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Chapter 1

Introduction

In reliability theory, one is primarily concerned with the study of the lifetime
of a unit. The unit may be a mechanical device or a component of such a device;
it may also be a living organism. By lifetime, we usually mean the duration for
which the unit under study continues to perform certain specific functions before it
passes on to what is popularly known as the ‘failed state’. More generally, however,
lifetime can be, and often is, interpreted as the time to occurrence of a certain event
such as the elapsed time before a broken down machine starts functioning again or
the time period for which a person uses a particular brand of a certain consumer
product etc. | |

It is the practice of reliabilists to consider lifetime as a non-negative random
variable. We shall generically denote it by X and assume that X is continuous. For

x 2 0,
Fz) = P[X £ z]

is called the distribution function (d.f.) of X and
Hz) = P[X > 7]

denotes the corresponding survival function. The d.f. Fis a life d.f. if it satisfies
F(0—-) = 0. Note that the survival function, which is also referred to as the reli-
ability function, defines the probability that the unit will function at least for z
units of time. . ' | '

For absolutely continuous X with probability density function (p.d.f.) f(z), the

failure rate function of the unit is defined by

. TF(m) = :F'{E?), for & > 0 satisfying F{z) > 0.

It is easy to see that rp(z) has a nice physical interpretation; heuristically, rr(z)de
can be looked upon as the probability that the unit alive at age « will fail in the-
interval (z,z + dz] where dz is taken to be small. The above function is basic in




reliability theory and is variously known as the hazard rate function, intensity

function and also force of mortality.
Another function of fundamental importance in the study of life lengths is the

Mean Residual Life (MRL) function (see Guess and Proschan (1985)}), which is
defined as ep(x) := E(X — 2| X > x) where ep(z) is given by

(z) = (1/F(z)) [&° F(t)dt, for = > O satisfying F(z) > 0
erie) = 0, when F{z) = 0.

As indicated above, this function gives the expected residual life of the unit given

that it has survived upto age 2
The importance of the functions introduced above lies in their use in the study of

the ageing.pa.ttern of units. In fact, various ageing criteria have been defined in the
literature based on the behaviour of these functions. A unit is said to age posztively
(negatively) if its residual life tends to decrease (increase), in some prababilistic
sense, with increase in age. The following definitions, which can be found in Bryson
and Siddiqui (1969), Barlow and Proschan (1975), Rolski (1975), Klefsjo (1982a,
1982b) and Hollander and Proschan (1984), illustrate how the failure rate and MRL

functions are used to introduce various notions of ageing.

DEFINITION 1. A life d.f. F'is said to have

(i) Increasing Failure Rate (IFR) if rp(z) is a non-decreasing function
of x > 0. |

(i) Decreasing Failure Rate (DFR) if rr(z) is a non-increasing func-

‘tion of > 0,

More generally, (in situations where F may not have a density}, we say that

Fis IFR (DFR) if and only if the conditional survival function F(z + t) /F(t) iz a
non-increasing (non- -decreasing) function of ¢ > 0 for all z > 0. However, when

the failure rate function does exist, the two definitions are equivalent.

DEFINITION 2. The life distribution FH said to have Increasmg Faziwﬂ Rate |
Average (IFRA) if (1 /m) fn re(u)du is nc}n-decmasmg inz,z>0.

The dual class life d.f.s with Decreasing Failure Rate Average (DFRA) is obtained "

- by reversing the direction of monotonicity in the above definition.



DerINITION 3, The life d.f. F'is said to have the New Better than Used
(NBU) (New Worse than Used (NWU)) property if |

Hz+y) < (2) Fe)Fy) Y2,y 20.

DEFINITION 4. The life d.f. F is said to have the New Better than Used in
Bzxpectation (NBUE) (New Worse than Used in Eazpectation (NWUE)) property

if the mean p of F'is finite and
&)
[ Tyt < (2) uFa) Yo 20,

e, ex() < (2)er(0) = p.

DEFINITION 3. The life distribution F has Decreasing Mean Residual Life
(DMRL) (Increasing Mean Residual Life (IMRL)) if ep(z) is a non-increasing
(non-decreasing) function of z € {y >0 : F{y) > 0}.

DEFINITION 6. The life d.f. F has the Harmonic New Better than Used
in Ezxpectation (HNBUE) (Harmonic New Worse than Used in Ezpectation
(HNWUE)) property if the mean p of F'is finite and

/m_ﬁ’(t)dt <(2) pe“”;/“ Yo 20,

The next definition, based on Laplace ordering, is due to Klefsjé (1983).

DEFINITION 7. The life d.f. F is said to belong to the class L (L) of life
distributions if the following relation holds:

o0 B 1 .
Li{s) :=/ﬂ TR < (2) gon = Le(e) Ve 20,

4 being the finite mean of F, and where G is the exponential d.f. with mean 73

The chain of implications among the prominent ageing classes defined above is
“as follows: o ' ' o

(i) IFR == IFRA == NBU == NBUE => HNBUE =3 (;

(ii) IFR = DMRI, = NBUE. o



The identical structure holds if each of the classes in the above chain is replaced by
its dual.

The classes of life distributions described in Definitions 1-7 attracted a great
deal of attention during the last two decadés. The theoretical properties of the
corresponding families of life d.f.s have been thoroughly investigated and practical
applications have been found in meodelling of lifetime of devices as well as in the
theory of maintenance policies.

The interesting fact to note, however, is that the ageing pattern exhibited in all
the above classes happens to be monotonic, i.e. the direction of ageing, so to say,
remains the same throughout the entire lifespan of the unit under consideration.
But, in actual fact, it is seen that the ageing pattern in many practical situations
is non-monotonic. Typically, there is often a ‘burn-in’ phase where negative age-
ing takes place and then there is a useful life period followed by the ‘wear-out’
" phase characterized by positive ageing. Many physical phenomena such as the
ageing of human beings (where ‘infant mortality’ decreases during the ‘burn-in’
phase) and the lifetime of cutting tools (where work hardening takes place ini-
tially) are examples of this kind of ageing. Such situations are typically modelled
using bathtub-shaped failure rate functions, ie., the failure rate is non-increasing
upto a point on the time scale, then it remains constant for a while and eventually
becomes non-decreasing. We shall, in future, refer to such dlstubutlans, through -
abuse of terminology, as bathtub failure rate or simply BFR for which we shall
give a formal (and somewhat more general) definition in Chapter 2 of the thesis.

A considerable amount of work has already been done on bathtub distributions.
Bray, Crawford and Proschan (1967) derived the maximum likelihood estimate of
F(t) in the BFR class of distributions. Glaser (1980) has obtained sufficient con-
ditions to ensure that a lifetime p.d.f. has a bathtub-shaped failure rate. Gaver
~and Acar (1979), Hjorth (1980), Mukherjee and Islam (1983), Paranjpe, Rajarshi
and Gore (1985) and Roy (1988) have proposed parametric models to represent
- BFR distributions, Bergman (1979) and Park (1988) have suggested procedures

for testing constant versus bathtub failure rate. Aarset (1985) has obtained the
null distribution of the test statistic proposed by Bergman, Deshpande and Suresh
(1990) have obtained a characterization of BFR distributions in terms of the tata{ |



time on test (T'T'T) transform. Bathtub models arising out of a variety of stochas-
tic and reliability mechanisms have also been investigated {Canfield and Borgman
(1975), Cobb (1981)). A review of the class of BFR distributions has been given
by Rajarshi and Rajarshi (1988).

It would, however, be misleading to confine ourselves simply to BFR distribu-
tions in the context of modelling non-monotonic ageing situations. Attempts have
been made to study such ageing through the MRL function (Guess, Hollander and
Proschan (1986)) by introducing the Increasing initially, then Decreasing Mean
Restdual Life (IDMRL) family of life distributions, The Increasing initially,
then Decreasing Restdual Life (IDRL) class of Deshpande and Suresh (1990} is
an effort at studyin.g non-monotonic ageing by means of the conditional survival

function.
A large part of this thesis focuses on different aspects of the theory of non-

monotonic ageing classes important in reliﬁbility.

In Chapter 2, we investigate some of the basic issues concerning BFR life dis-
tributions which were, till now, unresolved. Specifically, exponential bounds have
been obtained for the survival function as well as the moments of a BFR. distri-
bution. Closure properties of the BFR family under the formation of coherent.
- structures, convolutions and mixtures have been dealt with. Closure of the BFR
class under convergence in distribution and the equivalence of weak convergence
and convergence of moment sequences have also been established. Much of the
material of this chapter can be found in Mitra and Basu (1991).

In Chapter 3, we introduce a nonparametric family of life distributions called
New Worse then Better than Used in Expectation (NWBUE) class. This class is
shown to include (in Chapter 5) the IDMRL class of Guess, Hollander and Proschan
as well as a]l BFR distributions. Two inequalities which are later utilized to obtain
bounds for the moments of NWBUE distributions have been established. The
bounds thus obtained are shown to be related to the moments of an appropriate
negative exponenhal distribution and a characterization of the exponential law i in
- the NWBUE class is derived as a consequence. Issues related to weak convergence

- have also been settled. Similar results for the dual family comprising of New Better
then Worse than Used in Expectation (NBWUE) distributions have also been’




explored. This chapter is based on some of the results obtained in Mitra and Basu
(1994).

Chapter 4 deals with the life distributions of devices subject to shocks occurring
randomly in time according to a homogeneous Poisson process. Under appropriate
conditions on the probability of surviving a given number of shocks, it is shown that
the BFR and NWBUE families arise from the shock model under consideration.
Though the results seem more or less natural, the proofs become quite involved
and a new technique has to be applied to handle the non-monotonicity present in
the model, An effort has also been made to generalize the result in the BFR context
to the case of a non-homogeneous Poisson process.

In Chapter 5, we investigate the interrelationships between the different no-
tions of non-monotonic ageing. We prove that {NWBUE} is a superclass of both
{IDMRL} and {BFR}. The proof exploits characterization results involving the
TTT-transform. It is also argued that the IDRL distributions introduced by Desh-
pande and Suresh (1990) do not form a valid non-monotonic ageing family in the
class of absolutely continuous distributions. Also, a conjecture of ﬂiashpande and
Suresh is proved to be false. The material of this chapter is ba,sed on Mitra, Basu
and Roy (1993) and Mitra and Basu (1994).

The next vital issue in the context of non-monotonic ageing models is to furnish
estimators for the points at which the failure rate function (or the MRL function,
as the case may be) changes trend. In recognition of this issue, in Chapter 6, we
develop a general methodology for consistent estimation of such change points in
the context of BFR, NWBUE and IDMRL distributions.

In Chapter 7, we investigate certain theoretical properties of the L-class of life
distributions introduced by Klefsjé (1983). The main focus is on the role of the co-
efficient of variation of an £ distribution in providing interesting characterizations

of the exponential law in specific subclasses of the £ family. A general characteri-

zation theorem has also been obtained. |
We close the thesis with Chapter 8 where the focus shifts to the applications .

side; here we exploit the notion of NBUE distributions in pursuing an inventory
problem. Specifically, we concentrate on a one-period inventory situation of a scarce
~commodity. Our work has been motivated by that of Panda (1978) and Basu



(1987). The (customer) demand distribution is considered random; so is the supply
from the two suppliers in the model., Under ‘new better than used in expectation'
assumption on the supply distributions, (an assumption particularly relevant in the
context of scarce commodities), a stré.tegy which maximizes a minimum profit has
been proposed. An estimate of this maximin order quantity whenever the demand
distribution is unknown, has been obtained and strong consistency of the suggested
estimator established.

Before concluding, a few words about the orgdnization of the material presented
in the following chaptefs. Flach chapter has its own introduction which motivates
the investigation carried out thereafter. It also familiarizes the reader with the
setup and introduces the notation and the terminology used. The results are then
presented in the subsequent sections where they are arranged in the form of theo-
rems, lemmas, propositions and examples, We shall write Result x.y.z (which can
be a theorem, lemma etc.) to mean Result z of Section y of Chapter x. Result y.z

will stand for Result z of Section y of the same chapter.
‘Finally, we provide a bibliography where we cite the relevant references.



Chapter 2

BFR Class of Life Distributions

1 Introduction

The fundamental ageing classes such as IFR and its dual DFR are defined by
requiring that the failure rate function is non-decreasing or non-increasing according
as the ageing pattern is positive or negative. In situations where the failure rate
may not exist, the notion of an IFR (DFR) distribution can be shown to remain
valid by demanding the convexity (concavity) of the cumulative hazard function,

Thus it is natural to take a cue from here to introduce the following well-known

(and formal) definition of a BFR distribution.

DEFINITION 1.1. A life d.f. Fhaving support on [0, 00) is said to be a *bathtub
failure rate’ (BFR) distribution if there exists a point fp (> 0) such that R(t) :=
—In F(t) is concave in [0, tg) and convex in '[t{;, co). The point tp is referred to as
a change point of the d.f. F'in the BFR sense, and we write F is BFR(tg).

Clearly, a BFR distribution can be used to model non-monotonic ageing situa-
- tions with an initial ‘burn-in’ phase followed by a useful life period and a subsequent
‘wear-out’ phase, |

Some authors, e..g. Deshpande and Suresh (1990), took %y to be strictly pos-
itive in the above definition. In such a formulation, one thus excludes the IFR
class (tg = 0) but the DFR distributions (#; = oo) remain included in the BFR
class, We do not see any logical justification for this apparent asymmetry which
we remove by allowing the possibility of ¢y to be zero. Thus, as per Definition 1.1,
{IFR}HH{DFR}C{BFR}.

It is apparent that if strict concavity or convexity is not insisted upon in the
above definition, then a BFR d.f. may have more than one change point. For

example, consider the distribution function F'having the following survival function:
(1+2)7, . - 0Lz,
Flz) = ¢ (1+a) lexp[-Az — o), | a<z<pf
(1+ &) exp[-A(8 — o) + 386" — 362%], 2B,

8



where 0 € @ < oo, A >0, >0, 8> 0 with 86 =X = (14+a)~*. The corresponding

failure rate function rr(-) is then given by

(1+2z)!, z<a,
re(z) = A a<z< B,
dx, x> 0.

Here, every ¢ € [a, f] is a change point of F.
For a BFR d.f. F, we define

Tr={t: R(t) is concave in [0,%) and convex in {t,c0) }.

It is simple to note that 7p is either a singleton set or an interval. Further, F'is

IFR if 0 € 7p and DFR if 00 € T |
We shall now introduce the notion of a strict BFR (BFRS) distribution in the

next definition.

DeriNITION 1.2. A life d.f. F € {BFR} is said to be a strict BFR {(BFRS)
if Tp = [to1,t02] with 0 < tpy < top < oo such that R(?) is strictly concave in
[tor — h1,101) and strictly convea in [tpz, Loz + ha) for some 0 < h1 < oz, ho > 0.

Iriterestingly, though several authors have looked into various aspects of the
BFR distributions, the following issues remained to be resolved in their context:

(a) exponential bounds for the survival function and moments of a BFR distri-
bution; | |

(b) characterization of the exponential distribution in the BFR family;

(c) closure properties of the BFR class under the formation of coherent systems,

convolutions and mixtures.

As is well-known, the above issues have been thoroughly investigated for the

IFR and DFR classes of distributions (see Barlow and Proschan (1981}). Naturally

- then, we look into these issues for the wider class of BFR distributions in Sections
2 and 3. In Section 4, we deal with the problem of weak convergence within
the BFR family and prove an interesting theorem establishing equivalence of such

convergence with convergence of moment sequences.

X



2 Reliability and Moment Bounds

Consider an absolutely continuous BFR life distribution F' with density function

f() and failure rate function 7(-). Since F' has support over [0, 00), it is trivial to
note that »(t) > 0Vt > 0; of course 7(0) can be zero, but then F'is necessarily

IFR, in which case exponential bounds for moments are already known. As such,

we prove the following results for F having r(0) > 0.

LEMMA 2.1, Suppose F' i3 BFR(y), to < oo, Then F < G where G is

exponential with mean 1/r(tp).

PROOF,

) exp{— ./£; m?‘(u)du}
| < exp{—Amr(tn)du}

= exp[~z7(to)]
= Gz). O

LeMMa 2.2. If F' is BFR(%), to < oo, then I has finite moments of all
orders k> 0 and Dk + 1)
. ' .,+ :
= BpX* < - . k>0 (2.1

t
PROOF. As F < G and G has finite moments of all orders, the same is true for
F. Further, |

m = f 1 F(z)dz

0 |
< k ] " gklgmerlio) gy
0 .
_ Tk+1) -
(r(to))*

-+ The next lemma yields a characterization of the exponential distribution within the

BFR class.

LEMMA 2.3. Suppose F is BFR(to), tg < 0o and p = I'(k + 1)/({t)}* for
some k> 0. Then F is empoﬁential. | | -

10



Proor. Note that
. k/ Y G(z) — F(z))dz
0 :

Tk+1)
(rlto))f ~ M
= ().

Sa—
L ]

But, by Lemma 2.1, the integrand is non-negative so that the lemma follows, O

COROLLARY 2.1. A life distribution which is BFR(lp), tp < 00 with mean

equal to (r(to))~! is necessarily exponential.

3 Basic Closure Properties

We first provide an example to argue that the convolution of BFRS d.fs is not
necessarily a BFRS.

ExXAMPLE 3.1. Let us consider the life distribution whose survival function is

given by
( (1+z) 1, r <0

z) = ¢
T2 o) expl-bet - B, @ >0

where @ = %(\/5 — 1). The corresponding failure rate function is given by

@) (1+2)7Y, 28
. rr(e) =
o x, x> 0,

so that F'is a BFR d.f. Let H(z) = F* F(z) denote the convolution of F with itself.

Routine but somewhat lengthy calculations show that for z < 8,
T 2

vz @rap o)

- H(z)=

“and as such, for z < 6,

 2p(z+2)+4(z+ 1) In(z + 1)
") = A e + e+ 2+ In(z + 1))

- It is clear that the numerator of riy(z) given by

p(z) = 8(z+1)(z+2)(z+2+In(z+1))°
-4{(2z + 3)(::: +2 +In(z + 1)) + (z + 2)°)
x{z(z +2) +2(z + 1} In(z + 1)}

11



is a continuous function of z. The continuity of ¢(z), together with the fact that
©(0) > 0 implies that 32 6 > 03 ¢(z) > 0V z € (0,6), so that ry(z) is strictly
increasing in (0, §). Consequently, the convolution is not a BFRS d.f.

In fact, even the BFR class is not closed under convolution as is demostrated
by the next example.

ExAMPLE 3.2. We consider two life d.f.s F' and & whose survival functions are

given by

Hz) = %—(e""—l—e"%m), z > 0;

Gz) = e*, z2>0.
Note that F, being a mixture of exponentials is DFR and hence BFR while &G

belongs to the BFR family trivially. Now the failure rate function of the convolution

H = Fx (& is given by |
| (z—-1)e™® +e7 2%

re™% + Patt |
accordingly, ry(0) = 0, ry(2) = 3, ru(4) = 0.5533 and rgy(z) — 0.5 as z — co.
These values of ry(+), obviously, reveal that it does not display the characteristic

‘“initially decreasing-ultimately increasing’ behaviour of the failure rate function

of a BFR d.{.

The next result deals with the formation of series structure where the component

lifetimes are BIFFR having the same change point.

rylr) =

THEOREM 3.1, Suppose we have a series system where the lifetime of each
of the components is BFR (BFRS) with a common change point ty. Then the
lifetime of the system again has a BFR (BFRS) d.f. with ty as one of its

change points,

Proor. ‘The conclusion of the theorem follows easily from the definition of

BFR distributions and an elementary property of convex functions.

We finally explore whether the {BFR} and {BFRS) families are closed under
the formation of parallel structures. Unlike in the case of series structures, neither
{BFR} nor {BFRS} is necessarily closed under the formation of parallel structures.

This is evident from the examples that follow.

12



ExampLE 3.3. The failure rate function 7p(:) of the structure formed by con-
necting, in parallel, two independent components each having BFRS life distribu-

tion F' as in Example 3.1, is given by

2%
) = e e S

Since rp(z) is strictly increasing in [0, 8], the system lifetime cannot be BFRS.

ExAMPLE 3.4. Consider the parallel system comprising of two independent
components as described in Fzample 2.1 (p. 83, Barlow and Proschan (1981})). It
is clear that the system lifetime is not a BF'R distribution; in fact, it is an upside-
down bathtub distribution, as introduced in Glaser (1980). The distribution has

a unique change point tp which solves
Me™ME 4 A2e M = (A — Ag)?,
where A; and )y are as in the example mentioned.

Finally, we illustrate that the mixture of BFR life distributions need not be

BFR.

ExAMPLE 3.5. Consider the life distribution given by the following survival

function: -
- 1 — -
Fa) = 5(Fi(e) + Fi()),
where
Fi(z) = ™, x>0,
Fy(z) = 2e **(z + %), z >0,
Clearly, both F; and Fy are IFR and hence BFR. Writing o(:) 1= ~InF{(), we

observe that ¢”(z) = ¥ (z)s(x), where
()= e*(14e7%(2z +1))72,
Po(z) = —~4e % 422 -3,
- Note that ¢1(z) < 0V z > 0; also, ¥2(0) < 0, 92(c0) = o0, and ¢f2(') is a continuous
increasing function. Hence it follows that 3 a to > 0 such that ¢(') is convex on
[0,t0) and concave on {tg, o). Thus F'is not BFR; in fact, it is an upside-down

bathtud distribution.

13



We summarize the results obtained in this section in the following table together

with their IFR and DEFR counterparts for the purpose of comparability:

Table 1. Preservation of Life Distribution Classes under

Reliability Operations.

Life RELIABILITY OPERATION
distribution Coherent Convolution Mixture
class systems

IFR NP P - NP
DEFR NP NP P

BFR NP NP NP

NP= Not Preserved P= Preserved

REMARK 3.1. As a BFR distribution has the tail behaviour of an IFR dis-
“tribution, it might be intuitively appea]ing and rather tempting to anticipate the
same kind of results to go through for BFR distributions as well, However, it is
interesting to note that though this is the case in the context of mixtures, the result

for convolutions is counter-intuitive, as the slightest DFR property at the initial

stage upsets the natural conclusion.

4 Weak Convergence within the BFR, Family

In this section, we are going to explore the connection between weak convergence
and the convergence of moments within the BFR family.

We need the following lemma:

LEMMA 4.1. Suppose F' is BFR(ty), to < oo. Then (F(z)/F(tp))1/Ft i

decreasing in z, x € (tn,ﬁ::-).'

PROOF. The lemma follows easily from the fact that R(z) = — In F{z) is convex

_in (g, 00). O

14



In Section 2 of this chapter, we derived an exponential bound for the survival

function and moments of an absolutely continuous BFR distribution F. Bven if
Fis not absolutely continuous, we can easily exploit Lemma 4.1 to claim that for

any A > tg, 30 < 8* = 0*(A, ty) < 00, independent of 2 such that
Hz) < exp[-0*(z ~ to)].

The above inequality leads to the fact that F has finite moments of all orders and

for every m > 0,
I'(m + 1)
Py . | - (4.1)

EpX™ < A™ 4

LEMMA 4.2, A d.f. which is BFH(tU)J to < 00, is uniquely determined by

tts moment sequence,

ProoF., The lemma is an easy consequence of {4.1) which implies that the

power series ¥ roqo{u™/mNERX™ has a non-null radius of convergence (see e.g.
k=0 g &

Loéve [p.217,1963]).

THEOREM 4.1. Let {F,} be a sequence of BFR distributions such that

F, — Fin law, where F is a continuous d.f. Then F 45 also a BFR dis-

tribution.

PROOF. Let tos € 7F,, n=12 .. We consider the following two cases:

Case I {tgy} is bounded. Consider a convergent subsequence {tpy} which
converges to B as k — oo. Obviously, 8 < oco; thus given € > 0, 3 an integer kg > 1
such that | |

B—e<ton, <B+eV k2 k.

Consider :.{:,y > [+ ¢ which exceeds g, for all large k. Now, since F'is continuous

and R,, is convex in [fgn,,00), for 0 < a <1, @ =1 — a, we have

R(oaz + E‘y) - JLI{L R, (az + @y)
Jim (@ Ry (2) + @R, (4))

eR(z)+3RG). (@42

EAA

Il

15



Similarly, it follows that for all 2,y < 0 —¢, and 0 < a < 1,

R{oz + ay) 2 aR(z) + &R(y). (4.3)

Since ¢ is arbitrary, (4.2) and (4.3) together imply that 8 € 7p. Accordingly, F'is
BFR.

Case II: {tgy} is unbounded. Comnsider 0 < z < y < oo. Obviously, there
exists a subsequence {tp,, } such that y < #,, VA > 1. As R,, is concave in [0, Lo, ),
arguing as above and passing to the limit through this subsequence, we conclude
that R(-) is concave in [0, 00), impling thereby that F'is DF'R and hence BFR. O

REMARK 4.1. Unlike in Theorem 4.1, if F,, € {BFRS} for each n, F,, —
F'in law, where F'is a continuous d.f,, then F' may not always be a BFRS d.f,

For example, consider a sequence of BFRS d.f.s {F,} with'earreépanding survival

functions given by.

(1-*-2})_1, | 0<z<la
Fu(z) =< (1+a) texp[-MMz — &), a Lz < b,
(1+ )™ exp[-A(Bn — @) + %611531 . %6’1332]‘ z 2 P,

whefe 0<a<oo,A>08,>06>0withé=A=_0+a)forn>1.
Then, F,, € {BFRS}, for each n. If 8,'s are such that 8, — co as n — oo, then

F, — Fin law, as n — oo, where

(14 )71, 0 <z < o

| M) = { (1+a) texp[-Az — )], = 2 .

Notice that the failure rate function rp(z) = (1 +2)~! or A according as = < or
2 « so that co € T and hence F ¢ {BFRS}.

Basu and Simons (1983) proved that the weak limit of a sequence of IFR distri-
butions is IFR provided the limit is continuous. The counterpart of their result in
the context of DFR distributions was not known so far. However, as a consequence

of Case II in the above theorem, we obtain the following corollary:

- COROLLARY 4.1. Let {F,) be a sequence of DFR distributions such that

B, — Fin law as n — oo, where F'is a continuous d. f. Then F is also a DFR’

distribution.

16



Another interesting observation that results as a by-product of the proof of

Theorem 4.1 above is as follows:

THEOREM 4.2. Let {F,} be a sequence of BFR distributions such that
F, — Fin law as n — oo, where F is o continuous d.f. If ¥ and F,, have

unique change points to and tg, respectively, n=1,2,..., then

lim 1o, = 1o (£ 00).
=30

ProOF. As F'has a unique change point, the proof easily follows as in Case [ in
the proof of Theorem 4.1 whenever {ton} is bounded since then § = ¥ irrespective
of the choice of the convergent subsequence {ton,}. On the other hand, if {tg,} is
unbounded, then necessarily F is a DFR d.f. and hence its unique change point
tlj = 00, by Case II in the proof of Theorem 4.1. Now suppose that {tp,} does not
converge to infinity, Then there should exist M > 0, such that ¢, < M infinitely
often so that it should be possible to pick a subsequence {to, } which converges to
a finite limit, say 8. But, then by Case I in the proof of Theorem 4.1 again, 8 € Tp

and as such oo = 4 < 0o so that we arrive at a contradiction. Thus g, — #; = 00.

Next we explore the connection between weak convergence of a sequence of BFR
d.f.s with the convergence of the corresponding moment sequences of all orders.
From Basu and Simons (1983), we note that there is a one to one correspondence
between the weak convergence of a sequence of IFR distributions and the conver-
gencé of the cnrrespnﬁding moment sequerce of any order to the moment of the
same order of the limiting distribution. On the other hand, in this context, it is
appropriate to also observe that the weak convergence of a"sequéil_c:e of DFR d.f.s
{F.} to F (which is also then a DFR d.f. by _Cbrnllaﬁy 4.1) may not imply the
convergence of, say, EF,‘X"‘ to EpX™ as n — d:::, even when the latter exists for

some positive m. The following is an example to this effect:
EXAMPLE 4.1. For n = 1,2, .., consider the DFR, d.1.

Eh(m) = aﬂe“#/m + thuﬁfm/y":

17



where 0 < o, < 1 with @, = 1, 0 < p,, — pt < 00, 14, — 00 and @V — 00

as n — 00, ™ being a positive number, For example, one could take o, = 1 ~ ;1;,

fn = p+ 2 and v, = n so that all the above requirements can be satisfied for
any m > 1. Now, obviously, as n — oo, F, — Fin law, P being the d.f. of the

exponential distribution having mean u. But Ep X™ — oo while EpX™ is finite,

The above example illustrates that weak convergence of a sequence of DFR
d.f.s need not imply the convergence of the corresponding moment sequence of
ﬁny specific order to the corresponding moment of the limiting distribution. Since
the {DFR} C {BFR}, generally, the same contention remains valid in respect of

a sequence of BFR d.f.s also, unless some additional assumption is made. The

following theorem is an effort in this direction.

THEOREM 4.3. Suppose {F,} is a sequence of BFR distributions and let
ton € Tp, n==1,2,.... Assume that the sequence {ty,} s bounded,
(1) If F,, — F in law, where F'is a continuous BFR d.f., then for every

m > {,
Ep X™ — EpX™ (4.4)

as 1 — 0o, |
(i) Conversely, if (4.4) holds for each integer m > G, and some BFR d.f.
F, then F,, — F in law.

PrOOF. (i) In view of finiteness of moments of F'and Theorem 4.1, it is enough

to show that for all m > 0,

00 OO
lim 2™ F (2)de = f 2™ 1 (z)dz (4.5)
| 0

w00 0

Let M > 0 be such that tp, < M ¥V n. Let A be a positive number such that

A > M and suppose €* > 0 be such that ¢' + (F{A)/ F(M)) = e, 6 being a
positive number. As F,, — F'in law, as n — 00, it i8 plain to note that there exists

n1 = ni(e*) such that B
| Fu(4)

= <e’,
| Ea{tﬂu)
or all n > n;. Using Lemma 4.1, we then observe that for all large n,

F;,,(:::) < { ixp[-ﬁ(a': - tn;}_u)/(A :"".tﬁn)] < exp[-6(s _ M)A, = > 4 (4.6)
| - o - o 7 < A |

18
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Since F, (z) — F{z) at each z, F being continuous, in view of the Dominated

Convergence Theorem, (4.5) follows using (4.6).
(ii) Lemma 4.2, Case I in the proof of Theorem 4.1 applied to a convergent

subsequence of F,, and a standard argument based on tightness and relative com-

pactness establish this part of the theorem. O

REMARK 4.2. It is simple to note that ty, := inf7r, € T, . As such, the above
theorem will hold if {¢§,} is bounded. In Example 4.1, each F, is a BFR d.f. with
a unique change point o, = 00. It may be mentioned here that the boundedness
condition regarding {fp.} is only sufficient and not necessary for the theorem to

hold. This can be seen by taking «,, 4, and 1, in Example 4.1 to be such that
ay — 1, gt — p(< 00) and 1, — v (< o0) as n — oo, Then, each F,, has a unique
change point %o, = co, F,, — Fin law, F being the exponential d.f. with mean g,

and Ep X™ — EpX™, for every m > 0.

5 The Dual Class

In this section, we focus our attention on the dual family comprising of UBFR,

distributions and consider issues similar to those investigated for the BFR class.
We first note that Lemma 2.2. is false for UBFR distributions, i.e., an UBFR

life d.f. F having a finite change point (and a finite mean) need not have finite

moments of all orders. The following example demonstrates this.

EXAMPLE 5.1, Consider the life distribution whose survival function is given

by

Fz)=a(z*+a)t,z>0
' where a > 0 is a constant. Its failure rate function is of the form
@) =2z +2)!

which is.st*rz'ctly increasing in the interval (0,/c) and strictly decreasing in
(/a,00); as such, Fis UBFR with tg = y/a as its finite change point. The mean
of this distribution is (w/a)/2; however, for r > 1, EpX™ = oo.
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We now discuss the UBFR analogues of the results presented in Section 4 in the

folowing remarks.

REMARK 5.1, Theorem 4.1 remains valid for UBFR distributions as well; only
when the sequence of change points is unbounded, the limiting distribution happens
to be IFR rather than DFR. Theorem 4.2 also goes through for UBFR distributions.

The arguments for proving these are exactly along the lines of the BFR versions.

REMARK 5.2. The first part of Theorem 4.3 does not hold for UBFR distribu-
tions as is evident from Example 4.1. Moreover, the fact that an UBFR distribution
(with finite change point and mean) need not have moments of higher orders, makes

the issue contained in the second part less relevant in this context,
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Chapter 3

NWBUE Class of Life Distributions

1 Introduction

The monotonic ageing notion, characterisecl. by the NBUE property of a life d.f.
F requires that the MRL function ep{z) is domninated by the mean px = ep(0) of
F. In this chapter, we follow up on this approach to introduce a non-monotonic
analogue of the NBUE property. We shall thus develop a nonparametric class of
life distributions, which we shall call the New Worse then Better than Used in
Ezxpectation (NWBUE). We shall show later (in Chapter 5) that this class, which we
call the NWBUE class, includes the IDMRL family introduced by Guess, Hollander
and Proschan (1986) as well as all BFR distributions, Consequently, the results
that we prove in this chapter can also be used in the context of BFR and IDMRL
distributions. We now formally define the NWBUE family of life distributions as

follows:

DerINITION 1.1, A life d.f. Fhaving support on [0, c0) (and finite mean ) is
said to be New Worse then Better than Used in Expectation (NWBUE) (New
Better then Worse than Used in Expectation (NBWUE)) if there exists a point

2o 2 0 such that
er(2) {

We shall refer to such an zp (which need not be unique) as a change point of
the d.f. F'in the NWBUE sense; we shall write F'is NWBUE(zo) (NBWUE(z0)) to
indicate that the life distribution Fis NWBUE (NBWUE) and 2y is a cha.nge point
of F. Let Cp be the collection of all change points of an NWBUE (or NBWUE)
life d.f. F. It is easy to see that for a continucus d.f. F, Cris either a singleton
or a closed interval. Note that an NWBUL (NBWUE) life distribution Fis NBUE |

(NWUE) if 0 € Cr while it is NWUE (NBUE) if oo € Cr.

(<)ep(0), for z < o,
(2)er(0), for z > x.

IA IV

We present below a simple example of an NWB[IE'_d1gtributiun.
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ExaMPLE 1.1, Consider the life distribution characterised by the survival func-

tion
_ {4/(2+$)2 ' if0<2 <]

2= (w/0) expl-(a2 = 1)/8] i1 <z < oo

The corresponding MRL function is as follows:

er(z) =

24+ 0Lzl
3/z  ifz 21

It is evident that F'is NWBUE(zp) with 25 = 3/2.

In the next section, we obtain some useful bounds for the moments of NWBUE
distributions; we also provide a characterization of the exponential distribution
as a consequence of some of the results discussed in this section. In section 3, we
prove closure under weak convergence and the equivalence of weak convergénce and
“moment convergence in the NWBUE family of life distributions and also furnish
a corollary which is an interesting by-product of our results. Our observations

relating to the dual class comprising of NBWUE distributions are given in Section

4.

2 Inequalities and Moment Bounds

We would need the following basic inequality which we present in the form of a

lemma.

LEMMA 2.1, If F is NWBUE(zo) with finite mean p, then

/mm Flu)du {

F’u,?;ther, of -e.p(m) is bounded above by M > 0, then

| /m_ﬁ‘(u)du < pe~Pexp{—zo(M -y Y}, Ve 2 oo, - (2.2)

,ue‘m/f‘, - for z < oy, (2.1)
Hﬁ_(mnmﬂ)/‘ui fﬂ"]" T 2 Zp.

IA IV

Proor. The probability density function of the first derived distribution of
F'is given by | | - A
' f(l)($)=%—)', 220
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and let r(;)(z) denote the corresponding failure rate function. Note that
fay(z)
rpy(z) = =
(@ ) fay(u)du
Fz)
[.7 Flu)du
= 1/er(z).

As Fis NWBUE (zyp), it now follows that

<1/p, if z < oy,
T(l)(ﬂ.’-){ /ﬂ’ 0

—
—

> 1/p, ifz 2> x.

Writing Fq)(2) = exp[— [y rqy(u)du] and using the above inequalities, (2.1) follows

easily.
If ep(xz) < M, then (2.2) follows simply from the relation between the MRL

function and the failure rate of the derived distribution, 0O

PROPOSITION 2.1. Suppose F' is NWBUE(zp), 2o < oo with (finite) mean

1 and let v be a non-decreasing (non-increasing) function on [0,00). Then
| e@Re)e< (2) | wla) expl—(o ~zo)/uda (23
L

Proor. We shall prove the result for non-decreasing ¢; the other case can be
treated similarly. Without loss of generality, we can take ¢ to be non-negative; the
result for a general ¢ would then follow easily by decomposing it into its positive
and negative parts. Let Z be a random variable whose d.f. is F{y), defined in the

previous proof and U be another random variable such that U— zg is exponentially

distributed with mean . Then, as ¢ is nqn.-decreasing, in view of (2.1), we have

/D " o(2)Flo)ds = f ) > z)de
= f (Z > so“l(m )z
= f fU o P(Z > w“i(m))dﬁ-k 7 fp :u) P(Z > ¢™(z))dz
< (o) + p /; ZD) P_(U > 90*1(w))dfﬂ
- pcp(azu)-l-ﬂ. o ((U) > =)



Now,

00 'P('-ﬂn)
/ oy PO0) > 2)in = Bo(U) ~ [ Pp(0) > z)da

I

Bo(0) - [ Plo(@) > w)ie

w(z0)
Bo(0) - [ PW> ¢ (@))do
Ep(U) - p(z0)

|

the integrand being unity, since ¢ is non-decreasing. Thus,

' /ﬂmso(m_)m)dm < (o) + p{Bo(U) — p(zo)}
= pEp(U),

which completes the proof. O

COROLLARY 2.1. If F' is NWBUE(xzp), z¢ < 00, with finite mean u, then

)

Am 2"V F(z)de < (Z)f 2"V exp[—(z - zo)/uldz, forr > (<)1 (2.4)

Lo

ProOF. Take y(z) = z"! in Proposition 2.1 and note that ¢ is non-increasing

for 7 < 1 and non-decreasing for » > 1, O
The above result leads to the following bounds for the moments of a NWBUE(z)

distribution where zq is finite.
COROLLARY 2.2, If Fis NWBUE(ay), rriu < 00, with finite mean u, then

BRX" < (2)revl [~ arteelbdn, for v 2 (<)1. (2.5)

Zg
Given a NWBUE(zy) distribution, zp < oo, with finite mean p, we shall now

obtain bounds for the moments of the above distribution in terms of the moments

of an appropriate negative exponential distribution.
‘Consider the following negative exponential distribution defined by the survival

o 1, - ifz < a2,
Glz) = if z < 2o
| exp[—(x — xg)/u|, if z 2 0.

function:
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Simple calculations show that for » > 1,

. . . 00
BoX = gf + re®/¥ f zlem by (2.6)
T
If # 2 1 is an integer,
r-—1 3
EeX" =5+ u'T(r+1) ) (mU;#) (2.7)
=0

The following corollary now gives the various moment bounds.

COROLLARY 2.3. Let F be NWBUE{zg), zo < oo with finite mean p, and
let G be as defined above. Then

(i) EcX" <ooV¥Vr>0,

(i) BpX" < EgX"Vr2>1,

(lii) BeX" S zp+ w'T(r+1) ;;’% (zo/p)?/§1V integers r > 1.

(iv) BpX" < pT(r + 1)e®/#, ¥r > 1.

ProOF. (i) This follows from (2.8).
(ii) For » > 1, by (2.5),

: oo
EgX™ < pel# f z" e F dy (2.8)
Z | . -

< zp+ re®ol ] e Py = B X",

g
(iil) This follows from the previous part-and (2.7).
(iv) For r 2 1, by (2.5),

OO
re3o/ B f p"le=%/E gy
Zq

Er X"

I

IA

o0
mmﬂ/ H / g le~%/H iy
0

W T{r + 1)e™/#

This completes the proof of the coroliary.

REMARK 2.1. Taking zo =0 (i.e., if F'is NBUE) in Corollary 2.1, we get the,

usual well-known bounds for the NBUE situation...
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REMARK 2.2. Though (ii) and (iv) of the last corollary give the same bounds

for the NBUE case, it is clear that the former, which has an interesting proba-
bilistic significance is sharper than the latter, which, on the other hand, has useful

applications as illustrated in the next section.

The next result gives an interesting characterization of the exponential distri-

bution.

THEOREM 2.1, Let F be NWBUE(zp), 2y < oo with finite mean p and let G
be as in Corollary 2.3. Then F is the exponential distribution of EpX" = EgX'

for some r > 1,

Proor. As EpX" = EgX" for some r > 1, then equality holds in the string |
of inequalities (2.8) so that 2y = 0 and hence F'is NBUE satisfying the relation
EpX" = I'(r + 1)u" for some » > 1. Consequently, F’ is HNBUE satisfying the
above relation. Now, Lemma. 2.4 of Basu and Bhattacharjee (1984) implies that &

is exponential,

3 Weak Convergence of NWBUE distributions

We start this section with the following theorem:

THEOREM 3.1. Let F,,, n=1,2,... be a sequence of NWBUE(zq,) life dis-

tributions with means pu,. Suppose that
(i) F, — F in low, where F is a continuous d.f.;

(ii) The sequences {un} and {zo,} are bounded.
Then F is NWBUE. Further,

00

lim ' dF,(z) = / r"dF(x) for every T > 0. (3.1)
0

=100 0

Proor, Let pu, < BV n 2 1 and let ,u- be.the mean of F. An application
of Fatou’s lemma together with (i) above shows that y < co. We first prove that

Ly, — 14 as n — oo; for A > 0, to be chosen suitab]y

oo

{Et( ) — F(ﬂ:)}dm'
d.:n+f ,,,(:r.:dw / F(m

[
e
+ o
E"--:ﬂ
4
5
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Suppose zp,, < M, Vn 2 1. For A>M> Zon, € > 0, by Lemma 2.1,

/ -F‘:'L dm

ﬁnBXP{ (A *TUH)/PH}
< Bexp{~(4- M)/B]

I\

which can be made smaller than ¢/3 by choosing a sufficiently large A, Since
1 < oo, |f3] < €/3 for all large 4. So, for A > M, sufficiently large, we have
| Ion| < €/3V n 2 1 and |I3] < ¢/3. As |f1,] — 0 by the dominated convergence

theorem, |[1n] < €¢/3V n > ng(A, €). Accordingly, as n — oo,

Hr = H (3.2)

Since xp,, is bounded, J a subsequence {zon, } such that zg,, — 8 < co as k — oo,

For z < f, we can choose a sufficiently large integer kp > 1 such that z,, > =,

Y k > kg which implies 1

0o
= Et u)du > oy -
E“:(m)/; k( ) k

Taking limits as k — oo, via condition (i) of the theorem, (3.2) and the, dominated

convergence theorem, we get

1 <
o / Fu)du > . (3.3)
Similarly for @ > 3, we can show that
1 @ .
= [ Ruwdusp. (34)

The proof of the first part of the theorem now follows from (3.3) and (3.4).
To prove (8.1), we first note via (3.2) that it holds for r = 1. Let X,, n =

1,2,... and X be random variables having d.f.s F,, and F respectively. Then, as
sup, EX,, < oo, {X.} is uniformly integrable for r < 1; this together with (i)

establishes (3.1) for » < 1.
On the other hand, for r > 1, by Corollary 2,3(iv),
EXT <yl T(r + 1)e*m/bn,
As {mgﬂ} is bounded and { pu} converges, the sequence {Zo, /i } is bounded so that_

sup, EXT <ooVr>1, by the above relation. So, {X7} is uniformly integrable for
each 7 > 1, and this proves (3.1) for r > 1,
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LEMMA 3.1. A d.f. which is NWBUE(zy), zp < o0, is uniquely determined

by its moment sequence.

Proor. Let Fhe NWBUE(zy), zop < oo with mean p. By -Coro]fary 2.3(iv),
it follows easily that the power series Y.o0,u"/rlErX" has a non-null radius of

convergence. The lernma now follows from a result on page 217 of Loéve (1963).

In Theorem 3.1, we showed that under a couple of conditions, weak convergence

of a sequence of NWBUE d.fs implies convergence of moments of the sequence of
d.f.s to the corresponding moments of the limiting d.f. The following theorem deals

with the converse of this result,

THEOREM 3.2, Let F,,, n=1,2,... be a sequence of NWBUE(xy,) d.f.s with
Do < 00V > 1 and supppose that F is NWBUE(:B[]) , o < oo such that for

all integers r 2 1,
W)

lim [ &'dF,(z) = /ﬂ " o dF(z) (3.5)

N—00 0

Then F,, = F in law.

PROOF;‘. By Lemma 3.1, F'is uniquely determined by its moment sequence. In
view of this and (3.5), the limiting distribution of every weakly convergent subse-
quence of {£,} happens to be necessarily # and this completes the proof.

If condition (ii) in Theorem 3.1 is replaced by the condition |

%)

lim [ zdFy(z) = /0 " 2dF(z) (< 00). (3.6)

P OO 0

Then we will have an interesting conclusion which we present below in the form of

a proposition.

PROPOSITION 3.1. Suppose in Theorem 3.1, we replace condition (ii) by
(3.6) given above. If the sequence {zg,} is unbounded, then F is NWUE.

Proor. Let u be the meaii_ of F} consider any z > 0. As {zg,} is unbounded,
3 a subsequence {2z, } such that 2g,, > zV k> 1. So, |

| 0o __
= F, (u)du 2 u,, .
o @) Jo H.-( ) _ P}k_
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Taking limits as k — oo and arguing as in Theorem 3.1, we get

1 feo 7
= =

L]

so that I'is NWUE.

L~

REMARK 3.1, It is trivial to observe from Propofsition 3.1 that under (3.6),
the weak limit of a sequence of a NWUE d.f.s is also NWULE, provided the lim-
iting distribution is continuous. The counterpart of this result concerning NBUL

distributions was given by Basu and Bhattacharjee (1984) with more generality.

4 The Dual Class

In this section, we extend similar investigations as in Sections 2 and 3 to the dual

family comprising of NBWUE distributions.
We first present an example to demonstrate that unlike NWBUE life distribu-

tions, an NBWUE distribution having a finite change point may not possess finite

moments of order higher than 1,

ExAaMPLE 4.1. Consider the life d.f. F described in Example 2.5.1. The mean
of this distribution is (my/@}/2 < oo; however, for » > 1, EpX" = co. As already
noted, F'is UBFR and hence, using the dual version of Theorem 5.4.1, we conclude

that F'is NBWUE, Finally, analyzing its MRL function,

er(z) = (Vo) (z® + a)(n/2 — tan™ (z/c))
we conclude that F' has a unique ﬁnite change point.

In view of the above example, it is evident that a result analogous to Corollary
2.3(ii) is, in general, false for NBWUE distributions having finite change points.

As such, issues contained in subsequent results in the same corollary do not seem

relevant in the context of NBWUE distributions.
From the following example, we further conclude that the NBWUE version of

Theorem 3.1 is false, | X
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EXAMPLE 4.2. For n = 1,2,..,, consider the sequence of NBWUE(0) life dis-

tributions defined by the survival functions
Fﬂ(m) = &-'ue_m/#n - Efte_mlp" )

where 0 < a, < 1 with o, = 1,0 <y — ¢ < 00,14 — 00 and &, 1/F — o0
as n — 00, m being a positive number. For example, we may take a, = 1 — 31*
= j+ = =y My = T8O that all requirements are satisfied for any m > 1. Now, as
n — 00, I, — £ in law, F being the d.f. of the exponential distribution having
mean p. But, Fp X™ — 0o while ExX™ ig finite, Thus, for NBWUE distributions,

weak convergence does not nec:essm ily imply moment convergence even if both the

sequernces {pn} and {xzg,} are bounded.

However, the question of closure of the NBWUE class under weak convergence

still remains open.

REMARK 4.1, In view of Example 4.1, issues dealt with in L.emma 3.1 and
Theorem 3.2 are, in general, not relevant in the context of NBWUE distributions.

However, proceeding as in the proofs of Theorem 3.1 and Proposition 3.1, we can

prove the following version of the latter,

THEOREM 4.1. Let F,, n=1,2,... be a sequence of NBWUE(mg,,_) life dis-

iributions with means u,. Suppose that
(i) F, = F in law, where F is a continuous d, _f ;
(ii) | | |
lim [ 2dF,(z) = L ” gdF() (< o) (4.1)

n—ee g

If {z0,} is bounded, then F is NBWUE; otherwise F is NBUE.

From the above theareni, we easily observe that the NBUE class 'i.s closed under

weak convergence provided (4.1) holds. .This follows from the fact that zq, =
oo V1 > 1 when the F, have the NBUE property.
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Chapter 4

Non-monotonic Ageing through Shocks

1 Introduction

In this chapter, we consider the survival function H(') of a single device subject to
shocks occurring randomly in time according to a homogeneous Poisson process.
Suppose N(t) denotes the number of shocks the device experiences in the time
interval (0, t] and let P be the probability that the device survives the first k shocks,
k=0,1,2,... . It is assumed that the P’ s satisfy the following natural condition:

.1'=-F02-}512_p2.... | (A)
Thus the probability H(t) of the device to survive beyond time t is given by

. H(t) = iP[N(t) =k| P, t20, | (1.1)
| k=0 | |
where P[N(t) = k] = e"*(At)*/kl, k = 0,1,2,..., and A (>0) is the rate of the
underlying homogeneous Poisson process mentioned.

Esary, Marshall and Proschan (1973} have shown that if the sequence { Py, k =
0,1,...} possesses what is called the discrete IFR property, then H(t) is also an
[FR survival function. It has been shown (Marshall and Proschan (1972)) that
when N(t) is a homogeneous Poisson process and the F.'s have a discrete NBUE
(NWUE) property, then the transformation (1.1) carries this discrete property over
to the corresponding continunu‘s"pmperty, i.e., H(t) is continuous NBUE (N WUE).
Analogous results for the HNBUE (HNWUE) class have been proved in Klefsjé
(1981), Other interesting results in the context of shock models are given in Block
and Savits (1978), Gottlieb (1980) and Ghosh and Ebrahimi (1982). In Section 2 of
this chapter, we present a result showing that if the P;'s possess a discrete NWBUE
property, then the continuous NWBUE property is inherited by the survival func-
tion H(t) described in (1.1). Similar results are proved for BFR distributions under

appropriate conditions.
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2 A Shock Model Leading to NWBUE Survival
We introduce the notion of the discrete NWBUE property as follows:

DEFINITION 2.1. Let Pi, k=0, 1,... as defined in the previous section satisfy
the natural condition (A) with 3% P; < co. The sequence {F, k = 0,1,...} is

said to be a discrete NWBUE (NBWUE) sequence if there exists an integer kg > 0

such that

—eme e | ()0 Y ,
af = PkZPj — ZPJ <) k< ko (2.1)
j=0 j=k 2 (5)0 Vk Z kﬂ.

The point kg will be referred to as the change point of the sequence {P;, k= 0,1, ...}
and we shall write {P, k=0,1,...} is NWBUE(ky) (NBWUE(ky)).

To gain an insight into the above definition, consider a device which survives
k shocks with probability P. According to the above definition, the sequence P
has the discrete NWBUE property if the average number of shocks to failure of

the device is initially smaller and subsequently larger than the expected number of

additional shocks required to cause failure.

The following gives an example of a discrete NWBUE sequence:;

ExAMPLE 2.1. Consider a device which survives at most 3 shocks. Let Py = 1,
Po=1/a, =Py =1/20, P, =0V k>4, witha > 1. If « > 2, then P, is an
NWBUE(3) sequence. If 1 < a < 2, then Py is an NBUE sequence. |

mE

We now prové a theorem ﬁ_rhich shows that the discrete NWBUE (NBWUE,
property of the sequence P gets translated to the continuous NWBUE (NBWUE
property of H(t) under the transformation (1.1). We shall need the following lemma.

for this purpose:

LEMMA 2.1. Suppose {ay, k=0,1,..} i3 a real sequence with the property

that

" <0 Vh<ko | | (2.2)
| 20 Vk2 ke,
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for some positive integer ko; also assume that the function defined by p(8) =
Ein(aek/!z!)sk, 8 2 0, converges absolutely ¥ s > 0. Then 385 > 0 such that

p(s) < or = or >0 according ass < or = or > sp.

PROOF. The case ko = 1 is simple. As the power series converges absolutely
for all ¢ > 0, it can be differentiated term by term as many times as we please.
Note that ¢'(s) = S 2eo(cu+1/k!)s* > 0V s > 050 that () is non-decreasing; also
9(0) = ap £ 0 and p(co) = co. Hence the assertion of the lemma follows easily
when kg = 1. The lemma holds trivially whenever ap =0V k > ky. Consequently,
we will treat the case when ay > 0 for at least one k > ko > 1. We shall prove the
result for ky = 2,3 and indicate how our proof extends to the case of any positive

integer ko. Generally, for integer 5, 1 < 7 < ko,

o0
Ny = S Skti
w7/ (s) E:O 7 sv .

By (2.2), ¢%0)(s) > 0¥ s> 0. |

Suppose kg = 2; then & (s) > 0V s > 0 so that ¢(s) is a strictly convex
function of s. Additionally, (0) < 0, ¢(c0) = 00; as such, there exists an sy > 0
such that ¢(s) < or = or > 0accordingas s < or = or > 8.

Now, suppose ko = 3; then @ (s) > 0V s > 0 so that »(!)(s) is a strictly convex
fuﬁction of 5. Also, p(0) = a1 < 0, (o) = oo; as such, there exists an sh>0
such that (p(l)(s) < or = or > 0accordingas 8 < or = or > 8. Thus, ¢(-} is
non-increasing in [0, 85) and non-decreasing in [sf, 00). But ¢(0) < 0, p(co) = oo,
so that d s > 0 such that p(s) < or = or > 0 accordingas s < or = or > s.

Suppose, generally that the discrete change point is ko > 4. Then {ke—2) (s) >
0V s > 0 and hence p*~2)(.) ig strictly convex. As p*=2(0) = ay,_o < 0,
tp(k“"z)(m) =00, 3 8 > 03 M=2(s) < or = or >0 according as § < or =
~or > 8p. Therefore, wo=3)(s) ig debreasing in [0,30) and increasing in [sg, o0).
But p®0=3)(0) < 0, k=N (00) = 00 50 that T85> 03 F-3(s) < or = or >0
according as 8 < or = or > s Thus, p!¥~4)(s) is decreasing in [0, £,) and
~ increasing in [s),00). Again as p*~9(s) < 0, pF~4(o0) = 00, T 8§ > 0 >
p*-9(s) < or = or _:>‘0 according as s < or or > 8. Cbntinuing this
iterative process, we can show that 3 s} > 0 such that ©(8) < or = or > 0
according as 8 < or = or > 80 This completes the j_prﬂof of Lei_nma 2.1. [

1l
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REMARK 2.1, It follows that had the inequalities in (2.2) been reversed, there
would exist sg 2 0 such that ¢(s) > or = or < 0 according as s < or = or >

S0, A

THEOREM 2.1. Consider a discrete NWBUE (ko) ( NBWUE (ko)) sequence
{Ps, k=0,1,...} and let H(t) be as in (1. ) Then H is NWBUE (NBWUE).

PROOF, We shall prove the theorem in the NWBUE case. The correspﬂnding
agsertion for the dual follows in an analogous manner by virtue of Remark 2,1.

It is easy to show (following the steps in Barlow and Proschan (1975), p.161)
that |

H(t)pu - /t N ﬁ(m)dm

zﬂ u [P lﬁP ZP,]
e -
== %—i _--—~—-a*, (2.3)

where p = 5~ ﬁ(m)dm is the mean of H and the a}’s are as in Definition 2.1, We
want to show that 3 a tg > 0 such that the right hand side of (2.3) is non-positive
for all non-negative t < ¢y and non-negative for all ¢ > t{).. |

Since the ax's are bounded, the power series 3 oq(ax/k!)s®, s > 0 converges
absolutely; also, the ay’s satisfy (2.2). The theorem now follows by an application

of Lemma 2.1, with o = ag. O

3 A Shock Model Leading to BFR Survival

Before going on to prove the main result, which is the analogue to Theorem 2.1 in
the case of BFR distributions, we state what is meant by a discrete BF'R sequence:

DEFINITION 3.1. Let {P;, k = 0,1,..} be as in Section 1. The sequence
{Pi, k == 0,1,...} is said to possess the discrete BFR property if there exists a
positive integer ko such that the-fdllowing holcls: |

E:,"'UI

(3.2)

AV

<

< Tk £1
< < S S
J— P

2 Pka_

;uq .
_ ;uq 3
_ ;U‘I x
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We shall call ko the change point of the sequence P. and write {P, k=0,1,..} is
BFR(ko). |

The relation (3.1) implies that, in a sénse, the shocks help the surviving individ-
ual/equipment to improve performance through experience/work-hardening till a
certain stage, but eventually, the accumulated effect of the shocks received dom-
inates. Ior example, an individual surviving the first attack of a certain disease
is expected to learn to cope with the next attack better, if it occurs and so on.
Initially, this learning will have an edge over the deterioration of his health caused
by each attack, but the cumulative adverse effects of repeated shocks ultimately

catch up with him and overtake the learning effects, Typically, the change point

will be a small integer.

THEOREM 3.1. Let {P., k = 0,1,..} be BFR{ko), ko > 0. Let H(\) be as
defined in (1.1). Suppose that

Pot1 5 (3.2)

—
L

Pku 0

holds. If

(a) ko £ 3, then H s BFR; | |

(b) ko > 3, and b, i= Y ioo(Py2Pij — Pu1Preji1) /l(r — 5)! has the same
sign for all v, ko — 1 <7 < 2kg — 4, then H(:) is BFR.

PrROOF. To complete the proof, it is enough to show that 3 sy > 0 such
that h(s) = .52, Pi(s/kl) is convex on [0, so) and concave on [sg,00). Note that
the power series Y22, Pi(s*/k!) converges for all s, as the Py's are bounded and

hence it has derivatives of all orders. We shall show that 3 sg > 0 such that

a.a

W'(s) > or = or <0 according as s < or = or > 8. Hence it is sufficient to

establish the existence of an sy > 0 such that ¥(s) = Y. 00br8" > or = or <0
according as s < or = or > sp. Simple calculations show that

“Pg}_:{,. hplqprﬂ

Ol B Olrl L

f P3Pr_1 PP,
=11 =11
| }54_}51._2 }_DS—PFFI

_ 2Ar-2)1 2(r - 2)!

b, =
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. PuP__ PP
1{r - 1)1 (r— 1)1}

| _ﬁr+2hpﬁ _ Fpr+1-p_l

- plo! 10!

1 = = 1 L. _BT
— E{R'+2PU — PIH‘+1} + {(1" _ 1), ﬂ}{PI-PT-I-I — PQR}
1 1

gy - ey PP BBt} et (3:3)

For kg = 1, the assertion of the theorem is trivial from (3.2) of Theorem 3.1 of

Esary, Marshall and Proschan (1973).

It follows from (3.1)-(3.3) that
(i) For kg = 2, by > O,- b. <0V r > 1; note that b, < 27/r! so that the power
series -y o2q br.8" converges absolutely and hence the conditions of Lemma 2.1 hold,

Thus by Remark 2.1, there exists sp 2> 0 such that 9(s) > or = or < 0 according

as § < or = or > 8.

(i) For ko = 3,090 2 0,61 20,0, <0V r 2> 3 by (3.1)-(3.3). Lemma 2.1 applies
irrespective of whether by 2 0 or < 0, thereby completing the proof.

(iii) For kg > 3,6, > 0¥ r < kg~ 2and b, < OV r > 2ky — 3. From the

condition in (b) of the theorem, it follows that Lemma 2.1 Is once again applicable,

completing the proof.
We shall give an example of a sequence of survival probabilities satisfying (3.1)

and (3.2).

E,:J(AMPLE} 3.1, For v > 2, real, let By = 1, P, = 1/vk, k = 1,..., ko (positive
integer), Pyt = 1/72+ ko, {=1,2,....

In this case, strict inequality holds throughout in (3.1) and also in (3.2). How-
ever, if for [ = 1,2,..., the expression for }5;,04.; is r-eplacecl by 1/r"1ky, equality will

hold in (3.2) as well as in (3.1) from the ko-th stage onwards.

REMARK 3.1. Unlike in Theorem 2.1, in Theorem 3.1 we needed the additional
condition (3.2). This condition signifies the severity of the shock required to reverse
the improving trend thus far. This phenomenon may obtain in processes where the

deterioration at a certain stage becomes too critical owing to the accumnulated effect

of the previous shocks.
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REMARK 3.2. It is to be noted that the assertion of the above theorem would

still hold if the condition in (b) is weakened to condition (b) as follows:

Condition (b’): The first § of the (ko ~ 2) numbers bg,—1,bky, ) b2ko--4 are

non-negative and the remaining (kg — 2 — 7) are nbn‘-pasitiwe for some integer 7,

0<7< ko—2.

REMARK 3.3. Theorem 3.1 can be generalized to the situation where the
shocks arrive according to a non-homogeneous Poisson process with mean value

function A(t).
Note that in this situation,

00 k
ﬁ(t) = Z g~ A) (AE:I)) B,
k=0 o

We can write H(t) = H (A(t)) where H (t) = 3.2, e % (t*/kl)Pt. Under the setup
and conditions of Theorem 3.1, H'(t) is BFR, with change point o, say.
Suppose that the mean value function A(t) is such that A(t) is concave on [0, £)

and convex on [tg, 00). |
Then, noting that —In H(t) = —InH (A(t)) and H (t) is BFR with change
point g, it follows from Lemma 2.1(a) of A-Hameed and Proschan (1975) that

H(t) is BFR with change point t.
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Chapter 5

Interrelationships amongst Non-monotonic
| Ageing Classes

1 Introduction

In this chapter, we shall attempt to study the interrelationships between various
notions of nc}n—monotunic.agein'g, namely, the IDMRL class of Guess, Hollander
and Proschan (1986), the IDRL class of Deshpande and Suresh (1990), the BFR
distributions and the NWBUE family introduced by Mitra and Basu (1994) and
discussed in Chapter 3. A considerable part of this chapter is devoted to a discussion
of the IDRL class and a conjecture of Deshpande and Suresh (1990), which we

settle here. Before proceeding further, let us recapitulate various well-known non-

monotonic ageing properties already existing in the literature.

DEFINITION 1.1. A life distribution F'is said to be an Increasing initially,
then Decrecsing Mean Residual Life (IDMRL) distribution if 3 a ¢y 2> 0 such |

that eg(z) is non-decreasing on [0,tp) and non-increasing on [tg, 00).

We shall call ¢y a change point of the life distribution F'in the IDMRL sense.

It is to be noted that unlike in the case of monotonic ageing, where it is well-
known that the IFR ageing criterion is equivalent to the stochastic dominance of
the residual lifetimes, in the case of non-monotonic ageing, such equivalence does
- not hold. This has been demonstrated by Deshpande and Suresh (1990) through
an example of a BFR life distribution which does not satisfy the property that the
corresponding residual life i3 stochastically -increa.%ing' upto a certain age and then
decreasing stochastically. With this observation in view, they proposed to study

the property of non-monotonic ageing through stochastic dominance of residual

lifetimes, With this rncrtwatmn they introduced the following deﬁmtmn

DEFINITION 1. 2 (Deshpande and Suresh (1990)) | A life distributiﬂn F'is said
to be an Increasmg zmtmtly, then Decreasmg Residual Life (IDRL) distribution
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if 3 a o > 0 such that F} (z) < F,(z) Y 2 > 0 whenever 0 < t1 < t2 < fp and
By (z) 2 Fi(2) Vo > 0 whenever tg < ) < 5 < o0.

As before, the point £y will be referred to as a change point of the life distribution
Fin the IDRIL sense,

Deshpande and Suresh (1990) have proved that
(){IDRL}C{BFR} and
(ii){IDRL} C{IDMRL]}.

They have put forward the following conjecture:

CONJECTURE 1.1, If Fe{BFRY{IDMRL}, then Fis necessarily an IDRL
d.f - |

Here, we note that the BFR class is not included in the IDMRL class of life
distributions and conversely. We can utilize the following example appearing in

Deshpande and Suresh (1990) to demonstrate the validity of the latter part of our

claim.

EXAMPLE 1,1. Consider the life distribution F' whose MRL function is given

by i
1 ifo<z«l

er(z) = m ifl1<z<?
d/z f2< 2 < o0,

Note that e.p() is increasing in [0, 2) and decre.asingin [2, 00) 50 that F'is IDMRL

with fp = 2. Routine calculations yield the failure rate function as

1 f0<ze<]
ri(z) =< 2/ - iflge<2
(z/4) - (1/z) if2 <z < oo

It is, therefore, clear that F'is not BFR.

In the next section, we discuss some implications of Definition 1.2 and show
that IDRL does not remain a valid non-monotonic ageing concept in a majority of |

regular situations. In Section 3, we put forward a counterexample to show that the
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above-mentioned conjecture of Deshpande and Suresh (henceforth to be referred to

as D-S conjecture) is in fact, false. We end the chapter with Section 4 where the

[

relationship of the BFR and IDMRL classes with the newly-intreduced. NWBUE

family is investigated.

2 IDRIL Class of Life Distributions

In this section, we study some interesting features of the IDRL: class of life distri-

butions. We shall state our results through a simple theorem and several remarks.

THEOREM 2.1. Let F be an IDRL d.f. with a unigque change point 1.
Suppose that F is absolutely continuous having ¢ p.d.f. f(:) such that the
failure rate function r(-) 18 left-continuous at to. Then, Fis DFR with failure

rate function r(t) of the form:

f‘(t):{ ot) t<to ' (2.1)

(P(tﬂ):. L 2 to,
where w(t) 48 non-increasing.

PROOF. AsFis IDRL, for all z 2 0,
 Fz+t)

L is non-decreasing in t, £ < {p; | 2.2
_F(t) 3 g } ) ( )

and . |
P(%;I; ) is non-increasing in ¢, t > {p. . (2.3)

From (2.2), for all ¢ > 0, —R(z + t) + R(t) is non-decreasing in &, ¢ < %o and as
such o o | |

r(t) 2 r(z +1t), t < to. o | o - (2.4)
Similarly, from (2.3), for all z > 0, r(t) < r(z+1),t 2 to. This pnb.servation together
with the fact that r(t) is left-continuous at tp proves (2.1). O | |

ReMARK 2.1. If an absolute_ly_cﬁntinuous IDRL d.f. F has more than one

- change point (in the IDRL sense), then using arguments as in the proof of Theorem
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2.1, we observe that F'is a DFR d.f. whose failure rate function has the fﬂlidwing

form:

where () is non-increasing, « is a constant, x < ¢(to-) and ty = inf{t : 1 is a
change point of F in the IDRL sense}. Thus, in this case, IDRL is not a valid

notion of non-monotonic ageing.

REMARK 2.2, Under the conditions of Theorem 2.1, {IDRL}C{DFR}, (with
a specific form of the failure rate function) so that IDRL does not remain a valid
non-monotonic ageing criterion in this situation as well. Accordingly, whenever
the failure rate function is well-defined, a necessary condition for IDRL to be a
meaningful notion of non-monotonic ageing is that r(t) is not left-continuous at
the (unique) change point to of the respective'life distribution. In case of many
standard life distributions, the assumptions of Theorem 2,1 hold true and as such,
the concept of IDRL there simply reduces to that of DFR with failure rate function

of the form given in (2.1).

REMARK 2.3. If the assumption of left continuity of (-} at the (unique) change
point of the distribution is dropped in Theorem 2.1, then the notion of an IDRL
distribution reduces to that of a BFR distribution for which the failure rate r() in
the interval [to, 00) is bounded above by r(3y—); in fact, r(t’) 2> r(t") Vi’ < 1, t" >
to. |

3 A Counterexample to D-S Conjecture

Here, we present an example to show that the D-S conjecture mentioned in Section-
1 is false, i.e., a distribution which is both IDMRL and BFR need not be an IDRL

distribution.

ExAMPLE 3.1. Consider the life distribution determined by the following fail-

ure rate function:

r(t) =

(148)7, 0<t<ea>0 .(31)”'
t, = tza o |
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where -1 = (1 + ). It is clear that for each a > 0, the above life distribution
is BFR (with change point «) but not IDRL, since (2.4) is violated. So it is
enough to check that the distribution is IDMRL; in fact, we will make it an IDMRL
distribution by choosing a suitable .

Simple computations show that the corresponding survival function F{+) and
the MRL function ep(:) are given by:

F(z) = (1+2z)7, r<a
(14 o)™ exp(d6a? - 262%, x> a;

_eF{m) _ (I+z)In[(1+a)/(1+2)+ (1 +2)(1 +B,), z<a,
expl36e?] [, exp[~j6ulldu, > a,

where B, = /a/2(1 + o) exp{a/2(1 + a)} ja%(Ha) u~2etdy — 1. First we note
that —1 < B, < 0 for all positive q. To prove this, it is enough to show that for
A>0,0< \/Be? I8 e~*u~1/2dy < 1, The first inequality is trivial while the second

is an easy consequence of the following observation:

Now, the derivative of ex(x) is given by
ép{2) = In{(1 +0)/(1 +2)] + Ba

so that ep(z) > 0 or < 0 according asz < or > (1+a)efe —1 =0, say. To make
a® > 0, it is enough to choose a > 0 such that In(14+a) > —By. As0< -B, < 1,
take o« > 0 satisfying In(1 + «) > 1, e.g., take a=el—1, Also, o' < o as B, < 0.
Accordingly, e{x) is increasing in the interval [0, «*), and it is decreasing in [a*, a);
- moreover, as F{z + t) /"F(..ﬂ:) is decreasing in the interval e, 0o) for every ¢ 2> 0, so
is ep(z) for z € [a,00). As such, Fis IDMRL whenever a = e — 1. We thus have
a life distribution which is both BFR and IDMRL, but not IDRL, Thus the D-S

conjecture is false.
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4 Interrelations amongst NWBUE, BFR and IDMRL

Classes

In this section, we explore the interrelationships amongst NWBUE, BFR and
IDMRL classes of life distributions.

THEOREM 4.1, A continuous and strictly increasing BFR life d.f. F' is
necessarily NWBUE,

We need a theorem due to Deshpande and Suresh (1990) for proving the above
proposition. Since our definition of the BFR class is slightly more general than
theirs, (for symmetry, we have included the IFR class), Theorem 3.1 of Deshpande

and Suresh can be modified to yield the following result.

RESULT 4.1, A life distribution Fis BFR if and only if 3 aty, 0 <1t <1

such that Yp(t) is convex in [0, %) and concave in [tg, 1].

We shall now use the above result to prove the theorem.

~ Proor oF THEOREM 4.1. Since F'is continuous and strictly iﬁcreaﬂing, we can
write the total time on test (TTT)-transform V(") of Fas

er(z) = p(l —¢r(t))/(1 - 1),

where F{z) = t. It then follows that F'is NWBUE if and only _i'f Jaty, 0<1) <1,
‘such that |

<t fort<t

4.2
>t fort 2>t (42)

Y(t) = {

‘We now discuss the proof in 4 different cases as follows:

Case 1. Yp(t) does not intersect the lineg(t) =t,0<t <1,
In view of the result, F'is then either NBUE or NWUE according as Yr(t) > or

<t, t € [0,1] and the conclusion of the proposition follows.

Case I1, First crossing of g(t) =t by the curve ¥g(t) is from above. _
Let the point of interswection be ¢*; then, ¥ p(t) = 1, L€ [t*, 1], for, otherwise, either
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the result or the fact that #/f{1) = 1 will be violated. As such, Fis NBUE and the

proposgition follows.

Case 1II. First crossing t;f g(t) =t by the curve Yp(t) is from below and

there are no further crossings.
Here also 9p(t) =tV t € [t*,1], and the proposition follows.

Case IV. First crossing of g(t) =t by the curve Yr(t) is from below and

there i3 a second crossing.
In this case, in view of the result, the second crosssing must be from above, and

the proof will follow as in Case II,

REMARK 4.1, The converse of the above theorem is false. This can be seen
readily by considering the life distribution exhibited in Example 1.1. It is easy
to observe that the distribution is NWBUE(xzy) with oy = 4, but its failure rate
function does not possess the BFR property as has already been noted in the

example quoted above,

=

The following theorem reveals the relationship between the IDMRL and NWBUI

families. The proof is trivial and hence is omitted here.

THEOREM 4.2. If F is IDMRL(t), then F is NWBUE(t;) with t) > 1.

We now provide an example to convey that a life distribution can be NWBUE
without being IDMRL.

EXAMPLE 4.1. Consider the life distribution having the following survival func-

tion:
{6/(6 + fﬂ')}g | - if0gz<a
Fz) = (8/(6+ @)} ' fagz<p
T {8/(6+ )} B +2a~ P/ +2a-20+z)? A<z <y
2 (0+2a—p) U (i ;
(9£u) @gl-;:t-%?"r) (z/7) expl: lq(e.f.‘za_zﬁ] ifo >
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where the parameters ov, 3, yand faresuch that 0 < a <8<, 20> fand 8> 0,
The corresponding MRIL function then works out as

0+ x f0<e<aw

() 0420 -1 fa<<e<f
EF =

04200 —28+2 if 3<e<y

Y0+ 20 - 28+ ifz2zny.

It is easy to observe that the life distribution I is NWBUE with change point
zo = (0 -+ 2 — 26 + 7)/8; however, F'is not IDMRL whenever o < # < 4, As

such, the converse of Theorem 4.2 is false, in general.

Typically, for a life distribution to be NWBUE, its MRL function has to lie

above the mean life y till 2o and below it then onwards. This property seems
to imply a natural non-monotonic ageing phenomenon which cannot be captured,
a3 is illustrated in the above-mentioned examples, through either BIF'R or IDMRI,

notions.
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Chapter 6
Change Point Estimation

1 Introduction

In reliability theory, it is well-known that in most practical situations, the ageing
pattern is non-monotonic and is typically characterized by a trend change in the
failure rate or mean residual life functions. In this chapter, we shall concentrate
on such situations and outline a procedure for estimating the ‘change points’ which
indicate precisely where the ageing process is reversed. We shall demonstrate that

our method a,pplleq in the standard non-monotonic ageing classes dlscussed earlier,

namely, the NWBUE, BFR and IDMRL families.
 Earlier efforts in estimating cha.nge points were limited to specific life distri-
butions only, For example Nguyen, Rogers and Walker (1984) and Yao (1986)

considered the life distribution having failure rate function
r(t) = ax(0 < t < 1) + Bx(t > 7)

where x(A) is the indicator function of the set 4 and a, B, 7 € R. The following

general model characterized by the hazard function

r(t) = Zakx Th-1 S 1 < Tk)
=1

WithO0=mp<n<...<Tp =0 and ap >0V k was subsequently considered by
Pham and Nguyen (1990). They used techniques of maximum likelihood estimation
(the ‘pseudo-maximum likelihood’ approach) and established sﬁrong consistency of
the suggested estimators. The application of bootstrap methods in the case m = 2
has been studied by Pham and Nguyen (1993). Basu, Ghosh and Joghi (1988)
treated the ‘truncated bathtub model’ specified by the rate function

() = MOX(0 < ¢ < 7) + dox(t > 1),

where A(t) is a decreasing positive function and )¢ is a positive constant. As

opposed to the above parametric and semiparametric models, here we propose to
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consider the problem of estimating the change point in purely nonparametric setups.
An earlier effort in this direction has been by Kulasekera and Lal Saxena (1991)

who considered life distributions displaying bathtub failure rates having a unique

change point and proposed a consistent estimator of the same. The methodology

described in the next section when applied to the BFR case, seems to work under

less restrictive assumptions,

2 Change Point Estimation

In this section, we consider BFR, IDMRL and NWBUE life distributions having
unigue change points and suggest a unified methodology for estimating these. Es-
timation of change points is relevant particularly in the context of maintenance
policies, since, as is natural, one would hardly think of preventively replacing a
component having such a life distribution before the ‘threshqld’ (unknown) age of

zo is achieved,
In a general setup, our problem can be formulated as follows:

(Given a random sample, X;, X, ..., X,, of size n from an unknown life d.f. F,
where F'is NM(:BD), zo < 0o, (NM is the abbreviation for non-monotonic and it
would stand for either BFR or IDMRL or NWBUE in subsequent discussions}, how
to estimate the unknown change point of the said life distribution F'?

We shall make the following two assumptions:

(A1) The finite change point zg of the d.f. F'is the unique mzmmmer/ maximizer
- of a suitable non-negative transform hg(:) of the life d.f. F.

(A2) We hé.ve an upper bound for the unknown change point —call it B, i.e.,
g < B < Dtj, F(B) < 1,

 Note that {A2) is quite a weak assumption because, in most practical cases, an

idea about B can be formed on the basm of some prior knowledge concerning the

phenumenon under consideration.
While estimating the change pomt of a BFR dlstrlbutmn F, we shall take

hp(:’c) rr(z); likewise, in the IDMRL case, hp(z) is taken to be ep(z). Con-

i
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sequently, in the context of both these cases, the assumption (A1) is equivalent

to

-

(A1*) The finite change point xg of the d.f. F'is unique.

However, the above equivalence fails in the NWBUE case where we choose hp(z) =
lex{z) — pr| with pp being the mean of F. This is so because here, under (Al%),
hp(m) = 0 may have multiple solutions, exactly one of which is the change point.
Our method consists of identifying zo as the unique minimizer/maximizer of
a specific non-negative transform hrp(z) of F. We then estimate hp(z) by hp (2),

where F, is a suitable estimator of F and is based on a random sample of size n

from it,
Let A, be the set of minimizers/maximizers of hp (z). We propose to estimate
o by Ton where zg, := inf A,, whenever A, is non-empty; zo, is defined appro-

priately otherwise. The choice of F}, would depend on the specific problem being
tackled as will be evident from the three cases dealing with the estimation of the

change point when F'is (i) NWBUE(zo), (ii) IDMRL(=o) and (iii) BFR(zo).

(i) The NWBUE(xp) Case.
Suppose F'is NWBUE(zo) with finite mean pp. Condition (Al) implies that o

is the unigue minimizer of the non-negative transform defined by
hr(z) = ler(z) — pr (2.1)

whenever zg = 0; otherwise, it is the unique positive minimizer. - Here ep(r) is
the mean residual life function of F. Let F, be the empirical c.d.f. based on the

random sample X1, Xz,.., Xy and Xy € Xpgy £ oo S Xpa) be the corresponding

) S
order statistics. In this case, we estimate hg(z) by

hr,(z) = ler, (z) — pr,| | (22)

where er (z) is given by

B :E';]&_:‘l:). fmm Fﬂ(‘v)dﬂ if X(ﬂ-) > Z,
BFH (:B) - ' .
| 0 | otherwise,
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and pg is the sample mean X,,. Note that er. (2) i3 nothing but the usual life table

estimate of the life expectancy at age z. Also, it is easy to see that

z[:=1(xj“m)f(xj“m) i X(ﬂ) S,

0 otherwise,

er, (z) = (2.3)

where I{a) = 1 or 0 according as ¢ > 0 or a < 0. It follows from Yang (1978) that

as n — 00,

sup fer, (@) - ex(e){ 0 as. (24)
0<z<h

for every b > 0 satisfying F(b) < 1. Further, it is clear from (2.3) that ex (z) is a
right continuous function having finite left limits and is piecewise linearly decreasing
in the intervals [0, X1)), [X1y, X@))s oo [Xn-1); X)), Also, note that eg, (z) has
jumps at & = Xy, ¢ = 1,2,..,, n— 1. These jumps are of positive magnitude, since

the averages (n — k -+ 1)~ j=k X(;) increase with k. Now, define
Ay i={0< 2z < B:leg (2) ~ Xy| is minimum}. (2.5)

Observe that limzjgler, (z) ~ X,,| = 0; hence, if A, is non-empty, the minimum

value of |ep (z) — X,| has to be zero; we thus have,
Av={0<a< B: er.(z) = X.}.
Then we have the following useful lemmas;

LEMMA 2.1, If o > 0 (=0), there exists an integer np 2 1 such that for
all n 2 ng, A, 1s non-empty (empty) with probability 1.

PrOOF. Consider the case 2y > 0. Let 0 < ) € oy < 23 < B. As F'is
NWBUE(zg), and o is the unique change point of F, |

er(z2) ~ pir < 0. |

Using (2.4) and Kolmogorov’s SLLN, we note that

——_—

er(z) — Xn — er(z) — i a.8. 48 N — 00,
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It then follows from (2.6) that there exists ng > 1, sufficiently large, such that for
all n 2> no, er,(21) — Xa > 0 and ep, (22) — Xy < 0 hold with probability 1.
The above inequalities, together with the fact that er (-) has jumps that can

only be positive in magnitude, guarantee the existence of a solution to the equation
er. (z) = X, with probability 1, for all sufficiently large n,

If 2 = 0, then via (2.4) and SLLN, we observe that for all z > 0, er (z) — X,, >
0 a.s. V large n, since F'is then NWBUE with unique change point zero.

It seems natural to estimate zp by z, := 0or infA, according as A, =

O or A, # 0

REMARK 2.1. Lemma 2.1 implies that xg, =0 for all large n with probability

1 whenever 29 = 0,

The following theorem justifies the use of the estimator proposed above.
THEOREM 2.1, The estimator xg, ts strongly consistent for xy.

PROOF. In case 2y = 0, a much stronger conclusion holds in view of Remark 2.1;
in fact, beyond a certain stage, zg, becomes zero identically. Fix any w € {2, where
(£2,F,P) is the probability space on which the X;'s are defined. By definition,
{zo,} i3 & bounded sequence and as such, it has a convergent subsequence, Let

{zon, } be any convergent subsequence of {zg,} and suppose that
Ton, — 2o 88 N — 00, | (2.7)

At this stage, we note that the graph of er (z) consists of n linear segments, each

having negative slope. Fach such segment extends between two successive order

statistics, Moreover, e (0) = X, and eg (x) is linearly decreasing between 0
and Xy, Thus it is clear that A, can have at most (n — 1) elements so that

inf A,, = min A,, and as such zp,, € Ap,. Therefore,'
0 .<_. 'eFﬂnk (mﬂnk) . fﬂ#l ..<.. |6Fun# (9:0) - hfflk‘- - | (2.8)

- Taking limits as k — oo and using (24) and the SLLN, we have, with probability

1,
0 < ler(wg) — wrl < er(zo) — prl =0,
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by definition of @g. Thus, with probability 1, 5 = 24, by the uniqueness of the
change point. Hence, any convergent subsequence of {zon} converges a.s. to mp,

This completes the proof,

- (ii) The IDMRL(xp) Case.

We take hp(z) = ep(z), identifly zy as the unique maximizer of er(z), estimate
er(z) by er, () as in Case (i), and define

Api= {0 <2 < B:ep(z) is maximum},

It follows from the graph of eg, (+) that A, is empty if and only if ep (z) — fﬂ <0
as. Vx> 0; likewise if er(z) — X, > 0 as, for some z > 0, then A, will
comprise exclusively of one or more of the order statistics. Now (2.4) and the
IDMRL property of F'imply that for all sufficiently large n, A,, is non-empﬁy with
probability 1. Define

0 ifA, =0
Loy = § . S
inf A, = min A, iFA, 7 0.

It is to be noted that the estimate of the change point would either be zero (if A,
is empty) or one of the order statistics (if A, is non-empty). |

The consistency of zg, can be proved very easily along lines similar to those in

Case (i),

(iii) The BFR(xg) Case.

We now discuss the estimation of the change point 2 of a BFR distribution F
for which the failure rate function rr(x) is well-defined, For this purpose, we take
hi(z) = rp(a); by (A1), we note that g is the unique minimizer of Ar(z).

~We assume the p.d.f. f(*) of F' to be uniformly continuous and let f,(2) be a
continuous kernel estimate of f{1), Accordingly, under suitable assumptions on the

kernel function, we have, by Theorem A of Silverman (1978),
sup{{fu(z) ~ f(z)| 1220} = Oas asp—oo.. = (2.9) |
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We propose to estimate rg{z) by

ru(2) 1= %,1((?)’ | (2.10)

where Fy,(z) =1 —-n/(n + 1) f{f fn(y)dy, fu(:) being the above kernel estimate of
f(:). The factor n/{n + 1) is introduced in the definition of F,(-) simply to ensure

that 7,(+) in (2.9) is well-defined, as [, f.(z)dz < 1. It is simple to deduce that
Irn(z) = r(x)] = a.s. as n — oo (2.11)

uniformly, over any bounded interval.

Define
Ay = {0 Lz < B:r,(z) is minimum}. * (2.12)

Since, for each fixed sample point, 7. ()} is a continuous function of z, it attains its

bounds over the compact set [0, B]. Thus A,, is non-empty, and we set
zon = infA,, = minA,,. (2,13)

The last equality holds in view of the continuity of r,(:).
The estimator proposed in (2.12) seems more natural and intuitively appealing

compared to the one given by Kulasekera and Lal Saxena (1991), which looks
complicated, besides being computationally rather involved. Moreover, they needed
~ anumber of assumptions on the failure rate as well as the kernel function to establish
~ the strong consistency of their estimator. But, the estimator in (2.12) is strongly

consistent under much less restrictive conditions, as can be seen in Theorem 2.2

below.
For the purpose of Theorem 2.2 below, we assume the conditions of Theorem

A of Silverman (1978), so that (2.8) follows.

THEOREM 2.2. The estimator zo, defined in (2.12) is strongly consistent

for xy.

PrOOF. Let {z0,,} be a convergent subsequence of the bounded sequence {=y,, }

and let
Ton, — g
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By definition of zq,,,

L (wﬂng) < Ty (E[}).

Taking limits as k& — oo and using (2.10), we get,
r{z) < (o),

which completes the proof because of the uniqueness of zy. O
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Chapter 7

Some New Properties of the £ Class

1 Introduction

The notion of ageing is central to the statistical theory of reliability and mainte-

nance. Consequently, an increasing number of life distribution classes have been
proposed and used to model various aspects of ageing, Among the ageing classes
(and their duals) which are considered as benchmark standards in reliability re-
search, the largest such class is known as £ (C resp.) which was introduced by
Klefsjt (1983). The immediately smaller sub-class of £ (£) in the hierarchy of
standard and nested sub-classes is {HNBUE} ({HNWUE} resp.). Definitions and
properties of these stronger ageing notions can be found in Barlow and Proschan
(1975), Rolski (1975) and Klefsjé (1982, 1983).In this chapter, we examine some

additional ramifications of the £ (£)-class property.
In what follows, the Laplace transform of a life distribution ¥ of a random

variable (non-negative) X will be denoted by

Li(s) i= E(e=*X) = /U T et dAt), 8> 0.

By pr, r we shall denote the r-th moment of F' whenever it exists and 7y will denote
its coefficient of variation (c.v.). Let F denote the first derived distribution

corresponding to F defined by
| 1 T _
) = — [ Ft)dt,
1() ey 1)
~ whose mterpretatmn in the context of renewal tha}ry is well-known. The Laplace
transform of F and F are related as
G H) . 1—Lgs)
L s==f e“-lf(——dt= -~ , 8> 0, 1.1
A (8 H1LF - SEyF (1)
DEFINITION 1.1. (Klefsjo (1983)) A life dlstrlbutmn FWIth finite mean #1 F=

;.o belongs to the £ (L)- clasq if

it ) . |
fu ﬁtt)dp( e Ve (.1.2)-
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By virtue of (1.1}, we see that F'€ £ if and only if Li{s) < (1 +su)"!, Vs> 0;
l.e. the Laplace transform of F'is dominated pointwise by the Laplace transform of
the exponential distribution having the same mean as F. Trivially, the exponential
distributions are members of the above class. For various interesting interpretations
of the above definition, the reader is referred to Klefsjé (1983).

In Section 2, we prove two basic results involving a distribution belonging to the
L-class; the first is a useful moment inequality while the second deals with the weak
convergence of £ distributions. However, our main objective in this chapter is to
present two interesting characterizations (Theorems 3.1 and 3.2) of the exponential
distribution within the £ (£) class of life distributions. Our results show that
the c.v. has a basic role in identifying £ (L) distributions in some situations,
except When the c¢.v. has the extremal value 1. To examine the relationship of
£ with the standard ageing classes, we introduce a sub-class Lp of £ and explore
its relationship with {DMRL}. We also mention a result (Theorem 3.3) relating
convergence in distribution of a sequence of Lp-random variables scaled by their

means to the unit exponential distribution with the convergence of their c.v.s to 1.

2 Two Basic Results.

The existence of the second moment of a distribution belonging to the L-class is
guaranteed by Remark 1 of Bhattacharjee and Sengupta (1994), They also proved

the following lemma which shows that the coefficient of variation 9 of a distribution

belonging to the £ (£) class satisfies nr < (2) 1.
LemMA 2.1. If Fe L '(E), then ps < (>)2u°
The above result can be proved using an alternative approach as follows. Define

1
he(8) = LHS) = T 820 -2

Note that hp(0) = K{(0) = 0. A d.f. F& £ if and only if he(s) <0, Vs 2 0. If
Fe £, then hf(s)_ has a maximum at s = 0, since, then hp(s) < 0=hAr{0), V52 0.

This implies that us r — Q;JiF =.h}(0) < 0; or, F < 1. f Fe l instead, assume:
o F < oo since the conclusion holds trivially whenever pgr = o0, Since e % >
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1—-a2Va20, we have
e = 2 /ﬂ tEt)dt
oo 1 —-sf,__
> 2/0‘ by AN

8

201 p
1 Siy F ,

2

for all s > 0, by the L-property in (1.2), This.imp]ies

243
2 F 2 8U —_—
HEF s?_g 14 ity F

which is equivalent to ng >1.
The following results illustrate some simple applications of Lemma 2.1.

LEMMA 2.2. If F€ L, then
(i) pr = f5° 2"dF(z) = 2"4u'1? for v > 2,
1) pr 2 vl - 112 ~7) " forl <r < 2.

ProoOF, (i) follows from Lemma 2.1 and Liapounov's inequality while (ii) can
easily be proved by an argument analogous to that used to establish the second

part of Lemmma 2.1.

REMARK 2.1, If F'e £, then p, < 2r/4p"/2 for 0 < r < 2.

- We shall now utilize Lemma 2.1 to prove the closure of the £-class under weak

convergence. First we make the following definition:

DEFINITION 2,1. A non-negative random variable is said to be £ if and only

if its distribution function belongs to the L-class.

LEMMA 2.3. Let {X,} be a sequence of L random wvariables such that

Xn— X in law. Then X is also an L random variable.

PROOF. As X,, — X in law, by the Helly-Bray theorem,

1 |
. > Le(l Li(1 00,
1+ EX, = .Fn( )—* F( )ﬂﬁn-—r
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So, 3 B > 0 such that EX,, < B<eoV¥ n 21, By Lemma2.1, EX,? < 2(FX,)? <
2B so that SUP,>1 EX,* < oo, which is a sufficient condition for the {X,} to
be uniformly integrable. As such, (see e.g. Billingsley (1985), Theorem 25'.12) :
EX, — EX as n — o0,

The lemma now follows from the Helly-Bray theorem,

COROLLARY 2.1, {L}P = [L}, where {L}P denotes the class obtained
by taking limits in distribution of members in L,

3 The Characterization Theorems

It may be recalled that Bhattacharjee and Sengupta (1994) gave an example where
Fe L, gr=1, but Fis not exponential. We now discuss two results {Theorems 3.1
and 3.2 below) concerning characterization of the exponential distribution within
two specific subclasses of the L-class, Basu and Bhattacharjee (1984) proved that
for an HNBUE distribution to be exponential, it is necessary and sufficient that its
c.v. is 1. However, the counterexample of Bhattacharjee and Sengupta (1994) shows
that such a characterization does not hold in the wider class of £-distributions.
Thi..é, therefore, raises the question: is there a nonparametric property stronger
than £ but not HNBUE, under which nr =1 is both necessary and sufficient for &
to be exponential? The answer is affirmative, as we show in Theorems 3.1 and 3.2

below.

DEFINITION 3.1, A life d.f. F having finite mean belongs to Lp-class if both
F and Fj belong to £,

Obviously, £p C L. Further, {DMRL} C Lp. This is so because, if F is
'DMRI, then F' € {HNBUFE} and hence i8 a member_ Qf ,C; on the other hand,
- Fe {DMRL)} implies that F} is IFR and consequently belongs to £. It is well-
known that {HNBUE}, the largest among the standard ageing classes, is a strict

subset of £, However, as of now, we are unable to comment as to whether any
hierarchical relationship holds between the classes {HNBUE} and £Lp.

We now present the first characterization theorem.
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TneorEM 3.1, Suppose F'€ Lp. Then F is exponential if and only if its

coefficient of variation s 1.

Proor. The ‘only if’ part is trivial. To prove the converse, suppose F, with
mean f and second moment pg p = uy is in Lp. Straightforward calculations and

standard arguments involving the interchange of the order of integration together

with the £-class property (1.2) show that
(k2/2u)

o0
< ~SE ()t
U+ 8(ua/2p) ~ /u )
v 1 1 = -5t T
= 3 - ;}; ) A F(f)dt
H
< :
— 148 (3.1)

The first inequality in (3.1} uses the fact that F} has mean uy/2u and F, € L.
The second inequality uses the L-class property of F. If Fhas c.v. npr =1 (i,
pz = 2u%), then the bounds on both sides of (3.1) collapse to yield

fme“*‘?"?(n(t)dt% £_ - /m e G(t)dt,
0 I+su Jo

where (7 is exponential with mean u. From the uniqueness of the Laplace transform,
we conclude that F{z) = Fi(z) = e~%/#, Yz > 0. O

REMARK 3.1, By virtue of Theorem 3.1, the counter-example in Bhattacharjee
and Sengupta (1994) implies that £ is strictly larger than £p.

REMARK 3.2, The dual version of Theorem 3.1 provides & similar characteri-

zation of the exponentials within the £-class.

We would need the following definition to present a general characterization
theorem which will later be exploited in the context of L-distributions.

DEFINITION 8.2. For arbitrary life distributions Fand G, we say that Fcros%s_

G from above (below) if for some @ € [0, %),

(
(

IN

)G(z) if & < m,
)"G"(a:) if z > xp.

-

z)
L

)

IA IV
1V

=
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Note that the above definition admits the possibility of F being identically equal
to G. Taking a cue from this definition, we shall say that F crogses G if F' crosses

G either from above or from below.
Interestingly, the crossing properties defined above introduce a class of life dis-

tributions (and its dual) with ageing property stronger than £ (£). Specifically, if
Fcrosses G from above (below), then F € £ (£). This can be seen as follows. Since

Fand GG have the same mean, we can write

" e (F(z) - Blz))do

0 |
= [T o) (Ra) - T(o))do
= ([ + e - e (Flo) - Tlo)is
2 0, |

since, the two factors in the integrand have the same (opposite) signs according as
Fcrosses G from above (below). In the spirit of the above discussion, the following

theorem provides yet another characterization of the exponential distribution within

the £ (L)-class.

THEOREM 3.2. Suppose F' is a life distribution with mean p, such that
Fz) erosses Glz) = e %1, Then B is exponential if and only if np =1,

PRrROOF. It is enough to prove sufficiency as necessity is trivial. Consider first the

case when F crosses G from above and suppose that the crossing takes place at zy.

Notice that the function (1 — ¢™**)/sp decreases in 8 for each z > 0. Accordingly,

nr = 1 implies that

o= [ CEe T -Fads 0 (82

as 8 — 0+, Elementary computations yield
o0 | .
g'(s8) = (sgp,)*"l./[; (s, z)(e™/# - Fz))de

for all 8 > 0, where ¥(s,2) = (1 + sz)e™*, Clearly, ¥(s,z) is strictly decreasing |

in 2 on (0, 00). Hence, as F has mean p, we have

(g (s) = [ (W(s,2) - Yo 20))(e™ - Fla))do
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7+ [ 602) = o, an)) e~ Fa))ao
< 0

i

since the two factors in the integrand have opposite signs for both the integrals,
Thus we conclude that g(s) is non-increasing and g(s) < g(0+) = 0. These,
together with the fact that g(s) — 0 as s — co implies that g{s) = 0V s > 0.
From the definition of g(s), it now follows that Lg{s) = (1 + su)~?, and as such,
Hz) =1~ e~k g > 0 by the uniqueness of the Laplace transform. For the case
when F'crosses G from below, the factors in the integrand would have the same sign
and consequently g(s) would this time be non-decreasing so that g(s) > g(0+) =0
would hold, Now, we argue just as before to complete the proof.

Our final theorem reveals the importance of the c.v. of a distribution belonging

to the £-class as a measure of its distance from the exponential distribution.

THEOREM 3.3, Suppose {X,} is a sequence of non-negative random vari-
ables with d.f. F, € Lp, n=1,2,...; BEXy, = iy < 00 and ¢c.v. 1. Then Xp/
converges in distribution to the unit exponential distribution if and only if

M — 1 as n — 00,

Obretenov (1977) proved the above result under the much more restrictive IFR
assumption by exploiting the upper bound on the Laplace transforms of IFR dis-

tributions, We omit the proof of Theorem 3.3, since exactly similar arguments are

easily seen to remain valid for life distributions in Lp.
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Chapter 8

An Optimal Ordering Policy
involving NBUE Supplies

1 Introduction

In a one-period inventory situation, suppose an order of amounts @,(> 0) and
Q2(2 0) are placed with two suppliers available at the commencement of the period,
depending on the initial stock y(= 0). The supplies U; and U, which are made
instantaneously by supplier 1 and supplier 2 respectively are, however, random
variables having distribution functions (d.f.} G1(:|Q;1) and G2(-|Q2) respectively
with EU; = @, 4 = 1,2, We assume that the customer demand X(> 0) has d.f. F(:)
with mean strictly positive and finite and Uy, Uy, X are mutually independent. Let
p, 8 and L denote the sale price, shortage and salvage costs per unit, respectively
of the commodity/item under consideration and let ¢; and ¢g be the purchase
(production) costs corresponding to the two suppliers and let ¢ be the cost at
which the initial stock was procured. We assume, as in most typical cases that

p>c>L20 | (1.1)
p>c>L20
and
8 > max(p — ¢, P — Ca). (1.2)

In this chapter, we suggest a somewhat conservative policy which maximizes a
minimum profit (in a sense to be made explicit later) under a broad nonparametric -

assumption on the structures of G1 and Gy, More precisely, we take G1, Gy to be

NBUE (Barlow and Proschan (1981)), i.e,, for i = 1,2,
E(U; —u|U; > u) < BU;,. - - (1.3)

This assﬁmptimn seems to make sense, especially in the context of scarce commodi-
ties, since it merely means that on the average, the excess supply over any arbi-
trary amount % does not exceed the average amount supplied. As is well-known
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from gtandard literature on reliability, the NBUE class is fairly large and includes
in particular, the exponential distributions. Under this assumption, we show that
at all order levels Q = (@1, Qs), the expected profit will never fall short of the
corresponding expected profit had the supplies been distributed exponentially with
the same means. Consequently, in absence of knoWIedge about G; and G, it seems
sensible to place an order Q, where Q, maximizes the latter average profit since
the strategy @, ensures the best minimal return on the average, We shall refer to
the maximin strategy Q, as the optimal exponential order quantity. However, Q,
depends on F, which is typically unknown. So, we propose an estimator Q, of @,
and establish its desirable large sample properties.

The corresponding inventory problem in the single supplier case was treated
by Panda (1978) and Basu (1987), In the context of the two-supplier problem,
apriori it would be tempting to select the supplier whose product is less expensive
and then proceed exactly as in the one-supplier problem to maximize the expected
profit. However, the following example demonstrates that this strategy may not

always be as beneficial as the one that allocates orders between the suppliers in an

optimum manner.

EXAMPLE 1.1. Suppose that the customer demand distribution F'is exponen-
tial with mean pu and let ¢y > ¢;. Without loss of generality, take the initial stock
y to be zero as it adds only & constant term to the expected profit function. Con-

sidering the supplier with cost ¢;, the expected profit function (Basu (1987)) given
by

Q
pt+Q
is maximized at Q* = (DV? — 1)u, where D = (p + 8~ L)/(e1 — L). Considering
both suppliers, using (2.6)-(2.9) below, the expected profit function turns out to be

o +
Ry(Q1,Q2) = (L —c)Qu+(L—e2)Qe —sp+ (p+s—1L) %LQ-? QS((ffl-k Qf)z)

(L-c)Q—sp+{p—s+L)u

I}

Ry(Q)

which is maximized at (Q¢, Q%) where for i = 1,2, @ = '(D,}/ SV, D; =
(p 4+ 8 — L)(ciqy ~ L)/(c;i — L)?, with eg equal to ¢;. Now routine ca]cula.tinns.
yield that Ra(Q%,Q4) > R1(Q") since Dz > 0, in view of (1.1) and (1.2). This
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example, therefore, confirms that we would be better off utilizing both the suppli-
ers optimally rather than using the one whose price is less and in this sense, the

example summarizes our reasons for following up the present problem.

2 Optimal Exponential Order Quantity

Let G, (g, F) yand @1, @2 be as in the previous section; also let Rp g, ¢, (¥, @1, @2)
denote the expected profit when amounts @y, Q2 are ordered (to suppliers 1 and 2

respectively) at the commencement of the period.
[t is clear that for a specific demand o and supplies u; and uy from supplier 1

and 2 respectively, the profit is
p(y + v + u2) ~ 8(z - y — ur — ug) — (ey + crur + caup)
or
px + Ly + vy 4+ ug — 2) — {cy + cyuy + cgus),

according as the total inventory y+ u; + 4y < z or 2 z. After a certain amount of

routine algebra involving integration by parts and interchange of order of integration

(which are permitted since EX is finite), we obtain

Hra, G’z(yi Qh Q?)
(L~e)Q1+ (L —c2)Q2+ (L —c)y+(p~ L)EX

~(p-+s—1L f fw/m_ e (v)dv dF(z) dG1 (u)
(L-——m)@+(L-—~ca)csz-c)y—sEX+(p+s-—L){/”’“th)dm

0
T /:" /:_y{'@"l (v) + Ga2(v) = Gi(z — y — v)Ga(v) }dv d (). (2:1)

In what follows, we assume that G, G are NBUE in the sense of (1.3). Let H;
denote the d.f. of an exponential random variable having the same expectation as

Us, ('l = 1, 2)-

I

LEMMA 2.1. For all supply distributions F, under (1.1), (1.2),
- Bpey, (4 Q1,Q2) 2 B gy, 1, (4, @1, Q2) (2.2)

for all Q1 20, Q;20.
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Proor. In view of (2.1), it is enough to show that for each 2 > y,
YEG, 6 (2, Y) 2 YR ay, m(2,y),

where Yr g, a,(2,y) = /:Hy{f“';l(w) + Ga(v) — Gi(z — y ~ v)Ga(v) Hdv.

For z > ¥, |
drcu oo = [ G+ [ puny Gl (2.3)
where -

\

is a non-increasing function of v. Hence, it follows, in view of a lemma in Bhat-
tacharjee (1981), that |

j; N ‘Pm*y(ﬁ)@fz (*U)d-u om © m.--y(’U)hFIQ (1.!) di

By
/ Hy(v)dv
0

; ;"y{-m(m cy— ) Gwdy  (24)

v

Noting that the function

r-——ﬁg(m——y—'v) if0<v<2~y
Ya—y(v) = ¢ .
-1 ifv2az—y

.

is non-increasing and using the same lemma, we get,
=y —
[T -y - )T
0
=y -
> [ {~Thle-y=o)F)
0 |

+ [ Tyw)dv— fm Hi(v)dy @)

-y T—Y

By (2.3)-(2.5), we have,

¢FG;,G‘¢93y f Gi(v d«u+f 52

n jﬂ (<Ha(z - y— )} Fi(v)d :
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| +Lm G1(v)du - fm Hy(v)dw

= [ + o) - Fae -y - o) Fala)}do
= Vg n, (s Y),

which completes the proof. O
We shall, for the sake of brevity, denote the right hand member of (2.2) by
R(Ql}Q?)'

Write B = p + s — L (>0); now simple calculations yield, for @1, Q2 > 0,
2

R(@1,Q2) = 3o(E - )i+ (L~ cy— sBX + Bl [ Fa)do +A(@1,Q) (26)

1=]

where A(Q;, @2) is given by
./m : {Qia"%}ﬂ B Q?Ed%?}ﬂm)dﬁ if G # Q2
Q1= Qe

A , — — .
e ] (1+ mQ Uye™ " Fz)do fQ1=Q2=C.

Similarly, we have, .

R(Q1,0) = (L—-c)@1+(L-cy—sEX .
+B{[ Fle)ds+ [ expl—(z - )/ QiFE)da] (27

R(0,Q2) = (L —ca)Q2+(L~cly—sEX |
+5[ Fado + [~ epl-(o - 3)/Q@Fe)isl (29
R(O, 0) = (L ~c)y—sEX+ B/ﬂy _F(m)a'.m (2.9)

It is clear that for all Q;, Qz >0, (Q1,Q2) # (D, 0), the expression for R{Q1,Q2)
is given by (2.6)-(2.8) while (2.9) gives R(0,0). |

LEMMA 2.2. For all ¢4 > 0, Qz > 0,

R.F; Gl,Gz(yl Qll Q2) < RE G_h(}'g (yl 0! U)

whenever y t8 such that | | __
I Ut e-L - (2.10
F(y)<mm{p+s-L’p+s—-L}'_ - ( )
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Proor. Simple calculations yield
Br a6, (1,0,0) = (L~ e}y ~ sEX + B/_y-_ﬁ(m)dw
| | ~ 1y
Thus, by (2.1),
RF; &, Gy (y! Q]: Q2) o R«F; &, Gg(y} 0} D)

2

S (L - )@ + B / N f TC0) + Calt) - Talo - y - 0)Ba(o) }aod L

1l

£=1
< 1=1 . L~ ¢;)Q; + B/ f -I-C”ﬂv)}dvdﬁ(m)
< LI‘(L ~ ¢;)Qi + B(Q1 + Qo) Fy)
2
= ;Qi{(}:’ ~ ¢;) + BF(y)} < 0.

Hence the lemma follows, O

LEMMA 2.3. Under the conditions (1.1), (1.2), the function R(Q1, Qa) 1s
bounded cbove for @y,R@9 > 0. |

Proor, Using the inequalities

- e"“/’QI —_ "*qug
<L - g—ja - S 1foru>0,64,Q2 >0,Q1 # Qo, (2.11)

and & > 1+zforz>0, (2.12)

we have, from (2.6)-(2.9),

R(Q1,Q2) £ BEX, ¥Q1,Q2 2 0.

This completes the proof of the lemma. O
It is clear that under (2.10), the ordering level (0,0) maximizes the expected

profit, Otherwise, i.e., whenever (2.10) is violated, it would, in view of Lemma 2.3

make sense to locate Q, = (Q1,, Q29) € R? such that the expected profit function

under exponentiality of the supply distributions is maximized at Q,. |
Accordingly, in what fnllows, we suppose t.hat; the initial stock y is such that"

. (2.10) falls,
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Let € = sup{R(Q1,Q2) : @1,@2 > 0}. We shall prove that if the demand
distribution F'is non-degenerate at 0, then there exists a unique Q, = (Q10, @20) #
(0, 0) such that R(Q1., Q1) = & Consequently, Q, is the optimal exponential order
quantity which, as in Theorem 2.4 in Basu (1987), is maximin by virtue of (2.2).
Thus it seems reasonable to adopt the optimum ordering policy Q, whenever the

- supply distributions Gy, G2 are not completely known, but are known to be NBUE,

We now present the main theorem of this section.

THEOREM 2.1. If F'is non-degenerate at 0, then under (1.1), (1.2}, R{(Q1,Q2)
has a unique mazimum at Q, = (Q10,Q2) # (0,0), 0 € Q14, Q2. < 00. In fact,
Q. solvas,@R(Qth)/aQi: 0 and 3R(Q1,Q2)/5Q2 = () uniquely.

We shall prove the above theorem at the end of this section. First, we need the

following lemmas necessary to prove the theorem,

- LEMMA 2.4. Under conditions (1.1), (1.2), there exists a positive real num-
ber @ such that R(Q1,Q2) < R(0,0) whenever Q1 > 8 and/or Qa2 > 8.

Proor. Let @1, @2 > 0, Q1 # Q2. From (2.6) and (2.9), it follows using (2.11),
~that

R(Q1,Q2) — R(0,0)
(L —¢1)@1+ (_L - ¢3)QQ2 + B.EX

< (L — min(cl, Cg))(Ql + Qg) + BEX <0

B.EX

if Q1+ Q2> it o =L > 0 _ (2.13)

[FAN

Again, for, Q1,Q2 > 0, @1 = @2, we have, using (2,11},

R(Q1,Q2) — R(0,0)
< (20 —-c¢1—e2)+B.EX <0

_ B.EX
lfQ1> >0 (2.14)

Also, from (2.7)-(2.9), we get,

~ B.EX

R(QI:O) - R(O: 0) < 0 if Ql > c1 - L, . (2.15)
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R0.0: - RO.0) <0t > B
=

Taking @ = B.EX/(min(ey, ¢a) — L), the proof follows from (2.13)-(2.16). O

(2.16)

LEMMA 2.5. Under (1.1), (1.2), there exists
(a) @i > 0 such that R(0,0) < R(Q},0) whenever y satisfies Fly)

> (¢; — L)/B.
(b) @3 > 0 such that R(0,0) < R(0,Q}) whenever y satisfies Fly)
> (cg — L)/B.

PrOOF. (a) For @1 > 0,
R(Q1,0) - R(0,0) = Q1[(L — ¢;) + B /ﬂ " ey + w0y ). (2.17)

As Q1 — 0+, the bracketed term tends to (L —¢1)+ BF(y) which is positive by
condition (a) of the lemma. The assertion of the lemma now follows from (2.17).

(b) The proof is similar to that of part (a}, O

In what follows, “.’e-ﬁhﬂﬂ, for the sake of algebraic simplicity, assume that the

initial inventory y == 0. The expression for the expected profit function now reduces

to

2 .
R(Q1:Q2) =) (L - ;)Q; — 8.EX + B(Q1, Q2) (2.18)

=1
for @1,Q@z 2 0, (@1, Q2) 75 (0, 0}, where
® Qe :H/Ql QQE"— Q1 _

A )dz, Q1 # @,

WQLQa) = N P17 -
| [arpeiFee =g

We shall prove that the function ¥(Q1,Q2) is strictly concave. To this end, we

notice that

Ye}
Q™9 — Qpe™/% = f% h(Q; )dQ.

where h(Q,z) = (1 + :s/Q)e-.m/f? z>0,Q >0, So, we can write, for &1 # @,

| h
%b(Ql,Qz) Q le /Qz E(Q)dQ,
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where
£Q) = Amh( vz ) F(z)dz
= /s (1+"Q7)B

Note that the interchange of integrals is permissible by Fubini's theorem. Thus,

€(Q)dQ: Ql 7’5 QE:

1
Qp(Qli QQ) — Ql Q

(2.19)
E(Q)} Ql =Q?:Q-
Straightforward calculations yield, for @ > 0,
£&'(Q) = %Am e ¥(u® - 3u®) F(uQ)du. (2.20)

If F'is absolutely continuous, integrating the righthand member of (2.20) by parts,
we get,

€@ == | we fuQ)du < 0
where f() is the probability density function corresponding to F. This shows that

£(Q) is a strictly concave function, in the case where F has a density.

We need a slightly different argument as follows to deal with the case where F
has jumps. Suppose 0 £ z; < 29... are the jump points of F with jumps p1, s, ...,
respectively. For symmetry, let zg = 0; also for § =0,1,2,... let k; =2,;/Q, @ > 0.
Sﬁpposing the number af jumps to be infinite (the modification required whenever

this is finite is obvious), we note that

£(Q) = (IQSJ :ﬂ F(qQ)(uﬁ_suz)e_udu
- %giélm /k fjﬂ (v’ — 3u®)e*du
Zﬂ zﬂpiu ) oxp(—kyer) — K exp(—)
J—- i=j |
= leli{kfﬂew k.-a-l-i)-—k?exp('—kj)}
o Sl _
= gpl{kﬁgxp k) — kgexp( ko)}

Zp,kaexp (=k;), as kyp = 0.

1"-1
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Since F'is non-degenerate at zero, £(Q) < 0.
We shall now use the strict concavity of £(Q) to establish the strict concavity
of ¥(Q1,Q2) via (2.19). We want to show that for 0 < & <11,

Yo +TQ1, aQs +3Q3) > ap(Q1, Qo) +E(Q1, Q2) (2.21)

for all (Q1,Q2), (@1,Q%) € S, where § = {(z,9) : 2 2 0,y 2 0,(z,y) # (0,0)}
and @ = 1 — o, We split the proof into several cases. All tuples (@, @2), (@F, @3)

considered in what follows belong to S.

Case I, Q1=Q2=Q, Q] =Q; = Q"

RHS of (2.21) = af(Q)+@(Q")
< é(aQ +TQ")
LHS of (2.21).

il

Case 1. Q1 = Qo = Q, Q] # Q5.

LHS of (2.21) = %(aQ +3Q}, aQ + Q%)

- w(Q] — Q) Jagrag;

) o
Qi — Q3 Jo

| QI |
o d
T l . (a(Q) +aEn)
1

| | Q
= o d
GE(Q.) o5 =03 Ja: £(t)dt

|

£(aQ + Tt)dt

Case IXI(a). Q1 # @2, Q] # Qﬁa aQ) fﬁQI__# a2 +3Q4.

LHS of (2.21)
- 1 - . {IQ[ +EI-Q;
— . - - t)dt
- a(@Q1 - Q) +a(Q1 - Qi) [aQﬁﬁQi | i |
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S A e R TR

Q1—Q2J/Q, Q1~ Q2
o 9 T 9 (QF - Q8- (Q1Qs — Q.0
g 1 — Q2 [92 Elu)du ] (1 — Qg ./Q? = Q1 —-522 1 2))du

3 o Q1 ' o Q
= 0= 0, /QQ é(u)du 4 oT= 03 /Qi é(v)dv
= RHS of (2.21).

Case ITI(b). Q1 # Qs Q) # Q3, aQ; +aQ} = aQs + 70,

RHS of (2.21)
= QITQQ f Q E(t)dt F ?Qﬁ fc:;E(t)dt
- T-a /QQ (T D 2T f: e
- T ;{”‘E(QQI = )
S Q ey f; (RS T
= {(aQ1 +aQ1)

= LHS of (2.21).

This completes the proof of strict concavity of the function ¥(Q1, @2) on the set S.
" Now: the strict concavity of R(Q1,Q2) follows from (2.18). Thus we have proved

the following:

LeMMA 2.6, If F' i3 non-deﬁeﬂemte at 0 and (1.1), (1.2) hold, then the
expected profit function R(Q1,Q)2) 18 strictly concave on the set S.

We are now in a position to provide a proof of the main theorem.

Proor oF THEOREM 2.1, Write ¢ = sup{R(Q1, Q2) :'Q1,Q2 > 0} and ¢t =

SUP{R(Q1,Q2) ' (QI,QQ) € F} where I' =_{(Q1,Qg) : G_S 1, @2 £ 9} and @ is as
in Lemma 2.4. Clearly, ¢* < ¢, by definition. But if {* < ¢, then for some (@, Q2)

with @1 > 6 and/or Q2 > 0, o
. R(Ql, Qg) > (' 2_ 'R(O, 0),
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which contradicts Lemma 2.4, Thus {* = (. Also, because of continuity, R(Q1, Q2)
must attain its maximum over the compact set F,‘sa.y at (Q1o, @20). Then, clearly,
R(Q10, Q20) = ¢* = ¢, and by Lemma 2.5.both @), and Qq, cannot be zero simul-

taneously. Iividently, (Q1,, Q2) solves OR(Q1,Q2)/8Q1 =0, BR(Q1,Q,) /6Q2 = 0.
The uniqueness of Q. = (G0, Q20) is & consequence of Lemma 2.6, O

3 Estimation of the Optimal Exponential Order Quan-
tity

Typically, the demand distribution F' is unknown so that it is not possible to de-

termine exactly the optimal exponential order quantity Q, = (Q14,@2,). In such a
situation, the statistical estimation of @, is relevant. Suppose F, is the empirical

c.d.f. based on a random sample of size n. Then, the Glivenko-Cantelli theorem

(see, e.g. Loéve (1963)) ensures that

Ay = sup |Fy(z) - Flz)| — 0 w.p. 1 as n — oo. (3.1)
e
Thus a natural estimate of Q, is Q, = (Q1n, @2.) Where Q, maximizes

R(ﬂ)(QlaQ2) = RF,.,H[,HQ(QI! Q2) | | (32)

The uniqueness of Q,, follows as in Theorem 2.1 noting that if F'is non-degenerate
at 0, so is F, with probability 1 because of (3.1). (Note that the strict concavity

of R(Q1,Qz) in the case when F has jumps becomes relevant in this context.)

Before going on to prove the main theorem of this section, we require the fol-

lowing lemma,

LeMMA 3.1, For 2,Q1,Q9 > 0, Q1 > Qq,

QleTfﬂ/QI n— QQIEHI/Q§ . (1 + %)6 .:l:/Q;.
AN |

2 o2 /Q
(1+ g)e < Q1 — Q2

Proor. It is easy to see that o
2 Qie™*/% — Qq1e7%/:

. N2 fQ
_(1+Q1)e. > Q1 —-Q2

is equivalent to o
expl-a(1/@2 = 1/Qu)) > 1-(1/Q = 1/Qu),
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which is true since ™Y > 1~y Vy > 0; here, y = 2(1/Q2 ~ 1/Q1) > 0'as Q1 > Q».
The other inequality follows similarly using the relation ¥ > 1+ yV¥y > 0. O

£

We next present our main result concerning the estimation of Q,.

THEOREM 3.1, If F is non-degenerate at 0, and (1.1), (1.2) hold, then

Q,— @, a8 asn— oo,
Proor. For @Q1,Q2 20, (Q1,Qq) # (0,0), let
RE(Q1, Qo) = 8HRM(Q1, Q1)/8Q16Q),

i,4=0,1, and let fe,b,,(;‘)(c;gl, Q2) be defined similarly, where R™ is as in (3.2) and
) i3 analogous to 9 in (2.18) with F' replaced by F,. From (2.18),

Rio(Q1,Q2) = (L = ¢1) + B1o(Q1, Qa),
where

10(Q1, @2) | o o
* 1 ~2fQ1T; _ P Qe - Qe & de.
- /D g (1 +a/Q)e T )i /U ooy T

|R10(Q1m Q?n) — R%) (Ql-mQ%n)(

Bltp10(Q1n Qan) = A5 (Quns Qan)] o
Que 2 = 9t T 1 (0) - Fia))da

B[ (1 + 5/ Qu)e /% e
0 an - Q%n (an - Qiﬂ,)
ane-—:‘:/an - Q2n'3hm/@2"

< B f ” | - (1 +me1,t)e””/ U 3
~ 0 Qlu - Q?n (Qlﬂ = Qiﬂ) |
| Qluﬂmm/QI" ~ Q2ueﬁm/ QO

| ® ] _ ' “E/Qm -
= Bﬁu{/o I'Qlu . qu(l +2/Q1n)e (Q — Qo )’

-~ since, by Lemma 3.1, the quantity within bracket is positive with probability 1.

Then, after completing the integration, we note th&_t .

|RIU(Q1m Qﬁn) = R.EE) (Q 1Iny an)l
2@ Q%ﬂ ~ Q3
| B&?‘[Qlu.“ Qﬁﬂ - (@ — Q2ﬂ-)2]

BA,, — 0, a.8. as i — 00,

!

| Ay do

}dz,

(VAN
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by virtue of (3.1), As REE)(QIHI Qan) =0, by deﬁn_itiun, it now follows that

Rlﬂ(Qlu: Q.?n) = 0 a.8. as n — oo, (3'3)
Similarly, |
ROI(le Q?n) — 0 a.s. (3‘4)
We shall prove that
”Qu - Qa” ' {(an - Qlt:*)2 + (QQH . an)z}% ~ 0 a.s. (3'5)

We divide the proof into two cases.

Case 1. Q14 Q20 > 0. Define for 0 < r < min(Q;,, @20)y 0 < o < 27,

Mrywp) = (cosp)Rio(Q1o + 7cos i, Qa, + 7 sin )
+(sin ) Ro1 (@10 + 7 cos i, Qo + 7sin o) (3.6)

Consider the function
9o(7) 1= R(Q1, + rcostp, Qa, + 75in )

~ as a function of r only for fixed : call it g(r). It is easy to show, using Lemma 2.6,
that g(r) is a strictly concave function of r. So ¢(r) is a strictly decreasing function
of ». Noting that ¢'(») = h(r,¢), we conclude that for each fixed o, h(r,p) is a

strictly decreasing function of ». Thus A(r, @) < h(0,p) =0 for r > 0, the equality
holding in view of Theorem 2.1.

Writing
Qlu = Qla + T COS Py

and Q?n = Q2c: +.Tn S Py,
by (3.3) and (8.4), we have,

'h’('rn‘ SOH)I — 0 a.5, as ﬂ-— — OO, . (3:?)

Now, consider an arbitrary € > 0. The function h(e, ), being contirnuous in ¢
over the compact set [0,2x], 3 a & (> 0) depending on ¢, such that

sup{h(e, ) : 0 < @ < 2n} = max{h(e,p) : 0 < p < I} = =4,
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since h(r, ) <0, Vrinthe range 0 < v < min(Q1e, Q20). Since for fixed @, h(r, )
is decreasing in 7, it follows that for all ¢ € [0, 27?], h(?‘, ©) < h(&, ) < —& whenever
r > € As ¢is arbitrary and 6 is strictly positive, we conclude from (3.7) that 7, — O

as n — oo, This proves (3.5) in Case I.

Case II. Suppose one of the co-ordinates of Q, is zero. (Note that both cannot
be zero in view of Lemma 2.5). Without loss of generality, suppose @, = (Q1, 0).
Then, we shall define h(7, ) as before with ¢ € [0,7] and 0 < 7 < Q10 A8 Q1n, Qin

are positive with probability 1, we can use the representation

Q= Qu+Tn 00‘3 Pn

QEH = Py SNy,

and arguing as in Case I, complete the proof of the theorem. (I
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