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SUMMARY. It is a surprising but known fact that an L1 function on Rn is determined once

all its spherical averages with centres coming from certain “small” sets are known. We generalise

this result to complete connected real-analytic Riemannian manifolds with a real-analytic metric

(with some curvature restrictions), where superisothermal sets play the same role as balls do in

the case of Euclidean space.

1. Introduction

Broadly speaking, integral geometry deals with the recovery of a function from
the knowledge of its integrals over a class of sets, with some prescribed geometric
properties. For instance, a question that has received considerable attention is the
recovery of a function on Rn from the knowledge of its integrals on hyperplanes
in Rn. This kind of enquiry has been quite fruitful, and has led to the theory
of the Radon transform. Another question is the recovery of a function from the
knowledge of its integrals over spheres or balls of a fixed radius, with centres ranging
over all of Rn. This question is related to the Pompeiu problem.

Yet another question that has received some attention recently is : Let f be
a locally integrable function on Rn, or more generally on a (globally) symmetric
space of the compact or non-compact type. If all the spherical averages of f , with
the centres of the spheres coming from a “small” set Γ, are zero, then can one
conclude that f is the zero function? See, for example, Agranovsky, Berenstein
and Kuchment (1998), Agranovsky and Quinto (1996), Rawat and Sitaram (2000).
In this paper we address this kind of question for a general complete real-analytic
Riemannian manifold with sectional curvatures bounded both above and below.
Note that this includes the cases of compact real-analytic manifolds, Rn, hyperbolic
spaces, symmetric spaces, and in fact all homogeneous spaces.
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If one considers measures instead of functions, one can think of the above as
questions in measure theory. That is, we are asking whether two measures will
agree, if they agree on a collection of specified subsets. However, for simplicity, in
this paper we only consider functions.

2. The Heat Kernel

In whatever follows, M denotes a connected, complete real-analytic manifold
equipped with a real analytic Riemannian metric, and with sectional curvatures
bounded both above and below. ∆ denotes the Laplace-Beltrami operator, which
necessarily has real-analytic coefficients since M is real-analytic.

The following facts are known about the heat kernel for complete manifolds
with Ricci curvature bounded below, and hence for the class of manifolds described
above.

Proposition 2.1 If M is as above, then there exists a unique heat kernel
p(t, x, y) with the following properties:

(i) p(t, x, y) is a smooth non-negative function defined on (0,∞)×M×M , which
is symmetric in x and y.

(ii) The integral : ∫

M

p(t, x, y)dV (y) = 1

for each x ∈ M and t > 0, where dV (y) is the standard Riemannian volume element
on M .

(iii) p(t, x, y) satisfies the semigroup property:

p(s + t, x, y) =
∫

M

p(s, x, z)p(t, z, y)dV (z)

(iv) For each fixed t and y, p(t, x, y) satisfies the heat-equation:

∂p(t, x, y)
∂t

= ∆xp(t, x, y)

(v) For φ ∈ C∞c (M), and t > 0 define :

uφ(t, x) :=
∫

M

p(t, x, y)φ(y)dV (y)

Then uφ(t, x) is a smooth function and satisfies:

∂uφ

∂t
= ∆xuφ

lim
t→0

uφ(t, x) = φ(x); ∀x ∈ M



integral geometry on riemannian manifolds 421

For a fixed t and y, it can be easily verified that in the cases of M = Rn,
hyperbolic spaces, and compact symmetric spaces of rank 1, the set {x : p(t, x, y) ≥
a}, for each fixed t > 0, is a ball centred at y, and as a varies in (0,∞), one recovers
the collection of all balls centred at y. We therefore define:

Definition 2.2. For a fixed t ∈ (0,∞), y ∈ M and a ∈ (0,∞) define the set:

Bt,y(a) = {x : p(t, x, y) ≥ a}

We also make the following definition:
Definition 2.3. A nonempty subset Γ ⊂ M is said to be an NA-set if the only

real-analytic function defined on an open set containing Γ which vanishes identically
on Γ is the zero function.

Remark 2.4. Examples of NA-sets are subsets Γ such that their closures have
positive volume with respect to the Riemannian measure. Here are some examples
of “thin” NA-sets:

(i) Let X be the image in R2 of the map t 7→ (et cos t, et sin t), t ∈ (−∞, 0]
which is called the logarithmic spiral. Its intersection with each line L through the
origin is a countably infinite set Σ of points converging to (0, 0). If f is any real
analytic function on R2 which is identically zero on X, its restriction to such a line
L would be a real analytic function of one variable, whose zeroes would have to be
isolated points. Thus its vanishing on Σ would force this restriction to be the zero
function, and since L is arbitrary, f is identically zero.

(ii) Consider the set:

X = {(x, y, z) ∈ R3 : z(x2 + y2) = x3a(z)}
where a(z) = exp ( 1

z2−1 ) for |z| < 1 and = 0 for |z| ≥ 1. See Narasimhan, 1966,
p. 106. There it is shown that X is a real analytic subspace of Rn (i.e., its germ
at every point of Rn is a real analytic germ.) However, from Cartan (1957) it is
known that every real analytic function vanishing on it is identically zero. In fact, in
Cartan (1957) there are even examples of compact analytic subspaces of R3 which
are NA-sets.

(iii) Consider a smooth or continuous closed Jordan curve X ⊂ R2 such that
for each finite subset F ⊂ X, X \F is not a real analytic submanifold of R2. Then
we claim that X is an NA set in R2. For, let f be a real analytic function on R2

vanishing identically on X, where f is not the zero function. It is known from the
work of Whitney, Thom, Mather and Hironaka (see Hironaka, 1973 p. 489) that
the zero set V (f) of f is a Whitney stratified set. In other words, V (f) = ∪αSα

where the strata Sα satisfy:
(i) Sα ∩ Sβ = φ for α 6= β.
(ii) Sα is a connected real analytic submanifold of R2 for each α.
(iii) Sα ∩ Sβ 6= φ implies Sα ⊂ Sβ .
(iv) The collection {Sα} is a locally finite collection of subsets of R2.
Clearly since f 6= 0, it cannot vanish on any non-empty open set, so the only

strata of V (f) are one and zero dimensional. Also the local finiteness in (iv) above
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forces the intersection of X with the zero dimensional strata to be a finite set F .
Thus, if f vanishes on X, X \ F is a subset of the union of all one dimensional
strata, and since X \ F is a one dimensional manifold, it is forced to be an open
subset of the union of one dimensional strata. In particular X \F is a real analytic
submanifold of R2, contrary to the hypothesis on X.

We can now state the main result of this paper.
Theorem 2.5. Let M be as above, and f ∈ L1(M,dV ). Let Γ be an NA- set,

and fix a t ∈ (0,∞). If ∫

Bt,y(a)

fdV = 0

for all a ∈ (0,∞) and y ∈ Γ, then f is the zero function.
Remark 2.6. For simplicity we have restricted ourselves to the case of L1-

functions, but the methods of this paper should also be applicable to other Lp

spaces, or even some spaces of measures, as in Rawat and Sitaram (2000).

3. Proof of the Theorem

We begin with a few lemmas:
Lemma 3.1. If f ∈ L1(M, dV ), the function :

uf (t, x) :=
∫

M

p(t, x, y)f(y)dV (y)

exists for all x ∈ M and t > 0, and
(i) uf defines a distribution solution to the heat equation Lu = 0 where L =

∂t −∆x. Further,
(ii) uf (t, .) → f as t → 0 in the sense of distributions.
Proof. In view of the assumptions on our manifold, since the sectional cur-

vature is bounded above, the estimate (1.1) in Davies, (1993), and the volume
comparison theorem 3.101 in Gallot, Hulin and Lafontaine, (1980), it follows that
for each fixed t > 0, the heat kernel p(t, x, y) ∈ L∞(M ×M). ( In fact, for fixed
t > 0, and y ∈ M , p(t, ., y) → 0 at ∞ when M is non-compact.) Hence uf (t, x)
exists and is, in fact, a bounded L1-function on M for each fixed t.

Now just take a sequence of functions φn → f in L1(M, dV ) with φn ∈ C∞c (M),
and apply the main proposition 2.1 of the last section, to conclude that uφn → uf

and Luφn → Luf in the sense of distributions. Thus (i) follows.
To prove the second assertion (ii), observe that uφ(t, .)−φ is uniformly bounded

for all t > 0 for φ a fixed function in C∞c (M). Moreover, for such a φ, uφ(t, .)
converges to φ pointwise as t → 0. These two facts, which easily follow from the
calculations on p. 191 of Chavel, (1984), imply (ii).

Lemma 3.2. For f ∈ L1(M, dV ), if uf (t, .) is the zero function, then so is
uf ( t

2 , .). Consequently, if for a fixed t > 0, uf (t, .) is the zero function, so is f .
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Proof. As noted earlier, for a fixed t > 0, the heat kernel p(t, ., .) is a bounded
function on M ×M . Hence, for any fixed t, uf (t, .) is a bounded L1-function, and
hence in L2(M, dV ). An easy calculation, using the semigroup property of the heat
kernel, shows that :

0 =
∫

M

uf (t, x)f(x)dV (x) =
∥∥∥∥uf

(
t

2
, .

)∥∥∥∥
2

2

which implies that uf ( t
2 , .) is the zero function. Repeating this argument shows

that uf ( t
2n , .) = 0. Now use (ii) of 3.1 to conclude that f is the zero function.

Proof of the main theorem. Fix t. Let Bt,y(a) be as in Definition 2.2.
Further let

St,y(a) := {x : p(t, x, y) = a}
Under the assumptions on M , p(t, ., y) → 0 at ∞ in case M is non-compact. Hence
St,y(a) and Bt,y(a) are compact, whether M is compact or not. Since p(t, ., y)
is a solution of the heat equation, which has analytic coefficients, by the analytic
regularity theorem for parabolic equations (see p. 324 of Friedman, 1983), it follows
that p(t, ., y) is real analytic. Hence St,x(a) is an analytic submanifold of M for
almost all a, i.e. the regular values a of p(t, ., y). Even if a is not a regular value,
St,y(a) will be an analytic set, and hence a manifold upon removing a negligible
subset (see Hironaka, 1973). Hence, fixing y, we parametrise the manifold M by
specifying a point on the level set St,y(a) and a. With this parametrisation we can
express the integral:

∫

Bt,y(a)

fdV =
∫ ∞

a

(∫

St,y(r)

fdσr

)
dr

where dσa is a suitable measure on St,y(a). Thus if y is such that
∫

Bt,y(a)
fdV = 0

for all a, then it is easy to see that
∫

St,y(a)
fdσa = 0 for almost all a. (Note that in

view of the boundedness of p(t, ., y), Bt,y(r) and St,y(r) are empty for sufficiently
large r, and hence the inner integral is zero for sufficiently large r).

Hence, from the definition of St,y(a), it follows that :
∫

M

p(t, x, y)f(y)dV (y) =
∫ ∞

0

a

(∫

St,y(a)

fdσa

)
da = 0

Thus, for such y, uf (t, y) = 0. Since uf (t, .) is a distributional solution of the
heat equation, which has analytic coefficients, by the analytic regularity theorem
for parabolic equations (see p. 324 of Friedman, 1983), it follows that uf (t, y) is
analytic in y.

Since we have assumed that
∫

Bt,y(a)
fdV = 0 for all y ∈ Γ, and all a, it follows

that uf (t, y) = 0 for all y ∈ Γ. Since Γ is an NA-set, uf (t, .) is the zero function,
and by Lemma 3.2, f is the zero function, and the proof of the main theorem is
complete.
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4. Concluding Remarks

We could have directly formulated our results in terms of averages over St,y(a),
but if we want to formulate the kind of problem considered here, for measures, then
it is better to consider Bt,y(a) (see also Rawat and Sitaram (2000)).

In questions of integral geometry on symmetric spaces, one usually considers
averages of functions over spheres or balls. The isothermal (resp. superisothermal)
sets St,y(a) (resp. Bt,y(a)) considered here seem to be the natural generalisations
of the spheres (resp. balls) in symmetric spaces to Riemannian manifolds.
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