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Ahstract

Given integers s, k and v, let Wy be the (0} = () 0-1 matrix, the rows and the columns
of which are indexed by the s-subsets and the k-subsets of a v-set respectively, and where the
entry in row & and column £7is 16 5 < & and O otherwise. A formula for the Moore—Penrose
inverse of W, over the reals is obtained. A necessary and sufficient condition for Wy to
admit a Moore—Penrose inverse over the set of integers modulo a prime p is given, together
with a formula for the Moore-Penrose inverse when it exists.
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1. Introduction

Let 5, k, v be inegers satisfying 0 < & < & = v. The set inclusion matrx Wy is
a matrix of order {T}l = {f}l defined as follows. The rows of Wi are indexed by the s-
element subsets and the columns are indexed by the k-element subsels of a v-element
sel. The entry in row § and column U7 of Wy is 1if § © L7 and 0 otherwise. Note
that Wy s a 1 = {:} vector of all ones. These matrices arise in many combinatorial
problems, particulady in design theory and exiremal sel theory, see [3,5,10,11] and
the references contained therein.
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We now introduce some definitions. 104 s anm = n matrix, thenann % m matrix
(7 is called a generalized inverse (g-inverse)of A if AG A = A. The Moore—Penrose
inverse of A, denoted by A7, is ann x m matrix G satisfying the equations AGA =
A GAG =G (AT = AG and (GA)T = GA. It is well known that any real ma-
trix admits a unique Moore-Penrose inverse. We referto [2.4] for basic properties of
the Moome—Penrose inverse.

Itis well known that when 0 < s < & < v — &, the rows of Wi are lineary inde-
pendent, see, for example, [6,8,10]. In such a case, a formula for a right inverse of
W has been given in [8]. Note that when Wi has full row rank, the class of nght
inverses of W is the same as the class of g-inverses of W, In Section 2, we give
an explicit formula for the Moore—Penrose inverse, which is a particulady nice rght
inverse, of Wi over the set of reals. In particular, when k = v — 5, Wy is a square
nonsingular matix and our formula gives the inverse of W A similar formula has
been given in [8]. The class of all dght inverses can be described, once we have a
formula for the Moore—Penrose inverse, sce [2.4].

The theory of g-inverse, and in particular of the Moore-Penrose inverse, is im-
plicit in the work of Wilson [10.11], and one motivation for the present work is 1o
make this connection explicit. For example, Corollary 1 of [11] gives a necessary
and sufficient condition for an integer matrix to have an integer g-inverse. Similady,
Theorem 2 of [10] gives a formula (in a more general setting of -designs) for the
orthogonal projection onto the row space of Wy, which is just W Wy The proof of
Theorem 3 of [ 11] also employs g-inverses. [t appears that there is much 1o be gained
by incorporating the wools of the theory of g-inverses into the study of incidence
matrices for sel systems.

In Section 3, we determine the eigenvalues of W 'I--'I--":J;t This result is of indepen-
dent interest and is also used in the following section.

Incidence matrices regarded as matrices over the field of integers modulo a prime
poame important in design theory, see [5,9.11]. In Section 4, we give 4 necessary
and sufficient condition for W, w0 admit a Moore—Penrose inverse over the set
of integers modulo a pime p. We also give a formula for the Moore—Penrose in-
verse when it exists. As a consequence it 15 shown that W, admits a Moore—
Penrose modulo p for any prime p. It is likely that these results will be applicable
to extend some work in [B] to linear mappings belween veclor Spaces over a
finite field.

2. Moore-Penrose inverse over reals

Let s, k, v be integers satisfying 0 < 5 < k < v. The matrix W_..-k 15 a matrix of
order {:'}I 2 {:}I defined as follows. The rows of W, are indexed by the s-element
subsets and the columns are indexed by the f-element subsets of a v-element set.
The eniry in row § and column 7 of W is 1 if SN U = @ and 0 otherwise. As
before, Wm salx {:}l vector of all ones.
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The following result will be used. The proof is elementary and can be found in
[10].

Lemma 1. ForQ =i < 5 < k < v, the filfowing assertions hold:
@ W W.Tk = ("W
(i) W, Wij is symmetric forany {0 <i < j < v

(1ii) Eﬁ]{—l}‘ 'I.r'I.""-_T Wi =1.
f“"} H'rh w'u'k = {f::} H'I}k-

A formula for the Moore—Penrose inverse of W, over the set of reals is given in
the next result.

Theorem 2. Let 0 < 5 < k= v— 5. Then

5 { _1 }‘ —T
+
w'u'R == E #W kH"rh
im0 (e )
Proof. Let W be as in the statement of the theorem. We have

&

" (—1)f . =T
Wae W= e Wt Wy Wis

o {I‘.'—J —\}
5 o 1 }J f- — s T -
_Z ( . )Wn Wiy (by Lemma 1(i))
i=0 k—s
- Z{— 1 }"W‘.T_\_ Wi,
=0

=/ (by Lemma 1{ui}).
Thus 'I-'I-" is a right inverse of Wy,

I follows that Wee Wi W = W, W W W2 = W and that Wee W is sym-
metric, It remains to show that W_‘_“; W.p is symmetric. Observe that by Lemma 1,

(=1
Wi W=y W Wi Wi

5k B
i=0 Lk k3 %)
R (e L T
_Z r.' i— ( J.) Wlk W‘k'
FES ] }I

Again by Lemma 1, Wﬂ Wig is symmetde and the proof is complete. [
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We remark that, if k = v — 5, then we get a formula for W} using the fact that
W.L = Wo_t v—s-

As seen in the proof of Theorem 2, Wi has a right inverse. It follows that W
has rank { }l when s < & = v — &, a result proved by several authors independently,
see [5,10] and the references contained therein.

In panticular, W, ,_; is a square, nonsingular matrix and by Theorem 2 its inverse
15 given by

5 ]
Wil =Y {f._,-lf'_,. Wi Wi M
=l s—i }

Incase 0 < 5 < k< v—ux, aformula for a right inverse of Wy is given in [8],
however, the formula obtained in Theorem 2 is more explicit. A formula for the
inverse of Wy ,_,. different than but similar to (1), 1s also found in [8].

We remark that if appropriate orderings are chosen for the row and column in-
dices, then Wy; = W‘-.”_J; and W;J.- = Wip—j. Inview of this remark, an expression
for the Moore—Penrose inverse of W, can be obtained from Theorem 2.

3. Eigenvalues of Wy W

For convemence, we will take our v-set as {1,2, ..., vh Let 0 =i j= v If
T by rals vl with [T| = i, then Wi;[T] will denote the row of Wi; mdexed by
T. A similar notation applies Lo W,-J.-. The row-space of the matrix A will be denoted
by S#(A).

Lemma 3. Let0Q =i = j < v Then
RU=1VWi; — Wi C RWi_y ).

Proof. LetT C {1,2,..., v}, |T'| = i. By the inclusion—exclusion principle,
i—1
(=D'WaTI=WiIT1=)" Y (=D Wylsl (2)
i=0 5CT,|5|=¢

An application of Lemma 1{iv) gives

j—t
Wﬁq Wq_,l' — q d Wﬁ_,l'

— £
for0 < £ < g < j < vand hence
HIWeih < H(W;). (3]
Therefore
W) C RWi ) (4)

for£ =0.1,....i — 1. The wesult follows from (2) and (4). O
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It follows from Lemma 3 and (3) that if 0 <7 < j £ v, then .ﬁP{W,-J.-} C Wi
this fact will be used. Since, with appropriate orderings for the row and column
indices, W;j = Wi,_jand Wi; = W, itisin fact true thatif 0 £ i < j < v — 1,
then #(W;;) = R(W;).

The following result is contained in [10] when the additional assumption that
k = 25 is made (see the proof of Proposition 3 in [10]). We give a different proof
and do not require k = 25,

Theorem 4. Let0 < 5 < k < v — 5. Then the eigenvalues of Wiy H’ﬂt are given by
{f:’}{”;:‘} with multiplicity (() — (,%,). i =0.1.... 5.

Proof. We make the convention that ( *|) = 0. Each row sum of Wy is () and
each column sum of W, 1s {f} Thus the 1 = {:';1 vector of all ones is a lefl eigenvee-
tor of W II.-'I.-"_f;t for the eigenvalue {f}{f::}l . -

Let i be fixed, 1 <7 < 5. By Lemma 3, (—1)'W;, — Wi, = XW;_, ; for some
matrix X. Let

v—i—x T
Hi = Wiz — Wi w,-g-

k—x
Then
3 3 ifv—f—x o T ifv—i—s _
Hi= D" 7 Wi Wa Wi+ GO T )XW,
— S —i—x
={—1}I‘Wuﬂ"_,-Tg—Hﬂ'x'lf'rﬂ+i—1}'( Ty )Xm'—l.n'
ST v —i—4
=((—1)' Wi — W) W] +{—1}’( oy )xuﬂ-_l,_,-. (5)

where we used Lemma 101) to get the second equality. By Lemma 3,
(=1 Wig — Wi = ¥Wi_14 (6)

for some matrix Y. 1t follows from (5), (6) and Lemma 10(1) that

s T i v—i—4%
H=Y W Wi+ (T xwi
—_ 1__- — . |—-—,'
=(” bt ‘VW.-_|..,-+{—1}‘(‘ E= AN (7)
k—=5 k—=5

In view of the remark following Lemma 3 it follows from (7) that any vector in the
row spaceof H; is contained in the row space of Wiy ; and hence rank (H;) < {IEL}'
Consuder the vector space

¥ = {x:x7 = yTW;, for some y such that yTH; = 0}.
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Since Wi, has full row rank, the dimension of % equals the dimension of the left
null space of H;. As observed earlier, rank (H;) < (;”,) and hence dim (%) is at
Iuﬁt{:.'}l —{‘.fl :

By Lemma 1(iv),

k—i\fv—i—s\ 1
=(_ r)(l : ' : ‘)m”ﬁkwﬂ (8)
s—1i kK —. {k—.-.'.}

Let x € % and suppose xT = yT W, where yTH; = (. Premultiply (8) to conclude
that x is a left eigenvector of Wi 'I-'I-"l with eigenvalue {f::} ("c2")- The multiplicity
of the eigenvalue equals dim (%) which is at least (;) — (;",). Since this is true for
i =101, .. .5 (the case i = 0 was covered in the beginning of this proof) adding up
the multiplicities over i =0, 1,. .., 5 we see that the multiplicity of {':‘::]I{”;‘_T’}
must in fact be equal o (7) — (") That completes the proof. [

4. Moore-Penrose inverse over a linite Geld

In this section, we view W as a matrx over the field of integers modulo p, a
prime. The following result has been proved in [11].

Theorem 5. Let 0 < s < k< v — 5. Let p be a prime and let

: I- - (k_r-)]
A= 0Kigs,pf o
§—1i

Then, the rank of Wy over the integers modulo p eguals
3

e i—1)

e ¥

The next result, proved in [1], gives a necessary and sufficient condition for a
matrix to admit a Moore—Penrose inverse over an arbitrary field. An equivalent con-
dition has been obtained i [7].

Theorem 6. An m x n matrix A of rank r over an arbitrary field admits a Moore-
Penmse inverse over the field if and only if the sum of squares of the v » v minors of

A I8 nonzero.

We now prove the main result of this paper.
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Theorem 7. Let 0 < 5 < k< v — 5, let pbea prime and let

.1':[!:(}&:: ﬁp_f(k_{-)l.
i

Then Wi has a Moore—Penrose inverse modulo p if and only if p {tlk_ ‘_T} Jor all
i € A, Furthermove, the Moo —Penrose inverse, when it exists, is given by

v —i _,l
-..i = Z b l}lﬂ{ 4 WlkW Wis.
ije¥ —§ }

Proof. Let

= [rocicani (N ("5))

Set
U U U U
r = — d r'= — .
' E(,) (,-_1) irs 2 (r) (,-_1)
el ied”
Since s = 2v, Lth{ {] —{ "l} =0,i =0,1,...,s, and therefore r = r'. By Theo-

rem 5, the rank of W equals r. By Theorem 4, the eigenvalues of Wi Wk over the
reals are given by {f_‘.}{ul‘__‘_’]l, with multiplicity (;) —(,%,).f = 0.1... .. 5. Thus
the number of eigenvalues of W WI& which are nonzero modulop is r'. The sum of
H.]UETLH of the r x r minors of Wy, equals the sum of the principal r x r minors of
Wik 'I-'I-" . which in turn is the rth elementary symmetrdc function in the eigenvalues
of Hﬁg 'I-'I-" e Thus, if 7 = ¢/, then the sum of squares of the r x r minors of Wy, must
be zero modulo p.olt fﬁlkms by Theorem 6 that, if Wy, admits a Moore-Penrose
inverse modulo p, then r = ' Clearly, if r = ¢/, theni € 4™ wheneveri € .47 and
this proves the necessity part of the theorem.

Now suppose that p ,I{”;:’} forall i € .47, We work over the integers modulo
pin what follows.

Let

. —1J —
Wit = Y LW Wi (9)

i tl;‘—.-.' - }

We have

. [ ) —
Wer Wor = Z = W WJ'.Q Wiy

{L‘—J—T
A

(=1 g
o ::' ( —4 \)W;r“,r“
I:'—J 5 k—x i

ie "

=Y (-1 }‘ Wi, Wi. (10)

FEd"
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It follows from (10) and Lemma 1(ii) that W Wiy is symimetric.

Moy

; (=1
WeeWak= Y =W, Wi W

gy Lt
=3" u_‘”‘ ( )Wﬂw.-k, (11)
|

et

using Lemma 1(iv). It follows from (11) and Lemma 1(ii) that W, Wy is symmetric.
Also

w'u'.!: ﬁ'r.'u'k w'u'k T Z{ -1 }‘WI H'rh w.'u'l: fb:l" [ ].ﬂ}}

e’
i k— QT :
=E{—1}' N W, Wi (by Lemma 1{(iv))
‘.E.l. o T
i R
=Z{—1}‘( ’_) W, Wi
i=0 gy

=~ 1) W, Wi Wy (by Lemma 1(iv))
1=
W (by Lemma 1))

Thus Wiz is a g-inverse of Wiy and Wy, W, W W are both symmetric. It fol-
lovws that

W

= W&k W&R H":R

15 the Moore—Penrose inverse of W, Now

Wi=Wo Y (/W Wy by (10))

o
_1},1--..'
= Y W W W, Wi (by(9)
ije# {
{r. —i _,l
_ Z{ 1}J+_.l u.: }me i Wi (by Lemma 1(i)),
i jed

and the proofis complete. O
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We remark that if p }‘{ } il 'I{t'_‘_’}l i=0,1,...,5, then 'I-'I-" exists modulo
pand s given by {9). The prm}fn similar o that of Theorem 7, Ii-;u,plng in mind that
Wi 'I-'I-’_.,,q = [ holds in this case. In particular, for all sufficiently large primes p, 'I-'I-"_,'_R
exists modulo p and is given by (9).

Example. Lets =2 k=4, v = 6andlet p = 3. Using the notation of Theorem 7,
A7 consists of the single element 2. Then ﬁ-’:.; = WL Wi, Note that Wa =1, the
identity matrix. Also, if we agree to list the 2-subsets and the 4-subsets in such a way
that an element in the first list has its complement as the LUFILH}'H}FMI[!E" elementin the
second list, then 'I-'I-"u = [ as well. Thus 'I-'I-"-.r4 = f. Now 'I-'I-"-,4 —] Wﬂ_; Way 'I-'I-"n = Way.
Note that Wiy is symmetric and it is easily verfied that 'I--'I--":4 = Way. We indicate
the argument briefly: Let X, ¥ be subsets of {1,2, ..., &6} with | X|=2,|Y|=4.
Then | X M Y| equals 0, 1 or 2. Suppose |X N ¥] = 0. Then the (X, ¥ )-element of
Wag is zero. Also, there are precisely (1) = 6 sets Z © {1,2, .. .. 6} such that the
(X. Z)-element and the (Z . ¥ )-element of Wa, are both 1. Since we are working over
integers modulo 3, it follows that the (X, ]f’}l-LerLnLnf 'I-'I-'l:':r4 15 zero. The cases that
[ X N¥|=1,2 are treated similarly and hence W2 54 = Wz We thus have another
verification of the fact that 'I--'I--":4 = Way. This example also shows that W # W, in
general.

We conclude with the following easy consequence of Theorem 7.

Corollary 8. Ler 0 =5 = v — s and let p be a prime. Then W, _; has Moore-
FPenmse inverse r.u.-.'rrf:e uirfgfm modilo p.
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