Distance between commuting tuples of normal operators

By
Rajendra Bhatia, Ludwig Elsner and Peter Šemrl

Abstract

A sharp bound is obtained for the distance between two commuting tuples of normal operators in terms of the distance between their joint spectra.

Introduction. Let $\boldsymbol{A}=\left(A_{1}, \ldots, A_{m}\right)$ be an m-tuple of linear operators on a Hilbert space \mathscr{H}. We can identify this in a natural way with an operator from \mathscr{H} into the Hilbert space \mathscr{H}^{m}, the direct sum of m copies of \mathscr{H}, by putting $\boldsymbol{A} x=\left(A_{1} x, \ldots, A_{m} x\right)$. It is then natural to define the norm of \boldsymbol{A} as

$$
\begin{equation*}
\|\boldsymbol{A}\|=\left\|\boldsymbol{A}^{*} \boldsymbol{A}\right\|^{1 / 2}=\left\|\sum_{j=1}^{m} A_{j}^{*} A_{j}\right\|^{1 / 2} \tag{1}
\end{equation*}
$$

When the operators A_{j} are pairwise commuting operators we say that \boldsymbol{A} is a commuting tuple. In this case there is a well-known notion of a joint spectrum of \boldsymbol{A} called the Taylor joint spectrum [11]. This is a compact subset of \mathbb{C}^{m} and will be denoted here by the symbol $\sigma(\boldsymbol{A})$. The joint spectral radius of \boldsymbol{A} is defined as

$$
\begin{equation*}
r(\boldsymbol{A})=\max \{\|\lambda\|: \lambda \in \sigma(\boldsymbol{A})\} \tag{2}
\end{equation*}
$$

where $\|\lambda\|$ stands for the Euclidean norm of λ as an element of \mathbb{C}^{m}. An analogue of the Gelfand-Beurling spectral radius formula for single operators has recently been established for commuting tuples [8]; see also [5].

When A_{j} are commuting normal operators, the Taylor spectrum of the tuple \boldsymbol{A} coincides with the one obtained via the spectral theorem : $\sigma(\boldsymbol{A})$ is the support of a spectral measure P on \mathbb{C}^{m} with respect to which the A_{j} have a joint spectral resolution

$$
\begin{equation*}
A_{j}=\int \lambda_{j} d P(\boldsymbol{\lambda}) \tag{3}
\end{equation*}
$$

In this case we have

$$
\begin{equation*}
\|\boldsymbol{A}\|=r(\boldsymbol{A}) \tag{4}
\end{equation*}
$$

In this note we prove the following theorem.

Theorem 1.1. Let $\boldsymbol{A}=\left(A_{1}, \ldots, A_{m}\right)$ and $\boldsymbol{B}=\left(B_{1}, \ldots, B_{m}\right)$ be two commuting m-tuples of normal operators on a Hilbert space. Then

$$
\begin{equation*}
\|\boldsymbol{A}-\boldsymbol{B}\| \leqq \sqrt{2} \max \{\|\lambda-\boldsymbol{\mu}\|: \lambda \in \sigma(\boldsymbol{A}), \boldsymbol{\mu} \in \sigma(\boldsymbol{B})\} \tag{5}
\end{equation*}
$$

This inequality is sharp.
When \mathscr{H} is finite-dimensional and $m=1$, this theorem says that if A, B are $n \times n$ normal matrices with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$, and μ_{1}, \ldots, μ_{n}, respectively, then

$$
\|A-B\| \leqq \sqrt{2} \max _{i, j}\left|\lambda_{i}-\mu_{j}\right|
$$

This has been proved earlier in [1] and in [9]. Such inequalities have long been of interest in perturbation theory; see [2, Ch.VI]. More recently, there has been interest in extending some of the classical perturbation bounds to commuting tuples; see [3], [4], [6], [7], [10]. This programme is carried further in this note.
2. Proof of the theorem. We will first prove a theorem about the distance between compact sets in \mathbb{C}^{m}.

Let $\langle\cdot, \cdot\rangle$ denote the standard inner product in \mathbb{C}^{m} or \mathbb{R}^{m}. The convex hull of a subset M of a vector space will be denoted by conv (M).

Lemma 2.1. Let M, N be finite subsets of \mathbb{R}^{m} such that

$$
\begin{equation*}
\langle u, v\rangle>0 \quad \text { for all } \quad u \in M, v \in N . \tag{6}
\end{equation*}
$$

Then there exists a vector w in \mathbb{R}^{m} such that

$$
\begin{equation*}
\langle w, u\rangle>0 \quad \text { for all } \quad u \in M \cup N . \tag{7}
\end{equation*}
$$

Proof. From (6) we see that $\langle u, v\rangle>0$ for all $u \in \operatorname{conv}(M)$ and $v \in \operatorname{conv}(N)$. Thus the vector 0 is neither in $\operatorname{conv}(M)$ nor in $\operatorname{conv}(N)$. We claim that it does not belong to $\operatorname{conv}(M \cup N)$ either. If it did, we would have

$$
\sum \alpha_{i} u_{i}+\sum \beta_{j} v_{j}=0
$$

for some choice of vectors u_{1}, \ldots, u_{r} from M, v_{1}, \ldots, v_{s} from N, and positive numbers $\alpha_{1}, \ldots, \alpha_{r}, \beta_{1}, \ldots, \beta_{s}$ with $\sum \alpha_{i}+\sum \beta_{j}=1$. This would give

$$
0 \leqq\left\langle\sum \alpha_{i} u_{i}, \sum \alpha_{i} u_{i}\right\rangle=-\left\langle\sum \alpha_{i} u_{i}, \sum \beta_{j} v_{j}\right\rangle<0
$$

which is not possible.
Now let w be the vector in $\operatorname{conv}(M \cup N)$ that has minimal norm. Then for $0 \leqq \varepsilon \leqq 1$

$$
\|(1-\varepsilon) w+\varepsilon u\|^{2} \geqq\|w\|^{2} \quad \text { for all } \quad u \in M \cup N
$$

Comparing the first order terms in ε, we get from this

$$
\langle w, u\rangle \geqq\|w\|^{2}>0 \quad \text { for all } \quad u \in M \cup N
$$

Lemma 2.2. Let M, N be finite subsets of \mathbb{C}^{m} such that

$$
\operatorname{Re}\langle u, v\rangle>0 \quad \text { for all } \quad u \in M, v \in N
$$

Then there exists a vector w in \mathbb{C}^{m} such that

$$
\operatorname{Re}\langle w, u\rangle>0 \quad \text { for all } \quad u \in M \cup N
$$

Proof. Splitting all vectors into their real and imaginary parts, this statement can be derived from the one of Lemma 2.1.

Theorem 2.3. Let X, Y be two compact subsets of \mathbb{C}^{m}. Then there exists a point γ in \mathbb{C}^{m} such that

$$
\begin{equation*}
\max _{\lambda \in X}\|\lambda-\gamma\|+\max _{\mu \in Y}\|\mu-\gamma\| \leqq \sqrt{2} \max _{\substack{\lambda \in X \\ \mu \in Y}}\|\lambda-\mu\| . \tag{8}
\end{equation*}
$$

Proof. By an approximation argument, it is enough to prove this when X, Y are finite sets. Let f be the nonnegative real-valued function on \mathbb{C}^{m} defined as

$$
f(\gamma)=\max _{\lambda \in X}\|\lambda-\gamma\|+\max _{\mu \in Y}\|\mu-\gamma\| .
$$

This function attains a minimum value, since X, Y are bounded. Assume, without loss of generality, that the minimum is attained at the point 0 . Then,

$$
\begin{equation*}
f(0)=\max _{\lambda \in X}\|\lambda\|+\max _{\mu \in Y}\|\mu\| \leqq f(\gamma), \quad \text { for all } \quad \gamma \tag{9}
\end{equation*}
$$

Let $s=\max _{\lambda \in X}\|\lambda\|, t=\max _{\mu \in Y}\|\mu\|$, and let $M=\{\lambda \in X:\|\lambda\|=s\}, N=\{\mu \in Y:\|\mu\|=t\}$. Then M, N are finite subsets of \mathbb{C}^{m}. We claim that there exist $\lambda \in M, \mu \in N$ such that $\operatorname{Re}\langle\lambda, \mu\rangle \leqq 0$.

Suppose this is not the case. Then, by Corollary 2.2, there exists w in \mathbb{C}^{m} such that $\operatorname{Re}\langle w, z\rangle>0$ for all $z \in M \cup N$. Then for ε, a positive number close to 0 , we have

$$
\begin{equation*}
\|z-\varepsilon w\|^{2}=\|z\|^{2}+\varepsilon^{2}\|w\|^{2}-2 \varepsilon \operatorname{Re}\langle w, z\rangle<\|z\|^{2} \quad \text { for all } \quad z \in M \cup N . \tag{10}
\end{equation*}
$$

Also, for $\lambda \in X \backslash M$ and $\mu \in Y \backslash N$, we have for such an ε

$$
\begin{align*}
\|\lambda-\varepsilon w\| & \leqq\|\lambda\|+\varepsilon\|w\|<s \tag{11}\\
\|\mu-\varepsilon w\| & \leqq\|\mu\|+\varepsilon\|w\|<t
\end{align*}
$$

The inequalities (10), (11), (12), show that, for small ε, we have

$$
f(\varepsilon w)<s+t=f(0)
$$

This contradicts (9).
So, we can choose $\lambda \in M, \mu \in N$, such that $\operatorname{Re}\langle\lambda, \mu\rangle \leqq 0$. For this pair we have

$$
\|\lambda-\mu\|=\left(\|\lambda\|^{2}+\|\mu\|^{2}-2 \operatorname{Re}\langle\lambda, \mu\rangle\right)^{1 / 2} \geqq\left(s^{2}+t^{2}\right)^{1 / 2} \geqq \frac{s+t}{\sqrt{2}}
$$

In other words,

$$
\max _{\lambda \in X}\|\lambda\|+\max _{\mu \in Y}\|\mu\| \leqq \sqrt{2} \max _{\substack{\lambda \in X \\ \mu \in Y}}\|\lambda-\mu\| .
$$

This proves the theorem.

Proof of Theorem 1.1. If \boldsymbol{A} and \boldsymbol{B} are commuting m-tuples of normal operators, then so are $\boldsymbol{A}-\gamma \boldsymbol{I}$ and $\boldsymbol{B}-\gamma \boldsymbol{I}$, for every $\boldsymbol{\gamma}$ in \mathbb{C}^{m}. Here $\boldsymbol{\gamma} \boldsymbol{I}=\left(\gamma_{1} I, \ldots, \gamma_{m} I\right)$. We have

$$
\begin{aligned}
\|\boldsymbol{A}-\boldsymbol{B}\| & \leqq\|\boldsymbol{A}-\gamma \boldsymbol{I}\|+\|\boldsymbol{B}-\gamma \boldsymbol{I}\| \\
& =\max _{\lambda \in \sigma(\boldsymbol{A})}\|\lambda-\gamma\|+\max _{\boldsymbol{\mu} \in \sigma(\boldsymbol{B})}\|\mu-\gamma\|,
\end{aligned}
$$

because of (4). Now use Theorem 2.3 to conclude the proof.
The bound (5) is known to be sharp in the simplest case, $\operatorname{dim} \mathscr{H}=2$ and $m=1$. Just consider the 2×2 matrices

$$
A=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad B=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

Acknowledgement. The third author thanks the Ministry of Science and Technology of Slovenia for a research grant, and the Indian Statistical Institute, New Delhi, for a visit during which this work was done.

References

[1] T. Ando, Bounds for the antidistance. J. Convex Anal. 2, 1-3 (1996).
[2] R. Bhatia, Matrix Analysis. New York 1997.
[3] R. Bhatia and T. Bhattacharyya, A generalisation of the Hoffman-Wielandt Theorem. Linear Algebra Appl. 179, 11-17 (1993).
[4] R. Bhatia and T. Bhattacharyya, A Henrici Theorem for joint spectra of commuting matrices. Proc. Amer. Math. Soc. 118, 5-14 (1993).
[5] R. Bhatia and T. Bhattacharyya, On the joint spectral radius of commuting matrices. Studia Math. 114, 29-38 (1995).
[6] L. Elsner, A note on the Hoffman-Wielandt Theorem. Linear Algebra Appl. 182, 235-237 (1993).
[7] L. ElSNER, Perturbation theorems for the joint spectrum of commuting matrices: a conservative approach. Linear Algebra Appl. 208/209, 83-95 (1994).
[8] V. Müller and A. Soltysiak, Spectral radius formula for commuting Hilbert space operators. Studia Math. 103, 329-333 (1992).
[9] M. Omladič and P. Šemrl, On the distance between normal matrices. Proc. Amer. Math. Soc. 110, 591-596 (1990).
[10] A. Pryde, A Bauer-Fike theorem for the joint spectrum of commuting matrices. Linear Algebra Appl. 173, 221-230 (1992).
[11] J. L. TAYlor, A joint spectrum for several commuting operators. J. Funct. Anal. 6, 172-191 (1970).
Eingegangen am 31. 8. 1997
Anschriften der Autoren:
R. Bhatia

Indian Statistical Institute New Delhi 110016 India

Ludwig Elsner
Fakultät für Mathematik
Universität Bielefeld
D-33501 Bielefeld

Peter Šemrl
T.F., University of Maribor

Smetanova 17
2000 Maribor
Slovenia

