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In general, there are examples of TU games where the core is stable but is not
large. In this paper, we show that the extendability condition introduced by Kikuta
and Shapley (1986, “Core Stability in n-Person Games,” Mimeo) is sufficient for
the core to be stable as well as large, for TU games with five or fewer players. We
provide a counter example when the number of players is six. We then introduce
a stronger extendability condition and show that it is necessary and sufficient for
the core to be large. Our proof makes use of a well-known result from the theory
of convex sets. Journal of Economic Literature Classification Number: C71. © 2001

Academic Press
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1. INTRODUCTION

The core of a TU game is perhaps the most intuitive and easiest solu-
tion concept in Cooperative Game Theory (Peleg, 1992). Another approach
to solution concepts is the stable sets introduced by von Neumann and
Morgenstern (1944). The core of a TU game is said to be stable if it is a
stable set in the sense of von Neumann and Morgenstern. Sharkey (1982)
introduced the notion of largeness of the core and showed that it implies
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that the core is a stable set. van Gellekom et al. (1998) have given an exam-
ple of a nonsymmetric six-person TU game where the core is stable but is
not large. However, in two different papers, Biswas et al. (2000) and Biswas
and Bhattacharya (1998) have shown for symmetric TU and NTU games,
the two concepts coincide. In this paper, we are concerned with sufficient
conditions for a stable core to be large for TU games in general. There have
been several results which deal with sufficient conditions for the core to be
stable (Gillies, 1957). The survey papers of Aumann (1967), Lucas (1990,
1992), and the references therein give an excellent review of these topics.
For more recent results on core and monotonic solutions see Housman and
Clark (1998) and Young (1985, 1994).

Kikuta and Shapley (1986) have introduced the notion of extendability of
the game in the sense that every subgame core element (whenever it exists)
can be extended to a core element of the original game. They have shown
that extendability implies the stability of the core. Recently van Gellekom
et al. (1998) have given an example to show that the stability of the core
need not imply the extendability property of the game. They have also given
a seven-person TU game, where the game has the extendability property but
the core is not large. These results immediately raise two questions: (i) Can
we find a TU game with fewer than seven players satisfying extendability
without having a large core? (ii) Can we strengthen the Kikuta–Shapley
notion of extendability so that it will imply the largeness of the core? We
answer these two questions in this article.

We introduce a different notion of extendability property, namely, that
every lower boundary point of every �n − 1� person subgame can be
extended to a core element of the original n-person game. We will show
this notion to be equivalent to the largeness of the core. Therefore, we
will call this concept, a bit prematurely, strong extendability. Proof of this
result depends on a well-known result from the theory of convex sets. Then
we show that when the number of players is at most five, extendability of
the game and largeness of the core coincide. However, when the number
of players is six, we give an example to show that there exists a game that
has the extendability property but does not have a large core.

Our plan for the paper is as follows: In Section 2, we give some prelimi-
naries. In Section 3, we state and prove our main results. Section 4 contains
examples and further remarks.

2. PRELIMINARIES

We start with some definitions that are needed for our discussions.

Definition 1. A TU-game is a pair (N� v), where N is a finite set of
players with n = �N�, the cardinality of N . A subset S ⊆ N is called a coali-
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tion and v assigns a real number to every coalition S with the convention
that v�φ� = 0. This function v � 2N → R is called the characteristic function
and v�S� is the value or worth of the coalition S. The subgame �S� vS� is
defined by vS�T � = v�T � for all T ⊆ S.

Definition 2. Let �N� v� be a TU-game. We write for short x�S� =
∑

i∈S xi, where x ∈ Rn and S ⊆ N . The imputation set, I�v�, is defined by
I�v� = 
x ∈ Rn � x�N� = v�N�� xi ≥ v�i� for all i ∈ N� and the set of all
acceptable vectors, A�v�, by A�v� = 
x ∈ Rn � x�S� ≥ v�S� for all S ⊆ N�.

The core C�v� of �N� v� is the intersection of these two sets, that is,
C�v� = 
x ∈ Rn � x�N� = v�N�� x�S� ≥ v�S� for all S ⊂ N�.

Definition 3. For any collection � = 
S1� S2�    � Sm� of nonempty
subsets of N = 
1� 2�    � n�, we say that � is N-balanced if there exist
positive numbers y1� y2�    � ym such that for each i,

∑i∈Sj

j yj =1. The vec-
tor y is called a balancing vector and yjs are called balancing coefficients.

Definition 4. A TU-game �N� v� is said to be totally balanced if every
subgame �S� vS� of �N� v� has a nonempty core.

Definition 5. Let �N� v� be a TU-game. Let �S� vS� be a subgame.
For every subgame �S� vS� of �N� v�, we define v̄�S� = max

∑
j xjv�Sj�

where the maximum is taken over all balanced collection of subsets

S1�    � Sj�    � Sm� of S and xjs are the corresponding balancing coeffi-
cients. The game �N� v̄� is called the totally balanced cover of �N� v�.

Definition 6. Let �N� v� be a TU-game with a nonempty core. The
core C�v� is called stable if for every imputation y ∈ I�v�\C�v� there exists
a vector x ∈ C�v� and a coalition S ⊂ N such that x�S� = v�S� and xi > yi

for all i ∈ S. We then say x dominates y (via S) and write x �S y.

It is clear that if the core is stable then it is the unique von Neumann–
Morgenstern solution.

A point x ∈ A�v� is a lower boundary point if there is no point y ∈ A�v�
with y ≤ x and y �= x. Alternatively, We say that x is a lower boundary
point of A�v�, if A�v� ∩ Qx = 
x� where Qx = 
y ∈ RN � yi ≤ xi for all
i ∈ N�. Let us write L�v� for the set of lower boundary points of A�v�. It
is a well-known fact that L�v� is a nonempty set since A�v� is a nonempty
convex set bounded from below (see Ferguson, 1967, p. 69, for a proof).

Definition 7. Let �N� v� be a TU-game with a nonempty core. The
core is called large if for every y ∈ A�v�, there is an element x ∈ C�v� with
x ≤ y �xi ≤ yi for all i).

It is not difficult to check that the core C�v� is large if and only if C�v� =
L�v�. For a proof of this assertion see Sharkey (1982). We now define the
notion of extendability due to Kikuta and Shapley (1986).
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Definition 8. Let �N� v� be a TU-game with a nonempty core. We say
that �N� v� is extendable if for every nonempty coalition S ⊂ N for which
C�vS� �= φ and for every core element y ∈ C�vS� there is a core element
x ∈ C�v� with xi = yi for all i ∈ S. Hence if �N� v� is extendable then every
core element of any subgame can be extended to a core element of �N� v�.

Kikuta and Shapley (1986) have shown that if the core is large for a
TU-game �N� v�, then �N� v� is extendable. They have also shown that if
C�v� �= φ and if �N� v� is extendable then C�v� is a stable set. In a recent
paper van Gellekom et al. (1998) have given examples to show that in gen-
eral, stability of C�v� need not imply extendability with a six-person game
and extendability need not imply largeness of the core with a seven-person
game. Our inspiration for this article comes from these two papers. In order
to state our main results we need a different notion of extendability.

Definition 9. Let �N� v� be a TU-game with a nonempty core. We say
�N� v� is extendable in the stronger sense if for every S ⊂ N with �S� = n− 1
and every y ∈ L�vS� there is a core element x ∈ C�v� such that xi = yi for
all i ∈ S. In other words if �N� v� is extendable in the stronger sense, then
any lower boundary point of any �n − 1� player subgame can be extended
to a core element of �N� v�.

We show in this paper the following: (i) a TU-game �N� v� is extendable
in the stronger sense if and only if the core C�v� of �N� v� is large and (ii)
a TU-game �N� v�, with n ≤ 5, is extendable if and only if the core C�v�
of �N� v� is large. Finally we give an example of a six-person game which is
extendable but does not have a large core. These results complement the
results obtained by van Gellekom et al. (1998).

3. EXTENDABILITY AND LARGENESS OF THE CORE

In this section we state and prove some results connecting extendability
and largeness of the core. We need the following result from the theory of
convex sets (Berge, 1963).

Berge’s theorem. If D1�    �Dm ⊂ Rm are closed convex sets with (a)
⋃

i Di is convex and (b)
⋂

j �=i Dj �= φ for every index i then
⋂

i Di �= φ.

Theorem 3.1. Let �N� v� be a TU-game with a nonempty core. Then the
core C�v� is large if and only if the game �N� v� is extendable in the stronger
sense.

Proof. If the core is large, it is not difficult to see that the game is
extendable in the stronger sense. We need to prove only the converse.
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Suppose there is an element y ∈ L�v� with y�N� > v�N� and define
Di �= 
x ∈ C�v� � xi ≤ yi�. We will prove that

⋂
i Di �= φ. Every core

element must belong to at least one Di, since y�N� > v�N� = x�N� for
any core element x. Hence we have

⋃
i Di = C�v�, a convex set. In order to

apply Berge’s Theorem, we must prove that
⋂

j �=i Dj �= φ for every player i.
So take i ∈ N . We will produce a core element belonging to

⋂
j �=i Dj �= φ.

Reduce yN\i to an element y∗N\i ≤ yN\i with y∗N\i ∈ L�vN\i�. Then y∗N\i can
be extended into a core element x�i�. This is an element of

⋂
j �=i Dj Since

i is arbitrary,
⋂

j �=i Dj �= φ for every player i.
Hence

⋂
i Di �= φ. Let x be such an element in C�v�, that is, xi ≤ yi. Since

y is a lower boundary point with y�N� > v�N�, we arrive at a contradiction.
This concludes the proof of the Theorem.

Theorem 3.2. Let �N� v� be a TU-game with nonempty core. Suppose
�N� = n ≤ 5. Then the core C�v� is large if and only if �N� v� is extendable.

Proof. Suppose �N� v� satisfies extendability and let y ∈ L�v� with
y�N� > v�N�. We define � �y� as the collection of coalitions T with
y�T � = v�T �.

Then � �y� covers N and yT can be extended into a core element
�yT � xN\T � ∈ C�v�.

The following situations are not possible:

(a) There are coalitions T1 and T2 in � �y� with T1 ∪ T2 = N .
(b) There is a coalition T ∗ ∈ � �y� and, for each player j /∈ T ∗ a

coalition Tj ∈ � �y� with j ∈ Tj ⊆ T ∗ ∪ 
j�.

If case (a) occurs, we write A �= N\T2, B �= T1 ∩ T2 and C �= N\T1.
Then A ∪ B = T1 and there is a core allocation x = �yA� yB� xC�. Then
B ∪ C = T2 and yB�B� + xC�C� ≥ v�B ∪ C� = yB�B� + yC�C�. This means
y�N� ≤ x�N� = v�N�, a contradiction.

If case (b) occurs, there exists a core allocation x = �yT ∗� 
xj�j /∈T ∗�.
Then x�Tj� = xj + y�T ∗ ∩ Tj� ≥ v�Tj� = y�T ∗ ∩ Tj� + yj . Then x�N\T ∗� ≥
y�N\T ∗� and x�N� ≥ y�N� > v�N�, a contradiction.

It is also not possible to have:

(c) There is a coalition T ∗ ∈ � �y� with �T ∗� = n− 1.

In case (c) we have T1 �= N\i ∈ � �y� for some player i ∈ N . There is
also a coalition T2 containing i. Then T1 and T2 are not possible by (a). We
will denote by k-coalition a coalition with k elements.

Case n = 4. There is at least one coalition containing 1, at least one
coalition containing 2, up to a coalition containing 4 in � �y�. By case (b)
these coalitions cannot be all 1-coalitions and there are no 3 = n− 1 coali-
tions. So, there is a 2-coalition, say, w.l.o.g. T1 = �1� 2� ∈ � �y�. Then by
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the impossibility of (a), there is no coalition T2 ∈ � �y� containing 3 and 4
and by the impossibility of (b) there are no coalitions T ′

2 and T ′′
2 in � �y�,

one containing 3 and not 4, and one containing 4 and not 3. So, there is no
possibility left for � �y�.

Case n = 5. There is no 4-coalition in � �y�. Suppose T1 ∈ � �y� with
�T1� = 3. Then, w.l.o.g. T1 = �1� 2� 3�. There must be a coalition T2 ∈ � �y�
containing (4, 5), which is not possible by (a), or two coalitions T ′

2 and T ′′
2

in � �y�, one containing 4 and not 5 and one containing 5 and not 4. The
latter is also not possible by (b). So, every coalition in � �y� has size 1 or 2
and there is at least one 2-coalition, by (b).

It is not possible to have

(d) n = 5 and T1 and T2 are two disjoint 2-coalitions in � �y�.
In case (d) we have w.l.o.g. T1 = �1� 2� and T2 = �3� 4�. There is also a

coalition T3 in � �y� containing 5. This can be T3 = �5� or T3 = �p� 5� with
p ∈ 
1� 2� 3� 4�. Without loss of generality, we may assume that p = 1. Let
x = �y1� y2� x3� x4� x5� be an extension of �y1� y2� into a core allocation of
�N� v�. In the first case we have x3 + x4 ≥ v�34� = y3 + y4 and x5 ≥ v�5� =
y5. Then x�N� ≥ y�N� > v�N� and this is a contradiction. In the second
case, we also have x3 + x4 ≥ y3 + y4 and y1 + x5 ≥ y1 + y5. Then again
x�N� ≥ y�N� > v�N�.

Now we try to find a possibility for � �y�.
T1 = �12�. By the impossibility of (b) there must be a second 2-coalition

T2 in � �y� and by (d) it is not disjoint from (12). Without loss of gener-
ality T2 = �13�. Again by (b) there must be a third 2-coalition T3 ∈ � �y�
containing 4 or 5. Without loss of generality it contains 4, and T3 must
intersect T1 and T2. So T3 = �14� is the only possibility. Finally there must
be a coalition T4 containing 5. This cannot be (5) by the impossibility of
(b). It is therefore a 2-coalition intersecting T1, T2, and T3. Then (15) is
the only possibility for T4, but this is after all also impossible by (b) (take
T ∗ = �12�). This concludes the proof of the Theorem.

Remark 1. For n = 6 the collection � �y� consisting of (12), (13), (23),
(124), (135), and (236) is not in contradiction with the impossibility of (a),
(b), and (c). This fact will be used in the last section for giving an example
of a six-person game satisfying extendability without having a large core.

Biswas and Parthasarathy (1998) earlier considered the extension of all
lower boundary points of every subgame to the core elements and showed
that the core is large. Though this appears to be rather trivial, it is worth-
while to note that the strong extendability, weaker than the above, as it may
look, eventually implies the original assumption as in the above paper.

Theorem 3.1 is useful in examining whether the core is large. If for some
�n − 1� player subgame we find a lower boundary point which cannot be
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extended as a core element of the original game, then the core cannot be
large. We illlustrate this with an example in the next section. Following van
Gellekom et al. (1998), we denote by U�v�, the set of upper vectors, that
is, U�v� = 
x � x ∈ Rn� x�S� ≥ v�S� for all proper coalitions S ⊂ N�. It is
easy to see U�v� ⊇ A�v�. It is shown in van Gellekom et al. (1998), that if
the core of a TU-game is large, then z�N� ≤ v�N� for every extreme point
z of U�v�.

4. EXAMPLES AND REMARKS

We first give an example to show that Theorem 3.2 may not be true when
the number of players is six.

Example 4.1. Let N = 
1� 2� 3� 4� 5� 6� and v is given by v�
1� 3�� =
v�
2� 3�� = v�
1� 2�� = 1, v�
1� 2� 4�� = v�
1� 3� 5�� = v�
2� 3� 6�� = 2 and
v�N� =4 and v�S) is defined suitably for other S, so that v is monotonic.
For example v�
1� 2� 3�� = 15� v�
1� 2� 3� 5� 6�� = 2� v�
i�� = 0 and so on.

It is not hard to check that this game is extendable but the core is not
large. However, we present below an indication of the proof of extend-
ability. One can verify that y = �1/2� 1/2� 1/2� 1� 1� 1� is a lower boundary
point of the game and y�N� = 45 > v�N� = 4. This example shows the
sharpness of Theorem 3.2.

Proof of Extendability for Example 41. It is enough to prove extendabil-
ity of one two-player coalition, say, 
1� 2� and one three-player coalition,
say, 
1� 2� 4�. Let �x1� x2� = �1� 0�. Then take �x3� x4� x5� x6� = �1� 1� 0� 1�.
It is easy to check that x = �x1� x2� x3� x4� x5� x6� ∈ C�v�. If �x1� x2� =
�0� 1�, then we can take �x3� x4� x5� x6� = �1� 1� 1� 0�, so that x ∈ C�v�. Any
other subgame core element of 
1� 2� is now extendable. Similar proofs are
possible for 
1� 3� and 
2� 3�.

Consider the coalition 
1� 2� 4� and let �x1� x2� x4� = �1� 1� 0� be a core
element of the subgame. Then taking �x3� x5� x6� = �0� 1� 1�, we find x ∈
C�v�. Similarly if �x1� x2� x4� = �1� 0� 1� or �0� 1� 1� take �x3� x5� x6� =
�1� 0� 1� or �1� 1� 0�, respectively, so that x ∈ C�v�. Thus it is easy to see that
the core of the subgame 
1� 2� 4� is extendable. Similar facts are true about

1� 3� 5� and 
2� 3� 6�. The rest of the of extendability property follows from
the above. The following example given in van Gellekom et al. (1998) with
seven players also shows that the game is extendable but the core is not
large.

Example 4.2. Let N = 
1� 2� 3� 4� 5� 6� 7� and v is given by v�17� =
v�47� = 2 and v�127� = v�137� = v�457� = v�467� = 3. v�N� = 7 and
v�S� = 0 otherwise. In this example, �N� v̄� is extendable but the core of
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�N� v̄� is not large. Here �N� v̄� stands for the totally balanced cover of the
TU-game �N� v�.

Let �N� v� be a TU-game. The restriction of v to 2N\N is denoted by
vo. Then �N� vo� is called an incomplete TU-game where the value of the
grand coalition, namely N , is not specified. If the game (N , vo� v�N� = β)
has a large core, then the game (N , vo� v�N� ≥ β) also has a large core.
That is if a TU-game at v�N� = β has a large core then the TU-game at
v�N� > β also has a large core. In other words, largeness of the core is a
prosperity property (see van Gellekom et al., 1998, for the precise definition
of the prosperity property). Now the following question arises naturally.
Given an incomplete TU-game �N� vo� what is the least value of β so that
the TU-game (N , vo� v�N� = β) has a large core. In van Gellekom et al.,
it is shown that β ≥ max
z�N� � z is an extreme point of U�v��. It is
not easy to find the least β in practical situations. One can find the least
β (easily) in symmetric TU-games using the specified vectors defined in
Biswas et al. (2000). However, the following elementary proposition gives a
rough bound for β .

Proposition 4.1. Let �N� v� be a TU-game with v�
i�� = 0 for all i and
v�S� ≥ 0 for every S. Let α = max
v�S� � S ⊂ N�. If v�N� ≥ �n − 1� · α,
then the core of the TU-game �N� v� is large.

Before giving the proof of this proposition we would like to make the
following remarks.

Remark 2. It is well known that every (essential) TU-game is strategi-
cally equivalent to a TU-game where the worth of any coalition S is non-
negative and the worth of every singleton coalition is zero. For a discussion
on these, refer to Owen (1995).

Remark 3. If two TU-games are strategically equivalent and if one of
them has a large core, then the other game also has a large core. Combining
the above two remarks, it is clear that the nonnegativity assumption of v in
Proposition 4.1 is not restrictive.

Remark 4. In the class of all TU-games where the number of players
is finite, it is not possible to improve α given in Proposition 4.1 as the
following simple example shows.

Example 4.3. Let N = 
1� 2� 3� and v is given by v�12� = v�13� = 1,
v�N� = 2 and v�S� = 0 otherwise. In this case α = max
v�12�� v�13�� = 1
and v�N� = �n − 1� · α = 2. In this example core is stable and large when
v�N� = 2. In other words, the core is not stable when v�N� < 2 and the
core is stable and large whenever v�N� ≥ 2.

We now give the proof of Proposition 4.1.
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Proof. Our assumption is v�N� ≥ �n− 1� · α where α = max
v�S� � S ⊂
N�. Clearly α ≥ 0 since v�S� ≥ 0. We will simply show that every lower
boundary point of the game is a core element. This will imply the core
of the game is nonempty and large. Suppose y ∈ L�v� with y�N� > v�N�.
Write y = �y1� y2�    � yn�. Since y is a lower boundary point, there exists a
nonempty coalition S, such that y�S� = v�S�. If yio

> α for some io, since
y�N� > v�N�, we can reduce yio

by an ε�> 0�, so that the vector y∗ =
�y1�y2�    � yio

− ε� yio+1    � yn� is an acceptable vector, and this contradicts
our assumption that y ∈ L�v� as y∗ ≤ y. Thus yi ≤ α for every i ∈ N .
Without loss of generality, let us suppose S = 
1� 2�    � s� where y�S� =
v�S�. Suppose �S� =1. Then y = �0� y2�    � yn� since y�1� = v�1� = 0 and
consequently y�N� ≤ �n − 1� · α ≤ v�N�, contradicting our assumption
y�N� > v�N�. So we shall and do assume �S� ≥ 2, where y�S� = v�S�.
That is, y�N� = v�S� + y�N\S� ≤ v�S� + �n − s� · α ≤ �n − s + 1� · α for
v�S� ≤ α. Hence v�N� < y�N� ≤ �n− s + 1� · α ≤ �n− 1� · α, contradicting
our hypothesis v�N� > �n − 1� · α. Thus every y ∈ L�v� is a core element
and consequently the core of the game is large. This completes the proof
of our proposition.

Proposition 4.1 is of limited use. For instance, consider Example 4.1. In
that example α = 2. The proposition tells us that the core of the game
will be large if v�N� ≥ 10, but we know from other considerations that
this six-person game has a large core if v�N� ≥ 45. In fact we can define
α = max
y�N� � y ∈ L�v��. Then any TU-game with v�N� ≥ α will have a
large core. We end this section with the following problem: Is it possible to
find this efficiently through linear programming (LP)? We can formulate it
as several LP problems and get the value of α, but this method requires
solving an exponential number of LP problems.

In view of the above proposition and examples one may ask whether
there are games in which stability, Kikuta–Shapley extendability, and large-
ness of the core occur at different values of v�N�. Indeed this can occur as
the following example shows:

Example 4.4. We consider two games. Let N1 = 
1� 2� 3� 4� 5� 6�
and v is given by v�
1� 3�� = v�
2� 3�� = v�
1� 2�� = 1� v�
1� 2� 4�� =
v�
1� 3� 5�� = v�
2� 3� 6�� = 2, v�N� = 4 and v�S� is defined suitably for
other subsets S of N1. For example v�
1� 2� 3�� = 15, v�
1� 2� 3� 5� 6�� = 2,
v�
i�� = 0 and so on. Let N2 = 
7� 8� 9� 10� 11� 12� with v�
7� 9�� =
v�
7� 8�� = v�
10� 11�� = v�
10� 12�� = 1, v�N2� = 3 and v�S� is suitably
defined for other subsets S of N2. Let N = N1 ∪ N2 and if S ⊆ N and
S = S1 ∪ S2 �= N , where S1 ⊂ N1 and S2 ⊂ N2, define v�S� = v�S1� + v�S2�.

We can easily check that this game �N� v� has a stable core when
v�N� = 7, but the game does not have extendability property and the core
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is not large. The game is extendable but does not have a large core when
v�N� = 8 and has a large core (and hence a stable core and extendability
property) when v�N� = 85.
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