
748 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 11, NO. 3, MAY 2000

Neuro–Fuzzy Rule Generation: Survey in
Soft Computing Framework

Sushmita Mitra, Member, IEEE,and Yoichi Hayashi, Senior Member, IEEE

Abstract—The present article is a novel attempt in providing an
exhaustive survey of neuro–fuzzy rule generation algorithms. Rule
generation from artificial neural networks is gaining in popularity
in recent times due to its capability of providing some insight to
the user about the symbolic knowledge embedded within the net-
work. Fuzzy sets are an aid in providing this information in a more
human comprehensible or natural form, and can handle uncer-
tainties at various levels. The neuro–fuzzy approach, symbiotically
combining the merits of connectionist and fuzzy approaches, con-
stitutes a key component of soft computing at this stage. To date,
there has been no detailed and integrated categorization of the var-
ious neuro–fuzzy models used for rule generation. We propose to
bring these together under a unified soft computing framework.
Moreover, we include both rule extraction and rule refinement in
the broader perspective of rule generation. Rules learned and gen-
erated for fuzzy reasoning and fuzzy control are also considered
from this wider viewpoint. Models are grouped on the basis of their
level of neuro–fuzzy synthesis. Use of other soft computing tools
like genetic algorithms and rough sets are emphasized. Rule gen-
eration from fuzzy knowledge-based networks, which initially en-
code some crude domain knowledge, are found to result in more
refined rules. Finally, real-life application to medical diagnosis is
provided.

Index Terms—Knowledge-based networks, neuro–fuzzy com-
puting, rule extraction, rule generation, soft computing.

I. INTRODUCTION

A RTIFICIAL neural networks (ANN’s) attempt to replicate
thecomputationalpower (low-level arithmetic processing

ability) of biological neural networks and, thereby, hopefully
endow machines with some of the (higher-level)cognitive abil-
ities that biological organizms possess (due in part, perhaps, to
their low-level computational prowess). However, an impedi-
ment to a more widespread acceptance of ANN’s is the absence
of a capability to explain to the user, in a human-comprehensible
form, how the network arrives at a particular decision. Neither
can one say something about theknowledgeencoded within the
blackbox. Recently, there has been widespread activity aimed at
redressing this situation by extracting the embedded knowledge
in trained ANN’s in the form of symbolic rules [1]–[9]. This
serves to identify the attributes that, either individually or in a
combination, are the most significant determinants of the deci-
sion or classification. Often an ANN solution with good gen-

Manuscript received July 9, 1999; revised January 3, 2000. This work was
supported by the Meiji University International Program while Dr. S. Mitra vis-
ited the Meiji University.

S. Mitra is with the Machine Intelligence Unit, Indian Statistical Institute,
Calcutta 700 035, India (e-mail: sushmita@isical.ac.in).

Y. Hayashi is with the Department of Computer Science, Meiji University,
Tama-ku, Kawasaki 214-8571, Japan (e-mail: hayashiy@cs.meiji.ac.jp).

Publisher Item Identifier S 1045-9227(00)04297-1.

eralization does not necessarily imply involvement of hidden
units with distinctmeaning. Hence any individual unit cannot
essentially be associated with a single concept or feature of the
problem domain. This is typical of connectionist approaches,
where all information is stored in a distributed manner among
the neurons and their associated connectivity.

Generally, ANN’s consider a fixed topology of neurons
connected by links in a predefined manner. These connec-
tion weights are usually initialized by small random values.
Knowledge-based networks[10], [11] constitute a special class
of ANN’s that consider crude domain knowledge to generate
the initial network architecture, which is later refined in the
presence of training data. Recently, there have been some
attempts in improving the efficiency of neural computation
by using knowledge-based nets. This helps in reducing the
searching space and time while the network traces the optimal
solution. In such situations, one can extract causal factors
and functional dependencies from the data domain for initial
encoding of the ANN [5], [12] and later extract refined rules
from the trained network.

Andrewset al. [6] have provided a classification scheme for
connectionist rule extraction algorithms. They take into consid-
eration

• expressive power of the rules: 1) propositional or Boolean
logic, i.e., crisp or nonfuzzy, and 2) nonconventional logic,
i.e., probabilistic or fuzzy;

• translucencyof view taken in the algorithm about the
underlying ANN units: 1) decompositional approach
(more analytical), where each internal element of the
transparent network is examined and 2) pedagogical
or blackbox approach, where one observes only the
input–output behavior of theopaquenetwork;

• extent to which the underlying ANN incorporates special-
ized training regimes, i.e.,portability;

• quality of the rules: 1) accuracy, i.e., generalization to test
cases; 2) fidelity, i.e., whether they can mimic the behavior
of the ANN from which they were generated; 3) consis-
tency, i.e., whether they produce the same classification
of test instances over different training instances; and 4)
comprehensibility, in terms of the size of the rule set and
the number of antecedents per rule;

• algorithmic complexity of the technique.
Taha and Ghosh [13] have considered additional issues

related to rule extraction. These include the granularity of
explanation, modifiability, theory refinement capability (to
handle incompleteness, inconsistency, and/or inaccuracy of
initial domain knowledge), stability/robustness to corruption in
data/knowledge, and scalability for large datasets/rulebases.

1045–9227/00$10.00 © 2000 IEEE

MITRA AND HAYASHI: NEURO-FUZZY RULE GENERATION: SURVEY IN SOFT COMPUTING FRAMEWORK 749

Unfortunately, most of the available literature on rule gener-
ation do not provide such rigorous assessment on their pros and
cons. There is also a preponderance ofspecific purposetech-
niques, that are designed to work with a particular ANN archi-
tecture. This limits the scope of comparing the various tech-
niques in a single framework. Unless specified otherwise, all
methods surveyed in this article will deal with the analytical or
decompositional approach.

Both fuzzy systems and ANN’s are soft computing ap-
proaches to modeling expert behavior. The goal is to mimic
the actions of an expert who solves complex problems. In
other words, instead of investigating the problem in detail,
one observes how an expert successfully tackles the problem
and obtains knowledge by instruction and/or learning [14]. A
learning process can be part of knowledge acquisition. In the
absence of an expert or sufficient time or data, one can resort
to reinforcement learning instead of supervised learning. If one
has knowledge expressed as linguistic rules, one can build a
fuzzy system. On the other hand, if one has data or can learn
from a simulation or the real task, ANN’s are more appropriate.
The merits of both neural and fuzzy systems can be integrated
in a neuro–fuzzy approach [4]. The focus of this article will be
on neuro–fuzzy rule generation.

The termrule generationencompasses both rule extraction
and rule refinement. Note thatrule extraction here refers
to extracting knowledge from the ANN, using the network
parameters in the process.Rule refinement, on the other hand,
pertains to extracting refined knowledge from the ANN that
was initialized using crude domain knowledge. Rules learned
and interpolated for fuzzy reasoning and fuzzy control can
also be considered under rule generation. It covers, in a wider
sense, the extraction of domain knowledge (say, for the initial
encoding of an ANN) using nonconnectionist tools like fuzzy
sets and rough sets. Unlike Tickleet al. [5], [6] who deal with
rule extraction for nonfuzzy connectionist models (using propo-
sitional logic) only, we provide here a broader and exhaustive
survey of neuro–fuzzy rule generation. Both feedforward and
recurrent neural networks are considered. Although the focus is
on neuro–fuzzy models, we also briefly deal with other fuzzy,
neural, genetic algorithms, and rough set-based approaches to
rule generation. We concentrate on categorizing the different
neuro–fuzzy approaches, based on their level of integration, in
a unifiedsoft computingframework.

In general, the primary input to a connectionist rule genera-
tion algorithm is a representation of the trained ANN, in terms
of its nodes and links, and sometimes the data set. One inter-
prets one or more hidden and output units into rules, which may
later be combined and simplified to arrive at a more compre-
hensible rule set. These rules can also provide new insights into
the application domain. The use of ANN helps in 1) incorpo-
rating parallelism and 2) tackling optimization problems in the
data domain. The models are usually suitable in data-rich envi-
ronments and seem to be capable of overcoming the problem of
the knowledge acquisition bottleneckfaced by knowledge en-
gineers while designing the knowledge base of traditional ex-
pert systems. The trained link weights and node activation of
the ANN are used to automatically generate the rules, either for
later use in a traditional expert system, refining the initial do-

main knowledge, or providing justification/explanation in the
case of an inferred decision. This automates and also speeds up
the knowledge acquisition process. Such models help in min-
imizing human interaction and associated inherent bias during
the phase of knowledge base formation and also reduce the pos-
sibility of generating contradictory rules. Fuzzy neural networks
[4] can be used for the same purpose, and can also handle un-
certainty at various stages.

The present article is the first of its kind to provide a detailed
categorization of neuro–fuzzy rule generation algorithms based
on their level of synthesis. Section II provides an overview of
neuro–fuzzy hybridization, which is the oldest and most well-
known methodology in soft computing. An exhaustive survey
of rule generation in the fuzzy, neural, and neuro–fuzzy frame-
work is presented in Section III, along with some hybridization
involving genetic algorithms. This is followed in Section IV by
a survey of rule generation in knowledge-based networks using
neuro–fuzzy hybridization, rough sets and genetic algorithms.
Section V provides a case study of a neuro–fuzzy rule genera-
tion algorithm with application to medical diagnosis. Section VI
concludes the article.

II. NEURO-FUZZY AND SOFT COMPUTING

This section focuses on different aspects of neuro–fuzzy com-
puting, keeping in mind the rich literature currently available in
this field. Finally, the concept of soft computing is introduced.

A. Need for Neuro–Fuzzy Integration

Both neural networks and fuzzy systems are dynamic, parallel
processing systems that estimate input–output functions. They
estimate a function without any mathematical model andlearn
from experiencewith sample data. A fuzzy system adaptively in-
fers and modifies its fuzzy associations from representative nu-
merical samples. Neural networks, on the other hand, canblindly
generateand refine fuzzy rules fromtrainingdata [15].Fuzzysets
are considered to be advantageous in the logical field, and in han-
dling higher order processing easily. The higher flexibility is a
characteristic feature of neural nets produced by learning and,
hence, this suits data-driven processing better [16]. Hayashi and
Buckley [17] proved that 1) any rule-based fuzzy system may
be approximated by a neural net and 2) any neural net (feedfor-
ward, multilayered) may be approximated by a rule-based fuzzy
system. This kind of equivalence between fuzzy rule-based sys-
tems and neural networks is also studied in [18]–[21]. Jang and
Sun [22] have shown that fuzzy systems are functionally equiva-
lent to a class of radial basis function (RBF) networks, based on
the similarity between the local receptive fields of the network
and the membership functions of the fuzzy system.

Fuzzy systems can be broadly categorized into two fami-
lies. The first includes linguistic models based on collections of
IF–THEN rules, whose antecedents and consequents utilize fuzzy
values. It uses fuzzy reasoning and the system behavior can be
described innatural terms. TheMamdanimodel [23] falls in
this group. The knowledge is represented as

If is and is

and is then is (1)

750 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 11, NO. 3, MAY 2000

where denotes theth fuzzy rule,
is the input, is the output of the fuzzy rule ,

and are fuzzy member-
ship functions usually associated with linguistic terms.

The second category, based onSugeno-type systems [24],
uses a rule structure that has fuzzy antecedent andfunctional
consequent parts. This can be viewed as the expansion of piece-
wise linear partition represented as

If is and is and is

then (2)

The approach approximates a nonlinear system with a combina-
tion of several linear systems, by decomposing the whole input
space into several partial fuzzy spaces and representing each
output space with a linear equation. Such models are capable of
representing both qualitative and quantitative information and
allow relatively easier application of powerful learning tech-
niques for their identification from data. They are capable of ap-
proximating any continuous real-valued function on a compact
set to any degree of accuracy [25]. This type of knowledge rep-
resentation does not allow the output variables to be described
in linguistic terms and the parameter optimization is carried out
iteratively using a nonlinear optimization method.

However, there is a tradeoff between readability and preci-
sion. If one is interested in a more precise solution, then one
is usually not so bothered about its linguistic interpretability.
Sugeno-type systems are more suitable in such cases. Other-
wise, the choice is for Mamdani-type systems. Two primary
tasks of fuzzy modeling are structure identification and param-
eter adjustment. The first determines the input–output space par-
tition, antecedent and consequent variables ofIF–THEN rules,
number of such rules, and initial positions of membership func-
tions. The second identifies a feasible set of parameters under
the given structure.

Neural networks, like fuzzy systems, are excellent at devel-
oping human-made systems that can perform information pro-
cessing in a manner similar to our brain. In fact, the concept
of ANN’s was inspired bybiological neural networks(BNN’s),
which are inherently nonlinear, highly parallel, robust and fault
tolerant. A BNN is capable of 1) adapting its synaptic weights
to changes in the surrounding environment; 2) easily handling
imprecise, fuzzy, noisy, and probabilistic information; and 3)
generalizing to unknown tasks. ANN’s attempt to mimic these
characteristics, often using principles from nervous systems to
solve complex problems in an efficient manner. Fuzzy logic is
capable of modeling vagueness, handling uncertainty, and sup-
porting human-type reasoning.

A neural network is widely regarded as a black box that re-
veals little about its predictions. Extraction of rules from neural
nets enables humans to understand this prediction process in a
better manner. Rules are a form of knowledge that human ex-
perts can easily verify, transmit, and expand. Representing rules
in natural form aids in enhancing their comprehensibility for
humans. This aspect is suitably handled using fuzzy set-theo-
retic concepts.

The relation between neural networks and linguistic knowl-
edge is bidirectional [26]. Therefore 1) neural network-based

classification systems can be trained by numerical data and lin-
guistic knowledge and 2) fuzzy rule-based classification sys-
tems can be designed by linguistic knowledge and fuzzy rules
extracted from neural networks.

Fuzzy logic and neural systems have very contrasting
application requirements. For example, fuzzy systems are
appropriate if sufficient expert knowledge about the process is
available, while neural systems are useful if sufficient process
data are available or measurable. Both approaches build
nonlinear systems based on bounded continuous variables, the
difference being that neural systems are treated in a numeric
quantitative manner, whereas fuzzy systems are treated in a
symbolic qualitative manner. Fuzzy systems, however, exhibit
both symbolic and numeric features. For example, when treated
as collections of objects encapsulated by linguistic labels
they lend themselves to symbolic processing via rule-based
operations, while by referring to the definitions of the linguistic
labels their membership functions are also suitable for numeric
processing. Therefore, the integration of neural and fuzzy
systems leads to a symbiotic relationship in which fuzzy
systems provide a powerful framework for expert knowledge
representation, while neural networks provide learning capa-
bilities and exceptional suitability for computationally efficient
hardware implementations. The significance of this integration
becomes even more apparent by considering their disparities.
Neural networks do not provide a strong scheme for knowledge
representation, while fuzzy logic controllers do not possess
capabilities for automated learning.

Neuro-fuzzy computing[4], [25], [27]–[31], which is a judi-
cious integration of the merits of neural and fuzzy approaches,
enables one to build more intelligent decision-making systems.
This incorporates the generic advantages of artificial neural
networks like massive parallelism, robustness, and learning
in data-rich environments into the system. The modeling of
imprecise and qualitative knowledge as well as the transmis-
sion of uncertainty are possible through the use of fuzzy logic.
Besides these generic advantages, the neuro–fuzzy approach
also provides the corresponding application specific merits.

B. Different Neuro–Fuzzy Hybridizations

Neuro-fuzzy hybridization [4], [27], [31] is done broadly
in two ways: a neural network equipped with the capability
of handling fuzzy information [termedfuzzy-neural network
(FNN)] and a fuzzy system augmented by neural networks to
enhance some of its characteristics like flexibility, speed, and
adaptability [termedneural-fuzzy system(NFS)].

In an FNN, either the input signals and/or connection weights
and/or the outputs are fuzzy subsets or a set of membership
values to fuzzy sets, e.g., [7], [32]–[34]. Usually, linguistic
values such aslow, medium, and high, or fuzzy numbers or
intervals are used to model these. Neural networks with fuzzy
neurons are also termed FNN as they are capable of processing
fuzzy information.

A neural-fuzzy system (NFS), on the other hand, is designed
to realize the process of fuzzy reasoning, where the connec-
tion weights of the network correspond to the parameters of
fuzzy reasoning, e.g., [14], [35]–[40]. Using the backpropaga-
tion-type learning algorithms, the NFS can identify fuzzy rules

MITRA AND HAYASHI: NEURO-FUZZY RULE GENERATION: SURVEY IN SOFT COMPUTING FRAMEWORK 751

and learn membership functions of the fuzzy reasoning. Usually
for an NFS, it is easy to establish a one-to-one correspondence
between the network and the fuzzy system. In other words,
the NFS architecture has distinct nodes for antecedent clauses,
conjunction operators, and consequent clauses. A fuzzy control
system can also be termed as an NFS. There can be, of course,
another blackbox-type NFS where a multilayer network is used
to determine the input–output relation represented by a fuzzy
system. For such a system the network structure has no such
relation to the architecture of the fuzzy reasoning system.

An NFS should be able tolearn linguistic rules and/or mem-
bership functions, or optimize existing ones. There are three
possibilities [14]: 1) the system starts without rules, and cre-
ates new rules until the learning problem is solved. Creation of
a new rule is triggered by a training pattern which is not suffi-
ciently covered by the current rulebase; 2) the system starts with
all rules that can be created due to the partitioning of the vari-
ables and deletes insufficient rules from the rulebase based on
an evaluation of their performance; 3) the system starts with a
rulebase with a fixed number of rules. During learning, rules are
replaced by an optimization process.

The state of the art for the different techniques of judiciously
combining neuro–fuzzy concepts involves synthesis at various
levels. In general, these methodologies can be broadly catego-
rized as follows [41]. Note that categories 1 and 3–5 relate to
FNN’s, while category 2 refers to NFS.

1) Incorporating fuzziness into the neural net framework:
fuzzifying the input data, assigning fuzzy labels to the
training samples, possibly fuzzifying the learning proce-
dure, and obtaining neural network outputs in terms of
fuzzy sets [7], [8], [33], [34], [42].

2) Designing neural networks guided by fuzzy logic for-
malism: designing neural networks to implement fuzzy
logic and fuzzy decision-making, and to realize mem-
bership functions representing fuzzy sets [14], [35]–[40],
[43]–[46].

3) Changing the basic characteristics of the neurons: neu-
rons are designed to perform various operations used in
fuzzy set theory (like fuzzy union, intersection, aggrega-
tion) instead of the standard multiplication and addition
operations [47]–[51].

4) Using measures of fuzziness as the error or instability of a
network: the fuzziness or uncertainty measures of a fuzzy
set are used to model the error or instability or energy
function of the neural network-based system [52].

5) Making the individual neurons fuzzy: the input and output
of the neurons are fuzzy sets and the activity of the net-
works involving the fuzzy neurons is also a fuzzy process
[32].

There are other kinds of categorizations for neuro–fuzzy
models reported in literature [14], [53]. Buckley and Hayashi
[53] have classified fuzzified neural networks as follows.
Networks can possess 1) real number inputs, fuzzy outputs, and
fuzzy weights; 2) fuzzy inputs, fuzzy outputs, and real number
weights; 3) fuzzy inputs, fuzzy outputs, and fuzzy weights.
Hayashi et al. [49] fuzzified the delta rule for multilayer
perceptron (MLP) using fuzzy numbers at the input, output,
and weight levels. But there were problems with the stopping

rule. Ishibuchiet al. [54] incorporated triangular or trapezoidal
fuzzy number weights, thereby increasing the complexity of
the algorithm. Some of these problems have been overcome
by Feuring et al. in [55]. All these fuzzy neural networks
can, however, be grouped under categories 1 and 3 of our
neuro–fuzzy integration methodology.

Naucket al. [14] deal mainly with neuro–fuzzy control and
suggest the following: 1) acooperativesystem where the ANN
and fuzzy system work independently of each other; the combi-
nation lies in determining certain parameters of a fuzzy system
by an ANN and 2) ahybrid neuro–fuzzysystem which imple-
ments a fuzzy system with an ANN; here one generates a ho-
mogeneous entity which cannot be divided into a fuzzy system
or an ANN. In our terminology, both these combinations can be
termed as an NFS under category 2 of the neuro–fuzzy integra-
tion.

C. Soft Computing

In traditional hard computing, the prime desiderata are pre-
cision, certainty, and rigor. By contrast, in soft computing the
principal notion is that precision and certainty carry a cost and
that computation, reasoning, and decision-making should ex-
ploit (wherever possible) the tolerance for imprecision, uncer-
tainty, approximate reasoning, and partial truth for obtaining
low-cost solutions. This leads to the remarkable human ability
of understanding distorted speech, deciphering sloppy hand-
writing, comprehending the nuances of natural language, sum-
marizing text, recognizing and classifying images, driving a ve-
hicle in dense traffic and, more generally, making rational de-
cisions in an environment of uncertainty and imprecision. The
challenge, then, is to exploit the tolerance for imprecision by
devising methods of computation that lead toan acceptable so-
lution at low cost. This, in essence, is the guiding principle of
soft computing [56].

Soft computing is a consortium of methodologies that
works synergetically and provides in one form or another
flexible information processing capability for handling real
life ambiguous situations. Its aim is to exploit the tolerance
for imprecision, uncertainty, approximate reasoning, and
partial truth in order to achieve tractability, robustness, and
low-cost solutions. The guiding principle is to devise methods
of computation that lead to an acceptable solution at low cost
by seeking for an approximate solution to an imprecisely/pre-
cisely formulated problem. The neuro–fuzzy approach, which
provides flexible information processing capability by devising
methodologies and algorithms on a massively parallel system
for representation and recognition of real-life ambiguous
situations forms, at this juncture, a key component of soft
computing.

We can have approaches that exploit the benefits of all three
soft computation tools,viz. fuzzy logic, ANN’s and genetic al-
gorithms (GA’s), for rule generation. GA’s [57] have found var-
ious applications in fields like pattern recognition, image pro-
cessing and neural networks. In the area of ANN’s, they have
been used in determining the optimal set of connection weights
as well as the optimal topology of layered neural networks. A
fuzzy reasoning system can be implemented using a multilayer
network, where the free parameters of the system can be learned

752 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 11, NO. 3, MAY 2000

using GA’s. Similarly, the parameters of an FNN can also be
learned using GA’s. Such systems are termedneuro–fuzzy-ge-
netic [58]–[63]. It may be mentioned in this connection that
computational intelligence[30], [64] is also a field related to ar-
tificial intelligence that uses soft computing tools like ANN’s,
fuzzy systems, and GA’s in order to build intelligent systems
with the capability of rule generation.

The theory ofrough sets[65] has recently emerged as another
major mathematical tool for managing uncertainty that arises
from granularity in the domain of discourse, i.e., from the indis-
cernibility between objects in a set. The intention is to approx-
imate arough (imprecise) concept in the domain of discourse
by a pair ofexactconcepts, called the lower and upper approxi-
mations. These exact concepts are determined by anindiscerni-
bility relation on the domain, which, in turn, may be induced
by a given set ofattributesascribed to the objects of the do-
main. The lower approximation is the set of objects definitely
belonging to the vague concept, whereas the upper approxima-
tion is the set of objects possibly belonging to the same. These
approximations are used to define the notions ofdiscernibility
matrices, discernibility functions, reducts, anddependency fac-
tors, all of which play a fundamental role in the reduction of
knowledge.

Hybridizations for rule generation, exploiting the char-
acteristics of rough sets, include therough-neuro [66],
rough-neuro–fuzzy[12], [67], rough-neuro-genetic[68], and
rough-neuro–fuzzy genetic[69] approaches. The primary role
of rough sets here is in managing uncertainty and extracting
domain knowledge.

III. RULE GENERATION

Here we review the different fuzzy, neural and neuro–fuzzy
models for rule generation, inferencing, and querying, along
with their salient features. Sections III-A and III-B cover the
fuzzy and neural approaches, respectively. This is followed in
Sections III-C–III-E by different neuro–fuzzy approaches, indi-
cating three types of hybridization as mentioned in Section II-B.
Incorporation of GA’s is also referred to in Sections III-A-1,
III-B-2, and III-D-4 under fuzzy–genetic, neuro–geneticand
neuro–fuzzy–genetichybridization.

Let us first explain the significance of querying and rule gen-
eration, by referring to medical decision making. The models
are generally capable of dealing with nonavailability of data,
and can enquire the user for additional data when necessary. In
the medical domain, for instance, data may be missing for var-
ious reasons; for example, some examinations can be risky for
the patient or contraindications can exist, an urgent diagnostic
decision may need to be made and some very informative but
prolonged test results may have to be excluded from the feature
set, or appropriate technical equipment may not be available.
In such cases, the network can query the user for additional in-
formation only when it is particularly necessary to infer a de-
cision. Again, one realizes that the final responsibility for any
diagnostic decision always has to be accepted by the medical
practitioner. So the physician may want to verify the justifica-
tion behind the decision reached, based on personal expertise.
This requires the system to be able to explain its mode of rea-

soning for any inferred decision or recommendation, preferably
in rule form, to convince the user that its reasoning is correct.

A. Fuzzy Models

First of all, let us touch upon some of the approaches in
fuzzy inferencing and rule generation before embarking on
connectionist models. In the fuzzy classification rule described
by Ishibuchiet al. [70], the partitioning is uniform, i.e., the
regions continue to be split until a sufficiently high certainty
of the rule, generated by each region, is achieved. Ishibuchiet
al. extended this work later [71] by using an idea of sequential
partitioning of the feature space into fuzzy subspaces until a
predetermined stopping criterion is satisfied and studied its
application for solving various pattern classification problems.

Wang and Mendel [72] developed a slightly different method
for creating a fuzzy rulebase, made up of a combination of rules
generated from numerical examples and linguistic rules sup-
plied by human experts. The input and output domain spaces
are divided into a number of linguistic subspaces. Human in-
tervention is sought to assign degrees to the rules and conflicts
are resolved by selecting those rules yielding the maximum of
a computed measure corresponding to each linguistic subspace.

Rovatti and Guerrieri [73] have attempted to identify the
correct rule structure of a fuzzy system when the target
input–output behavior is sampled at random points. The
assumption that a rule can either be included or excluded
from the rule set is relaxed, and degrees of membership are
exploited to achieve good approximation results. Defuzzifi-
cation methodologies are then used to extract well-behaving
crisp rule sets. Symbolic minimization is carried out to obtain a
compact structure that captures the high-level characteristics of
the target behavior. For other details, one may refer to standard
literature [74]–[76].

1) With Genetic Algorithms:A fuzzy model, containing
a large number ofIF–THEN rules, is liable to encounter the
risk of overfitting and, hence, poor generalization. The strong
searching capacity of GA’s has been utilized infuzzy–genetic
hybridization to circumvent this problem by [77] 1) deter-
mining membership functions with a fixed number of fuzzy
rules [78], [79]; 2) finding fuzzy rules with known membership
functions [80]; and 3) finding both membership functions and
fuzzy rules simultaneously [77], [81], [82].

Ishibuchiet al.[82] select a small number of significant fuzzy
IF–THEN rules to construct a compact and efficient fuzzy classi-
fication system. GA’s are used to solve this combinatorial opti-
mization problem, with an objective function for simultaneously
maximizing the number of correctly classified patterns and min-
imizing the number of fuzzy rules.

Wang and Yen [77] have designed a hybrid algorithm that
uses GA’s for extracting important fuzzy rules from a given rule-
base to construct aparsimoniousfuzzy model with a high gen-
eralization ability. The parameters of the model are estimated
using theKalmanfilter.

B. Neural Models

Here we first consider the layered connectionist models by
Gallant [1] and Saito and Nakano [83] used for rule generation
in the medical domain. The inputs and outputs consist ofcrisp

MITRA AND HAYASHI: NEURO-FUZZY RULE GENERATION: SURVEY IN SOFT COMPUTING FRAMEWORK 753

variables in all cases. Generally the symptoms are represented
by the input nodes while the diseases and possible treatments
correspond to the intermediate and/or output nodes. The mul-
tilayer network described by Saito and Nakano [83] has been
applied to the detection ofheadache. A patient responds to a
questionnaire regarding the perceived symptoms and these con-
stitute the input to the network.

The model by Gallant [1], dealing withsacrophagalprob-
lems, uses a linear discriminant network (with no hidden nodes)
that is trained by the simplepocket algorithm. The absence of
the hidden nodes and nonlinearity limits the utility of the system
in modeling complex decision surfaces. Dependency informa-
tion regarding the variables in the form of an adjacency matrix
is provided by the expert. Every input variableis approxi-
mated by three Boolean variables . Cell activation is
discrete, taking on values1, 1, or 0, corresponding to log-
ical values oftrue, false, or unknown. Each cell computes its
new activation as a linear discriminant function.

In [83], the system supplies the doctor with information
regarding possible diagnoses on the basis of its output node
values. Relation factors, estimating the strength of the relation-
ship between symptom(s) and disease(s), are extracted from the
network. Rules are generated from the changes in levels of input
and output units; the connection weights are not involved in
the process. Hence, this is a pedagogical approach. The search
space is constrained by avoiding meaningless combination of
inputs (symptoms) and restricting the maximum number of
coincident symptoms to be considered. The rules are then used
to allow patients to confirm the symptoms initially provided
by them to the system, in order to eliminate noise from the
answers. Nevertheless, the number of rules extracted for a
relatively simple problem domain is exceedingly large [6].

Gallant’s model [1] incorporates inferencing and forward
chaining, confidence estimation, backward chaining, and ex-
planation of conclusions byIF–THEN rules. In order to generate
a rule, the attributes with greater inference strength (magnitude
of connection weights) are selected and a conjunction of
the more significant premises is formed to justify the output
concept. Here the user can also be queried to supplement
incomplete input information. During question generation, the
system selects the unknown output variable whoseconfidence
is maximum. Then it backtracks along the connection weights
to find an unknown input variable, whose value is queried
from the user. Rules are generated by traversing the trained
connection weights as follows.

1) List all inputs that are known and have contributed to the
ultimate positivity of a discriminant.

2) Arrange the list by decreasing absolute value of the
weights.

3) Generate clauses for anIF–THEN rule from this ordered
list.

Ishikawa [84] demonstrates the training of a network using
structural learning with forgetting. An examination of the re-
sultant simplified and nonredundant network architecture leads
to easy extraction of rules. The positive weights are reduced
and negative weights increased using a decay factor. A total
of 8124 samples of mushrooms, with 22 attributes each, have
been studied for the two-class (edible or poisonous) problem.

The method selects two or four most relevant attributes. For the
two-attribute case, odor and spore print color were found to be
important. A sample of the antecedent part of an extracted rule
for edible mushroom is (almondOR aniseOR none)AND (spore
print color green). Duchet al. [85] modified this algorithm
by constraining the weights to1, 1, or 0. This is supposed
to result in the extraction of rules with more logical interpreta-
tion. They have also used a generalization of RBF networks for
interpreting node functions as rules.

Fu [86], [87] has developed CFNet, whose activation func-
tion is based on the certainty factor (CF) model of expert sys-
tems. The CF model is a scheme for evidential reasoning in
which a CF is assigned to a concept according to evidence ob-
served. By mapping a CF model into an ANN, one can use
the neural learning mechanism to help revise the former [87].
An analysis of the computational complexity of accurately dis-
covering domain rules from a limited number of instances is
provided. Rules can beconfirming(positive) ordisconfirming
(negative). A rule’s premise is limited to a conjunction of at-
tributes. The presence of multiple rules with the same conclu-
sion represents disjunction. Rules can be interpreted by an exact
or inexact inference engine. In the latter case, a rule has to
be attached with a number indicating the degree of belief in
the conclusion given the premise and an attribute can also be
assigned a weight. The activation function lies in the interval

, and the positive and negative inputs are combined sep-
arately. The output is implicitly quantizable in classification do-
mains. The rule space is shrunk using pruning, resulting in a fea-
sible complete search. Successive rule extraction is performed
to circumvent the problem of generating rules from insufficient
training data. In each learning cycle, some rules are learned
and those positive instances, which can be explained by these
rules, are removed. This cycle repeats until no more new rules
can be further learned. Validation is performed on the test in-
stances to determine the correct generalization capability. Per-
formance of the model is compared with the decision tree-based
rule generator C4.5 [88], KBANN by Towell and Shavlik [3],
[11] (described in Section IV-A), and cascade ARTMAP by Tan
[89] (Section IV-B). The decision tree approach (as in C4.5) is
termedmonotheticas it considers the utility of individual at-
tributes one at a time, and may miss the case when multiple at-
tributes are weakly predictive separately but become strongly
predictive in combination. This problem can be overcome in
neural approaches, also termedpolythetic, like CFNet where
multiple attributes are considered simultaneously [87]. Another
advantage of CFNet is that it requires no initial domain knowl-
edge and yet can perform reasonably well as compared to some
knowledge-based networks [3], [11], [89]. Note that the knowl-
edge-based model by Fu [10] (Section IV-A) is unable to extract
most rules from a very large ANN and often generates only ap-
proximate rules. CFNet [86] overcomes some of the limitations
of [10].

Setiono [90] has used a pruned network for extracting com-
pact, meaningful rules, in terms of hidden unit activation. The
activation are clustered into discrete values, and a process of
splitting of hidden units and creation of new subnetwork is re-
peated until each hidden unit has only a small number of inputs
connected to it. A penalty term augments a cross-entropy error

754 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 11, NO. 3, MAY 2000

function, that is minimized to encourage weight decay and re-
move redundant weights. NeuroRule [90] can extract reasonably
compact rule sets with high predictive accuracy. Unlike other al-
gorithms [3], [10], this method does not require the activation
values to be zero or one. The exponential complexity associated
with the extraction of rules in search-based methods [10], [83]
is avoided here. The accuracy and number of rules generated
are better than those obtained by C4.5 [88]. Setiono and Leow
[91] have recently developed a fast method for extracting rules
from trained feedforward networks, that avoids the substantial
overhead associated with pruning and retraining [90] while pre-
serving the size and predictive accuracy of the rules. The al-
gorithm uses information gain to identify relevant hidden units,
and employs C4.5 to build a decision tree in terms of their activa-
tion values. Setiono has also reported [92] the extraction ofof

rules from a trained feedforward network whose weights and
inputs are restricted to values in . The rules are claimed
to possess desirable qualities like accuracy, simplicity and fi-
delity.

Setiono and Liu [93] describe the extraction of oblique
decision rules, corresponding to partition of the attribute space
by hyperplanes that are not necessarily axis-parallel. This is
claimed to result in the extraction of compact rules, with high
predictive accuracy, from the trained network. The network
is pruned and node activation discretized, followed by rule
generation. The work is extended in Ref. [94] to generate
oblique decision trees that can readily be translated into a
set of rules. Since an oblique decision tree classifies patterns
based on linear combinations of input attributes, the rules are
more compact than that generated by an univariate tree over
the same domain. Comparison is provided with other decision
tree-based approaches, like C4.5 [88] and CART [95]. The
compactness of these oblique rules is said to result in better
rule comprehensibility and consistency.

Taha and Ghosh [13] have extracted rules along with cer-
tainty factors from trained feedforward networks. Input features
are discretized and a linear programming problem is formulated
and solved. Agreedyrule evaluation mechanism is used to order
the extracted rules on the basis of three performance measures,
viz., soundness, completeness, and false-alarm. A method of in-
tegrating the output decisions of both the extracted rulebase and
the corresponding trained network is described, with a goal of
improving the overall performance of the system. Comparison
is provided with “NeuroRule” [90] and C4.5 [88].

Krishnanet al. [96] sort and order the input weights of a
neuron, and prune the search space to determine those combi-
nations of inputs that make the neuron active. This is used for
rule generation from feedforward networks. Maire [97] back-
propagates unions of polyhedra to design a new rule extraction
technique. The fidelity of these rules is claimed to be very high.

1) With Recurrent Networks:Omlin and Lee Giles [98] use
trained discrete-time recurrent neural networks to correctly
classify strings of a regular language. Feedforward networks
generally do not have the computational capabilities to rep-
resent recursive rules when the depth of the recursion is not
known a priori. Such rules can, however, be conveniently
represented by recurrent networks. Rules defining the learned
grammar can be extracted from networks in the form of deter-

Fig. 1. Neural network implementing fuzzy classifier.

ministic finite-state automata (DFA’s) by applying clustering
algorithms in the output space of recurrent state neurons.
Starting from a defined initial network state that represents the
root of the search space, the algorithm searches the equally
partitioned output space of state neurons in a breadth-first
manner. A heuristic is used to choose among the consistent
DFA’s that model, that best approximates the learned regular
grammar. Here the granularity of the underlying ANN within
the DFA-extraction technique is at the level of ensembles of
neurons, rather than individual neurons. Hence, the approach
is not strictly decompositional. This is termed acompositional
approach [5]. The extracted rules demonstrate high accuracy
and fidelity and the algorithm is portable.

Vahed and Omlin [99] use a polynomial-time, symbolic
learning algorithm to infer DFA’s solely based on observa-
tion of a trained network’s input–output behavior. This is a
pedagogical approach and produces a minimal representation
of the DFA. The clustering phase required in other recurrent
net-based approaches [98] is eliminated, thereby increasing the
fidelity of the extracted knowledge.

Chenet al. [100] have designed a recurrent network, that
adapts from an analog phase to a discrete phase, for rule ex-
traction. A modified objective function is used to accomplish
the discretization process and logic learning. It is claimed that
the network has significant advantage over other recurrent net-
based approaches.

2) With Genetic Algorithms:Here we present rule genera-
tion methodologies inneuro-genetichybridization. Fukumi and
Akamatsu [101] have used an evolutionary algorithm for gener-
ating a compact neural network. Concepts of random optimiza-
tion search and deterministic mutation are utilized for this pur-
pose. This is followed by extraction of rules from the network.

Maeda and De Figuliredo [102] have designed a novel system
for rule extraction of regulator control problems. The system
employs a hybrid genetic search and reinforcement learning that
requires neither supervision nor a reference model. The rules
constitute a rule-based/table lookup structure capturing control
actions. The extracted rules are claimed to be better than that
generated by a neural controller trained with backpropagation.

C. Incorporating Fuzziness in Neural Net Framework

This is category 1 of the neuro–fuzzy hybridization described
in Section II-B. A basic block diagram illustrating the process
is provided in Fig. 1 [41].

As an illustration of the characteristics of layered fuzzy
neural networks for inferencing and rule generation, the
models by Hayashi [103], [104], and Hudsonet al. [105] are
described first. Adistributed single-layer perceptron-based
model trained with thepocket algorithmhas been used [103],
[104] for diagnosinghepatobiliary disorders. All contradictory
training data are excluded, as these cannot be tackled by the

MITRA AND HAYASHI: NEURO-FUZZY RULE GENERATION: SURVEY IN SOFT COMPUTING FRAMEWORK 755

model. The input layer consists of fuzzy and crisp cell groups
while the output is modeled only by fuzzy cell groups. The
crisp cell groups are represented by cells taking on two
values in . Fuzzy
cell groups, on the other hand, use binary-dimensional
vectors, each taking on values in . Linguistic relative
importance terms such asvery important and moderately
important are allowed in each proposition; linguistic truth
values like completely true, true, possibly true, unknown,
possibly false, false, andcompletely falseare also assigned by
the domain experts, depending on the output values. Provision
is kept, using different linguistic truth values, for modeling the
belonging of a pattern to more than one class. Extraction of
fuzzy IF–THEN production rules is possible using a top–down
traversal involving analysis of the node activation, bias and the
associated link weights.

Hudsonet al.[105] used a feedforward network for detecting
carcinoma of the lung. The input nodes represent the data values
for signs, symptoms, and test results (may be continuous or dis-
crete) while the interactive nodes account for the interactions
that may occur between these parameters. Information is ex-
tracted directly from the accumulated data and then combined
with a rule-based system incorporating approximate reasoning
techniques. The learning method is an adaptation of thepoten-
tial functionapproach to pattern recognition and is used to de-
termine the weighting factors as well as the relative strengths of
rules for the two-class problem.

The fuzzy MLP [7] and fuzzy Kohonen network [8] are also
used for linguistic rule generation and inferencing. Note that
these models extend the concept of Gallant’s method (which is
derived for a perceptron) [1] to an MLP and a Kohonen network,
by incorporating fuzzy set theoretic concepts at various levels.
Here the input, besides being in quantitative, linguistic, or set
forms, or a combination of these, can also be missing. The com-
ponents of the input vector consist of membership values to the
overlapping partitions of linguistic propertieslow, medium, and
high corresponding to each input feature. This provides scope
for incorporating linguistic information in both the training and
testing phases of the said models and increases their robust-
ness in tackling imprecise or uncertain input specifications. An

-dimensional feature space is decomposed intooverlap-
ping subregions corresponding to the three primary properties
low, medium, andhigh. Although there is an associated increase
in dimension and cost, one has to offset this with the specific
gains achieved. The scheme enables the models to utilize more
local information of the feature space and is found to be suitable
in handling overlapping regions and highly nonlinear decision
boundaries. Output decision is provided in terms of class mem-
bership values. The contribution of ambiguous or uncertain vec-
tors to the weight correction is automatically reduced.

The connection weights of the trained network constitute the
knowledge base for the problem under consideration. When par-
tial information about a test pattern is presented at the input, the
model either infers its category or queries the user forrelevant
information in the order of their relative importance (decided
from thelearnedconnection weights). If asked by the user, the
network is capable of justifying its decision in rule form (rele-
vant to a presented pattern) with the antecedent and consequent

Fig. 2. Neural network implementing fuzzy logic.

parts produced in linguistic andnatural terms. The antecedent
clauses are derived from the trained network by backtracking
alongmaximum-weightedpaths (through active nodes), whereas
the consequent part is generated using a certainty measure. The
effectiveness of the algorithms is demonstrated on vowel, syn-
thetic, and medical data. An application of the fuzzy MLP to
medical diagnosis [42] is described in detail in Section V.

Wanget al. [106] have used a fuzzy logic rule-based system
to first determine a good feature set for the recognition ofEs-
cherichia coli O157:H7, a cause of serious health problems.
Fuzzy membership functions are defined for each term set of
each linguistic variable in the rules. The human inspired fea-
tures of this reduced rule set are then incorporated in a multiple
neural network fusion approach. The fuzzy integral is utilized
in the fusion of the networks trained with different feature sets.

D. Designing Neural Net by Fuzzy Logic Formalism

Fig. 2 provides a block diagram [41], explaining the principle
behind this form of hybridization (category 2, Section II-B). It
encompasses both fuzzy reasoning and fuzzy control, where
someIF–THEN rules are initially learned using training data
and/or expert knowledge. Rules can later be generated (inter-
polated) for different input conditions. Integration with GA’s
is also considered briefly.

1) For Fuzzy Reasoning:The MLP-based approach to
fuzzy reasoning reported by Keller and Tahani [35] falls under
this category. It receives the possibility distributions of the an-
tecedent clauses at the input, uses a hidden layer to generate an
internal representation of the relationship, and finally produces
the possibility distribution of the consequent at the output. The
model is expected to function as an inference engine with each
small subnetwork learning the functional input–output relation-
ship of a rule. Trapezoidal possibility distributions, sampled at
discrete points, are used to represent fuzzy linguistic terms and
modifiers. The network is supposed to be able to extrapolate to
other inputs (for a rule) followingmodus ponens. Conjunctive
antecedent clauses are also modeled using separate groups
of hidden nodes for each clause. Kelleret al. [36] explicitly
encode each rule in the structure of the network. A measure of
disagreement between the input possibility distribution and the
antecedent clause distribution is used at theclause-checking
andcombinationlayers to determine the uncertainty in the con-
sequent part of thefired rule. Theoretical properties of various
combination schemes are also investigated. Palet al. [107]
have reported an extension to this algorithm for computing an
optimal value of , the importance of the various antecedent
clauses, which are supplied subjectively in Ref. [36]. The same
membership values with more quantization levels are used at
the antecedent and consequent levels. An improved network
architecture is also proposed. This is extended in Ref. [108] by

756 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 11, NO. 3, MAY 2000

using neural learning to find an optimal relation representing a
set of fuzzy compositional rules of inference.

Ishibuchiet al. [45], on the other hand, use interval vectors
to represent fuzzy input and output in an MLP. A backpropaga-
tion algorithm is applied on a cost function defined by-level
sets of actual and target fuzzy outputs, using the principles of
interval arithmetic. Different fuzzyIF–THEN rules are interpo-
lated from a few sample rules (used during training). Ishibuchi
et al. [54], [109] have also reported learning methods of neural
networks for utilizing expert knowledge represented by fuzzy
IF–THEN rules. Both numeric and linguistic inputs are repre-
sented in terms of fuzzy numbers and intervals, which can be
learned by the fuzzy neural network model. Here the connec-
tion weights are also modeled as fuzzy numbers represented by

-level sets. A generalization of this scheme for representing a
fuzzy weight of any shape is reported in [110]. However, the use
of interval arithmetic operations causes the computations to be
complex and time-consuming. Since fuzzy numbers are prop-
agated through the whole network, the computation time and
required memory capacities are times of those in the tradi-
tional neural networks of comparable size, whererepresents
the number of quantized membership grades.

The neural network-based fuzzy reasoning scheme by Takagi
and Hayashi [44] is capable of learning the membership func-
tion of the IF part and determining the amount of control in
the THEN part of the inference rules. The input data are clus-
tered to find the best number of partitions corresponding to the
number of inference rules applicable to the reasoning problem,
with a single neural net block modeling one rule. The optimum
number of cycles required is determined to avoidoverlearning
and the minimal number of input variables selected for infer-
ring the control values. Takagiet al.[37] analyzed the identifica-
tion error to improve the performance of the structured network
based on fuzzy inference rules. The number of clusters deter-
mine the correspondingTHEN parts to be added. The approach
by Takagiet al.has been adapted in Japanese neuro–fuzzy con-
sumer products [111]. Note that Mitra and Kuncheva [112] have
developed a scheme to augment theIF parts of the relevant rules
for the required pattern classification problem.

Nie [46] has developed a general and systematic approach for
constructing a multivariable fuzzy model from numerical data
using a self-organizing counterpropagationnetwork. Both super-
vised and unsupervised algorithms are used. Knowledge can be
extracted from the data in the form of a set of rules. This rulebase
is then utilized by a fuzzy reasoning model. Moreover, an online
adaptive fuzzy model updates the rulebase (in terms of connec-
tion weights) in response to the incoming data. The model claims
a simple structure, fast learning speed, and good modeling accu-
racy. Chen and Xi [113] have developed an adaptive fuzzy infer-
ence system based on competitive learning. The input space is
partitioned into local regions (clusters) and their decision bound-
aries determined. Fuzzy rules corresponding to each local region
are then learned. A self-organizing learning algorithm has been
used by Cai and Kwan [114] for designing a fuzzy inference net-
work. The number of inference rules and their membership func-
tions are automatically determined from the data during training.
Learning speed is claimed to be fast. No prior information is re-
quired from experts while designing the system.

2) For Fuzzy Control: Wang and Mendel [38] represent a
fuzzy system by a series of fuzzy basis functions, which are
algebraic superposition of membership functions. Each such
basis function corresponds to one fuzzy logic rule. An orthog-
onal least squares learning algorithm is utilized to determine the
significant fuzzy logic rules (structure learning) and associated
parameters (parameter learning) from the input–output training
pairs. However, orthogonalization may lead to the production of
incomprehensible and complex rules. Since a linguistic fuzzy
IF–THEN rule from human experts can be directly interpreted,
the fuzzy basis function network provides a framework for com-
bining both numerical and linguistic information in a uniform
manner.

Cho and Wang [115] describe an RBF-based adaptive fuzzy
system to extractIF–THEN rules from sample data through
learning. Different consequence types such as constant,
first-order linear function, and fuzzy variable are modeled,
thereby enabling the network to handle arbitrary fuzzy infer-
ence schemes. Neither is there an initial rulebase, nor does
one need to specify in advance the number of rules required to
be identified by the system. Fuzzy rules are generated, as and
when needed, by recruiting basis function units.

Shann and Fu [116] have designed a layered network for
learning rules of fuzzy control systems. The network is pruned
to delete redundant rules and generate a concise fuzzy rulebase.
The network developed by Horikawaet al.[117] is based on the
truth space approach for automatic acquisition of fuzzy rules.
The fuzzy variables in the consequent are labeled according
to their linguistic truth values represented as fuzzy sets. Bas-
tian [118] has introduced defuzzification weights to the over-
lapping areas of the consequent to control the linearity/nonlin-
earity at the transition between fuzzy logic rules. These weights
are learned by a feedforward ANN. This can also be categorized
as a cooperative neuro–fuzzy system according to the method-
ology of Naucket al.

ANFIS by Jang [39] implements a Sugeno-like fuzzy system
[24] in a five-layer network structure. Backpropagation is used
to learn the antecedent membership functions, while least mean
squares algorithm determines the coefficients of the linear
combinations in the consequent of the rule. Here the min and
max functions in the fuzzy system are replaced by differentiable
functions. The rulebase must be known in advance, as ANFIS
adjusts only the membership functions of the antecedent and
consequent parameters. ANFIS can be easily implemented by
flexible neural network simulators, and hence is attractive for
application purposes. However, the learning algorithm being
computationally expensive it is important to have an efficient
implementation. Moreover, it is difficult for the model to handle
high-dimensional problems, as this leads to a large number
of input partitions, rules, and, hence, consequent parameters.
The structure of ANFIS ensures that each linguistic term is
represented by only one fuzzy set.

The neuro–fuzzy model designed by Chaket al.[119] can lo-
cate its rules and optimize their membership functions by com-
petitive learning and Kalman filter algorithm. The key feature is
that a high-dimensional fuzzy system can be implemented with
fewer rules than that required by a conventional Sugeno-type
model. This is because the input space partitions are unevenly

MITRA AND HAYASHI: NEURO-FUZZY RULE GENERATION: SURVEY IN SOFT COMPUTING FRAMEWORK 757

distributed. The network can be implemented in real time. Juang
and Lin [120] have developed a self-constructing neural fuzzy
inference network with on-line learning ability. Initially there
are no rules, but they are created and adapted as learning pro-
ceeds via simultaneous structure and parameter identification.
The input space is partitioned in a flexible way, using clustering,
to identify the antecedents. The consequent is generated initially
by clustering, followed by incremental learning using a pro-
jection-based correlation measure. Linear transformations are
learned for each input variable, enabling the network to model
fewer rules with higher accuracy. Kuo and Cohen [121] use
a self-organizing and self-adjusting fuzzy model for manufac-
turing process control. The inputs and outputs are partitioned by
Kohonen’s feature mapping and the premise and consequence
parameters are updated using backpropagation. The training pa-
rameters are dynamically updated using fuzzy models, leading
to an acceleration in speed of learning. The self-organizing stage
determines the initial position and shape of each membership
function at the antecedent and the control action at the conse-
quent. Backpropagation is then used to tune these parameters.

GARIC by Berenji and Khedkar [40] uses a differentiablesoft
minimumfunction to implement a fuzzy controller. A complex
supervised learning procedure is used. All the models based on
Sugeno-type systems are sometimes not as easy to interpret,
as are Mamdani-type fuzzy systems. They are therefore more
suited to applications where interpretation is not as important as
performance. Initialization using prior knowledge is also not as
easy as compared to models implementing Mamdani-type fuzzy
systems. Berenji and Khedkar later developed a new architec-
ture to control dynamic systems [122]. This model is capable
of starting with approximate prior knowledge, which is refined
using reinforcement learning.

Nauck et al. [14], [123] have developed NEFCON, NEF-
CLASS, and NEFPROX using a generic fuzzy perceptron to
model Mamdani-type [23] neuro–fuzzy systems. The authors
observe that a neuro–fuzzy system should be easy to implement,
handle and understand. Fuzzy systems are designed to exploit
the tolerance for imprecision, and hence should not concen-
trate on generating theexactsolution. Reinforcement learning
is found to be more suitable than supervised learning for han-
dling control problems. The learning procedure uses a fuzzy
error, and can operate both on fuzzy sets and rules. The system
is claimed to be simple and highly interpretable. This is suit-
able in providing support to users during decision-making. Un-
like the ANFIS model, NEFPROX offers a method of structure
learning. The knowledge base of the fuzzy system is implicitly
given by the network structure. The input units assume the task
of the fuzzification interface, the inference logic is represented
by the propagation functions, and the output unit is the defuzzi-
fication interface. The incremental rule learning algorithm can
create a rulebase from scratch by adding rule after rule or can
also operate on prior knowledge.

Reinforcement learning has also been used by Jouffe [124] to
tune online the consequent part of fuzzy inference systems. The
only information available for learning is the system feedback,
which describes in terms of reward and punishment the task the
fuzzy agent has to realize. At each time step, the agent receives
a reinforcement signal according to the last action it has per-

formed in the previous state. The problem involves optimizing
not only the direct reinforcement, but also the total amount of
reinforcement the agent can receive in the future.

3) With Recurrent Networks:Most neuro–fuzzy models
reported so far deal with static input–output relationships. They
are unable to process temporal input sequences of arbitrary
length. Recurrent neural networks have the ability to store
information over indefinite periods of time, can develophidden
states through learning, and are thus potentially useful for
representing recursive linguistic rules. They are particularly
well-suited for problem domains where incomplete or contra-
dictory prior knowledge is available. In such cases, knowledge
revision or refinement is also possible using recurrent nets.
In fuzzy regular grammars, there is no question whether a
production rule is applied; all applicable production rules are
executed to some degree. For a given fuzzy grammar, there
exists a fuzzy automaton. Fuzzy finite-state automata (FFA’s)
can model dynamic processes whose current state depends
on the current input and previous states. Unlike deterministic
finite-state automata (DFA’s), FFA’s are not in one particular
state. Here each state is occupied to some degree defined by a
membership function. Presently, FFA’s are gaining significance
as synthesis tools for a variety of problems. Based on their
earlier design on encoding DFA’s in discrete-time second-order
recurrent neural networks [98], Omlinet al. have constructed
an augmented recurrent network that encodes an FFA and rec-
ognizes a given fuzzy regular language with arbitrary accuracy
[125]. The encoding methodology is empirically verified using
randomly generated FFA’s. As in [98], this approach of rule
extraction can also be categorized as compositional.

Zhang and Morris [126] use a recurrent neuro–fuzzy network
to build long-term prediction models for nonlinear processes.
Process knowledge is used to initially partition the process op-
eration into several local fuzzy operating regions and set up
the initial fuzzification layer weights. Membership functions of
fuzzy operating regions are refined through training, enabling
the local models to learn. The global model output is obtained
by center of gravity defuzzification involving the local models.

4) With Genetic Algorithms:A neuro–fuzzy-genetichy-
bridization has been reported by Yupuet al. [59]. GA’s are used
to search optimal fuzzy rules and membership functions for the
neuro–fuzzy system.A priori knowledge from the designer is
combined with the learning ability of the network to design
an optimal fuzzy controller. This self-learning system uses the
control performance index as the fitness function of the GA
while searching for the network parameters.

Faraget al.[60] present a neuro–fuzzy system capable of han-
dling both quantitative and qualitative knowledge. The learning
involves first finding the initial parameters of the membership
functions of the fuzzy model with Kohonen’s self-organizing
feature map algorithm. This is followed by the extraction of
linguistic fuzzy rules. A multiresolutional dynamic GA is then
used for optimized tuning of membership functions.

Ishibuchiet al. [62] use GA’s for selecting a small number
of significant linguistic rules from a large number of extracted
rules. As in [82] (Section III-A.1), the objective is to maximize
the number of correctly classified patterns while minimizing the
number of selected rules.

758 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 11, NO. 3, MAY 2000

Fig. 3. Neural network implementing fuzzy connectives.

Wang and Archer [127] have introducedultrafuzzysets for
modeling decision-making under conflict, using a modified ver-
sion of backpropagation. In case of ultrafuzzy sets, the mem-
bership function takes on fuzzy values. Ultrafuzzy interval of
certainty factor is modeled as the consequent of a rule. Two
fuzzy membership functions termed asparticipationandmod-
eration functions, falling in the ultrafuzzy interval, are devel-
oped based on the well-knownplausibility andbelief functions
[128]. The concept of plausibility and belief functions is used to
construct conflict measures, which help in explaining the com-
promise phenomena observed in decision-making. This fuzzy
decision-making model is capable of cumulating human knowl-
edge and is claimed to be useful for maintaining consistency
while making decisions.

Chowet al.[129] have introduced an interesting neuro–fuzzy
method for enforcing heuristic constraints on membership func-
tions, while extracting knowledge in the form of rules from lim-
ited information. In such cases, there is generally no ideal rule-
base, which can be used to validate the extracted rules. More-
over, using output error measures to validate extracted rules is
not sufficient as extracted knowledge may not make heuristic
sense. This model ensures that the final membership functions
conform toa priori heuristic knowledge, reduces the domain of
search, and improves convergence speed.

E. Changing Basic Characteristics of Neurons

This pertains to category 3 of neuro–fuzzy hybridization de-
scribed in Section II-B. Fig. 3 provides an overview of the whole
process [41].

The work of Kelleret al. [35], [36], which falls under the
previous category, is extended [47] in the present framework.
The model uses a fixed network architecture that employs
parameterized families of operators, such as the generalized
mean and multiplicative hybrid operators. The hybrid op-
erator can behave as union, intersection, or mean operator
for different sets of parameters, which can be learned during
training. These networks possess extra predictable properties
and admit a training algorithm that producessharperinference
results. Since the exact nature of each operator is learned by
the network, the generated rules are capable of more accurately
representing the input–output relationship.

Rhee and Krishnapuram [130] have reported a method for
rule generation from minimal approximate fuzzy aggregation
networks, using node activation and link weights. They estimate
the linguistic labels and the corresponding triangular member-
ship functions for the input features from the training data. Hy-
brid operators with compensatory behavior whose parameters
can be learned during gradient descent to estimate the type of
aggregation are employed at the neuronal level. Pruning of re-
dundant features and/or hidden nodes helps in generating ap-
propriate rules in terms ofAND–OR operators that are repre-

sented by these hybrid functions. Zhang and Kandel [131] have
also developed an adaptive fuzzy reasoning method using com-
pensatory fuzzy operators. It is found to effectively learn fuzzy
IF–THEN rules from both well- and ill-defined data. The effi-
ciency of the compensatory learning algorithm can be enhanced
by choosing an appropriate compensatory degree. Zurada and
Lozowski [132] have applied - and -norms on input member-
ship functionsnegative, zero, andpositiveto extract linguistic
rules for pattern classes.

Mitra and Pal have used the fuzzy logical MLP for infer-
encing and rule generation [48]. The model consists of logical
neurons employing conjugate pairs of-norms and -conorms

, like min–maxandproduct–probabilistic sum, in place of the
weighted sumandsigmoidalfunctions of the conventional MLP.
Various fuzzy implication operators are used to introduce dif-
ferent amounts of interaction during error backpropagation. The
built-in AND–OR structure of the fuzzy logical MLP helps it to
generate more appropriate rules inAND–OR form, expressed as
disjunction of conjunctive clauses.

A neural network for formulating fuzzy production rules has
been constructed by Yager [133]. Numerical information is used
to find the preliminary partitioning of the input–output joint
space. The linguistic variables associated with the antecedent
and consequent parts of the rules are represented as weights in
the neural structure. The membership values of these linguistic
variables, modeled as fuzzy sets, can be learned. The determi-
nation of the firing level of a neuron is viewed as a measure of
possibility between two fuzzy sets: the connection weights and
the input. Unlike Kelleret al.[36], here a self-organizing proce-
dure is used to determine the structure and initial weights of the
network, and obtain the nucleus of rules for a fuzzy knowledge
base. This procedure is suitable in data-rich situations, where
one is unable to find experts who can provide an organized de-
scription of the system. However, in the absence of expert opin-
ions, the training data must be representative of the system’s
behavior and the unsupervised learning algorithm needs to be
properly selected. Yager [134] has also employed neural mod-
ules for modeling the rules of fuzzy logic controllers with a com-
biner (usingminor productfunctions). The various weights are
learned and the importance of the antecedent clauses simulated.

Lin and Lu [135] have designed a five-layered network ca-
pable of processing both numerical and linguistic information.
Fuzzy rules and membership functions are encoded for fuzzy
inferencing. The inputs, outputs, and connection weights can
be fuzzy numbers of any shape, represented by-level fuzzy
sets. Min and max operators are used to perform condition
matching of fuzzy rules and integration of fired rules having
the same consequent. Fuzzy supervised learning and fuzzy
reinforcement learning are developed using interval arithmetic
and fuzzy input–output pairs and/or linguistic information. The
reinforcement signal from the environment involves linguistic
information (fuzzy critic signal) such asgood, very good,
or bad instead of the normal numerical critic values like 0
(success) or 1 (failure). The system is used for reducing the
number of rules in a fuzzy rulebase, and learning proper fuzzy
control rules and membership functions.

The inferencing in the pseudo outer-product-based fuzzy
neural network (POPFNN) [136] uses fuzzy rule-based systems

MITRA AND HAYASHI: NEURO-FUZZY RULE GENERATION: SURVEY IN SOFT COMPUTING FRAMEWORK 759

that employ thetruth value restrictionmethod. There are five
layers, termed the input, condition, rulebase, consequence, and
output layers. The fuzzification of the input and the defuzzi-
fication of the output are automatically accomplished. The
learning process consists of three phases: self-organization,
POP learning, and supervised learning. A self-organizing
algorithm is employed in the first phase to initialize the mem-
bership functions of both the input and output variables by
determining their centroids and widths. In the second phase,
the POP algorithm is run in one pass to identify the fuzzy rules
that are supported by the training set. The derived structure
and parameters are then fine-tuned using the backpropagation
algorithm.

A cell recruitment learning algorithm that is capable of
forgetting previously learned facts by learning new information
has been employed by Romaniuk and Hall [137] to build a
neuro–fuzzy system for determining thecreditworthiness of
credit applicants. The network consists ofpositiveandnegative
collector cellsalong withunknownandintermediatecells, and
can handlefuzzyor uncertaindata. Fuzzy functions such as
maximum, minimum, andnegationare applied at the neuronal
levels depending on the corresponding bias values. This incre-
mental learning algorithm can be used either in conjunction
with an existing knowledge base or alone. Extraction of fuzzy
IF–THEN rules is also possible.

IV. USING KNOWLEDGE-BASED NETWORKS

One of the major problems in connectionist/neuro–fuzzy
design is the choice of the optimal network structure. This has
an important bearing on any performance evaluation. Moreover,
the models are generally very data-dependent, and the appro-
priate network size also depends on the available training data.
Various methodologies developed for selecting the optimal
network structure include growing and pruning of nodes and
links, employing genetic search, and embedding initial knowl-
edge in the network topology. The last approach—embedding
initial knowledge—is usually followed in the case of knowl-
edge-based networks. It is formally shown [138] that such
knowledge-based networks require relatively smaller training
set sizes for correct generalization. When the initial knowledge
fails to explain many instances, additional hidden units and
connections need to be added. The initial encoded knowledge
may be refined with experience by performing learning in the
data environment. The resulting networks generally involve
less redundancy in their topology.

Incorporation of the concept of neuro–fuzzy integration at
this level can also help in designing more efficient (intelligent)
knowledge-based networks. The general role of fuzzy sets is to
enhance ANN’s by incorporating knowledge-oriented mecha-
nisms. Preprocessing of training data leads to improvement in
learning and/or enhanced robustness characteristics of the net-
work. Prior knowledge, in the form of linguistic rules and mem-
bership functions, can be embedded into an ANN and thereby
shorten the learning process. The blackbox aspect of an ANN is
avoided in this manner and new knowledge can be extracted in
rule form. Note that linguistic rules are more natural and easily
interpretable. The heuristic, data-driven learning procedure op-

erates on local information, causing only local modifications in
the underlying fuzzy system. The fuzzy rules encoded within
the system can be viewed as vague prototypes of the training
data.

In this section, we embark on knowledge-based networks for
performing inferencing and rule generation. We first describe
the neural approaches. This is followed by different neuro–fuzzy
knowledge-based approaches (hybridization categories 1 and 3,
Section II-B). Next, we demonstrate how GA’s are incorporated
into this framework. Finally, some recent literature, using rough
sets in this respect, is presented.

A. Connectionist Models

Let us consider here the models developed by Gallant [1], Fu
[10], Shavliket al. [3], [11], [139], Yin and Liang [140], and
Lacheret al. [141]. The networks, other than that in [141], in-
volve crisp inputs and outputs. The initial domain knowledge,
in the form of rules, is mapped into the multilayer feedforward
network topology, using binary link weights to maintain the se-
mantics. Note that the rule generation aspect of Gallant’s model
[1] has already been discussed in Section III-B, as this is one of
the seminal works in this direction. The other models are now
described.

Yin and Liang [140] have employed agradually aug-
mented-nodelearning algorithm to incrementally build a
dynamic knowledge base capable of both acquiring new
knowledge and relearning existing information. The rules are
explicitly represented among thecondition nodes, rule nodes,
andaction nodes, and the algorithm gradually builds the mul-
tilayer feedforward network. The network structure is changed
dynamically according to the new environment or through
human intervention. This connectionist incremental model has
been applied to the design of ananimal identification system.
In Fu’s model [10] hidden units and additional connections
are introduced appropriately when the network performance
stagnates during training using backpropagation. Weight
decay, pruning of weights, and clustering of hidden units are
incorporated to improve the generalization of the network.

Towell and Shavlik [11] have designed a hybrid learning
system KBANN, and applied it to problems of molecular
biology. Disjunctive rules are rewritten as multiple conjunctive
rules while mapping into the network structure. Nodes and links
are incorporated, on instructions from the user, to augment the
knowledge-based module. It is primarily a theoryrefinement
system that is capable of pruning an inserted rule set, but not
capable of adding new rules. It is largely topology preserving
and assumes that the initial domain theory is basically correct
and nearly complete. Learning or evolution of new knowledge,
as a distributed representation, is not encouraged here [5].

An expansion of the network guided by both the domain
theory and training data has been reported in TopGen by Opitz
and Shavlik [139]. Dynamic additions of hidden nodes are
made at the best place by heuristically searching through the
space of possible network topologies, in a manner analogous
to the adding of rules and conjuncts to the symbolic rulebase.
This approach uses a specialized ANN architecture with a
specialized training algorithm. It generates sparser rule sets as
compared to KBANN and overcomes the latter’s limitation of

760 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 11, NO. 3, MAY 2000

not being able to extend a relatively weak initial domain theory.
The computational expense is justified in terms of the human
expert’s willingness to wait for an extended period of time for
better predictive accuracy. TopGen decreases false negatives
by adding new rules, decreases false positives by adding new
nodes to the network, and uses weight decay to preserve
useful knowledge. The network which generalizes best on the
corresponding validation set is selected as the best network.

A way of using the knowledge of the trained neural model to
extract the revised rules for the problem domain is described by
Fu [10] and Towell and Shavlik [3]. Knowledge, in the form
of rules in disjunctive normal form, is encoded into the net-
work. The other links represent low-weighted connections, al-
lowing subsequent refinement. The network is trained through
error backpropagation. This is followed by rule extraction. It is
assumed that the neurons have binary inputs and hard-limiting
activation functions, and the method of rule extraction searches
for constraints on the inputs of a given neuron such that the
weights are (bias). An exhaustive search for firing condi-
tions follows. Each firing corresponds to a rule under a certain
combination of inputs. All combinations are checked, such that
the rule search becomes a combinatorial task.

Thesubsetalgorithm [10] can be used by the network to im-
prove the search complexity for the combination of firing condi-
tions. Here one searches for any single weight exceeding the bias
andrewritesall conditionssofoundasruleswithsingle inputvari-
able. The search continues for increased size of sets until all sets
have been explored and possibly rewritten as rules. The extracted
rules are simple to understand and their size can be restricted by
specifying the number of premises/antecedents to be considered.
However,someof theproblemsassociatedwith thisalgorithmare
as follows [13]. It requires lengthy, exhaustive searches of size

for a hidden/output node with a fan-in of. It extracts a
large set of rules up to , where and are the
number of subsets of positively and negatively weighted links,
respectively. Some of the generated rules may be repetitive, as
permutations of rule antecedents are not taken care of automati-
cally. Moreover, there is no guarantee that all useful knowledge
embedded in the trained network will be extracted.

The subset algorithm has been further modified in Towell and
Shavlik [3] by the of algorithm for extracting meaningful
rules. A general rule in this case is of the form:IF (at least of
the following antecedents are true),THEN . The rationale
is to find a group of links that form an equivalence class, whose
members have similar effect (weight values) and can be used
interchangeably with one another.

The steps of this algorithm involveclustering the weights
of each neuron into groups,averagingtheir values to create
equivalence classes,eliminatinglow-value weights if they have
no effect on the sign of the total activation andoptimizingby
freezing the remaining weights and retraining the biases using
the backpropagation algorithm. This is followed byrule ex-
traction. Arithmetic is performed such that one searches for
all weighted antecedents, which, when summed up, exceed the
threshold value of a given neuron.

This algorithm has good generalization (accuracy), but can
have degraded comprehensibility [6]. Note that the algorithm
considers groups of links as equivalence classes, thereby gen-

erating a bound on the number of rules rather than establishing
a ceiling on the number of antecedents. This approach differs
from that of Saito and Nakano [83] (described in Section III-B),
where a breadth-first search is employed to exhaustively find
those input settings that cause the weighted sum to exceed the
bias at a node. Even though the algorithms in [3], [10] are expo-
nential, their inherent simplicity makes them extremely useful.

Lacheret al. [141] have designed event-driven, acyclic net-
works of neural objects calledexpert networks. There are regular
nodes and operation nodes (for conjunction and negation). Input
weights are hard wired, while the output weights of a node are
adaptive. Antecedents of a disjunction in a rule are simplified
to generate a set of individual rules before formulating the ini-
tial network architecture. Virtual rules are used to create poten-
tial connections for learning in order to overcome situations in-
volving small initial set of rules. The backpropagation algorithm
is modified to work in the event-driven environment, where both
forward and backward signals propagate indata-flow fashion.
The form of the rules (coarse knowledge) is tuned with the asso-
ciated certainty factors (fine knowledge), and the resultant net-
work trained for better performance.

B. Incorporating Fuzzy Sets

A brief survey on the knowledge-based networks involving
fuzziness at different stages is provided here. The approaches in
[9], [142]–[144] fall under category 1 of the fusion methodolo-
gies described in Section II-B, while those in [89], [145], and
[146] can be grouped in category 3.

Knowledge extracted from experts in the form of membership
functions and fuzzy rules (inAND–OR form) is used to build and
preweight the neural net structure, which is then tuned using
training data. Kasabov [142] uses three neural subnets—produc-
tion memory, working memory, and variable binding space—to
encode the production rules, which can later be updated. FuNN
[143] is a five-layered feedforward architecture with the second
layer calculating fuzzy input membership functions, the third
layer representing fuzzy rules, the fourth layer calculating
output membership functions, and the fifth layer computing
output defuzzification. The network has features of both a neural
network and a fuzzy inference machine.

Fuzzy signed digraph with feedback, termedfuzzy cognitive
map, has been used by Kosko [144] to represent knowledge. Ad-
ditive combination of augmented connection matrices are em-
ployed to include the views of a number of experts for generating
the knowledge network. Kosko [15] interprets a fuzzy rule as an
association between antecedent and consequent. Neural associa-
tive memory or bidirectional associative memory is used to store
fuzzy rules. The weight of a rule is indicative of its importance.

Machado and Rocha [145] have used a connectionist knowl-
edge base involving fuzzy numbers at the input layer, fuzzy
AND at the hidden layers, and fuzzyOR at the output layer. The
hidden layers chunk input evidences into clusters of information
for representing regular patterns of the environment. The output
layer computes the degree of possibility of each hypothesis.
The initial network architecture is generated usingknowledge
graphselicited from experts. The experts express their knowl-
edge about each hypothesis of the problem domain by selecting

MITRA AND HAYASHI: NEURO-FUZZY RULE GENERATION: SURVEY IN SOFT COMPUTING FRAMEWORK 761

an appropriate set of evidences and building an acyclic weighted
AND–OR graph (knowledge graph) to describe how these must
be combined to support decision making.

Tan [89] has used a generalization of fuzzy ARTMAP [50],
calledcascade ARTMAP. It represents intermediate attributes
and rule cascades of rule-based knowledge explicitly, and per-
forms multistep inferencing. A major problem of using MLP
to refine rule-based knowledge [3], [10] is the preservation
of symbolic knowledge under the weight tuning mechanism
of the backpropagation algorithm. Another limitation is that
unless the initial rulebase is roughly complete, the initial
network architecture may not be sufficiently rich for handling
the problem domain. A rule insertion algorithm translates
IF–THEN symbolic rules into cascade ARTMAP architecture.
This knowledge can be refined and enhanced by the learning
algorithm. During learning, new recognition categories (rules)
can be created dynamically to cover the deficiency of the
domain theory. This is in contrast to the static architecture of
the standard slow learning backpropagation networks. Learning
in cascade ARTMAP is match-based (not error-based); it does
not wash away existing knowledge and the meanings of units
do not shift. It relies on a specific architecture,viz. adaptive
resonance theory mapping, which enables it to handle thesta-
bility–plasticity dilemma. The extracted rules involve discrete
inputs and are of good quality. The algorithmic complexity is
linear in the number of recognition categories. Results indicate
that the performance is superior as compared to the KBANN
[11], ID-3 (decision tree) and MLP.

Most of these models are mainly concerned with the en-
coding of initial knowledge by a fuzzy neural network followed
by refinement during training. Extraction of fuzzy rules in
this framework has been attempted [9], [89], [142], [145],
[146]. Connection weights of FuNN, above a preset threshold,
determine thecondition or action elements in the extracted
rules along with their correspondingdegrees of importanceand
confidence factors[143]. Inference, inquiry, and explanation
are possible during consultation with the expert in [145]. As
the cascade ARTMAP [89] preserves symbolic rule form, the
extracted rules can be directly compared with the originally
inserted rules. These rules are claimed [89] to be simpler
and more accurate than the of rules [3]. Besides, each
extracted rule is associated with a confidence factor that
indicates its importance or usefulness. This allows ranking and
evaluation of the extracted knowledge.

Machado and Rocha [146] have also used an interval-based
representation for membership grades (MGI) to allow reasoning
with different types of uncertainty: vagueness, ignorance, and
relevance. The model incorporates the facilities of incremental
learning, inference, inquiry, censorship of input information,
and explanation as in expert systems. The utility-based inquiry
process permits significant reduction of consultation cost or risk
and gives the system the common sense property possessed by
experts when selecting tests to be performed. The ability to crit-
icize input data when they disrupt a trend of acceptance or rejec-
tion observed for a hypothesis mimics the behavior of experts,
who are often able to detect suspicious input data and either
reject them or ask for their confirmation. The explanation al-
gorithm provides responses to queries such ashowa particular

conclusion was reached orwhya particular question was formu-
lated. The network forms a set of pathways that compete to send
the largest evidential flow to the output neuron representing the
hypothesis. The structure of the winning pathway represents a
chain of fuzzy pseudoproduction rules that can be presented to
the user either in a graphical format or as English text.

Application of this algorithm has been made to the deforesta-
tion monitoring of the Amazon region, using Landsat-V satellite
images. The classes considered are forest, savanna, water, defor-
ested area, cloud, and shadow. Eighty-two numerical features of
spectral, textural, and geometric nature were measured on each
image segment (of spectrally homogeneous regions, generated
by region growing). Fuzzy classification allows the modeling
of complex situations such as transition phenomena (as in the
regeneration of forest in a previously burned area) or multiple
classification (as in the case of forest overcast by clouds).

A model by Mitraet al. [9], falling under category 1 of the
neuro–fuzzy integration scheme, has been developed for clas-
sification, inferencing, querying, and rule generation. It is ca-
pable of generating bothpositive(indicating the belongingness
of a pattern to a class) andnegative(indicating its degree of
not belonging to a class) rules in linguistic form to justify any
decision reached. This is found to be useful for inferencing in
ambiguous cases. The knowledge encoding procedure, unlike
many other methods [10], [11], involves a nonbinary weighting
mechanism. Thea priori class information and the distribution
of pattern points in the feature space are taken into account while
encoding the crude domain knowledge from the data set among
the connection weights. Fuzzy intervals and linguistic sets are
used in the process. Each pattern class is modeled in terms of
positive and negative hidden nodes. An estimation of the links
connecting the output and hidden layers (in terms of the pre-
ceding layer link weights and node activation) is made. The net-
work topology is then refined, using growing and/or pruning,
thereby generating a near optimal network architecture. The
knowledge-based network is shown to converge much earlier,
resulting in more meaningful rules at this stage as compared to
other models.

The trained knowledge-based network is used for rule
generation inIF–THEN form. These rules describe the extent to
which a test pattern belongs or does not belong to one of the
classes in terms of antecedent and consequent clauses provided
in natural form. Two rule generation strategies, as developed
by Mitra et al. [9] are 1) pedagogical—treating the network
as a blackbox and using the training set input (in numeric
and/or linguistic forms) and network output (with confidence
factor) to generate the antecedent and consequent parts and
2) decompositional—backtracking along maximal weighted
paths using the trained net and utilizing its input and output
activation (with confidence factor) for obtaining the antecedent
and consequent clauses. The concept of generatingnegative
rules and its implication to medical diagnosis is described in
Section V-C. The model has been tested onvowel, synthetic,
and medical data.

C. With Recurrent Networks

Omlin and Lee Giles [147] insert prior knowledge in the form
of rules into recurrent networks for performing rule revision.

762 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 11, NO. 3, MAY 2000

The inserted rules are compared with those in the DFA ex-
tracted from the trained network. It is claimed that the network is
able to preserve the correct rules, while simultaneously adapting
(through training) the incorrect inserted rules.

D. Incorporating Genetic Algorithms

Opitz and Shavlik [148] have used the domain theory of
Towell and Shavlik [3], [11], as described in Section IV-A,
to generate the knowledge-based network structure. Random
perturbation is applied to create an initial set of candidate
networks orpopulation. A node is perturbed by either deleting
it or by adding new nodes to it. Next, these networks are trained
using backpropagation and placed back into the population.
New networks are created by using crossover and mutation
operators specifically designed to function on these networks.
The algorithm tries to minimize the destruction of the rule
structure of the crossed-over networks, by keeping intact nodes
belonging to the same syntactic rule (i.e., the nodes highly con-
nected to each other). The mutation operator adds diversity to
a population, while still maintaining a directed heuristic search
technique for choosing where to add nodes. In this manner, the
algorithm searches the topology space in order to find suitable
networks, which are then trained using backpropagation.

Evolutionary strategy is used by Jinet al. [61] to optimize
a fuzzy rule system. The neuro–fuzzy hybridization employed
here falls under category 2 (Section II-B). However this initial
knowledge is tuned using evolutionary algorithms before being
mapped to a radial basis function network for refinement. The
number of fuzzy rules equals the number of hidden nodes in
the network. A neural network regularization technique, termed
adaptive weight sharing, is developed to extract understandable
fuzzy rules from the trained network.

Kasabov and Woodford [149] haveevolvedthe FuNN [143]
(Section IV-B) as an associative memory for the purpose of
dynamically storing and modifying a rulebase. Rules can be
extracted and inserted from/into the system (EFuNN) in both
on-line and off-line modes in a changing environment.

E. Incorporating Rough Sets

Let us first describe a model by Yasdi [66], which uses
rough sets for the design of knowledge-based networks in the
rough-neuro framework. The intention is to use rough sets as
a tool for structuring the neural networks. The methodology
consists of generating rules from training examples by using
rough set-theoretic concepts and mapping them into a single
layer of connection weights of a four-layered neural network.
Attributes appearing as rule antecedent (consequent) become
the input (output) nodes, while the dependency factors become
the weight of the adjoining links in the hidden layer. The input
and output layers involve nonadjustable binary weights.Max,
min, andOR operators are modeled at the hidden nodes, based
on the syntax of the rules. The backpropagation algorithm is
slightly modified. However, the network has not been tested on
any real life problem and no comparative study is provided to
bring out the effectiveness of this hybrid approach.

Now we demonstrate a way of integrating rough sets and
fuzzy-neural network for designing a knowledge-based system,

where the theory of rough sets is utilized for extracting do-
main knowledge. In the rough–fuzzy MLP [12], [67], the ex-
tracted crude domain knowledge is encoded among the connec-
tion weights. This helps one to automatically generate an appro-
priate network architecture in terms of hidden nodes and links.
Neuro-fuzzy hybridization of category 1 (Section II-B) is em-
ployed here. Methods are derived to model: 1) convex decision
regions with single-object representatives and 2) arbitrary deci-
sion regions with multiple-object representatives. From the per-
spective of pattern recognition, this implies using a single pro-
totype to model a (convex) decision region in case of method 1.
For method 2, this means using multiple prototypes to serve as
representatives of any arbitrary decision region. A three-layered
fuzzy MLP is considered where the feature space gives the con-
dition attributes and the output classes the decision attributes
so as to result in a decision table. This table may be trans-
formed, keeping the complexity of the network to be constructed
in mind. Rules are then generated from the (transformed) table
by computing relative reducts. The dependency factors of these
rules are encoded as the initial connection weights of the fuzzy
MLP. The knowledge encoding procedure involves a nonbinary
weighting mechanism based on a detailed and systematic esti-
mation of the available domain information. Moreover, the ap-
propriate number of hidden nodes is automatically determined
here.

Such a network is found to be more efficient than the conven-
tional version [12]. The architecture of the network becomes
simpler, due to the inherent reduction of the redundancy among
the connection weights. The dependency rule for each class is
obtained by considering the corresponding reduced attribute-
value table. A smaller table leads to a simpler rule in terms of
conjunctions and disjunctions, which is then translated into a
network having fewer hidden nodes. The objective is to strike
a balance by reducing the network complexity and reaching a
goodsolution, perhaps at the expense of not achieving thebest
performance. While designing the initial structure of the fuzzy
MLP, the union of the rules of all the pattern classes is con-
sidered. Here the hidden nodes model the conjuncts in the an-
tecedent part of a rule, while the output nodes model the dis-
juncts. The appropriate number of hidden nodes is automatically
generated by the rough set theoretic knowledge encoding pro-
cedure. On the other hand, both the fuzzy and conventional ver-
sions of the MLP are required to empirically generate a suitable
size of the hidden layer(s). Banerjeeet al.[12] further compared
the rough–fuzzy MLP with other related techniques like deci-
sion trees.

A modular approach has been pursued by Mitraet al.
[69] to combine the knowledge-based rough-fuzzy MLP
subnetworks/modules generated for each class, using GA’s.
Dependency rules are extracted directly from real-valued
attribute table consisting of fuzzy membership values. This
helps in preserving all the class representative points in the
dependency rules by adaptively applying a threshold that
automatically takes care of the shape of the membership func-
tions. An -class classification problem is split intotwo-class
problems. The generated subnetworks are combined, and the
final network evolved using a GA with restricted mutation
operator that utilizes the inherent knowledge of the modular

MITRA AND HAYASHI: NEURO-FUZZY RULE GENERATION: SURVEY IN SOFT COMPUTING FRAMEWORK 763

Fig. 4. Block diagram of inferencing and rule generation phases of fuzzy MLP.

structure. Thisdivide and conquerstrategy, followed by evo-
lutionary optimization, is found to enhance the performance
of the network. A compact set of more meaningful and less
redundant (refined) rules are generated. This work is a novel
rough–neuro–fuzzy–genetichybridization in the soft computing
framework. Application of the model has been made for
medical diagnosis [68], [69].

V. APPLICATION TO MEDICAL DIAGNOSIS

Here we describe a fuzzy MLP for rule generation [7] and
demonstrate its effectiveness in medical diagnosis problems.
This is followed by a short description ofnegativerule gen-
eration by a knowledge-based fuzzy MLP [9]. At the end of
the training phase the network is supposed to have encoded
the input–output information distributed among its connection
weights. This constitutes theknowledge baseof the desired de-
cision-making system. Handling of imprecise inputs is possible
and natural decision is obtained associated with a certainty mea-
sure denoting the confidence in the decision.

A. Model

The model is capable of

• inferencing based on complete and/or partial information;
• querying the user for unknown input variables that are key

to reaching a decision;
• producing justification for inferences in the form of

IF–THEN rules.
Fig. 4 gives an overall view of the various stages involved in the
process of inferencing and rule generation.

The input can be in quantitative, linguistic, or set forms or a
combination of these. It is represented as a combination of mem-
bership values to the three primary linguistic propertieslow,
medium, andhigh, modeled as functions [33]. The model can
handle the linguistic hedgesvery, more or less, andnot, as well
as the set form modifiersabout, less than, greater than, andbe-
tween. Missingor unknowninput features can also be taken care
of.

The user can ask the system why it inferred a particular con-
clusion. The system answers with anIF–THEN rule applicable to
the case at hand. Note that theseIF–THEN rules are not repre-
sented explicitly in the knowledge base; they are generated by

the inferencing system, by backtracking, from the connection
weights as needed for explanation. As the model has already
inferred a conclusion (at this stage), a subset of the currently
known information is selected to justify this decision. The an-
tecedent and consequent parts of the generated rules are innat-
ural form using the linguistic modifiers and a certainty factor.

An input pattern from the training set is presented to the
input of the trained network and its output computed. To find
the antecedent clauses of the rule, one may backtrack from the
output layer to the input through the maximal weighted links.
The path from node in the output layer to node in the input
layer through node in the hidden layer is maximal if

(3)

provided node activation , , and themax-
imumis computed over the index . Here thepath lengthfrom
node in the output layer to nodein the hidden layer is ,
the superscript referring to the layer [9]. Only one nodecor-
responding to the three linguistic values of each featureis
considered so that

(4)

where and correspond tolow , medium , or high
. The three-dimensional linguistic pattern vector, with or

without modifiers [corresponding to the linguistic feature
computed by (4)], which is closest to the relevant three-dimen-
sional part of pattern , is selected as the antecedent clause.
This is done for all input features to which a path may be found
by (3). The completeIF part of the rule is obtained byANDing
clauses corresponding to each of the features, e.g.,

If is and is

and and is

The consequent part of the correspondingIF–THEN rule is gen-
erated using a certainty factor . For the linguistic output
form, one uses one of the following.

1) Very likelyfor .
2) Likely for .

764 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 11, NO. 3, MAY 2000

TABLE I
RULE GENERATION AND QUERYING PHASES ONHEPATODATA

3) More or less likelyfor .
4) Not unlikelyfor .
5) Unable to recognizefor .

A sample rule, in terms of input features and , is as
follows: If is very mediumAND is high thenlikely class 1.

B. Medical Data

Medical diagnosis, or more specifically, the results of tests
involve imprecision, noise, and individual difference. Often one
cannot clearly distinguish the difference between normal and
pathological values. Such test results cannot be precisely eval-
uated by crisp sets. Sometimes the patient can be simultane-
ously diagnosed as suffering in different degrees from multiple
diseases. It is also more dangerous to classify a sick person as
healthy than vice versa. Incorporation of fuzziness at the input
and output of the neural network under consideration appears
to be a good solution to such problems. Here one can simulta-
neously assign one or more finite nonzero membership values.

An effective handling of a certain medical diagnosis problem
involving hepatobiliary disorders [42] is demonstrated in this
section. The data is available in http://www.isical.ac.in/~sush-
mita/patterns.

The datahepatoconsists of 536 patient cases of various
hepatobiliary disorders. The nine input features are the results
of different biochemical tests: glutamic oxalacetic transaminate
(GOT; Karmen unit), glutamic pyruvic transaminase (GPT;
Karmen unit), lactate dehydrase (LDH; iu/liter), gamma
glutamyl transpeptidase (GGT; mu/ml), blood urea nitrogen
(BUN; mg/dl), mean corpuscular volume of red blood cell
(MCV; fl), mean corpuscular haemoglobin (MCH; pg), total
bilirubin (TBil; mg/dl), and creatinine (CRTNN; mg/dl).
The 10th feature corresponds to the sex of the patient and is
represented in binary mode as (1,0) or (0,1). The hepatobiliary
disorders alcoholic liver damage (ALD), primary hepatoma
(PH), liver cirrhosis (LC), and cholelithiasis (C) constitute the
four output classes. Table I depicts the rule generation and
querying phases of the fuzzy MLP for a sample set of partially

MITRA AND HAYASHI: NEURO-FUZZY RULE GENERATION: SURVEY IN SOFT COMPUTING FRAMEWORK 765

known input features of thehepatodata. Columns 3 and 4
refer, respectively, to the input feature supplied by the user after
querying and the resulting output membership of the neuron
corresponding to the disorder supported by theTHEN part of the
generated rule in column 6.

The last column of the table indicates the rules obtained from
the initially supplied feature set in column 1. There were only
two types of such rules in Hayashi’s model [103]: the ones ex-
cluding a disease and the ones confirming a disease. The fuzzy
MLP [42] resorts to querying and further updating to obtain
rules that are more specifically indicative of a disease. Note that
querying should be resorted to at a particular stage, and there-
fore querying is not required in all cases with a partial set of
input features (e.g., see row 1 of Table I).

C. Negative Rules

It may sometimes happen that we are unable to classify a test
pattern directly with the help of thepositiverules (concerning its
belonging to a class). In such cases, one proceeds by discarding
some classes that are unlikely to contain the pattern, and thereby
arrive at the class(es) to which the pattern possibly belongs. In
other words, in the absence of positive information regarding the
belonging of pattern to class , the complementary infor-
mation about the pattern not belonging to class is used.
To handle such situations,negativerules are generated with the
consequent part of the formnot in class by backtracking
from the output layer through the trained connection weights
alongnegativehidden nodes corresponding to this class [9]. A
samplenegativerule generated for the medical datahepatois:
If GOT is low AND GPT islow AND LDH is very mediumAND

GGT is low AND BUN is low AND MCV is mediumAND MCH
is Mol mediumAND TBil is low AND CRTNN is very medium
then the pattern isnot in class ALD.

VI. CONCLUSIONS

We have provided an exhaustive survey of fuzzy, neural, and
neuro–fuzzy rule generation algorithms. The neuro–fuzzy ap-
proach, symbiotically combining the merits of connectionist and
fuzzy approaches, constitutes a key component of soft com-
puting at this stage. To date, there has been no detailed and in-
tegrated categorization of the various neuro–fuzzy models used
for rule generation. We have attempted to collect these under a
unified soft computing framework.

Moreover, we have included both rule extraction and rule re-
finement in the broader perspective of rule generation. Rules
learned and interpolated for fuzzy reasoning and fuzzy control
have also been considered from this wider viewpoint.

Although the focus remained on neuro–fuzzy models, we also
dealt with other fuzzy, neural, GA’s, and rough set-based ap-
proaches to rule generation. Both feedforward and recurrent
neural networks were considered. We concentrated on catego-
rizing the different neuro–fuzzy approaches based on their level
of synthesis. In the course of our study we noticed that other than
the fuzzy perceptron [34], not much work has been reported in
literature on the convergence analysis of neuro–fuzzy learning.
This remains an open problem for future research.

Rule generation from fuzzy/nonfuzzy knowledge-based net-
works were found to result in more refined rules, as compared to
both the initial crude domain knowledge used to encode them as
well as those generated by networks involving no initial knowl-
edge encoding. Finally, real-life application to medical diag-
nosis was provided.

REFERENCES

[1] S. I. Gallant, “Connectionist expert systems,”Commun. ACM, vol. 31,
pp. 152–169, 1988.

[2] , Neural Network Learning and Expert Systems. Cambridge, MA:
MIT Press, 1994.

[3] G. G. Towell and J. W. Shavlik, “Extracting refined rules from knowl-
edge-based neural networks,”Mach. Learn., vol. 13, pp. 71–101, 1993.

[4] S. K. Pal and S. Mitra,Neuro-fuzzy Pattern Recognition: Methods in Soft
Computing. New York: Wiley, 1999.

[5] A. B. Tickle, R. Andrews, M. Golea, and J. Diederich, “The truth will
come to light: Directions and challenges in extracting the knowledge
embedded within trained artificial neural networks,”IEEE Trans. Neural
Networks, vol. 9, pp. 1057–1068, 1998.

[6] R. Andrews, J. Diederich, and A. B. Tickle, “A survey and critique of
techniques for extracting rules from trained artificial neural networks,”
Knowl.-Based Syst., vol. 8, pp. 373–389, 1995.

[7] S. Mitra and S. K. Pal, “Fuzzy multilayer perceptron, inferencing and
rule generation,”IEEE Trans. Neural Networks, vol. 6, pp. 51–63, Jan.
1995.

[8] , “Fuzzy self organization, inferencing and rule generation,”IEEE
Trans. Syst., Man, Cybern., vol. 26, pp. 608–620, 1996.

[9] S. Mitra, R. K. De, and S. K. Pal, “Knowledge-based fuzzy MLP for
classification and rule generation,”IEEE Trans. Neural Networks, vol.
8, pp. 1338–1350, 1997.

[10] L. M. Fu, “Knowledge-based connectionism for revising domain theo-
ries,” IEEE Trans. Syst., Man, Cybern., vol. 23, pp. 173–182, 1993.

[11] G. G. Towell and J. W. Shavlik, “Knowledge-based artificial neural net-
works,” Artif. Intell., vol. 70, pp. 119–165, 1994.

[12] M. Banerjee, S. Mitra, and S. K. Pal, “Rough fuzzy MLP: Knowledge
encoding and classification,”IEEE Trans. Neural Networks, vol. 9, pp.
1203–1216, 1998.

[13] I. A. Taha and J. Ghosh, “Symbolic interpretation of artificial neural
networks,”IEEE Trans. Knowl. Data Eng., vol. 11, pp. 448–463, 1999.

[14] D. Nauck, F. Klawonn, and R. Kruse,Foundations of Neuro–Fuzzy Sys-
tems. Chichester, U.K.: Wiley, 1997.

[15] B. Kosko,Neural Networks and Fuzzy Systems. Englewood Cliffs, NJ:
Prentice-Hall, 1991.

[16] H. Takagi, “Fusion technology of fuzzy theory and neural net-
work—Survey and future directions,” inProc. Int. Conf. Fuzzy Logic
Neural Networks, Iizuka, Japan, 1990, pp. 13–26.

[17] Y. Hayashi and J. J. Buckley, “Approximations between fuzzy expert
systems and neural networks,”Int. J. Approx. Reas., vol. 10, pp. 63–73,
1994.

[18] J. J. Buckley and Y. Hayashi, “Numerical relationship between neural
networks, continuous functions and fuzzy systems,”Fuzzy Sets Syst.,
vol. 60, no. 1, pp. 1–8, 1993.

[19] J. J. Buckley, Y. Hayashi, and E. Czogala, “On the equivalence of neural
nets and fuzzy expert systems,”Fuzzy Sets Syst., vol. 53, no. 2, pp.
129–134, 1993.

[20] J. M. Benitez, J. L. Castro, and I. Requena, “Are artificial neural
networks black boxes?,”IEEE Trans. Neural Networks, vol. 8, pp.
1156–1164, 1997.

[21] J. J. Buckley and Y. Hayashi, “Hybrid neural nets can be fuzzy con-
trollers and fuzzy expert systems,”Fuzzy Sets Syst., vol. 60, pp. 135–142,
1993.

[22] J. S. R. Jang and C. T. Sun, “Functional equivalence between radial basis
function networks and fuzzy inference systems,”IEEE Trans. Neural
Networks, vol. 4, pp. 156–159, 1993.

[23] E. H. Mamdani and S. Assilian, “An experiment in linguistic synthesis
with a fuzzy logic controller,”Int. J. Man-Mach. Stud., vol. 7, pp. 1–13,
1975.

[24] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its appli-
cation to modeling and control,”IEEE Trans. Syst., Man, Cybern., vol.
SMC-15, pp. 116–132, 1985.

[25] J. J. Buckley and T. Feuring,Fuzzy and Neural: Interactions and Ap-
plications, ser. Studies in Fuzziness and Soft Computing. Heidelberg,
Germany: Physica-Verlag, 1999.

766 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 11, NO. 3, MAY 2000

[26] H. Ishibuchi, M. Nii, and I. B. Turksen, “Bidirectional bridge between
neural networks and linguistic knowledge: Linguistic rule extraction and
learning from linguistic rules,” inProc. IEEE Int. Conf. Fuzzy Syst.
FUZZ-IEEE’98, Anchorage, AK, May 1998, pp. 1112–1117.

[27] C. T. Lin and C. S. George Lee,Neural Fuzzy Systems—A Neuro–Fuzzy
Synergism to Intelligent Systems. Englewood Cliffs, NJ: Prentice-Hall,
1996.

[28] N. Kasabov,Foundations of Neural Networks, Fuzzy Systems and
Knowledge Engineering. Cambridge, MA: MIT Press, 1996.

[29] J. S. R. Jang, C. T. Sun, and E. Mizutani,Neuro–Fuzzy and Soft Com-
puting. Englewood Cliffs, NJ: Prentice-Hall, 1997.

[30] W. Pedrycz, Computational Intelligence: An Introduction. Boca
Raton, FL: CRC, 1998.

[31] L. X. Wang,Adaptive Fuzzy Systems and Control. Englewood Cliffs,
NJ: Prentice-Hall, 1994.

[32] S. C. Lee and E. T. Lee, “Fuzzy neural networks,”Math. Biosci., vol.
23, pp. 151–177, 1975.

[33] S. K. Pal and S. Mitra, “Multilayer perceptron, fuzzy sets and classifi-
cation,” IEEE Trans. Neural Networks, vol. 3, pp. 683–697, 1992.

[34] J. K. Keller and D. J. Hunt, “Incorporating fuzzy membership functions
into the perceptron algorithm,”IEEE Trans. Pattern Anal. Mach. Intell.,
vol. PAMI-7, pp. 693–699, 1985.

[35] J. M. Keller and H. Tahani, “Implementation of conjunctive and disjunc-
tive fuzzy logic rules with neural networks,”Int. J. Approx. Reas., vol.
6, pp. 221–240, 1992.

[36] J. M. Keller, R. R. Yager, and H. Tahani, “Neural network implementa-
tion of fuzzy logic,”Fuzzy Sets Syst., vol. 45, pp. 1–12, 1992.

[37] H. Takagi, N. Suzuki, T. Koda, and Y. Kojima, “Neural networks de-
signed on approximate reasoning architecture and their applications,”
IEEE Trans. Neural Networks, vol. 3, pp. 752–760, 1992.

[38] L. X. Wang and J. M. Mendel, “Fuzzy basis functions, universal approxi-
mation, and orthogonal least-squares learning,”IEEE Trans. Neural Net-
works, vol. 3, pp. 807–814, 1992.

[39] J. R. Jang, “ANFIS: Adaptive-network-based fuzzy inference system,”
IEEE Trans. Syst., Man, Cybern., vol. 23, no. 3, pp. 665–685, 1993.

[40] H. R. Berenji and P. Khedkar, “Learning and tuning fuzzy logic con-
trollers through reinforcements,”IEEE Trans. Neural Networks, vol. 3,
pp. 724–740, 1992.

[41] S. K. Pal and A. Ghosh, “Neuro-fuzzy computing for image processing
and pattern recognition,”Int. J. Syst. Sci., vol. 27, pp. 1179–1193, 1996.

[42] S. Mitra, “Fuzzy MLP based expert system for medical diagnosis,”
Fuzzy Sets Syst., vol. 65, pp. 285–296, 1994.

[43] E. Tsao, J. C. Bezdek, and N. R. Pal, “Fuzzy Kohonen clustering net-
works,” Pattern Recognit., vol. 27, pp. 757–764, 1992.

[44] H. Takagi and I. Hayashi, “Artificial neural network driven fuzzy rea-
soning,”Int. J. Approx. Reas., vol. 5, pp. 191–212, 1991.

[45] H. Ishibuchi, H. Tanaka, and H. Okada, “Interpolation of fuzzy if–then
rules by neural networks,”Int. J. Approx. Reas., vol. 10, pp. 3–27, 1994.

[46] J. Nie, “Constructing fuzzy model by self-organizing counterpropaga-
tion network,” IEEE Trans. Syst., Man, Cybern., vol. 25, pp. 963–970,
1995.

[47] J. M. Keller, R. Krishnapuram, and F. C.-H. Rhee, “Evidence aggrega-
tion networks for fuzzy logic inference,”IEEE Trans. Neural Networks,
vol. 3, pp. 761–769, 1992.

[48] S. Mitra and S. K. Pal, “Logical operation based fuzzy MLP for clas-
sification and rule generation,”Neural Networks, vol. 7, pp. 353–373,
1994.

[49] Y. Hayashi, J. J. Buckley, and E. Czogala, “Fuzzy neural network with
fuzzy signals and weights,”Int. J. Intell. Syst., vol. 8, no. 4, pp. 527–537,
1993.

[50] G. A. Carpenter, S. Grossberg, N. Markuzon, J. H. Reynolds, and D.
B. Rosen, “Fuzzy ARTMAP: A neural network architecture for incre-
mental supervised learning of analog multidimensional maps,”IEEE
Trans. Neural Networks, vol. 3, pp. 698–713, 1992.

[51] W. Pedrycz, “A referential scheme of fuzzy decision making and its
neural network structure,”IEEE Trans. Syst., Man, Cybern., vol. 21, pp.
1593–1604, 1991.

[52] A. Ghosh, N. R. Pal, and S. K. Pal, “Self-organization for object ex-
traction using multilayer neural network and fuzziness measures,”IEEE
Trans. Fuzzy Syst., vol. 1, pp. 54–68, 1993.

[53] J. J. Buckley and Y. Hayashi, “Fuzzy neural networks: A survey,”Fuzzy
Sets Syst., vol. 66, pp. 1–13, 1994.

[54] H. Ishibuchi, K. Kwon, and H. Tanaka, “A learning algorithm of fuzzy
neural networks with triangular fuzzy weights,”Fuzzy Sets Syst., vol.
71, pp. 277–293, 1995.

[55] T. Feuring, J. J. Buckley, and Y. Hayashi, “A gradient descent learning
algorithm for fuzzy neural networks,” inProc. IEEE Int. Conf. Fuzzy
Syst. FUZZ-IEEE’98, Anchorage, AK, May 1998, pp. 1136–1141.

[56] L. A. Zadeh, “Fuzzy logic, neural networks, and soft computing,”
Commun. ACM, vol. 37, pp. 77–84, 1994.

[57] D. E. Goldberg,Genetic Algorithms in Search, Optimization and Ma-
chine Learning. Reading, MA: Addison-Wesley, 1989.

[58] M. Su and H. Chan, “Extracting rules from composite neural networks
for medical diagnostic problems,”Neural Process. Lett., vol. 8, pp.
253–263, 1998.

[59] Y. Yupu, X. Xiaoming, and Z. Wengyuan, “Real-time stable
self-learning FNN controller using genetic algorithm,”Fuzzy Sets Syst.,
vol. 100, pp. 173–178, 1998.

[60] W. A. Farag, V. H. Quintana, and G. Lambert-Torres, “A genetic-based
neuro–fuzzy approach for modeling and control of dynamical systems,”
IEEE Trans. Neural Networks, vol. 9, pp. 756–767, 1998.

[61] Y. Jin, W. von Seelen, and B. Sendhoff, “An approach to rule-based
knowledge extraction,” in Proc. IEEE Int. Conf. Fuzzy Syst.
FUZZ-IEEE’98, Anchorage, AK, May 1998, pp. 1188–1193.

[62] H. Ishibuchi, M. Nii, and T. Murata, “Linguistic rule extraction from
neural networks and genetic-algorithm-based rule selection,” inProc.
IEEE Int. Conf. Neural Networks, Houston, TX, 1997, pp. 2390–2395.

[63] R. Sawa, Y. Makita, and M. Hagiwara, “Knowledge extraction and inte-
gration by artificial life approach,”J. Adv. Comput. Intell., vol. 3, no. 3,
1999.

[64] J. C. Bezdek, “What is computational intelligence?,” inComputational
Intelligence Imitating Life, J. M. Zurada, R. J. Marks II, and C. J.
Robinson, Eds. New York: IEEE Press, 1994, pp. 1–12.

[65] Z. Pawlak, Rough Sets, Theoretical Aspects of Reasoning about
Data. Dordrecht, The Netherlands: Kluwer, 1991.

[66] R. Yasdi, “Combining rough sets learning and neural learning method
to deal with uncertain and imprecise information,”Neurocomputation,
vol. 7, pp. 61–84, 1995.

[67] S. Mitra, M. Banerjee, and S. K. Pal, “Rough knowledge-based net-
work, fuzziness and classification,”Neural Comput. Applicat., vol. 7,
pp. 17–25, 1998.

[68] P. Mitra, S. Mitra, and S. K. Pal, “Staging of cervical cancer with soft
computing,” IEEE Trans. Biomed. Eng., 2000, to be published.

[69] S. Mitra, P. Mitra, and S. K. Pal, “Evolutionary modular design of rough
knowledge-based network using fuzzy attributes,” Neurocomputation,
2000, to be published.

[70] H. Ishibuchi, K. Nozaki, and H. Tanaka, “Distributed representation of
fuzzy rules and its application to pattern classification,”Fuzzy Sets Syst.,
vol. 52, pp. 21–32, 1992.

[71] H. Ishibuchi, K. Nozaki, and H. Tanaka, “Efficient fuzzy partition of
pattern space for classification problems,”Fuzzy Sets Syst., vol. 59, pp.
295–304, 1993.

[72] L. X. Wang and J. M. Mendel, “Generating fuzzy rules by learning from
examples,”IEEE Trans. Syst., Man, Cybern., vol. 22, pp. 1414–1427,
1992.

[73] R. Rovatti and R. Guerrieri, “Fuzzy sets of rules for system identifica-
tion,” IEEE Trans. Fuzzy Syst., vol. 4, pp. 89–102, 1996.

[74] S. Abe and M. S. Lan, “Fuzzy rules extraction directly from numerical
data for function approximation,”IEEE Trans. Syst., Man, Cybern., vol.
25, pp. 119–129, 1995.

[75] T. Hong and C. Lee, “Induction of fuzzy rules and membership functions
from training examples,”Fuzzy Sets Syst., vol. 84, pp. 33–37, 1996.

[76] “Special issue on fuzzy diagnosis,”Artif. Intell. Med., vol. 16, no. 2,
1999.

[77] L. Wang and J. Yen, “Extracting fuzzy rules for system modeling using
a hybrid of genetic algorithms and Kalman filter,”Fuzzy Sets Syst., vol.
101, pp. 353–362, 1999.

[78] C. L. Karr and E. J. Gentry, “Fuzzy control of pH using genetic algo-
rithms,” IEEE Trans. Fuzzy Syst., vol. 1, pp. 46–53, 1993.

[79] D. Park, A. Kandel, and G. Langholz, “Genetic-based new fuzzy rea-
soning models with application to fuzzy control,”IEEE Trans. Syst.,
Man, Cybern., vol. 24, pp. 39–47, Jan. 1994.

[80] P. Thrift, “Fuzzy logic synthesis with genetic algorithms,” inProc. 4th
Int. Conf. Genetic Algorithms, San Diego, CA, July 1991, pp. 509–513.

[81] A. Homaifar and E. McCormick, “Simultaneous design of membership
functions and rule sets for fuzzy controllers using genetic algorithms,”
IEEE Trans. Fuzzy Syst., vol. 3, pp. 129–139, 1995.

[82] H. Ishibuchi, K. Nozaki, N. Yamamoto, and H. Tanaka, “Selecting fuzzy
If–Then rules for classification problems using genetic algorithms,”
IEEE Trans. Fuzzy Syst., vol. 3, pp. 260–270, 1995.

[83] K. Saito and R. Nakano, “Medical diagnostic expert system based on
PDP model,” inProc. IEEE Int. Conf. Neural Networks, San Diego, CA,
1988, pp. I.255–I.262.

[84] M. Ishikawa, “Structural learning with forgetting,”Neural Networks,
vol. 9, pp. 509–521, 1996.

MITRA AND HAYASHI: NEURO-FUZZY RULE GENERATION: SURVEY IN SOFT COMPUTING FRAMEWORK 767

[85] W. Duch, R. Adamczak, and K. Grabczewski, “Extraction of logical
rules from neural networks,”Neural Process. Lett., vol. 7, pp. 211–219,
1998.

[86] L. M. Fu, “A neural-network model for learning domain rules based on
its activation function characteristics,”IEEE Trans. Neural Networks,
vol. 9, pp. 787–795, 1998.

[87] , “Learning in certainty-factor-based multilayer neural networks for
classification,”IEEE Trans. Neural Networks, vol. 9, pp. 151–158, 1998.

[88] J. R. Quinlan,C4.5: Programs for Machine Learning. San Mateo, CA:
Morgan Kaufmann, 1993.

[89] A. H. Tan, “Cascade ARTMAP: Integrating neural computation and
symbolic knowledge processing,”IEEE Trans. Neural Networks, vol.
8, pp. 237–250, 1997.

[90] R. Setiono, “Extracting rules from neural networks by pruning and
hidden-unit splitting,”Neural Computat., vol. 9, pp. 205–225, 1997.

[91] R. Setiono and W. K. Leow, “FERNN: An algorithm for fast extraction
of rules from neural networks,” Appl. Intell., 2000, to be published.

[92] R. Setiono, “ExtractingM of N rules from trained neural networks,”
IEEE Trans. Neural Networks, 2000, to be published.

[93] R. Setiono and H. Liu, “NeuroLinear: From neural networks to oblique
decision rules,”Neurocomputation, vol. 17, pp. 1–24, 1997.

[94] , “A connectionist approach to generating oblique decision trees,”
IEEE Trans. Syst., Man, Cybern., vol. 29, pp. 440–444, 1999.

[95] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone,Classification
and Regression Trees. Monterey, CA: Wadsworth Brooks/Cole, 1984.

[96] R. Krishnan, G. Sivakumar, and P. Bhattacharya, “A search technique for
rule extraction from trained neural networks,”Pattern Recognit. Lett.,
vol. 20, pp. 273–280, 1999.

[97] F. Maire, “Rule extraction by backpropagation of polyhedra,”Neural
Networks, vol. 12, pp. 717–725, 1999.

[98] C. W. Omlin and C. Lee Giles, “Extraction of rules from discrete-time
recurrent neural networks,”Neural Networks, vol. 9, pp. 41–52, 1996.

[99] A. Vahed and C. W. Omlin, “Rule extraction from recurrent neural net-
works using a symbolic machine learning algorithm,” inProc. Int. Conf.
Neural Inform. Processing ICONIP’99, Perth, Australia, Nov. 1999, pp.
712–717.

[100] L. H. Chen, H. C. Chua, and P. B. Tan, “Grammatical inference using
an adaptive recurrent neural network,”Neural Process. Lett., vol. 8, pp.
211–219, 1998.

[101] M. Fukumi and N. Akamatsu, “A new rule extraction method from
neural networks,” inProc. IEEE Int. Joint Conf. Neural Networks
IJCNN’99, Washington, DC, July 1999.

[102] Y. Maeda and J. P. De Figulerido, “Learning rule for neuro-controller
via simultaneous perturbation,”IEEE Trans. Neural Networks, vol. 8,
pp. 1119–1130, 1997.

[103] Y. Hayashi, “Neural expert system using fuzzy teaching input and its ap-
plication to medical diagnosis,”Inform. Sci. Applicat., vol. 1, pp. 47–58,
1994.

[104] , “A neural expert system with automated extraction of fuzzy
if–then rules and its application to medical diagnosis,” inAdvances in
Neural Information Processing Systems, R. P. Lippmann, J. E. Moody,
and D. S. Touretzky, Eds. Los Altos, CA: Morgan Kaufmann, 1991,
pp. 578–584.

[105] D. L. Hudson, M. E. Cohen, and M. F. Anderson, “Use of neural network
techniques in a medical expert system,”Int. J. Intell. Syst., vol. 6, pp.
213–223, 1991.

[106] D. Wang, J. M. Keller, C. A. Carson, K. K. McAdoo-Edwards, and C.
W. Bailey, “Use of fuzzy-logic-inspired features to improve bacterial
recognition through classifier fusion,”IEEE Trans. Syst., Man, Cybern.,
vol. 28, pp. 583–591, 1998.

[107] K. Pal, N. R. Pal, and J. Keller, “Some neural net realizations of fuzzy
reasoning,”Int. J. Intell. Syst., vol. 13, pp. 859–886, 1998.

[108] K. Pal and N. R. Pal, “A neuro–fuzzy system for inferencing,”Int. J.
Intell. Syst., vol. 14, pp. 1155–1182, 1999.

[109] H. Ishibuchi, R. Fujioka, and H. Tanaka, “Neural networks that learn
from fuzzy If–Then rules,”IEEE Trans. Fuzzy Syst., vol. 1, pp. 85–97,
1993.

[110] H. Ishibuchi, K. Morioka, and I. B. Turksen, “Learning by fuzzified
neural networks,”Int. J. Approx. Reas., vol. 13, pp. 327–358, 1995.

[111] H. Takagi, “Applications of neural networks and fuzzy logic to consumer
products,” inIndustrial Applications of Fuzzy Logic and Intelligent Sys-
tems, J. Yen, R. Langari, and L. A. Zadeh, Eds. Piscataway, NJ: IEEE
Press, 1995, pp. 93–104.

[112] S. Mitra and L. I. Kuncheva, “Improving classification performance
using fuzzy MLP and two-level selective partitioning of the feature
space,”Fuzzy Sets Syst., vol. 70, pp. 1–13, 1995.

[113] J. Chen and Y. Xi, “Nonlinear system modeling by competitive learning
and adaptive fuzzy inference system,”IEEE Trans. Syst., Man, Cybern.,
vol. 28, pp. 231–238, May 1998.

[114] L. Y. Cai and H. K. Kwan, “Fuzzy classifications using fuzzy inference
networks,”IEEE Trans. Syst., Man, Cybern., vol. 28, pp. 334–347, 1998.

[115] K. B. Cho and B. H. Wang, “Radial basis function based adaptive fuzzy
systems and their applications to system identification and prediction,”
Fuzzy Sets Syst., vol. 83, pp. 325–339, 1996.

[116] J. J. Shann and H. C. Fu, “A fuzzy neural network for rule acquiring on
fuzzy control systems,”Fuzzy Sets Syst., vol. 71, pp. 345–357, 1995.

[117] S. Horikawa, T. Furuhashi, and Y. Uchikawa, “A new type of fuzzy
neural network based on a truth space approach for automatic acqui-
sition of fuzzy rules with linguistic hedges,”Int. J. Approx. Reas., vol.
13, pp. 249–268, 1995.

[118] A. Bastian, “Handling the nonlinearity of a fuzzy logic controller at the
transition between rules,”Fuzzy Sets Syst., vol. 71, pp. 369–387, 1995.

[119] C. K. Chak, G. Feng, and J. Ma, “An adaptive fuzzy neural network for
MIMO system model approximation in high-dimensional spaces,”IEEE
Trans. Syst., Man, Cybern., vol. 28, pp. 436–446, 1998.

[120] C. Juang and C. Lin, “An on-line self-constructing neural fuzzy infer-
ence network and its applications,”IEEE Trans. Fuzzy Syst., vol. 6, pp.
12–32, 1998.

[121] R. J. Kuo and P. H. Cohen, “Manufacturing process control through in-
tegration of neural networks and fuzzy model,”Fuzzy Sets Syst., vol. 98,
pp. 15–31, 1998.

[122] H. R. Berenji and P. S. Khedkar, “Using fuzzy logic for performance
evaluation in reinforcement learning,”Int. J. Approx. Reas., vol. 18, pp.
131–144, 1998.

[123] D. Nauck and R. Kruse, “Neuro-fuzzy systems for function approxima-
tion,” Fuzzy Sets Syst., vol. 101, pp. 261–271, 1999.

[124] L. Jouffe, “Fuzzy inference system learning by reinforcement methods,”
IEEE Trans. Syst., Man, Cybern., vol. 28, pp. 338–355, 1998.

[125] C. W. Omlin, K. K. Thornber, and C. Lee Giles, “Fuzzy finite-state au-
tomata can be deterministically encoded into recurrent neural networks,”
IEEE Trans. Fuzzy Syst., vol. 6, pp. 76–89, 1998.

[126] J. Zhang and A. J. Morris, “Recurrent neuro–fuzzy networks for non-
linear process modeling,”IEEE Trans. Neural Networks, vol. 10, pp.
313–326, 1999.

[127] S. Wang and N. P. Archer, “A neural network based fuzzy set model for
organizational decision making,”IEEE Trans. Syst., Man, Cybern., vol.
28, pp. 194–203, May 1998.

[128] G. Shafer, A Mathematical Theory of Evidence. Princeton, NJ:
Princeton Univ. Press, 1976.

[129] M. Chow, S. Altug, and H. J. Trussell, “Heuristic constraints enforce-
ment for training of and knowledge extraction from a fuzzy/neural ar-
chitecture—Part I: Foundation,”IEEE Trans. Fuzzy Syst., vol. 7, pp.
143–150, 1999.

[130] F. C. H. Rhee and R. Krishnapuram, “Fuzzy rule generation methods
for high-level computer vision,”Fuzzy Sets Syst., vol. 60, pp. 245–258,
1993.

[131] Y. Q. Zhang and A. Knadel, “Compensatory neuro–fuzzy systems with
fast learning algorithms,”IEEE Trans. Neural Networks, vol. 9, pp.
83–105, Jan. 1998.

[132] J. M. Zurada and A. Lozowski, “Generating linguistic rules from data
using neuro–fuzzy framework,” inProc. 4th Int. Conf. Soft Comput.,
Iizuka, Japan, 1996, pp. 618–621.

[133] R. R. Yager, “Modeling and formulating fuzzy knowledge bases using
neural networks,”Neural Networks, vol. 7, pp. 1273–1283, 1994.

[134] , “Implementing fuzzy logic controllers using a neural network
framework,”Fuzzy Sets Syst., vol. 48, pp. 53–64, 1992.

[135] C. Lin and Y. Lu, “A neural fuzzy system with linguistic teaching sig-
nals,” IEEE Trans. Fuzzy Syst., vol. 3, pp. 169–189, 1995.

[136] R. W. Zhou and C. Quek, “POPFNN: A pseudo outer-product based
fuzzy neural network,”Neural Networks, vol. 9, pp. 1569–1581, 1996.

[137] S. G. Romaniuk and L. O. Hall, “Decision making on creditworthiness,
using a fuzzy connectionist model,”Fuzzy Sets Syst., vol. 48, pp. 15–22,
1992.

[138] L. M. Fu, “Learning capacity and sample complexity on expert net-
works,” IEEE Trans. Neural Networks, vol. 7, pp. 1517–1520, 1996.

[139] D. W. Opitz and J. W. Shavlik, “Dynamically adding symbolically mean-
ingful nodes to knowledge-based neural networks,”Knowl.-Based Syst.,
vol. 8, pp. 310–311, 1995.

[140] H. F. Yin and P. Liang, “A connectionist incremental expert system
combining production systems and associative memory,”Int. J. Pattern
Recognit. Artif. Intell., vol. 5, pp. 523–544, 1991.

[141] R. C. Lacher, S. I. Hruska, and D. C. Kuncicky, “Backpropagation
learning in expert networks,”IEEE Trans. Neural Networks, vol. 3, pp.
62–72, 1992.

[142] N. K. Kasabov, “Adaptable neuro production systems,”Neurocomputa-
tion, vol. 13, pp. 95–117, 1996.

768 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 11, NO. 3, MAY 2000

[143] , “Learning fuzzy rules and approximate reasoning in fuzzy neural
networks and hybrid systems,”Fuzzy Sets Syst., vol. 82, pp. 135–149,
1996.

[144] B. Kosko, “Hidden patterns in combined and adaptive knowledge net-
works,” Int. J. Approx. Reas., vol. 2, pp. 377–393, 1988.

[145] R. J. Machado and A. F. Rocha, “A hybrid architecture for fuzzy con-
nectionist expert systems,” inIntelligent Hybrid Systems, A. Kandel and
G. Langholz, Eds. Boca Raton, FL: CRC, 1992, pp. 136–152.

[146] , “Inference, inquiry, evidence censorship, and explanation in con-
nectionist expert systems,”IEEE Trans. Fuzzy Syst., vol. 5, pp. 443–459,
1997.

[147] C. W. Omlin and C. Lee Giles, “Rule revision with recurrent neural net-
works,” IEEE Trans. Knowl. Data Eng., vol. 8, pp. 183–188, 1996.

[148] D. W. Opitz and J. W. Shavlik, “Connectionist theory refinement: Genet-
ically searching the space of network topologies,”J. Artif. Intell. Res.,
vol. 6, pp. 177–209, 1997.

[149] N. Kasabov and B. Woodford, “Rule insertion and rule extraction
from evolving fuzzy neural networks: Algorithms and applications
for building adaptive, intelligent expert systems,” inProc. IEEE
Int. Conf. Fuzzy Syst. FUZZ-IEEE’99, Seoul, Korea, Aug. 1999, pp.
III-1406–III-1411.

Sushmita Mitra (M’99) received the B.Sc. (honors)
degree in physics and the B. Tech and M. Tech de-
grees in computer science from the University of Cal-
cutta, India, in 1984, 1987, and 1989, respectively,
and the Ph.D. degree in computer science from In-
dian Statistical Institute, Calcutta, India, in 1995.

From 1992 to 1994, she was with the European
Laboratory for Intelligent Techniques Engineering,
Aachen, Germany, as a German Academic Exchange
Service (DAAD) Fellow. Since 1995 she has been an
Associate Professor of the Indian Statistical Institute,

Calcutta, which she joined in 1989. She was a Visiting Professor at Meiji Univer-
sity, Japan, in 1999. She coauthoredNeuro–Fuzzy Pattern Recognition: Methods
in Soft Computing Paradigm(New York: Wiley, 1999). Her interests include
pattern recognition, fuzzy sets, artificial intelligence, neural networks, and soft
computing.

Dr. Mitra was a recipient of the National Talent Search Scholarship (1978–83)
from the National Council for Educational Research and Training, India, the
IEEE TNN Outstanding Paper Award in 1994 and CIMPA-INRIA-UNESCO
Fellowship in 1996.

Yoichi Hayashi (M’86–SM’00) received the B.E. de-
gree in management science, and the M.E. and Dr.
Eng. degrees in systems engineering, all from the Sci-
ence University of Tokyo, Japan, in 1979, 1981, and
1984, respectively.

He joined Ibaraki University, Japan, as an Assis-
tant Professor in 1986 and was a Visiting Professor
at the University of Alabama at Birmingham for ten
years. Currently, he is a Professor of computer sci-
ence at Meiji University, Japan. He has published 130
papers in academic journals and international confer-

ence proceedings in the fields of computer and information sciences. His current
research interest includes artificial neural networks, fuzzy logic, soft computing,
expert systems, computational intelligence, data mining, database management,
and medical informatics.

Dr. Hayashi is an Associate Editor of IEEE TRANSACTIONS ON FUZZY

SYSTEMS. He is a Member of the ACM, AAAI, IFSA, INNS, NAFIPS, IPSJ,
and IEICE.

