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INTRODUCTION AND SUMMARY

0.1 Introduction

This thesis deals primarily with the a,pplicatiﬁn of the calculus for factorial ar-
.ra,ngements (Kurkjian and Zelen (1962, 1963)) to various designs. The thesis has
been divided into six chapters. We have made extensive use of Kronecker products
and various other results from matrix theory. The results in the first two chapters
involve the use of projection operators.

In the first four chapters, different ciasses of factorial experiments have been
studied by applying the calculus. Chapter 5 deals with another class of designs called
repeated measurements designs (RMD’s). It has been shown that the calculus for
factorial arrangements serves as a powerful tool for studying the optimality properties
of such designs under the possible presence of interaction. .In Chapter 6, a class of
designs very closely related to the RMD’s has been investigated.

Section (.2 conta,ins. a feview of the literature on factorial experiments and
RMD’s. While reviewing the literature, we have restricted ourselves to the results
pertaining to the topics discussed in this thesis. Section 0.3 presents a detailed chap-
terwise summary of this thesis. The motivation of the different chapters has been
discussed and all main results have been quoted. Where necessary, the relevant defi-
nitipns have been recalled. For ease of reference, the serial numbers of these theorems
and definitions are the same as those in the main chapters.

It.ha,s been attempted to retain notational unifoi*mity as far as pmcticable. The

relevant notations have been explained in the beginning of each chapter.



0.2 A Brief Review of the Literature

Fisher (1935) introduced and popularized factorial designs. Among the early au-

thors, Yates (1937) considered both symmetric and asymmetric factorial experiments

and Bose and Kishen (1940) and Bose (1947) applied finite geometries to develop a

mathematical theory for symmetric prime-powered factorials, Generalizations of the

classical method due to Bose (1947) to asymmetric factorials were considered among
others by White and Hultquist (1965), Raktoe (1969, 1970), Worthley and Banerjee
{1974) and Sihota and Banerjee (1981). All but the latest of these were reviewed and
. discussed by Raktoe, Rayner and Chalton (1978). A related development was through

the use of the DSIGN algorithm (Patterson (19'76), Bailey (1977), Bailey, Gilchrist

and Patterson (1977)). Recently, Voss (1986) and Voss and Dean (1987) investigated
the relationship among these procedures with the objective of integrating them. Nair
and Rao (1948) introduced balanced confounded desigxis for asymmetric factorials,
These designs ensure balance with respect to each factorial effect and have orthogo-

nal factorial structure (OFS) in the sense that the best linear unbiassed estimators

(BLUEs) of estimable contrasts belonging to different factorial effects are uncorre-
lated. Further construction procedures fé.r and combinatorial properties of balanced
confounded designs were explored among others by Kramer and Bradley (1957), Zelen
(1958), Kishen and Srivastava (1959), Das (1960), Paik and Fe&erer (1973), and more
recently by Lewis and Tuck (1985), Suen and Chakravarti ( 1935) and Gupta (1987).

Kulr.l{jian and Zelen (1962, 1963) introduced a calculus for factorial arrangements

which, as pointed out by Federer (1980), serves as a very powerful analytical tool in the
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context of factorial designs. The calculus is extremely helpful in deriving characteri-

zations, in a compact form, for balance and/or OFS in a general multifactor setting.
In turn, these characterizations lead to useful construction procedures retaining high

efficiency with respect to the factorial effects of interest.

Kurkjian and Zelen (1963) employed the calculus to obtain a sufficient condition

for balance together with OFS for factorial experiments in block designs. Zelen and
Federer (1964) extended their result to designs for two-way heterogeneity elimination.
Kshirsagar (1966) established that the sufficient condition in Kurkjian and Zelen
(1963) is also necessary for balance with OFS. The emphasis on balance, however,
has a drawback that the resulting designs, although theoretically elegant, may become
too large and hence expensive. Because of this reason, since the early seventies, work
started on the conditions for OFS alone. John and Smith (1972) and Cotter, John and

Smith (1973) obtained a sufficient condition for OFS in terms of a generalized- (g-)

inverse of the intrablock matrix, Mukerjee (1979, 1980) gave necessary and sufficient
conditions for OFS directly in terms of the intrablock matrix. These conditions,
applicable to both block designs and designs for multiway elimination of heterogeneity,
involve the checking of the commutativity of certain matrices with the intrablock
matrix and, therefore, can be easily verified. Chauhan and Dean (1986) extended the
results in Mukérjee (1980) _ﬁo obtain characterizations for partial OFS. Some results
from Mukerjee (1979, 1980) have been used in Chaﬁters 1, 3, 4 and 5 of this thesis
and there these hawe.been stated as Lemmas 1.2.1, 1.3.4, 4.3.1 and 5.3.1.

The applications of the conditions for OF'S, as mentioned in the last paragraph, in
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the construction of factorial experiments in block designs have received considerable
attention in recent years. These construction procedures generally fall into two broad
categories, namely (a) the use of generalized cyclic designs and (b) the use of Kronecker
or Kronecker-type products. The method (a) was developed by John (1973a, b), John
and .Dea;n (1975), Dean and John (1975), Dean and Lewis (1980) and several other
researchers. This method has not been considered in the present thesis and we refer
to John and Lewis (1983) and Street (1986) for a comprehensive list of references.
The alternative method (b) has been used by Mukerjee (1981, 1984, 1986) and
Gupta (1983, 1985, 1986a). In this method the Kronecker product or some Kronecker-
type product of certain varietal (i.e., single factor) designs are considered to generate
a factorial design. Mukerjee (1981, 1984) and Gupta (1983) used this method to
construct designs where the main effect efficiencies could be controlled by suitably

choosing the varietal designs. Gupta (1985, 1986a) employed this method to control

average efficiencies of interactions of all orders. Mukerjee (1986) used the Kronecker

product and also some variants of it to control interaction efficiencies up to some
suitable order. All these resﬁlts deal with block designs,

In the context of row-column designs, John and Lewis (1983) and Lewis (1986)
constructed and studied faeteriel. experiments with OFS using the generalized cyclic
procedure of construction. As for factorial designs for the elimination of heterogeneity
in several direetiene, it appears that much work remained to be done, This problem
has been considered in Chapter 1 of this thesis.

Most of the available results on the construction of factorial designs are on
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equireplicate designs only. All of the references cited above deal with equireplicate
designs. The same remark holds good also for most of the classical construction proce-
dures (see e.g., Voss (1986)). Some results on non-equireplicate factorials are available

in Puri and Nigam (1976, 1978). The properties of non-equireplicate I{ronecker fac-

torials have been investigated in Chapter 2.

The notion of efficiency-consistency in factorial designs was introduced hy Lewis

and Dean (1985). They showed that every equireplicate connected design with OFS
is efficiency-consistent, Mukerjee and Dean (1986) extended this result to the case of
disconnected designs and proved that the converse is also true. Thus they showed that

efficiency-consistency provides a characterization for OFS. Some further results on

efficiency-consistency were reported by Gupta (1986b). In Chapter 3, we consider an

analogous concept, namely, that of estimability-consistency and prove its equivalence

with the concept of regularity (Mukerjee (1979), Chauhan and Dean (1986), Chauhan
(1987)) in factorial experiments.

A very interesting class of factorial experiments is the class where the levels
of one factor represent different qualities of material and the levels of another factor
represent different quantities of these qualities., Such experiments were first considered
by Fisher (1935) where zero, single and double doses of certain fertilizers were applied
and their yields studied. The interesting feature of these experiments, which malke
them different from ordinary factorials is that some of the level con:ibinations, namely
those where the quantitative factor is at the zero level, are indistinguishable. Another

example of such an experiment was given by John and Quenouille (1977). There is not
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much literature available on such designs and it seems that a definite mathematical

formulation for this problem ig lacking. This problem has been studied in Chapter 4.

We next turn to a class of designs called repeated measurements designs
(RMD’s). In such designs a number of treatments are applied sequentially to & num-
ber of experimental units over periods. Hedayat and Afsarinejad (1975) gave a general
review of RMD’s including a discussion on their practical applications and a compre-
hensive bibliography up to that stage. An interesting feature of these designs is that
since the same experimental unit is repeatedly exposed to a number of treatments,
the residual effect of a treatment in the following period is also an important source
of variation together with the direct effect of a treatment in the period in which it
is applied. In the field of optimal RMD’s, the pioneering work is due to Hedayat
and Afsarinejad (1978). Other important contributions are due to Cheng and Wu
(1980), Magda (1980), Constantine and Hedayat (1982) and Kunert (1983, 1984a, b,
1985, 1987). Many of these authors considered the problem of universal optimality

under fixed effects additive model incorporating direct and first order residual effects

of treatments apart from effects due to units and periods. In proving the optimality
results they used a fundamental tool due to Kiefer (1975). Some of these results were
extended by Mukhopadhyay and Saha (1985) to the case of mixed effects additive
models where the unit eﬁ'ects were random. All these authors assumed the absence of
any interaction between the direct and residual effects. Under a non-additive model
(i.e., where this interaction is incorporated.in the model} some results on construction

and analysis of such designs were given by Patterson (1968, 1970) and Kershner and
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Federer (1981) — in this context, reference may also be made to the discussion by
Federer following Hedayat (1981). Patterson (1973) considered some orthogonality
results in this connection. For an excellent review of the literature on optimal RMD’s
up to that stage, we refer to Hedayat (1981). In Chapter 5, the calculus for factorial
arrangements has been applied to examine the robustness of certain optimality results
in RMD'’s under a non-additive model.

A class of designs very closely related to RMD’s is the class of serially balanced
sequences. These designs were introduced by Finney and Outhwaite (1955) to study
experiments where a single experimental unit is exposed to a number of treatments
in stccession. Such designs are common in the fleld of biological assay and Finney
(1956) discussed their practical applications, In this context, reference may also be
made to Williams (1949). Methods of construction of such sequences were given by
Sampford (1957). Sinha (1975) studied the A-, D-, and E-optimality of a class of these
sequences which he called “standard sequences”. Some optirmality results on serially
balanced sequences have been derived and related construction procedures have been
discussed in Chapter 6 of this thesis,

The results in Chapters 5 and 6 are primarily concerned with optimal designs.
The pioneering work in this field is due to Kiefer (1958, 1959, 1975), who intfoducc-:d
the notions of A-, D-, E-~, ¢, and universal optimality. For ease of reference, we present
below the definition of universal optimality:

Consider a function ¢ : By o — (--m?oo], where B, ¢ is the collection of v X v

nonnegative definite matrices with zero row and column sums, Let C, denote the C-
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matrix i.e., the intrablock matrix of a design d. Then, a design d* is called universally
optimal if 1t minimizes gb(C’d) over the competing designs we are interested in, for ¢
satisfying (i) ¢ is convex (ii) ¢(bC') is non-increasing in the scalar b > 0, and (iii) ¢ is
invariant under any simultaneous permutation of rows and columns of C.

Note that if d* is universally optimal then it is A-, D- and E-optimal. Kiefer
(1975) showed that a design d* is universally optimal if d* maximizes trace (Cqg) over
the competing class and U4+ 1s completely symmetric.

As briefly outlined above, there has been a rapid growth in the literature on
factorial designs and allied fields over the last four decades and a considerable interest
is still continuing. For comprehensive reviews and further references on various aspects
of factorial designs (including fractional replication, which has not been considered
in this thesis) reference is made to Srivastava (1978), Raktoe, Hedayat and Federer
(1981), Chatterjee (1982) and Street (1986).

0.3 Detalled Summary of the Thesis

Definition 0.3.1. A factorial design 18 said to have OFS if the best linear unbiassed

estimators of estimable contrasts belonging to different factorial effects are orthogonal,
i.e., uncorrelated so that the adjusted treatment sum of squares can be partitioned
orthogonally into. components corresponding to different factorial effects.

Definition 0.3.2. Let A = (a;;) and B = (b;;) be m X n and p X ¢ matrices respectively.

Then the Kronecker product 4 ® B = (a;;B) is an mp X ng matrix expressible as a
partitioned matrix with a;;B as the (¢5)** partition, ¢ =1,...,m,j=1,...,n.

For the properties of Kronecker product we refer to Rao (1973a).
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In chapters 1 to 4, whether the design is varietal or factorial, we have considered

‘the fixed effects model with independent, homoscedastic errors and no block-treatment

interaction.

Chapter 1: In Chapter 1 of this thesis, the Kronecker method is applied to construct

equireplicate factorial designs for multiway elimination of heterogeneity. The designs

constructed have OFS and lower bounds are given for their interaction efficiencies.
Thus we extend the results of Mukerjee (1986) and Gupta (1986a) to the set-up of
multiway heterogeneity elimination and in particular to row-column designs. In the
context of block designs, these authors proved their results by explicitly evaluating

certain eigen values. A direct generalization of this method becomes intractable in
a setting for multiway heterogeneity elimination. Instead, our proofs are based on

an approach using projection operators. Also, compared to Gupta (1985, 1986a), a

broader definition of efficiency, viz the ¢,-efficiency, has been used.

Section 1.2 discusses the method of construction using the usual Kronecker prod-
uct. We start with m equireplicate varietal designs Dy, Dsy,..., Dy, each for t-way
elimination of heterogeneity, the 7% design involving s; treatments and n; observa-

tions. Then the design D obtained by the Kronecker product of Dy,...,D,, is a

81 X 83 X ... X 8, factorial design for t-way heterogeneity elimination. This method

is éasy to apply and as shown in Example 1.2.1, D may be an incomplete design and

contain some empty ‘cells’. The main result in this section is

Theorem 1.2.1. The design D has OFS .

Suppose the m factors in D are denoted by F, Fo,..., By respectively. Then, a
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typical factorial effect may be denoted by F{"* ... FEn (= J(z}), say) for ¢ = (z1,...,

zm) € & where  is the set of all non-null m-component (0, 1) vectors.

The main result in Section 1.3 is

Theorem 1.8.1. For every z = (21,...,2m) € £ and every p (0 £ p £ ),

z o~ . =
ES > lg}zﬁ{mjﬂp}

where H }-f is the ¢p-efficiency of the varietal design D; and EF is the ¢,-efficiency of

D with respect to the factorial effect J(z).

In view of this theorem, factorial designs with high interaction efficiencies can be

constructed if one starts with efficient varietal designs.

The Kronecker product method, though theoretically appealing, may sometimes

lead to practical difficulties if a large number of factors are to be considered. This is

because, in that case, D may involve a large number of observations. To overcome this

difficulty, a construction method based on a modified version of the usual Kronecker

product is discussed in Section 1.4. Example 1.4.1 illustrates this method. Let D¢

be a factorial design constructed by this restricted Kronecker product method of order

g. Then we have

Theorem 1.4.1. The design D{%) has OFS.

LTheorem 1.4.2. For 2 = (%1,...,%n,) €  and every p (0 < p < 00),

z '> 7
Ey(g) 2 15%1511{333]{?}

provided among z1,..., T, at most g are unity; where H g is as in Theorem 1.3.1 and

EZ(g) is the @p-efficiency of D) with respect to J ().

These two theorems imply that this restricted Kronecker product method of order
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g maintains OFS of the resultiﬁg design and controls the factorial effect efficiencies
in D9, for effects involving up to ¢ factﬁrs, in terms of efficiencies of Dy,...,.Dm.
This method is to be used in situations where m is large and the higher order inter-
actions are relatively unimportant., The design D) involves a much lesser number of

observations than D.

Chapter 2: After having considered Kronecker factorial designs in the equireplicate

case, a very natural question arises as to what can be done in the non-equireplicate
case, From the discussion in section 0.2 it is clear that so far non-equireplicate fac-
torials have not received much attention. A reason for this may be that maintaining
OF5 becomes a problem when the number of replications vary and consequently the
analysis of these designs and the study of the factorial effect efficiencies by the usual
methods become difficult, On the other hand, the need for studying such factorial
designs exists in order to give the experimenter more scope to study experiments in
the different situations which arise in practice.

In Chapter 2 we have studied this problem. In Section 2.2 we begin with block de-
signs, The usual Kronecker pmduct 13 taken of m non-equireplicate connected designs
Dq,..., Dy with varying block sizes, The resulting design D is a non-equireplicate
factorial design ﬁfith va,.rying block sizes.

In Section 2.3 it is shown that e{ren in the non-equireplicate setting, the inter-
action efficiencies with respect to confrasts belonging to factorial effects in D can
be controlled and high efficiencies ensured by suitably choosing the varietal designs

Di,...,Dp. For1 < j <m, let e;{u ;) be the efficiency (relative to the corresponding
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completely randomized design) with which a treatment contrast with coeflicient vec-

tor u; is estimated in Dj;, Similarly, let e(u®) be the efficiency with which a contrast

‘belonging to the factorial effect J (z) and having a coefficient factor u® is estimated

in D, where u* = _t%l u?‘f with u? =u; fz;=1,=1; 1Hz; =0 (1 <j £m). Here
J‘:

1,, is an s; x 1 vector with all elements unity. Then we have:

Theorem 2.3.1. e(u®) > max e;(u;), for each = = (21,...,%m) € {2
Be=

This theorem extends the ideas in Gupta (1986a) and Mukerjee (1986) to a
non-equireplicate set-up. The designs Dy,..., Dy are left quite arbitrary and so the
method is capable of generating factorial designs with a wide range of parameters.

[t can b.e, seen through examples that non-equireplicate factorials may not have
OFS. We show in Section 2.4 that this does not really pose any serious problem in
the analysis of D and Theorem 2.4.1 gifes la, simple formula for the evaluation of &
g-inverse of the (-matrix.

In Section 2.5 the results of Sections 2.3 and 2.4 are extended to designs for

multiway heterogeneity elimination. The results in these sectiaﬁs deal with efficiencies
of individual contrasts in the factorial design D.

In Section 2.6 we consider complete sets of orthonormal contrasts belonging to
different factorial effects and set lower bounds for ¢,-efficiencies of such sets of con-
trasts, The main theorem in this .section 1s proved with reference to designs for
multiway hetei*ogeneity elimination and the corresponding results fo;* block designs

follow as special cases. We have
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Theorem 2.6.1. For every z = (21,...,2m) € { and every p (0 < p < 0),

B* > max {z:H’
¥ "1£:r':<'.~m{ iy s

where E? is the ¢p-efficiency with respect to the factorial effect J(x) in D while H jf

is the ¢p-efficiency of D;.

Chapter 3;: In Chapter 3 we study another property of factorial designs, namely,

regularity. We give the following definition due to Mukerjee (1979).

Clonsider a 81 X 82 X ... X Sm possibly disconnected design d. Let C' be the usual
intrablock matrix of d, V* denote the estimable space corresponding to J(z) and

R(A) denote the row space of a matrix A. Then

Definition 3.2.1. d is regular if R(C) = @ﬂ'V‘“ where @ denotes direct sum.
L €

For discussion on the notion of regularity with examples we refer to Section 3.2.
In Section 3.3 we introduce the concept of estimability-consistency which is some-

what similar to that of efficiency-consistency as introduced by Lewis and Dean {1985).

Let d be an 51 X 83 X ... X 8y, factorial design. For any z = (21,...,2m) € Q let d,
be the design obtained from d by deleting the ¢** digit from the treatment labels, for
all 1 for which z; = 0,2 = 1,...,m. Then we have:

Definition 3.3.1. d is estimability-consistent provided for each a € §2, every contrast

belonging to J(z) in d is estimable in d if and only if the corresponding contrast
belonging to J(z) in d, is estimable in d,.

In Section 3.4 the main theorem is:

Theorem 3.4.1. An m-factor design, d, is estimability-consistent if and only if it is

regular,
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This result establishes the equivalence between regularity and estimability-
consistency and thus provides a simple and intuitively appealing interpretation for

the somewhat abstract phenomenon of regularity.

Tn Section 3.5 we define the notion of partial estimability-consistency of order

¢, This concept is somewhat analogous to that of partial efficiency-consistency in

Mukerjee and Dean (1986). The main result in this section is

Theorem 3.5.1. An m-factor design, d, is partially estimability-consistent of order

#(< m) if and only if it is regular of order £.

Chapter 4: In Chapter 4 we study factorial designs for quality-quantity interaction.

As discussed in. Section 0.2, not much work has been done in this area. Recently, Gox
(1984) posed a number of prdblems in experimental design and one of these problems
related to the development of a systematic theory for the study of quality-quantity
interlaction.

- Let d be a two-factor experiment where the first factor F} is quantitative and
involves s; + 1 levels, say 0,1,...,s1 while the second factor Fy is the qualitative
factor, having sy levels, say 1,2,...,82. The level combinations where Fy is at the
zero level, are indistinguishable so that there are only sy89 + 1(= v) distinct level
combinations, To take into account this speaial feature of the level combinations, in
Section 4.2, the calculus for factorial arrangements has been substantially modified.

In Section 4.3 we find necessary and sufficient conditions for OFS.
Le,t d haﬁ.re an ix}trablack matrix of tfle: form C = (a B r) where H is a square

g H

matrix of order 8182, the initial row and column of ¢ correspond to the treatment 0
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and the other rows and columns correspond to the other s;ys; level combinations in

the lexicographic order. Let 1, denote the n X 1 unit vector. Then the first result

states

Theorem 4.3.1. For d to have OFS, it is necessary and sufficient that

(i) B =u® 1y for some s1-component vector u and

(ii) the matrix H* = H — o188 has structure K.

For the sake of completeness, we give the following definition (cf. Mukerjee

(1979)) also:

Definition 4.2.2. A square matrix of order s; 89 is said to have structure K if it can be

expressed as a linear combination of Kronecker products of proper matrices of orders
81, 82 respectively. Here a proper matrix is a square matrix with all row and column
sums equal.

Next we show how designs with OF'S in the present setting can be obtained from
ordinary factorial designs with OFS. We start with an ordinary (sy + 1) X 83 factorial

design do. Let do be connected with a C-matrix given by

L

"Coo Co1 ... Chos, -

- /340 C’:5'11 B 031.91 -
where each Cjj is s3 X s3 and the rows and columns of Cy correspond to the (81 4 1)s2

level combinations in d, in the lexicographic order.

- A design d 1s derived from d, by replacing the s; level combinations 01,02,...,0s9

in do by a single treatment 0. Then we have:
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Theorem 4.3.2. Let d, be connected and have OF'S with the C-matrix matrix as given

above. Then the derived design d will have OFS if and only if for every 2, j(1 < 2,7 <

s1) the following holds
Cio — piosy 1 Ey = Cloj — pojsy 1 By
where Eg = 1315 and C;;1s = Cl;12 = pyile, 0 <14,5 < 51,

In Section 4.4 we consider the problem of intra-effect orthogonality. This may he
of importance since interest may lie in the linear, quadradic, cubic, ... components of
the first factor which is quantitative. A design will be said to have strong orthogonal
factorial structure (SOF'S) if it has OFS and admits intra-effect orthogonality with
respect to main effect /7y and interaction Fy Fy (relative to Fy). The main result of

this section is as follows:

Iheorem 4.4.3. Let d be a connected two-factor design for the study of quality-

quantity interaction. Then in order that d may have SOFS, it is necessary and suffi-

cient that the C-matrix of d is of the form

L

1 | —(8132)“1 1'1 54 15

—($152)"'1,®1; L®H +F ®H ]

‘where I; is the s1 X 83 identiﬁy matrix, « is a positive constant and Hy, Hy are sy X 39
proper matrices with Hllg = (8182) 7 (51 + 1)1,
- Some construction procedures have been briefly discussed in Section 4.5, In Sec-

tion 4.6, the extension of the above results to the multifactor case has been indicated.

Chapter 5: In Chapter 5 we consider repeated measurements designs (RMD’s). As

- stated in Section 0.2, all the existing work on optimality of RMD’s has been done
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under an additive model. But in practical situations it is likely that an effect due to
the interaction of direct and residual effects will be also present. This is illustrated by
an example in John and Quenouille (1977). In Chapter § we have used non-additive
models, by incorporating the direct-versus-residual interaction effect in the additive
‘models assumed by the previous researchers. Two types of models are considered;
the circular model (cf. Magda (1980)) where in each unit the residuals in the initial
period are incurred from the last period; and the non-circular model (¢f. Cheng
and Wu (1980)) where there is no residual effect in the first period. For the sake
of completeness we give some definitions (¢f. Cheng and Wu (1980), Magda (1980))

below:

Definition 5.2.1. An RMD is called uniform if in each period the same number of

units is assigned to each treatment and on each unit each treatment appears in the

same number of periods.
An RMD where t treatments are applied sequentially to n units over p periods is
abbreviated by RMD (¢,n,p). The class of all such designs will be denoted by (24,5,

If d is an RMD, let d(¢, ) denote the treatment assigned by d in the :** period to the

7" unit,

Definition 5.2.2, Under the non-circular model an RMD is called strongly balanced if

'~ the collection of ordered pairs {d(i ~ 1,7),d(3,7)},1 <t < p—1,1 £ 7 < n, contains
each ordered pair of treatments, distinct or not, the same number of times; under

the circular model an RMD is called strongly balanced if the same holds considering

ordered pairs {d(i1 —'1,7),d(2,5)},0 <1< p—-11 <5< n,
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A strongly balanced uniform RMD ({,n,p) is abbreviated SBURMD (¢,n,p).
Examples of such designs are given in Section 5.2.

Under the non-additive model the study of RMD’s by the standard methods

‘becomes rather involved. To overcome this difficulty, in Section 5.3 we have estab-
lished a correspondence between factorial experiments and RMD’s and shown how
the application of the calculus for factorial arrangements is helpful in this context.

The principal result on the optimality of SBURMD’s in Cheng and Wu (1980)
states: “Under an additive non-circular model, a SBURMD (¢,n,p) is universally
ﬁptima,l for the estimation of direct as weil aé residual effects over {24, »." (Cheng and

Wu (1980), Theorem 3.1). We have the following result:

Theorem 5.4.1. Under a non-additive non-circular model, a SBURMD (%,n,p) is

universally optimal over £);  , for the estimation of direct effécts.

Although by Theorem 5.4.1 the result of Cheng and Wu (1980) is robust for
direct effects under the non-additive model, the same is not true for residual effects
(cf. Example 5.4.1). For the estimation of residual effects we have the following result:

For any d € {4 5 5, let Sqp be the set of units which receive the treatment A
(0 < h < t— 1) in the last period. Then the following holds:

~ Theorem 5.4.2. Under a non-additive model a SBURMD (¢, n, p) d* allows orthogonal

‘estimation of the residual effects contrasts and hence becomes universally optimal over
- Qyyn,p for the residual effects if
i (i) for each A,h' (0 < h,h' < t— 1) there are exactly nt™2 units receiving the

treatments A and A' in the initial and the last periods respectively and
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(ii) for each h (0 € h < t—1), in the collection of ordered pairs {d*(¢ —1, ), d*(¢, )},
1< i< p—1;5 € Sgen, each ordered pair (h, he) (0 < hy € t — 1) occurs the
same number (say v;) of times while each ordered pair (h1,h2) (0 € hy,hy <

t — 1; b1 # h) occurs the same number (say v4) of times.

Cheng and Wu (1980) gave a method of construction of SBURMD’s when t2ln
.a.nd pt~! is even. These designs satisfy the condition of Theorem 5.4.2. For the
situation where #?|n and pt~! is odd we suggest a method of canstructing SBURMD'’s
satisfying these conditions. This method works for all t £ 6, this restriction being due
to the fact that the method malkes use of a pair of mutually orthogonal latin squares

of order #. Thus Theorem 5.4.2 covers almost all situations where a SBURMD (%, n, p)

mﬁy exist, Example 5.4.2 illustrates this method.

Next we show that if we ignore the conditions of Theorem 5.4.2, then we can give
a methad of construction of SBURMD (%, n,p) even when ¢ = 6 and p/6 is odd. Thus
the conditions t*|n and t|p (p > t) are shown to be both necessary and sufficient for
the existence of a SBURMD (¢, n,p).

In this section we also study the robustness of another result due to Cheng and
Wu (1980), We show that this result is robust for residual effects only and not for
direct effects. Let do be a strongly balanced RMD (%,n,p) which is uniform on the

periods and is uniform on the units in the first p — 1 periods. Then we have

Theorem 5.4.3. Under a non-additive model d, is universally optimal over {15, , for

the estimnation of residual effects.

In Se@,tion 5.5 we study RMD’s under the circular model. Let d be a SBURMD
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(t,n, p) under such a model. The main result of Magda (1980) remains robust under

a non-additive model and we have:

Theorem 5.5.1. Under a non-additive circular model, d is universally optimal for the

estimation of direct as well as residual effects over 24, .
Turning to the problem-of construction of SBURMD’s in a circular setting it is
clear that such a SBURMD exists only if ¢[n and t|p (p > t). We have:

Theorem 5.5.2. Under the circular model, if ¢{jn and pt™! is an even integer then a

SBURMD (%,n,p) exists.

Example 6.5.1 illustrates this method of construction.
In Section 5.6 we show that the results in Theorems 5.4.1, 5.4.2, 5.5.1 and 5.5.2

remain robust under a mixed effect model where the unit effects are random.

Ch@ter 6: In the last chapter, i.e. Chapter 6 we study serially balanced sequences
which are closely related to RMD’s. These sequences are block designs where a number

of treatments are applied successively to a single experimental unit. We first give the

following definition:

.-.:':Deﬁnition 6.2.7. A type 2*(u) sequence of order v and length vu (v < v — 1) is
a ﬁlcﬁsed chain of symbols (treatments) such that (i) each of the v distinct symbols
occurs ¥ times in the sequence, (ii) the sequence falls into u blocks each containing the
v symbols once each, (iii) the direct effect versus first order residual effect incidence
ma,trlx is that of a symmetric balanced incomplete block design and (iv) each block
ends ﬁrith the same symbol. .

;' . To -bégin.with, we consider the usual fixed effects model incorporating the block
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N effect, the direct effect and residual effect. Let C(n) be the class of all sequences with

v symbols and length n. Then we have

Theorem 6.3.1. Within the class C(vu), a type 2*(u) sequence, if it exists, is univer-

sally optimal for both direct and residual effects, under the model assumed, provided
v > 2.

In Section 6.4 a method of constructing type 2*(u) sequences has been given.
This method has a fairly wide coverage and has been illustrated in Example 6.4.1,

In Section 6.5 we have studied the optimality of another class of sequences called
type 1 sequences (cf. Definition 6.2.1) under a non-additive model analogous to the
ones considered in Chapter 5, where the iﬁteraction between direct and residual effects
is incorporated in the usual fixed effects model for studying such sequences, It has
been shown that a type 1 sequence is equivalent to a v? factorial experiment and
hence we have

Theorem 6.5.1. Under a non-additive model,

(i) in a type 1 sequence best linear unbiassed estimators of direct effect contrasts
are orthogan_al to those of the residual and interaction effect contrasts and
(i1} within the class C(mv?), a type 1 sequence of order v and index m, if it exists, is
universally optimal for the estimation of direct effect contrasts.
Example 6.5.1 illustrates that a type 1 sequen'ce may not be universally optimal
for the estimation of residual effects. We have hence modified type 1 sequences and
defined a class of sequences called type 1* sequences {cf. Definition 6.2.4) and then

it has been shown that for such sequences, a result analogous to Theorem 6.5.1 holds
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for the residual effects, These type 1* sequences can be constructed easily.
Section 6.6 deals with optimality properties of type 1 sequences under the usual

additive model. The main results are:

Theorem 6.6.1. Under an additive model

(i) in a type 1 sequence, the best linear unbiassed estimators of direct effect contrasts
are orthogonal to those of the residual effect contrasts
(ii) within the class C(mv?) a type 1 sequence of order v and index m, if it exists, is

universally optimal for the estimation of direct effect contrasts.

‘Theoremn 6.6.2. Under an additive model, a type 1 sequence is strongly optimal for
the estimation of residual effects contrasts within the class of all designs having the
same ‘residual-effect-versus-block’ inc.idencle matrix.

Theorem 6.6.2 covers the result of Sinha (1975) as a special case since he essen-

tially proved Theorem 6.6.2 for a particular class of type 1 sequences.
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Chapter 1
KRONECKER FACTORIAL DESIGNS FOR MULTIWAY ELITMINATION
OF HETEROGENITY

1.1 Introduction

In this chapter, the method of Kronecker products is applied to construct factorial
designs for multiway elimination of heterogeneity, starting from some varietal (single

factor) designs. This method gives designs with orthogonal factorial structure and

at the same time, controls the interaction efficiencies in terms of efficiencies of the
varietal designs.

A factorial design is said to have orthogonal factorial structure (OFS) if the
best linear unbiassed estimators of estimable contrasts belonging to different facto-
rial effects are orthogonal, i.e., uncorrelated so that the adjusted treatment sum of
squares can be partitioned orthogonally into components cc-rfespondiug to different

factorial effects. A broad sufficient condition for OFS was obtained by John and
Smith (1973) in the two-factor case and the result was extended to the multifactor

case by Cotter, John and Smith (1972). Mukerjee (1979, 1980) gave necessary and

sufficient conditions for OF'S in easily verifiable forms.

The construction problem for factorial experiments in a block design with QFS
has received considerable attention in recent years and two broad general procedures
‘have emerged, namely (a) the use of generalized cyclic designs and (b) the use of
Kmnecker or Kronecker-type products of varietal designs. John (1973, a, b), Dean

and John (1975) and Dean and Lewis (1986) have used method (a) for constructing
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designs with OF'S (see John and Lewis (1983) for a comprehensive list of references).
The alternative approach (b) has been used extensively by Mukerjee (1981, 1084,
1986) and Gupta (1983, 1985, 1986a).

In the method (b), Kronecker or Kronecker-type products of m varietal designs,
‘involving s1, 89, ..., 8m treatments respectively, generate an 81 X s3 X . .. X 8;n Tactorial
design. Suitable choices of these products guarantee OFS in the resulting factorial
design. Furthermore, it is possible to set lower bounds for interaction efliciencies in
the resulting factorial design in terms of the efficiencies in the varietal designs one

starts with. Consequently, by appropriately selecting these varietal designs, one can

ensure an efficient estimation of contrasts belonging to the factorial effects of interest.
This makes the method useful from a practical viewpoint. In addition, due to the
comparatively easy availability of the varietal designs, this method is quite flexible
and convenient to apply.

Mukerjee (1981, 1984) and Gupta (1983) considered methods of construction
for factorial block designs with OF'S employing Kronecker-type products controlling
main effect efficiencies., In this coritext, mention may be made of Lewis and Dean
- (1985). Recently, in the two-factor case Gupta (1985) studied the interaction effi-
ciencies in Kronecker designs. The results were extended in Gupta (1986a) where
it was shown that by taking the ordinary I{ronecker product of varietal designs, the
average efficiencies of interactions of all orders can be controlled. Mukerjee (1986)
employed the ICronecker product and also some variants of the Kronecker produc.t_'

to obtain factorial designs with QFS while controlling the ®,-efficiencies (cf. Kiefer
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(1975)) of these interactions up to some suitable order. In the set up of two-way elim-
ination of heterogeneity, Zelen and Federer (1964) applied the calculus for factorial
arrangements to obtain conditions for OF'S. Recently, John and Lewis (1983) and
Lewis (1986) constructed and studied factorial experiments with O.F'S in row-column
designs, using the generalized cyclic method of construction. As for designs elimi-
nating heterogeneity in several directions, it appears that mugh work yet remains to
be done though Mukerjee (1980) gave necessary and sufficient conditions for OF'S of
such designs.

This chapter aims at extending the results of Mukerjee (1986) and Gupta (1986a)
to a set-up for multiway elimination of heterogeneity and thus, in particular to row-
column designs also, For block designs, Mukerjee (1981, 1986) and Gupta (1985,
1986a) proved their results using explicit evaluation of certain eigenvalues, In the set-
up of this chapter, a direct generalization of their method becomes intractable and so,
instead of using eigenvalues, a more subtle approach involving projection operators
has been adopted to simplify the derivation considerably. Also, compared to Gupta
(1985, 1986a), a broader definition of efficiency has been used.

In sections 1.2 and 1.3 the ordinary Kronecker product is considered and it is

shown that the resulting design has OF'S while the & p~efficiencies of interaction effects

of all orders can be controlled in terms of the efficiencies of the component varietal

. designs, A disadvantage of this Kronecker product is that the resulting design becomes
large if there are too many factors. As shown in section 1.4, this difficulty may be

overcome by the use of a restricted form -of the Kronecker product which exercises a
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control over efficiencies of interactions up to a preassigned order. The use of such a
restricted product may be justified since the higher order interactions are not usually

of much practical importance especially when the number of factors is large.

1.2 The Method of Kronecker Product

Throughout this chapter, both for a varietal and a factorial design, the model
assumed is the fixed effects model with independent, homoscedastic errors. Let
Di,Da, ..., Dy be m varietal designs fOI; t-way elimination of heterogeneity and let
for 1 < 5 < m,D; involve s; treatments, n; observations and have a design matrix

Vi=1250,21,.-,Zj],

where Z; is of order n; X s; and Z;; is of order n; X uj(1 < a < 1),uj, being
the number of classes according to the a-th way of heterogeneity elimination., The
columns of Z ;o correspond to the effects of the s; treatments in D; whilefor1 < a < ¢,
the u;, columns of Z;, correspond to the effects of the u,, classes according to the
a-th way of heterogeneity elimination (see Example 1.2.1 for an illustration). So, for
0 <a £t in each row of 74, exactly one element is unity and the others are all zero.
Hence, denoting by 1, an n X 1 vector with all elements unity,

Zioley = Zjly;, =+ » = Zjly;, = Ly, | (1.2.1)
Let D; be equireplicate with common replication number r;. So,
nj =185, Zigln; =v;ls; , ZiZj =71l (1.2.2)

where I, is the n X n identity matrix. The reduced normal equations for the treatment

effects in D; have the coefficient matrix given by, say,

J

Cj = Zo(or(Z3)) 250, . (1.2.3)
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where
Z; = Zn, 2, (1.2.4)
and for any matrix L, pr-~(L) = I — pr(L) and pr(L) = L(L'L)" L' where (L'L)" is
any generalized inverse of L' L.
The design D obtained by taking the Kronecker product of Dy,..., Dy, has a

design matrix

-m (1
V=|® Zio, 8 Zis,..., ® Zil, (1.2.5)
J= i

L7=1 j=1

where the symbdl ® stands for Kronecker product, From the way of obtaining
D from Di,...,Dp, it is clear that f for 1 < 5 < m, the treatment ¢; occurs
in the (Ij1,...,1;t)-th “cell” of Dy, then the treatment (41,...,%4,,) occurs in the
(atye vy bty (hizy oy Ima)yeoy (lay ey Iag))-th “cell” of Do (1 < ljo < uja,1 <
a < t). Clearly D involves 351 8;(= v say) treatments, which are in effect v m-plets,
Interpreting these as v factorial level combinations, D may be looked upon as an

81 X 83 X ... X 8, factorial design for {-way elimination of heterogeneity. D involves

m . . . ' . . . m
7w n; observations and is equireplicate with common replication number ri(= 1

j=1 j::[
say). The v columns of ® 7 jo correspond to the effects of the v treatments and for
j=1
1 € a < ¢, the columns of g Z ;4 correspond to the classes according to the a-th way
j=1

of heterogeneity elimination in .
This method of obtaining factorial designs may he easily applied since the com-

ponent varietal designs can be obtained comparatively readily. Also, the design D

- '_ ‘may be an incomplete design and as the following example illustrates, can contain

'_Emptjr cells.
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Example 1,2.1. Construction of a 3 x 4 factorial row-column design,

Here m = 2, 81 =3, s5 =4, t =2,

Let the two varietal row-column designs D; and D, be as follows.

D o [ 1] 2 | Dy: 0 3[1 -
2 | 0 | y) - | 0
3 - % 1
~ 2‘0 3
Here Vg = (Zgg, Zgl, Zgg), Where
1 000 001 0 0O0UO0T1 0O
gl c 01 01 0 0 01 00 O
20 — c 001 0O0O0O1O0T1TUO0TQ0O 1}°
01 0 0 00100 TO0TO0 1
1 110 0 00000 O0TO
. 0 0 01 11 0 0 0O 0 0 O
21 ™ 0 00 0 00O 1T 1 1 0G0 O ’
0 0 00 00 O0OOODT1TT1 1
1 0 01 00 10O0TUO0OCTUO0OO
T 0 1 0 01 0 0 OO0 1 0 0
22 0 01 0 00 010010
0 00 0 01 O 010 0 1

The columns of Z,; and Zyp correspond to the rows and columns respectively,
in Dy. Similarly, one may obtain explicit expressions for Vi, Z10, Z11, Z1 considering

the design Dy.

The 3 x 4 factorial row-column design D is obtained as the I{ronecker product

~design of Dy and Dy and is laid out in 8 rows and 12 columns as shown below. D has

incomplete rows and columns and also some empty cells.
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00 J 03 J o1 | - 110|181 | -T2 [238[o21] -
02 | 01 | - |00 [ 12 |11 | - [10] 22 [21 ] = | 20
03 | - |02 [ o1 |18 | - [12 (1] 23] = 122 m
- |02 00 |03 | ~ |12 10|18 - [22[2 ]2
0 |18 |11 | - 120 |23 |2 | - |00 03|01 [ ~ |
2 |11 ] - 10 ]2 21| - |2 [o02|o01 |~ |o00]
13 | - (12 |11 (23| - (2 |21t 03] = | 02 | o1
- 112 10 |18 — |22 |2 [ 25 - o210 [ o3 l

As in (1.2.3), the reduced normal equations for the treatment effects in D have

the v X v coef]

where

C = (E}l Z-f”)f (#r(2)) <:§1 Zjﬂ) |

4 =

™
X Zjlj'

LJ=1

icient matrix given by, say,

m
oy @ Zg
=1

(1.2.6)

(1.2.7)

In the following theorem it is proved that D has OFS. The proof is based on

the application of a result due to Mukerjee (1980) and this result is stated as Lemma

1.2.1 below. A result on projection operators is also required which is established in

Lemma 1.2.2.

Let £} denote the set of all non-null m-component (0, 1)-vectors. For any z =

(Z15...,2m) € Q, define

- where

.,
G =

J

(1.2.8)

(1.2.9)

Lemma 1.2.1 (Mukerjee (1980)). The design D has OFS if and only if for every

z € {1, G* commutes with C(i.e., CG® is symmetric).



30

Lemma 1.2.2. Let Alﬂ,All, . ,Au and Agg,ﬂ.gl yos sy Agt be two sets of £ matri-

ces each such that the matrices in the same set have the same number of rows, Let
A=[A11 ® Aa1,..., At ® Aze] and Ay = [An, ..., Ar). Let
p(Az20) C Ny 2(Aza)s (1.2.10)

where for any matrix L, 4(L) denotes the column space of L. Then,

(pr(A)) (A10 ® A20) = {(pr{41)) A10} ® Aso.

Proof: There exists a matrix A; = [A}4,...,Al,], where for 1 < a < ¢, the number
of rows of [\ equals the number of columris of Aj,, such that A A1A; = A} A1e.

Hence

¢
(pr(A1)) Aro = A1(ALAr)" Al dyo = A1 D1 = Y AraDrg (1.2.11)

= |

and

51(2;:1 Aluﬁlu) & AfglAgU

AI(AIU @ ABU) — ] (1.2.12) |

315(2;:] Alﬂﬂlﬂ,) ® AEtAQ,ﬂ

since ({A1a) € u(A41),1 < a <t Now, (1.2.10) implies that for 1 < a < ¢, there exist

matrices B, such that

Ago = AsaBe (1.2.13)

and hence from (1.2.12), A'(410 ® Azo) simplifies to A’AA where A = (A} ®

B!, ...,Al, ® Bl). Consequently, by (1.2.11) and (1.2.13)

t

(p?‘(A.)) (A-ID & Agg) = A(A’A)_AIA& = AN\ = _Z(Alﬂ x Agﬂ)(ﬂlﬂ_ 0% Bu)

a=1

=Y (A1010) © (A2aBa) = {(pr(A1)) A1} ® Az,

o a=1
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Theorem 1.2.1. The design D has OFS.

Proof: Consider any ¢ = (21,...,2m) € . Without loss of generality (by a renaming

of factors if necessary) it may be assumed that z; = 1forl < j £ f, and z; =
0 for f+1< 7 <m. Then by (1.2.7) and (1.2.8),

=0Wga? z=120gz® . . 202" (1.2.14)

]
G(I)zj@ll—sia G(2)= '% 1311’ : 9 ® Z{:'.:Z(ﬂ@Z(Z) (0<ﬂ<t):

=f+1 J=1
and (1.2.15)
f ™
Zé_l) — 2 Zjﬂ.: Zaz — jﬂ?‘i-l chn (0 <a< t)
From (1.2.6),
*= (8 2aY(B 70)6" - (B Zn)m(2N( B 206", (1210
where by (1.2.14) and (1.2.15),
(8 2j0)6" = (2,76W) 8 (2,76P) = 2, ® (%" ¢). (1.2.17)
P
On simplification, using (1.2.1), and (1.2.15), for 1 £ a £ %,
(2)~(2) . & 7.
= & Ln;1lg, = ARE @ Lu;, 15, } (1.2.18)
j=f+1 | J=f+1 ’

Hence ﬂ.(Z( 30(2)) C na__lp(Zf)) and so, by (1.2.14), (1.2.15), (1.2.17), (1.2.18) and

Lemma 1.2.2,
p(2)( B Z0)6" = p(2)2) 02767 = (r(2)2") (276
= {pr(zm)zél)} % { | %H 1nj1;j} , (1.2.19)
= h

where
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A [Z{“, 2. - (1.2.20)

Consequently, by (1.2.2), (1.2.14), (1.2.15), and (1.2.19),

! !
(8 20) o 2 zw)m (® Zm) (o) ( 3101,
=1 i=1 j=f1

1
= (Z5"'pr(Z)Z0) 0 ( & Zi1y1) = (2 pr(ZMZP) @ ( & 1i14,1)
j= f+ .?-f+1

Hence, from (1.2.1), (1.2.2), (1.2.15) and (1.2.16) it follows that
=(.7 r;)G* — (Z( )pr(Z(l))Z(l)) @( rilg. 1), (1.2.21)
j=1 j=f+1 " 7

which i1s symmetric. Therefore, the theorem follows from Lemma 1.2.1.

1.3 Lower Bounds for Efficiencies

The notion of efficiency as used in this chapter is the general ®p-efficiency (cf.
Kiefer (1975)) and the definition is given below. For every p,(0 < p < 00) and every
posifive integer ¢, let hg,Q) be an extended real valued function defined over the class
I'9) of ¢ x ¢ non-negative definite (n.n.d.) matrices such that for any B € I? with

eigenvalues A;(B) (1 <1< ¢q),

hgﬁ')(B) = {iillr'l )\i(B)}% W_hen p =0,

q
= {¢™* Y "(\:(B))"P} "% when 0 < p < oo,
=1

= B) wi =
lrélllélg,:\ i(B) when p = oo,

provided the A;(B)’s are all positive. Otherwise, hg") (B)=10, (0 <p< ).
For1 < j < m, let P; be an (s; — 1) X s; matrix such that [3;%13“P}]’. is an
orthogonal matrix. Then, the @ -efficiency of the varietal design D; is given by, say,

H =17 i (Pi0P)), (0<p < o), - (1.8.1)
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where C; is as in (1.2.3). If p = 0, 1, 0o, then this &, -eiliciency reduces to the standard

D~—, A—, E—efficiencies respectively.

In the factorial set-up, for any ¢ = (21,...,2,) € £, deﬂﬁe
T T
P = & PjJ? (1.32)

1=

where for 1 < 7 < m,
" . "'"""l" »
P/ =Piifa;=1, =s; Elgj if z; = 0. (1.3.3)

Suppose the m factors in D are denoted by Fy, Fa,. .., Fy, respectively. Then any typi-

cal factorial effect may be denoted by -Flml...F;"‘(= J(z), say) for =
(Z1,...,&2m) € . Let T be the v x 1 vector of (factorial) treatment effects in D,
arranged in lexicographic order. Then (cf. Kurkjian and Zelen (1963), Mukerjee

~ (1981)) it may be seen that P*+ represents a full set of orthonormal contrasts be-

longing to J(z). The number of rows in P* will be }EI(Sj — 1) (= a(z), say) and let
Ay denote the a(z) X a(z) coefficient matrix of the reduced normal equations for esti-
mating P®7 in D (cf. Kiefer (1975)) i.e., Az is the information matrix for P®r in D.
Then the ®,-efficiency of D with respect to the factorial effect J(z) 1s given by, say,
E; = P R{E(4,), (0 < p <o) (1.3.4)

The next theorem provides lower bounds for the efficiencies with respect to the
different factorial effects in D in terms of the efficiencies of the designs Dq,...,Dn.
The following lemmas are needed in the proof, Lemmas 1.3.1 and 1.3.2 are well
known (in these lemmas, for any matrix L, u(L) denotes the column space of L),

Lemma 1.3.3 follows from Poincare’s separation theorem (cf. Rao (1973a, ch 1) and

the proof is omitted here. Lemma, 1.3.4 is due to Mukerjee (1986).
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Lemma 1.3.1. Let Ayj, Ay; be matrices such that p(4;;) C p(4dz;) (1 <5 < w)

Then ,u(jél A1) € uf 151 Azj).
m— J—

Lemma 1.3.2. Let A and B be matrices such that u{A) C u(B). Then pr(B) - pr(A)

18 n.n.d.

ILemma 1.3.3. For g X ¢ n.n.d. matrices A, B, if A — B is n.n.d., then
R(4) > KP(B) (0 < p < o).

Lemma. 1.3.4 (Mukerjee (1986)). If a factorial design has OFS then for each z € {1,

A, = P*CP* where C is the usual C-matrix of the factorial design,

Theorem 1.3.1. For every & = (z1,... ,:r;m) e §, and every p (0 < p < 0),

z 7
Fr 2 0, (mitta)

Proof; By Theorem 1.2.1 and Lemma 1.3.4, for every z € Q, A, = P*C'P* where

C is as in (1.2.6). As before, consider any z = (21,...,2m) € { and let with-
out loss of generality, x; = Iforl € 3 £ fand =0for f+ 1 € 5 € m. Then

by (1.2.8), (1.2.9), (1.3.2) (1.3.3)

=(® P; i U Y=( & ;) 2 {PW V16 (1.35
(j@l J)®( = f+1 J .5_.,) (j=f+1 ) { ®(3 = F+1 ﬂ_,)} ( )
where
P < ®1P (1.3.6)
2

By (1.2.8), (1.2.9), (1.2.21) and (1.3.5), it follows after some simplication that

Am=P*cP~’“’
. A2 pe x (1) (1) (1) , (1)
=GR ) TEPIE )6 - (2 (22 8 f+1“1”’ IPY @ ( & 1)
f !
. '-—*(__le.f)[(jgl i) o) — PO 25" pr(20) 25" PO - (1.3.7)

. - f f |
By Lemma (1.3.1), u( .®1 Zia) C (214 ® (_@2 In;)), 1 £ a < t, and hence by
| j= j= | S
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(1.2.4), (1.2.15) and (1.2.20), x(Z0) C u(% & ( éﬂ I.,)). So by Lemma 1.3.2,
J:

pr {(Zl) ® (;éz L)t — pr(Z(l)) = {pr(Z;)} ® (jéZ Inj) — P (Z(l)) (1.3.8)

L
—

\

r

18 n.n.d.

From (1.2.2), (1.2.3), (1.2.15), (1.3.6) and the definition of the P; matrices,

J f f
PiC1Pi®(® rjls; ) =m PP & B Tile;_y) = (Pr Z1007(21)Z10P) @ ( @ 151s;_4)
=

J=2 y=2

f f
= ( i rj) To(z) — (PyZyopr(Z1) 210 P} @ ( X PjZ;fUIﬂj ZJ'GP;D

=1 =2

J=1

f ! f !
— ( w ?‘j) Iﬁ(m) — _P(l)Z{E]-) ({p?‘(lzl)} &) {j@z Iﬂj})Zél)P(l) ‘ (1.3.9)

So from (1.3.7) and (1.3.9), it follows that

m f
——— ] ’ .
A= ( 7 r){(PCP) O (8 ril;))

' I | Ry
= (A, r)POZ Hor(Z)}y @1 8, L)~ r(Z))2 P, (1310

which is n.n.d. in view of the n.n.d.-ness of the right-hand member of (1.3.8).

Hence by Lemma (1.3.3),

) o« . om ] -
B4 2 BN (B ) (RCP) O 8, riTiy—0))

L

= (EQ ri)h(PLCLP]) (0 < p < )

Dividing the above by ;rtl r;, it is immediate from (1.3.1), (1.3.4) that
j:

E;EH; (0 < p £ ).
Similarly, £} > Hg for 1 <5 < f,0 <p< oo and hence
Ey 2 max {z;H3} (0 < p < o0),

since 2; = 0 for f +1 < j < m. This completes the proot.
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- Remarks:

1. Theorems 1.2.1 and 1.3.1 demonstrate that, even in the set-up of multiway het-
erogeneity elimination, the method of Kronecker product remains rather simple
and useful from the practical point of view and is also theoretically appealing.
By these theorems, it is clear, that, in order to construct a factorial design D,
one has only to start with some varietal designs Dy, ... ,Dm and take their Kro-
necker product. This makes the construction of factorial designs for multiway
heterogeneity elimination particularly simple since in practice, it is often much
easier to construct varietal designs than factorial designs. Theorem 1.2.1 ensures

that D has OFS., Theorem 1.3.1 shows how, by choosing the varietal designs

Dy,..., D, suitably, one can control and remain assured of the factorial effect

efficiencies in the resulting design D in terms of the efficiencies of Dy,..., Dy,
So, if one starts with efficient varietal designs, then their Kronecker product will
generate a factorial design with high interaction efficiencies.

2. In particular, if J(z) represents a main effect (i.e., f = 1) then it is easy to see
from the proof of Theorem 1.3.1 that equality holds in the lower bound given by
Theorem 1.3.1, i.e., for 1 < j < m, the efficiency of main effect F; in D is equal
to the efficiency of the correspdnding varietal design D;,

3. More interestingly, if J(z) represents an interaction involving two or more factors,

- then very often, one gets the satisfying Gb.sarvatit)n that the actual value of ET is
much greater than the ccrresponding lower bound. For example, for the designs

D; and D, in Example 1.2.1, it may be shown after computations that P,C1 P} =
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1.504, P,CeFP, = 2.00I3 where Cy and C, are the C-matrices of Dy and D»
respectively and Iy, I3 are 2 x 2 and 3 x 3 identity matrices respectively.
Hence by (1.3.1) D; and D; are balanced with Hy = 0.75, H: = 0.6667
(0 £ p £ ).
Hence by Theorem 1.3.1, for the resulting factorial design D, one obtains

E,’ > 0.75, E}'>0.6667, E*> 0.75.

Actual computations show that while Egl,E;,O attain the lower bounds, the true
value of E}' is as high as .975. So, as this example suggests, the method of
Kronecker product is likely to be particularly useful when emphasis lies on the
efficient estimation of the interaction contrasts.

4. The property of Kronecker factorials, as considered in Theorem 1.3.1, has been

termed ‘“faithfulness’ by Mukerjee (1981, 1986) in the context of block designs.

1.4 The Restricted Kronecker Product

Although Theoremns 1,2.1 and 1.3,1 make the Kronecker product method theoret-
ically attractive, one practical difficulty may arise with this method when the number
of factors, m, is large in the sense that the number of observations in D, namely
jfl n;, may become very large. To overcome this difficulty, this section considers a
L- method of construction which guarantees OF'S and at the same time exercises control
over lower order interaction efficiencies. The fact that the higher order interaction
efficiencies cannot be controlled by this method, does not detract from its merit since

this method will be used when there is a large number of factors and in that situation

the higher order interactions will usually not be of much interest. To that effect, a
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modified version of the method of Kronecker product, called the “restricted Kronecker
product” is considered below.

With notations as in section 1.2, suppose for 1 < j < m, it is possible to partition
Z g 88
Zjﬂ - [Z;aln _;'IIZF"'IZ_;&THj]r} (141)
where for 1 < £ < wj, Z;4¢ has njw;1(= B, say) rows, such that
1:3ijﬂ.1 — lrﬁJ Zjﬂ2 e e = ]—f@jzjaw;(= ")b;?aisa’y )5
(1<a<tl <7< m) (1.4.2)
1:35 Zj[}f e (rjw;}“l)l‘;j (1 _‘f._ é < Wi, 1< j < m) (14.4.3)
By (1.2.1), (1.4.1), for 1 ¢ L w;, 1 £ 5 < m,
Zjuglaj = Zjlglujl = ,,, = thflujt = 1g;. (1.4.4)
Also, recalling that for 1 < j < m, each row of Z;; contains exactly one element equal
to unity and the rest zero, it follows from (1.4.1), (1.4.3) that
Z 3002 j0e = ('.v';,.w‘j;;'l)Iﬂrj (12 w;1 K9 €m). (1.4.5)
Physically, the partitioning (1.4.1) means that for L < 3 < m, the varietal design D

is partitioned into w; subdesigns such that each subdesign involves f; observations,

1 times and the condi-

in each subdesign each of the s; treatments is replicated r;w;

tion (1.4.2) holds. In many practical situations, such a partitioning can be attained
" in a natural way. An illustrative example will be given at the end of this section.
Y
For matrices L1,...,L, having the same number of columns define 'U1 L, =
= '

. (L4, ..., L., Then the restricted Kronecker product of order ¢(< m) of the m varietal

designs Dq,..., Dy, is defined to be a design D9 with a design matrix
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q

- . m
V(g) = U & Zjﬂ*,'j , & Zjl*rj R ,@1 th")",- )
(Yp ¥ ) €T T a -

where the union is taken over only a subset T of the .?rll w; possible combinations
J:

(4y5+++ 57, ) such that the combinations included in T, written as columns, form
-an orthogonal array (possibiy with variable symbols) with m rows, strength ¢ and
Wi, Wy, ..., wm symbols. (cf. Rao (1973b)).

As in section 1.2, D{®) may be interpreted as an s; X ... X sy, factorial design

for t-way elimination of heterogeneity and involving '%1 s; treatments each replicated
T s

N (jfl T'jw_;l)(: 'r(y), say) times, where NN is the cardinality of 1. Clearly, plg)

involves NV ( _?rtl n jw;’l) observations and this number will be less than the number of
J—

. m . . .
observations, namely 7 N, 10 the ordinary Kronecker product design D, whenever
j:

N < _ﬁl w;, i.e., whenever the orthogonal array is non-trivial in the sense that all
j:
possible combinations (v,,...,7,, ) do not occur as columns of 7. In particular if

g = m then the restricted Kronecker product reduces to the ordinary Kronecker

product.

Theorems 1.4.1 and 1.4.2 below extend Theorems 1.2.1 and 1.3.1 respectively to

the restricted Kronecker product set-up.

Theorem 1.4.1 The design D) has OFS.

Proof: Define

Qe= U {8 Zjay,,(0<a<), (1.4.6)

J.—-
(711”-1'Tm)IET
and

Q=(Qu,.., Q) I R %)
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Then the reduced normal equations for the (factorial) treatment effects in D) have
‘a v X v coeflicient matrix given by, say,

C = Qopr(Q)Qo, (1.4.8)
wh.ich is analogous to (1.2.6). As in Theorem 1.2.1, this theorem will also be proved
by invoking Lemma 1.2.1 after establishing that C(9)@* is symmetric for every z € §2.
Without loss of generality, consider z = (z1,...,2m) € @ where ¢; =1if1 < j <
fandz; =0if f+1<37<m. So, asin (1.2.14), G = GM) @ (¥, Let

QM = U {é Ziay,} (0Sa<t); QW =[8,..., Q") (1.4.9)

(’fl 19003 ¥ m Yed 3=1
From (1.4.8),

CYUG" = QQoG" — Qypr(@)QoG*, (1.4.10)
where from (1.4.5) and (1.4.6),

Qo Qo = Z { ® Z_; 07, Zjnqj} = Z {jfl ?‘ngl}{jgl Is:}

(’rl?""Tm)IET J_]l (T]_J-":Tm),'ET
= N( 7% rwi)(® I;) | (1.4.11)
j=1 I3 =1 5/ ' |

By (1.2.14), (1.2.15), (1.4.2), (1.4.4), (1.4.6) and (1.4.7) on simplification:

! Tz __. ¢ _ / J _ m 4! “
0= b[{ 5 b ()} 0{ B (412)}]. Caro

" ('T]_ :---:'Tm)lET

Clearly, there exists a matrix A; = [Al4, ..., Al;), where the number of rows of Ay,

equa,ls the number of columns of Q,&I) (1 < a £ t)such that

QU QWA = QW'QNe®. (1.4.13)

o Now, defining

' E | m . |
A = l\'11 ®( ® ’H-Jl 8j )r ®( lﬂ;tlfs_.,)! , WE have
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N

Q'QA =

a

— A r m ! -
[ b )lel,d ()]

('T]_:*H:Tm)’ET

after some considerable algebra using (1.2.14), (1.2.15), (1.4.2), (1.4.4) (1.4.6), (1.4.7)

and (1.4.13). Hence from (1.4.12), Q'QoG* = Q'Q/A\. Consequently,
Qorr(@)QoG® = QR(Q'Q)™Q'QuG® = QeQA
— {le)!pr(Q(l))le)} ®{ & (rngllajlgj)} , (1.4.14)

j=f+1
after simplification using (1.4.3), (1.4.4), (1.4.6), (1.4.7) and (1.4.9) and the definition
of A, From (1.4.10), (1.4.11) and (1.4.14) it follows that

CWG* = N( 7 rjwi)( ® I;)G”
J=1 7=1

h\

! ™m
— {le) pr(Q(l))QEU} ® { ® rjwf'llsjlfgj >, (1.4.15)

j=f+1 77

which is symmetric and hence the proof is complete.

To prove our next resul_t, l.e., the result stating lower bounds for the factorial
effect efficiencies in D9 the notations are as in section 1.3, the only change being that
for any ¢ ¢ {2, the coefficient matrix of the reduced normal equations for estimating
Py in D) is denoted by AEE ) and accordingly, the ®,-efficiency of D) with respect
to the factorial effect J(x) is denoted by

EX(g) = plg)—1 hg,“(*’))(Ag;")).

" Theorem 1.4.2. For z = (1 ...2m) € Q and every p (0 < p £ o0),

Ey(g) 2 max {z;H3},

provided among z1,..., 2, at most g are unity.

Proof. As before, without loss of generality consider z = (w1,...,2m) € {} where
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0j=1i1<j<fia;=0if+1<j<mandf<yg

By Lemma 1.3.4, Aﬁf) = P*C9P*" where C)G® is as in (1.4.15).

Since the combinations (v,,...,7,) included in 7' form an orthogonal array
~ with N assemblies and strength g (and hence with strength f, for f < g), it follows
that for every (v,,...,7,) (1 £9; < wy;1 < j < f) there are exactly ]\T(‘:rﬂ__r1 w, )™
combinations in T' with the first f entries equal to 7,, ... ,Y,, provided f < g. Hence

by (1.4.1), (1.4.9), for any a,k (0 < a,k < 1),

' f
wWeP= ¥ {4

- (N/ k. wj-) 7'z, (1.4.16)

whenever f < g and 2{",Z{" are as in (1.2.15). By (1.2.15), (1.2.20), (1.4.9) and

(1.4.16) it follows that

RW QWM = (N/ T w ) AR ACNE Q(IJ’QSI) _ (N/ 1{. de) 7' z()

whenever f < g. Therefore, for f < ¢,

le)’p?’(@(l))Q(l) (_N/ ar wj) { (1) pT(Z(l))Z 1)}

Hence from (1.4.15), for f<g
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S " —
- (W f o) 20z 8 {8 riia, ),

which is analogous to (1.2.21). The rest of the proof may now be completed along

the line of proof of Theorem 1.3.1.

By Theorem 1.4.2, one can apply the method of restricted I{ronecker product of

order ¢ to construct a factorial design for ¢-way heterogeneity elimination and control
‘the factorial effect efficiencies in D(9)| for effects involving up to g factors, in terms

of the efficiencies of Dy, ..., Dy. In particular, if one wants to control only the main

effect efficiencies then ¢ = 1 and T should represent an orthogonal array of strength

1 which can be obtained easily. If in addition, one wants to control the two-factor
efficiencies also then g = 2 and 7T should represent an orthogonal array of strength 2.
This also poses no major combinatorial problem since orthogonal arrays of strength
2 are available in plenty (see e.g., Raghavaro (1971), ch 2).

As indicated earlier, in many situations there exists a natural way of attaining
the partition (1.4.1) such that (1.4.2) and (1.4.3) are satisfied. For example, con-
sidering a set-up of row-column designs (i.e., t = 2), suppose D; is a complete or
an incomplete latin square which can be partitioned into disjoint transversals such
that each transversal contains each of the s; treatments in D ; exactly once. Then
these transversals provide a natural way of attaining a partition (1.4.1) such that the

conditions (1.4.2) and (1.4.3) hold. These considerations indicate that the method of

restricted Kronecker product has a wide applicability. As an illustration an example
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is given below.

Example 1.4.1 Construction of a 4 x 5 x 7 factorial row-column design.

Here 81 = 4, 85 = 5,83 = 7. As the initial varietal row-column designs D1, Da, D3

we take three incomplete latin squares given by

Dy |0j2(8|-| , Dy |—|1|-[8|4]| , Ds: |0|-|2]-]|-|5]-
311[-]2 1{-18{-1]0 ~|2]-14|-]|-]0
1{-|2]0 213 [-0|- o|-14|-[6]-]-
~loj1{3 ~l4]0]~]|2 —|4]|~16]-|1]-

4|-112]- ~-l6]-|1|-|3
51-|-{1]-[3]-
~fo]-[~1]3]|-1|5

In each of these squares the cells will be denoted by ordered pairs (y1,y2), (y1,%2 =
1,2,...). A partitioning of Dy as in (1.4.1) which satisfies (1.4.2) and (1.4.3) with

w1 = 3, 18 given by the three sets of cells:

{(1,1),(2,2),(3,3), (4,9}, {(1,2),(2,1),(3,4),(43)}, {(1,3),(2,4),(3,1),(4,2)}

A similar partitioning of Dy with we = 3 is given by the three sets of cells:

{(1,2),(2,8),(3,4),(4,5),(5, 1)}, {(1,4),(2,5),(3,1),(4,2), 5,3)},
{(1,5),(2,1),(3,2),(4,8),(5,4)},
and a partitioning of Ds with wg = 3 is given by the three sets of cells:
{(1,2),(2,2),(3,3), (4,4),(5,5), (6,6), (7, )},
{(1,9),(2,4),(3,5), (4,6),(8,7),(6,1), (T, 2)},
((1,6),(2,7),(3,1), (4,2), 5,3), (6,4), (7,5)},

~ Note that wy = wp = wz = 3. Hence taking T' = {(1,1,1),(1,2,2),(1,3,3),
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(2,1,2),(2,2,3),(2,3,1),(3,1,3),(8,2,1),(3,3,2)}, which is an orthogonal array of
strength 2, and applying the method of restricted Kronecker product (with g = 2)
one can get a 4 X 5 X 7 factorial row column design, say D(®, which has OFS and
in which the main effect and two-factor interaction efficiencies are controlled in the

3

sense of Theorem 1.4.2. Since the cardinality of T" is 9 and T W= 27, the number of
J:

‘observations required in D®) is only one-thirds the number of observations required

in the ordinary Kronecker product of D4, Dq, Ds.,
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Chapter 2
NON-EQUIREPLICATE KRONECKER FACTORIAL DESIGNS

2.1 Introduction

Often practical situations arise when it becomes imperative to use designs with
varying numbers of replication and varying block sizes. The need to study such designs
has been advocated among others by Pearce (1964), Calinski (1971) and Hedayat and
Federer (1974). While the literature on varietal block designs satisfying the above
conditions is very rich, it appears that in the context of factorial designs, the problem
of unequal replication has not received much attention,

The two important methods of constructing factorial designs, namely, the gener-
alized cyclic method and the method of Kronecker or Xronecker-type products, have
so far been used to construct equireplicate designs only. This can be noted from the
various references given in the introduction of Chapter 1. In Chapter 1, we have ap-
plied the latter of the above two methods to construct equireplicate designs. Besides
these two methods of construction, it appears that, most of the classical construction
procedures for factorial designs also, do not consider the non-equireplicate case. The
class of “general classical designs”, which has been defined by Voss (1986) and shown
to include the classes of designs generated by several confounding methods in the
literature, is also equireplicate.

In the non-equireplicate set-up for factorial designs, among the very few references
available, we would like to mention the papers by Puri and Nigam (1976, 1978). They

studied s3 X 82 X ... X 8, balanced factorial experiments with a replication vector of
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the form r = r(a; ® ... ® a,, ), where, for 1 <7 <m, a;isa 8; X 1 vector of relative
replications of the j** factor, and the symbol ® denotes Kronecker product. They
discussed the analysis of such designs and studied their efficiencies together with some
methods of construction.

A reason for the dearth of work in this area may be that maintaining OFS be-

comes a problem when the number of replications vary. Consequently, an analysis of

these designs by the usual methods becomes difficult, rendering the study of the facto-
rial effect efficiencies even more so. On the other hand, the necessity of constructing
and studying factorial designs with varying replication numbers and varying block
sizes remains, so as to give the experimenter more scope to study experiments in
unconventional circumstances which arise in practice. One such very common situa-
tion is where the treatment combinations in a factorial experiment are not all equally
expensive or easily available; making the use of equireplicate designs either too ex-
pensive or wasteful, if not altogether impossible, Thus the study of factorial designs
with unegqual numbers of replication, which allow estimation of important contrasts
with desired efficiencies and admit a simple analysis, seems very pertinent,

In an attempt to fulfil this need to some extent, non-equireplicate Kronecker
factorial designs are considered in this chapter. To motivate, we begin with block
designs in section 2.2, Section 2.3 demonstrates how the interaction efficiencies may
be controlled and high efficiencies ﬁchieved for the resulting factorial design, simply
by suitably choosing the initial varietal designs. In section 2.4, it is shown that even

though the resulting designs may not have OFS, they admit a simple analysis, In
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section 2.5, the results have been extended to designs for multiway elimination of
heterogeneity through the use of projection operators. Some further results have

been presented in section 2.6. Finally, in section 2.7 some related open problems have

been discussed.

2,2 Non-equireplicate Kronecker Factorials: Block Designs

Throughout the chapter, whether the design under consideration is varietal or
factorial, the usual fixed effects intrablock model, with independent homoscedastic
errors and no block treatment interaction, is assumed.

Let for 1 £ 7 < m,D; be a varietal design involving s; varieties, n; obser-
vations and having an s; X b; incidence matrix N;. Let the varieties be labelled
0,1,...,8; — 1 and let rjo0,7;1,...,7js; -1 be their replication numbers respectively.
Let kjo, kj1y. .., kjp;—1 be the block sizes in Dj. Let rj = (rj0,751,...,7s;-1) , K; =
(kjo, kj1y. .y kjo;—1)'y, Rj = Diag (?"jﬂ,?‘jl,...,.?‘jaj_l), K; = Diag (kjo,k1,...,

kjp,~1). The elements of r; or k; are not necessarily equal.

The reduced normal equations for the treatment effects in D; have a coefficient

matrix given by
C;=R; — NjI{E"lN;. (2.2.1)
The Kronecker product of Dy, ..., Dy 18 a design D with incidence matrix
m
N=@ N; (2.2.2)

where ® denotes Kronecker product. As in Chapter 1, by interpreting the %1 8 5

. m " " -
treatments in D as S factorial level combinations, ) may he looked upon as an
j:

7 bi(= b,

L] ] 4 1 m ) "
81 X 83 X .,. X 8y, Tactorial design involving T8 ;(= v, say) treatments in .
- J= g=
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say) blocks with ji n; observations. The replication numbers and block sizes in
D are given by the elements of the v X 1 and b X 1 vectorsr = r; ® ... @ rjp and
k = ki ®...® k,, respectively. Since the designs Dy,..., Dy are not necessarily
equireplicate nor proper, in D also, neither the replication numbers nor the block
sizes are necessarily equal.

Let R and K be v x v and b x b diagonal matrices with diagonal elements given
by the elements of the vectors r and k respectively, i.e., R = j%l R; and I{ = _gl I(;.

Then, by (2.2.1) and (2.2.2), the coefficient matrix of the reduced normal equa-

tions for the treatment effects in D is given by,

C=R—-NK'N'= -‘%1 R; — (E; Nj-) (E K;l) (E N})
1=

= ® R; — ® (R, — C;) (2.2.3)

2.3 Lower Bounds for Interaction Efficiencies

The efficiency with which a treatment contrast with the s; x 1 coefficient vector

u; is estimated in D; is defined as

e;(u;) = u}R:,’,Tl u;/u;C;uy if the contrast is estimable in D,
(2.3.1)
= () otherwise

where C' 1s any generalized (g-) inverse of 'y, Clearly, the efficiency in (2.3.1) is based

~on a comparison of D; with the corresponding (unblocked) completely randomized

- design having the same replication numbers as Dj. Also, (2.3.1) remains the same
- whatever be the choice of the g-inverse C';".

In the factorial set-up, let 7 be the v X 1 vector of treatment effects in D, ar-
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ranged lexicographically. Analogously to (2.3.1), the efficiency with which a treatment

contrast u'7 is estimated in D is defined as

e(u) = w'R™ u/u'C~u if the contrast is estimable in D
(2.3.2)

= { otherwise

Here also, the efficiency (2.3.2) is expressed relative to a (unblocked) completely ran-
domized design having the same replication numbers as D. Again, (2.3.2) remains
the same for every choice of the g—inverse C,

It may be seen that in [ all main effect contrasts are Iestimable if and only if
each of Dy,...,D,, is connected, It is, therefore, assumed hereafter that each of
Dy,..., Dy is connected. This will imply that D is connected and hence ensure that
all matrix inverses considered in the next two sectiaﬁs exist,

The following lemmas .will be helpful. The proof of the first lemma 1s straight-
forward and hence omitted. Let the column space of any matrix A be denoted by

 H(A).

Lemma 2.3.1. For 1 <7 < m, let Aj,,Bj be non-negative definite (n.n.d.) matrices

such that A; — B; is n.n.d. Then ® 4; — ® B, is n.n.d.

Fe=1 g=1

- Lemma 2.3.2. Let 4 and B be n.n.d. matrices such that A —~ B is nn.d. Then
w(B) € u(A) and for every matrix U satisfying u(U) C ,LL(B),

U'B~U-U'4"U,
~is n.n.d. where A~, B~ are any generalized inverses of A, B respectively.

- Proof: Since B is n.n.d., there exists some matrix L such that B = LI/, Again, since

f=| ~ B is n.n.d., we have A— B = HH' for SGIIIE? matrix H. Hence, A = (H L)( f:
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and therefore it follows that u(A) = p(H L) D p(L) = u(B). Hence the first part of

the lemnma.,

Now let p(U) C u(B) = (L), Then U = LD for some matrix D. Hence
U'B~U -U'A-U = D'[L/(LLY"L - L'(HH'+ LL"Y"L]D. Since L'(LL')" L —
L'(HH' 4+ LLY L is clearly n.n.d., the lemma follows.

The next lemma follows as a corollary to Lemma 2.3.2.

Lemma 2.3.3. Let A and B be n.n.d. matrices such that A — B is n.n.d. Then
u(B) C u(A) and for every vector u ¢ y(Bj, .

uB u>uAdu,
~ where A™, B™ are any g-inverses of 4, B respectively.

Let 1,, denote the n x 1 vector with all elements unity. For 1 < j <m, let u; be
any s; X 1 non-null vector satisfying u1,, =0, so that u; may be considered as the
coefficient vector of a treatment contrast in D;.

Considering now the 83 X 83 X ... X 8y, Kronecker factorial design D, let Q and
J(m) be as defined in section 1.2 of Chapter 1. For any z = (21,...,%2m) € , define

the v X 1 vector

where (2.3.3)

i — .} b= 1+ — 1 |

Then, u® T represents a typical contrast belﬁnging to the factorial effect J(z) in D.

The following theorem sets a lower bound for ¢(u®) and demonstrates that even

in a non-equireplicate setting, high efficiencies with respect to contrasts belonging to
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factorial effects in D can be ensured by suitably choosing the initial varietal designs

Dyy..y Dm.

Theorem 2.3.1. e(u®) > max e;{(w;), for each = ¢ 2.
- Jizg=l

Proof: Forl <3 <m, let

m m
Li= @ Ljy , Wj= @ Wy

f=1 f=1
where (2:3.4)
Lijg = Wjs =Ry if f# §;L;; = C;5,W;5 = Ry~ Cj.
Note that for each §, L; = f?g”al Rs — W;, so that by (2.2.3),
C~L;=W;— ® (Ry — Cy), (2.3.5)

f=1
which is n.n.d. by (2.3.4) and Lemma 2.3.1.

Now consider any ¢ = (#1,...,%y) € 2. Without loss of generality, let z; = 1.

Then by (2.3.3), (2.8.4), u® ¢ u(Ly). But by (2.3.5), C'— L1 is n.n.d. Hence it follows

from Lemma 2.3.3 that

u®' ¢ u® < u‘“rqu‘” = u‘“’f(C'l“ RR'®...9 R;Hu”

= (0, C{ uy) X J;frnz(u?i)f Ry'u® |, (2.3.6)

using (2.3.3) and (2.3.4), But by (2.3.3), noting that z; = 1,

u® R7u® = (0} Ry 'wy) x T, (ujf"')fR‘}'lu?_ ;

~ Hence by (2.3.1), (2.3.2) and (2.3.6), e(u®) = ey(uy). Similarly, it may be shown
| that e(u®) > e;(u;) for every j such that z; = 1. Hence the theorem.

Remarks:

1. Theorem 2.3.1 extends the basic ideas in Gupta (1986a) and Mukerjee (1986) to
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a non-equireplicate set-up.
. As remarked in Chapter 1, in this set-up also, the use of the method of Kronecker
product results in factorial designs with a wide range of parameter values since
the initial designs Ds,..., Dy are left quite arbitrary. Thus the construction
of factorial designs with varying replication numbers and block sizes become
particularly easy.
. In this set-up also, the method of Kronecker product is capable of controlling
the interaction efficiencies in D, By an appropriate choice of Ds,..., Dy, high
cfficiencies with respect to contrasts of interest may be achieved in D, Again,
as in Chapter 1, it can be illustrated by examples that often the actual value of

e(u®) is much higher than the lower bound given in the theorem.

2.4 A Computation of O~

It may be seen through examples that non-equireplicate Kronecker factorials

rarely have OFS as they do not satisfy the necessary and sufficient condition for

OF'S as in Mukerjee (1979). But in spite of that, a method for computing a ¢-inverse

of C , which does not require the inversion of large matrices, is available.

where

Forl £ 7 <m, let T bean (s;—1)xs; matrix such that (g;r;, T'}) is orthogonal,

where ¢; = (r}rj)“lz“. Forz =(21,...,2m) € , define
Ta = .§1 T3,
(2.4.1)
T =T ifa;=1, =1y, if z;=0.

vJo e §)2

. Let T = (..., T¢,...) ie, T = (TOU'"l’,...,Tll“'lr)’. Let 1 =1,, ®...®
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1, , T* =(1,T").
Lemma, 2.4.1. The v X v matrix 7™ is non-singular.

Proof: Note that T* = T} ® ... ® T%, where T} = (1,;,T}),(1 < j £ m). From the

definition of T it follows that each T' is non-singular and hence the lemma.

Lemma 2.4.2 For every z,y € , 2z # y, ToCT, = 0.-

Proof; Consider z = (21,...,Zm) € 2,y = (y1,...,Yym) € 8 F y. By (2.2.8), (2.4.1)

T*CTY = El(T;j Rij‘.f) - ® (T;j (R; — C_f)T;Jj ). (2.4.2)

Since ¢ # y, there exists at least one j such that z; # y;. Let without loss of
generality, zx = 1,yx = 0. Then,
¢
TfkRka" = Tp Rrls, = Thry =10,

T (Ri — Cr)Ty* = Ti(Ri — Cr)1sy, = Tk Rils, = Tyry =0,

by the definition of T} and the fact that Crls, = 0. Hence by (2.4.2) lemma follows.

Theorem 2.4.1 A g-inverse of C' 1s given by

C~ = ), To(TeCT) ' Ts.

z € §)
Proof: From the definition of the T; matrices, T;r; = 0 for each 7 and so by (2.4.1)

T,CT. = T,(C + & ;)T
j=1

' ’ m ’ I T . |
Since D is connected, To(C' + : r;r; )T, is positive definite and hence T, C'T) is also
| 1=

non-singular. Define the v X v matrices

L = Diag (0,...,T:CT,,...) ,L* = Diag(0,...,(TuCTH)™,...).
R N —_—

x € §) z ¢ 2

Since C1 = 0, from Lemma 2.4.2 it follows that T*CT* = I and hence by

Lemma 2.4.1., C = T*-1[T% -1
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Also, C™ as in the statement of the theorem equals T L*T* and hence CC'—C ==

C, as desired.

Remark: We note that for each z ¢ Q, T*CT® is a square matrix of order

E‘i(s i—1)% (= a(z), say). So by Theorem 2.4.1, the analysis of I?, which requires the

evaluation of C'7, involves the inversion of matrices of order a(z),z ¢ . This may

lead to computational simaplicity since the numbers a2), z € Q, will be much smaller

than v, the order of C. Even for a factorial design with OFS it may be seen that (cf.
Mukerjee (1979)) the calculation of C~ will in general involve inversion of matrices of
precisely the same orders, unless some further supplementary information 1s available
on the design. Thus, although in a non-equireplicate situation the Kronecker factorial
design may not have OFS, still its analysis does not p()sé any serious problem in

terms of computational complexity.

2.5. Non-equireplicate Kronecker Factorial Designs for Multiway Hetero-

geneity Elimination.

The results of sections 2.3 and 2.4 may be extended to designs for multiway
elimination of heterogeneity, Asin Chapter 1, in this section also, we use the technique

of projection operators as it simplifies the computations considerably in the context

of multiway heterogeneity elimination.
Let Dq,..,, Dy be m non-equireplicate varietal designs for ¢-way elimination of
heterogeneity. We assume that Di,...,D,, are connected in order to ensure that the

Kronecker factorial design D is also connnected. Using notations similar to those in

Chapter 1, let the design matrix of Dy, for 1 < j < m, be
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Vf = [Zj"ﬂ: Z.fln vy Zj't] :~
where Zj is of order n; X s; and Zj, is of order n; X u;(1 < a < t),uj, being
the number of classes according to the a-th way of heterogeneity elimination, Let

for 1 £ 7 <m, rj,rj1,...,7js;—1 be the replication numbers of the s; treatments

0,1,...,s8; — 1 respectively. Then, for 1 < 7 < m,

;'UZJFB = Diag (rjo,7j1,- .. :Tjﬂj"-l) = Rj(say)
| (2.5.1)

Z_;'ﬂlﬂj = (Tj050 s -.-5".;"-517--1)JF = r;(say)
Let for any matrix L, pr(L) and pri(Z) be as in Chapter 1.

Then, the reduced normal equations for the treatments effects in D; have the

coefficient matrix

Ci = Zjo (pr~(Z;)) Zjo, (2.5.2)
where

Ly = (Z.fli--*:zii)' (2.5.3)

As shown in Chapter 1, the reduced normal equations for the treatment effects

in the Kronecker design D will have the v X v coefficient matrix
C = Ziprt(2)Z,

where | | IR (2.5.4)

Zy = Ezjo ) Z=(E’ Zjl:---:,glzj‘t)
=1

F=1 7=1
The folloﬁ.ring theorem extends Theorem 2.3.1 o this set-up for multiway hetero-

geneity elimination. The efficiency of a contrast is defined, as usual, relative to the

' - corresponding completely randomized design, as in section 2.3.
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Theorem 2.5.1 e(u®) > max e;{(u;), for each = € 2.

: Jizi=1
- Proof: From (2.5.1) and (2.5.4), C = ® Rf — Z{pr(Z)Zg. Defining the matrices L;
. f=1
~ and Wj as in (2.3.4), it follows that
C~L;=W;— Zypr(2)Z. (2.5.5)

Define

7 = |7 ® I ® = ®
— 11 ® .® nj y --,th@ 1® Inf — Zl @ .® Iﬂj .
i F=2 j=2 4=2

Then, by Lemmas 2.3.1 and 2.3.2, (Z) C p(Z*) and so pr(Z*) — pr(Z) is n.n.d.

Hence Z\pr(Z*)Zo — Zypr(Z)Z is n.n.d. But from the definitions of Zy and Z* it

follows that

® 2 zju)

Zopr(Z*) 20 = Z10pr(Z1)Z10 @ ( 2

= {Z10Z10 = Z1orr"(Z1) 210} ® (;%2 Zjo Zﬁﬂ)
= (R —C1)® ( ? RJ-) by (2.5.1) and (2.5.2)

j=2

— W1 by (234)

So, by (2.5.5), € — Ly is n.n.d. Similarly, C' — L; is n.n.d. for every 1 < j < m.
Now, the proof of the theorem proceeds along the line of proof of Theorem 2.3.1.

Remarks:

1. The proof of Theorem 1.3.1 of Chapter 1 can be simplified using the arguments
.used in proving Theorem 2.5.1. However, the proof of Theorem 1.3.1 as given in
Chapter 1 remains useful since it can be extended to the case of restricted Iro-
necker products which lead to émallér and economical designs (vide section 1.4).

. On the other hand, it appears that the above proof of Theorem 2.5.1 cannot be
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extended to such situations.,

2. As remarked in section 2.3, in the context of multiway heterogeneity elimination
also, high efficiencies with respect to contrasts belonging to factorial effects in D
can be ensured by suitably choosing the initial non-equireplicate varietal designs
D1,...,Dp. Otften, the actual values of e(u®) are much higher than the stated
lower bound.

The following lemma extends Lemma 2.4.2 to the context of multiway hetero-
geneity elimmation. It i1s clear that an exténsion of Theorem 2.4.1 to the present

set-up follows from this lemma. Notations are used as in section 2.4, while C' is as

in (2.5.4).

Lemma 2.5.1 For every z,y e ),z #y, T,CT, = 0.

Proof: Let z = (21,...,2m),¥ = (¥1,...,¥m). Since & # y, without loss of generality

let 2 = 1, ym = 0.

Yim _

Now, since T " Ry, Ty» = TRyl = Tiyr = 0, we have
T, CT! = Ty ( E;l RH)T — To Zopr(Z) 2Ty, (2.5.6)
J:
where
T.(® R)T, = ® TP RTY =0. (2.5.7)

s J:

fiyn

~1 A |
Again, ZnT;, — (%@1 ngTf’) ® 1y, since ¥y, = 0 and Zp0ls; = 1, Hence
J:
from Lemma 1.2.2 of Chapter 1 and remembering that 1, ¢ p(Zne) forl < a < ¢,

it follows that

j=1

pr(2)(Z0Ty) = {pr(8 D)8, ZwT})} @ Ln,., (25.8)
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where Z("~1) = |'® Zﬁ,...,ﬁ@l Zﬁ]. Again,
m —~1 .
TuZ) =T, (@ Z}u) = ( ® T’ Z}o) R (TmZ! o). (2.5.9)

From (2.5.8), (2.5.9) and noting that T, Z! 1, . = Tmrm = 0, it follows that
TeZypr(Z)ZoT, = 0. This together with (2.5.6) and (2.5.7) proves the lemma.

Remark: The same remarks as presented after Theorem 2.4.1 hold good in the present

| context,

2.6 Some Further Results

In this chapter, we have so far considered the problem of setting lower bounds for
efficiencies of individual contrasts in non-equireplicate Kronecker factorial designs. As
in Chapter 1, one may also consider complgte sets .of orthonormal contrasts belonging
to different factorial effects and then set lower bounds for & ,-efficiencies of such com-
plete sets of contrasts. In this section, we consider this latter problem with reference
to designs for multiway heterogeneity elimination. From the results obtained below,
corresponding results for block designs will follow as a special case. .

We assume as before that each of the varietal designg D1, ...,.Dy is connected
as this will guarantee the connectedness of D,

The definition of (Ilp—eﬂiciendy as given below follows as a natural extension of

that considered in Chapter 1. For any v X v positive definite (p.d.) matrix 4 with

eigenvalues A1(A),..., A\, (A), let
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- (:7 Z(M(A))”)F , 0<p<oo

(1_1 A)) for p=0

=m;j:1,x}\i(A) , forp=oco

For 1 < 7 < m, the ®,-efficiency of D; is defined as

H! = by (B P) 0<p< (2.6.1)
, 0<p< 6.

P h;; (P;C; P})

where F; 1s as defined in Chapter 1, C; is as in (2.5.2), R; is as in (2.5.1) and C7 is

any g-inverse of C.

Similarly, for any 2 = (21,...,2m) € £, the @, -efficiency with respect to the
factorial effect J(z) in D is defined as
h% | P? (@ R“l) Pe

T =1 .
E = h; [1;0 mp J (2.6.2)

where P* is as in (1.3.2) of Chapter 1, C is as in (2,5.4) and C~ is any g-inverse of
)

. Since Dy, ..., Dy, are connected, the matrices in (2.6.1) and (2.6.2) are p.d. Also
note that the dispersion matrix of P*# in D is given by ¢2P*C~P?% | where o2 is
- the constant error variance. Both definitions of H ;”: and E¥ are based on comparisons
with the corresponding completely randomized designs.

The following lemma will be used,
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Lemma 2.6.1 Let A and B be p.d. matrices such that A — B is n.n.d. Thenl

RE(A) > hY(B).

Proof: The proof follows from Lemma. 1.3.3 of Chapter 1 after noting that for every

—1
v X v p.d. matrix 4, h3(A4) = {hﬁ,")(A“l)} where hg”)(-) is as defined in section 1.3

of Chapter 1,

The following theorem provides lower bounds for the P ,-efficiencies in D 1n terms

of the ®,-efficiencies of D;.

Theorem 2.6.1 For every z = (21,...,2,) € L and every p (0 < p < 00),

B > | Jax {'BJH;’}

Proof: Consider any ¢ = (21,...,%m) € . Without loss of generality, let 2y = 1.

Then, it can be proved along the line of proof of Theorem 2,5.1 that C' — Ly 1s n.n.d.
Since D;,..., Dy are connected, ;L(P”’") C u(L1) and hence by Lemma 2.3.2,
P‘“L;P“" ~ P*C~ P is n.n.d. Hence by Lemma 2.6.1
Ri(P*C™P® ) < hi(P*LTP%).
Hence, by (2.3.4) and (2.6.2), and noting that z; =1,
1 hPm (5 R"-‘l) Pm'.
1 j=1 i

5y o !
h |PoLy P*']

2F
B2 >

h

s (PRTVPY) 7 by (PR7P]Y)

j=2 P

m T} —1 z’,
=2h; (Pj Ri" P'J)

{

h (P.CTP) )

J

= H; by (2.6.1),

Similarly, EF > Hﬁf for every j such that z; = 1. This completes the proof.

- Remark: The theorem demonstrates that even in the context of non—-_equire;ﬂic&te
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Kronecker designs for multiway elimination of heterogeneity, one can achieve high

®,-efficiencies for the design D by starting with suitably efficient varietal designs.

~ Again, the actual ®,-efficiency attained is often much greater than the lower bound.

2.7 Discussion

Remark, The necessary and sufficient condition for block designs to have OFS is due

: to Mukerjee (1979) and the result has been stated as Lemma 1.2.1 in Chapter 1. It may
be eaéily verified that the condition. i& not satisfied for non-equireplicate Kronecker
factorials. In fact, if we consider a factorial experiment laid out in an (unblocked)
. completely randomized design, then it can be easily verified that this design will have
OFS if and only if it is equireplicate. Thus it appears that even if a non-equireplicate
:' factorial block design has O}-?'S , then such orthogonality is not a very natural property
_c)f the design but somewhat artifically enforced through the introduction of suitable
B blocks. A similar remark also holds good in a setting for multiway heterogeneity
‘elimination. So it seems debatable whether OFS is at all a natural phenomenon in
a non-equireplicate setting. And, anyway, as sections 2.3-2.6 show, the lack of OF.S
in this case does not pose any major problem in either attaining high interaction
eﬁciencies or in ensuring a simple analysis.

Although the method of Kronecker product is capable of producing small and
hence economically viable designs with a moderate number of factors, the size of the
<flesig11 may become too large with a large number of factors. In the equireplicate
case Gupta (1983), Mukerjee (1981, 1986) considered some variants of the ordinary

| [{renecker product to construct smaller designs ensuring high efficiencies only for
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the lower order interactions. In the case of multiway elimination of heterogeneity in
the equireplicate case Mukerjee and Sen (1987) considered a similar variant of the
~ Kronecker product which has been presented in Chapter 1. Unfortunately, in the
non-equireplicate setting, it ﬁlay be seen that analogues of Theorem 2.3.1 do not hold

with such modifications. It seems that this problem deserves further atiention.
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Chapter 3
ESTIMABILITY~-CONSISTENCY AND ITS EQUIVALENCE WITH
REGULARITY IN FACTORIAL EXPERIMENTS

3.1 Introduction

In the context of factorial designs, disconnected designs are of importance. This is
because a factorial design becomes disconnected when certain contrasts are completely
confounded. Mukerjee (1979) introduced the concept of regular disconnected designs
and obtained conditions for orthogonal factorial structure of disconnected regular de-

‘signs. More results on regularity of factorial designs are available in Mukerjee (1980),

Chauhan and Dean (1986), Mukerjee and Dean (1986) and Chauhan (1987).

Lewis and Dean (1985) introduced the notion of efficiency-consistency in factorial

designs. They established that every equireplicate connected design with orthogonal

factorial structure (OF'S) is efficiency-consistent. This result was extended to the case
of disconnected designs by Mukerjee and Dean (1986) and they proved its converse
and some further results. Thus OFS was shown to be necessary and sufficient for
efficiency-consistency and so efficiency consistency provided a characterisation for
- OFS. Some further results on efficiency-consistency were obtained by Gupta (1986b).
In this chapter we introduce the concept of estimability-consistency which is
~ somewhat analogous to that of efficiency-consistency. It is shown that estima-
_bilityQCc)nsistency provides a characterization for regularity. This result seems to be
of interest from the practical viewpoint as it provides an appealing interpretation for

: the somewhat abstract phenomenon of regularity.
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Section 3.2 of this chapter discusses the concept of regularity and its implica-
.tions. In Section 3.3 estimability-consistency is defined and related results are proved.
Section 3.4 establishes the characterization for regularity in terms of estimability-
consistency. Section 3.5 deals with the equivalence of partial estimability-consistency
 with regularity of a certain order.

3.2 The Notion of Regularity and Some Preliminaries

Throughout the chapter, the fixed effects intrablock model with independent
homoscedastic errors and no block-treatment interaction is assumed.

Consider a 81 X 82 X ... X 8, factorial block design, d, which may be possiblj
disconnected. The design d is assumed to be neither equireplicate nor proper. Let Y’
be .a,s in the previous chapters and v = 7r s;. Let a typical factorial effect be denoted,

1=1]

as usual, by J(z) for z € ).

Let C be the usual intrablock matrix of d. Let V* denote the estimable space

 corresponding to J(z). For any matrix A let R(A) denote its row space. Then, clearly,

R(C)2 & V* where @ denotes direct sum.
r € 1) |

We state the following definition of regularity.

- Definition 3.2.1. (Mukerjee (1979)). An m-factor design d, is regular if
R(C)= & V©
z € §2
- While a connected design is always regular, the same cannot be said about discon-
nected designs. As seen in Mukerjee (1979), in regular designs, when OF'S holds, the

E“.a'djusted treatment sum of squares can be partitioned orthogonally into components

- norresponding to different factorial effects. But such a partitioning is not possible
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in irregular disconnected designs. In fact', in the latter case, the estimable contrasts
belonging to factorial interactions do not span the space of all possible estimable con-
trasts and hence the adjusted treatment sum of squares will contain a component due
~ to some estimable contrasts which can be attributed to none of the factorial effects,

This makes such designs wasteful in the sense that they achieve estimability of these
unimportant contrasts at the cost of the important ones. For further discussion on
the practical relevance of regularity, we refer to Mukerjee (1979).

The following example serves as an illustration.

Example 3.2.1, Consider the following single replicate 2° experiments in 2 blocks.

Dy: {(0,0,0),(0,0,1),(0,1,0),(1,0,0)} {(1,1,0),(0,1,1),(1,0,1),(1,1,1)}
D,: {(0,0,0),(0,0,1),(1,0,0),(1,0,1)} {(0,1,0),(0,1,1),(1,1,0),(1,1,1)}
- Here 87 = 2,8 = 2,83 = 2. Both D; and Dy are disconnected with
rank (C'} = 6 for both designs.
It can be shown that for Dy, V! = VUIU = V100 = Y1l = {0} while contrasts
belonging to J(110), J(101) and J(011) are estimable. Thus for Dy
rank {m éeﬂ V*®} =3 < rank (C).
Hence D, is an irregular desigﬁ and some useless contrasts are estimable.
. On the other hand, with Dg, contrasts belonging to the 6 interactions J{001),
J(100), J(011), J(101), J(110) and J(111) are estimable and hence Dy is a regular

 disconnected design.

3.3 Estimability-Consistency

- Let + denote the v x 1 vector of factorial treatment effects in d arra,n.ged lex-
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icographically. Consider any =z = (24,...,2m) € Q. Let d, be the design ob-
tained from d by deleting the 7** digit from the treatment labels for all ¢ for which
2; =0, i=1,...,m, Thus d, will involve 37’ (= vs, say) treatment combinations

f=1 ¢

and let 7, denote the vector of the v; factorial treatment effects, arranged lexico-

graphically.

Lewis and Dean (1985) defined d to be efficiency-consistent if the efficiencies
of all estimable contrasts belonging to J(z) in d are equal to the efficiencies of the
corresponding contrasts in d, for each x € ). Analogous to this definition we introduce
the concept of estimability-consistency. We first give the following notations:

For j = 1,...,m let 1; denote the s; x 1 vector with all elements unity, E; =

1,1 and I; denotes the s; X s; identity matrix. For « € {2, define the matrices

T T
W:E — ® W_?J (3.3.1{1)
=1
where @ denotes Kronecker product and for 1 =1,...,m,
Wi =Ij—s;'Ejife;=1, =s7'B; ife;=0 (3.3.10)
and
§°= @ S ' (3.3.2)
j=1
where for § = 1,...,m,
SH=Liifa;=1, =1; ifz;=0 : (8.3.20)

For every z € 2, from the way d is obtained from d, it is clear that the intrablock
. _inatrix of dy becomes S?CS? = C, (say).
Note that for every z € ), the rows of W¥ span the space of all contrasts, not

-:[1ecéssarily estimable, belonging to J(z) in d and the rows of W#S% span the space
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of all contrasts belonging to d(z) in dz. Also, for each z e 2, it is possible to define
a correspondence between the contrasts belonging to J (z) in d and d; such that for

any q 7 0, the contrast q'Wer belonging to J{z) in d corresponds to the contrast

q' W*S8% 1, belonging to J (z) in d; and conversely.

Lemma 3.3.1. Let 'W*r be a contrast belonging to J(z) in d. Then the estimability
of q'W?7 in d implies the estimability of the corresponding contrast g W25% 7, in
dy.

Proof: Since W7 is estimable in d, there exists a v x 1 vector u such that

qgW?*=v'C | (3.3.3)
Postmultiplying both sides of (3.3.3) by S% it follows that o'W=S5% belongs to
R(CS%'). Since € is n.n.d. 3 a matrix B such that ¢' = BB'. Hence

R(CS*) = R(BB'S®) C R(B'S*) = R($*BB'S™) = R(S*C S*') = R(C,).

Hence q'W*8% belongs to R(C,) and 'W=8% 1, is estimable in dy. Q.E.D.

Remark: In general, the converse of Lemma 3.3.1 18 not true as may be seen through

examples. Thus considering the design D in Example 3;2.1, the contrast representing
the main effect of the first factor is not estimable in Dy although the corresponding
contrast is easily seen to be estimable in the subdesign djoo abtained from Dy. In fa-::.t,.
Theorem 3.4.1 in section 3.4 shows that all irregular designs provide such examples.
A factorial design for which the converse of Lemma 3.3.1 also holds will be called
estimability-consistent. We thus have the fﬁllowing definition:

Definition 8.3.1. An m-factor design, d, is called estimability-consistent provided for

each € Q, every contrast belonging to J(z) in d is estimable in d if and only if the
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corresponding contrast belonging to J (z) in d, is estimable in ds.

3.4 Egquivalence of Regularity and Estimability-Consistency

In the following Theorem 3.4.1 we shall show that the two notions of regularity

and estimability-consistency are equivalent. Since the latter concept seems much more

simpler than the former, this result is useful in providing a simple and straightforward
interpretation for the rather involved concept of regularity in terms of estimability-
consistency.

The following lemmas will be used in proving the main theorem.

Lemma 3.4.1. The m-factor design, d, is regular if and only if

R(CW?*)CR(C) V z ¢Q, (3.4.1)
where C 1s as usual the intrablock matrix of d.

Proof: Only If Suppose d is regular. Since W< spans the space of all contrasts

belonging to J(z) in d, for all z ¢ Q,V* C R(W?). So for each z ¢ {) there exists a
matrix L, such that .
V?® = R(L,W7) (3.4.2)
But V* C R(C) by definition and so by (3.4.2)
R(LW*YC R(C) ¥V z e | (3.4.3)
Now, since d is regular, by Definition 3.2.1 and (8.4.2), there exists matrices Hy (¢ € Q)

such that ¢ = Y H,L,W?®. Hence obsefving that W*WY = W if g =y, =0 1if
z € {1 - _

¢ 3y, it follows that

| OW:B = H::L:I:W:'E*

Ooﬁsequently R(CW=) C R(L,W*), and by (3.4.3) the ‘only if* part of the lemma,
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~ follows.

If: Suppose (3.4.1) holds. Then clearly
R(CW?) C R(W*)N R(C) = V7, (3.4.4)
by the definition of V*. Let I be the v X v identity matrix and E be the v X v matrix

with all elements unity. Then, from (3.3.1a) and (3.3.1b), 5. W? =71 —¢~1E and
z e {2

noting that CF = 0, wehave C = } CW?*. This together with (3.4.4) implies that
z € §2

R(C) C @Q V* where ® denotes the direct sum. Hence, remembering that for every
X E

design R(C) D @R V?®, we have R(C) = @ﬁV"’. Thus the ‘if’ part of the lemma.
L 1 €L E

follows.

Lemma 3.4.2. The m-factor design, d, is regular if and only if

"R(CZ*) C R(C) V ¢ e, where 2° = §% 57,

Proof; Note that from (3.3.2a) and (3.3.2b) it follows that

z =§1 2, whereZ! =I; if o;=1,=E; i a;=0.
The proof follows from Lemma 3.4.1 after noting that for each z,Z* is a linear

combination of E and WV for y €  and for each 2, W¥® is a linear combination of

E and ZY for y € L2,

Theorem 3.4.1. The m-factor design, d, 1s estimabiliﬁy-consistent if and only if it is

regular,

 Proof: If Let the design d be regular. Then by Lemma 3.4.2,

R(CZ®)C R(C), V ze £ (3.4.5)
To show that d is estimability-consistent, for any z ¢ Q cons_ide_r the subdesign d;.

In view of Lemma 3.3.1 it will be enough to show that the estimability of the con-
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trast q'We8% r, (q # 0) belonging to J(z) in d, implies the estimability of the
corresponding contrast ' W2 in d.

Consider any contrast q' W52 7, (¢ # 0) which is estimable in d,. Then, for
some vector u, since the intrablock matrix of d, is given by S*CS*',

qdW=S* = u'S*CSs*, (3.4.6)
Now, from (3.3.1a), (3.3.1b) and (3.3.2a), (3.3.2b) it follows that W= 3% 9% = %W’”.
Hence, postmultiplying both sides of (3.4.6) by S®, one obtains
qW* = v—fu'S“’C’S"”S” = %P—u'SIGZ"’.

Hence 'W* € R(CZ*) C R(C) by (8.4.5) and so d W?r is estimable in d. This
proves the ‘if’ part,

Only If This part will be proved by induction along the line of Mukerjee and Dean

(1986). Let d be estimability-consistent, Foru = 1,...,m, define
Qu={z: a:. ¢ {), x contains exactly u unit digits}.
Consider any & € {)y. Then from the definition of the matrices Z* and W7 it is
easy to see that for some non-zero consta.nts 8, and mq, 2 =L, W* + m, E.
Since C'FE = 0, one gets
CZ°% = L,CW* : | (3.4.7)
Again, since Z°8% = %’;S ' by postmultiplying Bﬂth _:si.des of (3.4.7) by S*" one has
Yoge = p,omes
Vg -

Since £y 5 0 this implies that

R(CW?*S*) = R(CS® )= R(S°CS *') since C' is non-negative definite

= R(C;), remembering that Cy = S*CS 4
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- This implies that R(CTW?®) C R(C) since the design d is estimability-consistent. So,
by (3.4.7) R(CZ®) CR(C) V z ¢ Q.

To apply the method of induction, suppose that R(CZ%) C R(C), V =z ¢
M UQU... U (1 < g < m) and consider 7 ¢ 2,41. Defining Nz) = {y :

y ey £,y Kxiyt=1,... ,m}, from the definition of Z% and W?= it follows that

Z2° =W+ > fyZ¥+k.E,
| y € 2z)
where fo(# 0),fy (v € Q(z)) and k, are constants, Then, as before, remembering

that CFE = 0, one gets
CZ2® = fCW*+ Y  f£,C2 (3.4.8)
| y ¢ Qz)
Now, by definition, Q(z) C Q; UQy U... UL, and hence by induction hypothesis,
R(CZ¥) CR(C) V¥V y e =z).
Hence there exist matrices G, such that

fyCZ¥ =G, C V¥V y e Q(z) (3.4.9)

Postmultiplying both sides of (3.4.8) by S% and using (3.4.9) and remeﬁlbering that

7*5% = $-8%, we have
foLOW™S™ = — €5 = 3" GyCS*.

Since f, # 0 this implies thﬁt .
R(CW*5*) C R(C'S®)
= .R(S *CS mf.) since C is non—ﬁega.tivg definite
= R(C;).
This implies that R(CW?=) C R(C) since d 1s estima,bility—cﬁnsistent, which, together

with (3.4.8), (3.4.9) implies that R(C’Z‘“) CR(CY Y z €81,



73
Thus by induction, R(CZ m) C R(C) Vae {1, and by Lemma 3.4.2 the design

d is regular. | o Q.E.D.

3.5 Partial Estimability-Consistency

Mukerjee and Dean (1986) proved certain equivalence theorems connecting partial
efliciency-consistency and partial orthogonal factorial structure, The analogues of

some of their results can be proved in the present context.

Definition 3.5.1. An m-factor design d is partially estimability-consistent of order ¢

provided for every z e {3 UQy U... U Qy, every contrast belonging to J(z) in d is
estimable in d if and only if the corresponding contrast belonging to J (%) in d, is

estimable in d,.

Theorem 3.5.1. An m-factor design, d, is partially estimability-consistent of order

t(< m) if and only if it is regular of order 4.

The prootf of the theorem follows the line of proof of Theorem 3.4.1 and is hence
omitted. In the above, the definition of regu.larity of order £ is as in Mukerjee {1980}
where some discussion on the implications of such regularity is also available.

Remark: It is hard to carry out the equivalence relations as in Theorems 3.4.1,

3.5.1 any further. For example, one may define partial estimability-consistency and

partial regularity with respect to individual interactions (along the line of Chauhan

and Dean (1986) who considered orthogonal factorial structure with respect to indi-

vidual interactions), but it is believed that they will no more be equivalent,
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Chapter 4

FACTORIAL DESIGNS FOR, QUALITY-QUANTITY INTERACTION

4.1 Introduction

Sometimes in a factorial experiment, the levels of one factor represent different
qualities of material while the levels of another factor represent different quantities of
these qualities. Such experiments were first considered by Fisher (1935) in the context
of factorial experiments where zero, single and double doses of certain fertilizers were
applied and the yield was studied. Another ihteres_ting example was given by John and
Quénouille (1977) where they experimented with three forms of milk applied at three
different protein levels, the lowest level being zero. The important feature of these
experiments, which make them different from ordinary factorials is that some of the
level combinations, namely those where the quantitative factor is at the zero level, are
indistinguishable. This necessitates a substantial modification of the standard calculus
for factorial arrangements (¢f. Kurkjian and Zelen (1963)). Incidentally, it may be
remarked that recently, Cox (1984) posed a number of open problems in experimental

design and one of these problems related to the development of a systematic theory

for the study of such quality-quantity interaction.

This chapter aims at developing a mathematical formulation for this problem.,

Necessary and sufficient conditions for inter- and intra-effect orthogonality and also
for some other kinds of orthogonality relevant in this situation are considered. Some

construction procedures have been discussed subsequently in Section 4.5. To avoid

notational complexity, only the two-factor case has been considered in detail. In
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the last section of the chapter, the extension to the multifactor case has also been

indicated.

4.2 Notation and Preliminaries

Throughout the chapter, the model aséumed is the usual fixed effects model, with
independent homoscedastic errors and no block-treatment interaction.

Consider a two-factor set-up in factors Fy and Fy. Here F} is the quantitative
factor and involves s1 + 1 levels 0,1,2,...3; while F} is the qualitative factor hav-
ing 89 levels 1,2,...,82. It may be emph&sized that the levels of F; need not be
necessarily equispaced.

When Fj 18 applied at the 0 level, all the levels of B, become equivalent since
the level combinations 01,...,083 become, in effect, indistinguishable. So these s9
level combinations may be considered to-represent a single level combination, say 0.
Thus instead of (81 + 1)s; level combinations as in usual factorial experiments, there
are only 185 + 1(= v say) distinct level combinations, namely 0 and ij (1 < i <
31,1 < j < 83). Clearly, the typical level combination ¢5 &enotes that the levél 7 of
the qualitative factor is a.pplied at the quantitative level 1 (1 <i< 51,1 <7 < 32).

Let the v x 1 vector 7 = (70, 711, y T1aas -+ + 3 Tay1s . \Tsy82) .represent' the fixed
effects due to these v level combinations, Let 7; = 5 jéi 135 for 1 <2 < 531, and
Fo = To. Then, a typical contrast belonging to main effect F7 is of the form £ =
'%0 £1 T; where .Sf}u ¢ = 0 and the £2's are not all zeros.
i= =

For 2 =1,2, let 1; be the a: X 1 vector with all elements unity and let P; be an

(84 - 1) X s; matrix such that (3;%1.;, P!)' is orthogonal. Note that for a sy X 89 usual
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factorial experiment, a complete set of orthonormal contrasts belonging to the main

effect of the first factor has a coefficient matrix (P ®s, %1’2) 50, it follows that, in

the present set-up, a complete set of orthonormal contrasts belonging to main effect

' Fy is given by P'%7 where the s; x v matrix P1° is defined as

, —[(v — l)/v]%‘ [v(v — 1)]"%‘1{1@15“
P = 1 . (4.2.1a)
, 0 S;E.Pl & 1’2

Similarly full sets of orthonormal contrasts belonging to main effect Fy and interaction

Fy F, are given by P+ and Pl respectively, where

Pl=lo sT?1@P| , P'=|0 P @B (4.2.1b)

These matrices P1%, PO and P! are obtained by suitable modifications of the cor-
- responding maitrices in an ordinary factorial setting and they take care of the special
structure of the level combinations as mentioned above, Also, P10 P’ = g, P10pIL
0, P°* P11 = 0, s0 that, as in the case of ordinary factorials, in this case also, the

contrasts belonging to different factorial effects are mutually orthogonal.

We state the following definitions,

Definition 4.2.1. A square matrix will be called proper if all its row and column

sums are equal.

Definition 4.2.2. (Mukerjee (1979)). A square matrix of order s152 will be said to

have structure K if it can be expressed as a linear combination of Kronecker I:imduct_s

of proper matrices of orders $1, 3 respectively.
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4.3 Conditions for Orthogonal Factorial Structure

Let the v level combinations be arranged in a connected block design d, the v X v

intrablock matrix of d being denoted by

o B
C= \ (4.3.1)
B H.

where X 18 a square matrix of order v —~ 1(= s;s;), the initial row and column of
C correspond to the treatment { and the other rows and columns correspond to the
other v — 1 level combinatioﬁs in the lexicographic order. Let O = {01,10,11}. In

order to derive conditions for OFS of d, we shall use a result due to Mukerjee (1979)
- for traditional factorials. The result is stated as Lemma 4.3.1 for the two-factor case.

Lemma 4.3.1 (Mukerjee (1979)). A sy X s factorial experiment arranged in a con-

nected block design will have OFS if and only if the C-matrix of the design commutes

with W% = P* P¢® for all z € .

The following theorem obtains a necessary and sufficient condition for OF'S of d.

- Theorem 4.3.1. For d to have QFS, it is necessary and sufficient that with reference

to (4.3.1),
(i) B =u® 1, for some s;-component vector u and
(i1} the matrix H* = H — ¢~ 188’ has structure I

Proof: Since d is connected, clearly o > 0 and so H* is well-defined. From the

definition of W* and (4.2.1a, b) it follows that En W<z = I — v~ 1E where I is the
z € |

v X v identity matrix and F is the v X v matrix with all elements unity. Hence, by

' Lemma, 4.3.1 and remembering that CE = EC = 0, it follows that d has QFS if and
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only if
WG =cocw® | wleg=cw. (4.3.2)
To prove the necessity of the conditions of the theorem, let d have OF.S. Then

(4.3.2) holds. Define
- L L i
L% =6, *11@P;, I =P ®s; "1, , L' = P, @ P, , A= L¥ L forz ¢ Q.

Then from (4.2.1b) it follows that

A 0 0 -
W01= | ' } W11=
0 A% ] 0 All,

So, with €' as in (4.3.1), conditions (4.3.2) imply.fhat
' A1 gq, Al g = tj, | - (4.3.3a)
AN H=H A" A1 H=H A", (4.3.3h)
From (4.3.3a) it follows that .
Lul'Lmﬁ =0, L11‘L11ﬁ — 0 =:»L“1,B =0, Lllﬁ — 0
since LOVLO and LI are ideﬁtity matrices of appropriate orders. Consequently

01
(3 e ortho complement of row space (%11)

| /70 1 _
== 3 € row space (Loﬂ) where LY = 381 215 ®3211’2 ,

~and hence the necessity of condition (i) follows.

Again, from (4.3.3a, b), _
AGIH* = H#AUI : AIIH* — H*All. (434)

Since CE = EC =0, from (4.3.1) it follows that H* is a proper matrix with all row
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and column sums equal to zero. Also, since

oA =he L - (wa) (B0 B),
where E; = 1;1} fori = 1,2; (4.3.4) implies that A°H* = H*A10, Thus, H*
commutes with A® for all € ), Noting that A® is idempotent for z € , one can
write H* = ) ?QA"’H "A?. Then, remembering that H* is a proper matrix, the

necessity of condition (ii) follows readily along the line of proof of Lemma 3.1 of

Mukerjee (1979).

The sufficiency of (i) and (ii) follows by retracing the above steps. Q.E.D.

In the context of ordinary factorial designs, the literature on general methods of
construction ensuring OFS is very rich. The balanced confounded designs as con-
sidered by Nair and Rao (1948) may be seen to possess OFS. For the methods of
construction using generalized cyclic designs and Kronecker products, various refer-
‘ences are given in Chapter 1 of this thesis.

Therefore, since ordinary factorial designs with OFS are readily available, in this
chapter we now explore the conditions under which factorial designs with OF S in the
present setting may be derived from them.

The following lemma will be helpful. -

Lemma 4.3.2. Let

- 1?11 1312 e f31v1 |

1321 '1322 - 132v1
B = : 3
N Bﬂll Bﬂ12 s hoe ‘Bﬂlul'

where each B;; is v X vg, be a square matrix of order v(= v1v2). Then B has structure
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K if and only if

(a) each B;; is a proper matrix and

vy
>, Bpjioreachi,j (1<4,7<v).

vy
fgi; —
(b) ?E—'-'l } h=1

The proof of this lemma may be derived from Lemma 4.3.1.

Let d, be an ordinary (s1 +1) x s, factorial experiment arranged in a block design
involving level combinations denoted by 5 (0 <17 < 43,1 < 5 < 83). Suppose a design
d is derived from d, by replacing the sy level combinations 01,...,0s; in d, by a single
treatment 0. We will now investigate the conditions under which d, when viewed as
a design for studying quality-quantity interaction, will have OF'S.

Let d, be connected and let the C-matrix of d, be given by

- Coo Con ... Cosy |
- (jhn Cj(ﬂl) -
| (4.3.5)

{

Co = Cio Cun ... Cig

o) ¢y

Cjalﬂ cjall ‘e (33131 n

say, where each Cj; is s3 X 32 and the rows and columns of. Cy correspond to the
(57 + 1)s level combinations in d, in the lexicographic order. Suppose that d, has

OFS as an ordinary factorial design. Then, by Mukerjee (1979), Co will have structure

K and so by Lemma 4.3.2,

Cijla = Clla = p;la, 054,555 (4.3.6a)
B Op=3% Chjy 084,i <81 . (4.3.60)
h==0 h=0 | |

for some constants {p;;}. Again, since the row sums and column sums of Cp are all
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zero, from (4.3.6a) it follows that

L =% p. =0, 0<i,5<s. (4.3.6¢)

Theorem 4.3.2. Let d, be connected and have OFS. Then the derived design d will

~ have QFS if and only if, with reference t0‘(4.3.5) and (4.3.6a), for every 4, j(1 < 1,7 <

s1) the following holds:
Cio = piosy Bz = Coj — py;5 - By (43.7)

- Proof: The connectedness of d, implies that of d. In view of the kind of merger of

.treatments used to derive d from d, it follows that the C-matrix of d is of the form

T A 1, 0
Co
0 Il XIZ_ | i 0 II XIQ

1’20{][]12 ll, @ 1"2 |

i

(4.3.8)

u® 1y 0(11)

'1 by (4.3.5) and (4.3.6a), where u' = (p,,, ... ' Posy )
Comparing this with (4.3.1) it can be seen that the condition (i) in Theorem
4.3.1 is clearly satisfied. So, by the same theorem, d will have OF5 if and only if the

matrix H* has structure K.

Now,

- . & ¥ | | e m
'Hll HIQ A Hlﬂl
* * | *
H* = Hyy  Hyp ... Hg, ;
* * *
311 | 312 o4 Halsl -

where
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= Cij = (Poo52) 7 piopos B, 1<14,j < a1, (4.3.9)
“on simplification using (4.3.6a). |
Again, by (4.3.6a) and (4.3.9), Hy; is a proper matrix for every ¢, /(1 < i, < 81).
So, by Lemma, (4.3.2), H* will have structure K if and only if for every ¢,5(1 € 4,5 <
31)1

J1 * S % . .

2 'Ht'h = X H e (4310)

But, by (4.3.6¢) and (4.3.9),
31 81 | _ 81
hg-—“:'l H?h = hgl Cin — (pnusz) lpiu(h_z__}l Pos )Eﬁ
= ,bi}[) Cih - Ofﬂ +-32_1PEDE21

and similarly,

g1 31
* ) . -1
hgl hy ™ hgo Chj = Coj + 837 po; Ea.

Hence from (4.3.6b) it follows that (4.3.10) holds if and r.jnly.if (4.3.7) holds for every
i}j (1 < 3:.7 < 31) Q-F“D*

Remark, There are various choices of d, for which (4.3.7) holds. In particular, if d,

1s a balanced confounded design in the sense of Nair and Rao, it can be verified that

condition (4.3.7) holds. An example will be considered in section 4.5.

4,4 Some More Results on Orthogonality

In this section we consider the problem of intra-effect orthogonality. In factorial
designs, the problem of intra-effect-orthogonality, in addition to that of inter-effect-

orthogonality or OFS§ which has been considered above, i often of importance. We
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shall consider the
(i) intra-eflect orthogonality with respect to main effect F, and

(ii) intra-eflect orthogonality with respect to interaction I F, relative to the factor

F.
Adopting the notation of section 4.2, we have:

Defipition 4.4.1. Intra-effect-orthogonality holds with respect to main effect Fy if the

BLUE'’s of mutually orthogonal contrasts among the 7;'s are uncorrelated.

Since Fy 18 a quantitative factor, intra-effect orthogonality with respect to main
effect Fy will ensure an orthogonal splitting of the sum of square due to F} into linear,
“quadratic, cubic components and so on.

g1 — " 21 s . 21 81 .
Let p = ‘20 1iT; and p* = 'En uiTi, with ¥ gy = 3 u¥ = 0, be two contrasts
1= 1= .

=0 1=0

among the 7;’s, They will be called mutually orthogonal if :;10 pipt =0,

Observe that if 4 and p* are mutually orthogonal contrasts when considered as
functions of the 7;’s, they do not remain orthogonal when considered as functions of
7o and 13;(1 < ¢ < 81,1 € J < 33) unless either y, or p is zero. In other words,
~ intra-effect-orthogonality with respect to Fy calls for zero correlation among BLUFE's
of contrasts belonging to main effect F3, which, when locked upon as contrasts among
the 7;’s are mutually orthogonal but will not necessarily remain so when looked upon
as contrasts among the original treatment effects. It is this special feature which

makes the problem of intra-effect orthogonality in the present set-up different from

the corresponding problem in ordinary factorials.

We have the following result:



84

Theorem 4.4.1. Let d, a design for studying quality-quantity interaction, be connected

and have OFS. Then in order that intra-effect orthogonality with respect to main

effect F1 may hold in d it is necessary and sufficient that for some 6(> 0) the following

. holds:

| (s182+D)/(s1 +1) 0O
PYOCPpI0 — 5

0 Iﬂ1-—1

Wl

_Eroof: Let 7* = (T0,T1,...,Ts, ). Any full set of orthonormal contrasts among the

elements of 7* will be of the form G7* where ( is an 51 x (s; + 1) matrix satisfying
Ge=0 , GG =1, , (4.4.1)

¢ being an (81 + 1) X 1 vector with all elements unity.

But with 7 as in section 4.2, one may write 7* = M1 where

1 o 71
M = - . (4.4.2)
0 ' @1,

Clearly, the elements of G7* = GMT are contrasts belonging to main effect Fy. But
since Pln*r gives a complete set of orthonormal contrasts belonging to main effect F}
it follows that row space of GM is a subspace of row space of P19, Since prope’ — 1
(see (4.2.1a), this implies that
GM = GMP® P,
So the BLUE of Gr* is given By .

@it = GM# = GMPY PYF, (4.4.3)

Now, following the liﬁe of pfoof of Theorem 3.4 in Mukerjee (1979) we have as follows:

Let the reduced normal equa,tions under the assumed model be in usual nota-
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tions: CT = Q. Then since d has OFS, from Lemma 4.3.1 it follows that P10C =
P10 P P10 and so,
PlUCmePIUT _ PwQ.
Hence noting that POCPY ig non-singular since d is connected,
ploa _ (Pluoplg')_lpmg
Thus Disp (PF) = ¢?(P10 CP1Y)1 42 being the error variance. Therefore, by
(4.4.3), Disp (G7*) = 02 U(G), where the s; x s; matrix U(G} is given by
U(G) = GM P (ptog p10'y-1plopsicy
Now, to prove the necessity of the stated condition, suppose intra-effect orthogo-
- nality holds with respect to main effect Fy. Then, U(Q®) is a diagonal matrix for every
(¢ as defined above in (4.4.1). Hence, for any such fixed G, and for every sy x s7 or-
thogonal matrix G*, U(G*@) is diagonal. Cunsequ.eﬁtly, for any G satisfying (4.4.1),
U(G) must be a constant times the identity matrix. Let
U(G) = GMPY' (PICPOY I POM'G' = 6,11, (4.4.4)
the constant §; being positive since U(G) is positive definite for a connected d.

From (4.2.1a), (4.4.1), (4.4.2) it follows after some simplification that

[(s1s24+1)/(s1 +1) 0O _
PMGGMPY =571 | . (4.4.5)
| 0 Isl--l .

- Premultiplying and p.ostrﬁultiplying hoth sides of (4.4.4) by P1°M'G' and GM pio’
respectively and applying (4.4.5), the necessity of the stated condition follows.

The proof of the sufficiency part is straightforward and hence omitted here.

Q.E.D.



86
Since the factor Fy is quantitative and the factor Iy is qualitative, one may be
interested in having an orthogonal splitting of the S due to interaction B Fy relative
to Fi. For such a study, let .
M= (T, Tlagseery Taglye e s )\ Tarss)
Then, by (4.2.1b), every contrast belonging to the interaction FyF, will be a linear
combination of the elements of (P; ® Py)n.

Definition 4.4.2. Intra-effect orthogonality holds with respect to interaction ¥y &

relative to the factor Fy if the BLUE’s of {(miPl) ® Pg}n and {(m'zPl) & Pg}n
are uncorrelated for every ohoioe. of mutually orthogonal non-null vectors my, my of
order s1 — 1.

Under such orthogonality, it is possible to have an orthogonal splitting of the $§
due to interaction Fi Fy into components corresponding to (linear Fy) x Fy, (quadratic
F1) x Py, (cubic F}) x F; and so on.

We have the foliowing theorem.

Theorem 4.4.2. Let d be a coﬁnooted two-factor design with QF.S for the study of
quality-quantity interaction. ‘Thon in d intra-effect orthogonality holds with respect
to interaction FiFy relative fo the factor F1 1f ond only if PlloplY ig of the form
Is, —1 ® B for some matrix B of order sy — 1. - .

The proof of this theorem is straightforward and hence omitted.

So far three kinds of orthogonality have been oonsidored, inter-effect orthogonality
and the two intra-effect orthogonalities givon by Definitions 441 and 4.4.2, A design

for which all these three kinds of orthogonality hold simultaneously will be said to
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have strong orthogonal factorial structure (SOFS ). Combining Theorems 4.3.1, 4.4.1

and 4.4.2 we obtain the following,

Theorem 4.4.3. Let d be a connected two-factor design for the study of quality-

quantity interaction. Then in order that d may have SOFS, it is necessary and
sufficient that the C-matrix of d is of the form
" 1 -—-(8132)_11"1 & 1"2 ]

C = , (4.4.6)
L —(8182)7 1,01, LOH, +FEiQH,.

: where « 1s a positive constant and Hy, Hy are sy X s proper matrices with
Hily = (s182) Y s1 + 1)1, (4.4.7)
The proof of this theorem is given in the appendix.

Remark. The condition (4.4.7) is non-trivial in the sense that it is not guaranteed by

the condition (4.4.6). The following is an example of a design which has a C'-matrix

of the form (4.4.6) but for which (4.4.7) does not always hold.

Example 4.4.1. Let d be a design arranged in & blocks involving 8152 + 1 treatments
such that in each block treatment 0 is applied r times and every other level combina-

tion 75 (1 <4 < 81,1 <7 < 87) is applied exactly once. Then the C-matrix of d will

be given by
brs; sz | br__ 1/ , -
oo st 01
L r+1:32 1, @1, b1 @ I3 ;*-I-slagEl ® £ -

- Thus, clearly C is of the form (4.4.6) whatever be the choice of r with Hy = Z5H2 1o,

- So condition (4.4.7) holds if and only if 7 = s3.
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4.5 Construction of Designs with OFS for the Study of Quality-Quantity

Interaction

For construction of designs with OFS in the present set-up, the method of con-
struction starting from a suitable ordinary factorial with OFS becomes very helpful
in view of Theorem 4.3.2. As remarked at the end of Section 4.3, this theorem holds
in particular it do, the (s1 + 1) X sy ordinary factorial one starts with, is a balanced
‘confounded design (Nair and Rao (1948)). Moreover, if d, be a balanced confounded
‘design, then it can be seen that the resulting design d satisfies the conditions of The-
orem 4.4.3 and therefore has SOFS. The following example serves as an illustration

of this construction procedure.

Example 4.5.1. Suppose a design d for the study of quality-quantity interaction and

having OF'S is to be constructed involving 9 treatments.

Let s1 = 2,83 = 4 and suppose one starts with a two-factor 3 X 4 balanced
confounded design do. do will be laid out in 16 blocks as follows, the 12 treatment

combinations being of the form 13,0 <2 £2,1 < 7 <4,

Block 1; 01 11 21 Block 9: 03 11 23
2: 01 12 22 | 10: 03 12 24
3: 01 13 23 11: 03 13 21
4. 01 14 24 12: 03 14 22
5 02 11 22 13; 04 11 24
6: 02 12 23 | 14: 04 12 21
7. 02 13 24 15: 04 13 22
8

02 14 21 16: 04 14 23

The C-matrix of d, is given by



89

1
Co = 5| B 8L —4I

Ry —41; 8I; .

and clearly condition (4.3.7) of Theorem 4.3.2 holds.

The required design d for study of quality-quantity interaction consists of the

following blocks:

Block 1: 0 11 21 Block 9 0 11 23

2: 0 12 22 10 0 12 24

3: 0 13 23 11: 0 13 21

4: 0 14 24 12: 0 14 22

5. 0 11 22 13: 0 11 24

6: 0 12 23 14. ¢ 12 21

70 0 13 24 15: 0 13 22

8 0 14 21 16: 0 14 23

| d_will have OF'S by Theorem 4.3.2,
Again the C-matrix of d will be
3 | 1 - =31 81 ]
C = 3

—-%12®14 N %(I:{@Iﬁ)“" ;—E1®Ig_

A

‘and so it can be seen that both the conditions of Theorem 4.4.3 also hold. Hence d

. has SOFS.

As an alternative method of construction, we may start with 2 equireplicate con-
~nected varietal designs say di and d,, involving s;+1 and sz treatments resplectively.
Let d, be the (s1 + 1) X s design obtained as the Kronecker product of d; and de.

~ Then by Mukerjee (1981), do will have OF.S as an ordinary factorial design. The
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C-matrix of do will be given by
C = RY) g p2) _ (RM) — 0(1)) ® (R — C(ﬁ))}
where C1) and C®) are the C-matrices and RW and R® are the diagonal matrices

of replication numbers of dy and d, respectively. So it eﬁsily follows that d, satisfies

- condition (4.3.7) if

(1) (1) _ (1)

C01 = Coz = .. = Cpg s
where cg?(l <1< '31) are the off-diagonal elements of the initial row of ¢V, In
‘such situations, the design d, obtained from d, as in Section 4.3, will have OFS by
Theorem 4.3.2.

I:ﬁ. view of the results in Mukerjee (1981, 1986), it is anticipated that the main
-~ effect and interaction efficiencies in d,, and hence those in d, may be controlied by suit-
ably choosing the varietal designs d; and d;. In particular, if d; be variance-balanced
in the sense of having all .off—diag;ﬂnal elements of C{) equal, then an application of

Theorem 4.4.3 shows that the design d obtained from d,, the Kronecker product of

dy and dg, will have SOFS. Also, instead of the Kronecker product, one may also

‘obtain d, by the Khatri-Rao product of d; and dy and then obtain d from it.

4.6 Extension to the Multifactor Situation
. Before concluding, we indicate an approach for a possiblé extension of the results
~to a multifactor situation. Let there be k pairs of factors (Fy1,Fj2) (1 < j < k),
- where the levels of F, represent different qualities and those of £y represent various

L quantities of these qualities. Suppose that when Fj; is at the zero level the levels of Fj,

_:bewme equivalent. Therefore, if Fj; has (s;1+1) levels and Fj; has sj; levels then the
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number of distinguishable level combinations of Fj1 and Fj; becomes (sj1s55241) = v;

(say). Consequently, the total number of distinct level combinations in the experiment
K

becomes 7t vj.
| J=1

Forl < j5 <k =12 let 1;: be the sj; X 1 vector with all elements unity
and let Pj; be an (8; — 1) X s;; matrix such that (3;%13-{,}3}5)’ is orthogonal. For

1<j <k, let PY»5), P(3), PYY(5) be defined as

P1(j) =

PR(j)= 10 si1, @ Pp|, PY(j)= |0 Pj; @ Ppl.

Let P%(4) be the v;-component row vector with each element v;% for1<j<k.

. A typical factorial effect will be denoted by SR SN Tl S N il i

where (211,212, Z21, Z22,. ..,mkl,mz) i1s a non-null binary vector. It may be seen

that the space of all contrasts belqnging to this factorial effect is spanned by the rows

~of the matrix P*11%12(]) Q P*21%22(2) ® ... ® Prm=e2(k), For example, if k = 2, then

the rows of Plo(i) ® P11(2) span the space of all contrasts belongiﬁg to the factorial
effect FyqFhy Fho.

From the definition o.f the Plu(j),Pﬂl(j') and P'1(j) matrices (1 < j < k), it is

- -easy fo see that contrasts belonging to different factorial effects are ﬁlutually orthog-

: "_-';::naul, Now, Theorems 4.3.1, 4.4.1, 4.4.2 and 4.4.3 can be extended to this multifactor

set-up proceeding along the line of proofs of these theorems. The notations will how-

_'__-=-'g[aver be somewhat involved for general k,
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Appendix

Proof of Theorem 4.4.3. To prove the necessity of the stated condition, it is enough
to show that 1t 1s a consequence of those in Theorems 4.3,1, 4.4.1 and 4.4.2, Let d

have SOFS. Then by Theorem 4.3.1, the C-matrix of d can be written as

| e S u'®l1; '
C= u®l, H*4+oluu'®E; |’ (4.4.1)

where H* has structure K. Since each row sum of C is zero it follows that
o + 3211’11 == () (4'A'2)
H*(1, ®15) = 0. (4.A.3)

From (4.2.1a) and (4.A.1) - (4.A.3), after some algebra

! EEE_ — 1.'%21'(131 u)’
P pPlY = - ’ (4.A.4)
B P WE e ' @B} (P8 L) |
Since d has SOFS, by Theorem 4.4.1, it follows from (4.A.4) that
P]ll — 0, (4:A5)
and for some 6 > 0,
o 7

' =4 4.A.6

5189 381 -+ ].’ ( )
sy (Py ®@LY)H*(P{ ® 12) = 615, 1 (4.A.7)

Clearly, by (4.A.5), u = ulj, for a scalar u, which by (4.A.2) equals —(s152)7 e

Hence

0= —(3132)"1&11. | | (4.1‘18)

Since d has SOFS, by (4.2.1b), (4.A.1), (4.A.5) and Theorem (4.4.2),

(P, ® P)H*(P,® P})=1I,,-1® B, BN
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for some matrix B. Since H™ has structure K, it may be seen from (4.A.3),

(4.A.7), (4.A.9) that
H* =1, ® Hf + 1 @ H;, (4.A.10)
where Hf,Hf are sy X sp proper matrices. Let H¥1y; = hyls. Then from (4.A.6),

(4.A.7), (4.A.10) it follows that hy = a(sy +1)/(s182). It is now clear from (4.A.1),

(4.A.8), (4.A.10) that if d has SOFS then C' must be of the form

O = o ” 1 *--(3132)“11'1 @1’2 -
—(s182)7111 ® 1, LOH1+E®H, |’

where Hy, Hy are proper matrices of order s; and Hy1g = {(s1 + 1)/(s182)}12. This

proves the necessity of the stated condition. The sufficiency is obvious.
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Chapter 5
OPTIMAL REPEATED MEASUREMENTS DESIGNS
UNDER INTERACTION

5.1 Introduction

In some exp eriments & number of treatments are applied sequentially over pe-
riods to each of the experimental units. Designs for studying such experiments are
known as repeated measurements designs (RMD’s). The interesting feature of these
designs is that since the same experimental unit is exposed repeatedly to a sequence
of treatments, the “residual effect” of a treatment in the following period is also an
important source of variation along with its “difgct effect” in the period in which it
ig applied.

Hedayat and Afsa,rinejﬁd (1975) have given a general review of RM D’s including
a discussion of their practical applicationé and a comprehensive bibliography up to
that stage. The pioneering work in the area of optimal RMD’s is also due to Hedayat
and Afsarinejad (1978). Other significant contributions, covering the optimality and
constructional aspects, were made by Cheng and Wu (1980), Magda (1980), Con- .
stantine and Hedayat (1982) and Kunert (1983, 1984, a, b, 1985, 1987). We refer to
Hedayat (1981) for an excellent review of the literature on optimal RM D)’s. Applying
a fundamental tool due to Iiefer (1975); many of these authors considered the prob-

lem of universal optimality under the usual fixed effects additive model incorporating

direct and first order residual effects of treatments apart from effects due to units and

periods.
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In practical situations, however, it is likely that an effect due to the interaction of
direct and residual effects will also be present. John and Quenouille (1977, pp. 211-
214) analyzed a practical example on grass yields where such an mteraction turned
out to be significant. Interesting results on the problems of construction and analysis
under such non-additive models were obtained by Patterson (1968, 1970) and Kershner
and Federer (1981), In this connection, reference should be made to the discussion

by Federer following Hedayat (1981). Patterson (1973) considered some orthogonality

conditions in this context.

In sections 5.4 and 5.5 of this chﬁpter,- we investigate how far the optimality
resuits in Cheng and Wu (1980) and Magda (1980) remain robust when the direct
versus residual effects _interacfio'n is taken into account. It may be remarked that under
such a non-additive mode] it becomes rather involved to prove the optimality results
using the standard methods of analysis of RMD's. To avefcﬂrne this difficulty, we
establish a correspondence between factorial experiments and RM D’s in section 5.3
and then use the calculus for factorial arrangements to prove the results.

In sections 5.4 and 5.5 some new f:anstructions of optimal -RM D’s have also been
discussed. Section 5.6 shows that the optimality results also remain robust when
the underlying model is a mixed effects rﬁodel where the effects due to units may be

random.

5.2 Notations and Definitions

We follow the. notations and definitions as in Hedayat and Afsarinejad {1978),

Cheng and Wu (1980) and Magda (1980). An RMD with n experimental upits’
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1,2,...,n; pperiods 0,1,...,p~1 and ¢ treatments 0,1,...,2—1 will be abbreviated
by RMD(t,n,p) and the class of all such designs will be denoted by Qn,p I d
is an RMD, let d(s,7) denote the treatment assigned by d in the it* period to the
9 th ynit. Let y; ; be the response under d(¢,7). The observations are assumed to be
uncorrelated and homoscedastic. The unde.rlying model is called circular if in each
unit the residuals in the initial period are incurred from the last period. Otherwise,
i.e., if there is no residual effect in the first period, the model is called non-circular.

Taking the direct versus residual effect interaction into_'account, the circular
model is given by,

E(yij) = p+ i+ B + &agijagi-r,gy (0Si<p—-1,1<7<n) (5.2.1)
where 1—1 is reduced mod p and the unknown constants 4, m, B; represent respectively
the general mean, the :** period effect and the j** unit effect. The unknown constant
En.n, (0 < Ry, hy < t—1) represents the effect produced when the treatment hy is
applied in the current period with the treatment hé being applied in the immediately
Ipreceding period. .

For the non-circular model, E(y;;) is asin (5.2.1) for 1 <4 <p-1,1 <7 < n,
while for : = 0, - .

Bly,)=p+oi+Bi+m,) (1Sisn)

where | (5.2.2)
t—1 -

Tfu — thl Z 6&1312 (U S h’l. <_: t — 1)
o= |

Definition 5.2.1, An RMD will be called uniform if in each period the same number

of units is assigned to each treatment and on each unit each treatment appears in the
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same number of periods.

Definition 6.2.2. Under the non-circular mode] an RMD is called strongly balanced

if the collection of ordered pairs {d(i — Li)d(# 1 <1 < p— 1,1 < j < n,
contains each ordered pair of treatments, distinct or not, the same number, say A,
of times; under the circular model an RAMD is called strongly balanced if the same
holds considering ordered pairs {d(z — Li)di,)}0<i<p—1,1<i<n,

A strongly balanced unitorm RMD(#,n,p) will be abbreviated by SBURMD
(t,m,p). We consider two illustrative examples given below with rows and columns
identified with periods and units respectively. Example 5.2,1 is a SBURM D(2, 4,4)

under the non-circular model with A = 3, while Example §.2.2 is a SBURM D(2, 4, 4)

under the circular model with ) = 4,

Example 5.2.1 units Example 5.2.2 units
0 0 1 1 0 1 1 0O
0 1 0 1 1 0 0 1
periods 0 1 1 0 periods 1 0 0 1
1 1 00 0 1 1 O
1 01 0
1 0 0 1

5.3 Application of the Calculus for Factorial Arrangements in the

Analysis of RMD’s

Since we take into account the interaction between the direct and first order
residual effects of treatments, it appears convenient to apply the calculus for fac-
torial arrangements, introduced by Kurkjian and Zelen (1962) and which has been

extensively used in the previlous chapters of this thesis.

Consider the t? = v (say) treatment combinations (hi;hg)?{) Shihe £t-1,
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such that the first (second) member of each combination represents the treatment
contributing a direct (first order residual) effect .tn an experimental unit, The direct
Ia;nd first order residual effects of treatments may then be looked upon as the main
effects of factors, say, F1 and I (eﬁch at ¢ levels) respectively while their interaction
is given by the interaction FyFp. Thus, under this interpretation, an RM D(t, n,p)
becomes equivalent to a #* factorial experiment laid out in p rows and n columns.
For any positive integer a, let I, be the a x o identity matrix, 1, be an a x 1

vector with all elements unity and E, = 1,1}, Define the » x 1 vector

= (€005 o1+« > boe-1s .+, Et-10s Ei11s 4 oy Epm1-1)

Then, by (5.2.1), (5.2.2), for a design d € Qy,n,p, the coefficient matrix for the reduced

normal equations for &, under both the circular and the non-circular models, 1s of the

form
G = Vg — n " NgNy — p* MaMy + (np) 7 (Nalp)(Nal,), (5.3.1)
where 1 ]
Vd — pZ 5 £i 'et_?; N(‘uxp) (E ‘en;,-: y 22 £p 1,;) |
=0 j=1 J=1 (532)
(‘ﬂ)‘(ﬂa) P"'1£
M E 'ell} ' ) E in |
bi; = eq(ij) ®eai-1,5) 0Si<p—1,1575n) (6.3.3)
for the circular model;
£ =e,: 0 O €g(i-1,3 (1555P“-111§j5_’1)
¥} d{i,}) (i—1,7) | (5-3.4)

toj =t leaoy®Lc  (1S5<m)

. . . th P
for the non-circular model; ep 18 & & X 1 vector with 1 1n thg hth position and zero

elsewhere., As usual, ® denotes Kronecker product,
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The typical contrasts belc;nging Itc: ma.in éffect Fy, main effect F5 and interaction
F| Fy are respectively of the fprms (wy ®1,)'¢, (13¢®|u.:2)"£1+ (w1 Q@wy) €, where wy,w,
are any ¢ X 1 non-null vectors satisfying wily = whl, = 0.

We shall use a result by Mukerjee (1980) which has been stated as Lemma 1.2.1
in Chapter 1 of this thesis, In the present context of 2-factor designs we use the

following simplified version of Lemma 1.2.1.

Lemma 8.3.1. In a two-factor design d, contrasts belonging to main effect F (Fy) are

estimable orthogonally to those belonging to main effect 7, (F1) and interaction Fy Fy if
and only if G4 (G3) commutes with the C-matrix of d, where Gy = L,®E;, G2 = E:®1,.

5.4 Optimality Results Under the Non-Circular Model

Throughout this section, the underlying model is the non-circular model de-
scribed in Section 5.2. The aim is to examine the robustness of the main results in
Section 3 of Cheng and Wu (1980) and to develop some further results.

Let d* be a SBURMD(t,n,p). Cheng and Wu (1980, Theorem 3.1) proved the
universal optimality of d* over {4 »,, for the estimation of direct as well as first order
residual effects. Theorem 5.4.1 below establishes the robustness of their findings for

the direct effects under a non-additive setting,

Theorem 5.4.1. Under a non-additive modél, d* is universally Gpﬁimal over {1 n,, for

the estimation of direct effects.

Proof: In view of Theorem 3.1 of Cheng and Wu (1980), it is enough to show that

in d*, under the non-additive model, contrasts belonging to main eftect Fy are es-

timable orthogonally to those belonging to main effect Fy and interaction Fy F3. So,
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by Lemma 5.3.1 it 1s enough to show that G1Cy+ is symmetric.

Let 1 = 1;Q14, & = E;QF,;. By (5.3.4) and the definition of a SBURMD(t,n,p),

it follows that for d*

— P
z} L,i8,; =nt™>(I; ® By), 5 g fuﬂ’ n(p — 1)t~ *(I; @ I),

p=1 j=1

£ =nt™°1, i =n(p— 1)t
ng o] = N t§1 j—E-l 17 ﬂ( 1)t 1, (5.4.1)

Gi( D L) =ntT1(0<i<p—1), Gy 5 £:) =pt 11(1 < j < n),

j=1 1—0

Hence by (5.3.2), after simplification,

Ve = nt (1 @ E) +n(p—~ 1)t"2(It ® Iy),
| (5.4.2)
Ngsl, =npt™*1, GyNgeNj = n?pt™2 B, Gy My M, = np*t™2E.
From (5.3.1) it now follows that G1(Cj+ is symmetric. . Q.ED,.
Remarks:

1. Though the result of Cheng and Wu remains robust for direct effects under a
non-additive setting, the same is not true for residual effects. It is clear that
as in Theorem 5.4.1, a SBURMD d* will be universally optimal over Qy , , for
the residual effects under the non-additive model provided d* allows orthogonal
estimation of the residual effect contrasts, i.e., by Lemma 5.3.1, provided GoCy» is
symmetric. But not all SBURMD’s sﬁtisfy this criterion, The following example

serves to illustrate this.

Example 5.4.1, Consider the designs d} and d5 each of which is a SBURMUD

(2,4, 6)
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units | units

0 0 1 1 1 0 0 1

0 1 0 1 0 0 1 1

d} 01 1 0 , d& 0 0 1 1

pertods 1 1 0 0 periods 1 1 0 O

1 0 1 0 0 1 1 0

1 0 0 1 1 1 0O 0

On computation using (5.3.1) we have

41 -5 14 -22° 837 -2 —16 —19°
Cp— L| =8 4 -2 —14f 1| -2 37 -19 —16
17T 12 [ —14 -22 45 -9 YR T 12 |-16 —19 37 =2
=22 —-14 -9 45 _ . —19 =16 -2 37 .

It can now be shown that

- 27 -27 31 —31-
1 |—27 21 -31 31
Gl =15 a7 —or 81 -31|°

=27 27 -31 31.

- 91 —21 921 —921-
1 {—21 921 =21 21
GaCas =751 91 91 21 -921

=21 21 =21 21 |

Hence by Lemma 5.3.1, while d allows estimation of the residual effects orthog-
onally to direct effects and direct versus residual effect interaction, df does not,
In fact, a direct computation shows that df is inferior to dj in so far as the
estimation of the (single) residual effect contrast is concerned.

2. From Remark 1 it is clear tha,t the problem of identifying those SBURMD’s
which allow orthogonal estimation of the residual effect contrasts becomes non-
trivial. Essentially, this calls for a combinatorial char&cterizatiﬂn of the commu-
tativity of G5 and Cz+. But, in general, it appears that such a, characterization

may become too involved to be helpful in actual construction of d* and so we
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look for simpler sufficient conditions. In the special case n = £ and p = 2t Patterson

(1973) considered sufficient conditions in this regard. See also Berenblut (1964). In

the following theorem we give a more general set of sufficient conditions with a very

wide coverage,
For any d € {04 5 p, let Sqp be the set of units which receive the treatment b (0 <
h <t — 1) in the last period. Then the following holds.

Theorem 5.4.2. Under a non-additive model, a SBURM D(t,n, p) d* allows orthogo-

nal estimation of the residual effects contrasts and hence becomes universally optimal
over §)y,n,p for the residual effects if:
(1) for each k, R’ (0 < h,h' <t — 1), there are exactly nt™2 units receiving the
treatments h and A’ in the initial and the last periods respectively, and
(i1) for each A (0 £ h < ¢ ---.1), in the collection of ordered pairs {d*(i —
1,9),d*, )1 <i < p-—-1,7 € Sisp each ordered pair (h,hg) (0 < hy <
t — 1) occurs the same number (say 11) of times while each ordered pair
(h1,h2) (0 < hy,he <t —1,h1 # h) occurs the same number (say va) of
times,
The proof of this theorem is given in the Appendix.

Remarks:

1. If d* satisfies condition (ii) of Theorem 5.4.2 then by reCalling the definition of
a SBURMD, one may count in two ways the number of times each treatment
appears in Sy« to get 11 = n(p—t)t™° and 1y = npt=3.

9. From the definition of a SBURMD it is clear that a SBURMD(t,n,p) exists
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only if tz\n and t|p with p > ¢t. Theorem 5.4.9 covers almost all situations where
a SBURMD may exist. If t*|n and pt~! is even, then Theorem 3.2 of Cheng
and Wu (1980) gives a method of construction of SBIURM D{t,n,p). It may
be checked that in this case the designs constructed by their method satisfy the
conditions of Theorem 5.4.2 and are hence universally optimal for the residual

effects under the non-additive model. It may be remarked that in particular if

n = t* and p = 2¢ then this finding also follows from the sufficient conditions in

Patterson (1973).

3. It may be easily verified that d} of Example 5.4.1 satisfies the conditions (i) and
(ii) of Theorem 5.4.2 with v; = 2 and vy = 3. .
Turning to the situation where t%|n and pt~! is odd, let pt™ = 2m +1(m > 1)

and consider the following method of construction which is successful for ¢ # 6.

First let 1 £ 2,6. Then a pair of mutua,llylﬂrthagcna,l latin squares, say, (}; and @2,

of order ¢ exists. Let 0,1,...,% — 1 be the entries of @y and Q2,qus be the A*"

column of Qu,gr = hly and Ty = (qup, Qon,81),(0 < A < t—1,u = 1,2). Let

1 0 01 0 1

P:‘:(PU}FI}...,I‘t_l). Ift=2,letP: '0 0 U 1 1 1-:

For ¢ # 6, let

f

t—1

0 1 ..
Bo=1g 0 ... 0o |

and for 1 < h < t—1, let B), be obtained by adding h(mod ¢) to each element of By.
. Let B =(B,,By,...,B-1) and define the ¢ X p array Ap = (I‘,B,. .., B) where the

array B is repeated m — 1 times in Ay. Let Aj, be obtained by adding h (mod ¢) to
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each element of A,.

Then the p x t* array A = (4}, Al ,A;_l), with columﬁs and rows identified
with units and period respectively, is seen to be a SBIJRM D(t,t2,p) and it can be
easily checked that A satisfies the conditions _c)f Theorem 5.4.2. A SBURMD(t,n, p)
satisfying these same conditions is obtained considering nt™2 copies of A together.
Since such a design satisfies the conditions of Theorem .5.4.2, it follows that it is
universally optimal over Q4 p for the residual effects under the non-additive model.

The above method 1s essentially a method of differences and the choice of T
for + = 2 has been made by trial and error. The design d; in Example 5.4.1 was

constructed by this method. Another detailed example is presented below.

Example 5.4.2. Let t =3,n =9, p= 15, One may take

0 1 2 0 1 2
i= |1 2 0] and Q=12 0 1],
2 0 1 1 2 0
28;1 gg 0001112 2 2
B:ZO 01 12,,I‘----_---12(Zl.'201012‘,
e e 21 002110 2
- By By By - "

So Ag = (T', B) and the arrays 4; and Az are formed by adding 1 and 2 (mod3)
respectively to each element of Ag. The 15 X 9 array A = (Af, A}, AS) shown on the

next page is a SBURMD satisfying the conditions of Theorem 5.4.2.
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units
01 21 20 2 0 1
0 2 1 10 2 2 1 0
0 0 01112 2 2
A: periods 1 2 0 2 0 1 0 1 2
1 0 2 2 100 2 1
1 1 1 2 2 2 0 0 0
2 01 012120
21 00 2110 2
2 2 2 0 00 1 11
01 2 1 2 0 2 0 1
00 01 112 2 2
1 20 2 01901 2
1 112 2 2 000
2 01 012 12 0
2 2 2 0 0 01 1 1

Remarks:

1. By Theorems 5.4.1, 5.4.2 and the discussion above, under a non-additive non-
circular model a SBURMD(t,n, p), which is universally optimal over {;,5,, for
both the direct and the residual effects, exists whenever £2n, t|p (p > t), except
when t = 6 and p is an odd multiple of 6. Since our method of construction used
a pair of mutually orthogonal latin squares of order ¢, the restriction ¢t # 6 was
unavoidable.

2. If one ignores the conditions of Theorem 5.4.2, then as indicated below, g,
SBURMD(t,n,p) exists even when ¢ = 6 and £ is an odd integer, pmvidgd
t*|n as usual. .

Let p=(2m + 1)6 (m > 1). Define the 36 X 1 vector

§ = (0:1:213:415:1:2:3:415#01'” ?5!0?1’2’3’4)f’

and the 36 x 2 matrix
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A =

_—

O b
1 2

5 5 5 &
0 3 4 5|

o O
o O
B O
o O
o
—
DD -t
o
e
O =

o O

Construct the 36 X (2m + 1) array Ly = (A A, ..., A, 8), where the array A
is repeated m times. Let L; be Icabtained by adding h(mod 6) to each ele-
ment of Ly (0 < A < 5). Then the p x 36 array I, = (Lo, L1,..., Ls), with

columns and rows interpreted as before, gives a SBURMD(6,36,(2m + 1)6). A

SBURMD(6,n,(2m + 1)) is obtained by considering /36 copies of I. This

design does not sa.tisfy.the conditions of Theorem 5.4.2 and hence nothing can

be said about its optimality for the residual effects under a non-additive model.
3. Remark 2 together with the preceding method of construction and Theorem 3.2
of Cheng and Wu (1980), establish that the conditions ¢2|n, t|p (p > t) are not

only necessary but also sufficient for tile existence of a SBURM D(t,n, p).

Before concluding this section on non-circular models, the robustness of another
result in Cheng and Wu (1980) will be examined.

Let dg be a strongly balanced RM D(t,n, p) which is uniform on the periods and
is uniform on the units in the first p — 1 periods, In their Theorem 3.3, Cheng and
Wu (1980) show that such a design is universally optimal over € 5, for both the
direct and first order residual effects under an additive model. We have the following:
Ihw Under a non-additive model, dy is universally optimal over §24,5,p for
the estimation of residual effects.

- The proof follows the line of proof of Theorem 5.4.1 and is omitted. It may be

I ‘noted that the corresponding result does not hold for the estimation of direct effects.
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This is because G1 0y, is not always symmetric as the following example illustrates.

Example 5.4.3. Consider the design dy which is a strongly balanced RM D(2,4,7)

uniform on the periods and uniform on the units in the first 6 periods,

units
0 0 1 1
0 1 ¢ 1
do: periods 0 1 1 0
11 0 ¢
I 01 0
L 0 0 1
0 0 1 1

On computation of Gy, it can be shown that G0y, is not symmetric and so dy may

not be universally optimal for direct effects over £y 4.7.

5.5 Some Further Remarks
Throughout this section the underlying model is circular. Let d be a SBURMD
~ (t,n,p) under such a model. Magda (1980) considered the optimality of d over £ .,
under an additive circular model. In his main result (Theorem 3.1), Magda (1980)
proved that under such a model "d‘. is universally optimal over (4 » , for both direct
and residual effects. The next theorem proves the robustness of his result under a
non-additive model.

Theorem 5.5.1. Under a non-additive model, d is universally optimal over Q; n,p for

the estimation of direct as well as residual effects.

Proofi The proof follows the line pfﬂﬂf of of Theorem 5.4.1 and essentially checks

that both &y Cy and G4 C7 are symmetric.

Turning to the problem of construction, note that for the existence of an

SBURMD’s in a circular setting, it is necessary that #|n and tip (p > ).
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Theorem 6.9.2. Under the circular model, if tin and pt~! is an even integer then a

SBURMD(t,n,p) exists,

Proof: First let ¢ be even and define the 2t x 1 vector &, = (0,t—-1,1,¢-2,...,t—1,0)".

Note that each of 0,1,...,t ~ 1 occurs twice in &, and also among the differences
{fr = fo, o — f1y. oy Fare1 = faie, fo — farm1} (mod 1), £ being the u®* element of
dy (0 <uL2t—1).

Let @) be the vector obtained by adding h(mod t) to each element of &g (1 <
h <t—1). Then the 2¢ x ¢ array [$q, F4, ... , P;_1], with columns and rows identified
with units and periods respectively, gives a SBURMD(t,t,2t). A SBURM D(t,n,p)
is obtained taking nt~! and %pt"‘l copies of this 2¢ X ¢ array along the directions of
the units and periods resiaectively. Tﬂe proof for odd ¢ follows in a similar manner
starting from the 24 x 1 vector (0,1,¢—-1,2,4~2,..,,t~2,2,¢—1,1,0) instead of &y.

Q.E.D.

Example 5.5.1. The designs di,d; in this example are constructed by the above

method and represent a SBURMD (4,4,8) and a SBURMD (5,5,10) respectively.

units units
d12 3 01234
dy: periods 3 0 1 2 dy: periods 1 2 3 4 0
1 230 4 01 2 3
2 3 01 2 3401
2301 34012
1 230 34012
3 01 2 2 3 401
01 2 3 4 01 2 3
| 12340
012 3 4

When ¢|n and pt~! is an odd integer, it has recently been shown by Roy (1985)
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that a SBURMD(i,n,p) exists provided ¢ = 0,1, or 3 (mod 4), However, such a,

design may be non-existent if ¢ = 2 (mod 4), e.g., as a complete enumeration reveals,

a SBURMD(2,2,6) is non-existent.

Remarks

1. Restricting to a subclass of Q. ,, under the non-circular model, Cheng and
Wu (1980, Theorems - 3.4, 3.5) proved two more optimality results on
SBURMD’s, These results are in terms of minimization of the variance of the
best linear unbiassed estimator of every contrast belonging to the direct (resid-
ual) effects over the subclass of equireplicate designs (the subclass of designs
equireplicate in the first p — 1 periods). Under the circular model, Magda (1980,
Theorem 3.2) proved a similar result.l It can be seen that these results remain
robust under the non-additive model whenever the relevant orthogonality prop-
erties, as in Sections 5.4 and 5.5 hold.

2. Hedayat and Afsarinejad (1978), Cheng and Wu (1980) and Magda (1980) also
derived universal optimality results on uniform RM D’s which are balanced in the
sense that each treatment never precédes itself but precedes each other treatment
the same number of times. With notations as in Section 5.3 under a, ncm-_additive
model this means that the treatment combinations (h,h) (0 £ h <t~1) never
appear in such a design so that not a,ll contrasts belonging to direct or residual
effects remain estimable. Therefore, the optimality results on balanced uniform
RMD’s become non-robust under a xion—additive model.

3. Throughout this chapter, the underlying model was non—additijre but the empha-
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sis was on the optimal estimation of the direct or residual effects, i.e. the main

effects, contrasts, If interest lies also in the optimal estimation of the interaction

contrasts then, some other, possibly larger, designs should be tried.

5.6 Optimality Results Under a Mixed Effects Model

Recently, Mukhopadhyay and Saha (1983) extended the optimality results of
ICheng and Wu (1980) and Magda (1980) to mixed effects (but additive) models
where the unit effect was considered random. In this section we show that some of
the results of Mukhopadhyay and Saha (1983) remain robust under a non-additive
model, i.e., equivalently we show that the results in Theorems 5.4.1 and.5.4.2 remain
true even under a mixed effects model.

The circular non-additive mixed effects model is given by

Yij = g+ ay -+ b +£d(nj)d(1-—1 7) + Cifs (0 < 1Sp-1187 < n) (5'7'1)

where y:;:#:fﬁ:@d(:,;)d@q j) are as in 5.2.1. For 1 < 7 < n,b; represents the j*

unit effect and we assume that the n x 1 vector b = (4;,...,b) ~ N(0,0{1,).

e = (...eij...) represents the error vector and let e ~ N(O,agfnp),b and e being

e

uncorrelated.

The non-circular non-additive mixed effects model follows similarly from 3.2.2.

For a design d € Q¢ p, the coefficient matrix of the reduced normal equations for

¢, under both these two models is given by

1 -1
Cy=0"" 2 E £;; --'—ﬂ E (PE '811) (pE ¢ )—n"lﬂ"éadeEpNé

=0 j=1 =1 \ =0 =0

+ o alan"lNdEde — o7 n I NgNy + n"laNaN}

— . 2. ~1n AT ~1 a7 a7l
+ O 2aa%n lNdEpNé-—azalﬂ NdEde-l‘ﬂ?l _Nde
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et azaER“Iﬁdﬁé, . + | (572)

where Ny, £i; are as in (5.3.2), (5.3.3) and (5.3.4), (™) = (El 5 65,75 B !}ij)
1 | t==0 3=1 1=0 j=1
and a = 0f07%(0? + po?)1,

The following two theorems can be proved along the line of proofs of Theo-

rems 9.4.1 and 5.4.2 respectively.

Theorem 5.6,1. Under a non-additive mixed effects non-circular model, d* is univer-
sally optimal over {2y p for the estimation of direct effects.

Theorem 5.6.2. Under a non-additive mixed effects non-circular model, d* is uni-

versally optimal over §; . , for the residual effects if the conditions (i) and (ii) of

Theorem 5.4.2 hold.

It can be also shown that results corresponding to those in Theorems 5.5.1

and 5.5.2 hold under the mixed effects model.

Appendix:
Proof of Theorem 5.4.2, By (5.3.2), (5.4.1), (5.4.2) and the definition of a SBURM D,

it can be seen that for every SBURMD d* the matrix Gy commutes with Vg, Nge NG,
and (Nge1,)(Na+1,). Hence bj (5.3.1), Lemma 5.3.1, and Remark 1 following The-
orem 5.4.1, it now remains to show that Gz Mz« M), is symmetric whEn d* satisfies
the conditions of .Theorem- 5;4.2. .

From (5.3.2) it follows that

-1 -1 ’ o
Md*'M:I.. = 5 (}TL‘ £;_,-) (I:E Efj) , (54.1)

§=1 \ 1=D =0}

Since d* is a SBURMD(i,n,p), by (5.8.4) and the definition of Gg, for each j(1 <
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j & n),

P—1
2

t=1

p-1 ‘
Gz( ¥ fij) =1, ® [£11; +

ed*(i""’l:j)
i

=L@ ((p+ 1)t 1 — ege(py, |-

This, together with (5A.1) yields

n

_ !
Go My Mé* = (P + 1)tﬁ1 (1t ) 115) ( )y PEJ 81‘3‘)

J=1 i=0
f) | p—1 !
~ 1 g y
_-,:21( t ® €4 (, 1...?)) (Ea ‘Ea:.v) :

By (5.4.1), the first term in Gy M« M. iz symmetric, By (5.3.4) the second term

equals

- n ; /
: j—-§1 (hed*(u,ﬂ) & (ed*(f’"lif)lt)
n r=l N
+ B (1@ ey 2, 8 (i) © Car(i-1,)

3 - t=1 ol '
=nt B, @ Fy +h2=30 1; ®ey P led*(i,j)@ed*(f-i:j)

JESd* A 1=

i—1
znt“S(Et X Ei) -- }E[j(lt & eh) [1; 0% {1’21; — (VB — Vl)e‘:&}]
b

=(nt"'3 4 Fz) (Ez ® Et) — (b’z'— w) (Et ® It); (54.2)

by applying the conditions (i) and (ii) of Theorem 5.4.2. Since (5A.2) is symmetric
Q.E.D.

the result follows,
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Chapter 6
SOME RESULTS ON SERIALLY BALANCED SEQUENCES

6.1 Imtroduction

A class of designs vei*y closely related to the R.M.D.’s, which were discussed in
chapter 5, is the class of serially balanced sequences. As in the case of R.M D.s,
in these designs also, the ‘residual effect’ of a treatment is an important source of
variation along with the usual ‘direct effect’.

Williams (1949) gave designs bal#ncecl for the estimation of residual effects.
Finney and Outhwaite (1955), Finney (1956) introduced serially balanced sequences
of types 1 and 2, to study experiments where there is only one experimeﬁtal unif which
is exposed to a sequence of treatments in succession, Such exPeriments" are common
in the field of biological assay and for the practical applications of such designs we
refer to Finney (1956).

Sampford (1957) gave methods of construction of type 1 and type 2 sequences
and gave the analysis of a particular subclass of type I sequences. This subclass
of sequences was called “standard” by Sinha (1975) and he was the first to study

the optimality properties of these sequences. Sinha (1975) proved the A-, D-, and

E-optimality properties of standard type 1 sequences under the usual fixed effects

acditive model.

In this chapter we have studied serially balanced sequences under two different

relevant models and investigated their optimality properties.

Section 6.2 consists of various definitions and notations which have been used
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in the subsequent sections of this chapter. Throughout the chapter, the symbols
0,1,2,... represent the different treatments and the sequences are written with rows
as blocks, .

In Section 6.3, the universal optimality of a particular class of serially balanced
sequences has beexi proved; universal optimality results have also been obtained for
more general types of sequences. In the next section a general method of constructing
such optimal sequences has been presented. These two sections consider the usual
fixed effects additive model that has been used by Sampford (1957) and Sinha (1975).

As in the case of R.M.D.’s, in the case of serially balanced designs also, the in-
teraction between direct and residual effects may be an important source of variation,
since the same experimental unit is subjected to a sequence of treatments repeatedly.
So, in Section 6.5 a non-additive model, analogous to that in Chapter 5, is considered,
by introducing the interaction due to direct and residual effects in the usual model.
In Section 6.5, the calculus for factorial experiments is used to prove a number ot
optimality results, It is shown that under the non-additive model, the type 1 se-
quences are universally optimal for the estimation of direct effects among the clﬁss
of all sequences of the same length. For the estimation of residual effects, a similar
result holds for a class of sequences which a,ré modiﬁed versions of type 1 sequences.

In Section 6;6 we again return to the usual fixed effects additive model of Sec-
tion 6.2 and study the optimality properties of type 1 sequences under this model.

The result of Sinha (1975) follow as a corollary of one of the results in this section.
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6.2 Definitions and Notations

Definition 6.2.1 A serially balanced type 1 sequenc:e. of order v and index m is a

closed chain of symbols such that (i) each of the v distinct symbols oceurs mov times
in the sequence; (42) the sequence falls into mv blocks, each containing the v different
symbols once each; and (¥4%) the v> possible different pairs of symbols occur m times
cach among the mv? pairs of consecutive symbols in the sequence (Sampford (1957)).

Definitions 6.2.2. A serially balanced type 2 sequence of order v and index m is a

closed chain of symbols such that () each of the v distinct symbols occurs m(v — 1)
‘times in the sequence; (44) the sequence falls into m(v — 1) blocks each containing the
v symbols once each; and (441) the v(v — 1) possible ordered pairs of distinct symbols
occur exactly m times each, no symbol following itself (Sampford (1957)).

It is assumed (cf. Sampford (1957)) that the last treatment in the last block
is also applied as a conditioning treatment right in the beginning of the sequence,
any observation arising out of this conditioning treatment bging excluded ffc:m the

analysis.

Two sequences are shown below. The first one is a type 1 sequence and the

second one is a type 2 sequence.

Example 6.2.1 v=4,m=1 | v=4 m=
i) 0 5 1 4 2 3 (i 1 2 3 0
3 5 2 4 0 1 2 1 0 3
1 0 2 5 3 4 1 38 2 0
4 1 5 0 3 2
2 1 3 0 4 5
5 4 3 1 2 0

Definition 6.2.3. A standard sequence of order v and index m is a closed chain of




116

symbols such that (¢) each of the v distinct symbols occurs mv times in the sequence:
(i) the sequence falls into mv blocks, each containing the v symbols once each and
(222) on dividing the mv blocks into m sets of v each and numbering the » blocks in
the 7** set as (J1sd2y vy Jy); for every 3,1 < j < m, the blocks J1,J2y++., 7y begin
with the symbols 0,1,...,» -1 (or 0,0 — 1,0 —2,....2, 1) in the order and end with
L2,,,,v—1,0(orv—1,0-2,... ,1,0) in the order, (Sinha (1975))

Clearly, standard sequences are not necessarily serially balanced and again, every
serially balanced sequence is not standard, The following is an éxa,mple of a standard

type 1 sequence,

Example 6.2,2.

v=4 m=2
0 3 2 1
1 30 2
0o 0 1 g (Setl
3 2 1 0
0 1 2 3
3 10 9
o 0 3 1 [ Deb?
1 2 3 0

We now introduce one more sequence whose optimality properties will be inves-
tigated in Section 6.5.
Definition 6.2.4. A type 1* sequence of order v and index m is a closed chain of
symbols such that (¢) each symbol occurs mv times in the sequence, (12) the sequernce
falls into v blocks each containing the residual effect of each symbol once each; and

(¢42) the v* possible different pairs of symbols occurs m times each among the mv?

pairs of consecutive symbols in the sequence.

The following is an example of a type 1™ sequence.
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Example 6.2.3 V=6 m=1
5 1 4 2 3 3
5 2 4 0 1 1
0 2 5 3 4 4
1 8 0 3 2 2
I 3 0 4 5 5
4 3 1 2 0 0

T’he remaining definitions all relate to type 2 sequences.

Definition 6.2.5. A type 2 sequence is called completely reversible if each block ends

or begins with the same symbol. (Sampford (1957)).

We now introduce two more sequences whose optimality properties will be inves-

tigated in Section 6.3.

Definition 6.2.6. A serially balanced completely reversible type 2 sequence will be

called a type 2* sequence if (i) the sequence is of index 1 and (ii) each block ends with

the same symbol,

Example 6.2.4. The following is a type o sequence where every ordered pair of

distinct symbols occur exactly once.

|
ik

S
I
A

2 o N
DD 0 3
D O
o OO O

Let Eo,m be an m X m' matrix with all elements unity and I, be the m x m
identity matrix. Interpreting symbols as treatments, it is clear that in a type 2*
sequence the direct effect versus residual effect incidence matrix is Fyy — Iy, which

is, in fact, the incidence matrix of a symmetric balanced incomplete block (SBIB)

‘design. So, Definition 6.2.6 may be extended to
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Definition 6.2.7. A type 2*(u) sequence of order v and length vu(u < v —1) is a
closed chain of symbols such that (z) each of the v distinct symbols oceurs « times in
the sequence, (%) the sequence falls into u blocks each containing the » symbols once
each (41¢) the direct effect versus first order residual effect incidence matrix is that of
an SBIB design and (zv) each block ends with the same treatment.

Clearly, type 2%(u) sequences constitute a much larger class than type 2* se-
quences. For practical applications, a type 2*(u) sequence is usually more economic
than a type 2* sequence (since the former is of a shorter length) and it reduces to a

type 2% sequence if u = v ~ 1.

Example 6,25, With v =7, the following s a type 2*(3) sequence,

v="T,u=3
1 2 3 4 6 6 0O
2 4 6 1 3 &6 O
4 1 5 2 6 3 O

6.3 Optimality Results Under Additive Model

Let C(n) be the class of all sequences with v symbols and length n. Consider an

arrangement of v symbols (treatments) 0,1,...,v —1 according to any sequence in
C(n). Suppose the sequence consists of b blocks and the conditioning treatment has

been applied as usual. The following fixed-effects additive linear model has been used

by Sampford (1957) and Sinha (1975)
Yij = 1 '|‘.ﬁi + bgi; + 6,,” T i . | (6.3.1)
where g;j, hi; are the treatments whose direct and residual effects occur in yij, the

jth ohgervation from the #** block, p is the general mean, B; is the i** block 'effect

and &, ¢, are respectively the direct and first order residu&l effects due to the w-th
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treatment (w = 0,1,...,v9~1), 8;,6,,&, being measured from the general mean. The

random disturbances e;; are uncorrelated with means zero and a constant variance
a*

Let N(@X8)( N*¥¥Xb) be the incidence matrix considering direct (first order resid-
ual) effects of treatments with respect to blocks. Let r,, be the number of replications
of the w-th treatment (w =0,1,...,v—1) ‘an_d ;Ii}i be the i-th block size (7 = 1, 2,..., b).
Let 1® = Diag (rg,...,7v—1),k° = Diag (ky1,..., k).

Let Z(2%%) = ((z2,)), where 2, is the number of times the direct effect of the
w-th treatment occurs with the first order residual effect of the w'-th treatment.

For any sequence in C{n), under the model (6.3.1), it can be easily seen that the

cocfRcient matrices of the reduced normal equations for direct and first order residual

effects are respectively given by

P N*T[Z
Glzrg“(ZN)[N*‘ K| | N _
: (6.3.2)
¥ NI' [ 2
Ggmra'—'(zl N*) _N’ kEh -N*i-

The optimality result in this section is based on a result due to Kiefer {1975).
The following three lemmas will be required in the proof. The proof of the first lemma

is trivial and hence omitted.

Lemma 6.3.1, Let X = [Xy, X2, Xa]. Then [X] X1 — X} Xo(X3X2)™ X5.X4]

* rl o< r XFXQ Xi-XEl ) X£X1 HI

18 nonnegative definite.
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Lemma 6.3.2. Let n = vu (u < v —1). Then, for any sequence in C(vu),

. (1) tr(G1) Sv(u~1), (i1) tr(Gq) < v(u—1).

Proof: Since, by Lemma 6.3.1,

-t 6 * — ! -
5 —8 5 r N Z
r’ — Zr Z-—r—-—(ZN)( ; ) ( )
| _ N¥ kb N ]

is nonnegative definite, it follows by (6.3.2) that

v—1 w-1

tr(G) S tr(x® - Zr 2 =n-5 % (P2, /re)
Ww=0 =0
v—1 wv--1
<n— % T (Zuw/Tw)=v(u—1)

w=0 w =0

| ~1
since n = yu and ﬂZ}U Zww = T for each w’. This proves (). (2¢) can be proved

=

similarly.

Lemma 6.3.3. Let n = vu (4 £v—1). Then for a type 2*(u) sequence (if it exists)

tr(G1) = tr(G3) = v(u — 1),

Proof: By Definition 6.2.7, for a type 2*(u) sequence the direct effect versus block and

first order residual effect versus block incidence matrices are those of a randomized

‘block design.

. Hence N = N* = B, and r? =4 I,, k% = v I,. Further, the direct effect versus
first order residual effect incidence matrix Z is that of an SBIB design and hence
ZZ' = (u— NIy + AEyy - (6.3.3)
A being the usual A parameter of the SBIB design given by Z. Hence by (6.3.2), fc:r:_

such a sequence

ul, E,

G =uIﬂ'—'ZEﬂﬂ
! [ ] Llﬂuv v Iy _lﬂuu

(6.3.4)

It can be shown that
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U I, By |

‘IL_]' Iv — VU ~1 Eu
By v I, (v ’

i _'(HU)—I Ly ﬂﬂlfu - (vu)“l By |

1

and hence applying (6.3.3), after some simplication it follows from (6.3.4) that
G1 = (A u)(vl, — Ey,). (6.3.5)
Hence, remembering that A(v —~ 1) = u(u — 1), it follows that
tr(Gy) = v(u — 1).

Similarly it can be shown that ¢r(Gs) = v(u — 1).

Note that .if v = 2, then the relation v > u > ) makes G4 as in 6.3.5 a null
matrix, Similarly, Gy will also be a null matrix if v = 2. To avoid such trivialities,
consider hereafter v > 2.

Then, by (6.3.5) the matrix Gi(i = 1,2) for a type 2*(u) sequence is completely
symmetric, It has also maximum trace in C(vu) (by Lemmas 6.3.2 and 6.3.3). There-

fore by Proposition 1 in Kiefer (1975), the following universal optimality result holds.

Theorem 6.3.1. Within the class C(vu) if a type 2%(u) sequence exists then it is

universally optimal for both direct and first order residual effects, under the model

assumed, provided v > 2.
Noting that a type 2* sequence is nothing but a type 2*(u) sequence of length
v(v — 1), it follows that

Corollary 6.3.1. Within the class C(v(v — 1)) if a type 2* sequence exists then it is

universally optimal for both direct and first order residual effects, under the model

assumed, provided v > 2,
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Remarks:

1. These optimality results are fairly general since the competing designs are all
possible designs of the same length.

2. As Definition 6.2.6 indicates, a type 2* sequence has index unity. A question
naturally arises that if a type 2* sequence be repeated m(> 1) times, then whether
such a sequence will also be universally optimal, both for direct and residual
ettects, within the class C(muv(v—1)) of sequences of length mv(v—1). The answer

to this question will be in the negative as the following example illustrates.

Example 6.3.1. With v = 3,m = 3, consider the two sequences

Sy S

el s B N I\ N B e B
O MY = O = b

0
2
1
0
1
2

O = OO
O = OO

D e R ot T S e I

51 is obtained by repeating a type 2* sequence thrice, while .53 is a type 1 se-
quence. Both 5y and $3 belong to C(18). By direct computation it can be shown

that 51 is inferior to S2 from the point of view of D-optimality for estimating

'-a,ny complete set of orthonormal contrasts of direct effects. Hence S} cannot be
universally r.::pti.n:lal in C(18) for direct effects.

Thié above phenomenon is expected since if a type 2* sequence be repeated
m(> 1)} times then the direct effect versus residual effect incidence matrix no
longer remains that of an SBIB design and so the technique of Lemm.a, 6.3.3

fails.

3. The universal optimality results proved in this section hold even if in the model
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(6.3.1) the random disturbances e; j have a (known) intraclass correlation struc-
ture, instead of being uncorrelated. It may be pointed out that “class” in the
intraclass correlation structure refers to a block. Since in this kind of experi-
mentation all the observations relate to the same experimental unit, the study
of optimality properties in the presence of correlation of this kind sometimes
becomes relevant. The proof of this robustness property of the optimality re-
sults is lengthy but straightforward. The details may be found in Mukerjee and
Sen (1983).

4, For some further results on the universal optimality of type 2* sequences under a
different kind of model, where a certain fraction of the direct effect of a treatment
wears off leaving only a fraction of the direct effect as the residual effect of the
treatment, we refér to Sen and Sinha (1986),

6.4 A Method of Constructing Type 2* (u) Sequences

This section considers the problem of constructing the sequences which were
shown to be optimal in the previous section.

Sampford (1957) gave methods of constructing completely reversible type 2 se-
quences. Since a type 2* seq_uenﬁe is nc:-:thing but a completely reversible type 2
sequence of index un.itjr, Where- each block ends with the same treatment, such se-
quences in v symbols, can be constructed following Sampford (1957). Tl}is can be
always done for every odd v(v > 8) and .also for some even v.

As for type 2*(u) sequences, which are generalizations of type 2* sequences, the

constructional aspects pose more stringént combinatorial problems. The following



124
‘method of construction is obtained by suitably modifying the method of differences
for the construction of balanced incomplete block designs (Raghavarao (1971, Ch, §)).
This method has a fairly wide coverage and is described below.

Suppose v is a prime and let M be a module {0,1,.,.,v—1} and S = {a3,...,au}
be a set of u distinct nonzero elements M such that among the ordered differences

arising out of S, each non-zero element of M is repeated a constant number (say, A)

of times. Then

q 2{11 N (‘U — 1)(11- 0

a2 2a3 ... (v—1)az O

S . ) o (6.4.1)
ay 20y ... (v—1)ay O

where each entry is reduced mod v, can be seen to be a type 2*(u) sequence (with
blocks, as usual, giﬁen'by rows) in v symbols and length vu, This is because, with
notations as in Section 6.3, clearly N = N* = FE,,. Fupther, for 0 < w £ v —1,
in (6.4.1), the symbol w is followed by the symbols w+a;(1 < ¢ < u). Hence Z is the

incidence matrix of the SBIB design generated by the method of differences from the

initial set {a;,...,ay}, proving our assertion.

In particular, if v = 4t 4+ 3 be a prime, then § may be taken as any block

(not containing the symbol zero) of the SBIB design, constructed by the method
of differences, invﬁlving (4t + 3) symbols, ﬁrith block size (2¢ + 1) and the usual
parameter A = 4 _(Ragh&vara.o, (1971), p. 83). This gives a type 2*(u) sequence with
IU = 4t + 3,u = 2t + 1. For example, if v = 7 or 11 one may take S = {1,2,4} or

S = {1,8,4,5,9} respectively. The 2*(u) sequence in Example 6.2.5 was constructed

sta,rting from such an S.
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Apart from this series, other SBIB designs, obtained by the method of differ-

ences, can be reoriented to yield type 2*(u) sequences. The following example serves

as an illustration.

Example 6.4.1. Let v = 13, Then M = {0,1,...,12}, Let & = {1,2,4,10}. Then

among the ordered differences arising out of §, each non-zero member of M is repeated

A(=1) times. On developing S, as in (6.4.1) as

1 2 3 4 5 6 T 8 9 10 11 12 0O
2 4 6 8 10 12 1 3 5 7 9 11 0
<} 8§ 12 3 7 11 2 6 10 1 5 9 0
oo 7 4 1 11 8 B 2 12 9 6 3 0

one gets a type 2*(u) sequence with v = 13,4 = 4. Incidentally, S is as well an initial
block from which, by the method of differences, one can construct an SBIB design
in 13 symbols with block size 4 and the usual parameter A = 1.

Remark: The results in this section appear in Mukerjee and Sen (1985). It may

be remarked that subseqﬁently some similar results were independently obtained by

Jimbo (1986).

6.5 Optimality Properties of a Type 1 Sequence Under a

| le-additive Model

In this section, as in Chapter 5, the interaction between direct and residual effects

s considered as a source of variation. So the following fixed effects non-additive model

is used.
yi; = b+ By +bg + c‘_h'.j + YVnjua; TS (6.5.1)

where y; 5, by Biy Ogi; 1 Ehi; are ag in 6.3.1 and 4, . represents the interaction effect due

to treatments w and w'.
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Using an interpretation similar to that in Section 5.3 of Chapter 5, a serially
balanced sequence of type 1 may be looked upon as a v? factorial experiment with
the direct and residual effects representing the main effects of the first and second
factor respectively, while the direct-versus-residual interaction represents the usual

2-factor interaction.

The following result on factorial experiments will be used subsequently.

Lemma 6.5.1. Consider an equireplicate two-factor experiment d, in a block design
such that within each block, the levels of the first factor F; occur equally frequently.
Let C be the class of all designs with the same number of observations. Then, under
possible presence of interaction,
(1) main effect F} is orthogondl to both main effeet Fy and interaction effect
Fy Fy and

(ii) do is universally optimal for F1 within C

"The proof of this lemma is straightforward and hence omitted.

Consider any type 1 sequence, Then, remembering the analogy between such a,
sequence and a factorial experiment, from Definition 6.2.1 and Lemma 6.5.1 it follows
that

Theorem 6.5.1. Under a non-additive model,

(i) in a type 1 sequence, best linear unbiassed estimators of direct effect con-

trasts are orthogonal to best linear estimators of residual and interaction

effects contrasts and

(ii) within the class C(mv?), a type 1 sequence of order v and index m, 1f 1t



127
exists, is universa,]ly optimal for the estimation of direct effect contrasts.
Remarks:
1. Asin section 5.4 it may be seen that under a non-additive .model not all contrasts
belonging to the direct or the residual effects are estimable in a type 2* or a type

2*(u) sequence. Hence the optimality results on such sequences, as in section 6.3,

do not remain robust under non-additivity.
2. It may be noted that, under the non-additive model, in a type 1 sequence, residual
effect will not be in general orthogonal to the interaction effect. The following

example 1llustrates this:

TExample 6.5.1. Consider the type 1 sequence:

v=3,m=2
0 1 2
2 0 1
1 2 0
0 2 1
1 0 2
2 1 0

Interpreting this sequence as a 2-factor design with the direct effect and the

residual effect as the two factors respectively, the C'-matrix of this design is

2 00 101 1 1 07

020 011 101

002 110 011

o |t o1 200 011
c=2Le@L)-> (011 020 11
' 3 1110 002 101
110 011 200

1 01 110 020

011 101 00 2.

It can be easily verified (cf. Chauhan and Dean (1986)) that for this design, the main
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eftect of the second factor (i.e., residual effect) is not orthogonal to the interaction
effect. So under a non-additive model, a type 1 sequence will not be generally optimum
for the estimation of residual effects,. However, we can modify type 1 sequences to get
type 1* sequences which are optimal for residual effects.

From Definition 6.2.4 and Lemma 6.5.1, the following theorem follows easily.

Theorem 6.5.2. Under a non-additive model,

(i) in a type 1* sequence, the best linear unbiassed estimators of residual effect

contrasts are orthogonal to best linear estimators of direct and interaction

effect contrasts and
(if) within the class C(mwv?), a type 1* sequence of order v and index m, if it
exists, 1s universally optimal for the estimation of residual effect contrasts.

Remarks:

1. It can be shown through examples that type 1* sequences are not optimal for the .
direct effects.

2: The construction of type 1* sequences pose no new problem. From Defini-
tions 6.2.1 and 6.2.4 it is clear that starting from a type 1 sequence, one can
easily construct a type 1* sequence by applying the symbol ¢ in ‘period’ p of the

type 1* sequence provided the symbol ¢ occurs in ‘period’ (p + 1) of the type 1

sequence. In fact, the type 1* sequence in Example 6.2.3 has been constructed

by this method starting from the type 1 sequence in Example 6.2.1.

6.6 Optimality Properties of a Type 1 Sequence Under an Additive Model

In this section the underlying model is the usual fixed effects additive model



129
in (6.3.1). The following result follows in a straightforward manner using a lemma

similar to Lemma 6.5.1 for an additive model.

Theorem 6.6.1. Under an additive mode]

(i) in a type 1 sequence, the best linear unbiassed estimators of direct effect
contrasts are orthogonal to those of the residual effect contrasts and

(ii) within the class C(mv?), a type 1 sequence of order v and index m, if it
exists, is universally optiﬁlal for the estimation of direct effects.

We here introduce a mncept called “strong optimality”. Consider a class of

designs C for estimating a parameter 8, For any design d € C, let &y be the dispersion

matrix of the BLUE of 8 in d, provided § is estimable in d. Let Co = {d|d € C,8 is
‘estima,ble in d}. Then a design d, is called “strongly optimal” in C if do € Co and 2g—

Y isnnd. V deC

Turning our attention to the residual effects, from Theorem 6.6.1 (i) and Defini-

tion 6.2.1, the following result is immediate.

Theorem 6.6.2. Under an additive model, a type 1 sequence is strongly optimal for
the estimation of residual effect contrasts within the class of all designs having the
same ‘residual-effect—vefsus—block’ 1ncidence matrix.

Remark: Theorem 6.6.2 covers, as a special case, the principal result in Sinha (1975).
Sinha (1975) essentially proves Theorem 6.6.2 when the type 1 sequence is a sta,ndard
sequence. (cf. Definition 6.2.3). Theorem 6.6.2 states that the observations of Sinha
~re valid even when a type 1 sequence is not a standard one. Examples of type 1

sequences may be given, which are not standard sequences.
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