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Abstract

With reference to the quasi-likelihood arising from an unbiased estimating function, we con-
sider a large class of test statistics which includes the likelihood ratio, Rao’s score and Wald’s
statistics in particular. We study Bartlett adjustability and third-order power in a possibly non-iid
setting and provide explicit formulae. Since the relevant Bartlett identities may not hold while
working with a quasi-likelihood, our results can di5er from those based on the usual likelihood.
The prospects regarding posterior Bartlett adjustability have been brie6y indicated. c© 2001
Elsevier Science B.V. All rights reserved.
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1. Introduction

The study of Bartlett adjustability and higher-order power for test statistics based
on the usual likelihood, under model speci?cation, has received considerable attention
in the literature — see e.g., Bickel and Ghosh (1990), Taniguchi (1991), Mukerjee
(1993) and the references therein. The present paper investigates the corresponding
problems with reference to the quasi-likelihood arising from an unbiased estimating
function in a possibly non-iid setting. This is motivated by Barndor5-Nielsen’s (1995)
recent work on the ?rst-order null distribution of the likelihood ratio (LR) statistic
based on such a quasi-likelihood. Starting from an estimating function and the asso-
ciated quasi-likelihood, we consider a large class of test statistics, which includes the
LR, Rao’s score and Wald’s statistics, and characterize, via appropriate necessary and
suDcient conditions; the Bartlett-adjustable members of this class. We also give an
explicit formula for the third-order power function under contiguous alternatives and
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discuss its implications. The preliminaries and the main results are presented in Sec-
tions 2 and 3, respectively. The prospects regarding posterior Bartlett adjustability are
brie6y discussed in Section 4.
Since the relevant Bartlett identities may not hold while working with a quasi-

likelihood, our results can di5er from those based on the usual likelihood. For example,
as seen later in Section 3, there can be situations where Rao’s statistic is Bartlett
adjustable but the LR statistic is not so. Some of our algebra has a similarity with that
in Viraswami and Reid (1996a, b), who studied the null distributions of Rao’s, Wald’s
and LR statistics under model misspeci?cation. However, our ?ndings are di5erent
from theirs. In particular, unlike them, we work within the framework of a large class
of test statistics and our results involve computations under the null hypothesis as well
as contiguous alternatives.

2. Preliminaries

Consider a collection X (n) = (X1; : : : ; Xn)′; n¿1, of possibly vector-valued random
variables with a density involving an unknown parameter � which belongs to an open
subset of Rl, Let gn(X (n); �) be a smooth unbiased estimating function for � and de?ne

 in(�) = E�

{
di

d� i gn(X (n); �)
}
(i = 1; 2; 3); Vn(�) = Var�{gn(X (n); �)}:

Following McCullagh (1991, Section 11:7), without loss of generality, it is supposed
that

Vn(�) =− 1n(�); (2.1)

identically in �. Let �̂ be the estimator determined by gn(X (n); �). As in Barndor5-Nielsen
(1995), the quasi-likelihood, associated with gn(X (n); �), is de?ned as

Ln(X (n); �) =
∫ �

�̂
gn(X (n); �) d�: (2.2)

Considering the null hypothesis H0 : � = �0 against � �= �0, the LR, Rao’s and Wald’s
statistics arising from (2.2) are given, respectively, by

TLR = 2{Ln(X (n); �̂)−Ln(X (n); �0)};

TRao = {gn(X (n); �0)}2=Vn(�0); TWald = Vn(�̂)(�̂− �0)2; (2.3)

cf. Rao (1973, p. 417). In what follows, we shall treat the statistics in (2.3) as members
of a large class and study their properties.
We work under assumptions similar to those in Taniguchi (1991) — see also Chandra

and Ghosh (1980). In particular, it is assumed that, for an appropriate sequence {cn}
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satisfying cn → ∞ as n → ∞, the cumulants, up to fourth order, of

Z1(�) = c−1n gn(X (n); �); Zi(�) = c−1n

{
di−1

d� i−1 gn(X (n); �)−  i−1 n(�)
}
(i = 2; 3)

(2.4)

possess asymptotic expansions of the form

cum�{Zi(�); Zj(�)}= k(1)ij (�) + c−2n k(2)ij (�) + o(c
−2
n ); (2.5a)

cum�{Zi(�); Zj(�); Zl(�)}= c−1n kijl(�) + o(c−2n ); (2.5b)

cum�{Zi(�); Zj(�); Zl(�); Zu(�)}= c−2n kijlu(�) + o(c−2n ); (2.5c)

the ?fth and subsequent cumulants being of order o(c−2n ). As in the iid case, the
second-order cumulants have an expansion in powers of c−2n rather than c−1n ; cf Chandra
and Joshi (1983). The expansions in (2:5) as well as those in (2.7)–(2.9) below are
assumed to be uniform over compact �-subsets. The functions k(1)ij (�); k(2)ij (�); kijl(�);
kijlu(�) are supposed to be smooth with functional forms free from n. Let

I(�) = k(1)11 (�); J (�) = k(1)12 (�); K(�) = k111(�); L(�) = k(1)13 (�);

M (�) = k(1)22 (�); N (�) = k112(�); H (�) = k1111(�); �(�) = k(2)11 (�): (2.6)

Note that by (2.1), (2.4) and (2.6),

c−2n  1n(�) =−Var�{Z1(�)}=−{I(�) + c−2n �(�)}+ o(c−2n ): (2.7)

We assume that in analogy with what happens while working with the usual likelihood

c−2n  2n(�) = m2(�) + o(c−1n ); c−2n  3n(�) = m3(�) + o(1); (2.8)

where mi(�); i = 2; 3, are smooth functions with functional forms free from n. It is
also supposed that the ?rst two derivatives of c−2n  1n(�) and the ?rst derivative of
c−2n  2n(�) can be approximated using (2.7) and the ?rst relation in (2.8), respectively,
i.e.,

c−2n  ′
1n(�) =−{I ′(�) + c−2n �′(�)}+ o(c−2n ); (2.9)

and so on, where the primes denote di5erentiation with respect to �. Write Zi =
Zi(�0) (i=1; 2; 3); mi=mi(�0) (i=2; 3); m′

2 =m′
2(�0), and, with reference to (2:5), let

I = I(�0); J = J (�0); K = K(�0); I ′ = I ′(�0); I ′′ = I ′′(�0); J ′ = J ′(�0), and so on.
As mentioned earlier, for power studies we shall consider contiguous alternatives of

the form �n= �0 + c−1n h, where h is free from n. Let F be a class of test statistics for
H0 : �= �0 such that every statistic T in F admits an expansion of the form

T =W 2
T + o(c

−2
n ); (2.10)

over a set with P�n -probability 1 + o(c
−2
n ), uniformly on compact subsets of h (this

implies that T =W 2
T + op(c

−2
n )), where

WT = I−1=2Z1 + c−1n (v1Z1Z2 + v2Z21 )

+ c−2n (y1Z1Z
2
2 + y2Z21Z2 + y3Z31 + y4Z21Z3 + y5Z1); (2.11)
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and v1; v2; y1; : : : ; y5 are constants free from n. The class F, identical with that in
Taniguchi (1991) and analogous to that in Chandra and Mukerjee (1985), is very
rich and includes, in particular, the LR, Rao’s and Wald’s statistics the corresponding
expressions for v1; v2; y1; : : : ; y5 being as shown in the appendix. Consideration of the
square-root version WT simpli?es our algebra to some extent and helps in interpreting
the conditions for Bartlett adjustability.
We shall require the ?rst four approximate cumulants, under �n= �0 + c−1n h, of WT .

These are given by

Q1n = I 1=2h+ c−1n (f1 + f2h2) + c−2n (f3h+ f4h3) + o(c−2n ); (2.12a)

Q2n = 1 + c−1n f5h+ c−2n (f6 + f7h2) + o(c−2n ); (2.12b)

Q3n = c−1n f8 + c−2n f9h+ o(c−2n ); Q4n = c−2n f10 + o(c−2n ); (2.12c)

where the constants f1; : : : ; f10, free from n and h but dependent on v1; v2; y1; : : : ; y5,
are as shown in the appendix. The expressions (2:12a–c) as well as the contents of
the appendix follow from (2:3)–(2:9) and (2.11) proceeding along the line of Chandra
and Joshi (1983) and Chandra and Mukerjee (1985). Unlike these authors, however,
we work with a quasi likelihood and cannot in general employ the relevant Bartlett
identities. As such, the quantities f1; : : : ; f10, shown in the appendix, are somewhat
more involved than the corresponding expressions in Chandra and Mukerjee (1985).
Incidentally, if one specializes to the usual likelihood and iid observations then the
expressions in our appendix are in agreement with the ?ndings of Chandra and Joshi
(1983) and Chandra and Mukerjee (1985).

3. Main results

3.1. Third-order power

On the basis of any statistic T in F, consider a critical region of the form T ¿z2 +
c−2n sT , where z is the upper 1

2'-point of a standard normal variate and the constant
sT , free from n, is to be so determined that the test has size ' + o(c−2n ) (0¡'¡ 1).
By (2:10) and (2:12), considering an Edgeworth expansion for the distribution of WT

under �n, after some simpli?cation,

P�n(T ¿z2 + c−2n sT )

=1− P�n(|WT |6z + 1
2c

−2
n z−1sT ) + o(c−2n )

=2− )(z − I 1=2h)− )(z + I 1=2h) + c−1n

3∑
j=1
(−1) jaj(h)Rj(h)
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+ c−2n

[
6∑

j=1
(−1) jbj(h)Rj(h)− 1

2 z
−1sT{-(z − I 1=2h) + -(z + I 1=2h)}

]

+o(c−2n ); (3.1)

where - and ) are the density and distribution functions, respectively, of a standard
normal variate,

a1(h) =−(f1 + f2h2); a2(h) = 1
2f5h; a3(h) =− 1

6f8; (3.2)

b1(h)=−(f3h+f4h3); b2(h)= 1
2{f6 +f21 +(f7 +2f1f2)h

2 +f22h
4}; (3.3a)

b3(h) =−{( 16f9 + 1
2f1f5)h+

1
2f2f5h

3}; (3.3b)

b4(h) = 1
24f10 +

1
6f1f8 + (

1
8f

2
5 +

1
6f2f8)h

2; b5(h) =− 1
12f5f8h; (3.3c)

b6(h) = 1
72f

2
8 ; (3.3d)

Rj(h) = Gj−1(z − I 1=2h)-(z − I 1=2h) + (−1) jGj−1(z + I 1=2h)-(z + I 1=2h); (3.4)

Gj−1(:) being the Hermite polynomial of degree j− 1. If one takes h=0 in (3.1) and
employs the size condition, then one gets

sT = 2z{b2(0)G1(z) + b4(0)G3(z) + b6(0)G5(z)}:
Using this in (3.1), the third-order power function, under contiguous alternatives, of
the test based on T is given by

P�n(T ¿z2 + c−2n sT ) = P0(h) + c−1n P1(h) + c−2n P2(h) + o(c−2n ); (3.5)

where

P0(h) = 2− )(z − I 1=2h)− )(z + I 1=2h); P1(h) =
3∑

j=1
(−1) jaj(h)Rj(h); (3.6a)

P2(h) =
6∑

j=1
(−1) jbj(h)Rj(h)− {b2(0)G1(z) + b4(0)G3(z)

+ b6(0)G5(z)}{-(z − I 1=2h) + -(z + I 1=2h)}: (3.6b)

For a meaningful comparison of the statistics in F with regard to power, we now
bring in the criteria of maximinity and average power. This is in the spirit of what one
does while working with the usual likelihood — see e.g., Mukerjee (1992, 1993). Under
the criterion of maximinity, it is possible to discriminate among the members of F at
the second order of approximation. By (3.2), (3.4) and (3.6a), P1(h) = -(z)S(z)h +
O(h3), where

S(z) = (f5 + 2f1I 1=2 − f8I 1=2)z + 1
3f8I

1=2z3: (3.7)

Consider now any two members T (1) and T (2) of F, the corresponding expressions
for S(z) being denoted by S(1)(z) and S(2)(z), respectively. Proceeding as in Mukerjee
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(1992), for any given '; T (1) will be better than T (2) with respect to second-order local
maximinity, in the sense of rendering a larger value of

min{P0(h) + c−1n P1(h); P0(−h) + c−1n P1(−h)}
for small |h|, provided

|S(1)(z)|¡ |S(2)(z)|: (3.8)

Turning to the criterion of average power, we note that P0(h) and P2(h) are even
functions while P1(h) is an odd function. Hence, as with maximinity, considering
alternatives that are equidistant from �0, it follows from (3.5) that the third-order
average power function is given by P0(h) + c−2n P2(h). Now P0(h) is the same for all
tests in F while by (3:3), (3.4) and (3.6b), P2(h) = -(z)U (z)h2 + O(h4), where

U (z) = {f7 + 2f1f2 + 2I 1=2f3 − I(f6 + f21)− I( 14f10 + f1f8)}G1(z)

+ { 14f25 + 1
3f2f8 + I 1=2( 13f9 + f1f5)− I( 14f10 + f1f8)− 5

18 If
2
8}G3(z)

+ { 16 I 1=2f5f8 − 5
36 If

2
8}G5(z): (3.9)

Clearly, for given ', a statistic with a larger value of U (z) will lead to a larger
third-order local average power.
Unbiased estimating functions are too diverse to allow any general result on com-

parison of power in the present setup. However, in any speci?c setting as dictated
by a given estimating function, it is possible to draw de?nite conclusions using
(3.7)–(3.9). An illustrative example will be presented in Section 3.3.

3.2. Bartlett adjustability

By (2:10) and (2:12),

E�0 (T ) = 1 + c−2n (f6 + f21) + o(c
−2
n ):

Considering an Edgeworth expansion for the distribution of WT under �0, in analogy
with (3.1), we get

P�0 [T={1 + c−2n (f6 + f21)}6z2]

= 2)(z)− 1− c−1n

3∑
j=1
(−1) jaj(0)Rj(0)

− c−2n

{
6∑

j=1
(−1) jbj(0)Rj(0)− z-(z)(f6 + f21)

}
+ o(c−2n ):

Hence by (3:2)–(3:4),

P�0 [T={1 + c−2n (f6 + f21)}6z2] = 2)(z)− 1− c−2n -(z){ 136f28G5(z)

+ ( 112f10 +
1
3f1f8)G3(z)}+ o(c−2n ):
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The above equals 2)(z)− 1 + o(c−2n ) for each z (¿ 0) if and only if

f8 = 0; f10 = 0 (3.10)

which are the necessary and suDcient conditions for the Bartlett adjustability of T at
�0. From (2.12c) and (3.10), it is interesting to note that T is Bart-adjustable at �0 if
and only if the third and fourth cumulants of its square root version WT are both of
order o(c−2n ) under �0.
Considering Rao’s score statistic in particular, it can be seen from the appendix that

f8 = I−3=2K and f10 = I−2H . Thus, Rao’s statistic is Bartlett adjustable at every � if
and only if

K(�) = 0; H (�) = 0 (3.11)

identically in �; incidentally, Rao’s statistic has expectation unity under the null hy-
pothesis and hence, under (3.11), even without any adjustment, its null distribution
is chi-square with margin of error o(c−2n ). From (3.10) and the appendix, it can
also be seen that the LR statistic is Bartlett adjustable at every � if and
only if

K(�) + 3J (�) + m2(�) = 0; H (�) + 6N (�) + 3M (�) + 4L(�) + m3(�) = 0;

(3.12)

identically in �. If one works with the usual likelihood then the conditions in (3.12)
are simply Bartlett identities so that the LR statistic becomes Bartlett adjustable. As the
example in Section 3.3 reveals, with a quasi-likelihood, however, there is no guarantee
that (3.12) will hold.
From the expressions for f1; f6; f8 and f10, as given in the appendix, one can

check that conditions (3.10) for Bartlett adjustability as well as the Bartlett-adjustment
factor 1+c−2n (f6+f21) arising under these conditions are in agreement with the ?ndings
in Taniguchi (1991) when one specializes to the usual likelihood.

3.3. An example

Let X (n)=(X1; : : : ; Xn)′, where X1; : : : ; Xn are independent, with E�(Xi)=�, Var�(Xi)=
ri� 2; 16i6n, the third and fourth cumulants being zero for each Xi. Here �¿ 0 and
r1; : : : ; rn are positive constants which are free from �. Suppose

Qrn = (r1 + · · ·+ rn)=n= 1− n−1 + o(n−1): (3.13)

Consider the unbiased estimating function gn(X (n); �) = n( QX n − �)=( Qrn� 2), where
QX n = (X1 + · · ·+ Xn)=n. Then (2.1) holds and with cn = n1=2,

 1n(�) =−n=( Qrn� 2);  2n(�) = 4n=( Qrn� 3);  3n(�) =−18n=( Qrn� 4);

Z1(�) = n1=2( QX n − �)=( Qrn� 2); Z2(�) =−(2=�)Z1(�); Z3(�) = (6=� 2)Z1(�):
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Hence, by (2:5)–(2:8) and (3.13),

I(�) = �(�) = 1=� 2; J (�) =−2=� 3; L(�) = 6=� 4; M (�) = 4=� 4;

K(�) = N (�) = H (�) = 0; m2(�) = 4=� 3; m3(�) =−18=� 4: (3.14)

By (3.11), (3.12), (3.14), Rao’s statistic is Bartlett adjustable at each � and the LR
statistic is not so at any �. From (3.10), (3.14) and the appendix, it can also be seen
that Wald’s statistic is not Bartlett adjustable at any �.
We now consider H0 : �= �0, where �0 = 1. Then by (3.14),

I = 1; I ′ =−2; I ′′ = 6; J =−2; J ′ = 6; K = K ′ = 0; L= 6;

M = 4; N = H = 0; �= 1;

m2 = 4; m′
2 =−12; m3 =−18; (3.15)

so that from the appendix,

f1 = f2 = v; f3 = 1 + 2v+ 3y + y5; f4 = y; f5 = 4v+ 2;

f6 = 1 + 2v2 + 6y + 2y5;

f7 = 1 + 8v+ 4v2 + 6y; f8 = 6v; f9 = 24(v+ v2) + 18y;

f10 = 24(2v2 + y); (3.16)

where

v= v2 − 2v1; y = 4y1 − 2y2 + y3 + 6y4: (3.17)

From (3.15), (3.17) and the appendix, the values of v; y and y5 for the LR, Rao’s and
Wald’s statistics are given by

vLR =− 1
3 ; yLR = 7

36 ; yLR5 =− 1
2 ; vRao = yRao = 0; yRao5 =− 1

2 ;

vWald =−1; yWald = 1; yWald5 =− 1
2 : (3.18)

By (3.7), (3.9) and (3.16),

S(z) = 2z(1 + vz2); U (z) =−z + (1− 6v)z3 + v(2− v)z5: (3.19)

For the LR, Rao’s and Wald’s statistics, using (3.18), these expressions reduce to

SLR(z) = 2z(1− 1
3 z
2); SRao(z) = 2z; SWald(z) = 2z(1− z2);

ULR(z) =−z + 3z3 − 7
9 z
5; URao(z) =−z + z3; UWald(z) =−z + 7z3 − 3z5:

Hence, by (3.8), with regard to second-order local maximinity, Rao’s statistic will be
superior to the LR statistic if z2¿ 6 and Wald’s statistic if z2¿ 2. Also, comparing
the expressions for U (z) for the three statistics, it is seen that under the criterion of
third-order local average power Rao’s statistic will be better than the LR statistic if
z2¿ 18

7 and Wald’s statistic if z
2¿ 2. In particular, for '=0:05 (i.e., z=1:96), Rao’s
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statistic will dominate Wald’s statistic under both the criteria and the LR statistic under
the criterion of third-order local average power.
From (3.19), we also note that there does not exist a choice of v that maximizes

U (z) uniformly in z.

Remark. While Rao’s statistic turns out to be quite attractive in the above example,
the conclusion can be di5erent with other estimating functions. For example, if one
works with the usual likelihood then the LR statistic is Bartlett adjustable and always
at least as good as Rao’s statistic in terms of second-order local maximinity — see
Mukerjee (1993).

4. Concluding remarks

The present work is the ?rst attempt to understand the higher-order asymptotics for
test statistics arising from quasi-likelihood and one of our primary objectives has been
to demonstrate that the results can di5er considerably from those based on the usual
likelihood. With heavier notation and algebra, it should be possible to extend our results
to the case where nuisance parameters are present but, in the absence of the relevant
Bartlett identities, the resulting expressions would be very messy.
For discrete X (n), Edgeworth assumptions do not hold and hence interpretation of

moment expansions as in this paper becomes problematic. However, a possible route
sketched in Ghosh (1994, Chapter 9) may lead to similar results without Edgeworth
assumptions.
Before concluding, we brie6y indicate the prospects for a Bayesian version of our

results on Bartlett adjustability. Considering, for example, the LR statistic TLR, one
can check that even in the iid case TLR is distributed as a multiple of a non-central
chi-square variate, up to the ?rst order of approximation, in the posterior setup given
X (n). Under mild conditions, this limiting distribution becomes central chi-square only
if the quasi likelihood coincides with the usual likelihood. Hence, there is no point
in investigating posterior Bartlett adjustability, given X (n), with reference to a quasi-
likelihood. However, if we consider the posterior setup given �̂, then the ?rst-order
posterior distribution of TLR is again a central chi-square. We can also consider
higher-order posterior expansions given the second and higher derivatives of the quasi-
likelihood at �̂ and investigate Bartlett adjustability. But no neat results are expected.
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Appendix

We show below certain expressions which have been used in the main text of the
paper:

vLR1 = 1
2 I

−3=2; vLR2 = 1
6 I

−5=2m2;

yLR1 = 3
8 I

−5=2; yLR2 = 5
12 I

−7=2m2; yLR3 = 1
9 I

−9=2m22 +
1
24 I

−7=2m3;

yLR4 = 1
6 I

−5=2; yLR5 =− 1
2 I

−3=2�;

vRao1 = vRao2 = yRao1 = yRao2 = yRao3 = yRao4 = 0; yRao5 =− 1
2 I

−3=2�;

vWald1 = I−3=2; vWald2 = 1
2 I

−5=2(m2 + I ′);

yWald1 = I−5=2; yWald2 = I−7=2( 32m2 + I ′);

yWald3 = I−7=2( 16m3 +
1
4 I

′′) + I−9=2{ 12m22 + 1
2m2I

′ − 1
8 (I

′)2};

yWald4 = 1
2 I

−5=2; yWald5 =− 1
2 I

−3=2�;

f1 = v1J + v2I; f2 = I−1=2( 12m2 + I ′)− v1I(m2 + I ′) + v2I 2;

f3 = I−1=2�+ v1(J ′ − L−M) + v2(I ′ − 2J ) + y1{IM − 2(m2 + I ′)J}

+y2{2IJ − (m2 + I ′)I}+ 3y3I 2 + y4{2L− (m3 − m′
2)}I + y5I;

f4 = 1
2 I

−1=2(m′
2 + I ′′ − 1

3m3)− v1{(m2 + I ′)( 12m2 + I ′) + I(m′
2 +

1
2 I

′′ − 1
2m3)}

+ v2I(m2 + 2I ′) + y1I(m2 + I ′)2 − y2I 2(m2 + I ′) + y3I 3 − y4I 2(m3 − m′
2);

f5 = I−1(I ′ − 2J ) + 2v1I 1=2(J − m2 − I ′) + 4v2I 3=2;

f6 = 2I−1=2{v1N + v2K + y1(IM + 2J 2) + 3y2IJ + 3y3I 2 + 3y4IL+ y5I}

+ v21(IM + J 2) + 2v22I
2 + 4v1v2IJ + I−1�;

f7 = I−1( 12 I
′′ + L+M − 2J ′) + v1I−1=2{2I ′(3J − I ′) + m2(5J − 2I ′)

+ I(2J ′ − 2L− 2M − I ′′ − 2m′
2 + m3)}+ 2v2I 1=2(4I ′ − 4J + m2)

+ v21I{IM + (m2 + I ′)(m2 + I ′ − 2J )}

+4v22I
3 + 4v1v2I 2(J − m2 − I ′) + 2y1I 1=2(m2 + I ′)(m2 + I ′ − 2J )

+2y2I 3=2(J − 2m2 − 2I ′) + 6y3I 5=2 + 2y4I 3=2(L− 2m3 + 2m′
2);

f8 = I−3=2K + 6v1J + 6v2I;



J.K. Ghosh, R. Mukerjee / Journal of Statistical Planning and Inference 97 (2001) 45–55 55

f9 = I−3=2(K ′ − 3N )+3v1[2J ′+N −2L−2M + I−1{2JI ′− 4J 2−K(m2 + I ′)}]

+ 6v2(2I ′ + K − 4J ) + 6v21I 1=2{IM + J 2 − 2J (m2 + I ′)}+ 24v22I 5=2

+ 12v1v2I 3=2(3J − m2 − I ′) + 6y1J (J − 2m2 − 2I ′) + 6y2I(2J − m2 − I ′)

+18y3I 2 + 6y4I(2L− m3 + m′
2);

f10 = I−2H + 12v1I−3=2(JK + IN ) + 24v2I−1=2K + 12v21(IM + 3J 2) + 48v22I
2

+ 96v1v2IJ + 24I−1=2(y1J 2 + y2IJ + y3I 2 + y4IL):
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