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Abstract. A sharp bound is obtained for the distance between two commuting tuples
of normal operators in terms of the distance between their joint spectra.

Introduction. Let A � �A1; . . . ;Am� be an m-tuple of linear operators on a Hilbert space
h. We can identify this in a natural way with an operator from h into the Hilbert space
hm, the direct sum of m copies of h, by putting Ax � �A1x; . . . ;Amx�. It is then natural to
define the norm of A as

kAk � kA�Ak1=2 �
Pm

j�1
A�j Aj

1=2

:�1�

When the operators Aj are pairwise commuting operators we say that A is a commuting
tuple. In this case there is a well-known notion of a joint spectrum of A called the Taylor joint
spectrum [11]. This is a compact subset of Cm and will be denoted here by the symbol s�A�.
The joint spectral radius of A is defined as

r�A� � max fklk : l 2 s�A�g;�2�

where klk stands for the Euclidean norm of l as an element of Cm. An analogue of the
Gelfand-Beurling spectral radius formula for single operators has recently been established
for commuting tuples [8]; see also [5].

When Aj are commuting normal operators, the Taylor spectrum of the tuple A coincides
with the one obtained via the spectral theorem : s�A� is the support of a spectral measure P
on Cm with respect to which the Aj have a joint spectral resolution

Aj �
�

lj dP�l�:�3�

In this case we have

kAk � r�A�:�4�

In this note we prove the following theorem.
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Theorem 1.1. Let A � �A1; . . . ;Am� and B � �B1; . . . ;Bm� be two commuting m-tuples of
normal operators on a Hilbert space. Then

kAÿ Bk %
���
2
p

max fklÿ mk : l 2 s�A�; m 2 s�B�g:�5�
This inequality is sharp.

When h is finite-dimensional and m � 1, this theorem says that if A;B are n� n normal
matrices with eigenvalues l1; . . . ; ln, and m1; . . . ; mn, respectively, then

kAÿ Bk %
���
2
p

max
i;j
jli ÿ mjj:

This has been proved earlier in [1] and in [9]. Such inequalities have long been of interest in
perturbation theory; see [2, Ch.VI]. More recently, there has been interest in extending some
of the classical perturbation bounds to commuting tuples; see [3], [4], [6], [7], [10]. This
programme is carried further in this note.

2. Proof of the theorem. We will first prove a theorem about the distance between
compact sets in Cm.

Let h�; �i denote the standard inner product in Cm orRm. The convex hull of a subset M of
a vector space will be denoted by conv �M�.

Lemma 2.1. Let M;N be finite subsets of Rm such that

hu; vi > 0 for all u 2M; v 2 N:�6�
Then there exists a vector w in Rm such that

hw; ui > 0 for all u 2M [N:�7�
Pr oof. From (6) we see that hu; vi > 0 for all u 2 conv�M� and v 2 conv�N�. Thus the

vector 0 is neither in conv�M� nor in conv�N�. We claim that it does not belong to
conv�M [N� either. If it did, we would haveP

aiui �
P

bjvj � 0

for some choice of vectors u1; . . . ; ur from M; v1; . . . ; vs from N, and positive numbers
a1; . . . ;ar; b1; . . . ; bs with

P
ai �

P
bj � 1. This would give

0 % hPaiui;
P

aiuii � ÿh
P

aiui;
P

bjvji < 0;

which is not possible.
Now let w be the vector in conv�M [N� that has minimal norm. Then for 0 % " % 1

k�1ÿ "�w� "uk2 ^ kwk2 for all u 2M [N:

Comparing the first order terms in ", we get from this

hw; ui ^ kwk2 > 0 for all u 2M [N: h

Lemma 2.2. Let M;N be finite subsets of Cm such that

Rehu; vi > 0 for all u 2M; v 2 N:
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Then there exists a vector w in Cm such that

Rehw; ui > 0 for all u 2M [N:

Pr oof. Splitting all vectors into their real and imaginary parts, this statement can be
derived from the one of Lemma 2.1. h

Theorem 2.3. Let X;Y be two compact subsets ofCm. Then there exists a point g in Cm such
that

max
l2X
klÿ gk � max

m2Y
kmÿ gk %

���
2
p

max
l2X
m2Y

klÿ mk:�8�

Pr oof. By an approximation argument, it is enough to prove this when X;Y are finite
sets. Let f be the nonnegative real-valued function on Cm defined as

f �g� � max
l2X
klÿ gk � max

m2Y
kmÿ gk:

This function attains a minimum value, since X;Y are bounded. Assume, without loss of
generality, that the minimum is attained at the point 0. Then,

f �0� � max
l2X
klk � max

m2Y
kmk % f �g�; for all g:�9�

Let s � max
l2X
klk; t � max

m2Y
kmk; and let M � fl 2 X : klk � sg; N � fm 2 Y : kmk � tg.

Then M;N are finite subsets of Cm. We claim that there exist l 2M; m 2 N such that
Rehl; mi % 0.

Suppose this is not the case. Then, by Corollary 2.2, there exists w in Cm such
that Rehw; zi > 0 for all z 2M [N. Then for ", a positive number close to 0, we
have

kzÿ "wk2 � kzk2 � "2kwk2 ÿ 2"Rehw; zi < kzk2 for all z 2M [N:�10�
Also, for l 2 XnM and m 2 YnN, we have for such an "

klÿ "wk % klk � "kwk < s;�11�

kmÿ "wk % kmk � "kwk < t:�12�
The inequalities (10), (11), (12), show that, for small ", we have

f �"w� < s� t � f �0�:
This contradicts (9).

So, we can choose l 2M; m 2 N, such that Rehl; mi % 0. For this pair we have

klÿ mk � �klk2 � kmk2 ÿ 2Rehl; mi�1=2 ^ �s2 � t2�1=2 ^
s� t���

2
p :

In other words,

max
l2X
klk �max

m2Y
kmk %

���
2
p

max
l2X
m2Y

klÿ mk:

This proves the theorem. h
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P roof o f The or em 1. 1. If A and B are commuting m-tuples of normal operators, then
so are Aÿ gI and Bÿ gI, for every g in Cm . Here gI � �g1I; . . . ; gmI�. We have

kAÿ Bk % kAÿ gIk � kBÿ gIk
� max

l2s�A�
klÿ gk � max

m2s�B�
kmÿ gk;

because of (4). Now use Theorem 2.3 to conclude the proof. h

The bound (5) is known to be sharp in the simplest case, dimh � 2 and m � 1. Just
consider the 2� 2 matrices

A � 0 1

1 0

� �
; B � 0 1

ÿ1 0

� �
:
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