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Abstract: Robust estimation of the probability vector is an important problem for

the finite k cell multinomial model. When the probability vector is unrestricted,

its estimate is equal to the vector of the observed proportions for all minimum

disparity estimators (Lindsay (1994)). But, when the probabilities are functions of

a parameter θ of dimension smaller than k, the estimates may differ significantly

for different disparities. In particular, some procedures like the minimum Hellinger

distance method may be substantially superior to the maximum likelihood esti-

mator (MLE) or the minimum (Pearson’s) chi-square estimator under systematic

deviations from the model. All the minimum disparity estimators have optimal

asymptotic efficiency properties. However, in many subclasses of disparities such

as the Cressie-Read family more robust members of the class generally suffer a

significant loss in small sample efficiency. In this paper we consider a correction

which can lead to appreciable improvements in the small sample properties of the

procedures, generally keeping their robustness properties intact. Exact results are

presented for several multinomial models and a number of data examples are also

considered.
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1. Introduction

Consider a random variableX having a multinomial distribution with param-
eters n and p = (p1, . . . , pk). Given a random observation from the distribution
of X, resulting in a vector of sample proportions p̂ = (p̂1, . . . , p̂k), we want to
estimate p robustly.

In discrete models density-based divergences have been studied by, among
others, Cressie and Read (1984), and Lindsay (1994). The former introduced
a family of divergences indexed by a single parameter λ which includes many
important density-based divergences such as the Pearson’s and Neyman’s chi-
squares, the Hellinger distance and the Kullback-Leibler divergence. Cressie and
Read used their family primarily for testing goodness-of-fit in discrete multi-
variate models. Lindsay considered a larger class of density-based divergences,
called disparities, and studied the associated estimators and tests of hypotheses.
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In discrete models all the minimum disparity estimators are first order efficient,
but many have better robustness properties than the maximum likelihood esti-
mator (Lindsay (1994)). Although the class of disparities is large and includes
the Cressie-Read family, several members of the latter class remain as the more
popular density-based robust alternatives to the maximum likelihood estimator.
In particular, an appealing justification of robustness of the minimum Hellinger
distance estimator has been provided by Simpson (1987).

A disparity is a nonnegative measure of discrepancy between two densities
(see Section 2 for a formal definition) which assumes its minimum value zero
when the densities are identical. In minimum disparity estimation one minimizes
a disparity between the observed proportions and the model probability vector.
Thus any minimum disparity estimator of p equals p̂ if the parameter space is
the entire k-dimensional probability simplex Sk. Differences in the estimates will
only be observed when the parameter space is a restricted subset of Sk. In this
paper we consider multinomial models where the probability vector p = p(θ) is
a function of a q-dimensional parameter θ, q < k.

As mentioned before, all minimum disparity estimators, including those
within the Cressie-Read family, are asymptotically first order efficient under the
model. In addition several estimators in this family have desirable robustness
properties which have been studied in various settings by several authors includ-
ing Simpson (1987) and Lindsay (1994). Simpson (1989) and Lindsay (1994) also
studied the use of minimized disparities in parametric hypothesis testing and dis-
covered nice robustness properties of the corresponding tests. At the same time,
however, many of the more robust estimators can be substantially poor (in terms
of efficiency) compared to the maximum likelihood estimator when the sample
size is small; this phenomenon is particularly noticeable for some of the more ro-
bust minimum disparity estimators within the Cressie-Read family. For the test
based on the Hellinger distance, Simpson (1989) observed that in the Poisson
model “it requires rather large sample sizes for the chi-squared approximation to
be at all reasonable” (see Simpson (1989), Table 3).

This unfortunate trade-off between robustness and small sample efficiency
appears to be partly due to the disproportionately large weight that these dispar-
ities put on the empty cells. In this paper we consider an empty cell penalty for
the minimum disparity estimators in multinomial models which does not alter
the asymptotic properties of the estimators but has been empirically observed
to improve the small sample performances of some of these procedures (Har-
ris and Basu (1994), Basu, Harris and Basu (1996)). We emphasize, however,
that the purpose of this paper is not just to develop another class of robust
procedures. The robustness of the minimized disparity procedures, as well as



PENALIZED MINIMUM DISPARITY METHODS 843

their asymptotic efficiencies have already been studied in some detail (Simpson
(1987, 1989), Lindsay (1994), see also Cressie and Read (1984), Read and Cressie
(1988)). Since the penalized estimators considered are asymptotically equivalent
to the ordinary estimators, here we focus entirely on the small sample properties
of these estimators in multinomial models. In particular we demonstrate that
the penalty can often significantly improve the small sample performance of the
estimators without compromising their robustness properties. All the numbers
and figures presented here correspond to exact computations, rather than Monte-
Carlo results. The relevant quantities are calculated by enumerating all possible
samples and determining their probabilities under the true distribution. Exact
computations such as these can be extremely valuable in distinguishing between
estimators whose large sample properties are identical. Such exact calculations
have also been considered by Cressie and Read (1984), Basu and Sarkar (1994a),
Basu and Basu (1995) and Shin, Basu and Sarkar (1995) in different contexts.

2. Disparity Based Inference and the Empty Cell Penalty

We begin by considering minimum disparity inference in its general setting.
Let fθ(x) be a parametric density defined on a countable set taken to be {1, 2, 3,
. . .} without loss of generality. We are interested in estimating the parameter θ

robustly. The parameter space Ω is a subset of Rq. Let X1, . . . ,Xn be a random
sample from the distribution of fθ(x) and d(x), x = 1, 2, . . . be the observed
proportion of the value x among the n sample observations. For each x define
δ(x) = d(x)/fθ(x)− 1 to be the ‘Pearson Residual’ at x. For any strictly convex,
thrice differentiable function G(·) defined on [−1,∞) with G(0) = 0, we will call
ρG(d, fθ) =

∑∞
x=1G(δ(x))fθ(x) to be a disparity between d = (d(1), d(2), . . .)

and fθ = (fθ(1), fθ(2), . . .). The properties of the function G(·) immediately
suggest that ρG(d, fθ) is non-negative and is equal to 0 if and only if d ≡ fθ. The
estimates of θ obtained by minimizing the members of the class of disparities are
minimum disparity estimators. Equating the negative of ∂ρG/∂θ to zero, one gets
the minimum disparity estimating equation as

∑∞
x=1A(δ(x))∇fθ(x) = 0, where

∇ represents the gradient with respect to θ, and A(δ) = G′(δ)(δ+1)−G(δ). The
disparities can be redefined without changing their estimating properties so that
A(0) = 0 and A′(0) = 1. In this form the function A(δ) is called the residual
adjustment function of the disparity (or the corresponding estimator). Since the
estimating equations are otherwise equivalent, the theoretical properties of the
estimators are controlled by the form of the residual adjustment function. See
Lindsay (1994) for more details.
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The Cressie-Read family of disparities Iλ(d, fθ) defined as

Iλ(d, fθ) =
1

λ(λ+ 1)

∞∑
x=1

d(x)
[
(
d(x)
fθ(x)

)λ − 1
]

(2.1)

belongs to the class of disparities with G(δ) = [λ(λ+1)]−1{(δ+1)λ+1−1}. Harris
and Basu (1997) have considered the Cressie-Read disparity in the form

Iλ
∗ (d, fθ) =

∞∑
x=1

[d(x)[( d(x)
fθ(x))

λ − 1]

λ(λ+ 1)
+

(fθ(x) − d(x))
λ+ 1

]
. (2.2)

As d and fθ are both densities, the second term in the right hand side of (2.2)
does not contribute anything to the disparity, so that this definition is equivalent
to the original definition of Cressie and Read given in (2.1). However, each
term in the summand of (2.2) is non-negative, and the corresponding residual
adjustment function automatically satisfies A(0) = 0 and A′(0) = 1. Note that
for the disparity in (2.2), the G(δ) and A(δ) functions have the form

G(δ) =
(δ + 1)λ+1 − (δ + 1)

λ(λ+ 1)
− δ

λ+ 1
, A(δ) =

(δ + 1)λ+1

λ+ 1
− 1
λ+ 1

. (2.3)

For the cases λ = 0 and λ = −1, the divergences have to be defined as the
limiting cases as λ→ 0 and λ→ −1. When these limits are evaluated, one gets

I0
∗ (d, fθ) =

∞∑
x=1

[
d(x) log

d(x)
fθ(x)

+ (fθ(x) − d(x))
]
,

and I−1∗ can be obtained from I0∗ by interchanging d and fθ. The minimizer of I0∗
is the maximum likelihood estimator of θ. We will call I0∗ the likelihood disparity.
Similarly I1∗ , I

−1/2
∗ and I−2∗ , given by

I1
∗ =

∞∑
x=1

[d(x)−fθ(x)]
2

2fθ(x)
, I

−1/2
∗ =2

∞∑
x=1

[d1/2(x)−f1/2
θ (x)]2, I−2

∗ =
∞∑

x=1

[d(x)−fθ(x)]
2

2d(x)

are the Pearson’s chi-square, the squared Hellinger distance and the Neyman’s
chi-square respectively. Note that the versions of Pearson’s and Neyman’s chi-
squares considered here have an extra factor of 1/2 so that the residual ad-
justment function has the right properties; likewise for the squared Hellinger
distance.
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Figure 1. Residual adjustment functions of different disparities.

In Figure 1 we have plotted the residual adjustment functions of the Pear-
son’s chi-square (λ = 1), the likelihood disparity (λ = 0), as well as of the
disparities corresponding to λ = −0.5,−0.6,−0.7,−0.8,−0.9,−1.0. It may be
observed that the residual adjustment functions of the disparities corresponding
to the larger negative values of λ provide greater downweighting for observa-
tions with large positive values of δ. Such values of δ correspond to much larger
observed frequencies than expected under the model. In this sense the resid-
ual adjustment function acts much like the ψ function in robust M-estimation.
Geometrically, it can be seen that larger negative values of the curvature (mea-
sured by the second derivative) of the residual adjustment function at 0, lead to
greater downweighting. Lindsay (1994) provides more theoretical justification to
establish that larger values of the curvature in the negative magnitude lead to
greater robustness. For the Cressie-Read family this curvature is equal to λ, so
that larger negative values of λ lead to higher negative curvature. The Pearson’s
chi-square, on the other hand, magnifies the effect of large outlying values (i.e.
has large positive curvature) and therefore may be expected to perform poorly
in terms of robustness.

In this paper our interest is in comparing the robust minimum disparity
estimators of the Cressie-Read family in the range λ ∈ [−0.5,−1) with the tra-
ditional estimators such as minimum (Pearson’s) chi-square estimator and the
maximum likelihood estimator in multinomial models. Note that the Hellinger
distance corresponds to λ = −0.5, so that the robust disparities considered here
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provide a downweighting for the observations inconsistent with the model at a
rate equal to or higher than the Hellinger distance. (For values of λ ≤ −1 there
are some practical problems as we discuss later.)

It should be emphasized that one cannot use the influence function approach
for assessing the robustness of the above estimators; their influence functions are
the same as that of the maximum likelihood estimator - otherwise the estima-
tors cannot have full asymptotic efficiency. However there are several appealing
robustness features in these estimators which we now briefly describe (a more de-
tailed description of these features is provided in Lindsay (1994)). Firstly, there
is an inherent dampened response to outliers, as measured by a second derivative
generalization of the influence function idea. For estimators with large negative
values of A2, the quadratic approximation to the bias function of the estimator
under contamination can be significantly smaller than the linear approximation
(Lindsay, Section 4). Secondly, there is a high degree of stability of the disparity
measures and the solutions to the estimating equations when outliers are added
to the data. For example, when the data contain extreme outliers with small con-
taminating fractions, the Cressie-Read divergence from the contaminated data
to the model is close to that obtained by simply deleting the outlier from the
sample provided λ < 0 (Lindsay, Sections 6.2 and 6.3). And finally, under certain
general conditions the minimum disparity estimators have asymptotic breakdown
points of 50% (Lindsay, Section 6.4).

It has been noted before (Harris and Basu (1994), Basu and Sarkar (1994b),
Basu, Harris and Basu (1996)) that for the model more robust minimum disparity
estimators often fare more poorly than the maximum likelihood estimator if the
sample size is small. Part of this behavior can be attributed to the manner
in which the disparities treat the empty cells. Lindsay (1994) recognized that
the treatment of the Pearson inliers, cells with lower observed frequency than
expected under the model, can be the source of a problem for the minimum
Hellinger distance estimator. Empty cells represent the extreme cases of inliers.
To illustrate the empty cell problem in the case of the Iλ∗ disparity let λ > −1,
and write the disparity as the sum of two components with

Iλ
∗ (d, fθ) =

∑

x:d(x)�=0

{ d(x)
λ(λ+ 1)

[
(
d(x)
fθ(x)

)λ − 1
]
+

(fθ(x) − d(x))
λ+ 1

}

+
1

λ+ 1

∑

x:d(x)=0

fθ(x). (2.4)

The second component in the above disparity, (λ + 1)−1 ∑
x:d(x)=0 fθ(x), is the

contribution of the empty cells, and can become very large for values of λ close
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to −1. This can also be seen from Figure 1, and equation (2.3). There is a
sharp decrease in the left tail of the graphs (note that the empty cells correspond
to δ = −1) if λ has a large negative value. To counter this problem we can
alternatively consider the penalized family of disparities

P λ(d, fθ) =
∑

x:d(x)�=0

{ d(x)
λ(λ+ 1)

[
(
d(x)
fθ(x)

)λ − 1
]
+

(fθ(x) − d(x))
λ+ 1

}
+

∑

x:d(x)=0

fθ(x).

(2.5)
The above is obtained from (2.4) by applying a penalty for the empty cells;
this penalty changes the weight of the empty cells from (λ + 1)−1 to 1. For
all λ, therefore, the penalized disparities put the same weight on the empty
cells as I0∗ (d, fθ) does. As the number of empty cells asymptotically goes to
zero, this penalty does not affect the asymptotic distribution of the estimators;
the downweighting properties of the disparities also remain intact. In Section 3
we compare the minimum disparity estimators obtained through the penalized
version P λ with those estimators that minimize Iλ∗ .

For λ = −1, A(−1) = −∞, and the disparity is not defined if there is a single
empty cell. This is true for all values of λ ≤ −1 and this makes it impossible
to do the exact computations that we have considered in this paper for such
disparities. The representation (2.4) of the Cressie-Read disparities is valid only
for λ > −1. However, the penalized Cressie-Read disparity given in (2.5) is well
defined for all values of λ irrespective of the number of empty cells.

Next we turn our attention to hypothesis testing problems using penalized
disparities. Consider the simple null hypothesis H0 : θ = θ0, and define the
statistic T λ = 2n[Iλ∗ (d, fθ0

) − Iλ∗ (d, fθ̂)], where θ̂ represents the minimizer of Iλ∗
(with the disparities at λ = 0,−1 being defined in the usual limiting sense). It
may be checked easily that T 0 equals the negative of twice the log likelihood
ratio; it is well known that this has an asymptotic χ2(q) distribution under the
null hypothesis ( e.g. Serfling (1980)). Simpson (1989) showed that the ‘Hellinger
deviance test statistic’ T−1/2 is asymptotically equivalent to T 0 under the null
hypothesis. Lindsay (1994) went one step further, and proved this asymptotic
equivalence for all disparities under some general conditions. Consequently, all
the T λ statistics are asymptotically χ2(q) under the null for λ > −1. As in the
estimation problem we restrict the parameter λ to be in this range since otherwise
the disparity is not defined if there are any empty cells, and the moments of the
test statistics do not exist.

The T λ statistics corresponding to larger negative values of λ can generally
perform much better than the likelihood ratio statistic T 0 or the Pearson’s chi-
square based statistic T 1 in keeping the level and the power of the tests stable
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under contamination. In particular the Hellinger deviance test T−1/2 has been
studied by several authors (Simpson (1989), Lindsay (1994), Basu, Harris and
Basu (1996)) which demonstrate the desirable robustness properties of this test.
For small samples, the chi-square approximation for this test statistic under the
null hypothesis, however, can be quite poor, with the observed levels being con-
siderably inflated compared to the nominal levels; consequently, the confidence
intervals obtained by inverting the test statistic also have lower confidence coef-
ficients than the nominal one.

Here we discuss an alternative test statistic based on the penalized dispari-
ties. Define the penalized family of test statistics

T λ
p = 2n[P λ(d, fθ0

) − P λ(d, fθ̂)],

where θ̂ represents the minimizer of P λ. As they differ only in the empty cells,
the families T λ and T λ

p have the same asymptotic distribution under the null
hypothesis, and the same asymptotic breakdown properties.

The testing procedures described in this section extend to the case of the
composite null hypothesis using the techniques of Serfling (1980). The tests based
on T λ, T λ

p again have the same asymptotic distribution as the likelihood ratio
test under the null hypothesis.

In the following section we present several exact computations for disparity
based methods in the multinomial model. A random sample of n categorical
observations on k categories with probabilities p1, . . . , pk generates a multinomial
observation X with parameters n and p = (p1, . . . , pk). For the rest of the paper
p̂ will replace d, the vector of observed proportions, and p(θ) will replace the
probability function fθ.

3. Numerical Studies and Data Examples

3.1. Exact computations

Consider a multinomial random variable X with n = 20 and k = 4; suppose
that the probability vector p = (p1, p2, p3, p4) is the function of a single parameter
θ. In order to avoid overly intensive computation one has to choose a suitable
small value of k; in this paper we have chosen k to be equal to 4 for our exact
computations. To obtain the exact probability distribution of an estimator θ̂ one
can enumerate all possible sample combinations in the sample space D given by
D = {(x1, x2, x3, x4) :

∑
xi = 20, each xi is an integer between 0 and 20 }; the

distinct values of the parameter estimate and their exact probabilities can then
be calculated using the multinomial probability function under any given true
value of θ.
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In this paper, we have considered two particular structures on the multino-
mial cell probabilities. For the first case we assumed that the cell probabilities are
generated by a Poisson(θ) distribution - i.e. p1 = exp(−θ), p2 = θ exp(−θ), p3 =
[θ2 exp(−θ)]/2 and p4 = (1 − p1 − p2 − p3). (For the general k cell multinomial
this structure can be generalized by generating p1, . . . , pk−1 using the Poisson
probability function, and letting pk = 1 − ∑k−1

i=1 pi.) The other structure is gen-
erated by a geometric(θ) distribution - i.e. p1 = θ, p2 = θ(1 − θ), p3 = θ(1 − θ)2

and p4 = (1 − θ)3. As in the Poisson case, this can again be generalized to the
k cell multinomial. We will refer to these structures as the Poisson model and
the geometric model respectively. The reason for using these models is that they
are the two most common count data models.

For each possible sample point x = (x1, x2, x3, x4), and for each value of
λ considered, we calculate two estimates of θ by minimizing the disparity Iλ∗
and the penalized disparity P λ; let these be denoted by θ̂I and θ̂P respectively.
For each estimator θ̂ (which takes the value θ̂(x) under the sample x) and for
λ = 1, 0,−0.5,−0.6,−0.7,−0.8 and −0.9, we compute the exact mean square
error (MSE) of θ̂ under the true value θ as

∑
(θ̂(x)− θ)2Pθ(x), where the sum is

over the sample space D, and Pθ(x) is the probability of the sample x under the
cell probability vector p.

Contamination is introduced in the Poisson model by defining p∗ = (p∗1, p∗2,
p∗3, p∗4), p∗i = (1− ε)pi, i = 1, 2, 3, p∗4 = (1− ε)p4 + ε, where p = (p1, . . . , p4) repre-
sent the probabilities under a target value θ of the parameter. The exact mean
square is then computed around the target value as before, but the probabilities
Pθ(x) are now calculated under the cell probability vector p∗. In the geometric
model, the cell probabilities are redefined as p∗ = (p∗1, p∗2, p∗3, p∗4), p∗1 = (1−ε)p1+ε,
p∗i = (1 − ε)pi, i = 2, 3, 4. A similar procedure is then adopted to calculate the
exact MSE under this model. For the Poisson model the parameter space of θ
was restricted to [0, 5] and for the geometric model the parameter space was [0,
1] to make them compact.

The results comparing the performances of θ̂I and θ̂P for different values of
λ under the Poisson model are presented in Table 1, where the true multinomial
cell frequencies are generated by the Poisson(0.5) distribution. When the model
holds, (i.e. when ε = 0), it can be observed that the MSE corresponding to the
ordinary minimum disparity estimators with large negative values of λ are very
high compared to likelihood disparity and the Pearson’s chi-square. However,
when we consider the penalized disparities, the obtained MSEs for the robust
minimum disparity estimators are extremely competitive with the cases λ = 1
and λ = 0. Since the penalized procedures replace the weights of the empty cells
by that of I0∗ the estimates minimizing I0∗ and P 0 are identical.
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Under moderate contaminations (ε = 10%) the performance of MLE is worse
than the estimates corresponding to large negative values of λ (see the fourth
and fifth columns of Table 1). In this case the MSEs for the penalized estimators
are competitive with or are better than the ordinary estimators - suggesting that
the robustness property is not compromised by the empty cell penalty. It ap-
pears, therefore, that the penalized disparity procedure is a judicious choice from
both efficiency and robustness standpoints in these cases. The findings under a
geometricmodel where the true probabilities are generated by the geometric(0.1)
distribution are very similar to those of Table 1, and are not presented here for
brevity.

Table 1. Exact MSE for estimation of θ by minimum Cressie-Read disparities
and their penalized versions. Multinomial proportions are generated by the
Poisson(0.5) distribution with and without contamination (contaminating
proportion is ε). MSE(θ̂) represents the mean square error of the estimator θ̂.

ε = 0.0 ε = 0.1

λ MSE(θ̂I) MSE(θ̂P ) MSE(θ̂I) MSE(θ̂P )
1 2.9999×10−2 2.7353×10−2 0.190132 0.182801
0 2.5267×10−2 2.5267×10−2 0.138909 0.138909

−0.5 2.8077×10−2 2.5872×10−2 0.100597 0.107853
−0.6 3.0385×10−2 2.6155×10−2 0.097386 0.102089
−0.7 3.4238×10−2 2.6477×10−2 0.097371 0.096688
−0.8 4.1254×10−2 2.6780×10−2 0.100372 0.091990
−0.9 5.7015×10−2 2.7092×10−2 0.108290 0.087574

Next we look at the performances of the statistics T λ and T λ
P in testing the

null hypothesis H0 : θ = θ0 under the model i.e. when the probability vector is
actually generated by the parameter θ0, and under contamination, i.e. when the
probability vector p∗ is obtained by contaminating the vector generated by θ0 in
the manner described above. We specify θ0 to be 0.5 for the Poisson model and
0.1 for the geometric model. The results for the Poisson model are presented
in Table 2. We calculate the exact probability of the test statistic to exceed the
10%, 5% and the 1% critical points of the χ2(1) distribution under true model
and under contamination. The following results deserve mention. Under the
model true levels are considerably inflated for the ordinary robust disparities
compared to the nominal levels. However, under the same conditions, the chi-
square approximation seems to work much better for the penalized disparity
statistic T λ

P . Under contamination, the penalized statistics corresponding to
very large negative values of λ present themselves as the better choices. Similar
results, not presented here, were obtained for the geometric model.
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Table 2. Observed levels for testing H0 : θ = 0.5 using the statistics T λ and
T λ

P . Multinomial proportions are generated by the Poisson(0.5) distribution
with and without contamination (contaminating proportion is ε).

ε = 0.0 ε = 0.1
λ Statistic 10% 5% 1% 10% 5% 1%
1 T λ 0.140744 0.089645 0.034734 0.727659 0.702272 0.583755

T λ
P 0.159680 0.093932 0.033016 0.726892 0.697912 0.572514

0 T λ 0.112588 0.053842 0.015813 0.448896 0.356221 0.212406
T λ

P 0.112588 0.053842 0.015813 0.448896 0.356221 0.212406

−0.5 T λ 0.165402 0.103695 0.028159 0.283702 0.203426 0.079067
T λ

P 0.112687 0.048056 0.013241 0.285249 0.193096 0.076950

−0.6 T λ 0.196754 0.145951 0.053768 0.282037 0.198189 0.072357
T λ

P 0.111387 0.050883 0.013852 0.253021 0.167504 0.061999

−0.7 T λ 0.268835 0.207214 0.092556 0.341149 0.236601 0.084997
T λ

P 0.110517 0.051159 0.015752 0.232652 0.149522 0.052900

−0.8 T λ 0.303311 0.246025 0.195763 0.421079 0.326488 0.191351
T λ

P 0.110914 0.050664 0.016068 0.221235 0.132459 0.047979

−0.9 T λ 0.529700 0.370792 0.240500 0.442919 0.366155 0.284735
T λ

P 0.110354 0.057566 0.016706 0.197385 0.125525 0.043968

The performance of the Pearson’s chi-square statistics is much worse than even
the likelihood based statistics under contamination (see Tables 1-2). This is not
surprising given the manner in which the statistic treats the large outliers (see
Figure 1). Under the model the performance of these statistics is slightly worse
than the likelihood based procedures. Note that for the Pearson’s chi-square the
weight of the empty cell is actually smaller than that of the likelihood disparity.
The empty cell correction given in (2.5), therefore, actually increases the weight
of the empty cells and is not necessarily expected to improve the performance of
the method.

To better understand the improvement in the performance of the test statis-
tics due to the penalty we looked at the histograms of the exact null distribution
of the test statistics T λ and T λ

P with the χ2(1) density superimposed. The null
hypothesis considered is H0 : θ = 0.1 under the geometric model. Cell frequen-
cies are generated by the geometric(0.1) distribution with n = 20 and k = 4.
The height of each bar represents the exact probability for the test statistic to
lie between the respective end points. In particular we looked at the histograms
of T 0, T−3/4 and T

−3/4
P . Our interest is in the right hand tail area of the his-

tograms, and how well the χ2(1) density approximates it. Figure 2 shows the



852 AYANENDRANATH BASU AND SRABASHI BASU

histogram of T−3/4, where the poor approximation to the relatively heavy tail of
the statistic provided by the χ2(1) density is evident. The vertical dashed line
on the histogram corresponds to the 5% critical point of χ2(1). On the other
hand the right tails of the histograms of T 0 and T

−3/4
p (not presented here for

brevity) around and beyond the 5% critical point are very well approximated by
the overlaid density, leading to very high agreement in the observed and nominal
levels. The observations were similar for the 10% and 1% critical values. We also
investigated the histograms for other values of λ in the [−0.5,−1) range for this
case. At each instance the T λ statistic was poorly approximated by the χ2(1)
limit, with the approximation getting worse as λ approached −1. The distribu-
tions of all the penalized statistics were much improved and very close to that of
the statistic T 0.

0 2 4 6 8 10

0
.0

0
.1

0
.2

0
.3

0
.4

Figure 2. Density function of χ2(1) distribution superimposed on the his-
togram of the null distribution of T−0.75 for testing H0 : θ = 0.1 under the
geometric model. Vertical dotted line denotes 5% critical point of χ2(1)
distribution.

3.2. Examples

We applied these procedures to several sets of real data. In the first exam-
ple, the penalized estimation method is applied on chemical mutagenecity data
previously analyzed by Simpson (1987) in the context of minimum Hellinger dis-
tance estimation. In the sex linked recessive lethal test in drosophila (fruit flies),
male flies are exposed to different doses of a chemical to be screened. They are
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then mated with unexposed females and the number of daughter flies carrying a
recessive lethal mutation on the X choromosome is noted; the results of one such
experiment is presented in Table 3, where the observed numbers of frequencies
are recorded. Note that there is a very large outlier (having value 91) in the data.
Simpson considered a Poisson fit for this data. We have considered a Poisson
model under the k cell multinomial (with k = 20 and 30) for this data. In each
case the large outlier was classified in the kth cell. These values of k were chosen
so that we could study the effect of the large outlier in a cell widely separated
from the rest of the data; two values of k were chosen to exhibit that moving the
large outlier further away fails to corrupt the robust estimates.

Table 3. Observed distribution of the number of daughters in drosophila fruit
flies carrying a recessive lethal mutation on the X chromosome. Expected
frequencies (I), (II) and (III) represent the minimum I0

∗ , I−0.9
∗ and P−0.9 fits

respectively. (k = 20).

No. of daughters 0 1 2 3 4 ≥5
Observed Frequency 23 7 3 0 0 1(91)

Expected Frequency (I) 13.2 12.5 5.9 1.8 0.4 0.2
Expected Frequency (II) 25.8 7.1 1.0 0.1 0.0 0.0
Expected Frequency (III) 23.7 8.6 1.6 0.2 0.0 0.0

For k = 20, the outlier in the last cell of the multinomial exerts a heavy
influence on the MLE as well as the minimum Pearson’s chi-square estimate of
θ (see Table 4). But the other estimates of θ obtained by minimizing Iλ∗ , λ =
−0.5,−0.6,−0.7,−0.8,−0.9 have been able to ignore this large value successfully.
This phenomenon is even more apparent in the 30 cell multinomial. However,
an interesting thing to note is that the penalized estimators behave much more
uniformly than the ordinary minimum disparity estimators. Over the entire
range λ ∈ [−0.5,−1), the difference between the penalized estimators appears to
be marginal, unlike the ordinary minimum disparity estimators. For both k = 20
and k = 30, the MLE of θ after the removal of the large outlier was 0.3939. In
this case, therefore, both sets of robust estimators successfully ignore the outlier,
but the penalized estimators succeed in keeping the estimates much closer to the
outlier deleted MLE. In Table 3 we have also provided the expected frequencies
for the 20 cell multinomial (the sixth cell representing the indicated ‘≥’ frequency)
under three different estimates: the MLE (I), the ordinary minimum disparity
estimator with λ = −0.9 (II), and the penalized minimum disparity estimator
with λ = −0.9 (III). Both the robust methods give improved fits over the MLE,
but the penalized estimator appears to fit the data better.
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Table 4. Estimates of the parameter θ for the k cell multinomial under the
Poisson(θ) model for the drosophila data.

k = 20 k = 30

λ θ̂I θ̂P θ̂I θ̂P

1 5.8482 9.3129 9.5175 13.2565
0 0.9424 0.9424 1.2360 1.2360

−0.5 0.3637 0.3774 0.3637 0.3774
−0.6 0.3532 0.3738 0.3532 0.3738
−0.7 0.3390 0.3700 0.3390 0.3700
−0.8 0.3173 0.3661 0.3173 0.3661
−0.9 0.2763 0.3621 0.2763 0.3621

The next data set on the incidence of peritonitis on 390 kidney patients
(Table 5) was provided by Professor P. W. M. John (personal communication).
A visual inspection suggests that a geometric distribution with θ around 0.5
may model the data well. While the largest observed frequency is 12, we chose
a geometric model under k = 20 so that the observed sample has several empty
cells. There are a few moderately large values in the data, but there are no
extreme outliers (note that the sample size 390 is fairly large). In this case the
estimates (not presented here for brevity) do not show any dramatic outlier effect.
However the penalized estimates are much closer to the MLE than the ordinary
ones. This is because the data presents several empty cells under the 20 cell
multinomial, despite the large sample size. This improvement due to the penalty
can be noted in Table 5 also, where we have provided the expected frequencies
for the same three different methods as in Table 3. In this case the MLE fits the
data well, and the fit provided by the penalized minimum disparity estimator
appears to be better than the ordinary minimum disparity estimator.

The third data set has been analyzed by Rao (1973), pp 371-374. Every
human being may be classified into one of four blood groups O, A, B and AB.
The inheritance of these is controlled by one of three genes O, A and B, of which
O is recessive to A and B. If p and q are the relative frequencies of the blood
groups A and B, and the relative frequency of O is given by r = 1 − p − q,
then the expected probabilities of the four groups in random mating are given by
Pr(O) = r2,Pr(A) = p2 + 2pr,Pr(B) = q2 + 2qr and Pr(AB) = 2pq. The sample
frequencies of the blood groups O, A, B, and AB, based on 435 observations are
17, 176, 182 and 60 respectively. We let θ = (p, q) and find the minimum disparity
estimate of θ. The results (not presented here) are extremely close, showing that
for large sample sizes there is a very good agreement between different methods.
Since there are no empty cells, θ̂I and θ̂P are the same in each case. The expected
frequencies for the MLE and the minimum disparity estimator with λ = −0.9
provide almost identical fits (not presented here).
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Table 5. Observed distribution of the number of cases of peritonitis for each
of 390 kidney patients. Expected frequencies (I), (II) and (III) represent the
minimum I0∗ , I−0.9∗ and P−0.9 fits respectively.

No. of cases 0 1 2 3 4 5 6 7 8 9 10 11 12
Observed
Frequency 199 94 46 23 17 4 4 1 0 0 1 0 1
Expected

Frequency (I) 193.5 97.5 49.1 24.7 12.5 6.3 3.2 1.6 0.8 0.4 0.2 0.1 0.1
Expected

Frequency (II) 212.3 96.7 44.1 20.1 9.1 4.2 1.9 0.9 0.4 0.2 0.1 0.0 0.0
Expected

Frequency (III) 198.2 97.5 47.9 23.6 11.6 5.7 2.8 1.4 0.7 0.3 0.2 0.1 0.0

4. An Alternative Family

4.1. The blended weight Hellinger disparity

As we have discussed, the Cressie-Read family represents a very rich sub-
class of disparities. In the present paper we have concentrated on this subfamily
keeping in mind their wide familiarity relative to some other subclasses of dispar-
ities, as well as the fact that they contain most of the well known density-based
divergences. For λ ≤ −1, however, the popularity of the Cressie-Read fam-
ily is tempered by the fact that the disparities are not defined if there is even
one empty cell. In this section we briefly discuss another subclass of disparities
which is lesser known than the Cressie-Read family, although some properties
have been studied in limited set ups (Basu and Sarkar (1994b); Shin, Basu and
Sarkar (1995)). This is the family of blended weight Hellinger disparities, and is
defined as (in the notation of Section 2)

BWHDα(d, fθ) =
1
2

∞∑
x=1

( (d(x) − fθ(x))

αd1/2(x) + (1 − α)f1/2
θ (x)

)2
,−∞ < α <∞. (4.1)

This family does not have the above empty cell limitation of the Cressie-Read
family (except for the case α = 1) and generates the Pearson’s chi-square, the
Hellinger distance, and the Neyman’s chi-square for α = 0, 1/2 and 1 respectively.
Here we present a collection of results which show that for each disparity in
the Cressie-Read family, there is a corresponding member within the BWHDα

class which is extremely close to it - so that even when the disparities in the
Cressie- Read families are incomputable there are other alternatives with similar
properties. (Of course one can also use the BWHD when the corresponding
Cressie-Read disparities are defined as well.)
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Consider the Cressie-Read divergence Iλ under the multinomial set up of
Section 3, and let Wi = n1/2(p̂i − pi(θ)). Expanding 2nIλ(p̂,p(θ)) in a Taylor
series one gets

2nIλ(p̂,p(θ))=
k∑

i=1

W 2
i

pi(θ)
+
λ− 1
3n1/2

k∑
i=1

W 3
i

p2
i (θ)

+
(λ− 2)(λ− 1)

12n

k∑
i=1

W 4
i

p3
i (θ)

+Op(n−3/2).

(4.2)
(See Read and Cressie (1988), p. 176 for the derivation.) A similar expansion
for the BWHDα, derived by Basu and Sarkar (1994a) has the form

2nBWHDα(p̂,p(θ)) =
k∑

i=1

W 2
i

pi(θ)
− α

n1/2

k∑
i=1

W 3
i

p2
i (θ)

+
3α2 + α

4n

k∑
i=1

W 4
i

p3
i (θ)

+Op(n−3/2).

(4.3)
Comparing (4.2) and (4.3) it can be seen that for any given θ and p̂, the Cressie-
Read disparity with λ is exactly equivalent (upto Op(n−3/2) terms) to the blended
weight Hellinger disparity with α = (1 − λ)/3. (Also see Shin, Basu and Sarkar
(1995)).

In the context of multivariate goodness-of-fit tests, Cressie and Read have
derived the first three moments of the test statistic 2nIλ(p̂,p0) under the null
hypothesis H0 : p = p0, where p0 is completely specified. (Note that they
derive the moments only for the range λ > −1, since the moments do not exist
otherwise). Since their moment calculations are done excluding the Op(n−3/2)
term in equation (4.2), a corresponding calculation using the expression in (4.3)
gives the moments for the BWHD. For each λ > −1, the corresponding member
in the BWHD family (with α = (1 − λ)/3), has the same first three moments
(excluding the Op(n−3/2) terms). Thus, the Cressie-Read family Iλ may often be
well approximated by BWHDα=(1−λ)/3. Unlike Iλ however, empty cells alone
cannot make the BWHDα=(1−λ)/3 undefined except for the case α = 1.

To visually illustrate this equivalence we have plotted, on the same graph,
the residual adjustment functions of the Cressie-Read disparities corresponding
to λ, and those for the blended weight Hellinger disparities with α = (1 − λ)/3.
In Figures 3(a) - (d), we represent this for four different combinations of (λ, α)
values which we chose to be (0, 1/3), (−0.2, 0.4), (−0.6, 8/15) and (−0.8, 0.6).
In all the four cases the correspondence between the functions can be observed
to be extremely close (except in the extreme left tail of the plot 3(d), where it
can be seen that the Cressie-Read family puts a larger weight on the empty cell
relative to the corresponding BWHDα).
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Figure 3. Residual adjustment functions for Cressie-Read family andBWHD

family for different combinations of (λ, α). (a) (0, 1/3), (b) (−0.2, 0.4), (c)
(−0.6, 8/15), (d) (−0.8, 0.6).

Parallel to the penalized Cressie-Read family we may define the penalized
BWHDα family (PBWHDα) by applying the same penalty on the empty cells.
Write (4.1) as

1
2

∑

x:d(x)�=0

( (d(x) − fθ(x))

αd1/2(x) + (1 − α)f1/2
θ (x)

)2
+

1
2

∑

x:d(x)=0

fθ(x)
(1 − α)2

(4.4)

and replacing [2(1 − α)2]−1 by unity we define the PBWHD as

PBWHDα(d, fθ)=
1
2

∑

x:d(x)�=0

( (d(x) − fθ(x))

αd1/2(x)+(1 − α)f1/2
θ (x)

)2
+

∑

x:d(x)=0

fθ(x). (4.5)

This family has all the asymptotic properties of the BWHDα family and is
also very close to the penalized Cressie-Read family for corresponding values
α = (1−λ)/3. For λ = −0.5, i.e. α = 0.5 the BWHDα is identical to the Cressie-
Read disparity, so that the corresponding penalized disparities are identical also.
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Figure 4. Weights of the empty cells for the Cressie-Read and BWHD
families plotted against λ (using the relation α = (1−λ)/3 for the BWHD).

Despite its close correspondence with the Cressie-Read family, there are some
differences in the treatment of empty cells within the BWHD and the former.
Some indication of this is provided by the left tails of the residual adjustment
function of the disparities in Figure 3(d). To investigate this further, in Figure
4 we have plotted the weight of the empty cells, (λ + 1)−1 and [2(1 − α)2]−1

respectively, as a function of λ in the range (−1, 1] for the Cressie-Read and the
BWHD. (For the latter family we have plotted at λ the weight of the empty cell
for the corresponding disparityBWHD(1−λ)/3). From the graph it is clear that in
the range λ ∈ [−0.5, 1] the two disparities of the two families give approximately
the same weight to the empty cells, but when λ is smaller than −0.5, the weight in
the Cressie-Read family increases much faster. Therefore one might expect the
small sample behavior of the minimum Cressie-Read disparities to deteriorate
much faster for λ ≤ −0.5. However the two penalized disparities appear to
behave similarly. We demonstrate this with another exact computation.

4.2. Exact computation

Consider a multinomial distribution with n = 10 and k = 4, where the cell
probabilities are generated by the geometric(θ) model (Section 3.1). At the true
parameter θ = 0.1, we compare exact MSEs for the estimators minimizing the
ordinary and penalized Cressie-Read disparity, the BWHD and the PBWHD
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for several values of λ (and equivalent α) (Table 6). But for −1 < λ < −0.5
the BWHD gives more precise estimates of the model parameter as is evident
from the smaller values of the MSEs in the fourth column of Table 6 compared
to the second. For λ < −1 exact calculations with the Cressie-Read disparitises
are not possible, but the penalized family poses no such problems. For all values
of λ ≤ −0.5 the penalty leads to considerable reduction in the MSE in both
families. The penalized estimators for the two classes behave similarly.

Table 6. Comparison of the exact MSEs of the minimum Iλ
∗ estimators, the

corresponding minimum BWHDα estimators, and the penalized versions for
the 4 cell multinomial under the geometric model. True probabilities are
generated by the geometric(0.1) distribution. The ordinary and penalized
estimates of the BWHDα family are denoted by θ̂B and θ̂PB respectively.

λ(α) MSE(θ̂I) MSE(θ̂P ) MSE(θ̂B) MSE(θ̂PB)

0 (1/3) 0.003631 0.003631 0.003636 0.003631
−0.5(0.5) 0.004306 0.003630 0.004306 0.003630
−0.6(8/15) 0.004883 0.003652 0.004720 0.003653
−0.7(17/30) 0.005762 0.003695 0.005158 0.003695
−0.8(0.6) 0.007438 0.003745 0.005709 0.003740
−0.9(19/30) 0.010111 0.003807 0.006558 0.003792
−1.1(0.7) — 0.003974 0.009025 0.003928
−1.3(23/30) — 0.004256 0.010238 0.004117
−1.5(5/6) — 0.004583 0.010759 0.004421
−1.7(0.9) — 0.004786 0.010814 0.004666
−1.9(29/30) — 0.004879 0.015892 0.004873

5. Concluding Remarks

In this paper we have provided an extensive study on the effects of an empty
cell penalty on some density-based robust minimum disparity estimators for
multinomial models. The aim was not just to find another robust estimator,
but to find a robust estimator with good small sample efficiency. It appears that
the penalized estimators studied do achieve good small sample efficiency in many
cases, without compromising the robustness properties of the ordinary minimum
disparity estimators.
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