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Preface

In recent years random iterations of maps on Polish spaces has gained
prominence. They are. nice examples of Markov processes whose invariant
measures can be used in Computer imaging (see Berger [ 1]. They also arise

as random perturabations of deterministic dynamical systems.
Let S be a Polish space with its Borel o-field. Let I" be a collection of

Borel maps from S to S. Let P be a probability on I, Then starting with
a point x in S, we choose a map ¥, € I' according to the law P and move
to 71(x). Then we choose 1, € I' again according to the law P and move to
72 71(x) and so on. This gives rise to a Markov process with state space S.
One is interested in the existence and uniqueness of invariant measures for
the process. Also when there is a unique invariant measure, one is interested
in the nature of invariant measure like its support, whether it is absolutely
continuous with respect to another given probability etc, Eventhough there
were earlier works, L.E. Dubins and D.A. Freedman [12] for the first time
made a systematic study when the Polish space S is real line. A part of
their work was generalized to higher dimensions by R.N. Bhattacharya and
his co-authors, The problems dealt with in this thesis are either directly or
indirectly connected with random iterations, The thesis has four chapters.
Each chapter starts with a summary of its own. We briefly describe the main
contents below.

In chapter I, we discuss the problem of completeness of a metric ~ intro-
duced by R.N. Bhattacharya and O. Lee | 3] - on the space of probabilities
on JR*, This metric was introduced by them in generalizing the works of Du-
bins and Freedman [12] regarding existence of invariant measures for Markov
processes generated by random iterations of monotone maps. They obtained
positive results bypassing the problem of completeness of the metric. They
suggested that if the metric could be proved to be complete, then a fixed point
theorem will make the arguments simpler. We carry out this programme. To
generalize these results from JR* to appropriate subsets S of JR*, it is neces-
sary to know for which subsets S of IR*, the class of probabilities on 3, say,
P(S) is complete under the metric. However, we do not know the full answer
to this question,

In chapters II and III, we study a problem whose origins go back to
the works of M, Rosenblatt [29]. Given a probability x on Sy, the space
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of stochastic matrices of order ¢ - which is a semigroup under multiplica-
tion - find conditions for the convolution sequence x* to converge. Several
conditions in the general context of compact groups and semigroups were
already available in Rosenblatt [29]. See A. Mukherjea and G. Hognas [17]
for a thorough and uptodate treatment. The question however is to find
some simply verifiable conditions on g so that u” converges. When d = 2,
this was treated by A. Mukherjea [22]. His theorem reads as follows. If p

is probability on the space of 2 x 2 stochastic matrices, then u* converges if

and oly if ux is not the point mass at the matrix [ [1] é .

In chapter II, we generalise this result to the case d = 3, The main the-
orem was also obtained independently using algebraic methods by S. Dhar
and A, Mukherjea [11]. Roughly speaking, u" converges unless some kind
of periodicities are present. When d = 2, and support of x has at least
one matrix with an entry different from 0 and 1, then the limit of 4" (which
exists) is concentrated on rank-one stochastic matrices. Thus we can regard
the limiting measure as a probability on [0,1] - identify 0 < ¢ < 1 with

the matrix [ 1 ic I Z © 1. It makes sense to ask for conditions under which

this limiting probability is absolutely continuous or singular (w.r.t. Lebesgue
measure). This problem was already raised by Rosenblatt [29] and some par-
tial results were obtained by A. Mukherjea and his co-authors. We conclude
chapter II by establishing a connection between a simple case of this problem
and Bernoulli convolutions.

In chapter III, we give necessary and sufficient conditions for ™ to con-
verge when u is a probability on Sy — the set of d X d stochastic matrices,
generalizing results of chapter II, Here is the idea. Suppose & is the closed
semigroup generated by the support of p. A structure theorem for kernel
of & was already outlined in Rosenblatt [29]. We extend this to obtain a
structure theorem for & itself and obtain a map from & to an appropriate
permutation group (on at most d symbols). With the help of this map, we
transfer p to a probability fi on this permutation group. Our main theorem
says that u" converges if and only if 4™ converges.

In chapter IV, we study a problem whose origin is in the work of R.N,
Bhattacharya and A. Goswami [ 2]. They considered the following problem. -
Let X, be a strictly positive random variable and let (Z,)n>1 be an i.id.
sequence of random variables independent of X, and each taking only two




values 0 and 8. Define a Markov process (X,)n>1 by Xpe1 = Znogr ‘le for

n 2 0. By using the Gauss map on [0,1) and its properties, they shgwed
that when 6 = 1, the unique invariant measure is singular. We generalize
Gauss map as follows, Fix 0 < 8 < 1, Define T : [0,8) — [0,8) by

T(z) = 6(3 — [5]) for z > 0 and T(0) = 0. We were unable to see if
it is conjugate to the Gauss map. We study this map and show that for
several values of 4, it admits an absolutely continuous invariant probability.
Moreover, like the Gauss map, the successive averages of almost all orbits
diverge to infinity. We do hope that these results yield some information
about the Markov process mentioned above. We conclude this chapter with

an alternative proof of the theorem of Bhattacharya and Goswami mentioned
earlier,




CHAPTER -1

Bhattacharya metric on the space of probabilities

Summary.

This chapter has five sections. In section 1, we start with a brief in-
troduction to random iterations and after recalling relevant definitions, we
introduce the Bhattacharya metric d; on the space of probabilities on JR*. In
sections 2 and 3, we discuss the completeness of the metric d; for the cases
k =1 and k > 1 respectively. Section 4 gives an application of the result
proved in section 3 by recalling an argument of Bhattacharya and Lee on the
existence of invariant measures, We conclude with some interesting remarks

in section 5.

Section 1 : Introduction

Consider the closed unit interval [0, 1]. Suppose I is the collection of con-
tinuous monotone non-decreasing functions of the interval to itself. Suppose
P is a probability on the Borel v-field of I'. This gives rise to a Markov Pro-
cess (X,) with state space [0, 1] as follows : If we are at z, we select a vy € I’
according to the law P and move to «(z). Suppose there is an zy and an

integer m > 1 such that

P™{(v1,"**,Ym) : Range(ym + 1) C [0,2] > 0}

and
Pm{('h: ‘e :'Tm) : Rﬂﬂgﬂ(')’m " '71) C [33: 1] > 0}

Then, Dubins and Freediman [12] showed that the Markov Process has &
unique invariant distribution. They named this condition "splitting”. Such
systems as these are now a days called iterated function systems. We must:

add that though Dubins and Freedman [12] made a systematic analysis, they
were not the first to consider these problems. Motivated by problems in

the theory of learning, R.R. Bush and F. Mosteller; S.Karlin and others



considered such systems earlier (We are not intending to survey this vast
area and give only references relevant to us). J. Yahav [36] considered this
problem by removing the restriction of continuity of the maps. However, both
Dubins-Freedman and Yahav treated only the case of compact subintervals
of the real line — more precisely, the underlying functions of the system are
defined on a fixed closed bounded subinterval of the real line.

Motivated by problems in Time Series and Economic models, Bhattacharya
and Lee [ 3] provided a generalization of this set up to higher dimensions.
They considered a Borel subset § C IR*. For points z,y € 9, say that
z < y if the inequality holds for every co-ordinate. Say that a Borel function
f 1§ — § is monotone non-decreasing if f(z) < f(y) whenever z < y. Let
' be a collection of such maps, Assume that I" has a o-fleld F such that the
evaluation map (v, z) > #(z) is a jointly measurable map. Suppose that P
is a probability on F. This gives rise, as earlier, to a Markov Process with
state space S as follows : If we are at z, select a v € I" according to P and
move to y(z). Among other things, Bhattacharya and Lee [ 3] considered in
this set up the existence of invariant measures for this Markov Process. We
shall return to this in section 4. For now, it suffices to say that in this con-
text, they were lead to introduce the following metric on P(IR*), the space of
probabilities on the Borel o-fleld of R*. Say that f : JR* ~— IR is monotone

non-decreasing if f(z) < f(y) whenever z < .
Also, we let G, denote the class of all non-decreasing maps on IR* to the

unit interval [0,1]. We define Bhattacharya metric d; on P* as follows :

di(,v) = sup{]| [ fau~ [ fdv|:f € G}

Section 2 : Case k=1

For a probability ux on (IR, B), let F,(x) denote the distribution function
of 4. Define the usual supremum metric

plp,v) = Sup | Fu(z) — Fu(z) |
We make a series of observations.

1% p(p,v) £ di(py v).



This is obvious by noting that for each z, the indicator function 1¢; o)
belongs to §.

20, If u, & u then p, 4 i,

Indeed, let 1, = 1 and € > 0. Choose an integer & such that i ; 15 <1<

g—e. Choose integer N such that for each n > N and foreach z,| F,,, (z) — F,(z) |
< I%E This in turn implies that for any interval J (open, closed or semi
open), | un(J) — pu(J) | < é% Let now f € G. For?i = 0,1,2,:-+,J; be
Pk 16) and g be the function defined by g(z) = f(-;-ﬁ)

the interval f_l[%t', 3

for x € J;. Then direct calculation shows that I/gdun — /gd,u [ < -; for

n>N. Since'/fd,uﬂ—/gd,unl<§and|ffdp—-—/gd,ﬂ|<-§-. We con-
clude that | [ fdu, — [ fdu | < € for each n > N. This being true for any
f € G it follows that dy{u,, ) <€ for n > N, completing the proof,

3°, P! is complete under p.

This is clear.

4°, P! is complete under d;.

In fact, if {u,} is d; Cauchy then 1° implies that it is p Cauchy and hence

by 3° there is a i € P! such that u, -5 g 2° implies that y, 4 14,

Now consider any Borel subset S C JR with its Borel o field. Let P(S5)
be the collection of all probabilities on S. Since P(S) ¢ P! (with abuse of
notation) we can restrict d; and p to P(S) and still denote them by d; and

p respectively. We can also define for g, v € P(S).
di(u,v) = sup{| [ fdu— [ fdv|: f t, Boret,on S to [0,1]}

P, v) = sup,eg | Fulz) — Fu(z) |
Then, it is easy to see that
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5°. For p,v € P(S), plu,v) = plp, v) and di(u,v) = di(u, v).
6°. P(S) is complete under d; iff § — S is at most a countable set.

To see this first assume that S — S is a countable set. Let u, € P(S) for

n > 1. If {u,} is Cauchy under d; then there is a u € P! so that p, 5 u
in Pl. By 1° u, 5 u and in particular g, — 1 weakly. This implies that
1(S) = 1, since p,(S) = 1 for each n. Now u, - u implies that for each
z € R, pun{2} = p{z}. As a consequence u{z} =0 for each z € S — 5. We

conclude that u(S — S) = 0. In other words p € P(S) and py, =

To prove the converse, let S = S be uncountable and hence we can fix a
homeomorphism A from the coin tossing space C' = {0,1}¥ into § — S. Fix
n > 1. Let s, be the set of all sequences of 0's and 1’s of length n. For
§ € 8,, let U; be the set of all points in C whose initial segment is s, For

each s € s, we can fix an open set V, so that

1

h(U,) C V, C Ball of radius ~ around h{U,).

Moreover {h(Us) : s € s,} being disjoint compact sets we can assume that
{V,,s € s,} are disjoint. As h(Us) C S for each s € s, we can fix a point
(, € SNV,. Let u, be the probability putting mass 51,; at (, for ¢ € s,. Let A
be the fair coin tossing measure on C and g = Mh~!, Then it is not difficult
to show that in Pl, u, % 1. We conclude that {un} is di Cauchy in P{S5)
but does not converge to an element of P(S). This shows that P(S5) is not

complete, as required,

For example if S is closed or if S is a finite disjoint union of open intervals
then P(S) is complete under d;. However, if S is the set of rationals (which
is a countable union of closed sets) or if S is the complement of the Cantor
Set in the unit interval (which is a countable union of open intervals) P(S)

is not complete (cf. Remark 2.5.1 of [ 3] ).

Section 3 : Case £ > 1

We consider only the case k = 2, This is done for two reasons. Firstly,
for notational convenience ~ the same idea works for £ > 2 as well. Secondly,

11



there is perhaps a simpler proof which we are missing and there is no point
in burdening the reader with the details for the general case. Accordingly,
we denote by P the set of probabilities on (IR?, B). For u € P we denote its
distribution function by F,(z,y) and as in the case of k¥ = 1 we can define

plu,vy= sup |Fu(z,y)~ F(z,9)].
(z,y)€R?

As in the case of £k = 1, we have,

1°. p(p,v) < dy(, v).

However, unlike the previous case,

2°, p and d; are not equivalent,

Indeed if u, is the Lebesgue measure on the line segment {(z + %, —z) :
0 < z < 1} and p is the Lebesgue measure on {(z, —z) : 0 < 2 < 1} then it
is easy to see that p(un, 4) < ,—i- so that u, -+ u. However d) (fin, pim) = 1 for
n # m.

3°. If uy is dy Cauchy then there is a unique z 50 that u, & .

In fact, 1° implies that u, is p Cauchy and hence F),, converges in supre-
mum metric to some F, which is necessarily F, for some u € P.

For the rest of the section we fiz a dy-Cauchy sequence {py}. Let p be as

above, We shall show that un L i, there by showing that P is complete with
the metric d;.

We start with a definition.
Definition : A Borel Set L C IR? is a Left set if (z,y) € L and (2',y') < (z,v)

then (z',y') € L.
Here is a reduction of the problem.

40, If 1, (L) — p(L) for each left set L then p, 54

To see this, fix any increasing Borel measurable f on IR* to [0,1). Let
¢ > 0. Then the set L; = F7'[je, {7 + 1)¢) is the difference of two left

12



sets so that u,(L;) — u{L;). Let g be the simple function g(z,y) = je
for (z,y) € L, for each j. The previous observation implies that [ gdp, —
[ gdu. Since for each (z,y),| f(z,y) ~ g(z,y) | < € we conclude in a routine
way that | [ fdu, — [ fdu | < 3e for sufficiently large n. This shows that

[ fdu, — [ fdu for each f € G°. To show u, 4 1t we still have to establish
that the above convergence holds uniformly in f € G2 But this is a standard
argument as follows : Fix ¢ > 0. Since {u,} is d;-Cauchy, fix N such that
for n,m > N di{ttn, ) < €& Forany f € G* and n,m > N we have
| [ fdun — [ fdum | < €. Letting m — oo, and using the fact proved above
we conclude that | [ fdu, — [ fdu | < ¢ for each n > N and for each f € G*.

In other words dy(u,, ) <eforn > N.
To describe left sets, we need a definition,

Definition : Let ¢ be nonincreasing function on JR taking values in [—o00, ].
Put

s = {(z,y) € B : y < ¢(z+)}
Gf ={(z,y) € R®*:y > ¢(z-)}
and , Bg = {(z,y) € R*: ¢(z+) <y < é(z—)}

A Borel subset A C B, will be called a boundary set if
(z,9) € 4, (3,1) € By, ¥ <y implies (z,y') € 4;

and
(z,y) € A, (¢',y) € By, ' < z implies (z',y) € A

5° Let ¢ be a nonincreasing function on IR to [—~o0,00]. Then, the following
facts are easy to verify :-
1, Gy is a left set and an open set, i.e., an open left set.

2, G;j’ U By is a left set and a closed set i.e. a closed left set, Indeed the.
closure of Gy is Gy U By,

3. If A is a boundary set contained in By then G U A is a left set.

We also have,

6°, Let L be a left set. Then there is a nonincreasing function ¢ on /2 to
[~00, 00] and a boundary set A C By such that L =Gy U A.

13



In fact ¢(x) = sup{y : (x,y) € L} will serve the purpose.

7°. If L is an open left set then there are open left sets L, such that Ly T L
and p(0Ly) = 0 for each &.

To see this fix an integer £ > 1. Fix increasing sequences {z, : —00 <
n< oo}, {yn ! ~00 < n < oo} so that p({z,} x R) =0, u(IR x {y.}) =0,

1
| 2y — Zp | < ok and | yp — Yns1 | < 5% for each n. Consider the tilling

of the plane given by the rectangles with corners (z;,y;); —o0 < 2 < 00,
-00 < § < oo, Let Ly be the union of these closed rectangles which are

contained in L. Then L; is a left set, 0L, consists of vertical segments at
z,s and horizontal segments at y, s so that u(0Lg) = 0. If we moreover take
the k** partition to be refinement of the corresponding (k — 1)% partition

then it is easy to see that L; 1T L completing the proof.

8, If L is an open left set then pp(L) — u(L).

In fact, fix L, as in 7° Fix an € > 0, Let &V be such that for n,m > N,
dy{ttn, bm) < e In particular for each k, | ptn(Lx) — um(Lg) | £ eforn,m 2

N (Note that. indicator of the complement of Ly is in G*). Since p,, — p

weakly and p(8Lg) = 0 we conclude that | pa(Lg) — p(Ly) | £ eforn > N,
This being true for each k, we let & — oo to see that | un(L) — u(L) | < ¢

for each n > N. This completes the proof.

ge, If M is a closed left set then there are closed left sets M, such that
M, | M and u(8M;) = 0 for each k.

This is done by taking a tilling of /R® as in 7° and taking M} to be all
those rectangles that intersect AJ. However M is not by itself a left set. By
adjoining some more rectangles we get a closed left set M. We leave the

details to the reader.
10°. If M is a closed left set then (M) — u(M).

This is a consequence of 9°, just as 8° was a consequence of 7°.
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11°, Let ¢ be a nonincreasing function on IR to [—co,00]. Then p,(Gy) —
#(G3); 1a(GE) = w(G); 1n(Bg) — p(By),

This is a consequence of 5°, 8° and 10°,

12°. For any vertical line segment V, u,(V) — u(V). V may be finite or
infinite; open, semi open or closed.

For example let V be the vertical segment (z = z,,a < y < b). Fix
Ty < %o Tk T2, and ax > a, ax T a. Define the sets Ax = (2 < z,,y < b);
By = (2 S 2o,y S a); Ch = (¢ £ 2,y £ 0); D = (2 £ Tk, y < 0k);
Ey = (z1 < 2 < %o, a5 <y < b). Then clearly pn(Er) = pn(Ax) — pn(Bi) —
1n(Cy) + pn (D) with a similar equation holding for . Now fix € > 0 and
choose N so that for n,m > N, di{(in, im) < €¢/4. As a consequence for
n,m > N,| un(Ex) — pm{Ex) |< € Since Ag, By, Cy, Dy are closed left sets,
10° implies that un,(Ex) — w(Ey) as m — oo. This implies that for any
k>1and n > N,| uy(Ex) — u(Eg) | < e. Taking limit over & we observe
that | un (V) — p(V) | < € for n > N, completing the proof. Other cases of
vertical segments are treated in the same way, One could also use the fact
that F, converges to F, uniformly to give an alternative proof.

Exactly as above we can show the following :

13°. For any horizontal line segment H, p,(H) — u(H).
From now on we fix a nonincreasing function ¢ on IR to [—o0, 00].

14°, Let K be a compact boundary set contained in By, Then u,(K) —

u(K).

In order to show this, fix an integer & > 1. As in the proof of 7° fix
increasing sequences, {z;, —00 < 1 < oo} {y;, —00 < j < oo} and R;; be the
rectangle [zi, Tiz1] X [¥j,Yj+1). Let Lj be the union of all those rectangles
which are either contained in G or which intersect K. However L may
not already be a left set, we add enough of these rectangles to get a left set
L.. The following properties of the sets Ly can easily be verified : (a) If -
(z,y) € G; then (z,y) € Ly for all large k. (b) If (z,y) € K then (z,y) € Ly
for all k. (c) If (z,y) € G U K then for sufficiently large k, (z,v) € L.

15



Indeed (a) is a consequence of the fact that G3 is open. (b) is by construction.
(c) is observed as follows : If (z,y) ¢ G5 U K then either (z,y) € G or
(z,y) € By — K. In the first case G} being open, for sufficiently large k, one
of the rectangles Ri; C G} and includes the point (z,y). As a consequence
this rectangle does not appear in the formation of L. Since G5 U By Is a
left set none of the rectangles above f;; appear in the formation of Ly, Thus
R;; does not appear in the formation of Ly as well showing that (z,y) € L
for sufficiently large k. Assume now that (r,y) € B, — K. K being compact
for sufficiently large k one of the rectangles £;; includes the point (z,y) and
is disjoint with K. Clearly R;; can not appear in the formation of L}.. If k is
s0 large that length of the sides of the rectangle is smaller than z — sup{z’' <
2 forsome y', (2/,9) € K} then none of the rectangles above R;; can
appear in the formation of Ly so that it can not appear in the formation of
L; either. Now fix ¢ > 0. Fix N so large that for n,m > N; d(pn, ttm) < €
In particular for each & and m,n 2 N; | puo(Lk) — um(Lg) | < €. Ly being a
closed left set 10° implies that | p,(Ly) — w(Lg) | < € for each k£ and n > N,
In view of the properties (a), (b), (c} observed above, taking limit over k.
We get that | un(Gy UK) — p(GZ UK) | < e for each n > N. But by
11° pn(G3) — p(Gg) and Gy and K are disjoint. These imply that for
sufficiently large n, | un(K) — p(K) | < 2e. This yields the result,

Note that By = L UM where L is the union of closed nondegenerate
Horizontal and Vertical segments contained in By and M = By — L, Clearly
these are Borel sets. A moment’s reflection shows that every Borel subset A

of M is a boundary set.
15°, For any Borel set A ¢ M, lim pz,(A4) 2 u(A).
Indeed, for any compact set K C A, u,(A) 2 u(K) and hence by 14°,

Um pa(A) > lim pn(X) = p{&). This being true for all compact subsets X
of A we deduce the result, In particular we have,

16°. lim p, (M) 2 (M),

17°. lim p, (L) 2 p(L),

Indeed, L is a countable union of horizontal and vertical segments and

16



for the union F of finitely many of them, we have in view of 12° and 139,
Hm un(L) 2 lim pn(F) = u(F). Consequently we have lim un (L) > p(L) as
required.

18° pin(L) = p(L} and pn (M) — pu(M).
This follows from 16° and 17° and the fact that by 11°, u,(Bga) —+ p(Bg).

19°. For any Borel set A C M, pu,(A) — u(A).

Indeed, as remarked earlier any Borel set A C M is a boundary set and
hence by 15°, lim p,(A) > p(A) and lim u, (M — 4) > u(M — A). But by
182, pun (M) — p(M). This shows that u,(A) = u(A).

20°. If A ¢ L is a boundary set then u,(A) — u(A).

In fact, such a set A is a union of countably many horizontal and vertical
segments and so is L — A, Using arguments as in 17° and 19° the proof is
completed.

21°. For any boundary set A C By, p.(A)} = u(A).

This is because any such set A is a union of two disjoint sets A; C L and
As ¢ M where A, is a boundary set. 19° applies for 4, and 20° applies for
A, to complete the proof,

22°. For any Left set L, u, (L) = p(L).

This is immediate from 6°, 112 and 21°.

Combining 32, 4° and 22° we finally obtain,

Theorem : (P?, d,} is a complete metric space.

Section 4 : An -application to invariant measures

In this section, we shall briefly reproduce an argument of Bhattacharya
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and Lee [ 3] to obtain invariant measures for certain iterated function systems,

using the theorem of previous section.
Let S be a Borel subset of JR* and let & be its Borel o-field, Let I' be

a family of non-decreasing maps from S into itself. Let F be a o-field on

I' making the evaluation map (v,z) — (z) jointly measuarble, Let P be
a probability on I', Consider (I'®, F°, P>°). Here is the Markov process X',

with state space S5 defined on I'*®,

Xl = Cl‘.'an,

Xo = ooy X,

IIIIII

Xn=anXn-1= 0nQn_1 ' 1. Xp.

where @, g, -+ is a sequence of i.i.d. random maps with common distri-

bution P and X} is a random variable independent of this sequence.
Then clearly, the transition function of this process is given by ,

p(x,B) =P(yel':y(z) € B)=p(z,B) Vz€§ and VBES
Then p defines the usual operator T* on P(S5) by

(T"4)(B) = f p(z, B)u(dz), € P(S)

= [ [ 1aly )i(dz).

so that for any bounded measurable function f on S,

[ £(z)T" u(ds) = / [ sr(@)dP()u(da).

Note that f € G; so that [ f(y(z))dP(y) also belongs to &;. This imme-
diately leads to the following :

(4.1) dy(T*u, T"v) < di(pyv) Vi, v € P(S)
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Let zp € S and fix a positive integer m.

Let
(4.2) Di={(v, ", Ym) E™ oy nz <zy Vo
(4.3) Lo={(n, " vtm) €T tym--mz 220 Va}

Let 6 = max{1 — P™(I';),1 — P™(I'y)}
Then, we have

Theorem [ 3] : With the above notation,
(4.4) d (T, T*) < 8™M™d (u, v) Y, v € P(S)

..

roof:
Let f € 1. Note that,

[ 1@y = [ h(z)du(z)

where
p(a) = [ O m2)P™(dn - - dn)

Let hy, ho, hs, hy be the functions defined like A but the integral on the right
hand side is taken over I'1—I'1 NIy, ['g—I'1NTg, I'=T', Ul and 'y NI respec-
tively. Clearly, these are non-negative functions, monotone non-decreasing

and their sum equals £, Set

ad) = Pm(r1) - Pm(F1 M FQ)
az = P™(I'y) - P (I' N ['9)
and

a3==1—-P’"(1"1UF2)
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hy . ag — Ry
€ G;. Suimilarly, and
X 0/ (7o) " Gl ~ f(zo)]
3

— are also in G;. Clearly, hy is a constant, Thus,
3
| [ = [ hav |
<I [ mdp= [ mdv |+ [(a --n,g)du-/(ag- ho)dv |

+ |/h3du—fh3du[
< layf(zo) + aa(l ~ f(m0)) + aa] di(p, v)

Clearly, by < a; f(zg) so that

< (| @y ~ay | +ao + ag)d; (1, v) < 6 di(p,v)

That is,

| [ farmu= [ arm | < bydi(,v)

This being true for all f € G, d(T""p, T*"™v) < §di(p,v)
From (4.1), &,(T"u,T*'v) < di(y, V)

Combining these two inequalities, the result is immediate.

Now assume that P satisfies the following condition :

(4.6) dry, and m such that P™(Ih) > 0, P™(I;) > 0

where I';,I'; are as defined in (4.2) and (4.3).

Theorem : . Under (4.6), 7*™ is a strict contraction on P(S) with the
metric dl* |

Proof. Use (4.4) and the fact that (4.6) implies ¢ < 1.

If we now assume that S is such that P(S) is complete then the contrac-
tion mapping principle gives us a unique 7 € P(S) such that 7™y = 7. We
can use (4.4) to show that 77 = . Indeed, taking v = 7 and p = T*7 in
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(4.4), we get
di (T*m"ﬂq T#mny) = d; (T#(mﬂ-}-l)ﬂ., ﬂ‘) —3 0

Similarly, d;(T*™ % 7)) — 0 for each £k = 1,2,++.,m — 1. This is
enough to conclude that T**w — «. In particular, T*n = &. Actually, for
any u, 17"y converges to w. Moreover, 7 is the unique invariant probability

for the Markov Process.
Thus the Markov process X,, has a unique invariant measure. In particu-

lar, when S = IR¥, P(S) is complete by the theorem of the previous section
and hence the earlier argument applies. Some more cases of sets .S for which

P(S) is complete are given in the next section.

Section 5 : Concluding Remarks

We conclude this chapter with a few remarks.

Remark 1. Clearly, (P(IR*),d,) is not a separable metric space. Indeed,
d; restricted to the set of point masses gives rise to the discrete topology. As

is well known, under weak convergence, P(JR*) is separable.

Remark 2. If we have S; and S; so that P(S;) and P(S;), both are
complete with respect to dj, one can argue out that P(S; N S3) is complete

with respect to d;. Same is true for countable intersections.

Remark 3. We do not have a characterization of Borel sets S C IR? for
which P(S) C P? is complete under the metric, d;. If S is a closed set then
clearly P(S) is closed in P? and is hence complete. If S is a rectangle, open
or semiopen, with sides parallel to the axes, then also, P(S) is complete.
Also, if S is a left set, then (P(S), d,) is complete, This is because, whenever

tn <> 1, we have pq(S) = u(S).
Remark 4. Even, for some half spaces P(S) is not complete, This can be

seen as follows :
Let us take S C IR? to be the region > y in the JR? plane. Let u, to

be the linear Lebesgue measure on the line joining the points (0, —%) and
(1,1 — =) for each n > 1. Let u be the linear Lebesgue measure on the line

joining the points (0,0) and (1,1).
Then we claim that u, 4 1 € P2, For this, let € > 0. Choose /V so large
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that n > N implies distance between the points (z,z — #) and (z + %,m), is
less than ¢ for any x in [0, 1], that is, 3;2 is less than e. Take any left set L.
Then if zp is the largest number with 0 < zy < 1 so that (zo, %g) is in the
support of p, we should have | p,(L) — u(L) | < ﬁf (which is the distance
between the points (2,29 — =) and (% + +,2)) < ¢ Thus, our claim is

proved.
Clearly, pu,(S) = 1 for all n > 1 but u(S) = 0. Hence, P(9) is not.

complete.

Remark 5. In a different direction, Bhattacharya and Lee | 3] studied
yet another metric. Let .4 denote the class of all sets of the form {z €
IR* ; v(z) < ¢} where v : R* = IR* is continuous and non-decreasing, and
¢ € IR*. Recall that < is co-ordinatewise. Let A denote the class of all sets
in A, together with limits of sequences in 4. Thus, A is closed under finite

unions and intersections. Then, they set

du,v) = supaz | H(ANS) - (4N S))
They showed that for a large class S of subsets S of R, P(S5) is complete

under d.

Remark 6. More recently, with a wide variety of applications in mind,
Bhattacharyar and Majumder [ 4] generalized the results of Bhattacharya

and Lee [ 3] to a more abstract set up. But that is a different story.
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CHAPTER - 11

Convolution powers of probabilities on
Stochastic matrices of order 3

Summary.

‘This chapter has nine sections. In section 1, we introduce the problem:
Given a probability 1 on the set of d X d stochastic matrices, to find necessary
and sufficient conditions for the convergence of its convolution powers (u").
In section 2, we make the basic observation (which is perhaps not new) that
in case the closed subsemigroup generated by the support of i includes a rank
one matrix, then u® indeed converges, In the next five sections, we consider
only the case d = 3. In section 3, we classify 3 x 3 stochastic matrices —
depending on classical terminology of recurrence and transience. This is
mostly to fix up our notations and help to deal with the convergence case by
case depending on the support of x. In section 4, some elementary cases are
discussed where the convergence or non-convergence is clear by inspection.
In section B, some special cases are discussed where the convergence needs
involved arguments. Section 6 gives the case by case analysis using the results
of the previous two sections and winds up the discussion., The final outcome
is stated as the main theorem in section 7 using the concept of cyclicity. In
the last two sections, we discuss the case d = 2. In section 8, we consider the
problem of convergence of convolutions of a given sequence of probabilities
on S;. Our results here are not complete, In section 9, we still consider the
case d = 2, but return to the i.i.d. case. We show that in some special cases
of convergence, the absolute continuity of the limiting distribution of y* is
related to Bernoulli Convolutions, We conclude this section with a selective
and brief survey of the Bernoulli Convolutions which we found interesting,

Section 1 : Introduction

There is a vast amount of literature on convergence of convolution powers
of probabilities on the space of matrices. In this and the next chapter we
shall be interested in the following problem : Suppose that u is a probability



on S, the set of stochastic matrices of a fixed order,say of order d . Find
easily verifiable conditions on u so that the n-th convolution power of u, i.e.,
u® converges. We are using here the topology of weak convergence on the
space of probabilities.

Our interest in the problem stems from various points of view. Firstly,
each © on S gives rise to a Markov Process on IR® via random iterations
as follows : If we are at z € IR?, we select a matrix A according to 1 and
move to Az (see Marc Berger [ 1] for more on such matters). Secondly,
in the classical theory of Markov chains with d states, one knows all about
the limiting behaviour of powers of the transition matrix. However, if the
transition matrix is selected according to some probability law, at each step,
one would like to know if the classical result still holds in some form. Thirdly,
it is natural to enquire if the neat proposition of A. Mukherjea [22] quoted
below for the case of 2 x 2 stochastic matrices admits a neat generalization,

It should be remarked that the space of stochastic matrices being already
compact, tightness criteria by Mukherjea [23] for the sequence {u"},>; are
of little help. It should be noted that a necessary and sufficient condition for
convergence of convolution powers is given in Lemma 3, p.151 of Rosenblatt
[29). However this condition involves determining the kernel of the closure
of {u",n > 1}. In fact origins of the present problem can be traced to notes
5.4, p.169 of Rosenblatt [29]. This problem was subsequently dealt with in

some detail in {11], [22], and [25].
Here is the beautiful result of A, Mukherjea [22], mentioned above, for

probabilities on 2 X 2 stochastic matrices:

Theorem 1.1 (A. Mukherjea [22]) :- Let x be a probability on S, the set
of stochastic matrices of order 2 and u* denote the nth convolution power of

1. Then the sequence u" converges weakly to a probability iff 2 is not the
point mass at the matrix [ ! é J Further, if S(u}, the closed support of u

1
contains a matrix other than [ [IJ {1) ] and [ [1} [1] ] then the limit probability

is concentrated on K - the set of all matrices of the form { 2 % - 2 ‘, where
0<a<l, |

In this chapter the problem mentioned earlier will be considered for prob-
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abilities on 3 x 3 stochastic matrices, and in the next chapter for probabilities
on general d X d stochastic matrices. Even though our study of probabilities
on general d X d stochastic matrices will be self-contained, we present the
investigations for the case of 3 X 3 stochastic matrices separately because of
two reasons, Firstly, it gives more transparent picture about the support of p
when 1" converges, The calculations are less algebraic in nature compared to
the general case. Secondly, this analysis would perhaps help in determining
whether the limit of 1" , when exists, is singular or absolutely continuous
with respect to the Lebesgue measure in an appropriate parametrization of

the problem.
We should mention that S. Dhar and A.Mukherjea [11] have indepen-

dently obtained Theorem 7.1 by different techniques. Their arguments are
mainly algebraic in nature and depend on earlier results of Mukherjea and
his coauthors. Qur argument is necessarily lengthy because we consider case
by case and is more probabilistic in nature with explicit computations in

some cases where convergence actually occurs,

Before concluding the section we present a brief proof of the theorem

mentioned above, essentially the same as in [22] :
So let 1 be a probability on 5, the space of 2 x 2 stochastic matrices. Let

I stand for the identity matrix and X stand for the matrix [ {1] é J

Clearly if 1 is the point mass at the matrix T then " does not converge.
Conversely suppose that g is not point mass at T, The case when y is con-
centrated at I alone is trivial, If u is concentrated only at I and 7' — and
hence giving positive mass to each of them — then a direct calculation shows
that 4" converges to the probability giving equal mass to each of these ma-
trices. If this is not the case then the closed support of i includes a matrix
P which corresponds to either an absorbing chain or an aperiodic recurrent,
chain and one knows that in such a case the powers of P converge to a rank
one matrix. Thus the closed semigroup generated by the closed support of
# contains a rank one matrix, By a result of Rosenblatt [29], to be stated in
the next section, any limit point of u® is concentrated on rank one matrices,
For any two rank one matrices A and B we have AB = B, Thus if v; and v,
are two limit points then vy = vy %xve = p*iy = v;. This shows that there
is only one limit point for the sequence p". The compactness of the space of

probabilities now completes the proof.
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Section 2 : A Basic Observation

Here we introduce some convenient notations, S; denotes the set of all
d x d stochastic matrices with usual topology. Sy is a semigroup with identity
under multiplication. For any probability & on Sy, S;{u) denotes the closed
support of 1 and Sy denotes the closed semigroup generated by Sy(p). For
two probabilities u, v on Sy; 1 x v denotes their convolution and u™ denotes

the nth convolution power of .
Though our main interest is the semigroup Sy, it is not always the case

that the closed support of 4 generates S;. Thus we shall be interested in sub-
semigroups of Sy as well. We now recall a fundamental result of Rosenblatt
(29] which plays a crucial role in the analysis. So let S be a compact metric
semigroup. Recall that Kernel K of S is the smallest non-empty two-sided
ideal of S. Suppose that u is a probability on (the Borel o-field of) S.

Lemma ( Rosenblatt ) : Every limit point of u" is concentrated on K.,

This is Lemma 3, p.141 of [29]. Of course there the result is stated for
more general compact Hausdorff semigroups, but we will have no occasion

to use in this generality.
In our case, K, the Kernel of Sy, consists of all d X d stochastic matrices

with identical rows. If 84N Ky # @, then by the above result, every limit
point v of u" is concentrated on Sy N KXy, Observe that zy = y holds for all
2,y € K4, This implies that if »; and v, are two probabilities concentrated

on Ky then v % s = 1. As a consequence, if SyN Ky # 0 and vy, v, are two
limit points of {u"},>1, then vy = ¥y % g = g ¥ 1 = 1. Thus we get

Lemma 2.1 :- Let d > 2. If S;N K4 # 0 then u" converges.

Of course, even when S; N Ky = @, u* may converge. For example if
d = 2, there are only three cases when Sg N Ky = {), namely :-

s=1{(1 5)} o s ={(5 1)}

F

o s ={(15):(0 1)}

These cases have been already discussed in the previous section,
But even for d = 3, there are a large number of interesting cases where

S; N Ky = 0. We deal with them in the following sections.

-v-
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In what follows, we omit the subscripts ‘d’ from Sy, K, Sq and Sg(y) and
write them simply as 5, K, S and S(jz) respectively with the understanding

that d = 3.

Section 3 : Classifying stochastic matrices of order 3:

As stated earlier, our analysis of convergence of 4" is done case by case ,
depending on which matrices are in the support of u. To facilitate this, we
divide S into certain subsets according to — following classical terminology -
the number of recurrent and transient classes :-

(1) All three states are recurrent and they form disjoint classes :- Identity
matrix is the only matrix in this subset. Let us call this subset to be 5.

Then S, is closed in S,

(2) Two recurrent classes and no transient class :- There are three such sub-
sets, namely,

1 0 O

So = 0 o l-« 0<a<l, 0<pB<L1
0 B 1-8
1-84 0 8

Sog=¢ | 0 10 0<a<l, 0<fB<1
l-a 0 «
¢ l-a 0

Soz = A 1-8 0 0<a<l, 0<pB<1
60 0 1

Call Sy = 551 U S92 U Sg3. Of course S; is not closed in 5.

(3) Two recurrent and one transient classes ;- There are, once again, three
such subsets, namely,

[ 1-a~-8 a B )
5'31={( 0 1 ‘3) o, 200<a+<1)

/

1 0 0
‘932:{(5 l—a-f "-"‘) :ﬂ:520=0<a+ﬂ51}
0 0 1
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1 0 0
533={(0 1 0 ) :a,ﬁ20,0<a+ﬁ31}
a f 1l—-a-§

Call S5 = S3; U S39 U S33.

(4) One recurrent class and no transient class :- This class consists of the

irreducible matrices, namely,
(i) Irreducible, aperiodic matrices forming the subset Sj

(ii) Irreducible period-two matrices : -
0 a 1-¢
Se = 1 0 O :0<ax<l
1 0 0
0 1 0
S5 = l-a 0 a | :0<a<l
0 1 0
0 0 1
5%, = 0 0 1] :0<acx<l
a 1—-a 0

Denote S? = S% U S3, U Sis.

(iii} Irreducible period-three matrices : -

0 1 0 0 0 1
531-—-{ (0 1) o83, = 1 0 0
1 0 0 0 1 0

Gall Sg —_ S‘?l U SEQ.

Lo B i T T

(5) One recurrent class having two states and one transient class :-

Skq is the set of all matrices

{/1-—7—57 J \}
0 a 1 —o
\ 0 B 1-08)

where
0<a<l, 0<B<1,7620,0<y+d<1
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Sso 18 the set of all matrices
17 0 B8
0 l—7v—-4§ #
1~ 0 o )

0fa<,0<f<],,d200<y+d0<1

where

Sg3 18 the set of all matrices
(o 1-q 0 \
g 1-4 0
\Y & 1-v-4)

0€a<],0<f<L],7,0200<y+d0<1

where

Call 55 = S5 U S50 U Ska.

(6) One recurrent class with one state and other states are transient :

/1 0 0
Sﬁl={ (a ] ~a-~pf B ) :Dﬁa,ﬁ,'}*,é;a+ﬁ>0,'y+6>0}
Y i) l—-y—§

1-9-40 = 4
Sgo = 0 1 0 0L o, 8,7, 0+ 3> 0,v+6>0
i o l—a-7f
l—aq—-f I3, o5
Se3 = 0 l1—9—6 v 0L e, 8,7, 0,0+ 8>0,v+6 >0
0 0 1

Call Sg = Sg1 U Sz U S53.

Now if we study carefully the closures of the above sets, we can make the
following conclusions : -
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Remark 1. Matrices from (2), (3) and (5} above have come from one of
the following large subclasses of S :-

l=y~6 v 6
Tl: 0 a l-a :057:617+5:a:ﬁ51

0 g 1-4
1-8 0 P

1y = 0 l1-v-4 « :03’}’,5,’}’+5,ﬂ,ﬁ£1
l -« 0 Q

a 1-a 0
Ty = g 1-5 0 07 04,7+4,0,6<1

Then,
TV =S USaUSs, To=252U’833USs, Ti=_S53US3USs

Observe that an appropriate renaming of the states leads from one of the
large subclasses above to the others .

Remark 2. Closures of each of the subsets in (2),(3),(5) and (6) contains
S\, that is, their closures contain the identity matrix.

Remark 3. We have,

1 0 0

Ny € S5 N S35, where Ny = 0 0 1 :
0 0 1
—_— 1 0 0

Ny € S9N S33, where No= [ 0 1 0 ],
0 1 0

Similarly, Sz N Ssa, S22 N Sa1, S23 N S1, G2 N Sz contain the zero-one
matrices N3, Ny, N, Ng respectively defined in an appropriate way.

Remark 4.

Apart from the identity matrix e, , there are five more permutation
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matrices, namely,

1 0 0\
001/,
0 1 0

0 0 1Y\
and 1 0 0 .
0 1 0

We denote them by e;, ez, €3, e4 and eg respectively. Then e; € S;;1,e5 €
322, €3 € 523 and SEI = {64},332 == {85},31 — {eﬂ}. Let us call P to be the
set of all these permutation matrices and let P, = {ej, ez, €3} and P, =
{30i34:eﬁ}

Remark 5. Define S|, S8, S8; ,subsets of Sgi,Ss2, 53 respectively, as
follows : -

——

e,
——

e B e T

0
0
1

O = O
"v..,-.-__-__-'*,r

—t O O
e T e S S
S

— =
Lo B e TR
- o O
N

-~

l—y—-4d ~+ 4
Sg = 0 0 1] :4d2012v+6>0
0 1 0
0 0 1
852"- § 1-vy—-0 7 :v,620,127y+4+46>0
1 { 0
0 1 0
Ssy = 10 0 v, 020,12 74+6>0
vy 6§ 1-vy-=24

Then e; € 3'_5'{’;, for 1 =1,2,3.

Remark 6. We have, 3?;0 Ska, 3'?;0 5’53,-5_'50553,:5'“50 ,5'51,“5_'?;0 5'51,3'-50
Sso are singletons containing the matrices My, My, M3, My, My, Mg respec-

tively, where,

0 0 1 1 010 0 1 0

1 00/, 1 00 01 0 :

01 0\ " 0 0 1 0 0 1
M={“01)}MF{(ooq}jm= 0 0 1 .

010/ 01 0 1 0 0O




Section 4 : Some Elementary Cases

From now on, i is a probability on S. We start with some preliminary
observations :-

1.

4] §

If S{(u) C S5;, then state 1 being fixed, 2 x 2 case of Theorem 1.1 shows
that u" converges iff i £ &,,. Similar conclusions hold if S(u) C Soq or

S{p) C Sas .

If S(u) N S; # 0, then for each matrix A € S}, we know that A"
converges to a matrix with identical rows., Thus, S N K # § which

implies, by lemma 2.1, that u* converges.

If S()N (S5 —S2) # B, then § contains a matrix for which one column
will be zero, one column will consist of all ¢’s and the remaining column
will consist of all (1 —a)'s for some 0 < @ < 1. This once again implies

that, SN K # @ and u® converges.

If S(u)N.Sg # @ then & has a matrix which has one column consisting
of ones implying that SN K # () and hence u® converges.

If S(u) C {Ny,No}, or S(u) € { N3, Ny}, or S(u) € {Ns, N}, we
have, u® = p for all n > 1 so that u* converges to u itself. On the
other hand, if S(u) € {M;, My}, or S(u) C {M;, My}, or S(u) C
{ Ms, Ms}, then p" does not converge.

If S(p) € 53, or Sy C 52, or S(u) C S%4, then the supports of
u¥ for k even and k odd are disjoint so that p" does not converge.

If S(p) € ST, or S(u) C 59, or S(u) C 5%, then, once again, the
supports of u* for k even and k odd are disjoint so that u® does not

converge.

If S(u) = {N;, M;} for 1<14<6, then p" converges to the measure
putting mass 1/2 to each of the two matrices.

If S(u) C {Ny, No, My, My} and includes {Ny, Ma} or  {Ny, M}, then
u" converges to the uniform probability on {Ni, Ng, My, M, }.

If S(p) C { N3, Ny, M3, My} and includes { N3, My} or  {Ny, M3}, then
u" converges to the uniform probability on {Ns, Ny, M3, My }.
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If S()U,) C {Nﬁ, Nﬂ, 11/[5, Mﬁ} and includes {NE,, Mﬁ} or {Nﬁ, Mﬁ.}, then
u™ converges to the uniform probability on {Ng, Ng, Ms, Ms}.

10. If S(p) € P, the set of permutation matrices (see Remark 4 of previous
section for notations), then we have the following conclusions.

(a) In case = de,, 1 < 1< 5, clearly, 4™ does not converge.

(b) If S(p) C P, supports of u® and p**! are disjoint so that u™ does
not converge,

(c) If S(u) € P, and is not a singleton, then u" converges to the limit
putting equal masses at eq, €4, €5,

(d) If S(u) N P, # 0 and S(p) N P, # @, then p® converges to the limit
which is uniform having support P,

11, If S{u) NS} # O and either of the following holds, then SN K # @ : -
(8)S(1) 1 (S8 ~ {1, ea, €3}) # 0,

(b)S () N SF # 0,
(¢)S (1) NS5 # 0,

(d)S(p) N (Sy — {ex, €2y €3}) # 0.

Remark 1, Because of the above, we shall make the following assumptions
for sections 5 and 6

DNS(u)NSF=0, SE)N(Ss—S5) =0 S(p)NSs=0. See 2,3 and 4
above,

i1)S(p) — So; # 0,1 <1< 3. See 1 above,
iii)S () — 52 £ 0,1 <4< 3. See 6 above.

iv)S(u) — S% # 0,1 <i < 3. See 7 above.
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v)S(u) — P # 0. See 10 above.
vi)S(u)NS; = 0. See 11 above.,

VII)S(,LL) — {Nf,ﬂ/ff,NHl,MHl} ?é @ for i = 1,3,5, See 5, 8, and 9

above.
Remark 2. Under the above assumptions, it follows that

S(u) C 8 NS NSNSENSE
We shall now divide the remaining cases into two broad divisions accord-

ingas SNK =0 and SN K # § and discuss them in sections 5 and 6
respectively,

Section 5 : Some Special Cases

In the next section we discuss the convergence or otherwise of 4™ in all
cases. In order not to interrupt that discussion we consider four special cases
in this section. In all these cases, we find that SN K = 0. However we

succeed in constructing the Kernel of the semigroup §. This by Rosenblatt’s
lemma, [29] allows us to infer where the limit points of 4" are concentrated.
But an extra argument is still needed to show that there is only one limit.
We shall do this thereby showing that in all these four cases u" does indeed
converge,

Case | : First of all, we consider the case when S{u) C S5 or S(u) C Sy or
S(n) € Sss.

To be specific, we consider :-

([l~a-8 a §
S(}J)ESgl:{ 0 1 0 <, <1, a+08>0),.
0 01

Then, S, is the closed semigroup generated by Sy , that is, S C S3; and
the kernel K3, of S3; is given by :-

0 ¢ 1—o)
1(31: 0 1 0 .OSCEE].
' 00 1
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Then, clearly, SN K3, # 0. So, by Rossenblatt’s result mentioned in

section 2, any cluster point of {z"},>; will have support € Kj;. Since
zy = x for all z,y € K3, we see as in section 2 that if 14 and v, are two

cluster points, then v, = vy so that u" converges.
Similarly, in case S(g) C Sz or S(u) C Sys, analogous arguments will

conclude that u" converges.

Case_II : Next we consider the following set of cases :-

(a)Ny € S(u),  S(w) - {N1, M} € S

) (1),  S(u) = {Ns, My} C S
(c)N3 € S(u), S(u) — {Ns, My} C Sia
(d)Ny € S(u), S(u) — { Ny, My} C S,
(€) (1), S(u) ~ {Ns, Ms} C Sis
(f)Ns € S(u), S(u) — {Ns, Ms} C S3;

We shall discuss the case (d). Other cases are similar.
Now,

l-a 0 «
S§2= 0 10 <<l
l-a 0 o

The closed semigroup generated by S%, is given by

/[1-a 0 a\ / 0 10 ”"
84= 0 1 O y ]_——‘BOﬂ :OSCE:ﬁS”
\1l-a 0 a/ \ 0 10

/

= 541 |J 842 (S&)’)

1
where, 841 = {(

1

0 1
and S4gﬁ 1-,3 0

0 1

84

\
. 0<agl
/

4
0
Y
):OSﬂﬁl}
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Thus in this case &, the closed semigroup generated by the support of .
is contained in &y, Then, observe that N3, Mg, Ny, M, all belong to S, where,

0 0 0 0 1
N3= 1 0 ,N4= 0 1 0 y

g 0 - 0 0 1

1 0

0 0

1

0

0 0
M3: 1 ’ﬂ{{‘i: 1 .

0 1 0 0

The Kernel of the semigroup Ky is 8; itself,
Then the case under consideration is covered by the following claim which

we shall prove :-
Claim : If u(8y) = 1 then, u” converges as soon as 1(Sq;) > 0 and p(Sy2) > 0.

To do this, we shall indeed show that for every Borel subset A of S4, u"(A)
converges — in particular u" converges weakly. We define a map ¢ : §4 — &4

by
l—-a 0 « /[ 0 1 0
¢ 0 1 0 l-a 0 aa |, 0€£a<]
1 0

L I e B
bt )

Il

l—a 0 « " 0

and
0 1 0) [1-8 0 f

ol 1-8 0 B | = 0 1 0|, 0<£6<L1
0 1 0/ \1-8 0 8

Then ¢ is a bijection, ¢ = ¢~, ¢(Si1) = Syz and ¢(Ssq) = Su1.
We start by observing that

111'6841,116541 :By=y€<5'41
T 6541,?} € Sio
£L 6542,‘},! c 841

T € 542,’31 € 842

TY =Y € S0
zy = ¢(y) € Sy
zy = ¢(y) € Sa

1Ll

Note that, for any two probabilities z; and g, on Sy,
p1 ¥ pa(A) = fuz['y zy € A (dz)
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= / toly : zy € Al uy(dz) +/ paly 1 zy € Al (dz)
Si1 S42

= -[541 poly 1y € Al i (dz) + fsﬂ poly : ¢(y) € 4] pu(de)

= ﬂ2(A)H_1 (Sa1) + 1207 (A) 21 (Saz)
= tp(A) (S} + padp(A) 1 (Sag) [ since ¢ = ¢7'] — —()

Now let 1 be any probability on 84 with 4(S41) = ¢, 0 < c < 1. Let A C 8y;.
Let for n > 1, o, and S, denote u"(A) and u"(¢(A)) respectively.
Then, from (), for any Borel set B,

pUB) = px p"(B) = pM(B)(Su) + 1" (#(B))1(Ss2)
In particular, setting B = A, we get,

ane1 = WA) = A p(Sn) + " (d(A)) p(Saz)
= QpuC+ ﬁn(l - C)

and setting B = ¢(A), we get,

Brar = 1 B(A)) = u™(@(A))u(Sa1) + p™(A) 1 Sa2)
- = fne+ oyl - c)

Gyt 1 ¢ l-—c¢ Cp |\ c l-c¢\" Xy
o (G )= (2 ) (R) - (s ) (5)
1/2 1/2 o
-—>(1/2 1/2)()3:)35?1—}00

as D < ¢ < 1.
So, — A2 and B, —» A as n — co. Hence, u*(A) and
11" (¢(A)) converges completing the proof.

Cases (a),(b),(c),(e) and (f) can be disposed of in a similar fashion.

Case III ;

Here we consider the following three cases dependingon i =1, 2 or 3:

S(u)N Sa; #0, S(u)NSL#G and S(u) C Sa U SY.
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We shall only consider the case corresponding to ¢ = 1. Then the closed
semigroup generated by S3; and S¥; is given by Sa5 = Sa3 U Sss where

a b c
Sag = 0 1 0 {:a,0,c>20, a+b+c=1
559) |
[a b c)
Sgs = 0 0 1 a,0,c20, at+b4+c=15),
\ 0 1 0/

Thus in this case the closed semigroup S generated by the support of 4
is contained in S35. The kernel of the semigroup Sss is K35 = Kag U K
where K33 and Kps consist of all matrices in S33 and Sss respectively with
¢ = 0. The case under consideration is covered by the following claim which

we shall prove
Claim : If p(Sss) = 1, p(Ss3) > 0, u(Sss) > 0, then u® converges.
From now on we assume that u is as in the claim and we put ¢ = p(Sa3)

so that 0 < ¢ < 1,
It @ is any limit point of x" then by Rosenblatt’s result, Q(Kss) = 1.

We now argue that Q(Ks3) = Q(Kss) = 4. First note that for z,y € S35 we
have zy € &gz iff either both 2,y are in Ss3 or both z,y are in Ss5. As a

consequence if we let a;,, = u™(8s3) then
Qpy1 = / Ky 2y € S3a)du(z)
= e+ (1—oy)(1 - ¢)

) (2C - 1)“ + (1 - C) E(QC - l)k
k=0

1l

‘Thus Qi1
1
— 5 as 0 <exl.

Let ¢ be the map from 835 to S35 which interchanges the last two columns.
Then ¢ is a bijection, ¢ = ¢~}; ¢(S33) = Sss: ¢(K33) = Kss. Moreover for
x,y € Kas we have 2.y = x or ¢{z) according as y € K33 or ¥y € K;s5. Thus
the premultiplier matrix z determines the entries of the product.

As a consequence for two probabilities @, @ supported on K3y it is easy
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to see that

Qu+ @o(a) = LA+ PA)

Then, since by Lemma 2.1 proved in section 2 of chapter 3, the set of
limit points of (4")n>1 is a group, let R be the identity of the group. Then,
for any other limit point (), we have, @* R = RxQ = (). So, taking Qs = R

above, we get,
A) + A
This implies that @,(A) = Q1(¢(A)) for any Borel subset of Ss35 and conse-

quently it follows that ¢; = @1 * Qs.
Thus if ¢, Q2 are two limit points of (1") then using the fact that ¢ *

Q2 = Q2 ¥ Q) we get

Q1= Q1 x Q2 = Q2 *x Q) = Q.

So, any two limit points are same or p" converges.
Alternatively, if one does not wish to use the lemma, one can argue as

follows :
Let us consider a sequence of i.i.d, matrices Xy, Xo, -+ each having dis-
tribution u so that ¥, = X, -+ X, has distribution p". First observe that

1 0 0 1 0 0Y\°
if 4 is concentrated on¢ [ 0 1 0 0 0 1 | giving positive mass to
0 0 1 010/,
1

both the matrices, then p" converges to ¢ which puts mass 5 at each of
these two matrices — a fact already pointed out in section 4. From now on we
assume that this is not the case. In other words if Z denotes the first entry
of the random matrix X, then u(Z < 1) > 0. Note that as a consequence if
p=FE(Z)then 0 <p <1
To make the arguments transparent we shall first consider the case u(Kss) >

0 — though the proof for the general case applies here too. In this case we
show that for every Borel set A C Sss, 4" (A) converges. Since u{Kss) > 0,
almost surely Xy € Kas for some random integer N and then of course for
alln > N, Y, € K35. As a consequence if A = S35 — K35 then pu"(A) — 0
(as it should). Now fix any Borel set A C Kgzs. We show that {u"(A4)}
is a cauchy sequence, To this end fix ¢ > 0. Choose an integer £ so that
P(N < k) > 1 —¢/4 and also that |a, — %] < ¢/4 for n > k. Recall that

a, = (1"(S35) — 1/2. Now for any n > 2%
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pt(A)
= P(Y, € A)
= P(Yh € A, H?=k+1 Xi € 833) + P(}"}; S ¢(A)5 ?:k-f-lXﬂ S 555)
+P (Y & Kas; Yo € A) .
= an-k " (A) + (1 ~ an-)p*(¢(A)) + P(Yy & Ka5, Yy, € A).
Since |an—x — 3| < ¢/4 and P(Y, & K35) < €/4 we get that for n > 2k,

" (A) ﬂ'k(A) +;&(¢(A))I < /2

showing that for n,m > 2k |u"(A) — u™(A)| < € to complete the proof,
We shall now consider the general case. It suffices to show that for every

(bounded) continuous function f on Sgs with bounded first derivatives [ fdu™
converges — or that if is a cauchy sequence. Define the numbers

Ap — E[f(yn)l}’nESaa]: by = E[f(qs(yn))ll”néssﬁ:
Cn = E[f(yﬂ)l}’negﬁﬁ]ﬁ ty = E[f(¢(yﬂ))lyn6533:

and the matrix M, by
ﬂ’ﬂ- bﬂ
e (2 )

Let Z, denote the first entry of Y;,. Explicit calculations show that if Xna1 €
Szz then Y, X,41 — Y, has second and third rows null while each entry in
first row is smaller then Z, in modulus.” On the other hand, if X,,.; € Sk;
then Y, X,+1 — ¢(Yn) has second and third rows null while each entry in
the first row is smaller than Z, in modulus. This fact combined with the

meanvalue theorem yields that |f(Yn41)—f(¥a)| < kZ, when X4, € S33 and
|f (Vo) —f(d(Yy))| € kZ, when X411 € Sss where £ is a constant depending
on the first derivates of f which were assumed bounded. Observing that

tns1 = E[f (Yas1)lviesu L xniiess) + Ef (Yar1) v, e85 Lxnri €8s )

we obtaln
lans1 — [can + (1 — c)by]| < kE(Z,)

Observing that Z,, is nothing but the product of the first entries of Xy, +, X,
we have E(Z,) = p". Recall that p = F(Z;) and 0 <p < 1. Thus

lans1 — [can + (1 = c)by]| < kp™
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Letting C be the matrix ( lfc 1;6) and U/ be the matrix ( i i ), &

similar calculation with b,, ¢, d,, gives us
ﬂ’fnc _' an < Mn+1 < ﬂ/fnc 'I"an

entrywise. Noting that C* converges to the matrix with all entries %— and the
fact that 2p™ converges it is not difficult to show that entries of M, form

cauchy sequences. Observing that £[f(Y,)] = an + cn we conclude that it is
a cauchy sequence to complete the proof. Incidentally, notice that E(f(Y,))

and E(f{¢(Y;))) have the same limit.
This completes the proof of the claim.

Case [V :-
Lastly, we have three cases depending on 4 =1, 2, or 3 are:
S(m)NTs#6, SuNSE#0 and S(u)C SHUSE
We shall only discuss the case ¢ = 1. The other cases can be similarly

disposed of, o
So. for ¢ = 1, the closed semigroup generated by Ss; and S% is given by,

L J

1 0 0 0 6 1-9
Soy = 0 a 1-a |, I 0 0 0< e, 8,0 <1
0 g 1-7 1 0 0

Thus in this case the closed semigroup & generated by the support of p is
contained in Syy. The kernel of &y is given by

/1 0 0 0 6 1—-9¢
I{oy = 0 v 1-o |, 1 0 0 : 0<£v,0,<1
0 v 1—-9) 1 0 O

This is the same as the kernel K in Case II mentioned earlier which we just
get by renaming the states (1,2,3) as (2,3,1). But unlike Case II, here the
closed semigroup is not itself the kernel. In that sense, it i1s rather like Case

111,
Let us write 524 = 822 U 544
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(/1 0 0 Y
822: 0 o 1-¢ :Ogﬂ,ﬁgl

N0 6 1-§)

0 § 1—6)
S.-_M: 1 0 0 Oi:tSS].
10 0

Also write 1{24 = Kgg L I{M.

where
/10 0
Koy = 0 v l—-v]:0L9<1
\0 7 1-7
/0 5 1-6)
1 0 0
Then note :

(1) Sap is the closed semigroup Sq1 and Ky is its corresponding kernel,
So, if S, € Sag, then the 2 x 2 case implies that u® converges unless

h=0d,1 0 0\
0 0 1
0 1 0

(2) 844 — 1{44.

Now, let ¢ : Koy — Ky be defined by

/1 0 0 0 v 1—7
o 0 v 1—7 1 0 O

\0 v 1—-7 1 0 O
and

[0y 1-y) (10 0O )
o1 1 0 O =] 0 v 1~y
10 0 / N0y 1-7v/
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Then ¢ is a bijection, ¢ = ¢~ and ¢(Kgg) = K.

Also, observe that if z,y € Kay, oy = y or ¢(y) according as x € Ky, or
K44. Hence, unlike Case III, here the matrix which post multiplies defermines
the entries of the product matrix. The case under consideration is covered

by the following claim which we shall prove.

Claim : If u(Sa4) = 1, p(Saz) > 0, p(S4q) > 0 then p" converges.
From now on, we assume that g is as in the claim and we put ¢ = u(Ss3)

so that 0 < ¢ < 1.
If ¢ is any limit point of x", then once again, by Rosenblatt’s result,

(Ky) = 1. Now, denoting u"(Sy;) by an, we can prove exactly as in Case
III that &, — £ as n — co. This explains : Q(Kaq) = Q(Ku4) = .

Again, Q*CQ(A) = @A) +2Qﬂ(¢(‘4)) for any Borel subset A of Ky4.

Now, once again, using the Lemma 2.1 proved in section 2 of chapter 3
that the set of limit points of (u"),>1 is a group, let K be the identity of the
group. Then, taking Q1 = R above, we get Q2(A) = Q2(¢(A)) for any Borel
subset A of So4.

Thus if Q1, Qs are two limit points of (x") then using the fact that @ *

Qs = @y * Q)1 we get
Qo=@ * Q= Qa* Q= Q1.

So, any two limit points are equal.
Alternatively, without using the lemma also, the above claim can be

proved arguing in a similar fashion as in Case III.
This completes the proof of the claim.

Section 6 : Completion of the discussion

Having paved the way by discussing several cases in the previous two sec-
tions we now start our book keeping and discuss the convergence or otherwise
of the sequence u". At the outset let us recall that we can and shall assume °

that condition A below holds. When A fails section 4 already discusses the
cases of convergence (See Remark 1 and Remark 2 of section 4).
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(A) S(p) € S USUSUSTUSE,

In paticular,
(A1) S(u)N S =8,5(u)N(Ss—S%) =0, S(u)NSe= 0.

(A Vii) S(u) -— {N;', ﬂ/fi, N,'+1, Mi.,z.l} 7é E’ for 1= 1, 3, D.

1. If S(p) €S9, then because of (Aiii) and (Aiv), SN K # 0.
2. If S(pu) C SY U S?, then because of (Aiii), SN K # 0.

Remark. 1 and 2 above complete the discussion of convergence of {y"}
when S(u) is contained in S§ U S? .

3,  S(u) CSYuUS?US,, then under asssumptions i)-vii) in Remark 1 of
Section 4, we see that S N XK 3 0 unless one of the following four cases

(a}, (b), (c) or (d) holds:-
(a) S(p) C S31 or S(u) C Sz or S(u) C Ssa.
This has been done in section 5, case (I).

(b)
I)S([J,) 0831 = {N4} and S(M) — S31 (__; SEZI

i1)S (1) N S31 = {Ns} and S(p) — Sa1 C Siy,s
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iii}S () N Sag = {Ns} and S(p) — Sy2 C S5,
| iv)S(p) NSz = {N1} and S(p) — Ss € 54,
v)S(p) N Szs = {No} and S(p) = Ss3 € Siy,
vi)S(u) N Ss3 = {Na} and S(u) — Sa3 C S5,

These cases have already been discussed in section §, case(II).
(c}S(u)NSs; # B, S(u)NSE A0 and  S(u) C SuUSY.  for some i, 7=
1,2, 3.

These cases have been discussed in section 5, case(III).

(d) Ngi_l, Mgi_1 = S([J;) and S(}L)—{Ngi_.l, Mgi_.l} g_: Si: for some ‘E:, 1=
1,2,3 or,

N, Moy € S(M) and S(/.L) — {Ngi, Mgi} - Si for some, 1=1,2,3.

These cases have been considered in section 5, case(1I),

Remark. 1,2 and 3 above complete the discussion of convergence of
{u™} when S(p) is contained in SP U S5 U S; .

. S(1) C S2US2US3US,, then we can see that under (Ai-vil) , SNK # {
unless one of the following two cases (a) or (b) hold :-

(a)e; € S(u) and S(p) - {&} C S5 US, and S(p) N Sy #
) forsomes:, i=1,2,3.

This case has also been done in section 5, case(III).

(b)S(u) N Sy #0, Su)NSH#D and S(p) € 5 U Sk

This case has been done in section 5, case (IV).

Remark. 1,2,3 and 4 above complete the discussion of convergence of
{4*} when S(u) is contained in S§ U S;US3U S; .
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5. e, € S{u).

In this case u" always converges as can be seen by going through all
the previous cases successively. Firstly, in the four cases considered in
section 5, e, is already allowed in Cases I, III and IV and allowing it in
Case I does not cause any problem. Secondly in all the cases considered

above whenever convergence holds, it continues to hold even if e, is
present in S(u). Finally in the few cases above where convergence
failed, including e, leads to convergence either by direct computation
or by observing that SN K # 0 or by appealing to the cases in section

3.

Remark. The arguments in sections 4, 5 and 6 above conclude the discussion
of convergence of u™,

Section 7 : Main Theorem

From our discussions so far, it is clear that u” does not converge iff one
of the following conditions hold :-

1. S(u) c 89, for somei=1,2,3
2. S(w) C 8%, for some i =1,2,3
= 55 = {ea} or S(u) = S5i = {es}.

A clear picture will emerge if we make the following definition :-

Suppose S is a set of stochastic matrices of order 3. We say that S is a
cyclic family if there are Sy, -+, S, — pairwise disjoint subsets of {1, 2, 3}
so that for any 1 < { < m, for all 1 € 5}, Yjeg,,, pij = 1 [Treat m+ 1 as 1],

Here UT*S; need not be equal to {1,2,3}.
Condition (1) mentioned at the beginning of this section corresponds

to Sy = {2}, Sz = {8}. Similar construction of 57,5 hold for the other
analogues. In condition (2), S; = {1}, S2 = {2,3}. Similarly, we can
write down for the other analogues. In condition (3), if S(i) = {es}, S; =

{1}, S = {2}, S3 = {8} & if S(u) = {es}, Sy = {1}, 52 = {3}, S5 = {2}.

However in condition (4) mentioned above there is no such cyclic family.
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‘The conclusion mentioned at the beginning of the section may now be
succinctly stated as follows :-

Theorem 7.1 :- Suppose y is a probability on the set of stochastic matrices
of order 3. Then pu" does not converge to a limit if either S(u) is cyclic or
S(u) C {e1, ez, e3}.

It is interesting to note that in all the cases of nonconvergence supports of 1
and u? are disjoint. But of course the converse is clearly false.

We conclude this section with a few remarks -

Remark 1 :- Following a suggestion in (p.160 of [29]), it would be inter-
esting to find conditions for the limit of (") — when it exists - to be discrete,
singular or absolutely continuous, under suitable parametrization.

Remark 2 :- In all the four cases of non-convergence mentioned in section
7, it 18 easy to see that we have finitely many limit points for the sequence
u™ (see Theorem 3.4 in [22]). In fact, except case (3), we have only two limit
points for the other cases. In case of (3), we have three limit points for each

of the subcases i~ i = de, or it = de,.
Remark 3 :- It is clear from Remark 2 that in any case, * 7 u* converges.
This is of course well known {29).

Remark 4 :- When d = 2 the only case when {u"},>; does not converge
is given by u = 6( 0 1 ) In that case, S; = {1} and 53 = {2} form the two

1 0
cyclically moving subclasses and this is the only case when S(u) is cyclic.

Remark 5 : For iz on Sy (d > 2), if Sz(u) N Ky # 0, p™ converges weakly.
This follows from our discussions in section 2.

Section 8 : Non-i.i.d. Case (2 X 2)

In this section, we concentrate on Sy — the 2 x 2 stochastic matrices and

consider a sequence of probabilities, (pn)n>1 on Sy Let vy = py %< . We
are interested in conditions for the convergence of the sequence (v)>1. This

problem was raised by A. Mukherjea, We do not have a complete answer.
We shall be content with making some remarks. In our discussion, I denotes
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the identity matrix [ é ? J and T denotes the matrix ? é ]

First, we make some simplifications by removing uninteresting cases. We
can and shall assume that for no n, pu, = §; because such p,’s can be
deleted without affecting the discussion of convergence (and the limit too).
If after some stage, say, n > N, we have u,, = dr, then convergence holds
iff v, is symmetric under permutation of the two columns and in that case,
Vo = vy for all n > N. Thus, we can and shall assume that pu, is not
eventually dp. Again, if for infinitely many n, u, = dr, then we can delete
all such u,'s and call the resulting sequence [&,,. Denote ¥y = [iy % fig* - * jiy,
It is easy to see that v, converges iff 7, converges to some A which is invariant
under the permutation of the columns. Thus, we can and shall assume that
i, = 0 for only finitely many n. A little reflection shows that we can as well
assume that for no n, u, = d7. Since 0 appears finitely many times, only
for values of n < N say,we can replace the sequence (fin)n>1 by vy, ing1y o
as far as the convergence question is concerned,

Thus, we shall assume from now on that for no n, p, = & and for no
n, pn = 0p. Suppose each 4, is concentrated only on {I, T'}. Let u;(1) = a;
and 1;(T) = 1 — a;. Also, let vi{(I) = o and y(T) =1 — o,

Then,

i1 = 04841 + (1 — ;) (1 = aig1).

Setting ¢; = 0y — —%— for all 7, we get,

1 1 1
5 ipr = ('5 + )iy + (“2' = &)(l — Gigy)

which implies €41 = €¢;{2a;41 — 1] for all i. Now, since 0 < a; < 1 for all 4, we
have, | 2a;41 — 1 |< 1 for all . So,

| eiv1 [<[ & | Vi

Hence, | ¢; | decreases. Let it decrease to c.

In case ¢ = 0, @, — 3 and consequently, v, converges to the measure

putting mass 1 at each of J and T". One can verify that if a,’s are bounded

away from 0 and 1, then ¢ =0,

In case ¢ > 0, two cases arise. The first case is when an 5 1 after some
stage, say, [V. Then clearly €, converges to +c or —c depending on the sign
of €y. Thus, v, does converge. The second case is when a, < 1 for infinitely
many 7. Then, the signs of ¢, also change infinitely many tlmes and hence
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¢, has two limit points 4+¢ and —c¢. In this case, 1, does not converge, but it

has exactly two limit points,
Finally, we wish to make a comment regarding the periodic case.

Since we are assuming that none of our probabilities is o, clearly, p; *
ook fy 7 Op. Hence, limg (g * - - % py)™ exists. Denote it by A, Obviously,
lim, v, exists if we have Axy; = A for 1 <1 < k. Under our assumptions,
lim,, u;" exists. Let us denote it by A;. The condition A % u; = A implies, in

particular, that A x A; = A,
An interesting situation obtains if we assume that none of the u;’s are

concentrated on {7, T} alone, Then, each of the A;'s as well as A are concen-
trated on the Kernel. Consequently, A« A; = A;. Thus, in this situation, if v,

converges, then we must necessarily have, A; = A for all z.
Before concluding this section, we must mention that Hognas and Mukher-

jea {17] provided several conditions for the convergence of v,.

Section 9 : Bernoulli Convolutions

As in the previous section, we consider S; — the space of 2 x 2 stochas-

tic matrices. We know that if p is a probability on 5; and u is not the

point mass at the matrix [ {1} é , then u™ converges (see Theorem 1.1). We

now specialize to p concentrated on the subset of S; consisting of matrices

[ g }:g with a > b. Let D, be the subset of the unit square consisting

of points below the diagonal. More precisely, D, = {(a,0) : 0 < b < a £1}.
Clearly, we can think of D, as the above set of matrices by identifying (a, b)

with [ {; i :}f } Thus g is a probability on D,. u" converges to a probabil-

ity A concentrated on the Kernel K, namely, the set of matrices [ i i :i ]

With this identification in mind, the equation A % y = A can be written as

(9.1) Aoa] = [ A0, :g] du(a, b)

We shall consider the iterated function system on [0,1] given by (D, )
where we identify (a,b) € D, with the function fo4 : [0,1] = [0, 1] given by
fos(@) = b+ (a—b)z, =z €(0,1]. Note that fo5(0) = b and fo,(1) = a so
that the function f,; determines the point (a, b). More precisely, we have the
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Markov process outlined in chapter 1 : If we are at z € [0, 1] then we select
(a,b) € D, according to p and move to fg,(z).

Theorem : The iterated function system (D,,x) on [0,1] has unique
invariant measure and it is the probability A described above.

Proof.
The splitting condition holds and hence the system has a unique invariant

probability — call it v. So v satisfies
v(B) = | ply, B)dv(y)
where B is a Borel set and the transition function of the Markov process is

p(y, B) = u{(a,b) € D, : fop(y) € B}

T — b

— Thus, we have for every x with

Note that f,u(y) < 2z iff y £
0<z<1;

v[0,z] = /p{(a, b) € D, fap(y) < z}du(y)

= & [.L{(y, (@, b)) : fu,b(y) < *T}

r—b
v u{ (@8) v < “p)

= /v[O, i : :j] du(a, b)

Conversely, any v satisfying this equation for every z € [0, 1] is an invari-
ant measure. By uniqueness of invariant measure and equation (9.1} above,
we get the result.

Let us now further specialize ¢ to a probability concentrated at two points
(a1,b;) and (ag, by). The problem discussed in {22] is the nature of A. From
Dubins and Freedman [12] or Mukherjea [22], A has to be pure, either singular

or absolutely continuous.
Now fix (a1, 1), (as,b2) € D, and consider fi(z) = by + (a1 — b )z and

. by
falz) = by +(az—by)z on (0,1]. f1 and f; have fixed points o = (=5
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by
and p = 1 ~ (a; — by)
orbit f{*(x) increases to o whereas for 2 > «, the orbit f(z) decreases to a.
Similar remark holds for f; and 8. Let us now assume that for specificness,
0 £a < f <1 Ifa=p, then for every point z, the orbit of z under
any applications of f; or f, at each stage, converges to v and the limiting
probability A is point mass at c.

Let us now assume that 0 < a < f < 1. Then orbits being as described
above, any invariant measure is concentrated on the interval [, 5], which
is left invariant by both f; and f;. Thus, A is absolutely continucus ift the
invariant rmeasure for the iterated function system on the interval [¢, #] given

by

respectively, It is also easy to see that for z < ¢, the

H{z)=b+{a,~b)z wp. p

fg(.ﬂ) =— bg - (ﬂg - bg)lﬂ w.P. 1 — P

is absolutely continuous.
Let us define ¢ : [0,1] = [0,1] by é(z) = @ + (8 — a)z. Then fi, fo on
(@, B] are conjugate to g, and gz on {0,1] respectively where

gi(z) = (a1 — by
go(z) = (a2 — o)z + 1 = (a2 — by)]

Thus, we have,
Theorem : ) is absolutely continuous iff the (unique) invariant measure
for the iterated function system

qi(z) = (@1 —bi)r w.p. p
ga() = (ag —by)z +[1 = (ag = by)] wop. 1-p

on [0, 1] is absolutely continuous.

Let us now further specialize to the case p = 5 and a; — b = ag ~ by =1,
say. Thus our system consists of the two functions t2 and tx + (1 —1), each
with probability 3. As noted already in Dubins and Freedman, the invariant
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measure for this system is nothing but the distribution of (1 — ) 3%, "y,
where 7,’s are i.i.d. taking values 0 and 1, with probability —é- each. Thus,

we have,
Theorem : Let u be the probability giving equal mass to the matrices

a1 1 — 5] 9 1— 5]
{ b 1-b ] and [ by 1—b, J
where a, > b;,a0 > by and a; — by = a3 — by = £, say. Then, the limit
of 4" is absolutely continuous (where the limit on the Kernel is identified as

probability on [0,1]) iff the law of 3.°° , ¢"¢, is absolutely continuous where
én's are 1.1.d. +1 or —1 with equal probabilities.

Proof, Just note that T = %(en +1).

50, let us denote Y00, t*¢, by X, where ¢,'s are, as above, 1.i.d. &1 with
equal probabilities. The problem of deciding whether X; has an absolutely
continuous distribution is known in the literature as the problem of Bernoulli
Convolutions or Erdos problem. This has a long history. Since we are en-
thused about it, we decided to give some references and review the status of
the problem. In Kreshner and Wintner [20], they observed that the range
of X, is either a nowhere dense perfect set of Lebesgue measure zero or the
range consists of the entire interval [}, 1], according as ¢ < 3 or ¢ > 7. In
particular,for ¢ < -;—, X, is singular. For { = %, it is easy to see that X is
uniform [-2, 2J. |

In what follows, we shall restrict our attention to -é— < ¢t < 1. In Pisot
[26] and Vijayraghavan [34], certain algebraic numbers were studied which
were named as P.V. numbers by Salem [30]. A number A > 1 is a P.V.
number if it is the real root of a polynomial with integer co-efficients and
leading co-efficient unity whose other roots are strictly smaller than one in
modulus. Erdos [13] showed that if ¢ is reciprocal of a P.V. number then
the characteristic function of X; does not vanish at infinity and hence (by
purity) X, is singular. In Salem [31], it was shown that if the characteristic
function of X, does not vanish at infinity, then £ must be the reciprocal of
a P.V. number. In fact the only known examples of singular X; are when ¢
is reciprocal of a P.V. number. In Siegel {32}, a detailed study of the P.V. -
numbers is made and several such numbers in (3, 1) can be found. In Pisot
and Dufresnoy [27], it is shown that the smallest limit point of P.V. numbers
is the root of a2 — e —1 = 0. Reciprocal of the P.V. number given by the root
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of the above equation belongs to %, %) This shows that there are infinitely
many reciprocals of P.V. numbers in (7, 1). Thus there are infinitely many
t > % for which X, is singular.

In the other direction, Wintner [35] showed, among other things, that
11, -, =, 1his is easy to verify
22 23 23
directly also. Erdos [14] showed that for almost every ¢ in an interval near
1, Ay 1s absolutely continuous. Finally, Solomyak [33] showed that for a.e.
t € (3,1), X, has an L? density thus settling the problem. Kahane and
Salem (18] and Garcia [16] provided criteria for absolutely continuity in a
more general context (3. 7r,¢,).

Inspite of all this, so far the only specific examples of singularity are when
t is reciprocal of a P.V. number and those of absolute continuity are when ¢
is an integral root of . One should perhaps try ¢ which satisfy an equation
t" + t"*! = 1 or rational roots of ;. We had no success.

In Mukherjea and Tserpes(25], Mukherjea(22] or Mukherjea and Ratti

[24], several results regarding absolute continuity /singularity of the limit of
p" are given . The problem of deciding absolute continuity or singularity
of the limiting measure, of course, goes back to Rosenblatt (p.160 of [29]).
What we have done above is to relate the problem with random iterations.

Further the Rosenblatt problem when p puts equal masses at the matrices
[ a 1-a J and [ ay 1-az , where a; > by, a2 > by and ay ~ by = ag — by,

X, is absolutely continuous for { =

bl 1 - b1 bz 1-—- bﬁ
is shown to be equivalent to that of Erdos problem on Bernoulli Convolutions,

Thus all results there can be translated to the Rosenblatt problem. If a; —
by # as — by, or if we have unequal probabilities, then we have to go beyond

symmetric Bernoulli Convolutions and that is a diflerent story.
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CHAPTER - III

Convolution powers of probabilities on Stochastic
matrices

Summary

This chapter has five sections, In the first section, we introduce the
problem of convergence of convolution powers of a probability on the space
of d x d stochastic matrices. In section 2, we state and prove a wellknown
theorem on the set of limit points of a convolution sequence that will be
needed later. In the third section we fix our notation and recall the structure
of kernels of subsemigroups of d X d stochastic matrices following Rosenblatt.
We slightly modify this to obtain a decomposition of the kernel which extends
to the subsemigroup itself. In the following section, we state and prove
our main theorem, namely the sequence of convolution powers of a given
probability converges if and only if the sequence of convolution powers of an
associated probability on a finite permutation group converges. We conclude

with some remarks in the last section,

Section 1 : Introduction

In this chapter, we shall look at the behaviour of convoluticn powers of

probabilities on general d x d stochastis matrices.

Let S, denote the semigroup of d X d stochastic matrices, with usual
topology. Let u be a probability on Sy and 4" denote the n-fold convolution
of 1. We shall provide a necessary and sufficient condition for the convergence

of the sequence u® Roughly speaking " converges unless some kind of
periodicities are present. In a different direction, Dhar and Mukherjea [11]

showed the following : Let u be a probability on the multiplicative semigroup
of d x d matrices with non-negative entries. Suppose that the sequence
(4™)n>1 is tight and that the support of x contains a matrix with at least

d — 1 positive diagonal entries. Then u"™ coverges.



Section 2 : A Well Known Lemma.

The following lemma is well known - ( see Hognas and Mukherjea [17],
p.91-92, Theorem 2.13(ii)). Since their result is for more general semigroups
and their proof uses the machinery of semigroup theory, we decided to provide

a proof for the situation we have in mind.

Lemma 2.1,
Let p € P(Sq). Let G = {X : X is a limit point of (4*)}. Then G is a
commutative group under multiplication.

Proof.
If p™ — A; and p™ — A, then by continuity of convolution, pTmE

A xAg and p™t™M — Ay x A, showing that G is closed under convolution and
also that convolution is commutative on G.

If A1, A2 € G, we can get a A3 € G so that A\ = Az x . To see this, let
Ay = lim; p™ and A = lim; p™. By taking a subsequence of n; if necessary,
we can and shall assume that n; —m; 1 0o, By taking subsequences of both =;
and m;, we can and shall assume that 4" ~™i converges to say A3;. This serves
our purpose. Thus it shows that for any A € G, we have, Gx A=A *G =G.

Fix A € G. Using AxG = G, get n € G so that A xn = A\, Now, for
any @ € G, using G*x A = ¢, we get 5 € G so that f % A = o to see that
axn = [FxAxn = fxA = a. Thus 7 is the identity element. The observation
of earlier paragraph gives inverse elements, This completes the proof.

Section 3 : Kernel Structure

Let & be a closed subsemigroup of 5;. Then, S; being compact, & will
be compact. So, & has a kernel K which is a minimal two sided ideal and
matrices in A are of minimal rank in §. For example, if & = 5} itself, then
K precisely consists of all rank one matrices. Not only that, if & contains a
rank one matrix from Sy, then also, all the matrices in C will be of rank one.

To formulate our theorem, we need to know the structure of kernels. To
this end we fix some notation. So let S be a closed subsemigroup of S; with
kernel X, Let the rank of matrices in X be r. We shall now give a description
of matrices in the kernel.

Suppose that Cy,Cy, + -+, Cy, T is a partition of {1, 2,. .+, d} with |C;] = d;
for 1 <1 < r and |T| = dy. Here [C| denotes the number of elements in the
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set C'. Clearly 3 d; = d. To avoid notational complications we assume that
Ci={j:1<j<d}andingeneral C;={j: " d; <5< di} and
T=1{j:3]d <j<d}. Supposethat vy, vy, +,v, are probability vectors

(column) where v; is of length d;. By K{v;,vs,---,7,) we denote the block
diagonal matrix for which the C; x C; block consists of identical rows each
row being v;. If 7 is a permutation of {1,2,.-,r} we denote by nX the

block matrix with Cj x C; block being 0 if i # 7(j) while the Cy x C;
block consists of dr(;) identical rows each row being v}. Thus, for example,
ifr =2, dy =2, and dy = 3 and vy, vy are probability vectors of size 2 and 3

respectively and 7 is the permutation interchanging 1 and 2, then

[ v \ U
4o [0 %)
I 2
K(vy,vp) = vh and K = |
0 v v; O
%) \ ¥ /
Let W be a stochastic matrix of order dy x (d - dg) for which the columns
other than 1, dy+1,dy4+do+ 1, ., dy+ -+ +d.—1+1 are zero columns. Such

matrices will be called weight matrices.
Here then is the structure of the matrices in the kernel as developed by

Rosenblatt (29]. After a suitable renaming of rows and columns , if necessary
~ there is a partition (1, Cy, -+, C,, T as above such that every matrix in the
kernel of & has the form ( I/Iﬁﬁ( 8 ) for some K and weight matrix W
and some permutation 7 of {1,2,---,7} as above. Since, the block matrix
7K consists of r blocks, each of rank 1 and since the rows corresponding
to the states in T are convex linear combinations of the rows above it, this
justifies that the matrices of above description are indeed of rank 7, In this
description of the kernel, T is allowed to be empty. In such a case, weight
matrices do not appear and thus every matrix in the kernel is of the form
(91

Thus if X is the kernel of & we can partition X as £ = (J KX, where

: . 7K 0
K, consists of all those matrices in X that have the form ( Wrk 0 12

above. Note that since i is block diagonal, A uniquely determines #. Of
course some of the X, may be empty. Note that if M; € K, and My € K,
then My My € K,,. This shows that those n for which K, # @ is a subgroup
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of the permutation group on {1,2,..-,r}. This subgroup will be denoted by

H. The identity permutation will be denoted by e.

Gviven S, the partition stated above is not uniquely determined, For

instance, let d = 2, and S consist of the single matrix 1 8 ., Thus |,

in this case, & = K. It is easy to see that C) = {1}, T' = {2} as well as
C, = {1,2}, T = () are possible choices for the partition mentioned above. To
avoid this ambiguity { and to get a nice description of S later on ) we shall fix
our partition as follows. First observe that if m € T then for every matrix in
K. the row corresponding to m is of the form {unvi, wovy, -+, w,vy., 0) where
v; 5 are the vectors appearing in the C; x C; block, and (wy, wq, - -+, w,) is 2
probability vector. If it so happens that there is an ¢ with 1 < 7 < 7 such that
the row corresponding to m of every matrix in K, is of the above form with
w; = 1 ( and other w; s being necessarily (0 ) then we shall incorporate this
state m in the class C; itself. From now on we assume that such a partition
1s fixed in the description of the kernel. Note that with this choice we have
the following: Given any m € 7 there is a matrix in . such that the row
corresponding to m is of the above type with no single w; being one. TFor
future reference we refer to this property as (x). With such a description of
the kernel stated as above, we now proceed to observe that matrices in S
have similar block structure,

Firstly, given A € S there is a permutation 7 € H such that C; x C;
block of A is 0 for 7 # «w(j). Indeed fix M € K,. Suppose that AM € K,
say. Thus for ¢ # n(j) the C; x C; block in AM is 0. The structure of M
now implies that the C; x C; block in A itself must be 0.

Secondly, for any A € &, C; X T block is 0. Indeed, take any state s € C;
and any state ¢ € T. We need to show that a; = 0. Fix a matrix M in
K. having property (*) above corresponding to the state Z, say w, # 0 and
w, # 0. Either w(p) # ¢ or w(q) # 4. To fix ideas let us say that 7(p) # 4. In
particular, in the row of M corresponding to ¢ there is an index u € C), such
that my, # 0. As a consequence, if ay > 0 then agy my, > 0 implying that
C; x C, block of AM is nonzero leading to a contradiction.,

Thirdly ff Ae S, M e K, and AM € K, then, MA € K, as well. To
see this if MA € K,, then MAM should be in both X, and K, leading to
the conclusion that o = 7.

Finally, let us also observe that for any A € § the permutation 7 men-
tioned in the first observation, above does not depend on the choice of the

o7



matrix from C.. If M, and My are in K, and AM; € K., then a similar
argument as above using M; AM, shows that AM,; € K.

This last observation allows us to define a map Il on & as follows: For
A € 8, II(A) is the unique permutation from H obtained above. Moreover
if M € K, and II{A) = m,then AM € K,,. This has the interesting and
useful consequence that [I{AB) = II(A)II(B). Thus & is also partitioned
into § = Uren Sr in a natural way.

For those familiar with the Rees-Suschekewitsch decomposition, the above
conclusion can be alternatively restated as follows: If £ x H x F' is the Rees-
Suschekewitsch decomposition of the kernel /C, where, as usual, A is the
group factor, then the homomorphism II defined on K to H can be extended

to all of the semigroup 5.

Section 4 : Main Theorem

Now suppose that u is a probability on Sy. Let S be the closed semigroup
generated by the support of u. From now on the partition Cy, Ca, +++, C5, T
as well as the group H refer to this semigroup. Let i be the probability on
H induced by u via the map I1. In other words, ji(r) = p(Sy) forw € H. As
in chapter 2, convergence of probabilities is understood as weak convergence.

Here is the main theorem,
Theorem: u* converges on Sy iff i converges on H.

Proof:

First observe that the map IT has the property that II{ A)II(B) = [I(AB).
Since i = ulI~', it immediately follows that " = #1171, As a consequence
— II being a continuous map ~ the only if part of the theorem follows.

We shall now prove the if part of the theorem. So let us assume that "
converges. Then a simple argument shows that for each 7 € H, i*(w) —
1/|H|. We proceed to show that u" converges. We use, in what follows, the
fact that any limit point of this sequence is concentrated on the kernel K,
( see Rosenblatt’s Lemma in section 2 of chapter 2 ). Since the space S5y is
compact, we only need to show that there is only one limit point.

Case 1: T = 0.
First suppose that H consists of only one element namely the identity
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element. A simple calculation shows that, in this case, for any two matrices
M, and M, in the kernel we have MM, = M,. As a consequence, for any
two limit points v; and vy, we have v, = 15 *x v; and v * 1y = 1, Since
Uy x g = n % 1y, we conclude that vy = s,

Next assume that [H| = m > 1. As remarked earlier, the hypothesis
implies that p"(S;) — 1/m for each n € H, As a consequence for any limit
point ¥ we have v(K;) = 1/m for each 7 € H. Observe that H acts on K in
an obvious way, namely, if # € H then we have the map ¢, : KX — K defined
by ¢-(M) = wM, that is, if M = oK for K € K, then ¢,(M) = mo K. This
is easily seen to be a group action, that is, ¢, 0¢, = ¢, ,. Also observe that
if z € K, and y € K, then the product 2y does not depend on z and, in
fact, zy = ¢,(v). As a consequence, if 1, and vy are two limit points of the
sequence u", then we have for any Borel B C X,

' % Us (B) = /}C Ifg{y LY € B} Ul(di’u”) - é ZHVE( ;I(B)) (1)

In particular, for any ¢ € H we have

v * vy (971 (B)) = "?% > v (o (B)) = - >, va (@7 (B)) = vi % 1y (B)

TEH m TeH

Now taking v, to be the identity of the group of limit points (see Lemma 2.1,
section 2 ) we get that,

vo (B) =1 (¢;'(B)) forany o€ H

Using this in equation (1) above, we see that vy % vy = vy for any two limit
points and so we once again have vy = vy * V) = V) ¥ 1y = I,

Case 2: T # 0.

We again start with the special case when H is singleton. Consider a
sequence (Xj)i>1 of i.i.d random matrices with common distribution p. Set
¥, = [T¥ X;. Thus the distribution of Y is p*. The structure of & now
implies (recall that H is a singleton) that Xy and Y, have the form

X0 . .. 0 0 Y /Y, 0 . .. 0 O
0 X} 0.. 0 O 0 Y20 .. 0 O
xo=| © - |n= .
c o0 . .. X O 0o 0 .. .Y o
Ut UG . UL Uit N7 7/ A VAR
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For 1 <1<, X}, Y/ are of order d; x d;; Ui, V¥ are of order dy X dj;
UE*’ : k”'l are of order dy x dp.
Denoting by €' the d; X 1 column vector consisting of ones, and noting

that X} ¢! = €', we get

Vi et =Vie + ViU e for 1<i<r

This shows that V} €' increases ( entrywise )with k and has an almost sure
limit W, say. Since we have ¥; Vi &' = 1 ( entrywise ) for every k it now
follows that V! e™*! decreases ( entrywise ) as k increases and hence has a
limit , say, W™+, Since the sequence y* has convergent subsequences, and
since every limit point is concentrated on K, implying that there is a subse-
quence of V/*' e"+! which converges to the zero vector in distribution. Since
the sequence has been shown to be convergent we conclude that Vet
must converge to the zero vector a.e., which immediately implies that V!
converges a.e. to the zero matrix. It also follows that 3°_; W* equals one
entrywise,

Define the map ¥(X) = (¢, (X), (X)) on S as follows: For each matrix
X of the above form, ¥, (X) is the first (d—dp) X (d—dy) minor of X, 1o(X) is
a matrix of order dy x (d—dy) whose 1st, (dy+1)-th, ++, (di-+da++ +dp1+1)-
th columns are Ulel, U%e?, ..., UTe" respectively and the other columns are
zero. Going back to the earlier notation, Case 1 applies to conclude that
1 (Yi) converges in distribution, The argument above shows that 92(¥;)
converges almost surely. Thus by Slutsky, ¥(Y:) converges in distribution ,
say, to A.

Now let us take a convergent subsequence of ¥ | say, u* converging to
v. We know that v is concentrated on K. In the present case - H being a

singleton ~ observe that X consists of matrices of the form ( Wfi'( 8 ) As

a consequence v is determined by the joint distribution of (K, W). Thus, v
is determined by v1~!. But % being a continuous map, we have pFigh~! —
vp~L. But, as argued above pf9¥~t — A, so that vp=! = A, Thus p* has

only one limit point and hence it converges, as was to be proved.
Finally, we consider the case of general H. In this case, neither the first

(d—dp) x (d—dp) minor of a matrix in & is block diagonal nor the Viet defined
above converge a.e. However, only a slight modification is needed, which
will be explained now. As earlier start with a sequence X of i.i.d random
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matrices with common law g and set ¥, = [} X;. Define the map ¢¥(X) =
(¥ (X)), 2(X)) on S as follows. ¥, (X) is as earlier the first (d—dp) X (d—dp)
minor of X. If X € &;, then 1,(X) is the matrix of order dy % (d— dp) whose
Ist, (dy + L)th, -+, (dy + dz + +++ + dy—1 + 1)th columns are U™ () e (1),
e U () e ) Here Uf is the T' C; block of X and as earlier, €' is
d; x 1 column vector with all entries 1. With this change, a simple calculation
shows, that ¥,(Y)) converges almost surely, The remaining part of the proof
is as earlier and is hence omitted.
This completes the proof.

Here is an alternative proof of the if part of the theorem :

Assume that [i"* converges. It is easy to see that for each « € H, g"(n) —
77 In particular, we can get an integer V such that for all n > N, p™{(Se) >
6._ Let M € K, and W be an open set containing M., For any A € &,
we have MAM = M so that we can get an open set U containing M such
that US. U ¢ W. Compactness of S, is used here. But U being open and

8 being the closure of U;»; S, we can get a j such that p?(U) > 0. Thus
uHtn (WY > 0 for all n > N. In otherwords the set L is nonempty where

L={M:Vopen Wwith M e W, 3N, Vn2>N,u"(W)>0}

Now we use the following theorem to complete the proof:

Theorem.,
Let u € P(Sy). The sequence p* converges weakly iff lim, inf S(p") is

non-empty, where lim, inf S(x") is defined as {z € S4 : for every open set
V(z) containing z, there exists a positive integer N such that n > N =

Viz) NS(u") # 0}
This is Theorem 2.13 (7v), page 91-92, in Hognas and Mukherjea [17]). Of

course, the theorem is true for general semigroups, however we stated it for

Sd.

Section 5 : Concluding Remarks

We conclude the section with a few remarks :

Remark 1: Since H is a subgroup of the permutation group, the conver-
gence of 1™ is reduced to convergence of probabilities on a finite set.
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Remark 2: Suppose (G is a finite group and [ is a probability on G. If 4"
converges, then the limit being idempotent, must be the uniform distribution
on a subgroup and hence, more specifically, it must be the uniform distribu-
tion on the subgroup generated by the support of . Denote this subgroup
by H.

Further, since we are dealing with convergence of probabilities on a finite
set, pointwise convergence holds. Thus, if i® converges, then after some
stage, the support of 2" must be all of H. Conversely, if for some N, support
of iV is all of H, then " does indeed converge to the uniform distribution
on H., To see this, run the Markov chain with state space H and initial
distribution " and transition probability as follows : if we are at z, choose
y according to law p and move to yz (perhaps there are other ways of seeing
it},
In particular it follows that if 4" converges then for some 4, S MSgi+1 7
(. Conversely, if for some ¢, Sz N Sgi+1 # O then indeed 4" does converge.
This can be argued as follows. First notice that if v € S NSz+1 and y € S,
then zy € Spier N Sgive. Thus in general, Sun N Shaer 5 0 for all n > i By
considering order of any element in support of i, we can get a 7 such that
e € Sp. This immediately implies that S5, increases with r and hence (being

in a finite set up), do stabilize after some stage. Thus we get a p such that
Szn; remains same for all n > p. One can argue out easily that Spes is a
subgroup for each n > p. Indeed, for any n > p, Sani = Sgeni. S0, firstly
for a,b € Spni, ab € Span; which is same as Spas. Secondly, if g1, 92, -, %
are all the distinct elements in S;n;, then for any a € Syns, ag, age, -+, ag
are distinct and they are in Sy, But [Szens| being also equal to !, they are
the only elements in Sjz; which is same as Sga;. Now one of these elements
is e. So the inverse of a is in Sz » Thus, for any n 2> p, Szss I8 a group.
Consider n > p such that nj > 4. Then Sza; N Synisr # 0. But Sins being
a subgroup and as |Syni+1| 2 |Syei|, we conclude that Szns = Spaj+r, Hence,
[i" converges,

One sufficient condition for #" to converge is that g.c.d. of the orders
of the elements in S; is 1. This can be shown as follows. Suppose that for
1<i<k, ofz;) =mi Theneé€ Spmi ¢ =12,-+ k. S0 e & Spn where
n is any positive integer linear combination of the m;'s. But by Euler’s
theorem, there exists two such linear combinations ¢ and 6 with a ~ b = 1.
In other words, e € Sy as well as e € ope+1. From what was argued in the

previous paragraph, it follows that i" converges.
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These comments are perhaps not new. They are mentioned here only
because they provide algorithms to decide when [ converges.

Remark 3: In case d = 2, the only case of non-convergence occurs when
r =2, T = and [ is concentrated on the non-identity permutation. This
corresponds to the thesrem of Mukherjea (22] discussed in section 2.

Remark 4: In case d = 3, the only cases of non-convergence are the

following:
1. r=2;T, C, and C, each consists of one element and 4 is supported

on the non-identity permutation.
2, r =2 T = {, C; consists of one element and C, consists of two

elements and /i is supported on the non-identity permutation.
3. r =3 ; (hence) T = @ while Cy, Cy, Cs consist of one element each

and /i is concentrated EITHER on the permutation ( ; g ? ) OR on the

. 1 2 - .
permutation ( 3 1 3 OR on the set containing the three permutations

1 2 3 1 2 3 ] 1 2 3
(1 3 2)(2 1 3)‘?"“ (3 2 1)'

These correspond to the cases mentioned in Chakraborty and Rao [ 8]
and - in a.different order — these were the cases mentioned in Dhar and
Mukherjea [11], Of course as d increases there are more and more cases of
non-convergence but they all amount to investigating convolution powers on

the permutation group and Remark 2 above applies.

Remark 5: If we look at Theorem 7.1 of chapter 2 closely it appears
that the non-convergence of the convolution sequence (4") happens because
of periodicity of the supports of p"*. This periodicity may arise due to the
cyclicity of the states. It may arise even otherwise also, It is interesting to
note that in such a case 4 was concentrated on zero-one matrices, We do not

know if there is any analogue of this in the general case.

Remark 6: It is interesting to note that most of the analysis depended
only on the structure of the matrices and not on the exact values of the entries

(apart from the knowledge of whether the entry is zero or not). There exists
a large amount of literature on probabilities on graphs. Consider a set of d
vertices. Let I be the set of all directed graphs with loops allowed. If G, G,

are two such graphs, then Gy * Gy is the graph where (u,v) is an edge iff for
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some vertex z, (u,z) is an edge in G, and (z,v) is an edge in G2. Thus,
' is a semigroup. One could fix a probability # on " and find conditions
for convergence of the sequence ", The same ideas as discussed here would
perhaps go through, Since we are not familiar with the literature in this area,
we have not undertaken this exercise. In any case, it is a different story.
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CHAPTER - IV

Random Continued Fraction Ezrpansions

Summary

In this chapter, our interest is in the existence of absolutely continuous
invariant measure and its properties for the transformation T'(z) = 6(5; —
[5:]) on the interval [0,6] where 0 < 6 < 1. This chapter has five sections. In
section 1, we introduce the problem of random continued fraction expansions
studied by Bhattacharya and Goswami. In section 2, we fix our notations.
We define continued fraction expansions with respect to # and discuss their
properties. We relate these to the map T described above. In section 3, we
study absolutely continuous invariant measures for such maps when 6*s are
reciprocals of positive integers. In section 4, we study this problem for more
general 8, The main interest revolves around the following two properties that
hold for usual continued fraction expansions : (i} The limit of the averages
of the digits in the expansion is almost surely infinity and (ii) the limit of

'il'i.' log g, is almost surely finite where p,/g, is the n-th convergent. Finally in
the last section we return to the Markov Processes that motivated this study

and make some comments.

Section 1 : Introduction

Motivated by problems in random number generation, R.N.Bhattacharya

and A.Goswami [ 2] considered the following problem :
Suppose (Z,)n>1 is & sequence of 1.i.d, non-negative random variables not
identically zero. Let X be a strictly positive random variable independent

of (Zn)n>1. Let (Xn)nso be the Markov Process defined by

1
Xpg1 = Lt X, for n 20 (2)

Clearly this process arises as an iterated function system in the following
way. For each non-negative number v let £, be the function on (0, c0) defined




by fulz) = u + -mi- Let F be the collection of functions so obtained. If y is
the distribution of Z; then we can transfer it to a probability, to be denoted
by v on F. Here is another way of describing the above Markov Process. If
we are at state z, we select a function f € F according to the law v and then
move to f(z). |

The case when Z; has gamma distribution was studied by Letac and Se-
shadri [21]. Bhattacharya and Goswami [ 2] showed that the Markov Process
converges in distribution to the random continued fraction [Z,; Z3, - |. They
further showed that the limiting distribution, which is the unique invariant
probability « of (X,), is non-atomic. They then considered the special case

_ ) 0 wp o
Zl"{& wp l—a

where 0<a<l, §>0.

If Z, is degenerate at 6, then clearly the Markov Process is essentially
deterministic (its only randomness comes from Xp). It converges to the Dirac
measure at [0; 0, - -]. Bhattacharya and Goswami showed that the support of
7 is all of (0, 00) in case § < 1 and is a Cantor set if § > 1. Moreover when
§ = 1, they showed that  is singular and gave explicit computation of the
distribution function. The main ingredients in their proof were the following
two important facts : Suppose that for any number z in [0,1) we denote by

lay, ag, ] its usual continued fraction expansion and f—;ﬂ denotes the n-th
n

convergent of the number z. Then,

(%) a,l—}-;--f% y 00 &6,

and

(%) limpooo +loggn = v @ for some finite constant 1.

Here almost everywhere is w.r.t the Lebesgue measure on (0,1). But the
crucial role is played by the Ergodic theorem and the fact that the Gauss

1 e
measure du(z) = oa2 17 :Eda: on [0,1) is invariant for the Gauss map U

given by,
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1 1 '
[] — EH[E] it x.—,é[],
(z) { 0 if =0

In this chapter, we define the generalised version of the Gauss map for
values of ¢ strictly smaller than one . For certain values of 8, we obtain an
absolutely continuous invariant probability for this generalised map. Then we
prove (*) and (#*) also hold. Our notation and exposition follow Billingsley
[ 5], Khinchine [19} and Bhattacharya and Goswami | 2] closely.

Section 2 : Preliminaries

Throughout our discussion we fix a # with 0 < § < 1. To understand
the nature of the generalised Gauss map, we start with a discussion of con-
tinued fraction expansion w.r.t 8, analogous to the usual expansion which

corresponds to the case 8 = 1.

Let > 0. Let ap = max{n 2 0: nf < z}. If z already equals a8, we
1 1
write £ = [agd]. Otherwise, define ry by = = a4 + — where 0 < — < . Then

™1 T

> -é- > @ and let a; = max{n > 0: nf < r}. Ifry = 018, then we write z =
[agl, a16], i.e., x = agh + E}é' If ;8 < 1y, define r9 by 71 = 016 + % where
0 < -—1-—- < . S0, 10 > -;— > # and let a; = max{n > 0 : nf < ro}. Proceeding
in tlri% way, either the process terminates at, say, m steps or it continues
indefinitely. In the former case, we write £ = [ao; @16, - - ,an0] and we call
this the continued fraction expansion of z with respect to & terminating at
the n-th stage. In the latter case, we write T = (agf; 018, 08, - | and it is
called the infinite or non-terminating continued fraction expansion of £ with
respect to 6. We shall later justify this notation by showing that the infinite
expansion does actually converge, in an appropriate sense, to . |

From now on, unless otherwise mentioned, we refer to this expansion as
the continued fraction expansion of a number in (0, 00). Since during any
discussion a particular value of 8 is fixed, we shall omit the phrase ‘w.r.t ¢

As in the case of usual continued fraction expansion, we shall define the
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n-th convergent of a number z € (0, co) as

D

— = [aﬂg;algj”'iane]: n 2 (0.

In

In c;se z has terminating expansion, say, z = [@08; 18, - -, axb),then
k
clearly E’I = z. We make the usual convention that in this case

Pn _ z for n>k.
n

In the non-terminating case, arguing as in Khinchine [19] or Bhattacharya

and Goswami | 2|, one can show that En converges to z as n — co, We shall

q
illustrate this for z < 6. "

When z < 8, we have ay = 0 and instead of writing z = [0; a4, as, - - ],
we write £ = [a,0, agd, - -] which is same as writing, in the usual notation

B 1
T= i

(110 | {129—}----

As in the case of usu.';l,l continued fraction expansion, we define a map
from [0, 8} to [0,8) as follows

[ loglk]  if z#£0,
9.1 T(z)=¢ & %
(2:1) (@) 0 if =0

.

This is what we call the generalised Gauss map.
With the help of this map 7T, we can neatly describe i that appears
as reminder at the n-th stage in the definition of the continued fraction

expansion of x as simply T"(z).
Let 0 <z <6, z:=][a0, a8, -]. When we need to show the depen-

dence of a,, p, and ¢, on T we write a,(z), p.(z) and g¢,(z) respectively.
The following are routine to verify ( The stated identities hold for all n in

case & has non-terminating expansion and they hold for n < k in case z has
expansion terminating at the k-th stage):

(2.2) an(z) = a1 (T '), n=1,2, -
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For n > 1,

d(23(1)) Pn (33) = ﬂn(ﬂi)ﬁpn.—I(ﬁ) + P2 (ﬁ}

(2.3(i1) () = 00(2)00n-1(2) + g ()

(Here we use the convention followed in the usual continued fraction ex-
pansion, namely, p_j(z) = 1,p4(z) = 0,g.1(z) = 0, go{z) = 1.)

As with usual expansion,

(2'4) pn—l(m)%.(m) — pn(ﬂ;)q“-l(x) = (" l)n for n>0

Let n > 1. Let z = [a1(2)6, ag()8, - -, an(z)8 + -Tl] Then a little alge-

bra shows that as in the case of usual expansion,

Pn (3:) ,.t"pn-—l (3;)

(25) 7T (%) + 7-qn-1(T)
But since, ;—1— = T"(z) we get,
_ pal2) + T™(2)pn-1(z)
29 * = 0l@) + () nr o)
Therefore,
. fjn(w) | Pn (:I:) + 7™ (m)pﬂ"—l(:ﬂ) Pn (*T)
(In (33) B Un (iE) T TH(T’)QH—I(:B) dn (iB)

T”(.’E) (pn_1($)qn (:L) “ qn--l(m)pﬂ(ﬂ:))
¢n(2)(gn () + T™(2)gn-1(z))
1
gn (2) (T (2)) L an(2) + ga—1(2))

]

|
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(2.7) T Pn(2) = 1
¢n(z) . Qn(ﬂ?)((T"(m))_lQn(fﬂ) + Gn-1(Z))

Now, ant1(z)0 < (T"(2))™! < (aps1(2) + 1). Using these estimates in
(2.7) and noting (2.3(i)),(2.3(i1)), we get,

1 . Pr () < 1
() (Gng1(z) + 0ga(z))

(2.8)

(A

gn(:‘c) B QH(*T)QHH ($)

Since gg = 1 > & and ¢ = ;6 > 6, we have by using (2.3(ii)), g, >
¢ Vn > 1. Further, (2.3(it)) also gives

Gn = n0n_1 + Gnog > 0>+ guep Yn > 2

Using this inequality, we have, by induction on n, g, > [g-] % — 0o. This
was already observed in Bhattacharya and Goswami [ 2]. So, from (2.8),

;;" | =+ 0as n— oo, Again, from (2.3(ii)), ¢, > (62 +1)gn—o for n > 1.
n .
Now using induction on n, we get, for even n,

|z

In > (92 -} 1)'3”910 = (92 + 1)%

and for odd n,
n—1 -1
g > (0*+1) T g > (62 +1) 70,

Combining these, one can write,

n 2 (82 + 1)[%]6' Vﬂ

Now, we shall discuss briefly as to when a given sequence [a,0, 50, - - -]
arises as the continued fraction expansion of a number z smaller than 8. It is
easy to see that a sequence [aof; @18, as8, - - ] arises as the continued fraction
expansion of a number if and only if [a,8, a8, - - | arises as the expansion of

a, number smaller than 8.
To understand the idea, note that, for the usual continued fraction ex-

Ipansion (case 6 = 1), [0;2,1] does not arise as the expansion of any number
whereas [0; 3] does arise. In fact in the usual case this is the only restriction.
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More precisely a1, ag, - | arises as the usual expansion of a number smaller
than one iff (i) each a; > 1; (ii) in case it is terminating the last a, is strictly
larger than one.

Let us start with the most simple case 6 = -% for some n. { Roughly
7
.1 .
speaking 7 is an integer w.r.t 8, because é—: nf) In this case [a:18, a0, - - ]

arises as the expansion of a number smaller than 8 iff (1) each a; > n; (ii)
in case it is terminating the last @ is strictly larger than n. This can be

seen as follows. Suppose [0,8, as8, -+, ;8] is continued fraction expansion

I 1 1 1
of a number z < 8. Then nf = - < — shows that a; > n. Now ~ = 10 + —
| 6 =z T 79

where 0 < - < @ implying as earlier ay > n. Proceeding this way, we get
2
1

that a; > n for all ¢ < k. Since r, = qif > —~ = nf, we get a; > n as claimed.

Conversely, suppose we have integers g; for I <4 < ksothata; > nfori <k

1
and ax > 7. Then, since a; > n, we have a.f > nf or — < 0. Also, ap-1 > 1
k
1

implies that ag_10 — 2 nf or [a;_18,a;0) < 0. Proceeding this way, we
k

can show [a;6, -+, 048] < 6 for1 < i < k. Thus if we define z = [a16, - - -, a;0)
then z < # and indeed [a;0, - - -, az8] is the continued fraction expansion of
. Similar but simpler argument applies to show that in the non-terminating
case, it is necessary and sufficient to have each a; > n.

1
To consider a slightly more general case suppose that 7= In,8; n20]. Thus

we have
. < 8 < 1
(ﬂ-l -+ 1)9 n, 6
and ) {
n18 ﬂiﬂ

It should be observed that in such a case mp > (1 + 1) In‘this case
(010, 0z, - -] arises as the expansion of a number smaller than 8 iff the fol-

lowing conditions hold:
(i) Bach a; = ny;
(i) In case an ¢; = 1y then @iy <N |
(iii) In the terminating case the last a, must satisfy ar > 1.
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This can be seen as follows. Suppose 218, +,0.0] is the continued
[raction expansion of a number z < 8, If k = 1, it tnivially follows that
a; > ny as claimed. Let us assume that £ > 2. Arguing as in the pre-
vious case, we obtain that ¢; > n; for each i and a; > n;. Suppose that
for some ¢ < Kk, @ = ny;. Then a8, ai410, -+, 18] < @ implies that

a0 + (@410, 0y a0] > 18 4 — 5 But since a; = n,, this immediately im-
2

. 1
plies [a;4.18, a8 > — 80 that a; 410+ (@98, - -, arf] < nyf and conse-
2

quently, aiy1 < ng. Conversely, suppose that ay, - -, a; are integers satisfying

the conditions of the claim. As in the previous case, a; > n; implies [a,0] < 6.
. 1 1 . | Z
Now if a1 > ny, ap—10 — > 18 — implying that [ax_,0, ax8] < 6.
k y
On the other hmid, if ap..; = nq, then usilllg the hypothesis that ar < ns,

1
ve get ap_0 - =16 4 > 1,6 . 80, lag_10, ar8] < 6. One can
we g =1V ™ akg 1 ﬂk@ 17 7 ?129 :[a'k 1Y, Qg } n

now proceed as in the earlier case and show that [a,8, -, ai8] is indeed the
continued fraction expansion of a number z < §. The non-terminating case

is dealt with in an analogous manner.

1 .1
Now consider the case- 7 = [r18; 198, -+, nmf]. ( Roughly speaking 5 is

rational w.r.t @ as it has a terminating expansion w.r.t #, or equivalently it is

ratio of two polynomial expressions in ). In this case [a,8, a8, - - | arises as

the expansion of a number smaller than & iff the following conditions hold:
(1) Bach a; > ny; |

(i) In case for some s > 1and p < m, (@ig1,**+,0ipp) = (R, -, p) then

we should have ayps1 < Npg1 if p+ 1 is even while aippi1 2 npy4a ifp+1is

odd.
Moreover if m is even and p + 1 equals m, then ajip1 < Ny
(iii) In the terminating case the last a; must satisfy ax > ny and further

if for some even p < m, (i.e, p+ 1 is odd) {(@g—p, -, k1) = (n1,"**,1p)
then morecover ag > Npt1 -

The same icleas as in the earlier two cases, but executed with a little care,
will lead to a proof of this claim. We shall not go into the details,

1 L .
Finally we assume that 7 has non-terminating expansion, say,

1
7 = [ﬂlgi g, ).
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[n this casce [a,0, aq0, - - /] arises 18 the expansion of a number smaller than
0 ifl (i) cach a; > ny; (ii) in case for some > Land p > 1, (agpq, - -, Qi) =
(g, = 1) then agypyy < npyy if 4118 even while a;4p00 > npyy if p+1 s
odd; (iii) In the terminating case the last ap must satisfy a; > n, and further
if for some even p > 1, (i.e, p+1 iw 0dd) {ap_p, -, a5_1) = (ny,---, n,) then
MOLCOVEL Qg > Nyt .

The above discussion gives necessary and sufficient eriteria for an ex-

])I‘OSSiOIl [aﬂﬂ; algi . .]‘ to be actu!l.”y the continued fraction expansion of a

, 1
number. However those conditiond clepend on the expansion of 5+ More pre-

cisely the conditions depended on fhe sequence of integers nq, ng, - + - where

—;- = [n10;ny0, ),

. 1, .
It is natural to enquire as to how the expansion of 7 itself looks like. We

shall not go into the details except to make the following comment, One can
casily observe that in such a casy ¢ach n; must be at least as large as ny

and in the terminating case the lant m must be indeed strictly larger than
n;. However this is not a sufficient condition, For example we ﬂaﬂlﬂot have
...0]:. o [20ll 30], aQ Silnplﬁ a]ggbra showH that the correct BXP&HSiﬂﬂ s 'é' = [39, ]

Before proceeding further, we imention that in the literature, there ex-

ist several generalizations of the rual continued fraction expansions. For
example, sce Bissinger [ 6], Evereth [15] and Renyi [28].

As in Billingsley| 5], we intrncluce the sets Agy a0, and the maps
Day g an & [0,8) = [0,0). These will be needed later to show, in some cases,

ergodicity of the map T' with respact to an appropriate measure. Qg 5,0

is the sot of all & such that ay(z) = @ for s =1,2,--+,m. Obviously, be-

cause of the above discussion, Ay azen MY be empty ff?f some n~tuples
(ay, ag,+, ay). In what follows wq ASSUME that Ay, gy,.-a, 18 NON-empty for

the n-tuple (ar,az, +++yan). Yayaz,mn is given by,

| |
q/)ﬂliﬂﬂr”ﬁﬂn (t') = ] } t e [OJ 9)
610 4 7
Al + — 1
T ag+t
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Then Ag ay,0, 18 the image of [0, 0) under 9, 4, ... One can show that

| n |- 'wjﬂ-l
} veeailyy f’ = - Or | | |
oy az,oan (1) T for t €[0,8) just likein (2.5). AlSO Yy, ap,era, (£)

is decrcasing for odd n and increasing for even n. 50,

H Prn Dnt Opp_y £
g 1 | 9 } L n even,
&{1111'121'“1{1“ — 4 : " + ﬁqn gn 1 j
n Dn—1  Dn .
y T if :
\ l. q‘ﬂ+9Qn-—1 In _ " Odd
Using (2.4), we see,
H

(29) ’\ &ﬂ.l,ﬂz o .lln -
( Y ) QH(qn‘f"@%,—-l)

where A, as usual, denotes Lebesgue measure.

Before concluding this section, we remark the following. One can define a
map on (0, 7) to itself by putting Uy(x) = (5 — [4]) and one can also define
a map on (0, 5) to itself by putting Up(z) = (3 — [£]). Obviously, these
maps are conjugate to the Gauss map U on {0,1). However, the map 7T that
we defined above is different from U; and U, and this map T is relevent for
our cliscussion. We could not see if this is conjugate to the Gauss map U.

Perhaps it is not.

' 1
Section 3 : Invariant Measure for 1" when 73 c N

1 ‘.
In this section we assume that 7 ¢ IN, Thus for some integer, say I,

: = {f), Thus -:-L— has a continued fraction expansion terminating at the first

0 0
. .1
stage itself, or in the notation of the previous section ;= ({6]. Throughout

this section @ and hence the integer [ is fixed.
1 1

~ IMrst recall that the Gauss measure diy(z) = g2l 13
invariant for the transformation associated with the usual continued fraction

dz on [0,1) is

expansion , namely,
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{ .l . '1.' .
Ulz) = ° it e,
\ 0 f =290
'The analogue of tlliS transformation for the @ expansion is the transfor-
mation 1" defined on [0,6) as follows :

Tx)=«° ZR
0 if 56':0

\

We shall now extend the usual argument (see Billingsley [ 5] ) to get an
absolutely continuous invariant measure for the above transformation.
In fact, we claim that
1 |

dpit s
( ) Iag-’!—'}‘-l- \/Z—f—xdm

which is same as saying

1 f
dP + h : L
@ log(1 +62) 14 552

is the required invariant measure for 7. In the present case, we are lucky
enough to explicitly write down the invariant measure which we will not be
able to do for the more general cases to be considered later.

Since we could not see any direct way of connecting these two trans-
formations T and U we shall verify the above claim by carrying the same
steps as in Billingsley referred to above. There is no new idea involved.
In order to show that T preserves P, it is enough to show that P|[0,0u) =
P(TY0,0u)) for allge 0,1).

1 1 _
Since 770, Ou) = U((h )0 kﬁ) (equality is upto a set of Lebesgue

b=l
measure zero), it is enough to verify the following :

TR R :
— - dz.
/n 1 E?a:akjg E/ L]+ 0z -

k=l © (k+u)?
00 | 1 2 k+u E+14u
p—— — — I ™



|+ u
!

'Thus the last sum is a telescopic sum and equals log (
same as the left hand side.

) which is

We now show that 7' is ergodic under this P. For notational convenience,
let us denote Ag, ag,an 20 Yoy ag,.0, defined in section 2 by A, and ¥,
respectively, Heve we fix ay,aq,++, @, Then A, has length | 4,{6)~,(0) ] .
Also.for 0 < x <y <0, the interval {w: 2 < T™(w) < y} N A, has length
| ba(y) — Pu(2) |-

So, using the notation, A(A|B) = A(AN B) [ A(B) , we have,

where, on simplification, the absolute value of the numerator is given by
Y - B

and that of the denominator is given by

-((.’n ~t+ -ﬂif?n—-l)(q“ -+ ’.U!'}n..1) qn(qﬂ 1 Qqn__l) .

Thercfore, using a little algebra,

(3.1) huly) - () _y-3 1 1
- Pu(0) —9a(0) 6 1yt 1o (g
Now F-‘-}-’i—- > ¢ and hence, the right hand side of (3.1) 2 ! ;;
in—-1
\ (In—1 | (0 ~ m)Qn—l 1 .
\ [ ~ £ — 50 that 1 > = and hence the right
Ag i in - Oq:l-—l — 20 qn T QQH—-I -
Ay~
hand side of (3.1) is < (y ; ) .
So,
y -z Paly) = Pa(z) _ 20y - 3)
20 7 1(*’?1(9) “wn(o) B 0
Or
| — ' 2(y — )
§— -
L2 S AT )l € 7
Hence, {or any Borel set A also, we have,
A 2A(A)
(3.2 M < Tl S 5

Now, since 0 < <9,
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by 1 g

2 2...... <: . _ < 9
log(1 -+ 02) 1402 = log(1 + )1 + 0z = log(1 + 62)
Hence, lor any Borel set M, we have,

. 1 0 ;
I..3-3 ol -
(3.3) log(1 + 0% T 3 M) < P(M) < og(1 37 (M)

L+ 02
So, A(M) < ; log(1 + 6%) P(M) and ,\(M)g_log(la’*f).p(fw).

Lherelore, using these inequalities together with (3.2) and (3.3), we get
the following :

CUOIP(A) < P(T™"(A)[An) < Co(8)P(4)

where ¢, Oy are constants depending on @ only, Now if A is invariant, the
above inequality becomes

CH{B)P(4) < P(A|A,) < C2(0)P(A).
Assuming P(A) > 0, we get,

Ol (O)P(An) f; P(AHIA) S CE(Q)P(&:\':-)

ITence, for any Borel set B,

C1{0)P(E) < P(E[A) < Cy(0)P(E),

Taking 19 = A®, one gets P(A¢) = 0 so that P(A) = 1. Therefore, T is
crgodic uncor 2,

We now proceed towards proving (#) and (%) in our case. As mentioned
carlior already, we verily that the same steps as in the usual case go through.

Rocall that (%) and (x+) are :

(¥)

al—i—lii—l—'arl
T

—2 00 &a.C.

(=+~+) lim }-— logg, =7 a.e. for some finite number «,

11100 17
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By ergodic theorem, il [ is Ay non-negative function on {0, 8], integrable
or not, we have,

ek 1 0 0f(z)
lim - TH()) = !

Taking f == a;, the right hand side becomes,

1 hay(x i w o ke 1o
log(1 - 02) Jo 1 4- 01. i log( 1+ ) J ks 1+ 0
2 I
~ log( 1 +- 07) ;.; k?+2k) -2

"The lagt equality follows from the [act that , log(l -+ 2) is like z for = near 0
(I'lhis can ba made precise), So, left hand side becomes

H“:'*C'G

-}
e ’u'..
lim %ul (1% (w)) = lim Z“h =c0 a.e [P]

This proves (x).

To prove (##), first of all notice that,

f ] Puti—~kkL "
(3.4) =[] _ﬂ_ (Th=1{w))

Also, froni (2.8),

Pn 1
- — <
! {n l qn( )’:In-il( )
Or,
! . < I < 1
N I Pu(@)gair(®) — (L6
Or,
(3.5) [ og() IS los+ rgy) = (T o)
in

S0, using (3.4) and (3.5),
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| loglax(w)0, aps1(w)0, - -] — log[ay(w)é, ag. (w)8, -+, an(w)d)] |
=| log(T*~!(w)) — loglay (T*"(w))0, ag(T* ()8, -+, @n—ps (T* ' (w))0)] |

D1k (T Hw)) < 1
Gtk (TF1(w)) ' = (14241’

=| log(T*!(w))

‘Then, summing over & from 1 to n and dividing by n, we get,

1 1 L Dagi-k (T w))
— lo = — |0 _
noC W) n gﬂ NGLETD)

n

1 k . 1 Cn.k
= 23 log(T* (W) + = =
ﬂr;; 05( (w)) + n; (1 _I_gz)n_k_;.l

for some numbers ¢, » which are smaller than one in modulus.

The second summand on the right hand side converges to zero since
@ 1

2 [T 0%

P), the ergodic theorem implies that the first summand on the right hand
side converges to

is finite. The function logz being integrable on [0,8) (w.r.t.

1 0 Qlogx
1+02fo 1+6’$d$'

Hence, we have,

| 1 1 0 @logx

36) Elogqn(w) H 1+60%J0 146z

Hence, the limit is finite.
This proves (s).

Thus we have the following :

1 .
Theorem : Let § = -ﬁ, | € IN. Then p given by

1 ¢

— d
dplz) log(1+6%) 140z v
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is invariant and ergodic for the generalised Gauss map T on [0, 8) defined by

0 if =20
Moreover, for a.e. z = [a,6, 426, - | we have,
. Gl + v + an :
lim - = X,
n—00 n

Further, there is a finite number ~, such that if 1 denotes the n-th conver-
dn

gent of z, then for a.e. 2, we have,

lim log On = Y.

n— ) T,

Section 4 : Case of general 8’s

In case §* is not the reciprocal of a positive integer, 5 has either finite

or infinite continued fraction expansion with respect to . We shall mainly

L] . . - : .
concentrate on &’s for which 7 has finite continued fraction expansion. At

the end of the section, we make few comments regarding 8’s where the cor-
responding expansion is non-terminating. From now on, whenever we shall
write a set as the union of a finitely or infinitely many sets, the equality will

be upto a set of Lebesgue measure zero.

When §? = : for some integer { then [0,8) = U( 1 } where each
l ey ) kG

of the intervals in the union is mapped onto [0, 9) by T‘ 'This gave rise to a

description of the invariant probability explicitly. In the general case, it is
1 1

not so. For example, if -fli = [n10; nof), then all the intervals ((!c )0 kﬁ)

for k > ny + 1 are contained in [0, 8) and each of these is mapped onto [0, 8)

by 7. However, these intervals alone do not make up [0, 8), there is a leftover

1 L .
interval, namely, ( ot 1) g’ 6). At first sight it appears that we can partition
1

this into intervals as earlier so that each of them is mapped onto {0, 8) by T2,
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Unfortunately this is not so. Even if 8 is general —- ; not necessarily having

expansion terminating at the second stage —- the leftover interval mentioned

abovel remains the same. A little care is needed. What we do is to partition

((ﬂ-l + 1)0,
is mapped onto [0,8) by an appropriate power of T' (the power depending on
the interval of the partition). We shall then define a new map 1™ by putting
it to be the corresponding power of T' on each of these intervals separately.
All this will be made precise in what follows.

This naturally brings us to the setup of sections 2 and 3, chapter V of
[10] which we shall now briefly explain (Renyi [28] was perhaps the first to
discuss these problems, though he did not introduce the set up formally) .
In order to do that, we first of all, need the definition of a Markov map.

Definition 4.1. Let I be a bounded interval, Let 7" : I +— I be a C* map.
Then T is called a Markov map if there exists a finite or countable family
I; of disjoint open intervals in I such that the following hold

(a)} I — U, I; has Lebesgue measure zero. There exist C > 0 and ¢ > 0 8o
that for each n € IV, and each interval J such that T7(J) is contained in one
of the intervals I; for each 5 =0,1,2,+:+,n one has

#) into countably many intervals such that each of these intervals

DT™(z) 5

- < n — T .
DT(y) < C|THa) -Ty)|°® Vm,yelJ
(b) If T(IL) aFF 7[; B then T(I,l,_) D 1.

(c) There exists d > 0 such that |T(L)| 2 d V1.

Remark 4.1. The assumption (a) in the above definition can be replaced

by the following two conditions (see [10], p.351):
(i) There exist C,d > 0 such that T{/; is a G+ diffeomorphism for each

i and that for each 7 and for each z,y € I;, the following Holder condition is

satisfied :

DT(x)
DT(y)
(ii) T is expanding in the following sense : There exist K > 0,5 > 1 so

1| < C|T() - T) | °
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that | DT™x) |2 K" VYn €N and z € [ for which THa) e U;I; YO0<
1< n. B

Having delimed Markov map, we are interested in the existence of abso-
lutely continuous invariant measures for such maps. The following theorern
guarantees that :

Theorem 4.1, Let T : I = I be a Markov map and let U; I; be the
corresponding partition,Then there exists a T-invariant absolutely continu-
ous probability measure p, on the Borel subsets of I and it has the following
propertics :

| Lo dp,
(a) Its density 7y 18 uniformly bounded and Holder continuous. More-

over, for cach ¢ the density is either 0 on I; or uniformly bounded away from
0.

(b) If for every ¢ and j there is an n > 1 such that one has T*(I;) D I;
then the measure is unique and ergodic, its density -g-—i—b 1s strictly positive,
(¢) IT(1;) = I for each %, then the density of 4 is also uniformly hounded

from below.

In our case, ' is not a Markov map. So, we need to bring in another
idea — namely, that of an induced map. Suppose [ is a bounded interval and
T . I+ I be a C' map. Suppose we have a partition (I;, i > 1) of I and
natural numbers &; for ¢ > 1. Define T* : I = I by putting T (z) = T%i(z) if
2 € L. Then 7™ is called a map induced by T, more precisely it is the map
induced by T and (I, &), ¢ > 1. In fact it is not necessary to ensure that the
intervals I; cover all of I, it is enough if they cover upto a set of Lebesgue
measure zero, We do need in this generality for the applications we have in
mind. , |

Theorem 4.2. Suppose T* is a map induced by T and (I}, &;), 1 > 1.
Suppose 7™ is & Markov map. Let » be absolutely confinuous invariant mea-

sure for ™, I
(4.1) 2y kiv(li) < o0

then T has an absolutely continuous invariant probability measure. If
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(4'2) 221 ki ‘L‘l < Q,

then (4.1) holds.

At this point, we would like to make a simple observation, which is not
explicitly stated in [10]. To prove the theorem quoted above, one simply
takes

co kp—1

(A = D ) v(TANL)

n=1 1=

for all Borel sets A and verifies that j is indeed absolutely continuous finite
measure which is invariant for T. We wish to now observe that if ¥ is ergodic
for T* (as we usually have from Theorem 4.1} , then the pu given above
for T is also ergodic. Indeed if A is invariant for T, i.e., 7714 = A then
u(A) = 22 kyw(A N L) If moreover, p(A) > 0 then for some n we must
have »(A N I,) > 0 and hence »¥(A) > 0 as well. Since A is invariant for
T* as well {(at any point z, I™ is simply an appropriate power of T), we
conclude that v(A°) = 0 under the assumption that » is ergodic for 7. Bui
then p(A°) = Y00, ka(A°N 1) = 0, showing that y is crgodic for T

n=1

Our plan now is as follows : We shall implement Theovein 4.2 in our set up
by a careful choice of 1™ thereby getting an absolutely continuous invariant
probability measure for " wherever possible. Next we show the analogues
of the two crucial facts () and (%) in our present setup, We proceed to
execute the plan now,

(A) The case when expansion of 1/0 terminales al the second stage :

To understand the execution without much notational complications, we
begin our discussion with the casc % = [n,0;n20]. Then T(0) == [nyf)} = ;5-——5.
Because of our discussion in section 2, ng > 1y - 1. As explained :ﬂmiu_r,
we shall concentrate on the interval (-Gi—;rﬁ-ﬁ*b-,()) where we are to replace
T' by suitable powers of T° towards getting an induced map 7. Denote

J = 0).

(ﬂ] T .1)0il
1 1 Z

() = (T0), 0) = (—=,0) = (s oo .
NDW: T(J) o ('[ (0)!0) ‘"" (?12010) — (Tlg()} (“1 - l)o)u ((ﬁl ”1)0’0) Or
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(— )
nyf’ (ny + 1)6

Therefore, J = T;( : !

|

equivalently, 7'(J) U J.

Q)UTJ‘I(J) where, for any A, we set

ﬂgf?, (?11 - 1)
T7(A)={x e J:T(z) € A}. Since
1 1 naT ™ 1 1
( ) ) ~ U ( : ):
ﬂg@ (ﬂl -+ 1)9 k=1 (ﬂl + k + 1)9 (ﬂ-l +- ]f)f?

each of the intervals in the union on the right hand side is mapped by T" onto

1 1
1--1 _ | 2
(0,8), so T} (ngﬁ’ o 1)9) is mapped by 7™ onto (0, 8).

Let us call V = T}l(ﬂig, e i 1)9)

. Then,

J=VUT; ' J=VUT;'"VUT*V =...

We now argue that indeed

J =Ty

1=0

A simple calculation shows that
V = ([mb, (n; +1)8], 8)
TV = ([(ny + 1)), [m8, m6, (ny + 1)6])
T2V = ([n18,n10, 0, (ny + 1)8], [m6, (ny +1)6])
In general
T7*V = (ag, ban) where

gn = [m 0 repeated (2n + 1) times , (n1 + 1)0]
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bon = [n10 repeated (2n — 1) times , (n; + 1)4]
772y = (goper, bongr)  where

Qont+1 = (110 repeated 2n times , (ng + 1)6]

bant1 = [n.0 repeated (2n + 2) times , (ng + 1}4]

Their lengths add up, in a telescpoic manner, to 8 — [(ny + 1)8] which is
the length of J as desired,.

Notice that V is a subinterval of J and for each i > 1, T;*V is also a
subinterval of J. T is a one to one map on J. Note also, for future use, that
even though 7% maps V onto (0, 8), in order to talk about the C! properties
of T% on V, we need to split the interval V as follows :

no—1ni1—1 1 1
V = 771
&.L:Jl J ((nl +k+1)8° (n1+k)9)’

where each of the sets in the union on the right hand side are again intervals
on each of which 7% is a C' map. Similar considerations apply for 77V as

well for 7 > 1.
All this can equivalently be described as follows. Let Ty be the restriction

of T to J. Then V = {z € J : Tyz ¢ J} and in general, T7'V = {z € J:
Tz, -+, Tiz € J but T¥a & J}.

So, our induced map T™ is as follows :

(4.3) T* =TH#2 on T-V, i>0.

As noted earlier, J = U2, T7*V and hence (4.3) above defines 7* on
whole of J. We extend T* to all of [0,8) by defining 7™ =T on [0, 8) — J.
It, is not difficult to show that T' is not a Markov map. However, T™ is a

Markov map as shown below.
Lemma 4.1. 7™ is a Markov map. ,
1

Proof. The intervals I; are as follows. Foreach k& > ny +1, ((h‘ +1)0" kﬂ)
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1 1 Jisan I;. and in
(ni+k+ 10 (m + k)g’ = 0t
1 i

general, foreachm > I,and 1 < k < ng—ny~1, T} ((ﬂl TR D8 (ot k)ﬁ)
is an [;. These are the only intervals. As seen above, these intervals cover
[0,8) except for a Lebesgue null set.

To verify condition (a) of Definition (4.1), we show that conditions (i)
and (ii) of Remark 4.1 hold. First let us observe these conditions for 7 itseif.

If z,y € I; for some i > 1, then after simplification, it follows that

isan l;. Ifor1 < £ < nz--m“linl(

DT(z)
DT(y)

~1) <foty | 2 ) T@) - T(y) | < 9] T() - T() |

Thus choosing C' = 46 and ¢ =1 verifies condition (i) of Remark 4.1.
Apgain,
1

5 1
n e L ]
| DTz) | T~ (z) Tr2(z) - T'(z) 2z | 2 gn ve.

1
Thus choosing I =1 and § = 7 verifies (i) of Remark 4.1.

So, (a) is satisfied for T So, there exist C, § > 0 such that for each n € IV
and each interval I such that 77([) is contained in one of the intervals J; for
each 4 =0,1,:-+,n, one has for all z,y € I,

DT™(x)
DT™(y)
We shall now verify (i) and (ii) of Remark 4.1 for T*.

Regarding (i), observe that if z,y € I; and T* = T% on I; and TY(1;) is
contained in T9tY(L) for 7 = 0,1,-- -, k; (note that it is enough to consider
k:'s larger than one). Hence,applying condition {a) for T" we have,

1| < C|TYz)-T"() |°.

DT*(2) DT% ()
DT*(y) DT*(y)
~ Thus, condition (i) follows. Condition (ii) follows exactly as for T\ The fact
T*(1;) = (0,0) for each ¢, shows that the conditions (b} and (c) of Definition
4.1 hold.

Il

] 1| < CITH@)-TH@) = C|T"(=)-T" () I’ .
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Hence, T™ 1s a Markov map.

Therefore, by Theorem (4.1), it does admit an absolutely continuous in-
variant probability measure v, the density of which is uniformly bounded.
Since T*(l;) = (0,8), the density p(z) is bounded below, Now if condition
(4.2) is satisfied, T" also admits an absolutely continuous invariant probability
measure by Theorem (4.2). This is not always the case. We get a sufficient
condition now.

Because of (4.3), we conclude that (4.2) holds if 322, (i + 2) [T (V)] <
oo. Recalling the description of V, T;'V, T7%V, - - given earlier we note the

following, If two points u, v are in V, then v = - 61+$’ v =~ ;_I_ " for
1 1
some z, ¥ € [0, 8) so that
El 6
—y|< <
R ) )
I 1 1
I[fu,ve T7V, thenu = v Y == g for some z, ¥y € V so that,
] 1
“ -y 0
—p < <
u=vls (mf)* = (m6)*
0 1 0 :
Thus length of V' < () length of T,V < L and in general, length
1 1
- 0
-
of 457V s (n,0)@+2)°
‘Thus
o0 _ 00 0
. —iy| < . |
;(z F2) [TV < E}(z+2) (3D
L
As a consequence, {4.2) holds if m8 > 1. For example, if 5 ¢ > 1 then
1 1 . .
this condition holds because 5 0 < ny6. But 5 # > 1 is same as saying
h—1
0 <0 < V5 .

2 |
We now proceed to prove (+) and (*#) for the situation mentioned above,

For proving (), in view of the Ergodic theorem it is sufficient to show that
[ a1(y)A(dy) = oco. We shall indeed show that [4a1{y)A(dy) = oo for all
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invariant sets A with positive probability. The reason is the following. Even
though for certain values of @ we obtained an absolutely continuous ergodic
measure with nice properties, it is conceivable (we do not know) that one
may be able to obtain for certain other values of 8 an absolutely continuous
invariant measure with nice properties but not necessarily ergodic. In such
a case, this argument shows that the conditional expectation of a; given the
invariant ¢-field equals infinity almost surely. Ergodic theorem would then
yield that even in such a situation (*) holds.

Thus , let A be an invariant set with positive probability. Let J' =
0,8) — J. Clearly, AN J' also has positive probability. To see this just
note that almost every point of J is taken to J' by some power of T. Fix a

1 1
k> ny+ 1 Let Ay = ((k+1)9’ A:Q) N A so that ANJ' = Ugsn,41 A and
hence not all Ay can have measure zero.Let S = {a € (0,1) : F -I_l&) 5 € At

By invariance of A it is not difficult to sec that S does not depend on k (as
long as k > n; + 1). Moreover, since A, has positive probability, S has
positive Lebesgue measure.

Now on J', the density of 1 is same as that of v (upto a normalizing con-
stant) as shown in the construction of p. So, by Theorem 4.1, it is uniformly
bounded below by some constant ¢ > 0. Thus, it is enough to show that
[any 01{y)AMdy) = co. We show this as follows :

o

./Aanﬂl(y)A(dy): 2 f a(y)A z f k—f—y)@)ﬁ/\(d’y)

k=ni+41 Al k=n+41

Ady).
/’;h-nll lc—l-‘y) ) @)

Now, for each y € S, the integrand is infinity and so, the integral is also
infinity, as required.

To verify (x*), we proceed exactly as in section 3 and we appear at the
following step :

1 1
Y~ log (7

) = FB(logz|7) a.e.-[u].
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To show that this limit is finite a.e., we argue that the function logx is
integrable w.r.t. . On J, the integral is finite because y is a probability and
log = is bounded on J. As regards J', firstly, the densities of 1 and v are same
(upto a normalizing constant). Secondly, by Theorem 4.1, the density of v is
bounded. Thirdly, the function log z is integrable w.r.t. Lebesgue measure.
These three observations show that the function logz is integrable on J' as
well, completing the proof.

Thus we have the following :

V5 —1 1

Theorem : Let 0 < & < ; and that 7 has expansion terminating

at the second stage. Then the generalised Gauss map on [0, §) admits an
ergodic invariant probability which is equivalent to the Lebesgue measure.

Moreover, for a.e. £ = [a,0, a0, ] we have,
e Fap
Him = 0,
11—+ 00 7

Further, there is a finite number «, such that if %’1 denotes the n-th conver-
n
gent of z, then for a.e. z, we have,

¥ L l =
Ji, 108 4 = 7

(B) The general terminating case :

Now we consider a little more general case. First we consider the case

when é— has finite continued fraction expansion w.r.t. #, say terminating at
the m-th stage given by

1

'é' - [HIH: b :ﬂmg]'

Since there is a difference between the odd and even cases of m, we assume
from now on that m is even. The difference being minor, we shall not consider
the other case. We shall also assume that ng, <+, n, are at least as large as

TL1+1
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The case considered earlier corresponds to m = 2. The basic idea is same

even for the present case. Only the partitioning of [0,8) gets complicated
1

| (k+1)6° kﬁ)
was an I;. It will be so even now. But earlier, towards getting the remaining
1 1

(ny +1)8" n, 6
1

o } (1, + 1)9

the other part remaining within J after an application of the map T It so

happened that the image under 7" of the points that leave J is a union of

1 1
T e ké’)’ k >n;+1. We defined 7™ to be 7% on

these points of J. The image under T of the points in the second part was
whole of J. So, we again split the set and continuing the process, we were
able to get a partition of J into intervals eacli of which is mapped onto [0, 8)
by some power of 7. In the present case, that is when m > 2, the range of T
on those points of J that leave J is not only made up of some full intervals of

1 1
00 ké))’ *(!c > n;-+1) but also a partial interval. To be a little
more precise, unlike the previous case, in the first step of the decomposition,

we now have three parts : the first part that leaves J under an application

1 1

the second part also leaves J under an application of T and consists of a
partial interval; and the third part remains within J after an application of
T. So, here in the next step, we have to split both the parts, the second and
the third part. This is done by applying 7% on these points. We proceed
this way. But now, another complication arises. While carrying out the
process, it may so happen that a point returns back to J. So, we have to go
on splitting until we partition J into intervals which are mapped onto [0, 8)
by some integral power of 7', This is achieved as follows :

As carlier, let J = ((ﬂ - 1)0,9). Then, TJ = (7'4,8). Note that 70 =
L+

(190, ++, nm0]. So, we have our first step decomposition,

which we are going to explain. Earlier each of the intervals (

) into

I;s in the partition, as a first step, we decomposed J = (

two parts : one part consisting of points which go to (O ) and

some of the intervals (

the form (

of 7" and consists of some intervals of the form (

J=R1UJ1UV1, Say
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where

R1={$€J:T$EJ}

1
@)}

1 1
nol’ (ng + 1)9)}

Fach of these sets on the right side is a subinterval of J. R; is the set of

points that come back to .J. We leave them untouched at this stage. T'V] is a
1 1

(k+1)8" ko
do anything for the points in 7'V;., We have to handle J; further. We shall
split this as follows. Note that T%J; = (0,T%6) and 748 = [nsf, -+, ny0).
So, we have the second step decomposition,

J={z € J: Tz e (T,

Vi={zeJ Tz e

), (k> ny+1) and so we need not

union of intervals of the form (

J1 — JQU"%, say .

where
1
— , 12 2
Jo={weJi: Tz € ((ng—}-l)O’T )}
1
/ — . 2‘
.‘2 {fU & Jl T 2 € (01 (n3 +1)9)}

At this stage no point returned to J on application of 72 on J; and so
we do not have analogue of R, or equivalently, we treat ( for notational
convenience ) Ry = §. As before, 7%V, is a union of intervals of the form

| 1
((1: 4 1)@’ M)’
We handle and split Jp. Note that T3J, = (1730, 6) and T°8 = [n40, - -+, ny0).
So, we have the third step decomposition,

(k > ny + 1) and we need not do anything for these points.

JQ:R;;UJaUV& sy ,

where
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Ry={z€Jy: Tz e J)

Jy = {‘L € Jy: T8y & (T30 ._..]_"__.)}
‘1149
1 1

ﬁdlgj (ﬂl -+ 1)6])}

In genelal, if p is odd and less than m, then 77J,; = (170,6) and
TP0 = [np410,- -, nyn0] so that p-th step decompostion is,

Vi={aedy: Tz €(

ljp._.l — I{JJ U Jp U 1’?} SEL}' y
where

.I’??J = {‘L S J;J--l  TPa € J}

1
—5)

1 1
ﬂp.{_l@} (Th + 1)9)}

Jy ={x € Jpoy : T2 € (T76,

= {2 € Jpo1 1 T € (

On the other hand, if p is even and less than m, then T?J,_, = (0,770)
and TP0 = [ny4.40, - <+, nz0) so that p-th step decomposition is,

J;nm—-l - J}JUI}‘H say .

1
Jy={x € Jy_1 : TP2 € (5 Tr0)}
H { p (?’11;,4_1 )91
1
V,=A{x € Jy—1: TPz € (0, -
Il { I ( (?1}}.{1 n 1)0)}

For the same reasons as mentioned earlier in the second step decomposi-
tion, we do not have It in this case. however for notational convenience we
shall take R, = 0.

Thus apart from a Lebesgue null set of points, J is written as union of

intervals,
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m-—1

1=UwuUn

Of course, for p even, R, = @ Not, only that, note that for each odd p,

TRy, = J and for g < p, IR, does not cover any full interval of the form

1 1
((k‘ 130" ké’)’ (k2 n1+1). For odd j < m — 1, let T; denote T restricted

to K;. ‘Then, for each such j, we again have,

‘ m—1 _ m-—1 |
B=177=UI7u U TR,
p=1 p=1

where the second union extends only over odd integers » < m.
Then, we can write J as follows :

m—1 nr-~1 m—1 ‘ m=—1m—1 _
. —J1 ~
J"U‘UUUTE VﬁUU UT.n 1,
p=l J1=1 p=1 fi =1 ja==1

Here 71, j» range over odd integers less than m and p ranges from 1 to m — 1.
We shall denote 13, 4, to be 7" restricted to the set {z : T‘“ﬂ: € R, }. Since the
domain of 1}, is aheady £, this set is actually a subset of R; . In general,
for odd integers jy, -, jr less than m, let Ty, ;,...5,) denote T restricted to

{z f;l'ji' Jj _'_?;’j“ 'z € R;.}. This is defined by induction on 7. Then,

-1 oo (i1t + +40)
—\Jt )2 Ir
J U U U {311.?21 :.?1' Vp'
IJ‘—']- 1"'{](.711 Jl

The above union is upto a null set. Here J;, jo, - - - range over odd integers
less than m. When » = 0, (4, <+, Jr) simply means empty sequence and

i that case ’I{;f‘?;;”;r]”'J V, simply means V,. With this understanding,
] ) ] 1

we describe the partition of {0,8). Each of the intervals ( T 10 0) for

k2 ny -+ 1isan ;. And on such an interval T* = T Each of the sets V] is a
union of certain intervals cach of which is mapped onto [0, 8) by TP+, These
subintervals are also I; s and on each of them, we put 7% = 7%+, Then T"“ Vi,
is similarly & union of certain intervals each of which is mapped onto‘[o EJ)
by T9-trtl Fach of these intervals is again an I; and we put T* = TWte+!
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on them. In general, {;fj;z*-”;}”")lfj? is in a similar way, a union of certain
intervals each of which is mapped onto [0,8) by T9+-+irtp41 and we put
T = Thtrtaectetl gn them,

lixactly, as in the case of m = 2, we can show that 7* is Markov map.
Thus T™ admits an absolutely continuous invariant probability. We shall
now proceed to obtain conditions for (4.2) to hold, so that T also admits an

absolutely continuous invariant probability, If =,y € T{}fﬁz'i?'f?j']”’Lj’“)I@, then,

1
(nlﬂ)?(jl-l---*ﬂr) '

|2 —y| <

This is because of the assumption that n;s are at least n;+1 for 2 < ¢ < m~1.
Here, jy, -+, Jr range only over odd integers less than m. In this case, (4.2)
reduces to showing that the following sum is finite:

-1 o0 r ]
p+ 1430029 — 1)
S Wl lp+14+5 3 i
s rexl (2, (nlﬁ) j=1144
m

Heve we denoted ) by k (note that m is even). Further, 4;, -+, %, range

from 1 to & so that 2¢; — 1 range over odd integers less than m. This change
is made to facilitate in the calculation of the sums involved.

Now, to find conditions for the above sum to be finite we proceed as
follows. Since outer sum consists of finitely many terms, it is enough to get
conditions when

P14 5 (245 ~ 1)

= . < 00
(?110)2 Zj=l(21j-—-l)

00
2. 2
r=l (f) o dy)

The above sum

kr pet1428—1
(ﬂ'l 0)43——21'

1
oo (k—L)r Pt 142041
(ﬂlg)dt-t-m*
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H

—

t=0

X G i(H:_l ) o

{=(})

1

e t-!-r—l p+1+42t+r
> 3 ( e

}

—
l-ﬂ-

§r+p+1§:(t+r—-1 1
| (nlﬁ)ﬁr fe=0) r ("n’lﬂ).{it
Clearly if n10 < 1 the above sums do not converge. So let us assume

that from now on n# > 1. Note that the second sum in the second

: 1 .
term is g )r-tlmes the sum of the negative binomial probabilities

(1 (n 03
1

with parameters 1 L and r, while the second sum in the first term is
1
1

0 1 )r—times the expectation of the same negative binomial distribu-
(1119)'1

tion, _
50, the above sun ,on simplification,becomes

1 9y
> G E= ey [

(n10)*
1
()’ > 1. Solving, we get, 1,6 > (\/_; 1)

; 1 \/_ 0 + 1) then n16 will be so. But the last
[
inequality implies that if § < ' 4 ve where ¢ = \/324. 1, then (4.2) is
satisfied in this case and an absolutely continuous invariant probability mea-
sure exists. But this is only a sufficient condition. Better bounds should
exist for 8, Once an absolutely continuous invariant probability measure ex-
ists, the conditions (*) and (x%) can be checked exactly in the same way as
done for the case m = 2. (Note that, there we did not even use that # has a

terminating continued fraction expansion w.r.t. itself.)

+r+p+1].

h.'.lll"

This sum is finite iff (n,6)*

1
NOW,R19>1“—9.SO if'-'-"gb'(

Thus we have the following :
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Theorem : Let 0 < § < etd- e h V5 + 1

1

b" — [nlga ﬂ'261 net ,ﬂ:mg].

Assume that ng, -+ n, are at least as large as n; 4+ 1. Then the generalised
Gauss map on [0, ) admits an ergodic invariant probability which is equiv-

alent to the Lebesgue measure. Moreover, for ae. g — 218, as8, - - -] we
have,
Q1+ +ta
lim T~ o
=100 ‘1

[further, there is a finite number 7y, such that if n denotes the n-th conver-

q
gent of x,then for a.e. z, we have, ’

.1
lim - log q, = .

n—oo n

(C) The non-terminating case :

. , 1
Finally, we consider the case when 7 has non-terminating continued frac-
tion expansion , say,
1
a‘ — [HIG, ﬂ:gg, . '].

Then for any § > 1,

TJ(G) - [n'j+19: n’j-}-?f?: e ]

We shall only briefly indicate the arguments without going into the details.
Procecding as in the case of terminating expansion, we can define Jy’s, V,’s
for p > 1 and R,’s for odd positive integers. Of course now we have these
sets indexed by p running over all the integers. Thus, we have, the following:

If p is odd, then T%J,_ = (1%0,0) and

TP = [ﬂp-i-le: ﬁp+29, " ]
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so that the p-th step decompostion is,
Jp—-l - IEPU ']F |J I*‘?, , 34y ,

I{IJ“—:{:IIEJI;_HTP:EEJ}

Jp={x € Jyor: TPz € (T70, —— )}

1 1
VI’ = {:B & JJ?‘“‘I TP C (np—blo} (nl n 1)9)}

On the other hand, if p is even, then TP ], | = (ngpg)

and
TI}G — [ﬂp_}l@, 'npi_ggj - .]

so that the p-th step decomposition is,

Jp-1 = J, UV, say .

= {2 € Jpq 1 T? TP
Jy={v € Jp: Tz € ((ﬂ;rl*l ey 7%6)}
1
)'r —— " - — :Tpl. E 0, 'y
‘;} {1' cJ 1 2 ( (np-{-l - 1)0)}

We do not write 2, in this case and treat R, = ¢, Thus apart from a countable
set, of points, J is written as union of intervals, -

00 O
J=JV,UulUR,
p=l p:l
Note that for each odd p, TR, = J and for g < p, TR, does not cover

| 11
any full interval of the form ( 10k 0), (k> ny+1).

Then proceeding exactly as in the terminating case, for odd integers
Juseende 2 1y det Tgg, jpgey denote T restricted to {z - Tf;:_f;:.:}ffflx <
R; }. This is defined by induction on 7. Then,

00 00 |
—{F1kFatber ot gy
7=U U U Tuami™ v,
| p=1 1=0 (jy 00 fn)
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‘The above union is upto a Lebesgue null set. Here J1,J2, -+ - range over

odd positive integers. When r =0, (5, -- , Jr) simply means empty sequence

and in that case T{J(‘fﬁﬂi;r'}"ﬂ")lf simply means V,. With this understanding,

L1
(k+18 k8’ "

k> mny~+11san ;. And on such an interval T* = T\ Fach of the sets V, is a
union of certain intervals each of which is mapped onto [0, 8) by TP+!. These
subintervals are also I; s and on each of them, we put 7* = TP+, Then T‘j a7z
is similarly a union of certain intervals each of which is mapped onto [0 6')
by TP+l Fach of these intervals is again an I; and we put 7* = Td+p+]

tFgrteot -
on them. In general, T {J(f;g‘j 2;.?:*} “"'")V 1S In a similar way, a union of certain

intervals each of which is mapped onto [0,8) by T7t++#+r+1 and we put
T — Tt tp+l oy (hem.

Iixactly, as in the case of m = 2, we can show that 7™ is a Markov map.
Thus T™ admits an absolutely continuous invariant probability. We shall
now proceed to obtain conditions for (4.2) to hold, so that T also admits an

absolutely continuous invariant probability, If z,y € T[J(':";:’ 2+}+3‘"JV then,

we describe the partition of [0,6). Each of the intervals (

1
(ﬂ,lg)g(jl Hoetir )

Cle-yl<

This is because of the assumption that n;s are at least n; +1 for 7 > 2. Here,

i1, ¢+, jr» vange only over odd positive infegers.
In the present case, (4.2) reduces to showing that the following sum 1s

finite;

S p+ 14+ T (25— 1)
A p+1+§j §j =L

After a slight clmnge of notation (wrlt,lng jp = 21, — 1 for r > 1) the above
summands are attained, This change is made to facilitate in the calculation

of the sums involved.,
So, the sum corresponding to (4.2) in our case is less than or equal to,

p+ 143520~ 1)
(ﬂ19)2 D (25-1)

(4.4) i ITG: ptl+ Z 2

r=1 t1: Ir1 )

We now get conditions fcu the above sum to be finite. Here, unlike the

98



previous case, the outer sum consists of infinitely many terms
i - . ) ' " '
Lhen, fivst of all arguing exactly as in the previous case, we show
}

f 3 ﬁ+1+>3;=1(2£jm1)_<
(ﬂlg)zz;ﬂ(ﬁf"l:‘ s

ra=l (il Il”'iil"')

vetd— /e V5 +1

provided ¢ < 5 where ¢ = -
2

Call this finite sum to be D(0) + (p+ 1)E(6). Then, the sum in (4.4) equals,

0] Q0
Zl Vallp + 1+ D(0) + (0 + DEG)] = ¥ [V|IDO) + (p + 1)E*(9)).
p= p=1

where, I*(0) = F(0) - 1.

Now, one can show that,

2 |
“'G}l S -(nlg)ﬁp_f_l:a p: 1:, 2_1."'1-

S0 the above sum is less than or equal to
D 0 = ¥ '
> [DO) + (p+ 1)E (9)](n19)2p+1

p=1

VT - /e

which is finite iff n;6 > 1 which is already satisfied as 6 < ;

V5 -1
wliere ¢ = —

Thus under this assumption, (4.2) is satisfied and an absolutely continu-
ous invariant probability measure exists. Once again, this is only a sufficient
condition. But once an absolutely continuous invariant probability measure
exists, (%) and (x*) can be proved here also exactly as in the case m = 2.

T'hus we have the following :

Vet+d- e \/5+1),A]salet

- Theorem : Let 0 < 0 < - 5 where ¢ = {— ;

-]*: = [?119, ﬂgﬁ,' ' ']+

0
99



—————————. o '

Assume that ng, na, «+ are at least as large as n; -+ 1. Then the generalised
Gauss map on [0,0) admits an ergodic invariant probability which is equiv-
alent to the Lebesgue measure. Moreover, for a.e. 7 = (010, as0, - - -] we
have, |

Further, there is a finite number «, such that if Pn denotes the n-th conver-

dn
gent of 2, then for a.c 2 we have,

|3 ! log ¢, =
g0 n 06 dn = 7.
Note that the above discussion is under the assumption n; > ny + 1
for all 4 larger than one. Without this assumption, the problem becomes

cumbersome and we shall not attempt to do that,

Section b : Back to Markov Processes

We now return to the Markov process mentioned at the beginning of the
chapter, To recall, we have a sequence (Zn)nzl of i.i.d. random variables
cach taking values 0 and @ with probabilities & and-1 — o respectively. Here
0 < @ < 1. Xy is a strictly positive random variable independent of the

sequence (Zy)ns>1. The Markov process (Xy)apo is given by,

1
Nl = Opal
-kl n--l X",

for n>0.

As explained in section 1, to show that the invariant distribution ¥ for
the process is singular when ¢ = 1, the route followed in Bhattacharya and
Goswami [ 2] is the following : They first obtained an explicit formula for F.

They used conditions (¥) and (%) (see section 1) to show that the derivative
of I is wero a.s. Lebesgue Differentiation Theorem now implies that /7 must
be singular, ' | -
For general 0, that is for 0 < ¢ < 1, it may not be possible to nbtafn
any cxplicit formula for £ on all of . Since F' is known to be pure, in
order to show that F is singular for certain value of 8, it suffices to show
that J* has a singular part. Thus if one could get someé formula for F' on

a suitable subinterval of JR, then perhaps one can repeat their calculations.
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With this in mind, we developed the machinery of earlier sections. However,
we have not been able to get F' on any subinterval and thus the envisaged
program could not be carried out. We give below another proof of the result
of Bhattacharya and Goswami [ 2] where (%) again plays a crucial role.

We are assuming 0 = 1. Thus we have (Z;);>¢ i.i.d. random variables
taking values 0 and 1 with probabilities & and 1 — @. It is known that the
invariant probability is nothing but the distribution of the random continued
fraction [Zg; Z1, Zg, -] Let this random variable be denoted by Y. Because
of the presence of zeroes, [Zo(w); Z1(w), Zo(w), ++] is NOT the continued
fraction expansion of the number Y (w). But because each Z; takes only two
values 0 and 1, it is not difficult to discover the continued fraction expansion
of ¥ (w). This is what we obtain now,

Lol us assume that Zy{w) = 1 or equivalently, consider the set ) = {w :
Zo(w) = 1}, Define the stopping times for the process (Z;)iy; as follows :

o(w) = [irst odd integer ¢ such that Z;(w) # 0
7 (w) = [Mrst even integer 4 > 79 such that Ziw) #0
2 (w) == First odd integer i > 7 such that Z; (w) # 0

cle.
L.et us now define,

o (W) = Locicnw) ZilW)
@y (W) = rpt)<icn w) ZiW)

¢l
Then, a simple calculation shows that for a.e. w € (,
Y(w) = [ao(w); a)(w), ag(w), - ]

Denote by S; the partial sums of the Z; sequence. More precisely, So{w)
Zo(w), and in general, Si(w) = Tocick Z:(w). Then it-follows tha,

N—
T

Gy = P11 G417 Sr-1— Sm-15 "
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Thus

1 & S S -1
(A) a:fw) = -1 Pl Tk
k+1§ () k+1 7.—-1 k+1
By the strong law of large numbers, we conclude that, JI;lim ST“_; con-
. =00 Tp —
verges to 1 — o for a.e. w. It is easy to see that To,T1 — Top, Ty — T1,° *+ are
1.1.d. random variables and they take values 1,3,5, -+ with probabilities
l ~a;a(l —a);a®(l —a), . Thus they have the common expectation
:3 — & T — 1 . J—

As

o 50, again by the strong law of large numbers leIED P aiai

a consequence, from (A), we conclude that

k
klixgﬁ-—lrizu a;i{(w)=3—a fora.e we.

Thus for almost every w € €, the average of the digits in the (continued
fraction} expansion of ¥(w) has a finite limit. Actually, we can carefully
repeat this argument on each of the sets Qg = {w : Zy(w) = 0 and 7, (w) =
1} Qo = {w: Zp(w) = 0, Z1(w) = 0, Zp(w) = 1} ete. to conclude that
for almost every w € €, the average of the digits in the expansion of Y (w)
converges to the finite number, 3 — «. Here,

Q:Q1UQUIU\QU(}1U'”.

In other words, in view of (x), the range of Y is a Lebesgue null set (we have
ap terms also here. (*) was stated only for numbers between 0 and 1 and
here we are using it for all numbers in (0, co). But this makes no difference.).
This shows that Y has singular distribution as desired.

In fact this proof gives more information. If the distribution of ¥ =
[Zg; 21, 24, - ) ( where Z;s are 1.i.d. taking values 0 and 1 with probabilities
o and 1— ) is denoted by P, on (IR, B) then for 0 < e < 1, the probabilities
P, are all singular w.r.t. Lebesgue measure and moreover, this family (F,)
is a uniformly singular family.

The difficulty in generalizing to the case when 8 < 1 is the follow-
ing: we can collapse the zeros as we did earlier and end up with ¥ (w) =
(ag(w)d; a; (w)d, aa(w)8, - - ] Unfortunately, this may still be NOT the expan-
sion of Y (w) in view of the validity problems mentioned in section 2. As a
result, we have not been able to extend this argument any further.
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