic“thenram,
the empirical moments of Yt’ Yth-l and Yi converge to the true
moments BeSaes Bh, “h and Gn are all strongly consistent estimators of
E:, “h and O respectively. Thue the difference betuwsen the two

Edgoworth expeansions is a(n"l/z). BeSe

Remark 2-4.5

The results of this chapter are of courss valid for vector-valued
altoreqgressive processes. The proofs ers sxactly along thé same linge as

that of the scalar pase, with added complexity in nutaﬁions.



CHARTER 3

BOOTSTRAP IN MOVING AVERAGE MODELS

3.1 'Intrnductxgg

In Chapter 2, we gave a tsrse review of the avallable literature
on bootstrap. UWe have seen that it works very well for distribution of

the least squares estimate Lln autoregressions.

In this chapter, we shall study the probabilistic aspects of the
bootstrap procedure for moving averags models and show that the bootstrap

approximation beats the normal approximation.

Let (Yt) be a moving average process satisfying

P

Y, =€ + J
t ot $ =1

on (Bi) shall be introduced at proper places. 1a1,...,ap are unknown

cnist_i, t > 1, uwhere (si) are i.i.d. Other conditions

real parameters.

In ths absenqa of distribution assumptiﬁn on (Ei), aﬁ,..,,ah
can be sstimated by the method of momsnts. This procedure, though in
prinbiple can be applied for any p, bscomes increasingly difficult with
increase in the valus of pe. In Chapter 1, ws showed that these moment
estimators admit Edgeworth expansions under suitable conditions. This
together with apparent smmplmuity Df the atructure uF the procagss lndlDEtBB

a possibility of bootstrapping the dlStribUtlDﬂ of the sstimates with high

ACCUTACY .

The structure of tha prncasa enables ug to reaample the srrors.

Then pssudo data can be generated. Me ahow that the dlstributlnn of ths
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moment estimetors can be bootstrapped with accuraey n(nni/z) under
invertibility conditions The bootstrap fails when the process is not

inuartiblE.

We first show that asymptotic expansion can be obtained for
bootstrapped distribution of the autocoveriances. The moment ﬁstimatnrs
are smooth functions of thess autocovariances. This halps to concluds
via a lemma of Bhattacharya and Ghosh (1978) (hehnafurth referred to as

BG) that the bootstrap epproximations are accurate upto the order

n(nhl/z).

The proofe arg provided for the case p = i ahd sketohed for p=2.

The general cass is not different except fuf complexitias in calculations.
This chapter is & rsvised version of Boss (1985h).

Te2 .Preliminarias

Let (Yt) be g process satisfying Yt = 8t.+ aatnl where wWe

assume that

: P - 2 — 2{a+l
(Al) (Et) arg ieiade Fu-’Eat-" 0, Eet'f_l"Est( ) < @ For

some 8 2 Je
(A2) (El"ai) saﬁisfies Crémar's condition.

The moment estimate of a, given ths obssrvations (Yi), 0£1iZ%n,

1s giuan.by

| N L
a.=n 5 Y)Y, 4o
N gy B
Dafine €, = X (-l')‘]CﬂJY.' 3y L =240eeyn and &. =Y ., Using the
L jﬂﬂ | '_-l?j . o | . 1 l 5 —
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structure of the Process,
~ a1
8. =S. b ol > » reae Snzll
; =6y ~ (ma)Te ( )

P

This shows that Ei and si are close snough for large i  only if

fao§ < 1 3 which in turn shous that resampling of errors shall bs propsr

only in this situation., - (For p > 1, this condition should be raplaced

by the invertibility condition (see Hannan (1970)).

Under our conditions, a. iz a strongly consistent estimate of .

Hence motivated by (3.2.1) we define the pseudo errore e, as

iml .

T =g (1)3ady 1= 2y00ayny Ey_ =Y, 4
“in 420 n iej’? PSRN in 1

For ease of notations we shall often drop the subsoript n.

Let Gn denote the smpirical distribution function which puts
ass n”l at sach ‘Q i =1 | Define F{(x) =0 (x~€ ) uwhere
m 1- in’ peaeylle N n N ' n . |

| 9! ~
£ = n"l L B, o It is expected that F_ shall bs close to F  with
n §=1 in n 0
' It

incréasing ne Take an i.i.d. sample (Sin) from FrI and dafine

Y: &= éz + ah?:_ s+ Pretend that !ah is unknown and obtainp its mqmant
. ¥ el o o
sstimate by & = n 2 Y Y « Then it is reascnable to expect that

for almost avery sedquence Yu’Yl""’ the distribution of di (giuen

Ym,Yl,..i,Yﬁ)_ mimics the distribution DF'-ah with same accuracys. This

statement is made precise in the next saction.

J«3 The main results

To prove our main results, we shall require the following lammas.
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I/ ;V N

Let Fn denote the empirical distribution function of Bl""’sn'

Lemma 3.3.1 ¢ Under (Rl),.we have,

- n o~ . .
(a) n™ g B BsBeup (K oy 2(a+1}.
i-’:l - FG l ._ ,

_ N . . o
() a7t oz siknm'”r (a‘i) ¥ k < 2(s+l),
i=l 0

i .
(G) F #F H-Sl
§ 0

S
(d) F =F  a.s.

n 0
| | | . L N
Pracf s (a) By SLUN, it suffioes to show that n & (Ei - Ei) e o
-l K Ky 8.8 . 1=l
But n (& - Bl) ~—ty» 0 +trivially and
ke Loe R
L - - | y
" L (B g0 s kcj e 1 g 1ed et
= _ =0 §=0
| | | - 0 3 4
Thus it suffices to shouw that n = I e, 1" lal” =>0 a.ss Ue quote
=],

the part of Theorem 2,18 of Hall and Heyde (1980) which ensures the

abova cConvergences

y N>1) be a2 zerc mean martihgéla

. | N
Proposition ¢ Let (Sn= b Xi,’S(L

& n
i=1l

and (Un’ ”.2;1) a non-~decreasing sequence of positive constants. Then

1im U;]'Sn = 0 a,8., on the set
n

(I.'I ™ )
{ lim Un -~ 0 4 'Z: Ui E( Ixi I / i*"l) <@ }’F [ 2_2 .
1)~ il
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In the above praposltmn, take Uh =My Ki—- L B! {lBii --rEF IBiI),

o
":}:Tn - U(Xl,--n ’xn)l Thﬁn
~L oo pd i v
im n n lal (ISi! ---E.'F IBiI } =% 0 a.s.
N == 1=l 0
5 i | |
But n S lal” =»0, This yields the requirsd convergoncae and (a)
1=l
ia_prauad.
| | q N
(b) By (a), it sufficee to show that n L 2 (Eik_‘é‘ik) 222, 0,
i=l |
Note that a 22050 and la 1< 1. Hence for all large ny,
Ia:l+lfxn-al_iﬁ<1. | eoal3.341)
Also note that v j > 1,
lad - qd (=1 (g ~a+a) —ad |
N N
<cjla -gipd™
n
< [ (c:n"'ﬁr i 63 fﬂrlﬂﬂma 6 < 1. :--(3-312)‘-
] D A
ln 1 5 (gk_gkjl
i i
i=1
. D i-l'.j ki-l {50 Wk | |
= in X [( by ('--l)JfI Y. .) --( ) (-J.)JCI Y. .) ] I which is dominated by,
. . IR N - n i=j ' .
1=32 J= q= |
noiel i1 kel el L kel
o™ 2 (2 dad-ad ity M s (a0%fy 1+ e (0tefy 1)
i=2 3=0 | J £=0 s {0 1

4 b oiel " o
SCen™la ~al & (2 621y, 1) (by (3.3.1) and (3.3.2))..
" i= 3=0 J * | |
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| q i=-1l .
Thus it is sufficient to show that 0t y (% 63|Yi_jl)k is bounded
- - i=2  4=0

by a constant a.s. Since Yi = Si +£z€i—l" it suffices to show that

n o iml

nml ¥ (% Gjlai .I)k is bounded a.s8.
i=2 3=0 ~d
Define zi_= .E 6 lai"jl- (13 well dEFinEd) -!1(3:3-3)
j=0

Then the sequence (Zi) is a stationary autoregressive process of order 1

and hence efgodic (ses Hannan (1970), p.204), Thue
i

n | -] '
g ZI;E-"E—'éEZE< ®. But ( 3 éjlai L)"gz‘;.

This provas (b).

(o) Since (Ei) 8T8 Leleds F, this follous readily from (3.241)

(d) Suffices to show that Fn(x) —.Gn(x)-ﬂaﬁiérﬂ' at svery condinuity

point X of Fni Fix sauch an x apd € 5> D«

F (%) ()1 <t 3 1, < e, > x)
Ax) « G (x)] <n iEl (B, X%y 8 > X

o1 I A "

+ n z I(e, > x, ey

< x).
j=1 4D < %)

We handlie the second terme The Pirst term oen be similarly taken care of.

-1 A ~
n & I(e, >x,& <£x)
e
<n™t w1, -t 15¢)
- =1 in i
-] N fal ~ N -E:..:
. - o £ .
o Lo I(ey >xy 8y L, I8y =81 <€)

i=l



The second term in the above expression is bounded by

N ~ ,H
n"l & I(Si < Xy €, 2 X wE ) --a-Fn(x) - Fn(x-e).

i=1 .

Since € ié arbitrary and X is a continuity point of Fn’ this term is O,

A 1ml TR, -
8y =80 S 3 dan waliiyy ]
j=0
L], 6j
‘: & et E’ .l
< Cela_ =0l jin I -

_‘E Ctl{:ﬁn—ﬂlzi (EEE (5:3-1) dhe (3-3.3))-

1

n ~ . |
Thie shows that n ~ I I(Iein.-ail > £) also tends t0 ZeTo 8.8.

i=
Hence (d) is proved and thes proof of the lemma is complete.

In what follows Wwe make the convention that the presence of (#)

indicates that we are dealing with the bootstrapped guantity and hahca

. - . 2 Pt .
axXpectation etce ara taken wW.r.t. (8:) lLeilod. Fn giUEn Ya’Yl,i-i ’Ynl

Defi X, =YY, . = >
ne i 3=~ % 24

Zj = the truncation of Xj (as in GH). As in Chapter 1, we

omit the details of truncation.

N
-2 5 7.,

Hn(t) = the characteristic function of n 3
J=1

We have the following lemmass The proofs are only sketched and the

details can bs filled in from GH;

E
Lamma 3.3¢2 ¢ ¥ |t] £ Cen EJ, we have

p&eFe Ly AF ¥ 3(5—1)‘*; Al 2y ~(g=2tE.)/2
D (Hn(t)'_-lln’s(t)IiC(li'ﬂs_l,l’n)(l-PIti Yaxp(~C i1t 1" }n o/



.....

~ 5l =

*

for some €_ < 1/2 and C dependes on the bounds of Bs+l,n. (s+1)th

moment of Xz. % is the usual differential oporator, ﬁn 5(t) the
4

Fourier transform of un 5 ! the usual function associated with Edgesworth
H .

expansions and |a | < st+2,

The proof is exactly as the proof of Lemma 3.3 of GH and we

omit it.

| &
Lot I, ={t:Cn°< It il:lnl/z}

'{t < lti < 8_& %/2} where Cl is to be chosen

and 0 <& <1 is fixed.

Lemma 3.3.3 ¢ Under (Al) and'(AZ), we have for almost every sequence

Y '-Yl,lli

'h( IDaHE(t)ldt = u(n"(shz)/z).

t€ 12

Proof ¢ A careful look at the proof of Lemma 3.43 of GH shows that it

o % %k

suffices to show that E|E A /§§ ,}3 # 3 |< 1 wuniformly in t 2 I2 and
P = 1,2,..-.-_ 'X
jp+in |
e - .
wherse A = exp(itn %/2 X Z ) ED -G(BJ and for definition of jp
J=J~m |
D

and m see GHe. As in Chapter 1, we omit the details of the definitions.
But note that the effect of truncation is negligible and it suffices to

deal with
| | in'm - ”
5 = ﬁ*IE* exp(itn ~1/2 E X%)/E% y J f’jp b

rm - - A
- L m



jt+m

P ¥ 4 % * #2
Note thet & X = €. (Y? LA +2+e’;, +l+ai&=j RRAL IRt
=ig=m Y e b p " Jp p :

where B | €. .
Ip

Let Ki denote the distribution function of

% # % 2. %
Y. + a Y. + £ + a & .
Jp n Jp JP le

# | L, =172 Lo =l/2 2, % #
Then '6nm=jlfexpfltn /xy-i- itn / anx )an(X)‘cﬂ*’cn(Y).

As t varies in I (tn_l/z, tn_l/zf:ﬂn) varies in & compact set bounded

away from zero. Lst D[ denote such a set in __IH2. |

% | 3 . |
8 < sUP {Ijexp(irx Xy + iazxz)dﬁ(x)l dK%(y).
nm ™= (a )€ D 1 f n
1%
Let bl,b2 > 0 (to be chosen). Then .
¥* * # #
O S Kby £ YIS by)T, o+ K (IY] < by ) + t;n( Y1 > b,)
where I < . 8sup sUp ljexp(ia Xy + 1 xz)dF*(x)l
ln — XY A, 1 Ve

b, £ lyigb, (cal,az)am

Note that by Lemma Jedel, KJ':_'I = K dess Uhere K 1is the distribution

: 2 . |
function of Y +aY, ., t+tE. .+ QE which i1s non=dsgenearate.

Jul 142 41 j=l ?

Thus bl and hz can be chosen such that for large n,

) 3
i ' { + )
Kn(w_l_ b Kn(lYl>b2)<a:D_<l |

l).
Note that Fn =1‘.'»F'u 2.9s and we have Cramer's condition for (Bl,ai)NFD .

Using the fact that the convergence of a sequsnce of characteristic funce

tione to its limit is uniform oven compact sste, Ws have Iln < 1l=06<1
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for large n. Thus éim < (1-8) + GOLD < 1,

Lemma 3.3.4 ¢ Under (Al) and (A2), for sufficisntly small Gl, We have

for almost every sequence LR SETIRE

j ID“H";(t)ldt = u(n"(ﬁ"z)/z).
tE:Il

Proof ¢ As in Lemma 3.3.3 it is sufficient to.daal with the original
variables instead of truncations. As before we procesd as in Lemma 3.343
following GH but use a different estimate for E*“;E*‘a*;/e*;, 3£ 5, b e

have to deal with

% # % | -1/2 % %2 ' *
§ = E IE. exp(itn 7 (e A+ € ))/SZ)j, j#nl

S I # # 2 %
where A =Y . ta¥ ,tE L Fa E e

& < o*r ¥ S + et g2 gt #2 * *
an (1A 12 b) + ETIE exp(itn™7%( A tae ))/faj, 3% niL{IA” 1< b).
For large b, the first term is small.

in the second tsrm, the inner expectation equals

t’;' % %2 -zflti:!lz* * o #2 3
1-5-5[)(8.”,&:“ )tn+ 6 nS/z : Han’en :
where t = (tA ,ta ), | ¥ 1< 1,
The last term is bounded by
c .3 (tl° w0 # ¥, % #2 3
-gb ;—5--2—%” where p'.?rn = £ HBn,En M .
| bzcl . % a.s. 2 .3
< B g eS8 since U'Sn aeec N | 31 ’B.l i by Lemma 3e3ela
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1412

By takilng Cl sufficiently small the abmua term is dominated by « "

where « is as small as we please.

- - | % %2
Let hln(hl) be the amallest s=igen valuess of D(Ehl,ﬁrl)(ﬂ(al_,ﬂi)).

By Lemma 3.3.1, D(Ei ,Eiz)-ﬂ¢iiéiD(8l ,si) which is positive definite.

1
.t 2
% M B N2 % %2 b 2
{Iﬂnlib}, 152 0(e* &%) 1 < ot (st, X )i it

£ 1 if Gy is small.

#%2
For large b, I £ *ZICtﬂ | £ b) ~ }

o3k, Wedy %, 3
| (R (AT 1 > b)]
< M, N sufficisntly smallyvhy choosing b large enough.

(By Lomma 3341, E (a*"*) 22325 £ () < @ )
ﬂ

% |
Thus the sscand term of 6nm is bounded by

Z
8 it i % ____;_._ t * #2 #%
2n ~ " n £ (1 2n 11"r1D(8n"En )tn)I( mnl < b)
< a-‘it2+ 1 -2 10 < b 1t 12)
— f -7 2n Moo= "IR YR

2 2 |
iﬁ'l"'t"'l"*‘l---z‘-—:ltl uhete Y > d

3

< sxp(-—éi_lt{ ), o > 0.

This shows that 6* <P+ prp(~ ————— H;I ) whera 0 < P < -%'-'.- A lock at the

proof of Lemma 3.43 of GH shows that this proves the lemma.

Ve introduce a few mors notetions. For & real valued measurabls.

funatiﬂn f on R.
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Let M (£) = sup(1+ Ix 1T e(x) ]
. , |
3(F,e,0°) = (s e ,x)¢ . (x)d

where W(f,E,x) = sup | PF(y)=f(x)! and @ , is the normal
|y | < E o
density with mean 0 and variance 102. |

5 = nd 2 g (Y, Y -0) = nl/z(an-a)' |

n el Kk k=1
I
% _ ~1f2 * % _ L2, %
- 8 if &8 is sven
8,

- swl if 8 is odd.
The fellowing rasults follow from developments of Chapter l.

Theorem 3.%,5 ¢ let f 1 R ~» R be measurablas such that NE (f} < m.
0

Assume {Al) and (HZ); Then thera exists a positiva © nuﬁ depanding on

f and for arbitréry k > 8 there exists a positive constant depending

on f only through M, sueh that
0

| < cfﬁ'(f",n"k,az) + U(E(s-2+6)/2)

*

| Ef(s ) - f Py

Myd

The term of(-) depends on f through NE only and 152'# limiting variancae
0

of ;Sn' mn o is the usual function associated with Edgeworth expansicns.
> .

Corgllary 3.3.6 3 Under (Al) and (A2), uniformly for convex measurable

c(:m,

P(sn £ L) = “h,a(n) +-§(h“(5'2)/2).
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We are now in a position to study the accuracy of bootstrap

approximation.

Theorem 3.3.7 ¢ .ﬂaauma (Al), (A2) and ol < 1y Suppose f $ R—¥ IR is

e
such that M_ (f) < @« Let aﬂz 3 (5*2)

O
uniformly over x € IR, almost surely,

.Fﬂr SeEoas YD,Yl,--I and

(a) . l E f(s )- jﬂqu 3 | < Cou(f, n"k 'iz) (h"%/z).

(b) | P*(at'lsz <x) = ms(o’ <) + o(n~Y?2),
(c) P%(Gt"lSJ: L %) = jmdw:'g(ﬂiy)+n(n-l/2) = F’(d-lsni- % } + m(nﬂl/z).

Proof s (a) follows from Lemmas 3.3.2 - 3;3."3, and Lemma 2.3.4 of Chapter 2.
(b) is a consequence of (a);: (¢) Follows by combining {b) and Corollary

Jedeb and noting that ths différenée-nf momentes involved in ¢n 3 and
. ?

%

un s COnvergs to zero by Lemma 3+3+1. To have a more detailed idea of
)

the proof, the roader may refer to the proof of an analnguus rasult in the

i;iidnr casag by Babu and Singh (1.98&).

For p > 1, the recovery of errors is slightly more complicated and

is done 28 follows.

Undexr our conditions,

whsare c, ~ l, cl = —-(I,l, 132' = () 131.-.(12 """Gq-l = -Ccl q=2 ach'."-”f“’”

C =‘ -— (a’lcjﬂl.i-.---%& G, ), * . q’q-‘-l,lnl .

]
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Thus, the pseudo errors are defined as

E, = N oV, _ 4 1= lyeseyn, Where ¢_'s sare estimates
in pmg T AT T

of cn's, obtained by replacing ai‘s by their moment estimates.

Lamma 3.341 = 3+3.4 can be extended to cover this situation.

The following theorem can now be easily proved by extending

previous argumenhts.

Thaoren 3,3,8 ¢+ Let H be a function from RFP => R which is thrice
cdntinunusly differentiable in a neighbourhood of 0. Let ;A denote the

vector of first order partial derivatives of H at 0. Asaumarlx f 0,

Let T(F) = l/z[H(n -1 (vkvk_ ~B, Js 1 = lyeassp) H(m)], g° =,('z:,(

n
k=l

T(F) = l/z[H(nﬂl z (e =Bin)r £ = Lyveesp)) =H(0) |y 7% =L 5 £

1/2 |

L'” = li D Y —_ wee -

1Bre 2 m D(n REl Yk ki ? i =1, :P): Bi EYkYk-—i
¥ % 1/2
T =D (n 5 vy y 1 = lycaaqp), B. z‘, Y. Y, ..
mi . k""‘l k l":"'i : ’ 1N t=l t t"‘l

%o ]

Then sup {P(c~ T(F)< x) = pF (U T(Fi)i x) | = a(n_l/z). 3aSe
X

Proof 2 Note that Theorems 3.3.5 and 3.3.7{a) remaiﬁ valid for

-1/2 . ~1/2 N *
& (Yk ) —-Bi), ln-l,“.,p) ahd (n 2, (Yt &

=] | t=l

iﬂ'B ), i= l,.u --,p)i

Thus arquments analogous to Theorem 3 apd Corollary 2 of 85 yialds the
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theorems The arguments are exactly as those in '8S, so uwe omit the

details.
Ragmark J+3«Y,

The above result, with proper modifications is trus with vector-
valued H. This is because Theorem 3 and Corollary 2 of B5 are true

for such functions. The satimates of «o ,..,,ub arg smooth functions of

1
-1 D
n X Yij-d.' Hence, once we have obtained Theorem 3.3,8, we should be
j=1

able to utilize it to prove results for the parameter estimatas too.

We have the follouwipng theorem on accuracy of bpotstrap approxima-

tione

Theorem 3¢3.10 ¢ Let | denote the distribution function of
~1/2 1/2 | _ e .
) n (aln-hal,...,abn-ap), where % is the limiting variance-

: : 1/2 %
covariance matrix aof n (aln- l""’“pn"ap) and U dgnotg the corresw—
ponding bootstrapped distribution function. Then under assumptions (Al)s

(A2) and the invertibility condition, for a;a. YD,Ylg...,

sup (4 (x) = u'(x) [ = o(nH?) aue
x € T

Proof ¢ The case p =1 1s Theorsm 3.3.8.

e T

For p = 2, the moment squations ars

.1 N
= 5 Y, Y
%2n o b b2

| 2"
a:ln(1+ “’Zn) = n 1—:2-:3_ % Yt-_l .
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n g -
tEl (_Yth_z - Bz) = ZZrl say

Thus aZn --(12 = n”l

-1 N —
L (VyYey =By) =2y, =3y

aln(l_+a2n) f:’ﬁl(l cn?_) i bl y

Hencs U’ln = I:Zln + fll(l'l'az)] /(1'“12'1‘22“)

zln e c::l(l-la_a,z)
or & -, TR o M e Cﬂl-

s (“‘“2'*?25)

Thus (o ucn,cr.z -CLZ)'-"l S A o e e,y ()
In L n = 1
\ l+cr2+22n

/ -z_l-n+ l"J'r'l(:l"i“cj(2) : ED -

Now the result follows from the multidimensiocnal uereidn of Theorem 33«8

HEmai‘k 3 IS e 11-

The idea of proof for general p is clear from what we have shown.
Howevear, énluing for the sstimates alngﬁ..,upﬂ becomes increasingly

difficult whth increase in  pe

Remarl _ J3e3, 12}

Ly T M T T =R T T

As in Chapter 2, the assumptions EEt = 0, Eﬁi = | canh be weakened.

We illustrate how this can be achieved, for the case p = 1.

The model is Y, = M+ €&+ ﬂ'et-l whers (Ei) satisfios (Al),

t t
2 2

(A2) but E€; =0° (unknown), lai < L.

The sstimates ,U»n, @ Gi of My @ and 02 ara cbtained by solving the

equatians,



P P N N L L i W AT AT N Nl ey BT WLy ey O e Tt P L o b B e, Ty T L o e Tl e D o e T L o, %, e P T N P ol Ty e T el e, Ll L L T T T T R et

w B0

- B
P 2, Yt-= un
t=l
N
el 2 2
— I 9]
" E-l Yth-—-l 'u'n ' n
L. 2 2, ?
nTt LY =M + 07 (1 + & ).
r=1 n n n

Thus the key guantities hers are

172, D | n N » |
0~ (5 (v =By)y (Y =By)s 3 (Y -B5))

2
where Bl ='EYt, B2 = EYtY .1 and 'BZ_=_EYt.

t
Edgewarth akﬁanéinns for this vector and its bootstrapped version can be

astablished by modiFying arguments already giuen for the case M= 0,
2 | 2 o

'-U = le M ah and dn are smoath functions UflthEEE- Hence result

0

analogous to Theorem 3.3.10 can be established for these Estimatas;

Remark Bedeld.

Note that Theorem 3.3.10 is specially relevant in testing problems
since we have shown that approximate tests can be carried out by the boot~

strapped distribution. They beat the tests bassd on normal approximation.

Remark 3-3.1&;

The models we have dealt in Chapter 2 and the present chapfer have
a linearn atructUpa; It would be interesting to derive analogous results

in more complicated modelsw This problem at the moment seems quite haxds
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CHAPTER 4

ASYMPTOTIC THEORY OF MAXIMUM LIKELIHOOD
ESTIMATION IN DIFFUSION PROCESSES

4.1 Introductioh

[ = T

In this and the next two chapters, we move over to continuous

time models. To be moTe gpecific, we consider a diffusion model of
the form,

dX(t) = F(8,;X(t))dt + du(t), £ > O | ;;.(a.l.l)

The problem is to estimate & and study the asymptotic properties

of the estimatore.

K
The situation whers fF(8,x) = § ai(B)bi(x) is known as the

linear case. This case has been daali_;y saveral authors, e.ge.

Taraskin (1971,1974), LaEratun (1977), Brown and Heuitt (1975), Kulinic -
(1975); and Lee and Kozin (1977). Work has concentrated on showing that
the m.l.s. is atronle/MBakly cunsistent, asymptotically normal and

efficlent. Thess authors asaums the existence of a stationary ergodic

distributiorn.

The m.lees in the non-linear case has been considered by Kutoyants
(1977), Prakasa Rao and Rubin (1981) and others., Here too, the main
assumption has been the existence of staticnary, argmdiﬁ distribution.
Prakasa Rao and Rubin (1981) proved the.atrang consistency and asymptotic
normality of the Melee When the parametar_apﬂcé is the interval [=l,17j.

They use Fourier apalytic methods, which are of independent interest.
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These methods can be gsneralized to cover the multiparameter case but
the proofs will become guite lengthys The approach of Kutoyants (1977)

is slightly different and imposes slightly differsnt conditions.

Borkar and Bagohi (1981) deal with the characterization of the
1imit set of the mel.o. dropping the assumption of stationarity and

srgodicity.

Lanska (1979) dsals with minimum contrast estimation, which uses
a differentiation under the stochastic integral. However, no justifica-

tion is provided,.

Other worke dealing with the above parametric model are discussed

in Chaptarsls and b

For works in related problems, ©.ge non-parametrioc estimation of
fy maximum probability estimation and the practically Important least
squarses estimatinn'whan X(t)} 4is wvbserved at finitely many points, we

refexn Eha reader to the article by Prakasa Rao {1985a),

We treat the non~linear cass, with the parameter spacs hging the
unit”ﬁall of B?d. We show that under certain conditions, the melegs 18
strﬁngly consistent and asymptotically normal. UWe do not assume ataﬁinn-
arity or ergodicity. However, in practice, the conditions e impose are

pasier to verify under the above assumptions.

The main technique is to use Kolmogorov type inequalitiss from
the theory of diffusion processess These are used to get probabllistic

hounds for supremum of certain processes, and, are of independent intersest.

This chapter is a rauiaad form of Boze (1983a).



4.2, Notations and Assumptiops

et F(8,x) be a real.valued f‘unc:f.inn on D x IR where
Q = {9— > IHE_j ° IIE'I < l} g d > 1 (finite) and Eru £ 'Qﬂ. (Itha interior
DFIID)I is the unknown true valus. IR dsnotes thel‘. set of real numbexs.
The obssrvation X(t), t > 0 svolves as the upique strong solution of

the stochastic differential equation
dX(t) = £(8_,X(t))dt + du(t), t > 0 - (4.241)

X(0) =X (given) with E(X*) < m. Here (W(t), t > 0) is a

standard Wisner process.

Suffinientlmﬂnﬂitiﬂﬂs for the exigtsnce of unigue strong solutions
of stochastic differential equations can bs found in MeKsan (19%9) or

Friedman (1975)s Seo Remark 4e2.l.
We introducse the following assumptions.
AL (1) f(8,x) 15 “pontinuous on ( }xR.

(i1) sup I'f(a,x) | < :ll(,b?.) W% £ R.

8 -
| | p

(141) 1£(8,x) = £(0,x) | £ 3,(x) 1601 *, 0<p, <1

(iv) sup | P(B,x) ~ P(Byy) | S Lix~y! —, 0<a, <l

&
AZ (1) The partial derivatives fél) of f Weleks Bi (Whers

g't = (B’l,-ni ,B‘d)) exists W i = lyz;u;i ’di

Denote by Pé%)(ﬁﬁ,x) the derivative w.r.t. Bi svaluated at ié*.
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| d . |
(i1) sup 2 Jf’él)(B,x)i < Jz(x) in a neighbourhood V_ of 8
ge V. i=l | g -

b
0

| | 5
(iii) If‘éi)(@,x) - f‘é“')(w,x) L 3,(x) | &= | £, 0< B, £ 1

A3 (i) There exists a_ > 0 with Bl(d-i-cr.ﬂ) > d and

1 ! dta
sup T jE.'JZ O (t)dt < :J2 < @
0

T>1
T
(i) limsup -1 j C]l(X(t))Clz(X(t))dt <M< ® a.s
T—>wm 0 |

(ii1) Thers exists 0, > 0 with Bz(d+cr.m) > d and
T |
L
sup T-lhf E34 D(X(t))dt < m .
T>1 0
.

(iv) | limsup T"lj 2, (x(£))3, (X(¢))dt S M< @ 2.8,
T =~>m 5

A4 (1) U T"'lIT(e) = I(B) ass., and I(8) > O v & #8. (For
T=—>®

definition of IT(B), see belouw),
T |
(11) Iim T j(vf*aca,x(t))(Wa(e,x(t))'dt---3(9) a.8. and
T=>m 0

J(8) is positive definite.

"Remark 4.2.1

Strang solution of (4.2.1) exists if AL(ii) is satisfied with

:chx) = o1+ ix]) and Al{iv) - with oy = le



For any T 2 Oy (0,71 will denote the apace of all continuous

. Punctions on {0,T ] equipped with the supremum morm topology.

Under condition A1(i), the solution X(t) is a continuous
function of t. Let M; denote the measure generated by X(t) on

CLO0,T] when B8 dis the trus valus,

Sufficlent conditions for the mutual absolute continuity of
J;L; 8 € _(_-l osn be obtained directly from results of the theory of

diffusion processes. See e.ge Liptser and Shiryayev (1977). In parti~-

cular, Hg << ﬂ; under assumption AL(1), and the Radone~Nikodym deri-

0
vative (likelihood function) is given by

du! T ¥
T ? (X(£) 3 0t <T) = exp( | u(&,X(e))du(s) - -51- {v2(8,%(s))ds)
d U - _

Q-D 0O 0

= exp(Z;‘:(B) - IT(B)/Z)

whera v(8,x) = £(8,x) - P(&_,x)
- _

Z?(Bﬁ #!J v(B8,X%(s))du(s)
]

| T
lr(ﬁ) =.f UZ(E,X(B))dS |
0

_ _ 3
Define R.(8) = I.(8) ~ 2Z.(8),

4.3 Auxiliary Results

Bafore we stats and prove the main results, we shall derive some

auxiliary resultse Theske will serve as important tools in subsequent
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developments. They have found applications in other areas too. See

Romark 4.5¢4(3).

The following lemma is stated and proved in Stroock (1982, page 7);

Lemma 4.3,L ¢ Let p and y .be stfictly increasing continuous Punctions

on [0, ] such that p(0) = y(0) = 0 and ylw ) = m. Also supposs

that L 12 a normed linear space and that f 1 RY —> L is strongly

comtinuous on B(a,P) = {x > Iﬁd ¢ [Xx=~a| < p_} « Then

I- j'L,I“E(I:J_”S( )| _dxdy < B implies that
B(a,R)B(a,r) L P Y. |

Jurlry

- | | | Xty | 42
L P(x) = F(y)Il <8 f Lp"'l [ ;2 25] p(du) yxey € B(a,P)
D' U

wHET e 3 = inf | inf.! J_B(X!p*) ﬂE(El,l) |
X € B(a,P) L<P*<2 pd

and |A{ = Lebesgue measyre of A.

The following corgllary is Immediato.

o 8
Corollary 4.3,2 ¢ In particular if y(x) =-xr, p(x) = x /bir > 0y & > 24

in Lemma 4.3.1; then
18(x) = P(y) I < o(p,8,d) | xmy | (O=28)/2 gl/x,

Lomma 4.3.3 ¢ Suppose {:Y(e) $ B E qu}, is a class of random variablas

- taking valuss in 2 normed linsar space - L. Let a > 0.

Suppose a) Y w, & —>Y(8,u) is continuous on B(a,P)



w B -

d+q

b) E NY(8)~Y(@)IT <C 1B =q ¥ 8,0 € Bla,P).

Then % & € (2d,2d+a) and A > 0, with C as above,

. : a) .y
P{ sup LY YB@ ll > o(r,9d, d)h}/r) < %f
B,€ B(8,P) . |B=]
where B = (&~ Qd)/r, A = 5 j IB'-fPldHI‘G: -0 dackP
| A{a,P)B(a,P) |

Proof ¢ By (b),

e " - II Y(G-l YgtPZH T o _
[E(a D)E(a P) | & =P | )" ded :] = &

| HY(8) «Y(P) ]|\ |
Henca P A N
Hene '(E(E{D)B(g,p)(#) dB-d(P.z ) < CA/

ﬁndl whenevar j f (Jﬂ—%c—p)— Tasd @ < N we have by
8(a,0)8(8,0) 18=0 |7

Corollary 4.3.2,

1 Y(B') "'Y((p)“ i C(I‘,ﬁjd) IE"'(PIB ?\1/1?’- 4 B’,(P & B(E,p)‘-
This proves ths Lommé.

The following corollary is immediate.

.Curqllarx he3ed ¢ Suppose in additions to conditions of Lemma 4.3;3,

" there exists & g, © B{a,P) such that Y(Bb) = 0. Then

P( sup - (HY(8)Il zr.(ZD)ﬁn(r,é,d)?\Vr) icﬁ/.?x.
g€ B(a,P) |

Lémma 4.3,5 ¢ Let g be a function on D-xlﬁ such that

| g(Byx) =g(®yx) 1 £ I(x) IEI-'—fPiﬁ,, vwxeR,¥vs,9e ().
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- T
Suppose YT(B) = J- g(@:,X(-t))dW(t), T >0, is well defined as a
0 o
stochestic integral. Let a 20 and dta_ 2 2. Then
O dia
| CH'CLD Bl(d‘fﬂin) — 2wl T .. 'Mu
£( sup Y. (8) =Y (@) <o, |80 T fE(:J (x(t))dt
t t -~ oa
0L tLT o o D -
| dba
Froof 3 LetAT = E£( sup wt(a) -Yt(qﬂ)l ). By applying Burkholder's

| DT
inequality (see Stroock and Varadhan (1979) page 116) and Holder's

inequality in succession,

- | ot
ALY %aGE( jl 0(8,X(t)) = a(®,X(t)) 1Pdt) *
A
dhot

_“EI

=% -1 | dta
< mdmn'r f £C3 O(X{t))dt.
C 0

This proves the lsmma.

Finally, we state the following lemma on the existence of conti-

nuous version of a process. For é proof see Stroock (1982, page 9).

lL.emma 4.3.6 ¢ Let X(8), B & Eﬂd, be a family of Banach spate valusd

random variables with the properties that for soams o > 0 and p>d+c,

e] ux(e) «x(@)1° | <ole-017% 8, 0 ¢ RO,

- A

Then there is a family of random variables X(&), 8 E RY such that
~ | ~

X(8) = X(B) &a.s8. for sach B¢ RY and B ~>X(8) is a.s. strongly

. ocontinuous.



The next ssption is devoted to proving strong consistency of

the Me Lle B

44 Strong congistency of the mel.ss

Let B, denote the melee. uwhen X(t) is obaerved over thae time

T
period 0 <t < T, We shall assume the exlstence and msasurability of
B fFor sufficient conditions and quaestions regarding these see

Lanska (1979).

We first prove two lemmas.

Lemme 4.4} 8 Assume AL (iii) and A3 (1) hold.. Then

o ' 1/ (dta, ) (dta )2
(1) P(sup sup | Zt(a) 2 e ?\/ A Ly O
8@ 0Lti7T |

(2) For any & 5 1/(c+ma), there existe H » 0 such that

»
| Z4(8)) |

limsup sup —sz——’—'—& < H  aese
T—sm & T (logT) |
Proof & (1) Take o(8,x) = v(&,x) in Lemma 4.3.5 to get

. A+ - o )/2

B.(d+a )
# ¥ G 1 a
B( eup 1Z7,(8) ~Z,(9)) )< nd+c5032T | & =0 :

By Lemma 4.3.6, there is a continuous version of & —-&Z':(B), 0L tLT.
The conditions of Corollary 4.3.4 ave valid, These togethsr yiﬂld the
resulte | -
+(2) Prakasa Rao and Rubin (wei) have proved this in the situa~
tion where d = 1 and X(t) has a_statianary-argndin-ini-t

tial diatributimh. e follow their proafs
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Define An ={ sUp sup | Z (E})I 2 H Zn/2 6}, n 2> 1.
o N l<t<2n B
| C oy (oD (d+unlf2 .
By (1), P(An) <o, L—-l——-———z G .
(2['1/ n) 0

By the choice of o, E P(A ) < . An application of the Borel-Cantelli
f=A .

lemma pompletes the proof.

Lemma 4.4.2 & Assume that AL (ii),(iii), A3 (ii) end A4 (i) hold.

I (E‘) BleSa

TIT -—-+?~.(6) as T ~>@ for some NE) > 0,

Then inf
6~8 126

Proof ¢ The proof fur'ths stationary ergodic cass and d = 1 is given

by Prakasa Rao and Rubin (1981);_ We provide simple modification of

their proof.

1 T |
1.(8) = 1.(0) = [ (P(8,%(5)) = £(9,%(£))) { £(0,X(£))+ £(8,X(t))
0

- 28(8_X(t)} dt.

B
Henoe | 1.(8) =~ 1.(9)1 < oT |8~@1 * a,o.
I.(8)
Thus 1t follows that ---.-‘-.--- - T{&) unlfnrrnly in B8 € g 2 ag T = @ .

= -l -
ut I.(8) =10 and lim T IT(B) >0 a.s for @ #8.
T=>® |

This proves the lemmas

Wa are now in a paosition to prove strong consistency of Mo LeBe
Thoorem 4.4.3 ¢ Assume conditions of Lemma 4e4.1 and 4.4.2.

Then BT-é\vB-D a,s; as T--%ma"
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Proof ¢ The key results used in proving this theorem are Lemma bebed(2)

and Lemma 4.4.2., The arguménta are sagy and arg available in Prakasa

Rao and Rubin (1981). Hence we aomit tha-dataila.'

In the next section wse praﬁé_aeymptutin normality of BT under
. |
snough assumptions. |

8e5 Asymptotic hﬂrmalitz of the m.l-e;

We shall need two lemmas to prove the asymptotic narmality. of

m.ige. The first of these provides an approximation for IT(B).

Hfévl)(a'* :?‘4)
: |
(d)(g* |

Pg ,:-c_)J

Lemma 4.5, 1 ﬁﬂﬁume A2 (L) = (iii) and A3 (iv)e let y =T

| | T .
| | | 243, -B,/2
For any Ar-> 0, 8sup ‘IT(B') -,-T_lj (w'er(Gn,X(t)))zt{t‘i MR- 27 2L a8
Iyl <A - |
2Py
T | | .
Proof ¢ IT(E) = J‘ UZ(E,X(t))dt

| Fa:r'_' any e _(:)_D s Lot Qf‘&(@*,x) =

1/2(9.- BD).

i

.
j [(e-an)‘vfg(eﬁ ,x(t))] ’ dt
0

+ J‘{[e g ) < f (9 ,x(t))] [(9-9 y' vf ]}dt

» ’
whoere 'IE"-E'le_lg"'E’GIi
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The intsgrand in the second expression
| | _ | . |
¥
= (B8 YU g8 jx)+ Veg(8 ,x)) (=8 ) (V£ (8" ,x) = grg(e sx))

Hence using A2 {(ii) and (iii),

| 1.(8) =7~ JT[' . Z ' 246, .
(8) - 4 'xjf‘g(GU,X(t))J dt (5 clo~8_| j:ls(x(t)):la(.‘{(t))dt.
| 0 | 0 |

The lemma follows immedistely from the above expression.

1/2

Lomma 4.5.2 ¢ Lot w = T (B-Bu) and

-1/2

vr(yyx) = f(B + M-l/?—’_,,")_f,(gn,x)_ww YASNCATIP

Assuma_thaﬁ AZ (iii)-énd A3 (iii) holds Then for any O € (Qd, 2d4'ab); |

and BT = j f lE--CPId*-U:-& ded 9 ,
B(U;AT)B(DjAT)_'

. | | 1 d+. o . B, (d+t
P( sup fuT(w,X(t))dw(t)l > cl(é)?\/ o) ) < =(A =+ 2 2 (¥,
|¢|:£RT 0 |

T

Proof ¢ First note that juT(wax(t))d\u(t) is well-defined.
- )

UT(u,x)-UT(ul,x) = (m-wml)!t?UT(Q*,x) Where m* lige between Y and wl-
But (i)(w,x) = 747 (i)(e w gt ) - 1Y (i)(e %)

, | | B
which yields 1U§l)(w,x)l ﬁ_Tﬁd/Qﬂa(x}(ﬂTT-d/z) 2

Now the feault follows Bxabtly as in Lemma 4.4,1(1).



We are now in a position to state and give a quick ﬁ}umf of the

agymptotic normality of m.l.e,

Theorem 4.5.3 ¢ Assume AL ~A4. Then

L

Tl/z(r:*:T - eu) —----':»N(D,:J"l(gn)).
e _ . .
Proof ¢ Since T~ fvfg(au,x(t))(v FQ(QO,X(t)))'dt' -—'pa(e»u) 2080
0.

we have by the central limit theorasm for atnchaatic-intagrals'due to

Kutoyants (1975)y (for a proof see Basawa and Prakasa Rac (1980, page 405)),
T | |

T-l/?. ,fvfg(aa,x(‘t))dw(t) -"-—*N(Ds?(ﬂo)j as T—>wm.

Since 'Qf is consistent by Theorem 4.4.3, ﬁT € Vg  with
| | 5

probability ans as T—>®. Choose PIT = log T in Lemme 4.5.1 and

4e542» We than have that the asymptotic distribution of T]'/2
M ' A |
which minimizes R.(8) is same as Y uhere 4 is that which minimizes

(E'T ~ E'CI)

w'a(gﬂ)z.-zu‘:.,and Z is normal with mean zero and variance-covariance

‘matrix s_).

a
-

l‘h. -- R _ .
But ¢ = J 1(90)2 ~ N0,J i(.eﬂ)).

-
-~

Hence it fﬂllﬁua' that TJ_Z./-"Z(B -8 ) —> N(D,J"l(e ) )

Remarks: 4.§14 (l) Prakasa Rau and Rubin (1981) prove the above results | .
for the case d = l, assumi.ng statmnarity and ergadicity uf’ X(t), t__:;ﬂ.
They ugse FdUriar Enalytiq,mathnds, which can be extsndaed tﬂ the case

4% 1, Houwever the proofs will become quite lengthy. f

r
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(2) The case of vactor valued ubaarUatians paoses na extra difficul-

ties except for complexitiss in notations.

| - T oo |
(3) .The convergence of the quantities T"l.‘f £d, “(X(t))dt etc.
D - -

is most easily verified under stationariiy and ergodicity. The general

set up Eraadena thelecnpa of the resulte.

(4) The technigues developsd in Section 3 has uses elsewhere. It is
specially useful in dependent models and has been exploited by Prakasa

Rao {(1983¢).

However the drawback of the technique 1ls the sxistence of suffi=~

cleritly high order moments,

(5) The technigues of this ohapter in conjunction with available
1imit theorems for martingales can be easily sdapted to prove analogous
results for the least squares eatimateé in discrete time models.of the

form
X(n) = r(8,X(n-1)) + Sn,'nlzll where (Bn) are i.i.d errop

variables and X(0) = X (given).



CHAPTER 5

ASYMPTOTIC BEHAVIOUR OF -POSTERIORS AND BAYES
ESTIMATORS 1IN DIFFUSION PROCESSES

5.1 Introduction

A classical theorem Fﬁ: pmatafimrs in the set up of i.di.de

observatione, loosely stated, says the Pnllawiné :

Let  (X,) be i.i.de observations from a paramstric family of
probabilities '[PB_ 8 B E Q} . _Let /\ (¢) ba a prior probability
distribution on KT],. Then, undsr auffiaiant reqularity conditions,
the posterlor distribution of & (suitably nommalized) given the

observations (Xi), ilﬁlh is asymptotically normal under a fixed ED.

This was proved in ths general set up of i.il.ds dbaeruétiuns
by LeCam (1955, 1953), geﬁeralizing the resylts of Lapla;a, Barnstain;
von~flisss, Kolmogorav who obbained them for particular cases. Borwanker,
Kallianpur and Prakasa Rao (1971) have extended this result to Markov

PrOCessas »

 For diffusions with f(B,t,x) = a(t,x) + 8b(t,x), analoguus
result was proved by Prakasa Rao (198l) and then sxtended to diffusion

fields in Prakasa Reo (1983 ).

In this chapter we show that this theorem holds for non~lingar
diffusions too. As a consequence of the main theorem, wa abtain that

the Bayss estimators for smooth loss functions and smooth priors, are

asymptotically normals

°
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The basic line of argumeht is similar to Borwanker st.al. (1971).
Howsver, the interhediate results nseded are obtalned by applying
techniques developed in Chapter 4., We also need a formula for inter~

changing"tha order of stochastic integration and ordinary differentias |

tion due to Kaerandiker (1983 ).
This chapter is 2 revissd form of Bose (1283 b).

562 Notations and AasumEtiona

The model is as in the preuidue chapter. Hars we introduce some

more assumptions on f apart from those given in the pfauiuua chapter.

' N (1,3) - .
A5 (1) The partial derivatives fg_ (8,x) ~:5gia 5 #(0,x) exists

¥ 1y = 1,eve,d and are continuous.

(11) Egp | f-éi”’)(a,x) | £ 9:(x) ¥ 1,5 =1,2,0.0,d, X € R.

. o ) B ‘
(iii) lfé"’j)(e.x) - f‘éi"])(fp,x) L £3.x) 1e-9 J,0<B, < 1.

To keep conformity with notations of the previous chapter introduce the

following assumption.

A3 (v) There existe ¢ > 0 with 'Bs(d-a-a[]) > d and
; .

1 d+a_ _
aup T { € 3 x(£))dt < 3, < .
TS 1 a -
;
T-lE ; f,nZ .
(vi) +oh J (8_4X(£))dt < @, " denotes second derivatives.
- .
(vit)  sup T [ 3,(x())3(X(EDet SN < @ ause
T>1 .
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In Chapter 4 we have seen that under aasumptinna AL (ii), (iii),

(iv), A3 (i), (ii) and A4 (i) the mel.a. 8. 1is strongly consistent.

Supposs now thab /\. is a prior probability on (D ,E), whers
B is the Cwalgebra of Borel subsots of D.‘ Assume that /\ has &

density A(¢) w.n.t. the Lebgague measurs snd the density is continuous

‘and positive In an npan.naighbaurhuod af Bo'

The posterior density of & given (X(8) 30 L8 <T) is

B

p(B/X(8} s 0K 8 < T) ==—=(X(a) t 0<8<T)a

!
!
~—

- d
where a = j — (x(s) 1 0 <8 < TINB)dB

iflldur
1/2

1/2

let t =T (a,-eT_) is

(&"ET)' Then the posterior density of. T

pr(t/X(s) s 0 <8 <T) ._"'--" T"J“/zp"(a'T + t-;T"l/z/x-(s) t 0<s<T)

! /2 du-T
43 +'tT
dUE G

0

=J Yr(e)n(e. + t7™ 2 )dt

V(B,x) = £ (Byx) = f" (&G;x),
. £ S
X(t,8) %-_[IU(93X(s)dw(s).

0
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For the rest of the chapter, we shall assume that d = 1, With
proper mudificétimna, svely argument In this special case goes through

for highoer dimensions, We will continue writing d in generala

S5¢3 The main results

We first quote a result from Karandiker (1983 ) which serves as

an important tool.

Lat (), %, P) bea complete probability space, (% t)t> 3
be ah increasing family of sub O~fislds of J such that . contalns
all the P-null.saté- Ril the propesses arg (Eﬁt) adapted; Let
_(_Ult) bs an (3[1:) Brownian motion. Lot £2 be the collection of all

progressively measurable processes f on [0,1] such that
' 1
2 J’ F2(t,u)dt < @© o
D

' Theorem 5.3.1 ¢ Lot {P(B,-,-) t 8 € m} C,ﬁz be such that for all
tou, E% f(&,t,w) = f"(@,t,m) exists and {f'(e,.,.) $ & & m} g‘fz
Further assume that the following condition holds.

There exlsts constants E,Bl,ﬂz ¢t 0<c < m, D <.Bl;32 < 1

such that
, B,
[P(B-l,t,m) - P(8,4ty0)1 < 018 ~6, |
¢ t | '82
| f (Gl,t,w} - f (Qz,t,w)l <cle ~g, | "o
| t ' | |
Then there exists a version X(®,t,.) of [ (Byuy.)di{u) such that

0
for all w,ty 8 ~>X(B,tyu) dis differentiable in & and
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t |
'a%: x(.a'?t!') =j f'(B,U’-)dm(U)a
0

Remark Se3¢42

Under the assumptions ALl,A2,A3 and A5, all the stochastic
integrals mnuming ﬁenaefurth can be defined pathuise. Sea'Karandikar
(1981). Further, by a.slight mudificatian'of the above result, it is
pnssibla to differentiate (w.r;t;_ﬁi's) within the stochastic integral,
pathwise outslde & Fixed null set. This set is dropped out of consideraw

tion hen¢efnrth.
Remark 5.3s3

The m.l.a; ET satisfies the equation

$5 10 Lp(8) }G=E}T =0.

Thus by Remark 5;3:2,

T | T . .
[{ P (8 x(s))a(e) | 5 o, = { #'(e; x(s)) [ £(8,,%(0)) - £(8_;X(s)) } o
0

| -li(S-Sll)
T ,
Note that ,J'f'(BT,K(s))dM(a) is not defined as an Ito integral since
0

| f'(&T,x(s)) ls not non-anticipatives Huweuaﬁ, we .Will use this nota-
| T
tion for thes sxpression [_f f'(B,X(a))dN(s):’B__g « The samg comment
| 0 | T

holds for all other similar aXpressions appsaring in the sequel and also

for Xr(t) defined sarlisr.

We now state and prove & series of lammas which will lead us to

the main theorals
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Lemma H«3¢4 1 Under'the assumption A3 (Ui) g

T |
lim . :r]‘ j i (& ,X(s8))du(s) =D a.s.
T_-—-?"cn q .
- |
Praoof ¢ qg(t) =f P (Q—D,X(s))dh}(s) t > 0, is a martingale. Hence, by
0

the martingale inequality, for svery T > 0,

T

p( sup  Lg(t)1> A) < A%e( [ ¢ (BU,X(S))CIM(E))Z -
1< £< T .

;
-~ 2
= " [ 7" (8, ,X(s))ds
. _

Lt A ={ sup 1t 5gE)1 > 2““/4}
2" < 142

Then P(An) < P(  sup a(t) ) > 2n"12*n/4)
- 2n«---J.E_'{_}Elzn |

o< £ 2"
Al
< E j f’"z (Erg,X(s))da/(Zr?“lZ"n/a)z
{] '
m
Henes X P(ﬂn) < @, and the lemma follows from Borel Cantelli Lemma.
n=l |

Lomma 5.3.5 2 Under assumptions A3 (v),(vi) and A5 (iii),

| 1 .(EH'CI. ) (d+a )/2
(1) Pl s 1K(68) 2o 0) g onhr 0
8 0<t<T | . |



whero e.,c, are positive copnstants independent of T.

17772

(11) % ¥ > l/(cl+0:ﬂ). there oxists an H such that

lim sup RGN < H @a.5,

T—>m & Tl/z(lagT)y N

(iii)' lim sup I_—X(-M-U-:-" 0 Qe8e

T ~»m 6 T

o T |
(iv). - dim sup-%'hf F“ (8,X(8))dU(s) = 0 a.s.
T“>»m & 0 |

Proof ¢ Proofs of (i) and (ii) are axactly same as Lemma 4.4.1 (1),(2)
of the preuiﬂua'chaptar. (iii) is immediate from (ii). (iu) follows

'_”fram'(iii) and Lamma Sedade

Lemma 5.3.6 ¢ Assume the conditions (Al) =~ (A5) aexcept A3 (iii). Then

(1) For each fixed ty, lim log }’T(t) = --Bt2/'2 HeBa
T == o |

(ii) For every €, 0 < € < 3, thers exists 6& and TD such that

for Itlf_f.'fm'l"l/2 and T 2T, »

)IT('L-') EEXP("%tZ (B"E)) BsSa

(iii) For esuery & > a, theré exists a positive € and T_ such that
Y ¥

for T _:: TD’

sup }%(t) i_exp(nﬂTa/a) a.8. Here [ denotss
1> 67 2

| J(Bﬂ) (defined in Chapter 1)}, when d = L.
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: |
Proof ¢ log }’T(t) =J '[f'(eT + T"'l/zt,x?('s')) - f(eT,x(a))] dv{s)
! 2
2 [ [ (e, + Tfl/zt,X(s))‘— #(8: X(s))] e
0 | .
T - s
+ 112 j [f(&T,X(s)) - 1’(-90,)((5))]. ds .
0 | o | -

- Applying maan-ualué theorem and then the likelihood squation (5.341),

1t sasily follows that

log )’T(t) =1, + I, + 1, +1,

L, T
.where 'Il' = %—j fiz'(E-me(e))da
| 0
£ ’ 2 2, ¥ 2
I, = ﬁj [1" (8 ,X(8)) = £1°(8 4X(s)) | de
0
tzr ! *
I, = —-.-r-‘( ' (8 4%(s))ci(s)
0
T B
I, =j [f(aT,x(a)) ~ 1’(8-0,)((5))] [f'(aT + 472 X (8))
0

.._f(aT,x(s)) - tTszf*(aT,xcs))] da

9-?!-1'!-

| ~1/2
whers max( !E?;-B.rl,l T -GTl)f_{ | & I.T / .

2
By assumption A4 (ii), I, =~ Bt"/2 a.e. 8 T—>w@.

gy assumption A2 (ii) and (iii),
g T
2 -], ¥ T2
I, 1 T 18 -8 |7 | 3,(X(2))3,(X(s))ds
0
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Using consistency of  BT and assumption A4 (iv) it follows that

Iz—-b‘ﬂ AeBs 88 T =~=>m,

By Lemma 543.5, I, ~» (0 8.5, 85 T ~»m,

3 T
| 1l 2.~ o fv
(1,18 e 1881 T £ [ 3,(X(e))3,(X(s))ds .
0
Again, by using consistenoy of B# and asaumptiun A3 (vii) it follouws

_ﬁhat I, ~>0 _B-Bb- as T ~>m, This provas (i).

4
(11) Fix El > 0. Clearly there exists a Tl such that ® T 3-T1’
2 T . ' -
t 2 1
e E"’f f' ( !XKS )dB < -—-'2-' t (B & ) HeBa d.r(EnSiZ)
- 3

. By Lemma 535 there sxists a T2 such that & T 2*T2’
SQ.IP %‘IF" (E’X(S))dw(ﬁ)'f_ 81/2 Cele 111(513#3)
8

2

B |
| L, 1 < -%: | B-:*-GD | 2f JS(X(S))ZJA(X(B))CIE

o _ _ T
<& (er? v e -6 1) ZJ 2, (X(s))3, (X(s))d .
0

Using A3 (iv) and choosing '6D suitably and using consistency of BT ’

it follows that theres exist. 60 and T3 such that
1/2 | tz. * |
[£1T S_ 6!'_1 and T Z T:S impllaﬁ 12 _S_ "'2"".].".' El | e 8w .o .(5-3:&)'

Similarly using mean-value theorsm and arquing as above, there exist
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T, and 61 such that (here assumptions ALl (iii), A3 (uii) and A5 (ii)
are used)
ltIT”l/2<6 and T > T, Jdwmpliss I <-tf- 88 (54345)
| — l ety 4 P 4“2.1. l i d T N .l &

Combining the'estimates (503e2) =~ (54345), (ii) follous,

(111) log j[f‘(B + 4772, X(8)) = £8 ,X(2))] ai(s)

2

-k ([ ea, + 4772 x(6)) ~ £(8 X(a))] oo

-%? P(BroX(8)) = £(8_,X(s))] da.

-
J LA™

T 2
It

= A, (£,T) + A, (£,T) + A(T), eay.

Note that A, doses not involve t and by arguments given sarlier

3
F\B(T) —» 0 a.ge a5 T =»m under AL (iii) and A3 (i).

By Lemma 4+4.1(2) under ALl (iii) and A3 (i),

]
sup | A, (6,T) 1< 2 sup :-rJ-'- {ff‘(B,X(s)JdM(a) | —> 0 a.s.
. & |

0

?inally, by strong consistency, there exists & TD such that for all

T > Tm, 191.-8-0 1< 3/2  a.s,

Hence if It!T"l/z_lg_é and T 2 T_» we have

-1/2

8+ £T7T — 8 1> 42
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1 S AT "
Thus P‘z .S. - _é_ inf = -«—-}...-:-2-?\(6/2) B¢Se by Lemma 4,442 ,

B8 126/2 _
under Al (iii), (iv), A3 (ii) and A4 (1),
¥

Enmbining these estimates of A and AS' (iii) is proved.

17 2

Llet K be a non=-hegative measurable fupction such that

(K1} There exists a numbsr €, 0 < € < B, for which

- |
j K(t)axp(-(ﬁ-s)tz/Q Ydt < m

-{l)
- (K2) For every h > O and every 6 > O,

e_T(S j K(Tl/zt).?\(&r + t)dt ~» 0 2e8: a3 T ~>m.,
1£1>h

Lomma 5.3.7 8 Under assumption (Al) — (A5) except:A3 (iii),

(a) There exists a éa > 0 such that a.s.,

I -1/2 e 8 - 2 dt = 0.
> itljﬁ&DTl/z (L) ()N e+ E7777) -8 Jexp(~ pt7/2) gt =0

(b) For every © > 0  8.S.9 1

lim j k(t)} YN + tT"l/z)-h(aﬂ)axp(- Btz/'z-) | dt = 0,
T=>® 1415 6772 | '

Proof 3 We follow the lines of argumnent in Borwanker et. al, {1971).



T

(a) f

K(t) | )’T(t)?x(aT + tT"l/z) - Me_)exp(- Btz/z) | dt
161 6T |

1/2

< kemE) 1)) - exml- B¥¥/2) | ot
ti<8 T -

+ f K(£) () { M8 ) = Mo + 72 | at.

1t1<8 TY 2
0
Choose. 0 < g < B such that

fx(t)'axp(-. (B-B)tz/.Z)dt < m .

" By Lemma 5.3.6 (ii), there exists a 6, and T, such that

' 2 1/2
Y(t) £ exp(~ (B=£)t7/2) ¥ It 0T /> and T2 T, 8o

Thus using Lemma 5,3.6 and dominated convergence thaorem

lim f K(£IN(e ) | Yo (t) ~ exp(~ Btz/z) ldt = 0 ases
T =~=»m . 1/ 2
£1£6,T
Since '&T is consistent, for large T, le-QT Iﬁ-én Be8e
~1/2

Thus KEE)Y(E)IN(B) =~ A8 + £7777) ) dt

161< 6 T2

.
2
< sup | \(8) ~N(8 )| J’ K(t)exp(~ (B ~€)t/2)dt . aws.

(a) follows mow by continuity of A around Bb and condition (K1)
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(b) j SENPACHNCR e~/ 2 -?x(en)axb(- Bt/2) | dt
it) > o742 - "

——

B RS AN R e P
] > 672

v

K(tINE_Jexp(~ Bt’/2)dt
g1 > 7Y 2 '

By Lemma 54346 ({4iL), for all large T; the firet term is dominatsd by
(for some € > 0), ' .
. exp(= Te/4) j K(eIn(ey + gy

)dt ' E;E'
ei> 6T '

By assumption (K2), this converges to zero a.ss as T —> m.

Using (K1) and dominatsd convergence theorem, the second term is easily |

seen to converge to zerxo., This completes the proof of the lamma,

Thoorem 5.3.8 §8  Under assumptions (K1), (K2), (Al) ~(A5), except A3 (iii),

{D

lim J' kK(t) | p*(t/x(s) t 0<s< T)—(B/Zn)l/zaxp(- Bté/Z)]dt=D BaSe
T—>w© |

Proof 8 The proof fallows esasily from Lemma 5.3.7. We give it here for

e

the sake of completeness.
Note that K(t) = 1 satisfies (K1) and (K2). Thus

~1/2

ET = j yT(t)?\(QT + BT Jdt converges to

Ne ) fexp(= BEE/2)dt = n(e_)(an™H) Y2,
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Hence
jK(t) |0 (t/X(s) agsiT)-(a/zn)l/zexp(- Bt®/2)) dt
55&(({-;) ; c;l Mo+ tT"'l/z))'T(t) - B.Fl?\(Eﬂ)exp(—- Bt°/2) | dt

+Jk(e) Jezta(e ) = (B/2m) ) axp(~ Bt?/2) at

" Now the proof is obvious.

m ,
Corollary 5.3.9 ¢ If further hj &I N(8)d® < @ for some m, then 84S
D
. o | | |
lim J Itim., p*(t/X('s):r Dis_{T) - (B/2ﬂ)l/25xp(-ﬁt2/2) ldt=0
T-ﬁbaa;'u] | | ' ' -

Proof ¢ It oan be easily checksd that K(t) = |ti™ satisfies the con-
ditions of Theorem 5.3.8, (Ses Borwanker et. al. (1971)). This proves

the corollarxy.
~ Romarxk 5.,3.,10

The casse m = 0 yields the analogue of the classical theorem on

posteriors.

5.4 Bayes eatimatiun

Supposs ,((G,CP) ie a loss function d'af’insd on Qx_(_—l. Assume
- that [(&,CP) =X(I9-(Pl) > 0 and /((t) is nondecreasing., Supposs R

1s a non~negative function and K and G ars functiuna such that
: ~1/2y )
S (B1)  R(TU(ETTT 7Y < 6(t) for all T > O.

{(R) R(T),((tT_l/z) -~ K(t) uniformly on bounded intervels of t as

T == m,



ww 89

0
(83) ‘JHK(t+m)EXp(-Bt2/2)dt has & strict minimum at m = 0.
-0
(B4) G satisfies (K1) and (K2).
Fat

'H'Bayaa astimate 8. based on (X(s) s 0< &< T) is that which

minimizes

BT(LI) = f)((ﬂw)p(i}/xis) ¢ 0 :2_ 3 5_IT)d9
- (@)

Assume that such anfsatimatnr gxXists,

Theorem 5.4.1 8 Under (Al) = (A5),(BLl) -~ (B4). and (K1), (K2),
| ' A
(i) | Tl/z(g',r- E’T) ~b {0 8.8 as T ->m

.'.i Y 1im R(TIER.(&.) = lim R(T
(i1) T-—Ea: (T)e.(e.) T-—Eun ( )ET(

&9
(B/2H)¥/2 ‘J‘K(t)axp(-sﬁtz/z)dt BeBe
| == {T] |
Proof 8 The proof uses Theorem 5.3.8 and the propertiss of fM.lse. BT
proved in Chapter 4. The arguments ars exactly as in Borwanker ot. al,

(1971). We shall give only a brief sketch. Below a. = R(T).
11, ' (5 ) <. .
@Taup ETET ) S liﬂlmTaup ELI.ELI.(B'

"1/2,

= lim sup ja.r ,((t'r

)p*(t/x<a) 0< 8 < T)dts

Writing p*(t) for p*(t/X(s) ¢ DS, 5-5__ T)i the-.x:-h.‘.s-.. of the above

lnequality is bounded by;
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limTaupj I A /((t'l”"l/?') - K(t) I k p*{t) —Exp(—Bt2/2)(B/2n)l/2 l ot

+ Lin sup (B/zn)l/zj Lo AGT™Y2) - k() | exp(~ BE2/2)at

o+ 1im sBup V(K(t)p*(t)rjt.
T

~The first term is dominated by

lim sup jzc(t.) | p*(t) - (8/2m) % axp( = Bt%/2) | dt
T

which by Thanrem 5-3.8 is zerg.
The eecond term is zero by dominated convergence theorems
The'last term iE_

(5/231')1/25 K(t)exp(~ Bt/2)dt = o say.

A | |
Thus  lim sup (8.) < 1lim sup (6.) < a reo(5abal)
(5P ApBpiBy o ErirtSy _
A
Let U mTl/Z(aT -8,

T

The next step is to show that sup lUT | < @ BeSe

Suppose this is not true. Ma_asaume Welage that for svery M > D thare

(x) >M % xESA for a

> 0 snd U. 0

T
2

gxist RH

sequance Tn—-"m. On A

such that Pab(ﬂm)

M ]
A - -1/2 1 %
ETnBTn(B'Tn) = Ja'rnf( (e ”Tn)Tn/ ]F'Tn(t)dt

> [ e At Y o (e

t1 <M

> j aTn,( [(t+ 1*1)1':'1/2 lp;n(t)at.

151 <M
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This sxpression converges to

j_ K{t+ m)w/zw}l/%xp}(- ﬁtz/Z)dt.

leism

1/2

Hﬁweuar 1im J K(t+ M) (B/2m)7 “exp(= Bt2/2)dt >

M INTIPY
Hence for large M, on a sat of positive probability ,

A o
lim inf o :-BT (E-T ) S a > lim sup . BT (E—T Y,
It I N P I n " N

. _ P
This contradicts the definition of 9}* » Thus sup Il.ﬁT | < m 84S

Fix € > 0, Let B, bs a set such that P(B,) > 1~& and IU.(x) 1< M
¢ x's-'sm;# T>0. Fix x & B

L

Taka a sequencs Tn ~>®m such that UT 'r(x) —> M. Suppose if possible
- " |
m ¥ 0.

lim inf a (g ) > lim inf p £ [(t-t-u )T"l/zj > (4)dt
r A8 2 J & t Mn’ 1Py
n n'n n n T n n n

0 .
2 lim inf a (t+ U )T"'l/2 p*'(t)r:lt
_J;_ nln THA[ Tn n :} Tn'
O
TU
= (13,/271)1/2 j K(t+ m)exp(- Btzjz)qt._ vee(Setu2)
T

Thus  1im inf a. B (gT ) > (B/zﬂ.')l/2
, n n n '~

(D

[ (e n)exp(=Bt” /2)dt
i |
(D)

Fa®
>0 > l:Lrn_nsup ETET(&T)
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This is impossible« Thus m = 0. Hence Tl/z(E-T-BT) —~> 0 a.s.
Further using relations (5.4.1) and (S.d;Z),

11 (6.) = 1 (3
Tm o B (B ) = %m SN T) =0 BB
This proves the theorem compldetely.

Remark Dedal

Assume (A1) =~ (AS) and (BL) = (BA). Thenas T —>m,

A - /2 A ymle . N
B ~»B  a.s. and T (e«T ~ 8 ) —>N(0,B )._ Pl e ull

Thiﬂ follows easily from preuiaus'results.

Ramark S.ﬁiS”'
- (1) Once the asymptotic normality of the Bayes eatimator is
astaﬁliahed, it would be interesting to obtain ths rate of convergsnce
to normality. Thers has bsen some recent work in this direstion by

Mishra.and Prakasa Rac {1985).

(2) 1t is also interssting to sec whethsr law of iterated
logarithm haolds for such sstimators., Forl some work in this direction

we refer tha reader to Prakesa Rao (1985b).



CHAPTER &

BERRY~ESSEEN BOUND FOR THE MAXIMUM LIKELIHOOD
ESTIMATOR IN THE ORNSTEIN-UHLENBECK PROCESS

Be .l Lptroductlon

In Chapter 4 we showed that the meximum likelihood estimator in
certain diffusion prooesses has an asymptotic normal distribution. The
next question whieh haturally arlses le its rate of covergsnce to norma-

lity. In the general set up of Chapter 4, this problem seems to be herds

However, there has been some work for a class of simpler processes.

Suppose that X{t) 4Lz governed by the stochastia diffarantial aquation
dx(t) Ba (X(t))dt + b(X(t))th(t) _ ...(5.1.1)
X(U) = 0, & > 0, 0 > 0 and W(t) 1s a standard Wiener pProcets.

T
fise the efquation

The meless &. of 8, bassd on the observation X(t), O < t<T, satis~

bR b2 (X (1))

T
E_T_9=ja>§t dw(t)/fjﬂwldt'

Mishra and Prakasa Raec (1985) has studied the rate af oconvergencs of the

T

above sstimator. Thsir maln result ls given below.

Lot I HI E~L§%E%%~dt. Introduce tha Pollowing assumptluns
(X(% |

(nl) Q< E(IT) < .
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(A2) There exist pnsitive functions Q(T)T @, €(T)J,0 such that
QT ) E32(T) ~»® and.
I

(| -51- -1 e (1) = o(e¥ %))

-

~ sup p
Then

sUP  sUp IPE,'T(ul/z(T)(aT - 8) < X) ~ B(x) |

se () "

| - I
< 28 (TYY? 4+ 2

Ei'l - 1}2e(T))+ &(T) if (A1) holds

PB,T(' T

'.= D(SI/Z(T)) if both (Al) and (A2) hold.

Note that this involves a growth condition on  Io, which incidene
tally is hard to checks. Hmweuer;'this'is'the only approach known for
obtaining rate of covergence to normality of martingalesy the rate directly

depends on the rate of convergence of the conditional variance to the limit-

ing varlances. See e.ge the developments in Hall and Heyde (1980).

For the case a(x) = ~x, b{x) = 1, the prmcasa. X(t) satisfies
dX(t) = - eX(t)dt + dw(t), X(0) =0, 8> 0 and is called the Ornstoin-

Uhlenbeck (0 - U) process.. The growth conditions hold for this process
1/2 ' ~1/5

with QT) = 7 - and e(T) ='T"2/5, ylelding ths rate o7 } for

e .14 Be

HDNEUBr,.thG 0=~U process being a natural continuous time analogue
of the first order discrete autorsgressive process with I.i.d N(0,1) errors,

one is led to helisve that the above rate can be sharpsned. (Recall the
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atrmng results of Chapter 1 .on linaar,prncessea).

Mishra and Prakasa Rao (1985 ) use siﬁpla Maﬁknﬁ-inequalitias ta
tackle ths danaminatn:f The numerator is smbeddad in a Brownian mutiﬁn‘
by kunita-watanabe theorem and then Lemmﬂ 3+2 of Hall and Heyds (1580)
is invoked. These two tagether limit the rate obtainable to /5,
for the D~U process, Burkholderts inequality can be used for the denow
minator (efter applying.ltu's formula)'te'yiald the better rate I

'T";/4+$! € » 0. However, as long as we use embedding techniqus, the rate

cannot be better than T'i/4,

We take an alternative approach. By axtendihg;an argument in

..L;ﬁtaér1éhd 3hir§§ya§ t197H) (hahcef@rﬁh.rafarrad as LS), we obtain the
,qhaﬁaétanistin fﬁnﬂtinn of the numerator for sultable valuss.of ths angu-
ments. Tqis allows us tn-use.Eéaaan*sulamma yiaiding the rats D(Thi/z) |

_for-the numerator. The denominator is linked with. the numerator via Itols

formulas This helps us to get the final result,

This result opens up the possibility of obtaining faster rates of
convergence for general linear diffusions. It also shaws that the embedd-

ing techniqﬁa might not lead to the etrongest possible results.

This chapter is a2 revissd version of Boss (1986),

6,2 Preliminaries

Let (X(t), t > 0) be a diffusion process satisfying the stochas—

tic differential sgquation

aX(t) = ~ BX (£)dt + du(t), & > 0, X(0) = 0.
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Hera _N(-) is a standard Brownian motion and 8 > 0 is the ﬁnknmﬁn

parameter. It is well known that the solution X(t) is a continuous
L | | | .

Gaussian process. In fact, X(t) = {8 B(t~s)
0

Let C[O,T] = The space of rsal valued continuous function on

dw(s).

EG "T :1-

M

; = The .maasura generated by1 X(t), O £t<£T on C[O,T]

W{E = The measure gensrated by U(t), O St<T on CLO,TT,

T T
9<< M

'It-ié well known that ¥ and the Radon=Nikoydm derivative (like-
1ihood fﬂnctinn) cén,bé expliﬂitly samputed (sea a.ge Chapter 4). This
in_tﬁrn yields_that'thE'm.l.e. &. of B baged on the " nbseruatinnf'
x(t), Djf_.t 5_. T  satisfies |
e T - .

o -8 = [X(e)aw(e)( fX7(t)ae) ™
0 0 -

Ito's formula (see Elliott (1982)) gives

T T
2 J X(s)du(s) = X*(T) = 28 | K (£)dt =Ta . vos(6s241)

o S
This relation shall be used later.

. .shall denote a generic constant (perhaps depending on &, but not on

anything else).
6,3 The main result

We bagin with a few lemmas.
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Lepma 6.3,1 ¢ For 21;22 e ¢, o
B 2 | 2
Lot ¢1(2,,2,) = E e-x;(zlj X“(t)dt + 2,X (7)),
0
Then @T(Zl,Zz) exists for RRIIAS 6y i = 1,2 for some- & > 0 and
| | . /2
ST - 2A

(A= 9+22, Joxp(=NT) + (A+ 8 =22, Jexp(AT)

1/2

wherse ih=.(E2-221) and wg always choose the principal branch of the

- aquars root,
Proof ¢ Eirst assume that Zi = a, € Ry i=1,2 and a, are BUFFiGiw=

ently smalls

© Define A = (92-23 )42 and ah = XD dt + au(t), x] =
Also recall that d?( = --B»Xt dt + dlll(t)--
Then we have (sss LS)
g T S T e .
F(x NLYY = expl:( -B-?\)j Ky dXy = (= )j (X)) dtJ vo0(60342)
" | . A ) |
Nota that
.
B W B2
@T(al,az} = Eg exp(al f (Xt) dt + EE(XT) )

0O

1f we change the measurse to that ganeratad'by*'xh5, than by (6.3&2),

£
| T
(PT(-al,E:Q) = axp[ f()(?\) dt + (X?\) - {8+ }\)j X)\dx}\ f(x}‘) dt]
| 0
= € oxp[ 5, (X% = (840) [ xhax} | eer(64845)

0
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By'Itu'E formula,
2
d(x;‘) = 2x?t"dx;‘ + dbts Using this in (6.3.3),

9-(a),8,) = £ exp| (XN)(a, - g“‘”*) + (8N

Note that xi\a N(O, 3’59-@%‘%)—”-3;). Thus
P ( 5 ) ' Qligiﬁﬁl)[ 2N 1/2
T a]_’ ., BXp 2ANt (A+ BwZa, J(oxp(2AT ]

2

which on simplification yiélds (6,3,1 ) for Zi'a real, around & neigh=-

bourhood of zsros Thus, tﬁara is no prqblem of existence of ¢T(21,22)
around zszo 1n EZI and since We haye shoun tﬁat fhs m.g-F. pXists,
_¢T(Zl,22)-'ia an analytic Punction. On the othex hand (6e3al) dsfines
an analytic function in the relevant domain and.agraea with ¢T(Zl,22)

for 21,22 reals This finishes the proof.

Lemma g,3,2 g For |t iE Tl/z, where € is sufficiently Bmall,
T
lE ExF(it( )l/z‘J‘x(E)dm( ))'-EXP(Ht /2)|<ZC.axp(-t./4)[t| “%/2
A

Proof ¢+ By Ito's formula,

T

T

2
jX(sl)dlﬂ(E) = af X% ()dt ..g-+ X—éll -
0 0

Honoe £ oxp(it(22 l/zf X(s)di(s)) = 9(2,,2,) exp(hE (261)72)  ...(6.3.0)

b 7 = aa(2BVY2 L, ik2841/2
Whera Zl = itB(ﬂ.-]!.-) , 22 == -2—'( T ) K
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Note that (21,22) satisfies the condition of Lemma 6,3,1 by chaosing &
- sufficiently small.

n(;ltlT"'l/z), A+ B = 28+0G( itiT"l/z) and

H

‘Clesarly A - 8

N =8B (t) + O 1197 2
-
Z Z
where BT(t) = 1 - --é’- - --1-:-4._
| 8 28

Lot aT(t) denote any function which is D(ltiT"l/z). Using these simple

gstimates,

(1+a.T(t))exp(TGﬁ (£)+o( it T_l/z)) ]1/2
/2

wT(Zl,ZZ)'=:EKP(%§Jl; -
S CTa(t) (2+ch(t) axp(2T68. (£)+0(161°T
 ;_Usihg this 1in (6.3-&),'thé required expectation equals

| 1+ccT(+,) o ]1/2
a (£)exp(= )+ (L+a (8))exp(u{t))

1/2

where t(t) = T8 R, (£) — oT + & (26T) ~1/2,

+U(ItIT

= £2 + o{ [t137~Y 2y,

Thus, the differencs to be estimated, isy in absolute valus

3:-1/2y

= Jexp(~ £7/2)(1+ o (£))exp(O( 1177 ) - ex;.(;.tz/z)l

3.~1/2

< Coexp(=t"/2) 16177 7424y

(n(!tl T

:’;,C-itlz'f'ﬂ'l/2 exp(-&?/d) choosing € sufficiently small.

This proves the lemms.
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Lot ¥(T) = BBY? (x(s)au(e)

" Lomma 6,3.2 and the well knoun Essean's.-lemma.immediately yields the

following lemma.

Lemma 6.343 2 sup |P(Y(T) < x) = ﬁ(")l < C_T-l/z

X € R
/e nbw state the maln thesorsm.

/2 ~1/2

Theorem Gaded & guUp lp((

(8. ~8) < x} ~ B(x)| g caT
X & IR |

and the bound is uniform over any fixed compact subset of valuss of ©.
Prnuf;lf:tha-thaf

1/2
(—-— /(9 -8) = R

T
N 29T"1jx2(t)dt
u

¥

| T
(6.2.1) yields ZBW“iijﬁxz(t)dﬁ = ] T"%/z 2)1/2 ii_). .__L_l
0

Lot 8y = {I¥(T)1 26 log T |

B, “‘{ "1/4 X“(T) > 8 log T} where & 1s large.-

By Lemma 6+3.3,

]F’(Bl) ~ P(IN(O3L) L 2 & 1og T)| & c.1~2,

Using simple approximation for the tails of a normal distribution,

PPL(IN(D,l)I > 6 Ilﬂg T) = D(T“l/z).

Thus P(Bl) = D(T"%/z). ' © ese{Ba3e5)

1
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Note that X(T)~ N(O, M%:i@;l).

The variance being bmuhded in T,
simple Markov inequality giuas

P(a,) = o(17/?).

| 1 2
On B;ﬂﬂgj /

() %(8. ~8)] < Culog T For some C.

Also by a simple binomial expansion of the danﬁminatur, on EE lla;,-

()Y 2 (e ~8) = V(1) + TH2 B YA (T) + o(rH2)

= Y(T) + 7T 1/2 2(T) + o(T" /2 says

Ncﬂ_ﬂ' note that f'DJ:'_ any U} £C log 7T,

_l/zax <y iff
(. FVQ. JT/ f
X + 5= < b ot
8’ a 4a2
1ff  8,(Tyu) € x S a,(Tyu) uwhers
L/ 1/2
url T \1/2 T
El(T,U) = ("'; .. + 2) / e E—;
4a
Z
= u+ 0(u/T)

4+ U(T"l(lag.T)z)

1/2 v
_ u7 ;/2 ~1/2

sut as in (6.3.5 ), P(Y(T) < - .c.Tl/z) = o(1™Y?),



and .l IP(Y(T) < x + D(T”l(lng-T)Z) - B(x) |
< crY? 4 (%) -._ B(x + o(1™(10g T)*N)1

< EaT“J'/2 uniformly over Xe. This proves the theorsm completely.

Rsmark Bedeb

(l)l Lomma 6.3.1 is dariﬁed by a " change of measure ' techniqus. This
technique has been used in some entirely differsnt contexts very fruit-
fully, Tuo Uary-gaﬂd examples are the dariuétinns of Wald's idaniity in
saquential analyais,and of mudaratiﬂn deuiatiqn prubahilitias (Michel
'_(;976)), - '

':(Z)NOﬁewﬁ’the'ihdiapansahle tools in the theory of diffusions is the
itm's formulas which is patural since it is a ".changa nf variable fﬁrmuia“.

Here we have yet another nowel application of this formula.

(3) We belisve that under reasonable conditions, tho rate U(T"l/z} is
attainable for general linear diffusions of the type (6+1.1), But appa-
rently it has to walt for the deﬁelﬂpment of entirely new techniques. The

problem for non~linsar diffusions trsated in Chapter 4 seems sven harder.
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