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Abstract: A general method for constructing asymmetric orthogonal arrays of ar-

bitrary strength is proposed. Application of this method is made to obtain several

new families of tight asymmetric orthogonal arrays of strength three. A procedure

for replacing a column with 2ν symbols in an orthogonal array of strength three

by several 2-symbol columns, without disturbing the orthogonality of the array,

leads to some new tight asymmetric orthogonal arrays of strength three. Some new

families of asymmetric orthogonal arrays of strength four are also reported, and

it is shown that these arrays accommodate the maximum number of columns for

given values of other parameters of the array.
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1. Introduction

Asymmetric orthogonal arrays, introduced by Rao (1973), have received
much attention in recent years. These arrays play an important role in ex-
perimental design as universally optimal fractions of asymmetric factorials; see
Cheng (1980) and Mukerjee (1982). Asymmetric orthogonal arrays have been
used extensively in industrial experiments for quality improvement, and their
use in other experimental situations has also been widespread.

Construction of asymmetric arrays of strength two have been studied ex-
tensively in the literature. However, relatively less work on the construction of
asymmetric orthogonal arrays of strength greater than two is available. For a
review on these methods of construction, see Dey and Mukerjee (1999, Chapter
4).

In this paper, we present a general method of construction of asymmetric
orthogonal arrays of arbitrary strength with number of rows as well as the num-
ber of symbols in each column being a power of s where s is a prime or a prime
power. The proposed method is essentially a modification of a method of con-
struction of symmetric orthogonal arrays due to Bose and Bush (1952). Using
the proposed method, several families of tight asymmetric orthogonal arrays of
strength three are constructed (tight arrays are defined later in this section).
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Some other asymmetric arrays of strength three, not belonging to the general
families are also constructed. We propose a procedure for replacing a column
with 2ν symbols, ν ≥ 2 an integer, in an orthogonal array of strength three by
several 2-symbol columns, without affecting the orthogonality of the array. This
replacement procedure leads to a new family of tight asymmetric orthogonal ar-
rays of strength three. Some asymmetric orthogonal arrays of strength four are
also constructed and it is shown that the arrays so constructed accommodate the
maximum number of columns for given values of other parameters of the array.

For completeness, we recall the definition of an asymmetric orthogonal array.

Definition 1.1. An orthogonal array OA(N,n,m1 × m2 × · · · × mn, g), having
N rows, n(≥ 2) columns and strength g(≤ n), is an N × n array, with elements
in the ith column from a set of mi distinct symbols (1 ≤ i ≤ n), in which all
the possible combinations of symbols occur equally often as rows in every N × g

subarray.

The special case m1 = · · · = mn(= m, say) corresponds to a symmetric or-
thogonal array which will be denoted by OA(N,n,m, g). Generalizing Rao’s
(1947) bound for symmetric orthogonal arrays, it can be shown that in an
OA(N,n,m1 × m2 × · · · × mn, 3),

N ≥ 1 +
n∑

i=1

(mi − 1) + (m∗ − 1){
n∑

i=1

(mi − 1) − (m∗ − 1)}, (1.1)

where m∗ = max1≤i≤nmi. Arrays of strength three attaining these bounds are
called tight.

2. The Method

We propose a method of construction of orthogonal arrays of the type OA(st,

n,m1×· · ·×mn, g) where for 1 ≤ i ≤ n, mi = sui , s is a prime or a prime power,
the ui’s and t are positive integers and 2 ≤ g < n. This method is a modification
of a method of construction of symmetric orthogonal arrays, due to Bose and
Bush (1952). Throughout, following the terminology in factorial experiments, we
find it convenient to call the columns of an arbitrary OA(N,n,m1 × · · · ×mn, g)
factors, and to denote these factors by F1, . . . , Fn. We shall also denote a Galois
field of order s by GF (s) with 0 and 1 denoting the identity elements of GF (s)
with respect to the operations of addition and multiplication, respectively.

For the factor Fi (1 ≤ i ≤ n), define ui columns, say pi1, . . . ,piui
, each of

order t × 1 with elements from GF (s). Thus for the n factors, we have in all∑n
i=1 ui columns. Also, let B be an st × t matrix whose rows are all possible

t-tuples over GF (s). We then have the following result.
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Theorem 2.1. Consider a t × ∑n
i=1 ui matrix C = [A1

...A2
... · · · ...An], Ai =

[pi1, . . . ,piui
], 1 ≤ i ≤ n, such that for every choice of g matrices Ai1 , . . . , Aig

from A1, . . . , An, the t×∑g
j=1 uij matrix [Ai1 , . . . , Aig ] has full column rank over

GF (s). Then an OA(st, n, (su1) × (su2) × · · · × (sun), g) can be constructed.

Proof. For a fixed choice of {i1, . . . , ig} ∈ {1, . . . , n}, let C1 = [Ai1 , . . . , Aig ]
and for this choice of i1, . . . , ig, define r =

∑g
j=1 uij . Consider the product BC1.

The rows of BC1 are of the form bi
′C1 where bi

′ is the ith row of B. By the
stated rank condition, C1 has full column rank and thus there are st−r choices
of bi

′ such that bi
′C1 equals any fixed r−component row vector with elements

from GF (s). Thus, in BC1, each possible r-component row vector appears with
frequency st−r. Next, for each 1 ≤ j ≤ g, replace the suij distinct combinations
under Aij by suij distinct symbols via a one-one correspondence. It follows that
in the resultant st×g matrix, the ijth column has mij = s

uij symbols (1 ≤ j ≤ g)
and that each of the possible Πg

j=1mij combinations of symbols occurs equally
often as a row. This completes the proof.

Remark 2.1. Note that for Theorem 2.1 to hold, it is necessary that t ≥∑g
j=1 uij for each choice of g indices i1, . . . , ig from 1, . . . , n.

Remark 2.2. A result similar to Theorem 2.1 has been obtained by Saha and
Midha (1999), following a different technique.

Example 2.1. Let s = 2, t = 4, n = 4, u1 = 2, u2 = u3 = u4 = 1, g = 3. We
can construct an OA(16, 4, 4 × 23, 3) provided we can find a 4× 5 matrix C with
elements from GF (2) such that the rank condition of Theorem 2.1 is satisfied.
Take

C =




1 0 0 0 0
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1


 ,

where the first two columns correspond to the first factor F1 while the other
columns correspond to the remaining three factors. It can be checked that with
g = 3, the rank condition of Theorem 2.1 is satisfied by the above matrix C.
Hence, on computing BC where B is a 16 × 4 matrix with rows as 4-tuples over
GF (2), and replacing the four combinations (0, 0), (0, 1), (1, 0), (11) under the
first two columns of BC by four distinct symbols 0,1,2,3, respectively, we get the
following array which can be verified to be an OA(16, 4, 4 × 23, 3):


0210 0322 1103 3213
0001 0010 1011 0111
0000 1001 0110 1111
0011 1111 0000 0011



′

.
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In the next two sections we present methods for choosing C to satisfy the
conditions of Theorem 2.1, and to produce orthogonal arrays of strength three or
four. Theorem 2.1 can be used to construct orthogonal arrays of strength two as
well; however, the arrays of strength two constructed via the proposed method
are similar to those considered by Wu, Zhang and Wang (1992) and Hedayat, Pu
and Stufken (1992).

3. Orthogonal Arrays of Strength Three

In this section, we construct several families of asymmetric orthogonal arrays
of strength three. Most of these arrays are tight. We need the following well-
known result.

Lemma 3.1. Let α and β be two elements of GF (s), such that α2 = β2. Then
(i) α = β, if s is even and, (ii) either α = β or α = −β, if s is odd.

It follows from Lemma 3.1 that if α0, α1, . . . , αs−1 are the elements of GF (s)
then S = {α0

2, α1
2, . . . , αs−1

2} contains all the elements of GF (s) if s is even. If
s is odd, then one element of S is 0 and there are (s − 1)/2 distinct (nonzero)
elements of GF (s), each appearing twice in S.

We shall have occassion to refer to the following result, proved in Dey and
Mukerjee (1999, p.71).

Theorem 3.1. Suppose an orthogonal array A, OA(N,n,m1 × · · · × mn, 3),
is available and let t be a positive integer such that m1|t. Then there exists an
array A∗, OA(Nt/m1, n, t × m2 × · · · × mn, 3). Furthermore, if A is tight and
m1 = max1≤i≤n mi, then A∗ is also tight.

3.1. Tight arrays of strength three

We first have the following result.

Theorem 3.2. For every prime or prime power s, there exists a tight orthogonal
array OA(s4, s + 2, (s2) × ss+1, 3).

Proof. Let the factors of the array be denoted as before by F1, F2, . . . , Fs+2,
where F1 has s2 symbols and each of the remaining factors has s symbols. For
1 ≤ j ≤ s + 2, u1 = 2, u2 = · · · = us+2 = 1, let the t×uj matrices corresponding
to the factors be as follows (note that t = 4 here):

A1 =

[
1 0 0 0
0 1 0 0

]′
; A2 = [0, 0, 0, 1]′ ; Ai = [βi, αi

2, 1, αi]′, i = 3, 4, . . . , s+2,

where α3, α4, . . . , αs+2 are distinct elements of GF (s). The choice of βi ∈ GF (s)
depends on whether s is even or odd, as indicated below.
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(a) Let s be even. Then take βi = 0 for all i.
(b) Let s be odd. Then take βi = 0 if αi = 0, and take βi = 0, βj = 1, if

αi
2 = αj

2 for i �= j.
We show that for the above choices of the Ai the condition of Theorem 2.1

is met with g = 3.
(i) Let i, j, k be distinct in {3, . . . , s + 2}. For i, j, k, the matrix [Ai, Aj , Ak]

must have rank 3, where

[Ai, Aj , Ak] =




βi βj βk

αi
2 αj

2 αk
2

1 1 1
αi αj αk


 .

This follows since the determinant of the 3×3 submatrix of the above matrix
given by the last three rows is (αk − αi)(αk − αj)(αj − αi).

(ii) Let i = 2 and j, k ∈ {3, . . . , s + 2}. Then the matrix

[A2, Aj , Ak] =




0 βj βk

0 αj
2 αk

2

0 1 1
1 αj αk


 .

If s is even, αj
2 �= αk

2 whenever αj �= αk. Since the determinant of the
3×3 submatrix of the matrix [A2, Aj , Ak] given by its last three rows equals
αj

2−αk
2, the rank condition is fulfilled. Let s be odd and αj

2 = αk
2. Then

βj �= βk (one is zero and the other one is 1). Consider the 3 × 3 submatrix
of [A2, Aj , Ak] given by its first, third and fourth rows. The determinant of
this submatrix is βj − βk �= 0.

(iii) Let i = 1 and j, k ∈ {3, . . . , s + 2}. Then

[A1, Aj , Ak] =




1 0 βj βk

0 1 αj
2 αk

2

0 0 1 1
0 0 αj αk


 .

This matrix has rank 4, since the determinant of the matrix is αk − αj .
(iv) Let i = 1, j = 2 and k ∈ {3, . . . , s + 2}. Then

[A1, A2, Ak] =




1 0 0 βk

0 1 0 αk
2

0 0 0 1
0 0 1 αk


 ,

and this matrix has rank 4 since its determinant is −1.
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In each case, the rank condition of Theorem 2.1 is met and the desired array
can be constructed using Theorem 2.1. The tightness of the array follows from
(1.1).

Remark 3.1. The array OA(s4, s + 2, (s2) × ss+1, 3), where s is even, can also
be constructed from the (symmetric) OA(s3, s + 2, s, 3) (cf. Bush (1952)), using
Theorem 3.1. However, when s is odd, the array OA(s3, s+2, s, 3) does not exist.

We need the following result in the sequel.

Lemma 3.2. For each integer k ≥ 1, let D be a (2k + 1) × sk matrix whose
columns are of the form (α1

2, . . . , αk
2, α1, . . . , αk, 1)′, where (α1, . . . , αk)’s are all

possible k−tuples with elements from GF (s). Then any three columns of D are
linearly independent.

Proof. Consider a (2k + 1) × 3 submatrix of D, say

D1 =


α1

2 . . . αk
2 α1 . . . αk 1

β1
2 . . . βk

2 β1 . . . βk 1
γ1

2 . . . γk
2 γ1 . . . γk 1



′

.

First suppose that αi, βi, γi are all distinct for some i, 1 ≤ i ≤ k. Then the
3 × 3 submatrix of D1, given by 

αi
2 βi

2 γi
2

αi βi γi

1 1 1


 ,

has determinant equal to (γi − αi)(γi − βi)(αi − βi) �= 0.
Next, suppose for each i, αi, βi, γi are not distinct. Then, there exists a

j ∈ {1, . . . , k} such that αj �= βj , and either γj = αj or γj = βj . Assuming
γj = βj , there exists a u �= j such that γu �= βu. Then

 αj βj γj

αu βu γu

1 1 1


 =


 αj βj βj

αu βu γu

1 1 1


 ,

and the determinant of the second matrix above is (αj − βj)(βu − γu) �= 0.
Similarly, this determinant is nonzero if γj = αj . This completes the proof.

Theorem 3.3. If s is a power of two, then a tight orthogonal array OA(s5, s2 +
s + 2, (s2) × ss2+s+1, 3) can be constructed.

Proof. Let F1 have s2 symbols and the rest of the factors have s symbols each.
Let the matrices Ai, 1 ≤ i ≤ s2 + s + 2, corresponding to the different factors be
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chosen as

A1 =

[
1 0 0 0 0
0 1 0 0 0

]′
, A2 = [0, 0, 0, 0, 1]′ ,

A3, . . . , As+2 of the form [0, α2, 0, 1, α]′ , α ∈ GF (s), and As+3, . . . , As2+s+2 of the
form [β2, γ2, 1, β, γ]′, β, γ ∈ GF (s). We need to show that [Ai, Aj , Ak], i, j, k ∈
{1, . . . , s2 + s + 2} is of full column rank. This is done below by considering
several cases.
(a) Let i, j, k ∈ {s + 3, . . . , s2 + s + 2}. This case follows from Lemma 3.2.
(b) Let i ∈ {3, . . . , s + 2}, j, k ∈ {s + 3, . . . , s2 + s + 2}. Then

[Ai, Aj , Ak] =


 0 α2 0 1 α

β1
2 γ1

2 1 β1 γ1

β2
2 γ2

2 1 β2 γ2



′

.

If β1 �= β2, the 3 × 3 submatrix formed by the first, third and fourth rows
has a determinant equal to β1

2 − β2
2 �= 0. If β1 = β2, then γ1 �= γ2 and the

3 × 3 submatrix formed by the last three rows has determinant γ1 − γ2 �= 0.
(c) Let i = 2, j, k ∈ {s + 3, . . . , s2 + s + 2}. Then

[A2, Aj , Ak] =


 0 0 0 0 1

β1
2 γ1

2 1 β1 γ1

β2
2 γ2

2 1 β2 γ2



′

.

If β1 �= β2, the determinant of the 3 × 3 submatrix formed by the last three
rows is β2 −β1 �= 0. If β1 = β2 then γ1 �= γ2 and the determinant of the 3× 3
submatrix formed by the second, third and fifth rows equals γ1

2 − γ2
2 �= 0.

(d) Let i = 1, j, k ∈ {s + 3, . . . , s2 + s + 2}. Then

[A1, Aj , Ak] =




1 0 β1
2 β2

2

0 1 γ1
2 γ2

2

0 0 1 1
0 0 β1 β2

0 0 γ1 γ2


 ,

must have rank 4.
If β1 �= β2, the determinant of the 4 × 4 submatrix formed by the first four
rows, equals β2 −β1 �= 0. If β1 = β2 then γ1 �= γ2 and the determinant of the
4× 4 submatrix given by the first, second, third and fifth rows is γ2 − γ1 �= 0.

(e) Let i, j ∈ {3, . . . , s + 2}, k ∈ {s + 3, . . . , s2 + s + 2}. In this case,

[Ai, Aj , Ak] =


 0 α1

2 0 1 α1

0 α2
2 0 1 α2

β2 γ2 1 β γ



′
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where α1 �= α2, so the 3 × 3 submatrix formed by the last three rows has
determinant α2 − α1 �= 0.

(f) Let i = 2, j ∈ {3, . . . , s + 2}, k ∈ {s + 3, . . . , s2 + s + 2}. Here we have

[Ai, Aj , Ak] =


 0 0 0 0 1

0 α2 0 1 α

β2 γ2 1 β γ



′

.

The determinant of the 3× 3 submatrix formed by the last three rows is −1.
(g) Let i = 1, j ∈ {3, . . . , s + 2}, k ∈ {s + 3, . . . , s2 + s + 2}, so

[A1, Aj , Ak] =




1 0 0 β2

0 1 α2 γ2

0 0 0 1
0 0 1 β

0 0 α γ


 .

The determinant of the 4 × 4 submatrix formed by the first 4 rows is −1.
(h) Let i = 1, j = 2, k ∈ {s + 3, . . . , s2 + s + 2}, so

[A1, A2, Ak] =




1 0 0 β2

0 1 0 γ2

0 0 0 1
0 0 0 β

0 0 1 γ


 .

The determinant of the 4 × 4 submatrix formed by the first, second, third
and fifth rows is −1.

(i) Let i, j, k /∈ {s + 3, . . . , s2 + s + 2}. This case is similar to that considered in
Theorem 3.2.
Thus the rank condition of Theorem 2.1 holds. The tightness of the array is

a consequence of (1.1).

Theorem 3.4. If s is a power of 2 then a tight orthogonal array OA(s2k+1, sk +
2, (sk)2 × (s)s

k
, 3) can be constructed for k = 1, 2, . . ..

Proof. Let F1 and F2 have sk symbols each, and the remaining factors F3, . . .,
Fsk+2 have s symbols each. Define the following matrices corresponding to the
factors: A1 = [Ik, Okk, Ok1]′, A2 = [Okk, Ik, Ok1]′ and, for 3 ≤ j ≤ sk + 2, Aj is
of the form [α1

2, . . . , αk
2, α1, . . . , αk, 1]′, where αi’s are elements of GF (s), Ik is

the identity matrix of order k, and Omn is an m × n null matrix. We need to
show that for each choice of i, j, l ∈ {1, . . . , sk + 2}, the matrix [Ai, Aj , Al] has
full column rank. We consider several cases to achieve this.
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(a) Let i, j, l ∈ {3, . . . , sk + 2}. Then the matrix [Ai, Aj , Al] has column rank 3,
by Lemma 3.2.

(b) Let i = 2, j, l ∈ {3, . . . , sk + 2}. Here

[A2, Aj , Al] =




0 0 · · · 0 α1
2 β1

2

...
0 0 · · · 0 αk

2 βk
2

1 0 · · · 0 α1 β1
...
0 0 · · · 1 αk βk

0 0 · · · 0 1 1




,

and this matrix must have rank (k+2). Observe that there is a u ∈ {1, . . . , k}
such that αu �= βu. For this u, the (k + 2)× (k + 2) submatrix formed by the
uth row and the last (k + 1) rows has determinant (αu

2 − βu
2) �= 0.

(c) Let i = 1, j, l ∈ {3, . . . , sk + 2}, so

[A1, Aj , Al] =




1 0 · · · 0 α1
2 β1

2

...
0 0 · · · 1 αk

2 βk
2

0 0 · · · 0 α1 β1
...
0 0 · · · 0 αk βk

0 0 · · · 0 1 1




.

Let αu �= βu for some u ∈ {1, . . . , k}. Then the determinant of the (k + 2) ×
(k + 2) submatrix given by the first k rows, the (k + u)th row, and the last
row is equal to αu − βu �= 0.

(d) Let i = 1, j = 2, l ∈ {3, . . . , sk + 2}. Then

[A1, A2, Al] =




1 0 · · · 0 0 · · · 0 α1
2

...
0 0 · · · 1 0 · · · 0 αk

2

0 0 · · · 0 1 · · · 0 α1
...
0 0 · · · 0 0 · · · 1 αk

0 0 · · · 0 0 · · · 0 1




,

which is clearly a nonsingular matrix of order (2k + 1). This completes the
proof of the theorem.
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3.2. More arrays of strength three

We construct some more families of orthogonal arrays of strength three.
These arrays are in general not tight. The first result relates to the construction
of orthogonal arrays with s5 rows, where s is a power of an odd prime.

Theorem 3.5. If s is an odd prime or odd prime power, then an orthogonal
array OA(s5, s2 + 3, (s2) × ss2+2, 3) can be constructed.

Proof. Take the following matrices corresponding to the factors Fi, 1 ≤ i ≤
s2 + 3:

A1 =

[
1 0 0 0 0
0 1 0 0 0

]′
, A2 = [1, 0, 0, 0, 1]′ , A3 = [0, 1, 0, 1, 0]′ ,

and the matrices corresponding to the factors F4, . . . , Fs2+3 of the form [α2, β2, 1,
α, β]′, α, β ∈ GF (s). We show that for distinct i, j, k ∈ {1, . . . , s2+3} the matrix
[Ai, Aj , Ak] satisfies the rank condition of Theorem 2.1. As before, we consider
several cases.
(a) If i, j, k ∈ {4, . . . , s2 + 3}, the result follows from Lemma 3.2.
(b) Let i = 3, j, k ∈ {4, . . . , s2 + 3}. Then

[A3, Aj , Ak] =


 0 1 0 1 0

α1
2 β1

2 1 α1 β1

α2
2 β2

2 1 α2 β2



′

.

If β1 �= β2, then the 3 × 3 submatrix given by the last three rows of the
above matrix is clearly nonsingular. If β1 = β2, then α1 �= α2 and the 3 × 3
submatrix 

1 β1
2 β2

2

0 1 1
1 α1 α2




is seen to be nonsingular.
(c) Now let i = 2, j, k ∈ {4, . . . , s2 + 3}. Then

[A2, Aj , Ak] =


 1 0 0 0 1

α1
2 β1

2 1 α1 β1

α2
2 β2

2 1 α2 β2



′

.

If α1 �= α2, the 3 × 3 submatrix given by the last three rows of the above
matrix is nonsingular. However if α1 = α2, then β1 �= β2 and the 3 × 3
submatrix formed by the first, third and the last rows is nonsingular.
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(d) Let i = 1, j, k ∈ {4, . . . , s2 + 3}. Here

[A1, Aj , Ak] =




1 0 α1
2 α2

2

0 1 β1
2 β2

2

0 0 1 1
0 0 α1 α2

0 0 β1 β2


 ,

and this matrix must have rank 4. If α1 �= α2 then the 4× 4 submatrix given
by the first four rows is seen to be nonsingular. If α1 = α2 then β1 �= β2

and the 4 × 4 submatrix given by the first, second, third and last rows is
nonsingular.

(e) Let i = 2, j = 3, k ∈ {4, . . . , s2 + 3}. In this case

[A2, A3, Ak] =


 1 0 0 0 1

0 1 0 1 0
α2 β2 1 α β



′

,

and this matrix can be easily seen to have rank 3.
(f) Let i = 1, j = 3, k ∈ {4, . . . , s2 + 3}. We have

[A1, A3, Ak] =




1 0 0 α2

0 1 1 β2

0 0 0 1
0 0 1 α

0 0 0 β


 ,

and this matrix has rank 4.
(g) Let i = 1, j = 2, k ∈ {4, . . . , s2 + 3}. Then

[A1, A2, Ak] =




1 0 1 α2

0 1 0 β2

0 0 0 1
0 0 0 α

0 0 1 β




and has rank 4.
(h) Let i = 1, j = 2, k = 3. Then it is easy to see that the 5 × 4 matrix

[A1, A2, A3] has rank 4. This completes the proof.

Theorem 3.6. If s is an odd prime or odd prime power then an orthogonal array
OA(s2k+1, 2 + (s+1

2 )k, (sk)2 × s( s+1
2

)k
, 3) can be constructed for k = 1, 2, . . ..

Proof. Let β1, . . . , β s−1
2

be (s − 1)/2 nonzero elements of GF (s) such that

βi
2 �= βj

2 whenever βi �= βj, see the discussion following Lemma 3.1. Let us
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choose the matrices corresponding to the factors F1, . . . , F2+( s+1
2

)k , where F1, F2

have sk symbols each and the rest have s symbols each, as follows: A1 =
[Ik, Okk, Ok1]′, A2 = [Okk, Ik, Ok1]′ and, for 3 ≤ j ≤ (s+1

2 )k + 2, Aj is of the
form [α1

2, . . . , αk
2, α1, . . . , αk, 1]′ where αi ∈ {β1, . . . , β s−1

2
}. The proof that

[Ai, Aj , Al] is of full column rank for every choice of i, j, l ∈ {1, . . . , 2 + (s+1
2 )k}

follows as it did in Theorem 3.4.

The arrays constructed in Theorems 3.5 and 3.6 are not tight. However for
s = 3 we have the following.

Theorem 3.7. Tight orthogonal arrays (i) OA(35, 14, 9 × 313, 3) and
(ii) OA(35, 11, 92 × 39, 3) exist.

Proof. The array in (i) can be obtained by choosing the matrix

C =




10 0001 0012 12001
01 0010 0210 22212
00 0000 1111 11111
00 0111 0001 11222
00 1012 0120 12012


 ,

where the first two columns correspond to the first factor giving rise to a 9-symbol
column while the other thirteen columns correspond to the 3-symbol columns.

The tight orthogonal array OA(35, 11, 92×39, 3) can be constructed by choos-
ing the matrix

C =




10 00 000 111 222
01 00 012 012 012
00 10 002 012 121
00 01 010 221 021
00 00 111 111 111


 ,

where the first two columns correspond to a 9-symbol column, the next two
columns correspond to the second 9-symbol column and the rest columns corre-
spond to 3-symbol columns.

3.3. A replacement procedure

We now take up the construction of tight asymmetric orthogonal arrays of
the type OA(2s3, t+u+1, (2s)×st ×2u, 3) where s is a power of two and t, u are
integers. To that end, we first construct an array OA(2s3, s + 2, (2s) × ss+1, 3)
following the method proposed in this paper, and then replace a column with
s symbols by several 2-symbol columns. Suppose s = 2k, where k(≥ 1) is an
integer. First we construct a symmetric orthogonal array OA(s3, s + 2, s, 3).
This array can be constructed by choosing s + 2 vectors, say A1, . . . , As+2, each
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of order 3 × 1 with elements from GF (2k), such that for any choice of distinct
i, j, k ∈ {1, . . . , s + 2} the matrix [Ai, Aj , Ak] is nonsingular. Let us take these
vectors as A1 = [1, 0, 0]′, A2 = [0, 1, 0]′, A3 = [0, 0, 1]′, A4 = [1, w,w2]′, A5 =
[1, w2, w4]′, . . . , As+2 = [1, ws−1, w2(s−1)]′, where w is a primitive element of
GF (2k). It can be verified that these vectors satisfy the condition of Theo-
rem 2.1 and hence lead to an OA(s3, s + 2, s, 3). Note that for obtaining the
symmetric OA(s3, s+2, s, 3), we work with the elements of GF (2k). However, in
what follows, we find it convenient to work with elements in GF (2) rather than
those of GF (2k). To use elements in GF (2) instead of GF (2k) we need a matrix
representation of the elements of GF (2k), the entries of these matrices being the
elements of GF (2). As above, let w be a primitive element of GF (2k) and let
the minimum polynomial of GF (2k) be wk + αk−1w

k−1 + · · · + α1w + α0. The
companion matrix of the minimum polynomial is

W =




0 0 · · · 0 −α0

1 0 · · · 0 −α1

0 1 · · · 0 −α2
...
0 0 · · · 1 −αk−1




.

Recall that if w is a primitive element of GF (2k) then the set {0, w0, w1, w2, . . . ,

ws−2}, where s = 2k, contains all the elements of GF (2k) in some order. A
typical element, wi, of GF (2k) can be represented by a k × k matrix W i with
entries from GF (2), where 0 (the additive identity of GF (2k)) is represented by a
k×k null matrix and 1 (the multiplicative identity) by Ik, the kth order identity
matrix. Replacing each element in the vectors A1, . . . , As+2 by the corresponding
k× k matrix, we get matrices A1

∗, . . . , As+2
∗, each of order 3k× k with elements

from GF (2). Let the 3k×k(s+2) matrix C∗ be defined as C∗ = [A1
∗, . . . , As+2

∗].
Then it can be verified that BC∗, where B is an 23k × 3k matrix with rows as all
possible 3k-tuples over GF (2), gives an OA(23k, 2k +2, 2k, 3) ≡ OA(s3, s+2, s, 3)
after replacing the s distinct combinations under the columns of BAj

∗ by s

distinct symbols for each j, 1 ≤ j ≤ s + 2. From this array, we can get the
array OA(2s3, s + 2, (2s) × (s)s+1, 3) in the following manner. Corresponding to
the factors F1, . . . , Fs+2, where F1 has 2s symbols and the other factors have s

symbols each, define matrices D1,D2, . . . Ds+2 where

D1 =

[
1 0′

0 A1
∗

]
, Di =

[
0′

Ai
∗

]
, i = 2, . . . , s + 2,

and 0 is a null column vector of appropriate order. The array OA(2s3, s+2, (2s)×
ss+1, 3) can be obtained via Theorem 2.1 by taking the product BF , where B is a
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2s3 × (3k +1) matrix of (3k +1)-tuples over GF (2), F = [D1,D2, . . . ,Ds+2], and
replacing the 2s = 2k+1 distinct combinations under the (k + 1) columns in BD1

by the 2s distinct symbols of F1 as well as the s distinct combinations under the
columns in BDj by s distinct symbols of the factor Fj for each j, 2 ≤ j ≤ s + 2.

In order to get an array of the type OA(2s3, t + u + 1, (2s) × st × 2u, 3), we
replace a column with s = 2k symbols by 2k−1 columns, each having two symbols.
The idea of replacement of the symbols in a 2ν -symbol column of an orthogonal
array of strength two by the rows of an orthogonal array OA(2ν , n, 2, 2), without
disturbing the orthogonality of the array, is originally due to Addelman (1962).
However, it appears that no general technique of replacement of a 2ν -symbol
column by several 2-symbol columns in an orthogonal array of strength three
or more is available. Here we propose one such replacement procedure in the
context of the arrays OA(2s3, s + 2, (2s) × ss+1, 3), where s is a power of two,
constructed above. Our procedure is as follows.

Consider the matrix Di defined above for some i ∈ {2, . . . , s + 2}. Let B′

be a matrix of order k × (2k − 1) whose columns are all possible k-tuples over
GF (2), excluding the null column. Let Ei = DiB

′ and Gi be a matrix obtained
from Ei by replacing its first row of all zeros by a row of all ones. It can be seen
that the factor Fi with s symbols, represented by the matrix Di can be replaced
by 2k − 1 = s − 1 factors, each having 2 symbols, represented by the matrix
Gi, without disturbing the rank condition of Theorem 2.1. This replacement can
be done for each Fi, 2 ≤ i ≤ s + 2. The array OA(2s3, s2 − (s − 2)t, (2s) ×
st × 2(s+1−t)(s−1), 3), 0 ≤ t ≤ s + 1, can now be obtained via Theorem 2.1 by
choosing the matrix C defined there as C = [D1,D2, . . . ,Dt+1, Gt+2, . . . , Gs+2],
where Gi = [gi1, . . . ,gi,s−1] and gij is the column corresponding to the 2-symbol
factor Ft+1+(i−t−2)(s−1)+j , t + 2 ≤ i ≤ s + 2, 1 ≤ j ≤ s − 1. Summarizing, we
have the following result.

Theorem 3.8. If s is a power of two then a tight array OA(2s3, s2 − (s −
2)t, (2s) × st × 2(s+1−t)(s−1), 3) can be constructed for 0 ≤ t ≤ s + 1.

Example 3.1. Let k = 2 so that s = 4 in Theorem 3.8. We start with the
construction of a symmetric OA(43, 6, 4, 3) using the following matrices corre-
sponding to factors: A1 = [1, 0, 0]′, A2 = [0, 1, 0]′, A3 = [0, 0, 1]′, A4 = [1, w,w2]′,
A5 = [1, w2, w]′, A6 = [1, 1, 1]′, where w is a primitive element of GF (22), and a
minimum polynomial of GF (22) is taken as w2 + w + 1. The companion matrix
is

W =

[
0 1
1 1

]
,
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and the elements of GF (22) can be represented by the 2 × 2 matrices

0 ≡
[
0 0
0 0

]
, 1 ≡

[
1 0
0 1

]
, w ≡

[
0 1
1 1

]
, w2 ≡

[
1 1
1 0

]
.

Replacing the elements of GF (22) in A1, . . . , A6 by the above matrices, we arrive
at matrices Ai

∗ (1 ≤ i ≤ 6) with elements over GF (2) as

A1
∗=

[
1 0 0 0 0 0
0 1 0 0 0 0

]′
, A2

∗=

[
0 0 1 0 0 0
0 0 0 1 0 0

]′
, A3

∗=

[
0 0 0 0 1 0
0 0 0 0 0 1

]′
,

A4
∗=

[
1 0 0 1 1 1
0 1 1 1 1 0

]′
, A5

∗=

[
1 0 1 1 0 1
0 1 1 0 1 1

]′
, A6

∗=

[
1 0 1 0 1 0
0 1 0 1 0 1

]′
.

From the matrices Ai
∗ (1 ≤ i ≤ 6), we get the matrices Di, 1 ≤ i ≤ 6, where

D1 =


1 0 0 0 0 0 0

0 1 0 0 0 0 0
0 0 1 0 0 0 0



′

and the matrices Dj are obtained by augmenting each Aj
∗ by a single null row

for 2 ≤ j ≤ 6. Using the matrices Di (1 ≤ i ≤ 6), we get the array OA(128, 6, 8×
45, 3) via Theorem 2.1. In order to get an OA(128, 16−2t, 8×4t ×215−3t, 3), 0 ≤
t ≤ 5, we replace 5 − t, (0 ≤ t ≤ 5) of the 4-symbol columns in the array
OA(128, 6, 8×45 , 3) by 15−3t columns, each having 2-symbols. The replacement
can be affected in the matrices D2, . . . ,D6 without actually constructing the full
array OA(128, 6, 8 × 45, 3). As described above, this replacement procedure for
the first 4-symbol column say, represented by D2, can be exhibited as

D2 =

00 → 111
00 → 000
00 → 000
10 → 101
01 → 011
00 → 000
00 → 000

= G2.

The final array can now be constructed via Theorem 2.1, using the matrix C

defined there as C = [D1, D2, . . . , Dt+1, Gt+2, . . . , G6], where the matrices Gi

have three columns each, representing three 2-symbol factors.

Remark 3.2. The OA(128, 16 − 2t, 8 × 4t × 215−3t, 3) can also be constructed
via Theorem 3.1 provided an OA(64, 16 − 2t, 4t+1 × 215−3t, 3) exists. However,
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the existence of the latter array is known only for t = 0, 1, 5. Hence the arrays
in Example 3.1 appear to be new for t = 2, 3, 4.

4. Arrays of Strength Four

In this section we present methods of construction of certain asymmetric
orthogonal arrays of strength four. We begin with the following result.

Theorem 4.1.
(i) If s is a prime or prime power, then the array OA(s5, s + 2, (s2) × ss+1, 4)

can be constructed.
(ii) In an OA(s5,m + 1, (s2) × sm, 4), with s odd, we have m ≤ s + 1, and the

arrays in (i) attain this upper bound for odd s.

Proof.
(i) Let the factors of the array be F1, . . . , Fs+2, where the first factor cor-

responds to the s2-symbol column and the rest correspond to s-symbol
columns. Define the following matrices corresponding to the factors:

A1 =

[
1 0 0 0 0
0 1 0 0 0

]′
, A2 = [0, 0, 0, 0, 1]′ ,

and Ai = [αi
2, αi

3, 1, αi, αi
2]′, i = 3, . . . , s + 2, where α3, . . . , αs+2 are dis-

tinct elements of GF (s). We need to show that for 1 ≤ i < j < k < l ≤ s+2,
the matrix [Ai, Aj , Ak, Al] has full column rank. To that end, we consider
several cases.
(a) Let i = 1, j = 2, 3 ≤ k < l ≤ s + 2. Then

[A1, A2, Ak, Al] =




1 0 0 αk
2 αl

2

0 1 0 αk
3 αl

3

0 0 0 1 1
0 0 0 αk αl

0 0 1 αk
2 αl

2


 .

It is easy to see that this matrix is nonsingular.
(b) Let i = 1, 3 ≤ j < k < l ≤ s + 2. In this case, we have

[A1, Aj , Ak, Al] =




1 0 αj
2 αk

2 αl
2

0 1 αj
3 αk

3 αl
3

0 0 1 1 1
0 0 αj αk αl

0 0 αj
2 αk

2 αl
2


 .

The determinant of this matrix is (αl − αj)(αl − αk)(αk − αj).
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(c) Let i = 2, 3 ≤ j < k < l ≤ s + 2. Here

[A2, Aj , Ak, Al] =




0 αj
2 αk

2 αl
2

0 αj
3 αk

3 αl
3

0 1 1 1
0 αj αk αl

1 αj
2 αk

2 αl
2


 .

The determinant of the 4×4 submatrix given by the first, third, fourth and
fifth rows is −(αl − αj)(αl − αk)(αk − αj).
(d) Let 3 ≤ i < j < k < l ≤ s + 2. Then

[Ai, Aj , Ak, Al] =




αi
2 αj

2 αk
2 αl

2

αi
3 αj

3 αk
3 αl

3

1 1 1 1
αi αj αk αl

αi
2 αj

2 αk
2 αl

2


 .

The 4 × 4 submatrix given by the second, third, fourth and fifth rows is
nonsingular. Part (i) of the theorem is thus proved.

(ii) If possible let the number of s-symbol columns, m, in an OA(s5,m+1, (s2)×
sm, 4) be greater than s + 1. The existence of such an array will imply
that of an OA(s3,m, s, 3) obtained by permuting the rows of the array
OA(s5,m + 1, (s2) × sm, 4) according to the symbols of the first column,
having s2 symbols and then deleting this column. But, by a result of Bush
(1952), in an OA(s3,m, s, 3), m ≤ s+1 if s is odd and m ≤ s+2 if s is even.
This proves part (ii) of the theorem. Note that in an OA(s5,m + n, (s2)n ×
sm, 4), n cannot exceed unity.

Remark 4.1. When s is a power of two, we have not been able to get a general
method of construction of an OA(s5, s+3, (s2)×ss+2, 4), which has the maximum
number of s-symbol columns. However, the array OA(32, 5, 4 × 24, 4) exists (cf.
Addelman (1972)). It can be constructed following the method proposed in this
paper by choosing

C =




1 0 0 0 0 1
0 1 0 0 0 1
0 0 1 0 0 1
0 0 0 1 0 1
0 0 0 0 1 1


 ,

where the first two columns correspond to the 4-symbol column and the rest
correspond to the 2-symbol columns.
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Another array OA(45, 7, 16 ×46, 4) with maximum number of 4-symbol colu-
mns exists and can be constructed by choosing

C =




1 0 0 0 0 1 0 1
0 1 0 0 0 0 1 w

0 0 1 0 0 1 1 1
0 0 0 1 0 1 w w2

0 0 0 0 1 1 w2 w


 ,

where 0, 1, w,w2 are the elements of GF (22) with w2 = w + 1, and the first
two columns in C correspond to the 16-symbol column, the rest correspond to
4-symbol columns. Note that in this case, the matrix B defined in Section 2 is
a 45 × 5 matrix with rows as 5-tuples over GF (22). It is not hard to see that in
an array OA(45,m + 1, 16 × 4m, 4), the maximum number of 4-symbol columns
is six, attained by the array constructed above.

The following result can be proved on the lines of that of Theorem 4.1.

Theorem 4.2.
(i) If s is a prime or a prime power, then an OA(s6, s + 3, (s2)2 × ss+1, 4) can

be constructed.
(ii) In an OA(s6,m + 2, (s2)2 × sm, 4), we have m ≤ s + 1 and this upper bound

is attained by the arrays in (i) above.

Proof.
(i) Choose the following matrices, corresponding to the factors of the array:

A1 =

[
1 0 0 0 0 0
0 1 0 0 0 0

]′
, A2 =

[
0 0 1 0 0 0
0 0 0 1 0 0

]′
, A3 = [0, 0, 0, 0, 0, 1]′ ,

and Ai = [αi, αi
2, αi

2, αi
3, 1, αi]′, for 4 ≤ i ≤ s + 3, where α4, . . . , αs+3

are distinct elements of GF (s). The rest of the proof follows on lines of
Theorem 4.1.

(ii) Consider the subarray obtained by arranging the rows of an OA(s6,m +
2, (s2)2 × sm, 4) for any fixed combination of the symbols of the two s2-
symbol columns. Then this subarray is clearly an OA(s2,m, s, 2). But in
such an array, m ≤ s + 1 and thus our claim is established.

Finally, we have the following result.

Theorem 4.3. If s is a prime or a prime power then the following orthogonal
arrays can be constructed:

(i) OA(s6, s + 2, (s3) × ss+1, 4) if s is odd.
(ii) OA(s6, s + 3, (s3) × ss+2, 4) if s is even.
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Proof. Let s be odd. Consider the matrices corresponding to the factors of the
required array:

A1 =


1 0 0 0 0 0

0 1 0 0 0 0
0 0 1 0 0 0



′

, A2 = [0, 0, 0, 0, 0, 1]′ ,

and Ai = [αi, αi
2, αi

3, 1, αi, αi
2]′, for 3 ≤ i ≤ s + 2, where α3, . . . , αs+2 are

distinct elements of GF (s).
When s is even, another factor given by As+3 = [0, 0, 0, 0, 1, 0]′ can be added

to those above. The rest of the proof can be done as in Theorem 4.1. Note that
the number of s-symbol columns in an OA(s6,m + 1, (s3)× sm, 4) cannot exceed
s + 1 if s is odd and s + 2 if s is even. These upper bounds on m are attained by
the arrays constructed in this theorem.
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