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AbstractÐConstructing a model for data in R2 is a common problem in many scientific fields, including pattern recognition, computer

vision, and applied mathematics. Often little is known about the process which generated the data or its statistical properties. For

example, in fitting a piecewise linear model, the number of pieces, as well as the knot locations, may be unknown. Hence, the method

used to build the statistical model should have few assumptions, yet, still provide a model that is optimal in some sense. Such methods

can be designed through the use of genetic algorithms. In this paper, we examine the use of genetic algorithms to fit piecewise linear

functions to data in R2. The number of pieces, the location of the knots, and the underlying distribution of the data are assumed to be

unknown. We discuss existing methods which attempt to solve this problem and introduce a new method which employs genetic

algorithms to optimize the number and location of the pieces. Experimental results are presented which demonstrate the performance

of our method and compare it to the performance of several existing methods. We conclude that our method represents a valuable tool

for fitting both robust and nonrobust piecewise linear functions.

Index TermsÐGenetic algorithms, optimization, statistical data analysis, splines.

æ

1 INTRODUCTION

ONE of the purposes of statistical data analysis is to
determine a functional relationship between some

input and output variables given a dataset of noisy
observed values. The dataset, denoted as �x;y�, is assumed
to be a number of realizations of some underlying process
combined with random noise, i.e., y � f�x� � ��, where � has
mean zero. Often the function f�x� is assumed to meet
certain mathematical requirements, such as continuity or
differentiability, and to be of a certain form, such as
curvilinear or piecewise linear. The problem of determining
f�x� given a set of data points and various assumptions is
relevant to many application fields including engineering,
chemometrics and materials science [1], [2].

The construction of a functional model for f�x�, denoted
by f̂�x�, can involve classical statistical tools such as kernel
methods, regression, and splines [3], as well as more recent
techniques such as neural networks, radial basis functions,
and genetic algorithms [4], [5], [6]. Unfortunately, it is
usually the choice of technique, rather than the data or prior
process knowledge, that motivates the placement of
artificial mathematical restrictions on the final model [7].
It should also be noted that not all techniques can guarantee
convergence to a near-optimal f̂�x�. In the case of a
piecewise linear model, we cannot assume strict differ-
entiability and we wish to optimize the number of pieces as
well as their placement in the model. Hence, the
optimization power of our technique and its assumptions

are critical. For these reasons, we utilize genetic algorithms
as our primary model fitting tool.

Genetic algorithms (GAs) are stochastic optimization
tools from the field of artificial intelligence [8]. They are
capable of finding near-optimal solutions to problems
without the usual mathematical model restrictions [7], [9].
In this work, we discuss how GAs were employed to fit
piecewise linear models to data sets in R2, where the
optimal number of pieces (i.e., knots), as well as their
placement, were unknown. In Section 2, we present the
problem and discuss current methods for function approx-
imation. Then, in Section 3, we introduce genetic algorithms
and detail how GAs can be used to fit optimal piecewise-
linear functions. After outlining the supporting theory in
Section 4, several examples are presented with results in
Section 5. We finish with a brief conclusion and mention of
areas for future research in Section 6.

2 PROBLEM STATEMENT AND CURRENT

METHODOLOGY

We assume a data set

D �
�
�x1; y1�; �x2; y2�; . . . ; �xN; yN�

�
; �xi; yi� 2 R2

8 i � 1; . . . ; N; 1 � N <1;
where the values �xi; yi� are related by an unknown
function f such that yi � f�xi� � �i, where �i is a random
error with mean zero and constant variance. The problem is
to fit a model f̂ to the data such that

. f̂ is an h�-piecewise linear function where h� is an
unknown positive integer representing the number
of pieces, 1 � h� � hmax.

. The knot locations �z11; z12�; . . . ; �z�h��1�1; z�h��1�2� are
unknown (the endpoints of f̂ are also considered
knots).
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. f̂ maximizes the quality of the fit over all such
h-piecewise linear functions, 1 � h � hmax, where
the quality of the fit is determined by a specified
evaluation function ev�f̂�x��.

We make no assumptions regarding the smoothness of f̂
around its knots.

Classical approximation theory suggests methods for
fitting piecewise linear functions which involve building
models from linear combinations of nonlinear functions
[10]. Such linear estimators can be expressed as:

f̂�x� �
Xn
i�1

K��x; xi�yi; �1�

where K��x; xi� is a weighting function which depends on
some parameter(s) � [3]. Examples include kernel estimates,
series approximators, and locally weighted regression (which
we will not explicitly discuss), splines, and the more recent
neural network and radial basis function estimates.

Splines are useful when we want an estimate which
meets a quality of fit (fitness) criterion as well as a
smoothness criterion. For example, we may estimate y by
choosing f̂ to minimize

nÿ1
XN
j�1

�
yj ÿ f�xj�

�2

� �
Z b

a

f�m�dx �2�

for � > 0; m 2 Z�, and a � xj � b 8 j � 1; . . . ; N . The solu-

tion f̂ is called a smoothing spline estimate and � is the

smoothing parameter. � determines the tradeoff between

goodness-of-fit and smoothness. If, however, our fitness

criterion is not of this form, a spline may not be the best

type of estimate. It is of note that finding a good estimate for

� can be computationally demanding [11] with generalized

cross-validation (GCV) estimates tending to oversmooth the

data [12], while m is often based on prior information [3] as

opposed to theoretical considerations. Note that cross-

validation (CV) [13] is a criterion designed to minimize

predictive error; GCV is simply a modified version of cross-

validation in which the diagonal elements of the smoothing

matrix of the spline are replaced by their average value.

Current spline fitting methods include Schwetlick and

SchuÈ tze's [14] algorithm which optimizes the location and

number of ªfreeº knots (but is computationally ªtoo

expensiveº to implement) and the algorithms of deBoor

and Rice [15] and Dierckx [16] which fit least-squares

variable knot splines using two different criteria to

determine the location of the knots.
A recent development in functional approximation is the

use of neural networks (NN) and radial basis functions (RBFs).
Multilayer neural networks are linear function approxima-
tors (in the sense of (1)) of the form, e.g.,

f̂�x;W� �
XM
j�1

�jgj��jx�; �3�

where f�j; 1 � j �Mg, are the weights connecting M
hidden units to the output unit, f�j; 1 � j �Mg, are the
weights connecting the input layer unit to the jth hidden
layer unit, and the gjs are the hidden layer activation
functions [10].W represents the matrix of network weights.

Because of the form of f̂ , splines and kernel estimates are
sometimes viewed as special cases of NN models. Another
special case of NN models is based on radial basis functions
where the approximation may be represented by the
equation

f̂ xk;W� � � w0 �
XM
j�1

wj�
ÿp� kxÿ cjk=�
ÿ �

; �4�

where � is the radial basis function, fcj : j � 1; . . . ;Mg is the
set of RBF centers, � is a scale parameter, and p is the
dimension of the data. Often, � corresponds to a Gaussian
density [4], [5]. Note that a radial basis function network (4)
(RBFN) is essentially a kernel method for regression. NNs
are easily programmed and have been used to solve
numerous complicated optimization problems in high
dimensional spaces. However, there is no method for
finding the best network architecture for a given problem
and NNs do have a tendency to overfit or overparameterize
the data [17]. RBFNs have been shown to outperform
multilayer perceptrons (MLPs) [5] even though the choice of
centers and the curse of dimensionality can make imple-
mentation difficult.

Specific algorithms for variable knot piecewise constant/
linear modeling can be found in the numerical analysis
literature, e.g., Baines [19], Tourigny and Baines [20], and
Loach and Wathen [21]. Baines' algorithm aims for optimal
discontinuous L2 fits to continuous functions; by concen-
trating on discontinuous fits, it effectively linearizes the
problem at hand. Tourigny and Baines [20] proved that
under certain assumptions, Baines' algorithm generates a
mesh sequence which converges to a locally optimal mesh.
Although the adjustment necessary to ensure a continuous
fit forces the abandonment of an optimal fit, and the
algorithm can converge to a local optimum, the algorithm
does have a nice extension to the two-variable case.

Loach and Wathen [21], on the other hand, approach the
given problem by utilizing results given in Chui et al. [22]
and Barrow et al. [18] to design a hybrid algorithm for
computing the best L2 linear spline approximation to a
given continuous function with a fixed number of free
knots. Given its sensitivity to the choice of initial reference,
the algorithm utilizes dynamic programming to generate
promising starting values. It will also, in most cases, return
a solution with distinct, ordered knot points.

Variable knot models have also been fit using Bayesian
estimation as opposed to GA optimization [23], with promis-
ing results, although GAs can guarantee convergence to an
optimal solution for a sufficient number of iterations [24].

A discussion of the advantages and disadvantages of the
above methods led us to consider the possibility of using
genetic algorithms (GAs) as a data fitting tool. GAs only
need a set of parameters, a way to calculate a response, and
an evaluation function (i.e., a measure of quality of fit) to
construct a model for a data set. The artificial requirements
of differentiability and smoothness imposed on the func-
tional form of the model by the above methods can be
discarded [7] and criteria more robust to outliers in
comparison to L2 error can be considered. In the case of
piecewise linear models, the power of GA optimization
allows variable knot placement as well as a variable number
of knots. Related works include those of Karr et al. [2], [6],
who have applied GAs to the problem of least-squares (LS)
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and least-median-squares (LMS) curve fitting where the
specific form of the curve is known (e.g., a polynomial of
degree 2) and the data is noiseless, and Vankeerberghen et
al. [25] who have used GAs to obtain the parameters for
specific, known laboratory system models (e.g., a hyper-
bolic model) which are nonlinear in the parameters. We
intend to utilize GAs for fitting both robust and nonrobust
optimal piecewise linear functions to data in R2.

3 GENETIC ALGORITHMS

Genetic algorithms are stochastic search methods which
provide a near optimal solution to the evaluation function
of an optimization problem [7]. They can be used to search
complex, multimodal surfaces via steps which have been
designed to mimic the processes of natural genetic systems.
Their effectiveness has been demonstrated in solving
various problems from scientific fields such as scheduling,
classifier systems, and pattern recognition [9].

Each possible solution is encoded as a string or chromo-

some; a set of such chromosomes is called a population. An

evaluation (fitness) function provides a mapping from the

chromosome space to the solution space. GAs start with an

initial population of a fixed number of randomly generated

strings. At each iteration, three basic operationsÐselection,

crossover, and mutationÐare applied over the current

population to yield a new population of strings. This cycle

is repeated until some termination criterion is met, at which

time the best string achieved is generally taken as the solution

to the optimization problem.
This basic framework can be modified to specifically

address the problem of interest by, e.g., the choice of
population or the addition of other operators. An example
of one such algorithm is the variable length genetic
algorithm (VLGA) designed by Bandyopadhyay et al. [26]
in which the length of each string is allowed to vary
depending on the number of parameters in the given
solution. In this way, the VLGA is capable of handling a
solution space containing solutions of varying dimensions.
Although a VLGA will not be implemented here due to
considerations of computational expense, a VLGA could be
used as an optimization tool in solving the problem at hand.

3.1 Remarks

3.1.1 Convergence

Bhandari et. al. [24] have proven theoretically that an elitist
genetic algorithm (fixed length strings) will converge to the
optimal string as the number of iterations goes to infinity.
This convergence is independent of the choice of values for
the algorithm parameters ( M;ps; pc; pm, etc.), although
these parameter values do influence the rate of conver-
gence. There is no theory to indicate the number of
iterations necessary for convergence. Two popular heuristic
stopping rules are: 1) Execute the process for a fixed
number of iterations and report the best string found as the
solution, or 2) Execute the process until the fitness value
does not show adequate improvement over a fixed number
of iterations, and report the best string found as the
solution.

3.1.2 Flexibility

GAs can be applied to a wide range of optimization problems

with little adjustmentÐin most cases, only the fitness

function needs to be redefined. Thus, it is possible to use

the same basic algorithm to, for example, fit lines satisfying

different optimization criterions to a given dataset.

4 THEORY OF PIECEWISE LINEAR FITTING IN R2

4.1 Mathematical Formulation

Our stated goal is to fit piecewise linear functions to

datasets in R2. Generally speaking, if we think of a given

dataset as a realization of some random variable, we would

like our set of lines to represent the center of the density of

that random variable.
Let us assume that we have h� lines, where 1 � h� �

hmax; hmax is a positive integer. For each j; j � 1; . . . ; h�, let

the equation of the jth line be

x cos �j � y sin �j � dj
for some �j 2 �0; �� and dj 2 R. Assume that the jth and

�j� 1�th lines intersect at the point �z�j�1�1; z�j�1�2�. We

denote the first knot as �z11; z12� and the last knot as

�z�h��1�1; z�h��1�2�.
Let �0 > 0 and let the set Bj be expressed as:

Bj �
�
�x; y� : y 2 dj ÿ x cos �j

sin �j
ÿ �0; dj ÿ x cos �j

sin �j
� �0

� �
;

j � 1; . . . ; h�; x 2 zj1; z�j�1�1
� ��

:

We denote
Sh�
j�1 Bj as B. The probability density function of

�x; y� on B is denoted by � : B! �0;1�, where

��x; y� � �j�x; y� x 2 �zj1; z�j�1�1�; for j � 1; . . . ; h�

0 otherwise:

�
We define our probability measure P as P �A� �R
A ��x; y� dx; dy for all Borel A � B�B�, the Borel �-field of B.

Let �x1; y1�; �x2; y2�; . . . ; �xN; yN� be independent, identi-

cally distributed random vectors with density �, i.e., there

exists a probability space �
;A; Q� such that

�xi; yi� : �
;A; Q� ! �B;B�B�; P �; i � 1; . . . ; N;

where Q�C� � P ��xi; yi��C�� 8 C 2 A.
We also assume that

1. For each j � 1; . . . ; h�,

�j�x; y� � �j x;
2�djÿx cos �j�

sin �j
ÿ y

� �
x 2 �zj1; z�j�1�1�

0 x 62 �zj1; z�j�1�1�

(
�5�

(i.e., �j is symmetric about the line

x cos �j � y sin �j � dj:�

2. �j�x; y� > 0 8 �x; y� 2 Bj 8 j
3. ��x; y� and �j�x; y�; j � 1; . . . ; h�; are continuous.
4.

R
B ��x; y� dx dy � 1:
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In the above mathematical formulation, the primary
assumption is the assumption of symmetry of the underlying
density around a piecewise linear function (Assumption 1).
The other stated assumptions are common properties of a
continuous probability density function.

4.2 Solution Space

In order to represent our solution space, suppose we are given
a data setD � �x;y� � f�x1; y1�; �x2; y2�; . . . ; �xN; yN�g, which
is a realization of the random vectors �xi; yi�, i.e., xi�!� �
xi; yi�!� � yi for some ! 2 
; i � 1; . . . ; N . Let's, define

x�1� � minfxi; i � 1; . . . ; Ng;
x�N� � maxfxi; i � 1; . . . ; Ng;
y�1� � minfyi; i � 1; . . . ; Ng;
y�N� � maxfyi; i � 1; . . . ; Ng:

GAs try to find an optimal solution over a finite
solution space. Thus, the solution space, i.e., the
collection of all h-piecewise linear functions, where
h 2 H; H � f1; . . . ; hmaxg, must be discretized. To formu-
late the problem mathematically, we proceed in the
following way:

Let Lj denote the straight line

x cos �j � y sin �j � dj;
where j belongs to an index set. Let Lj;�;h represent an
h-piecewise linear function, i.e.,

Lj;�;h � fLj;1;h; Lj;2;h; . . . ; Lj;h;hg;
where Lj;i;h denotes the ith straight line among the set of h
straight lines, i � 1; . . . ; h, and each Lj;i;h satisfies the
following properties:

1. Lj;i;h represents the straight line

x cos �j;i;h � y sin �j;i;h � dj;i;h;
where �j;i;h �0 < �j;i;h � �� is the polar angle formed
when the polar axis is taken as the y-axis and the
origin is taken as the intersection point between the
y-axis and Lj;i;h; dj;i;h is the perpendicular distance
of the line from the point (0,0).

2. F o r e v e r y i; i � 1; . . . ; hÿ 1; Lj;i;h and Lj;�i�1�;h
intersect and the point of intersection is
�zj;�i�1�;h;1; zj;�i�1�;h;2�.

3.

zj;1;h;1 � x�1�;

zj;1;�h�1�;1 � x�N�;

zj;i;h;1 � zj;�i�1�;h;18 i � 1; . . . ; h:

4. Lj;�;h � Lj;i;h if zj;i;h;1 � x � zj;�i�1�;h;1; i � 1; . . . ; h.

The knot locations

�zj;�;h;1; zj;�;h;2� � �zj;1;h;1; zj;1;h;2�; . . . ; �zj;�h�1�;h;1; zj;�h�1�;h;2�
ÿ �

of any Lj;�;h, 1 � h � hmax, are not restricted to the
datapoints f�x1; y1�; �x2; y2�; . . . ; �xN; yN�g.

For each h; 1 � h � hmax, let Lh represent the class of all
h-piecewise linear functions Lj;�;h which satisfy the above

properties. Then,
S
h2H Lh is the collection of functions

under consideration.
Note that

S
h2H Lh is uncountable. In order to obtain a

ªnear optimalº function from this space, we need to

discretize
S
h2H Lh. We can achieve this by restricting the

values of � and d. Let la be the number of bits used to

express � and let ld be the number of bits used to express d.

We restrict �j;i;h to the values f �
2la ;

2�
2la ; . . . ; �2

laÿ1��
2la ; �g. In

specifying dj;i;h, we utilize the rectangle rect formed by the

points �x�1�; y�1��, �x�N�; y�1��, �x�1�; y�N��, and �x�N�; y�N��.
Note that rect contains the entire given data set. Let diag

be the length of the diagonal of rect and let `� be defined as:

`� � x�1� cos �� y�1� sin � if 0 < � < �=2
x�N� cos �� y�1� sin � if �=2 � � � �:

�
Then, for a given �j;i;h; dj;i;h may only take values within
the set�

dj;i;h �`�j;i;h � kj;i;h� : kj;i;h 2 f0; 1; . . . ; 2ld ÿ 1g;

� � diag=�2ld ÿ 1�
�
:

Note thata line withd � l� intersectsrectat thepoint �x�1�; y�1��
if 0 < � � �=2 or the point �x�N�; y�1�� if �=2 � � < � (the

parameter kj;i;h�; 0 � kj;i;h� � diag, is sometimes referred to

as the offset value).
For each h; 1 � h � hmax, let L0

h��;K� denote the finite
set of functions in Lh which satisfy these restrictions, where

� has � possible values and k has K possible values (note

that � � 2la and K � 2ld ), i.e.,

L0
h��;K� �

�
Lj;�;h 2 Lh : Lj;i;h is of the form

x cos �j;i;h � y sin �j;i;h � `�j;i;h � kj;i;h� 8 i � 1; . . . ; h;

�j;i;h 2 f �
2la
;
2�

2la
; . . . ;

�2la ÿ 1��
2la

; �g;

kj;i;h 2 f0; 1; . . . ; 2ld ÿ 1g; and � � diag=�2ld ÿ 1�
�
:

Hence,fL0
h��;K� : la � 1; 2; . . .gandfL0

h��;K� : ld � 1; 2; . . .g
each represent an increasing sequence of nested sets. For sake
of clarity, we will henceforth specifyLj;�;h asL���j;�;h; kkj;�;h� and

denote Lj;�;h�x� as L���j;�;h; kkj;�;h��x�. Note that ��j;�;h and kkj;�;h
represent the vectors ��j;1;h; . . . ; �j;h;h� and �kj;1;h; . . . ; kj;h;h�.

For L���j;�;h; kkj;�;h� 2 L0
h��;K�, we define

E�;L���j;�;h;kkj;�;h�;a;b ��
�x; y� : y 2 L���j;�;h; kkj;�;h��x� ÿ �; L���j;�;h; kkj;�;h��x� � �

ÿ �
;

x 2 �a; b�
�
:

for a < b; � > 0, and let

E�;L���j;�;h;kkj;�;h� �
[
b

[
a<b

E�;L���j;�;h;kkj;�;h�;a;b:

If we recall the piecewise linear function which lies at the
center of the density of �x; y� and we denote it as �, i.e.,
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��x� �
djÿx cos �j

sin �j
x 2 �zj1; z�j�1�1�; for j � 1; . . . ; h�

0 otherwise;

�
�6�

then, the support B of the density is equivalent to
E�0;�;z11 ;z�h��1�1 .

Corresponding to each E�;L���j;�;h;kkj;�;h� we define the set of

lines

L���h �
�
L���j;�;h; kkj;�;h� : P E�;L���j;�;h;kkj;�;h�

� �
� 0:95

�
;

where P �A� � RA ��x; y� dx dy for A Borel, A � B�B�. Just

as fL0
h��;K� : la � 1; 2; . . .g and fL0

h��;K� : ld � 1; 2; . . .g
represent increasing sequences of sets, so does

fL���h : � � �1; �2; . . . ; �i < �i�1; i � 1; 2; . . .g. These defini-

tions involving E�;L���j;�;h;kkj;�;h� will be used to define our

optimization criterion.
Fig. 1 shows an example dataset where the support

B � B1

S
B2 of the density ��x; y� of �x; y� is centered

around a 2-piece linear function. A function from L0
2 and

rect is also shown.

4.3 Optimization Criterion

The functional model which is chosen to represent a given
dataset is often that which minimizes the sum of the squared
errors (i.e., the least-squares function). However, a criterion
based on least-squares can yield a solution that is not
robustÐoutliers in the dataset can pull the least-squares
function away from most of the data points and, hence, away
from � [25], [29]. For this reason, we choose not to use least-
squares as our optimization criterion. Instead, we note that
our concept of a ªfittedº function is one which represents the
center of a symmetric density function. If L���j;�;h0 ; kkj;�;h0 �
represents our ªfittedº function, then, given a dataset D, the
majority of the data points in D should fall within the region�

L���j;�;h0 ; kkj;�;h0 ��x� ÿ �; L���j;�;h0 ; kkj;�;h0 ��x� � ��;

x 2 zj;1;h0;1; zj;�h��1�;h0;1
� ��

for some ªsmallº � > 0. This observation is the basis of our
optimization criterion.

Let  j;�;h denote an h-piecewise linear function where
each piece  j;i;h; i � 1; . . . ; h, satisfies the properties listed
above for Lj;i;h. For any � > 0, define

I �; j;�;h�x; y� � 1 j yÿ  j;�;h�x� j< �
0 otherwise:

�
Our function to be optimized (i.e., fitness function) may
then be stated as:

ev�;N� j;�;h� �
XN
i�1

I �; j;�;h�xi; yi� � 1ÿ h

hmax

� �
: �7�

Our solution space L0��;K� � Sh2H L0
h��;K� for some

� and K represents the collection of models under considera-
tion. By the continuity of ��x; y�, with L��� � Sh2H L���h , we
know there exists some �� : L���� 6� ; andL��� � ; 8� < �� (i.e.,
there exists an �� such that a solution exists when � � ��, but no
solution exists when � < ��). To balance accuracy and
robustness, we specify that at least 95 percent of the data
points in D (not necessarily 100 percent) fall within �� of the
optimal modelÐour solution belongs to L����. The choice of
95 percent is heuristicÐit can be altered depending upon the
characteristics of the dataset (e.g., the percentage of outliers)
and the desired precision. Hence, our goal is to use genetic
algorithms to find an optimal h�-piecewise linear function
L���j�;�;h� ; kkj�;�;h� � 2 fL0��;K�TL���� such that

ev��;N L���j�;�;h� ; kkj�;�;h� �
ÿ � �

max
L���j;�;h;kkj;�;h�2L0��;K�

ev��;N L���j;�;h; kkj;�;h�
ÿ �

; �8�

where h� � minfh 2 H : L����h 6� ;g.
We observe that if we require that the entire dataset D

fall within �� of the optimal function, then, for � and K
sufficiently large, the optimal solution will correspond to
the least-squares solution.

Our goal can be attained if and only if

1. Our search space L0��;K� contains an optimal
solution as �!1 and K !1.
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2. The algorithm converges to an optimal solution.

We will prove thesestatements byfirst assuminghmax � 1and
then examining the case of hmax > 1; h� unknown, h� 2 H.

4.4 Case hmax � 1

4.4.1 Optimal Solution in Search Space

In the case where hmax � 1 (h� � 1), we would like our
optimal string (solution) to represent a line L��j�;�;1; kj�;�;1� �
L��j�;1;1; kj�;1;1� such that

ev��;N L��j�;1;1; kj�;1;1�
ÿ � �

max
L��j;1;1;kj;1;1�2L0

1��;K�
ev��;N L��j;1;1; kj;1;1�

ÿ �
:

Recall,

L0
1��;K� �

�
L��j;1;1; kj;1;1� 2 L1 : L��j;1;1; kj;1;1� is of the form

x cos �j;1;1 � y sin �j;1;1 � `�j;1;1 � kj;1;1�;where

�j;1;1 is one of � values; kj;1;1 is one of K values

�
:

Let

Q1 �
�
L��m;1;1; km;1;1� :

L��m;1;1; km;1;1� 2 L1; 9 �xr; yr� 2 rect satisfying

L��m;1;1; km;1;1�; 0 < �m;1;1 � �; km;1;1 2 R
�
:

Q1 represents the set of all lines in L1 which intersect rect.
We will justify the following statements:

1. For any fixed � � ��, our class L0
1��;K� will contain

an optimal line as �!1 and K !1.
2. For any fixed � � ��, the set of optimal lines in
L0

1��;K� increases to the set of optimal lines from Q1

as �!1 and K !1.
Additionally, we will show

3. For 0 < p � 1, let

A����p� ��
L��m;1;1; km;1;1� 2 Q1 : P E�;L��m;1;1;km;1;1�

ÿ � � p�
and let ��p : A���p��p� 6� ; and A����p� � ; 8 � < ��p. Then
for p � 1:0 and N !1; A���p��p� converges to a
unique optimal line L1:0��j�;1;1; kj�;1;1� 2 Q1.

As the discretization of L1 becomes finer (i.e., as �!1
and K !1), Statement 1 says that our solution space will
contain an optimal solution, while Statement 2 indicates
that our solution space will contain all optimal solutions
which intersect rect. Statement 3 says that as we require that
a larger percentage of the data points fall within �� of the
ªfittedº function, the set of optimal functions intersecting
rect decreases to a single solution. This unique solution is
the least-squares function.

Note that we have restricted ourselves to considering
only those functions which intersect rect. This assumption
is validated by the following theorem:

Theorem 4.1. For any � � ��and for � and K sufficiently large,
there exists an optimal line L��j��;1;1; kj��;1;1� 2 L1 such that

��x; y� : y � L��j�� ;1;1; kj��;1;1��x�; x 2 z11; z21� �	\ rect 6� ;:

Proof. A proof of Theorem 4.1. and a graphical representa-
tion of the proof are provided in the Appendix. tu

From Theorem 4.1, we know that if an optimal function
exists, then there exists an optimal function which intersects
rect. It follows without loss of generality that, given � � ��,
we can restrict ourselves to � and K sufficiently large and
only those optimal lines which intersect rect, i.e., those
optimal lines which belong to Q1.

We now justify Statements 1, 2, and 3 with the help of the
following propositions and theorems, the proofs of which
can be found in the Appendix.

For simplicity, let � � `� � k� for given � and k.
Statement 1 will be justified if we can show that, for

� and K large, given any optimal line in Q1 we can find a
line in L0

1��;K� which is arbitrarily close to it. We begin
with Proposition 4.1 which justifies that, given an optimal
line in Q1, we can find a � and K such that there exists a
line in L0

1��;K� which is arbitrarily close to the given
optimal line.

Proposition 4.1. Let L��m;1;1; km;1;1� 2 Q1. Let � > 0. Then,
9 ���;K�� : 8 � > �� and K > K�; 9 L��; k�:

1. L��; k� 2 L0
1��;K� and

2. j �ÿ �m;1;1 j< �=2 and j �m;1;1 ÿ � j< �=2.

Now, given � > 0, we would like there to exist a
�� and K� such that, given any optimal line in Q1 and any

� > ��;K > K�, there exists a line in L0
1��;K� which is

arbitrarily close to the given optimal line. We know such a
���;K�� exists by the following theorem.

Theorem 4.2. For each � > 0; 9 ���;K�� : for all � > �� and
for all K > K�, given any L��m;1;1; km;1;1� 2 Q1; 9 L��; k� :

1. L��; k� 2 L0
1��;K� and

2. j �ÿ �m;1;1 j< �=2 and j �m;1;1 ÿ � j< �=2.

Thus, given � and K sufficiently large, we can get a line
which is arbitrarily close to an optimal line. Hence,
Statement 1 is justified.

For the purpose of justifying Statement 2, let f�i; i �
1; 2; . . .g and fKi; i � 1; 2; . . .g represent the possible values
of � and K. For any � > 0, we define

A�i�p� �
L��ji;1;1; kji;1;1� 2 L0

1��i;Ki� : P �E�;L��ji ;1;1;kji ;1;1�� � p
n o

and

A��p� �
�
L��m;1;1; km;1;1� 2 Q1 : P E�;L��m;1;1;km;1;1�

ÿ � � p�
and let A�i � A�i�0:95� and A� � A��0:95�. A�i represents
the set of all optimal lines which belong to L0

1��i;Ki�,
while A� represents the set of all optimal lines which
belong to Q1. We would like A�i ! A� as i!1.
However, we first need that if �!1 and K !1, then,
the limit of any sequence of functions in Q1 is contained
in Q1 (and, hence, belong to our search space). This is, in
fact, true, as stated in Proposition 4.2.
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Proposition 4.2. For each i � 1; 2; . . . , let

L��ni;1;1; kni;1;1� 2 L0
1��i;Ki� : �ni;1;1 ! �lim

a n d kni;1;1 ! klim f o r s o m e �lim; 0 < �lim � �, a n d
klim; 0 � klim <1, as i!1. Let T 1 � fL��lim; klim� : 9 a
sequence�

L��ni;1;1; kni;1;1�
	1
i�1
; L��ni;1;1; kni;1;1� 2 L0

1��i;Ki�
such that �ni;1;1 ! �lim and kni;1;1 ! klimg:

Then, the optimal lines in Q1 are the optimal lines in T 1.

Hence, Q1 contains any optimal function which is a limit
of a sequence of functions in Q1. We may now justify
Statement 2.

Note that the fitness function ev�;N : �0; �� � �ÿM;M� !
�0;1� is continuous where, for any line in T 1, � 2 �0; ��
and the distance of the line from the origin is less than M

(i.e., d �M). With ev�;N continuous and bounded, we state
Theorem 4.3.

Theorem 4.3. Let A�i, and A� be as defined above. Then, A�i !
A� as i!1.

Hence, the optimal solutions which intersect rect are in
the search space as �!1 and K !1.

The above theorem holds for any A��p�; 0:95 � p � 1:0,
and for any � 2 f��pg1

p�0:95, where ��p : A��p�p� 6� ; and A��p� �
; 8� < ��p (i.e., if we require that 96 percent of the data points
in a given dataset fall within � of our optimal function, then
��0:96 is the smallest � > 0 for which such an optimal function
exists). With this in mind, we conclude with a theorem
which justifies Statement 3.

Theorem 4.4. Let A��p� ��p be as defined, 0:95 � p � 1:0. Then,

A��
1:0
�1:0� � L1:0��j�;1;1; kj�;1;1� as N !1:

A graphical representation of this theorem is provided in
the Appendix.

Suppose we require that all of the data points fall within
� of the ªfittedº function, where � is the smallest positive
value for which such a function exists. Then, for � and K
large, as N !1 our optimal function will converge to the
least-squares function. This implies that our algorithm can
be used to fit nonrobust, as well as more robust optimal
functions.

By justifying the above statements, we have shown that
our search space contains an optimal solution. It remains to
be shown that the algorithm converges to an optimal
solution for hmax � 1.

4.4.2 Convergence to Optimum

For any � � ��, we know from the above section that we may
choose � and K sufficently large so that an optimal solution
is contained in the search space L0

1��;K�.
As defined previously, let

I �;L��j;1;1;kj;1;1��x; y� �
1 j yÿ L��j;1;1; kj;1;1; x� j< �
0 otherwise:

�
Since h takes only one value, we may drop the term
�1ÿ h

hmax
� from (7) and allow

ev�;N L��j;1;1; kj;1;1�
ÿ � �XN

i�1

I �;L��j;1;1;kj;1;1��xi; yi�:

Define ev�;N L��j;1;1; kj;1;1
ÿ �� � 1

N ev�;N L��j;1;1; kj;1;1�
ÿ �

. Note
that

lim
N!1

ev�;N L��j;1;1; kj;1;1�
ÿ � � P [

b

[
a<b

E�;L��j;1;1;kj;1;1�;a;b

 !
� P E�;L��j;1;1;kj;1;1�

� �
:

Given the convergence of the elitist GA, we know that
our GA finds an optimal L��j;1;1; kj;1;1� for a given L0��;K�,
�, and N . So, let L��j�;1;1; kj�;1;1��;N be such that

ev�;N L��j�;1;1; kj�;1;1��;N
� �

�
max

L��j;1;1;kj;1;1�2L0
1��;K�

ev�;N L��j;1;1; kj;1;1�
ÿ �

;

where the dependence of an optimal line on � and N has
been made explicit. L��j�;1;1; kj�;1;1��;N also maximizes
ev�;N�L��j;1;1; kj;1;1��. To determine whether our algorithm
converges to an optimal solution, we examine
limN!1 ev�;N L��j�;1;1; kj�;1;1��;N

� �
for � � �2N , where

ev�2N ;N�L��j�;1;1; kj�;1;1��2N ;N� � 0:95:

If limN!1 ev�;N�L��j�;1;1; kj�;1;1��;N� is at least 0.95, then our
algorithm does indeed converge to an optimal solution.
Theorem 4.5 states that this is indeed true.

Theorem 4.5. Let N be large and �2N be as defined above. Then,
for appropriate � and K,

lim inf
N!1

ev�2N ;N L��j�;1;1; kj�;1;1��2N ;N
� �

� 0:95:

The proof of Theorem 4.5 is presented in the Appendix.
Hence, we have established that, for hmax � 1,

1. Our search space L0��;K� contains an optimal
solution as �!1 and K !1.

2. The algorithm converges to an optimal solution.

4.4.3 Remarks

1. For large �i0 and Ki0 , j �i ÿ �iÿ1 j and j ki ÿ kiÿ1 j
are both small, so the optimal line L��j�i0 ;1;1; kj�i0 ;1;1� 2
L0��i0 ;Ki0� will be close to the optimal line

L��m�;1;1; km�;1;1� 2 Q.
2. A search procedure based on the above mathema-

tical formulation may be designed so that �, K, and �
are adjusted adaptively, i.e., in a way that is
dependent upon the algorithm's result. For example,
we may start with initial choices �i0 , Ki0 , and �i0 , and
run the algorithm for a finite number of iterations. If
we reach several optimal results, we may reduce �i0 ;
if we reach a single result, we may increase � and K.
We then repeat this process until the resulting
solution reflects the center of the probability density
function of the observed random variables with an
acceptable level of precision. Note that if � and/or K
are/is small or � is large, it is possible for the
algorithm's result to be close to an optimum in terms
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of probability but not in terms of Euclidean distance.
Since appropriate values for �, K, and � are
unknown a priori, we need to implement an
adaptive procedure.

3. Recall that, in our requirement, 95 percent of the data
points must be within �� of the optimal solution is
heuristic. Depending upon the particular dataset at
hand and the desired accuracy of the solution, we may
alter this critical level to better suit the given situation.

4. In Statement 3 and its corresponding proof (Theo-
rem 4.4), we justified that with a critical level of 1.0,
the algorithm converges to a unique optimum as
N !1. Note that this unique optimum corresponds
to the least-squares solution. Hence, our method can
be used to fit both robust (using an � criterion) and
nonrobust (using a least-squares criterion) solutions.

5. It is possible for our optimization problem to have
more than one solution. For example, consider
Fig. 2, which shows a cross section of the density of
the observed random variables �x; y�. Suppose we
have two parallel lines lying in the x-y plane, one
located at the center of the interval marked with a
number 1 (crossing the x-axis at the star marked
with a number 1) and one located at the center of
the interval marked with a number 2 (crossing the
x-axis at the star marked with a number 2). The
percent values on the graph indicate the percentage
of the data points with an x value lying within the
corresponding marked interval. Using these per-
centages, we see that 95 percent of the data points
fall within � of line number 1 and 95 percent of the
data points fall within � of line number 2. Hence,
both of these lines would satisfy our optimization
criteria (8).

6. We have assumed that the support of �1�x; y�, B, is
rectangular in shape. However, the support of
�1�x; y� may have curved symmetric boundaries as
opposed to straight lines. For example, let ��x� be as
defined in (6), i.e.,

��x� �
d1ÿx cos �1

sin �1
x 2 �z11; z21�

0 otherwise:

�

Then, we could have B as shown in Fig. 3. All of the

above results except Theorem 4.4 hold for such a

support B as long as the symmetricity of �1�x; y� is

maintained. The symmetricity is essential due to the

nature of ev�;N . For Theorem 4.4 to hold, we also

require that 1 6� 2 (so that the center portion of �

has positive width).

4.5 Case hmax > 1

Having completed the case hmax � 1, we now consider the

case of hmax > 1; h� unknown, h� 2 H. We extend the

results of Section 4.4 to this case by utilizing the case of

hmax > 1; h� known, h� 2 H.

4.5.1 Optimal Solution in Search Space

Suppose h � h�; h� > 1; h� 2 H, where h� is known. Our

optimal string should represent an h�-piecewise linear

function L���j�;�;h� ; kkj�;�;h� � such that

ev��;N L���j�;�;h� ; kkj�;�;h� ; �
ÿ �
� max

L���j;�;h� ;kkj;�;h� �2L0
h� ��;K�

ev��;N L���j;�;h� ; kkj;�;h� �
ÿ �

;

where each L��j;i;h� ; kj;i;h� �; i � 1; . . . ; h�, satisfies the proper-

ties listed in Section 4.2 for Lj;i;h, and
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L0
h� ��;K� � Lj;�;h� 2 Lh� : Lj;i;h� is of the form

x cos �j;i;h� � y sin �j;i;h� � `�j;i;h� � kj;i;h�� 8 � � 1; . . . ; h�;

�j;i;h� 2 �

2la
;
2�

2la
; . . . ;

�2la ÿ 1��
2la ; �

; kj;i;h� 2 f0; 1; . . . ; 2ld ÿ 1g;

and � � diag=�2ld ÿ 1�g
(see Fig. 4).

With respect to optimization, we can approach each

Lj;i;h� as we did the hmax � 1 case with �i�x; y� as �1�x; y�
and �z1i; z1�i�1�� as �z11; z21�. We then recognize L0

h� ��;K� as

simply
Sh�
i�1

S
j L0

h�;i;j��;K�, where

. L0
h�;i;j��;K� is L0

1��;K� restricted to �zj;1;h�;1; zj;2;h�;1�
and

. the union is taken over all possible knot locations
and over all possible pieces (any knot/piece combi-
nations which contain pieces that do not intersect are
removed).

By the results of Section 4.4.1, for any i; j we can get

arbitrarily close to any line over �zj;1;h�;1; zj;2;h�;1� intersect-

ing rect, hence, we can get arbitrarily close to any

piecewise function with knot locations satisfying

�zj;1;h�;1; . . . ; zj;�h��1�;h�;1� whose pieces intersect rect. By

taking the union over all possible knot locations satisfying

�zj;1;h�;1; . . . ; zj;�h��1�;h�;1� and over all j, we see that an

optimal h�-piecewise solution is contained in L0
h� ��;K� as

�!1 and K ! 1.
By defining our search space asL0��;K� � Sh2H L0

h��;K�
(see Section 4.3), we can guarantee, using the same reasoning

as in Section 4.4.1, that an optimal h�-piecewise solution, h�

unknown, h� 2 H, will be contained in the search space as

�!1 and K !1.
To show convergence to an optimal solution, we first

consider the case of h� known.

4.5.2 Convergence to Optimum

If h� is known, h� 2 H, then, for appropriate � and K,

we are searching for a function L���j�;�;h� ; kkj�;�;h� � 2
L0
h� ��;K�

TL���� which maximizes

ev�;N L���j;�;h� ; kkj;�;h� �
ÿ � �XN
i�1

I
�;L ��j;�;h� ;kkj;�;h�
ÿ ��xi; yi� � 1ÿ h�

hmax

� � �9�

over all L���j;�;h� ; kkj;�;h� � 2 L0
h� ��;K�. As was done in

Section 4.4.2, we may drop the term �1ÿ h�
hmax
�. The

convergence of the elitist GA combined with the continuity

of ev�;N ensures that Theorem 4.5 holds, i.e.,

lim inf
N!1

ev�2N ;N�L���j�;�;h� ; kkj�;�;h� ��2N ;N� � 0:95:

Since the above holds for any fixed h � h�, an algorithm

to find an optimal solution in the hmax > 1; h� 2 H unknown

case could be designed as follows:

1. Divide L0��;K� into its component classes
L0

1��;K�;L0
2��;K�; . . . ;L0

hmax
��;K�.

2. On each class L0
h��;K�; h � 1; . . . ; hmax, use an elitist

GA to find L���j�;�;h; kkj�;�;h�, where

ev�;N L���j�;�;h; kkj�;�;h�
ÿ � �

max
L���j;�;h;kkj;�;h�2L0

h��;K�
ev�;N L���j;�;h; kkj;�;h�

ÿ �
:

3. Define

Lbest �
�
L���j�;�;1; kkj�;�;1�; . . . ; L���j�;�;hmax

; kkj�;�;hmax
�	:

Then, the solution is taken as the function

L���j�;�;h� ; kkj�;�;h� � 2 Lbest, where

ev�;N L���j�;�;h� ; kkj�;�;h� �
ÿ � �

max
L���j� ;�;h;kkj� ;�;h�2Lbest

ev�;N L���j�;�;h; kkj�;�;h�
ÿ �

:
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This type of GA we call a partitioned genetic algorithm. We
have noted previously that the elitist GA will converge to an
optimal solution as N !1. The proof of convergence is
based on two assumptions:

1. The optimal string from the present population has a
fitness value no less than the fitness values of the
optimal strings from the previous populations.

2. Each string has a positive probability of going to an
optimal string within any given iteration.

As these assumptions hold for the partitioned GA, it is easy
to prove (although the proof will not be given here) that the
proof of convergence to an optimal string holds for this
algorithm as well.

4.5.3 Remarks

1. We have justified the claim that, for any value of
hmax, an optimal solution is contained in the search
space of our algorithm and that our algorithm will
converge to an optimal solution. We have also
established that, for � and K large and crit � 1:0,
the solution of our algorithm will converge to the
least-squares solution as N !1. Hence, our algo-
rithm can be used to fit both robust and nonrobust
solutions.

2. As in the hmax � 1 case, for hmax > 1, we do not know
an appropriate value for � a priori. Hence, to
implement our algorithm, we must use an adaptive
procedure which will search for an appropriate
value for �.

The theoretical foundation of our algorithm has been
established. In the next section, we show the results of
implementing our algorithm on several datasets and discuss
how these results compare to those of similar methods.

5 EXPERIMENTAL RESULTS

5.1 Methods and Implementation

5.1.1 Genetic Algorithm

We applied to each dataset a partitioned GA with either
H � f2; 3; 4g, H � f3; 4; 5g, or H � f5; 6; 7g. We utilized
binary coding although an alternate coding, scheme could
have been used. Since we chose values for � and K which
were fixed, but very large (e.g., la � 8 and ld � 12), the
partitioned GA adaptively searched for only �. We refer to
such a GA as a variable epsilon genetic algorithm. For each
value h 2 H, the variable epsilon GA can be described as
follows:

1. Set the global parameters for population size
M �� 50�, crossover probability pc�pc � 0:8�, number
of characters for representing angle la �la � 8�,
number of characters for representing distance or
offset value ld �ld � 12�, and the maximum number
of iterations MaxNit �MaxNit � 20; 000�. Our selec-
tion for M depends on the computing power of our
machine, while la and ld depend upon the desired
precision of our result. The mutation probability pm
was varied as a function of the number of iterations
completedÐsee [30] for more details.

2. Choose crit = critical level = percentage of data points
to fall within � of the final fitted piecewise linear
function and a large initial value for �. The fitness
value of each string (which represents a function
L���j;�;h; kkj;�;h� 2 L0��;K�) is determined by (7).

3. For each h 2 H, run an elitist GA until either
1) crit � (the maximum fitness value of the
population)/(number of observations), or 2) the
maximum number of iterations, MaxNit, is reached.
If 1) occurs, then set � � �ÿ ��� � 0:01 � ��; Nit =
iteration number = 1, and restart the elitist GA. If
2) occurs, report the function corresponding to the
string with the maximum fitness value as the final
result for the given value of h.

4. Compare the results across h values and select the
string corresponding to the overall maximum fitness
value as the optimum string.

Note that, within each run of our algorithm, the value of h is
fixed. We then compare the results of each run of the
algorithm for each value of h 2 H to determine the overall
optimal string.

5.1.2 Data

The proposed algorithm was applied to a total of seven
datasets; due to space constraints, we discuss results for
those five datasets which best demonstrate the relative
strengths and weaknesses of our method. These five
datasets, of which three are simulated, are described in
Table 1. Datasets 1 and 2 were generated from piecewise
linear functions with unequally spaced knots using nor-
mally distributed noise (denoted Nor (mean, sd)); dataset 2
contains outliers while dataset 1 does not.

Dataset 3 was created using a generating function
borrowed from Schwetlick and SchuÈ tze [14] with noise
following a uniform distribution, as stated above.

The two nonsimulated datasets are standard datasets
from the literatureÐthe titanium heat data of DeBoor [31]
and Pezzack et al.'s angular displacement data [16]. These
were used to demonstrate the effectiveness of the proposed
method in real applications.

5.1.3 Comparisons

For datasets 1 and 2, the results of the variable epsilon GA
were compared to the results of two other piecewise linear
fitting methods:

1. Sb-spline: A b-spline of degree 2 fit using the
functions bs and lm in the software package S-plus,
version 3.3, release 1 [32]. The knot locations are
equally spaced by default.

2. Least-squares GA: A genetic algorithm which has the
same global parameters as the variable epsilon GA,
but which fits a piecewise linear function by
minimizing the sum of squared errors.

All methods were applied to each dataset for each value
h 2 H. Then, for each method, the results for all h values
were compared and the best result was chosen as the
method's overall solution.

Note that datasets 3, 4, and 5 have abscissae values in
strictly increasing order. This allows comparison with more
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sophisticated spline fitting algorithms. Hence, for these
examples, we will use the following comparative methods:

1. deBoor/Rice: A truncated power basis spline of degree 2
fit using the routines BSVLS, BSCPP, and BSLSQ in
IMSL version 10 [33]. Given an initial set of knots, the
knot locations are determined automatically by the
nonlinear optimization algorithm of deBoor and Rice
[15]. The number of knots is fixed by the user.

2. dierckx: A b-spline of degree 2 fit using the algorithm
CURFIT of Dierckx [16]. The number of knots and
their locations are chosen automatically by the
algorithm; a single parameter must be specified to
balance smoothness and lack of fit.

We have not attempted to compare results under neural
network-based methods since we are fitting straight lines
and not curves. A comparison of our results with those of a
least-squares GA reflects the work of Karr and Weck [2] and
Karr et al. [6]; a comparison with Vankeerberghen et al. least
median squares GA [25] may be included in future research.

All experiments were run on a Sun Sparcstation 5.

5.2 Selected Results

5.2.1 Dataset 1

This dataset had a generating function with unequally
spaced knotsÐthe middle piece was considerably longer
than either of the end pieces. For this reason, the fit of the
Sb-spline was quite poor in comparison to the genetic
algorithms' results. The best model from each method had
the correct number of lines. The variable epsilon GA (with
crit = 95 percent) and the least-squares GA yielded similar
results, followed by the Sb-spline. (see Fig. 5).

In some of our earlier experiments, the variable epsilon GA
performed better thanthe least-squaresGA. However, further
experiments revealed that the least-squares GA does yield a
comparable model given an equivalent number of iterations.
The speed of the Sb-spline algorithm was almost
instantaneous, while the GA algorithms took about five

minutes of CPU time to yield a near optimal result (see
Table 2).

With this dataset, all methods did merge lines for a better
fit when the choice of h was too large. The Sb-spline could
not match the quality of fit of the GAs because its knot
locations were fixed.

5.2.2 Dataset 2

Dataset 2 combined unequally spaced knots with the
presence of four outliers which were not clustered. We set
crit = 92 percent to accomodate for these outliers in our
modeling procedure. From Fig. 6, it is clear that only the
variable epsilon GA provided a reasonable fit. The least-
squares GA was adversely affected by the outliers, while the
Sb-spline failed to capture the shape of the dataset. The
robustness of the variable epsilon GA proved essential for a
proper fit. It should be noted, however, that the Sb-spline and
the least-squares GA would in all likelihood fit better models
in the presence of less influential outliers; see Section 5.4.

We also found that, when the number of lines was too large
(h � 4 instead of h � 3), the variable epsilon GA was able to
compensate for this by selecting pieces which almost merged.

5.2.3 Dataset 3

Dataset 3 has only one observation at each ordinate value
and no outliers. Although our algorithm was designed with
the robust case in mind, we feel that it is important for it to
perform well in the nonrobust case. We set crit = 99 percent
and H � f5; 6; 7g (see Fig. 7).

It appears that the deBoor/Rice and variable epsilon GA
algorithms, whose best models had h � 5 pieces, provided
reasonable models, while the dierckx model was less
adequate. We observed that, with this and the following
datasets, the results of thedeBoor/Rice algorithm were highly
dependent upon the starting values; this is alluded to in [16].
However, given reasonable starting values, the algorithm
yielded the models with the lowest error (see Table 3).
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We found the dierckx algorithm to be difficult to
implement. It was found that, for an adequate fit, weights
had to be supplied for the data points; balancing the weight
values with the smoothing factor was found to be
nontrivial. It was also noted that the number of knots in
the dierckx model was considerably higher than the
number of knots in the deBoor/Rice and variable epsilon
models (in this case, we could not obtain a reasonable
model for h 2 H; we required h � 12). It is possible,
however, that an experienced user could find a more
parsimonious model with an equal quality of fit.

5.2.4 Dataset 4

The titanium hat dataset is one of the standard datasets in
the spline fitting literature. With crit = 99 percent and
H � f5; 6; 7g, both the deBoor/Rice algorithm and variable
epsilon GA selected h � 5; the dierckx method, in contrast,
chose h � 29. In looking at Fig. 8 and Table 4, we note that
the deBoor/Rice spline is the superior model, followed by
the var. eps GA spline and the dierckx spline. Although the
deBoor/Rice spline provides the best fit to the data, we note
that the result of this algorithm was highly dependent upon

the choice of initial knots. The result of the variable epsilon
GA does not demonstrate this dependence.

5.2.5 Dataset 5

Our last experimental dataset is Pezzack et al.'s angular
displacement data [16], a popular dataset for testing curve
fitting algorithms. Once again, the deBoor/Rice spline is the
superior model, followed closely by the variable epsilon GA
spline. Both models selected h � 6 from the candidate set
H � f5; 6; 7g. The dierckx model is relatively inadequate
due to several spurious oscillations (this is reflected in the
choice of h � 74). We attempted to remove these oscillations
by increasing the smoothing factor, but this failed to
improve the fit of the model. It is possible, however, that
a more experienced user would have greater success in
finding the correct balance between smoothing factor, data
point weights, and lack of fit (see Table 5 and Fig. 9).

5.3 Conclusions

Our results demonstrate that, for ªniceº datasets (no outliers),
the variable epsilon GA can provide a fit comparable to that of
a least-squares GA, deBoor/Rice, or dierckx spline model.
Although the variable epsilon GA did not always yield the
ªbestº result for nice datasets, it always achieved a
satisfactory fit very quickly without the benefit of a user-
defined initial knot set. When the number of pieces was too
large, the algorithm did a nice job of decreasing the effective
number of pieces by choosing lines which almost merged. By
increasing the number of iterations and/or the string length,
it is likely that even better results can be achieved.

For datasets with outliers, the variable epsilon GA
appears capable of yielding results far superior to those of
comparable methods. As with ªniceº datasets, if too many
pieces have been specified, the algorithm can almost merge
pieces to yield a model with the appropriate number of
effective knots. Despite large search spaces (of the order 260

and 280), the algorithm can reach a near-optimal solution in
about five minutes. The variable crit makes it possible to
adjust for outliers, while the variables � and K provide
some control over the precision of the final fit. By allowing �
to be determined adaptively, our algorithm can find a result
which 1) satisfies the critical value and 2) is closest to the
majority of the data points with respect to other solutions.

We conclude that the variable epsilon GA represents a
valuable tool for fitting both robust and nonrobust piece-
wise linear functions.

5.4 Remarks

1. It was noted in Section 5.2 that the results of
methods based on least-squares, such as the algo-
rithms of deBoor/Rice and dierckx, are adversely
affected by the presence of outliers. We should note
that this effect will be present most often when the
outliers are influential. Hence, it is possible to use a
least-squares method in the presence of such outliers
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TABLE 2
Dataset 1, h = 3



if, e.g., one fits an initial model via least-squares,

uses influence diagnostics [34] to test for influential

observations, removes such observations from the

analysis and then refits the model. This assumes,

however, that such observations can be removed. It

is often the case, especially in consulting situations,

that the client refuses to remove any observations

from the analysis. In such a situation, we would

recommend that the analysis be performed using a

method similar to the one presented here.

2. Since the solution given by the variable epsilon GA

is the result of a random process, we decided to run

the variable epsilon GA described above several

times on the following dataset and examine the

variability of the results. Dataset 6 contained several

outliers, had equally spaced knots, and met the

specifications in Table 6. A variable epsilon GA was

executed eight times with the global parameters set,

as in Section 5.1.1, and crit � 95 percent. The results

are shown in Fig. 10 and Table 7.
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Fig. 6. Results of Dataset 2.

Fig. 7. Results of Dataset 3.

TABLE 3
Dataset 3



Fig. 10 does not appear to contain eight functions
because several results were identical. By examining
the ranges of both the slopes and intercepts of the
linear pieces, the achieved level of consistency
appears to be satisfactory. Each parameter of the
generating lines falls within its corresponding range
in Table 7. For example, the slope and intercept of
the first generating line are 2.5 and 0, respectively,
and our experiments generated corresponding
ranges of (2:41421, 3:02704) and (ÿ0:188247,
0.180099). Further research is needed to determine
a more precise measure of result variability.

3. For our experiments, we considered datasets where
h was between 3 and 7. However, we have run
experiments with larger values of h (� 10) and
found that near optimal models can be found in a
reasonable amount of time (� 15 min.). With the
increasing availability of computational resources, it
seems plausible that larger solution spaces (i.e.,
larger h and N) could be handled in approximately
the same CPU time.

6 CONCLUSIONS AND FUTURE RESEARCH

By using genetic algorithms, we have devised a method for
fitting piecewise linear functions to data in R2 which not
only optimizes the number of pieces, but also optimizes the
knot locations. With the assumption that the probability
density function of our random variables is symmetric, the
above theory shows that our method will lead to a
piecewise linear function which ªfitsº the given dataset.

However, even if we do not make this assumption (so our
only assumption about the data is that the underlying
probability density function is continuous), our method will
still yield an optimal result for the chosen fitness function.

Our method yielded very good results in the presence of

noise. The parameter crit makes it possible for our

algorithm to reach a near-optimal result even in the

presence of outliers. The convergence of genetic algorithms

has been shown for practically any choice of parameter

values (e.g., M � 50, pc � 0:8, etc.), although the best

choices are still a matter of contention. The formulation of

an optimal stopping rule is a subject of ongoing research,

although it is known that increasing the number of

iterations leads to a result with better accuracy.
It would be of interest to compare the performance of the

partitioned GA with the performance of the VLGA. As

mentioned previously, we would also like to develop a

method for providing confidence limits for our results. It

may also be possible to decrease CPU time by developing a

heuristic for determining a ªbestº initial value for �.

Although our algorithm is currently restricted to linear

splines in R2, future research will focus on extending our

method to splines of higher orders, as in [36], and higher

dimensions. Given the rapid increase in available computa-

tional power, we believe it is feasible to extend the use of

genetic algorithms to fitting curvilinear models and to

datasets of dimension greater than 2.
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TABLE 4
Dataset 4



APPENDIX

Proof of Theorem 4.1. Let � � ��;�; and K be given.
Suppose 9 L��j�;1;1; kj�;1;1� : L��j�;1;1; kj�;1;1� 2 L��� and

�
�x; y� : y � L��j�;1;1; kj�;1;1��x�; x 2 �z11; z21�

�\
rect � ;:

Then, either�
�x; y� :

y 2 L��j�;1;1; kj�;1;1��x�; L��j�;1;1; kj�;1;1��x� � �
� �

;

x 2 z11; z21� �
�\

rect � ;

or�
�x; y� :

y 2 L��j�;1;1; kj�;1;1��x� ÿ �; L��j�;1;1; kj�;1;1��x�
� �

;

x 2 �z11; z21�
�\

rect � ;:

Assume without loss of generality that

�
�x; y� :

y 2 L��j�;1;1; kj�;1;1��x� ÿ �; L��j�;1;1; kj�;1;1��x�
� �

;

x 2 �z11; z21�
�\

rect � ;:

This implies that 1
N

PN
i�1 ' �xi; yi�� � � 0:95, where

'��x; y�� �
1 �x; y� 2 f�x; y� : y 2 �L��j�;1;1; kj�;1;1��x�;

L��j�;1;1; kj�;1;1��x� � ��; �z11; z21�g
0 otherwise:

8<:
Let

���x; ��y� � �
XN
i�1

'��xi; yi���ÿ1
X
j

�xj; yj�;

where the sum is taken over all

�xj; yj� 2
�
�x; y� :

y 2 L��j�;1;1; kj�;1;1��x�; L��j�;1;1; kj�;1;1��x� � �
� �

;

x 2 �z11; z21�
�
:

Define

L��j��;1;1; kj�� ;1;1� : L��j��;1;1; kj�� ;1;1�
is parallel to L��j�;1;1; kj�;1;1� and ��y � L��j��;1;1; kj��;1;1����x�.
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Fig. 9. Results of Dataset 5.

TABLE 5
Dataset 5



Then,�
�x; y� :

y 2 L��j�;1;1; kj�;1;1��x�; L��j�;1;1; kj�;1;1��x� � �
� �

;

x 2 �z11; z21�
�
� E�;L��j�� ;1;1;kj�� ;1;1�:

Thus,

L��j��;1;1; kj��;1;1� 2 L�

and since

��y � L��j��;1;1; kj��;1;1����x�;(
�x; y� : y � L��j��;1;1; kj�� ;1;1��x�; x 2 z11; z21� �

)\
rect 6� ;

tu
For a graphical representation see Fig. 11a. Note that

95 percent of the datapoints fall within � of
L��j�;1;1; kj�;1;1�, while 95 percent of the datapoints fall
within �=2 of L��j��;1;1; kj�� ;1;1�.
Proof of Proposition 4.1. Let L��m;1;1; km;1;1� 2 Q1 and � > 0

be given. Choose �� : �=2la � �=�� < �=2. Similarly,
choose

K� : � � diag=�2ld ÿ 1� � diag=�K� ÿ 1� < �=2:

Then, 9 L��; k� 2 L0
1���;K�� : 2. is satisfied. Since, for any

h; h � 1; . . . ; hmax; fL0
h��;K� : la � 1; 2; . . .g

and �L0
h��;K� : ld � 1; 2; . . .

	
represent increasing sequences of nested sets, if

L��; k� 2 L0
1���;K��; then L��; k� 2 L0

1��;K�8 � > ��

and 8 K > K�. Hence, 1 is satisfied. tu
Proof of Theorem 4.2. Let � > 0 be given. Choose

�� : �=2la � �=�� < �=2. Then, for

���i� 2
�

2�� ; . . . ; �

� �
; ���i� � ���i�1� 8 i; i � 1; . . . ;�� ÿ 1g;

we have j 0ÿ ���1� j< �=2,

j ���1� ÿ ���2� j< �=2; . . . ; j ����� � ÿ � j< �=2:

So, given anyL��m;1;1; km;1;1� 2 Q1, we canchoose�� so that

9 ���i� 2
�

2�� ; . . . ; �

� �
: j �m;1;1 ÿ ���i� j< �=2:

For any angle, ���n� 2 n�
��
; �n�1��

��

h i
; n � 1; . . . ;�� ÿ 1, the

corresponding
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TABLE 7
Dataset 6 Results; Ranges for Intercepts and Slopes

TABLE 6
Dataset 6

Fig. 10. Example of variability of results.



���n� 2 ���n1�
; ��n2�

�; l���n� � ��n1�
� ��n2�

� diag:

Find

� � max
n

sup
��n�

��n2�
ÿ ��n1�

h i
; n � 1; . . . ;�� ÿ 1

( )
:

Choose K� : �=K� < �=4 and K� � 2y for some y 2 R:
Then, given any L��m;1;1; km;1;1� 2 Q1, we can choose K�
so that

9 k��i� 2 f0; . . . ; 2K� ÿ 1g :j ���i� ÿ �m;1;1 j< �=2:

Hence, given any � > 0 and L��m;1;1; km;1;1� 2 Q1, we
can find �� and K� so that

9 L����i� ; k��i� � 2 L0
1���;K�� :

j �ÿ �m;1;1 j< �=2 and j �m;1;1 ÿ � j< �=2:

If L����i� ; k��i� � 2 L0
1���;K��, then

L����i� ; k��i� � 2 L0
1��;K�8 � > ��

and 8 K > K�. Hence, 1 and 2 are satisfied. tu
Proof of Proposition 4.2. Define S1 �

S1
i�1 L0

1��i;Ki�. Note

Q1 � S1. Note that S1 � T 1 so Q1 � T 1. Since we are

only considering optimal lines which pass through rect,

the optimal lines in Q1 � the optimal lines in T 1. tu
Proof of Theorem 4.3. Note that

L0
1��i;Ki� � L0

1��i0 ;Ki0 � 8�0 > i:

Hence, A�i � A�i0 8 i0 > i. Thus, A� lim � limi!1A�i exists

[35]. But, A� lim is the set of optimal lines in S1, where

Q1 � S1 � T 1. By Proposition 4.2, A� lim � A�: tu
Proof of Theorem 4.4. Suppose

9 L��j�;1;1; kj�;1;1�;��j��;1;1; kj��;1;1� 2 A��
1:0
�1:0� :

L��j�;1;1; kj�;1;1� 6� L��j�� ;1;1; kj��;1;1�:
Then, for all possible values of �x; y�

�x;y� 2
�
�x; y� :

y 2 L��j�;1;1; kj�;1;1��x� ÿ ��1:0; L��j�;1;1; kj�;1;1��x� � ��1:0
� ��

and

�x;y� 2
�
�x; y� :

y 2 L��j�� ;1;1; kj��;1:1��x� ÿ ��1:0; L��j��;1;1; kj�� ;1;1��x� � ��1:0
� ��

:

Recall that, for h� � 1, the support of �1�x; y� was
defined as B, where

B �
�
�x; y� : y 2 d1 ÿ x cos �1

sin �1
ÿ �0; d1 ÿ x cos �1

sin �1 � �0

� ��
for x 2 �z11; z21�:

As N !1; ��1:0 ! �0 since ��1:0 is minimal and ev�;N is
continuous for all �. Hence,

f�x; y� : y �L��j�;1;1; kj�;1;1��x�g !
f�x; y� : x cos �1 � y sin �1 � d1g

and

f�x; y� : y �L��j��;1;1; kj�� ;1;1��x�g !
f�x; y� : x cos �1 � y sin �1 � d1g:

Thus, L��j�;1;1; kj�;1;1� � L��j��;1;1; kj�� ;1;1�. tu
See Fig. 11b for a graphical representation of Theorem 4.4.

Proof of Theorem 4.5. Given the continuity of ev�;N , we
know that, as N !1, for each N large we may find
�1N; �2N; �3N; 0 < �1N < �2N < �3N , such that:

. ev�1N ;N�L��j�;1;1; kj�;1;1��1N ;N� < 0:95

. ev�2N ;N�L��j�;1;1; kj�;1;1��2N ;N� � 0:95

. ev�3N ;N�L��j�;1;1; kj�;1;1��3N ;N� � 0:97

Note that L��j�;1;1; kj�;1;1��1N ;N 62 L��1N �, while �3N is not
minimal, i.e., there exists some � < �3N : L��� 6� ;. Hence,
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Fig. 11. Graphical representations of (a) Theorem 4.2 and (b) Theorem 4.4.



for our stated goal (see (8)), we are interested only in �2N .

For each N , there may be infinitely many such �2N . For a

given N and �, let one such �2N be ��2N . Then, we

conclude,

lim inf
N!1

ev�2N ;N�L��j�;1;1; kj�;1;1��2N ;N� � 0:95

for appropriate � and K. tu
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