CORRELATION IN A FORMAL BAYES FRAMEWORK
by

Anirban DasGupta* George Casella*
Purdue University Cornell University

Mohan Delampady Herman Rubin* William E. Strawderman™
Purdue University and Purdue University Rutgers University
Indian Statistical Institute

Technical Report #98-04

Department of Statistics

Purdue University
West Lafayette, IN USA

April 1999
Revised January 2000

* Research of these authors was supported by the National Science Foundation and
the National Security Agency.



The Canadian Journal of Statistics

La revue canadienne de statistique

Correlation in a formal Bayes
framework

Anirban DASGUPTA, George CASELLA, Mohan DELAMPADY,
Christian GENEST, Herman RUBIN and William E. STRAWDERMAN

Key words and phrases: Bayes; Bayes risk; BLUE; Correlation; MLE; Posterior
probability; Prior; P value; Robust estimation; Unbiased estimate.
AMS 1991 subject classifications: Primary 62A15, secondary 62C05.

ABSTRACT

The authors study the marginal correlation between a parametric function and an estimate
or, more generally, the marginal correlation between two functions of both the parameter
and the data. They give closed form expressions for these marginal correlations and
use them to derive various connections to other notions of inference such as maximum
likelihood, admissibility, and unbiasedness. They also obtain a general nonparametric
upper bound on Bayes risks. Their results are illustrated with examples.

RESUME

Les auteurs étudient la corrélation marginale entre une fonction paramétrique et une esti-
mation ou, plus généralement, la corrélation marginale entre deux fonctions dépendant a
la fois d’un parametre et des observations. Ils montrent comment calculer ces corrélations
et relient ce concept & d’autres notions d’inférence telles que ’estimation 3 vraisemblance
maximale, 'admissibilité et ’absence de biais. Ils proposent également un majorant non
paramétrique pour le risque bayésien. Leurs résultats sont illustrés par des exemples.

1. INTRODUCTION

The popularity of the Pearson correlation coefficient in statistical methodology
is well documented. From regression to principal components or observational
studies, it is frequently the measure of choice to assess the strength of association.
In this article, we present the Pearson correlation coefficient as a binding theme
to connect together various approaches to statistical inference in interesting ways.
However, that is not all we do. We also show that even innocuous properties of
the Pearson correlation coefficient lead to useful and substantial developments in
mathematical statistics, particularly Bayesian statistics.

Formally, we begin with an observable X distributed as f(z|) and the pa-
rameter # distributed according to a prior 7. There is then a joint probability
“distribution which we call P. All the developments in the article follow from con-
sideration of the Pearson correlation coefficient between two functions g(X,8) and



h(X,8) under the probability distribution P. They do not necessarily have to be
functions of both X and 8; it is interesting, e.g., to talk about the correlation
between g(X,0) = 6, and h({X,8) = 6(X), a natural estimate of §. One can also
consider the correlation between two natural estimates of 8, or some general para-
metric function of 8. As we shall see, there will be cases of interest in which f, g
are indeed each functions of both X and 8 also.

In Section 2, we give a general formula for the correlation between a parameter
# and an estimate (X ); no particular probabilistic setup is assumed. This formula
simplifies neatly for unbiased and Bayes estimates. We then show that a number of
implications result from these formulas for Bayes and unbiased estimates, including
a noteworthy property of Dirichlet process priors for a CDF on the real line.

In Section 3, we show various connections of the Pearson correlation coefficient
to popular notions in statistical inference, such as maximum likelihood estimation,
unbiasedness and robust estimation.

In Section 4, we move onto correlation between two functions of X. Examples
are when one of them is an unbiased estimate, and the other a Bayes estimate, or the
MLE, etc. Using certain results derived here, we obtain a general nonparametric
upper bound on Bayes risk for any decision problem with squared error loss. We
then relate this to the lower bound of Brown & Gajek (1990) (cf. also Sato &
Akahira 1996) lower bound on Bayes risk; it turns out the two bounds coincide in
the normal-normal case. Further, we check the sharpness of our upper bound in
a test case that was also investigated by Brown and Gajek: the estimation of a
bounded normal mean by using the Bickel-Levit prior.

Two additional examples close Section 4. One example illustrates the relation
between P-values and posterior probabilities and the other explores the connection
between the sample mean and the BLUE of the stationary mean of Gaussian time
series. Some final brief remarks on the practical uses of our approach are made in
Section 5. All proofs are given in an appendix.

The following general notation is used in the sequel: 7 denotes a prior for the
parameter @, m is the marginal of X, Ey refers to the conditional expectation
given 6, cov, stands for the covariance under 7 of two functions of 8, p, represents
the correlation, and p, denotes the correlation between two functions of X and 6.
Similar interpretations apply to variances via the notation var, and varp. Also, as
usual, r(7, §) means the Bayes risk of the estimate 6(X), and r(w) the Bayes risk
of the Bayes estimate 4, (X).

2. CORRELATION BETWEEN A PARAMETER AND AN ESTIMATE

Our first proposition gives a general correlation formula between a parameter and
an estimate in a general probability space La(X ® ©, P). The formula, which sim-
plifies considerably when applied to unbiased estimates and to the Bayes estimate
corresponding to the prior induced by P, is illustrated in two special cases.

PROPOSITION 1. Let 6(X) be any estimate of 8. Then the correlation between 6
and & equals

V(m) + cov.{0,b(8)}

6,0) = 1
pr(6:0) VV(m)[r(r,8) + var {0 + b(0)} — E{b2(6)}] @)
where V(m) = var,(9), and b() = Ex|{0(X)} — 0. In particular,

pr(0,8) = 1| ) @)



when 6(X) is an unbiased estimate of 6. For the Bayes estimate §,(X), one finds

pp(evé‘ﬁ): 1- V(T(‘) (3)

ExaMPLE 1 (Estimation of a normal mean). Let X;,...,X, be iid N(6,1) with
sufficient statistic X ~ N(6,1/n), and let # have a prior 7 in the (very large) class

C=A{m: E.(0)=0, V(r) =1}

Using (3) and Brown’s identity on Bayes risks (Brown 1971, 1985), one finds

1= h(6.5:) = % =r(m) = = 5 1(m), (@

where m(z) = [ \/n/2re~==9)*/2dr(6) and I() denotes the Fisher information
functional.
Since the variance of the marginal distribution of X equals 1+ 1/n for any «
in C, one has
n

inf T = —

wIm) =5 (5)
as normal distributions have the Fisher information minimization property when
the variance is fixed; c¢f. Huber (1981). From (4) and (5), therefore,

1 1 1 n
— p2 = - - = i =
i‘é‘é{l Pp(6,0r)} n nn+l) n+1l = ;Iéié Pz (6,0x) Von+1

On the other hand, as the operator I(-) is convex (again, see Huber 1981), one
has

I(m) < / I{N(8,1/n)}dn(6) = n.

But, if one considers an element of C of the form pl(—e¢) + pl{c) + (1 — 2p)1(0),
where ¢ = 1/+/2p and 1(-) denotes point mass, then for the corresponding marginal
myp, I(mp) = n when p — 0. Together, these imply

1 1 1 o)
inf {1 — p5(0,6:)) = = — —supI(m) = — — = =
71I'Ielf(;{1 Pp(0,0x)} n n? i‘é‘c’ (m) n n2 0,

whence sup p,. (0, 6,) = 1.
TEeC

These facts together show that p,(6,6,) converges to 1 as n — oo uniformly
over w in C. This is interesting, considering that C is a very large class of priors.
This uniform convergence would not necessarily hold true for other classes C.

EXAMPLE 2. (A property of the Dirichlet process). Consider the problem of
estimating a distribution function F' nonparametrically, given a random sample
Xi,..., Xy from F. Let 7 denote the Dirichlet process prior on F' with parameter
@, a finite measure on IR. Let F,, be the empirical distribution function. Then it
is easily seen that, for any fixed z,

Ep{Fy(2)F(z)} = Ep|F(2) Er{Fa(2)|F(2)}] = E+ {F*(z)}



whence covp{F,(z), F(z)} = var,{F(z)} and
varp{Fn(z)} Er[var{Fy.(z)|F(2)}] + varz [E{Fn(2)|F()}]

%EW[F(x){l — F(2)}] + vars {F(z)}. (6)

Also, it is well known (cf. Ferguson 1974) that under =, F(z) is distributed as
Beta(a, #) with a = a(—o0,z] and B = a(lR) — a(—oc, z] for any z. Accordingly,

var, {F(z)}
\/var{F(2)}vars {F(2)} + LE[F(2){1 - F(z)}]

1 E[F(z){1 - F(@)}]]™"
[1 + n var, {F(z)} }

pe{fn(a), F(2)} =

—1/2
[1+ a0, + ol - a-o0,21)
= {1+a(®)/n}™?,

which is totally free of z. This property is possibly characteristic of the Dirichlet
process. Note also the convergence to 1 of the above as n — oo for any base
measure a.

3. VARIOUS CONNECTIONS

Our second result highlights some of the connections which the correlation formulas
of Section 2 allow to make to other established methods and concepts of statistics.
In the process, we also mention a very positive but somewhat obscure property
of maximum likelihood estimates (MLE). As an application, we investigate the
correlation between robust estimators and the parameter they estimate.

PROPOSITION 2. Under the joint distribution of X and 6,

a) If the likelihood function is unimodal for every z, then the MLE 6 has the
property that p,(0,8) > 0 under any prior «.

b) The correlation between 6 and any unbiased estimate is always nonnegative
and strictly positive unless the prior is degenerate.

c) If @ has a UMVUE 6y, then p.(8,0u) > pp(8,8) for any other unbiased
estimate 6 and the inequality is strict if 8y is the unique UMVUE and if w
gives support to the entire parameter space.

d) p.(6,8:) is also always nonnegative.
e) If the Bayes estimate of 0 is not a constant, then p,(6,6,) > 0.

f) Let & be a more informative experiment than &1 in the Blackwell sense; then
under any prior T, po ¢,(0,0z) > pp.e,(6,0z), i.e., the parameter is more
correlated with a Bayes estimate under a more informative experiment.

g) Let X have a distribution with a density or pmf f(z|0) which has mono-
tone likelihood ratio in X. If 6(X) is any admissible estimate of 0, then
pe{8, 6(X)} > 0.



h) In a location parameter model, i.e., if X ~ F(x —0) and @ ~ 7, and F, ©
belong respectively to specified classes Cy,Ca, the criterion of mazimizing the
minimum correlation infrec, rec, pr (0,0) over all estimates & which are
unbiased under each F in C is equivalent to the common minimaz criterion
of minimizing sup¢, varg(d).

The proof of this result is given in the appendix. As is seen there, part ¢) is a
consequence of the following little-known property of MLE’s, which we state here
for the record.

PROPOSITION 3. Let X|0 have a density f(z|0) with respect to some dominating
measure p. Suppose the Cramér-Rao regularity conditions hold and the likelihood
function is unimodal for every . Then the MLE 0 = 0(X) has a distribution that

is stochastically increasing in the parameter 8. In particular, E¢(6) is increasing
in 6, if it exists.

ExAMPLE 3. A vast literature has now accumulated on robust estimation of a
location parameter; cf., e.g., Staudte & Sheather (1990). The common criterion is
the maximum variance of the asymptotic distribution of a candidate estimate 4.
Here, we examine robustness from the point of view of correlation, using pp(8,9).

To this end, let us consider the sample mean X and select three robust estima-
tors, namely, the median, the 12.5% trimmed mean, and the Huber M estimate
with score function ¢ (z) = || if || < k and k if |z| > k. For the latter, we
use k = 1.399, which corresponds to the asymptotic minimax estimate for 5%
contamination.

For sampling models, we take ¢ distributions with m > 0 degrees of freedom,
and as priors, we use ¢ distributions as well, with degrees of freedom a > 2. Note
that these choices allow a very broad choice of tails in both the sampling model
and the prior. Another point: if m < 2, the sample mean X does not have a finite
variance, but this will just mean that p, (8, X) is zero if m < 2 and this fact will
be included in the comparative evaluation of X. We will not refer to this issue in
the following again.

If § is any of the four estimates, and if Vp(8) denotes its variance at the sampling
model F, then

V()
V(r) + Vr(6)’
but in three of the four cases, an exact expression simply does not exist. We thus

make the natural approximation Vg (8) =~ 0%(6)/n, where 0%(6) comes from known
central limit theorems for each of these four estimates, viz.

Pp (0: 6) = (7)

Va{8(X) - 8} <+ N(0,0%(9)).

Equation (7) is then replaced by

pla,m,n) =

where o?(m, ) means 0% (8) evaluated at the sampling model F' = ¢ with m de-
grees of freedom. Fortunately, expressions for 0%(m,§) are available from general



formulas available in Chapter 5 of Lehmann (1983):

o*(m,X) =

1
form > 2, o?(m,median) = = T—Z—B2 (m 1)

m — —
m—2 42 (0) 22

32 F71(.875)
o2(m, trimmed mean) = n / 2% fru(z)dz + 125{F1(.875)}?],
0

and

2| fy " 2 fm(@)da + 1.957{1 — Fin(1.399)}]
{2F(1.399) — 1}2

o?(m, Huber estimate) =

In the above, B(:,-) denotes the Beta function, f,, stands for the density of a
t distribution with m degrees of freedom, F,, for its cdf, and F,;! for its quantile
function.

TABLE 1: Average value of p(a,m,n) when n = 20, a ranges from 2 to 20, and m
ranges over three separate intervals.

Estimator (0,3] [1,60] [60,120]
Mean .307 .956 980
Median 915 .969 .969
Trimmed mean 797 977 979
Huber estimate  .881 978 979

Table 1 reports the value of p(a,m,n) when n = 20, a ranges from 2 to 20,
and m ranges over three separate intervals, viz. 0 < m < 3 (extremely flat),
1 £ m < 60 (mixed tails of great variety), and 60 < m < 120 (thin tails). On
the basis of criterion (8), the median appears to be a good choice when the tail is
believed to be extremely flat, while for mixed tails, the Huber estimate is a more
balanced choice. For thin tails, there isn’t much discrepancy, and this is actually a
bit of a surprise.

4. CORRELATION BETWEEN TWO ESTIMATES

We now investigate the correlation between estimates obtained from different para-
digms of inference. Our first result gives conditions under which Bayes estimates
are positively correlated with maximum likelihood estimates.

PROPOSITION 4. If the likelihood function £(0|z) is unimodal for every z, then the

mazimum likelihood estimate 0 has the property that p, (6,”9) > 0 under any prior
.

Next, we examine the correlation between Bayes and unbiased estimates.

PROPOSITION 5. For any unbiased estimate é of 0,

_ v(m) |
VAV = 10 HV () + Brvars (30X

Pp(0,0r)




This guantity is non-negative under any prior © and for any unbiased estimate,
and it is strictly positive if m is nondegenerate. Furthermore, p.(8,8,) is the largest
when 6(X) is the UMVUE, if one exists.

As shown in the appendix, the above expression for p, (4, 4d,) leads to the fol-
lowing general upper bound on Bayes risks.

PROPOSITION 6. For any prior w, r(x) admits the upper bound

V(n) - Epvarg{6(X)}
V(r) + Exvare{6(X)}’

r(m) <

where §(X) can be any unbiased estimate of 8.

Suppose, in particular, that f(z|8) is a member of the one-parameter exponen-
tial family with @ as the expectation parameter. If the unbiased estimate §(X) in
Proposition 6 is chosen to be the UMVUE, then varg{§(X)} = 1/1(9) and hence
in this case, one has the following special upper bound.

COROLLARY 1. If f(z|0) is in the one-parameter exponential family with 6 as the
expectation parameter, then for any prior =,

CV ()
r(m) < AV’

where C = E.{I~'()}.

It is instructive to compare the latter upper bound with the lower bound of
Brown & Gajek (1990), who showed r(7) > C2?/(C + D), where

[ @) IO
= e

for priors with a density. Our upper bound does not need a prior density.

EXAMPLE 4 Consider the problem of estimating a bounded normal mean by using
the prior density m(8) = L~!cos?{6x/(2L)}), |6] < L; cf. Bickel (1981), Levit
(1980), and Borovkov & Sakhanienko (1980). In this case, C is exactly 1 and
V(r) = L*(1/3 — 2/7?), so that the upper bound of Corollary 1 is then given by

Vir) L?
1+V(r) L2+ 3=

9)

This is compared in Table 2 with the Borovkov-Sakhanienko (B-S) lower bound
L?/(L? + 7?) and the stronger bound (B-G) of Brown & Gajek (1990). It is clear
that () is close to bound (9) in this test case.



TABLE 2: Efficacy of Bound (9)

L B-S B-G Exact Bound

bound bound  r(w) 9)

b .0247  .0314 .0316 .0316
1 .0920 1135 1156 .1156

2 2884 3305  .3427 .3433

3 4770 5177 5375 .5405

) 7170 7399 7578 7657

10 .9102 9150 9214 .9289
20 9759  .9765 .9779 9812

4.1. Correlation in the One-Sided Testing Problem.

The typical frequentist assessment of a null hypothesis is the P-value and the typical
Bayesian assessment is the posterior probability P(Hp|X). A substantial literature
on the reconcilability of these two answers grew in the 1980s; cf., e.g., Berger &
Sellke (1987), Casella & Berger (1987), and Oh & DasGupta (1999). Casella &
Berger (1987) show that for the one-sided testing problem for a univariate N (4, 0?)
mean, the frequentist and the robust Bayesian answers often coincide. For example,
for testing Hyp: 6 < 0 vs Hy:6 > 0 when 8 is a normal mean, the P-value and the
minimum value of P(Hy|data) over all N(0,72) priors are equal. Here, we show
that under any N (0, 72) prior, and for any 02, the marginal correlation between the
P-value and P(Hy|X) is larger than /3/7 (= .977205), a surprisingly uniformly
high correlation.

For testing Hp:0 < 0 versus Hi:0 > 0 using X ~ N(6,0?), consider the
marginal correlation between the P-value p(X) and the posterior probability of the
null hypothesis P, (Hp|X). Then p(X) = 1— ®(X /o) is a decreasing function of X,
and P(Hy|X) is also a decreasing function of X. Therefore, p, {p(X), P(Ho|X)} >
0 for any prior . Now consider, in particular, the class of all normal priors with
mean 0 and variance 72. Then 6| X is normal with mean 72X /(0% +72) and variance
o272 /(02 +72%), the marginal distribution of X is normal with mean 0 and variance
0%+ 712, and

P(H0|X)=1—q>< X “’2”2) :1_¢<UL).

o?2+712  oT VoZ + 72
Therefore,

covp {p(X), Pr(Ho|X)}

{0 () (i)}
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Now notice that given independent copies Z*, Z** of Z and arbitrary constants
a and b, one has E{®(aZ)} = P(Z* < aZ) = P(Z* —aZ <0) =1/2 and

E{®(aZ)®(bZ)}

Il

P(Z* —aZ <0,2* —bZ < 0)

E + L sin~! ab
4 27 (1+a®)(1 +b?) ’
by a well known formula for bivariate normal distributions (cf. Anderson 1984,

pp. 51-52).
Using these facts, one may then see that

covp{p(X), P(Hp|X)} = % sin~™? (\/ﬁ)

and

varp{p(X)} = él?sin_l (

0% + 12
T2 4 202

). elptx0) = 5 s ()

72 + g2
Letting v = 72 /(7% + 02), one can then conclude that

1 —1 v
sm ( 2_0)

pe{p(X), Pr(Ho|X)} = = f(v) (say.)
\/sin—l(v) sin~! (zl—v)

Since 0<inf<1 f(v) = f(0) = y/3/m, the argument is complete.

4.2. Effect of Dependence.

Although independence of sample data is a common assumption in statistical anal-
ysis, many popular procedures get adversely affected by dependence among the
observations. There are some exceptions; for instance, after the classic work of
Grenander & Rosenblatt (1957), the sample mean X remains the standard esti-
mate for the mean of a stationary time series although the BLUE is theoretically
better. In fact, recent research has shown that X is a fine estimate for the stationary
mean even under long range dependence; cf. Beran (1994) and Zang & DasGupta
(1998). Below we present the marginal correlation between X and BLUE for the
general stationary Gaussian case first. The general expression leads to some gen-
eral bounds. We will then complete the example with the AR(1) case as a specific
illustration.

Suppose then n > 1, and let X3,...,X, be jointly normal with a common
mean p and covariance matrix . The marginal variances of X and the BLUE are
V(r) + 1'81/n? and V(7) + 1/1'S~11. For their marginal covariance, note that

E.E,(X - BLUE) = E,{cov,(X,BLUE) + p?}
E.{var,(BLUE) + p?} = E.(4?) + 1/1'5711,

Ep(X - BLUE)

= I

where the relation = is justified by Basu’s theorem (Basu 1955), given that the
BLUE is complete and sufficient. Hence, covp(X,BLUE) = V(r) + 1/1'S71,
giving

pp(X,BLUE) = \/ s (10)




This identity leads to a universal lower bound on pp(X,BLUE), free of the
choice of the prior 7. From the Kantorovich inequality (cf., e.g., Rao 1973, p. 74),
it easily follows that 1/1'S711 > (41'S1)M A /{n? (A1 + An)?}, where A;, ), are
the two extreme eigenvalues of 2. Hence, from (10),

AN An A, T
op(X.BLUE) > | L0 i 1BL . | Gubey wf _, [ ik
’ T\ Vm+iE o e T o A+ A

a simple global bound valid for any prior 7. The broad moral of this inequality is
that X and the BLUE are marginally well correlated unless the dependence is too
strong.

Special correlation structures are of practical interest. Here we investigate the
AR(1) case with the autocovariance function o4; = pl“=91/(1 — p?). Fortunately,
7! is then computable in closed form: it is tridiagonal, having the two extreme
elements equal to 1 in the main diagonal, the remaining elements of the main
diagonal being 1 + p?, and the elements in the diagonals immediately adjacent
to the main diagonal being —p. Now, several lines of algebra yield 1'S7!1 =
n—2p(n — 1) + p?(n — 2) and

n —2p —np? + 2p"*!
(I-pP(1+p)

Substitution into (10) shows that for the AR(1) case,

131 =

V(™) + s

—20— 2+2 T +1
Vm) + gt

n(1-p)¥yT+p
VAin=2p(n = 1) + p2(n - 2)H{n — 2p — np? + 2p"+1}’

pp(X,BLUE)

v

for any prior 7.

Figure 1 plots this universal lower bound as a function of the autoregression
parameter p for n = 20; the interesting thing is that uniformly in p, the lower
bound is itself very high, about .95 from the plot. It reinforces conventional faith
in X for this problem.

rho

o.99 |

o.9e [

o.97 |

o.s6 |

FIGURE 1. Lower Bound on pp(X,BLUE) under AR(1)
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5. SUMMARY AND PRACTICAL DEVELOPMENTS

We have presented the Pearson correlation coefficient in a formal Bayesian frame-
work as a theoretically useful theme to provide new insight and interpretations for
established methods of statistics. Our general approach also has certain potentials
for practical uses and development of actual new methodology. In Delampady et
al. (1999), some of these ideas are developed to write proper default priors and to
choose specific Bayes rules from a collection of Bayes rules.

Additional practical developments that may result from our approach include
parallel theories of optimal design, choice of bandwidth in density estimation in
finite samples, and choice of default models in various model selection problems.
The attraction of our approach is that correlation is an omnibus measure of associ-
ation, and calibrated. Whenever our approach leads to an identifiable answer, we
can avoid use of a subjective criterion such as a technically convenient loss function.

APPENDIX

Proof of Proposition 1. We can assume without loss of generality that E.(8) = 0.
The covariance of 8 and 6 is then

covp(0,8) = Ex{0 - Ex1p6(X)} = E-{6% + 6b(0)} = V(r) + cov.{8,b(8)},
while the marginal variance of ¢ is

varp{6(X)} = Ep{vargd(X)}+ var;[Es{6(X)}]
E[E{6(X) — 0}> — b?(0)] + var {6 + b(8)}
= r(m,8) + var {8 + b(8)} — E-{bv*(8)},

which proves (1). The latter immediately reduces to (2) when b(6) = 0.
Next, let b,(0) denote Eg{d,(X) — 6}, the bias of §,(X). From DasGupta
(1994), one then has

r(r) =r(m,6z) = Ep{é.(X)—06}?

Ep[{6:(X) — 0}6:(X)] — Ep[{6x(X) — 0}4]
Ep(62(X)Eg x {0x(X) — 6}] — Ex[0Es{0:(X) — 6}]
—E{6b:(8)} = —cov.{6,b,(6)},

since E;{b-(f)} = 0. In this case, the numerator of (1) thus reduces to V(7)) —
r(7) = varp{6,(X)}. Furthermore, one has

var, {0 + b, (0)} = V() + 2E.{0b.(0)} + E-{b2(8)},

from which the denominator of (1) also reduces to /V (7){V (r) — r(m)}, thereby
completing the derivation of (3).

Proof of Proposition 2.

a) First observe that for any estimate 6(z) with expectation u(8) = Eyé(x),

covp{8,5(X)} Ep{05(X)} — E-(8)Epé(X)
E,,{Hu(ﬁ)} - En(e)EnN(e)

= cova{0,u(0)},

I}
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and so p,(#,9) > 0 if and only if p. {8, u(8)} > 0. Now for the MLE, by virtue of
Proposition 3, u(#) is nondecreasing in # if the likelihood function is unimodal for
every z, so that p,(8,6) > 0.

b) and c) are both easily obtained from (2).

d) Consider the trivial estimate identically equal to E.(8). Its Bayes risk is V(r)
and therefore () < V(r), and so statement d) follows from (3).

e) This result follows from the same argument by observing that r(7) < V(r) if
the Bayes estimate is nonconstant.

f) Under &2, the Bayes risk r(w) would be smaller, and so (3) implies statement f).

g) First observe that under any prior «,

covp{6,6(X)} = Ep{03(X)} — Ep(6)Ep{5(X))
= EE{06(X)|X} - Ep{6.(X)}Ep{6(X)}
= Ep{6:(X)6(X)} — Ep{6.(X)} Ep{6(X)}
= covp{d.(X),0(X)}. (11)
Next, from Karlin & Rubin (1956), a Bayes estimate §,(X) and an admissible esti-
mate §(X) are both nondecreasing functions of X under monotone likelihood ratio.

Therefore, covp{6,(X),8(X)} > 0. Combining this with the above, statement g)
follows.

h) From (2), V(m) V(x)
p2(6,6) = V) +r(m0) V() + varr(8)

whence the result.

Proof of Proposition 8. We will need to show that Pp{6(X) < c} is a decreasing
function of 8, for any fixed ¢. Consider first the case 8 > c. Then,

P <= [ | sl
d A d
- ghtiwsag=[ {570} duta).

However, whenever z is such that 6(z) < ¢, df(x|6)/dé < 0 for any § > ¢ by the
unimodality assumption (drawing a picture is helpful), and hence the integral is
also non-positive, implying dPy{6(X) < c¢}/df < 0, as needed. As the case § < ¢
can be treated similarly, the argument is complete.

Proof of Proposition 4. By Equation (11), p,, (6x,0) > 0 if and only if p, (6,8) > 0.
Proposition 4 thus follows from Proposition 2.

Proof of Proposition 5. First use (11) and the assumption that §(X) is unbiased
to see that

covp{6.(X),5(X)} covp{8,6(X)} = Ep{86(X)} — E-(0)Ep{6(X)}

= En(6%) - E2(6) = V(m).
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Now varp{d(X)} = V(r) + E,varg{6(X)} and it was shown in the proof of
Proposition 1 that varp{é.(X)} = V(x) — r(x). Combining all this yields the
desired conclusion.

Proof of Proposition 6. The proof has formal similarity to the derivation of the
information inequality. Indeed,

pp(8,6:) <1 = V(m) <{V(r) —r(m){V(7) + E varsd(X)}
= r(m){V(r) + Exvargd(X)} < V(n) - Ervargd(X),

whence the result.
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