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SEQUENTIAL NONPARAMETRIC ESTIMATION OF
DENSITY VIA DELTA—SEQUENCES

By B. L. S. PRAKASA RAO
Indian Statistical Institute

SUMMARY. Scquontial estimators of donsity using dolta — scquences are studied,
Largo samplo proportics of thaso ostimators aro givon. Theso resulta generalizo oorlier work of
Dobouvols (1074) and Yamato (1872) for karnol type of scquontial catimators.

). INTRODUCTION

Estimators of the density function of a population bascd on a fixed sample
of independent observations have been proposed by several authors. Density
estimation by tho kernel typo method is discussed in Parzen (1962). Recently
Walter and Blum (1976) proposcd a method for density estimation using
delta-scquences. This method lias been used in Prakasa Rao (1978) to study
density estimators when the obscrvations are assumed to bo sampled from a
stationary Markov process. Details can bo found in Basawa and Prakasa
Rao.

The disadvantage of kerncl typo of donsity estimators f, based on fized
sample sizo n is that tho estimators are not recursive in tho sense that even for
a slight chango in the sample sizo or the “window width” one cannot compute
the now valuo of the estimator from the preceeding estimate and tho now
observation, It is nceessary to start computation of tho estimator right from
the beginning, In view of this, Yamato (1972) started study of sequential
estimation of density using kernel type of density estimators. Slightly more
general type of scquential estimators of density of kernel typo have been
studied extensively by Dcheuvels (1974).  1lero thoy havo suggested estimators
Sat1 of kernel typo which ean bo computed from f,, 7 and tho now observation
X, and which are optimum in somo senso.

Our aim in this paper is to study sequential estimation of density via delta-
soquonces. Results obtained hero includo results of Deheuvels (1974) for kernel
typo soquential estimators and they goneralizo soveral other methoda of density
estimators to sequential caso.

Section 2 contains tho definition of tho estimator and its propertics. A
Gaussian process related to tho estimator is studied in Scetion 3.

*Basawn, [. V. and Prakasa Rao, B. L.8.: Statistical Inference for Stochaatic Proccases.
Acodemio Prasa, London, to appoar in 1080,
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2, SEQUENTIAL ESTIMATION

A family {8,¢> 0} of non-negative L.(R) functions is called a
deltafamily of positive type & > 0 if thero exist A > 0, B > 0 such that

B
(i) 11— _IA 8¢ (x) dxz| = O(1) . (2.0)
(i) sup {|3 (z)]:]z| > ¢} = O@7) o (2.2)
and
(iii) 10l == £ . (23)

83 8= 0. This dofinition is duo to Walter and Blum (1976).
An examplo of a delta-family of positive typo ono is

1
& = - Xoap £ >0,

whero X4 is indicator function of set 4.
Let {h,} bo a sequenco decreasing to zoro such that b3 k, =00, For
a=t
examplo, &, = 77,0 < 8 1 will bo such a soquonco.
Let y, = ﬁ k. Givon a sample X,, X,, ..., X, from a population with
=1
density function f, define
1 n
faz) = i ‘:El hy ah‘(:—x;) o (2.4)
and
- l n
@)= E-‘ 8p(2—X0)
as estimators for f(z). Dlotivation for considering the estimator f,,(x) is given
in Walter and Blum (1976) and Prakasa Rao (1978). If 8x(x) = h~1K(z[h)

for somo kernel K(-), then tho abovo estimator reduces to that of Dcheuvels
(1974). Itis casy to sco that

_ ko
Janlz) = Fers fn(-")‘l“,y":: 5nn+l(x—x..+x) e {2.8)

and honco the estimator f,(x) is recursivo in nature,
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Now

MSE (f,(2)) = E [f(x)—f(x)]*

1 8 . 1 0 2

=5 I Mvar [ah‘(x-—‘\.m—[z P {E(ah‘(;—x,))—f(z))]
<l EREE —X)+- [ih.n (z)]' (2.0

= hi SITRELG T TN R

whero
By(z) = E[onz—X)]—fl2).

Since ||8y]le == A=t by (2.3), it follows that
MSE ol EmER, c—X)+5 (2 8B, @] 27
MSE = ) - = z)| ). .. (2
(e =055 £ WE By (= X055 [ 2 0By, ()] ) @7
Supposo f is Lipschitz of order A for some 0 << A £ 1, i.e., thero exists
C > 0 such that
|/} =fn)| < Clz—y|*
forall x, y ¢ R. In particular, it follows that f is bounded.

Then

1 Br@)| < oy heite, bt < eg b o (28)

by arguments similar to those in Walter and Blum (1976, p. 6) whero ¢, and
¢, are constants independont of & and 2. Sinco || fll. < o, it follows that

| E (Sa (z— X)) | < e e (2.9)
for some constant ¢, independent of k and 2. Relations (2.7) - (2.9) imply that

1 Z hltady 2
sup MSE (/,(#)] < & {7+ (“Y—) } e (2.10)

whero ¢; is independont of {k,} and z.
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Thoorem 2.1: Let {8, ¢ > 0} be a della-family of positive type a.  Further
suppose that fe Iip (A) for some 0 < A € 1. Then

&],‘u.x 2
sup E[f{x)~/(a)* = O {yl+ (‘:!T) } . e (211

Theorem 2.1 implies that the estimator f,(x) is mean square consistent for
each z. It is easy to check that f (z) is & strongly consistent estimator of
f(z).

Hercafter wo shall suppose that &; € Ly(R) for all £. o shall now study
tho limiting distribution of tho estimator f,(z).

Let

Ziy=MN 5n‘(x—X.), [ R

Then
L@ =7t £ 7
i=-1
and
fd5)—E Map):yié:.l (Z—F(Z)). e (212)

Wo have scen that

E [8x (z— X)) = f(z)+O0(h**) e (213)

uniformly in x from (2.8) and fuarther

E [ (x—X)]—/f(2) ’{ si(yde
= ’j; 8% (x—1) f(t) dt—f(z) ’ji % (1) dt
= [ SO fx—n—f)]d

= O(h-1+24) e (2.14)

by (2.3) and (2.8) uniformly in z. It is now easily scen from (2.13) and (2.14)
that

var(Z)) = 7'?[f(r)£ 83, (0 dt3-O(hi+N)) ki [f(z)+O(h") 1

= 1) | 83, ()~ fe)+0Uf*) v (210)

uniformly in z.
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Therefore
E var(Z) =/x) M [ &, () di—~f{w) T #+o| i':h;m). . (211
=1 =1 It =i {=]

Suppose that

fz) > A> 0 for all z¢[a,b) - (218)
and
1 Em s masy>o . (29)
Yagr "R
as 7 —» .
Then

% var (20 = f@) Dyyatolyl=f (@) E 1+0( 2 mee)
=1 {1 {=1

= Ly fx)+0 (1)=fz) o(1)+0(1)] - (220)
uniformly in z since
T A  pyear
“l_ 30 snd =l — 0

83 n —» 0. Since f is continuous, it is bounded on [a, b) and we have
n
Lovar Zi > A%y, . (221)
(=1

for some A® > 0 uniformly for x¢[e, ). Further obscrvo that
E|2,—E(Z))|* = ¥} E(5; (z—Xy))
= by E(8), (z—X)) by (2.3)
~k by (2.9)
uniformly z and thercfore

2 E|Z—EZ =% b =7, o 222)
-1 =1
uniformly in z.
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P = p HEZELE) ¢ )

Vvar (f(z))

2 {Zi—EZ) l

= P{ =y
L\/II var Z

(3]

and O(y) be the standard normal distribution function.

Theorem 2.2 1 Under the assumplions of Theorem 2.1 and (2.18) and (2.19)
and the fact that 8; € Ly(R) for all t > 0, there exists ¢* > 0 independent of n such
that

i By
sup _ sup |Foy)—D(y)| € ¢ 77 Y = Syt o (2.23)

s€(ab) —w<y

where @(+) 18 the standard normal distribution function.

Proof : This follows from Berry-Esscen bound for sums of independent
random variables (cf. Loeve, 1963, p. 288) in viow of inequalities (2.21) and
(2.22). In particular, it follows that

LD =E(f (=) £
VErTiE) 5N, 1). e (2.29)
Note that
var (f,(@) = o [y J@)+o(1) e (2.25)

from (2.20) uniformly in z since f is bounded.

Remark : If h,e=n"13, then y,~n%* and tho rate of convergonco in
Theorem 2.2 is of tho order =33, A result of tho above typo for kernal type
of density estimators when the centoring is around f(z) and not E (f.(z)) has
been obtained in Prakasa Rao (1977) for tho stationary Markov caso. Tho
rato obtained is of tho order 2=1/3-%, 7 > 0, Similar results can bo obtained
here. But we shall not discuss them hore.
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Supposo tho family {3, ¢ > 0} satisfies the condition (cf. Dohouvels, 1974)

+8
L elraey s =0 (55 (225)
for somo 7 » 0, # > 0 such that 748> 1. Then, for x # y,
YI
cov (f(@), fuly)) = - = X 1§ [cov [8)y, (x—X0), 8, (y—X))
1 n 18-
<5 Tuo Iz ey ) o (227)

3. GAUSSIAN PROCESS RELATED TO ESTIMATOR f,(x)

Let {p,(r), —00 <z < o0} Lo a continuous Gaussian process with
Elp.(x) = 0] for all 2 and

a¥(x) = var [p(z)] = 7, var [f,(2)] e (3
and

R (x, y) = cov [p,(x), puy)] = v, cov [fo(2), ful9)). - (32)
Note that

E[$), (x—X)=8, (y—X)*

= WY E (8, (a—X)—8y, (y—X)]|

= byt | fz) =) v (3.3)

when f is Lipschitz of order A and 6, is of positivo type cc. Honco it cun bo
shown that

Elp,(x)—pun))* < Clz—y|* = Cky(x—y) (sny) e (34)

for somo constant C using (2.8). Noto that if A(-) is any bounded density
function such that A(f) = 0{|{|-'*) as [t{| - o0 for some £ >0, then

Sat) = % K(t/h) is & delta-soquonce of typo f/A+2 and all the results of tho
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previous scction hold and results of this scction hold under the additional
conditions (2.20) and (2.19) and the fact that f is Lipschitz of order A,
o<aAg L.

Theorem 3.1 :  Let Iobe an open interval in Rand M = sup (f(z) 12 ¢ I,}.
If conditions (2.19), (2.20) hold and f is Lipschitz of order A, 0 < A & 1, then

lim inf (Iog e >'”’ aup poz) > @yMWP ... (3.5)
LEa X > hi g€ ’0
{=1
and
X v -uz |
lim sup (log -1 inf pn) & —(2yMM ... (36)
L= X ] z h% zE€ ’o
{=1

in probabilily.

Proof : Sinco tho processes p, and —p, have the same finite dimensional
distributions, it is enough to prove (3.5) and (3.6) follows from (3.5). Defino »
by the relation

1—y = ¢(2yA)-13
where 0 < ¢ < (2y2[)/2, Noto that f is uniformly continuous aince it is

Lipschitz. - We can choose a subinterval I of I, of length I (say) such that
f(z) > (1—v/8)M for all ze I and

oz) = v flz){1+o(D)]

a3 7 — co uniformly for z ¢ /. This is possiblo from (2.25) and (3.1) and hence,
for a largo =,

. 1
inf ,(z) > (Ay)¥? (1— E”)' e (37
If wo show that
Palz) o \¥ (-1
5\:]7 O—TI)> (2!0; "—h%) (l 2v) . (3.8)

al 2-12
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in probability us n — 0o, thon

sup p,(2) 2 sup p,(x)
x€ ’0 s€!l

Palx)

> mf o (2): supd @

> (My)2 (1_%;.)’ (2105 21}:,}—)”’

A
> < (o8 )

and since this is true for every 0 < ¢ < (2y3)'3, tho result follows,

it is sulficient to provo that

Pal2) ) 1 Ve \M?
P[i‘:[;o @) > —'jv)(ﬂogxh%) ]—»lns n— 0.
Define
Pul®) o (1 L\ [o10n Ya \?
o) = s > (1= zv) (21os £5y)
L 0 otherwiso
and
1
Zo=r { 7a(2) dz
Then
Pal2) _1 Ya V12
Pl am < (1-3v) (2re 7))
= P(Z, = 0)
var Z,
< EZi
- Yn
< Klog byt L,
whore

Lo=jf 1l oxp {210 B (1= 3) xal 1k el Y ddy,

@3.9)

Henco

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)
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R (z, y)|o(x)o(y). This follows from Cramér

K is constant and y.(z,y) =
. 1
Sinco |xal/1+|xal € 5 ond Ix,1 < 1,

and Leadbetter (1967, Sce. 13.5).
it follows that

1
,) J.J 1Rz )z dy.

(3.16)

i - Vn
L, < Uinf o) o™ (log o) (1=

But

E 03[ (B8, (e—X08, (y—Xol)dz dy

1
[T R(x, ) |dedy < -
I Ynim

2 Ohy+2-1) . (3
I:l.fxfl Te—y[e dr dy (by (2.27))

N
Eva

by dx de

3=

[
xJi hz+ﬁ|£ln+l

L=

h;+v+ﬁ {
by applying tho transformation (z, y) — (z, £) with y—z = ki &
Sinco 7+ p > 1, the doublo integral

1
5 dx dl
i, g
is uniformly bounded in § by ! j' TW d¢ which is convergent. Hence

A
JLIR@ ) dzdy =0 (y—) e (3.16)

(3.7) and (3.13)-(3.16) provo that

r lS“P Palz) > ( -5 ) (ZIOgLM)m]

2¢1 Uu('z)
o (2 (- ER
=0 (log T+ (xyTa)(l ) 7o)
—ty=v/1)
=0 (o5 e () ) - @47
and
log # (zl”;)_('-'em —0 as n—co
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sinco 0 <v <1 and y,/Z k% — o as n— . This completes the proof of
Theorem 3.1, Tho proof given above is an adaptation of the proof of

proposition 1 in Silverman (1979) to tho scquential easo.

Lot

Lu(z) = (—log &) pafz), z €]
where
Y
A = d=1
" Va
Note that A,~» 0 23 n— co. (3.4) implics that
E[gnz)— 8] < ¢ (—log A) 1 ko(y—2)

and hence

sup {E [{a(=)—Lan))
Ir-yi<e
< cV3(—=log A,V sup [k(y—z))*
I12-yi<u

= cV*(—log A,)"V3 k(u) = p(u) (say)

where
k(u) = sup< [Eo(z—y)]H/3

Assume that
1 (—log w)* k{du) < co.
o

In particular, it follows that k(u) >0 as u— 0.

Let
w,(u) = sup |{(z)—L ()|
12-yi<w

Lemma 3.2: Under the assumplions (3.3) and (3.23)

lim lim w(A,€)=0 in probability.
20 n o

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.249)

- (3.29)

Proof of Lemma 3.2 is similar to that of Lemma 4 in Silverman (1970).

We omit it.
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Theorem 3.3: Let ¢q=1inf {€>0:1,A;*>0 as n — oo} where l, is
length of interval I, Undcr the assumptions stated above,

Tim sup {(—log 8,772 py(a) |}  {2A1+e B}t ... (3.20)

n—per ¢
in probability where M, = sup f(a).
Ui

The abovo theorem follows by the method similar to that of proposition
2 of Silverman (1976) using Lemma 3.2,

Theorem 3.4 :  For any finite interval I, under the conditions stated above,

sup (—log 8,712 £o2)D (2y sup flm) . (3.27)
z€ €
and
inf (—log &) p,(z) 2 2y sup flz))"* .. (3.28)
&€ z€

where A, = (ZkY)fy, and y = lim 1 I3 [ 8% (u) du.
neYn e

Theorem 3.4 follows from Theoreras 3.1 and 3.3 by taking I, = I for sll n.

Ezample: Let E(l) = % e—‘zl 2
m

It is clear that K(t) = O(|¢|~*) for every 7> 0 as |{]|—c0 and K() i3 a

bounded density function. Thercforo Sx(t) = % K (%) is a dclta-secquence

, teR.

of positivo typo. It is trivial to sco that (2.19) holds since, for all n > 1,

1 n
— TR [ & (At = [ K¥u)d 0
Ya g1 ’£ "!() i! () du >

and (2.26) holds with 7 = 2 and # = 0 sinco normal distribution has second
moment. Ionco, if f ¢ Lip (A) for some 0 < A < 1, then Theorems 2.1 and 3.1
holds for tho sequential estimator f(x) defined by the delta-family given
abovo,
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