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Abstract. In this paper a method is developed to study the first eigenfunction u > 0 of the
Laplacian. It is based on a study of the distribution function for u. The distribution function
satisfies an integro–differential inequality, and by introducing a maximal solution Z of the corre-
sponding equation, bounds obtained for Z are then used to estimate u. These bounds come from
a detailed study of Z, especially the basic identity derived in Theorem 3.1.
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0. Introduction

In this work, we obtain estimates involving the first eigenfunction of the Laplacian
on bounded planar domains. In order to state our results more precisely, let D be
a bounded domain in IR2, and let u satisfy

∆u+ λ1u = 0, in D,
u = 0, on ∂D,

(0.1)

where λ1 is the first eigenvalue on D. Now, u has one sign in D, so we may take
u > 0. Let |S| denote the area of an open set S in IR2 and let S∗ stand for the
disc, centered at the origin, whose area equals |S|. For a domain S, let λ1(S)
be the first eigenvalue of the Laplacian on S. For the rest of our work, we take
|D| = 1, sup

D
u = 1,

Dt = {x ∈ D : u(x) > t},

and

µ(t) = |Dt| .

Define

u∗(x) = inf{t ≥ 0 : µ(t) < π|x|2}. (0.2)
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Here u∗ is the radially nonincreasing rearrangement of u in (0.1), and

|D∗t | = |{x ∈ D∗ : u∗(x) > t}| = |{x ∈ D : u(x) > t}| = |Dt|.

Let λ∗1 = λ1(D∗). It is classical that λ1 > λ∗1 unless D = D∗. Let B be the disc,
centered at the origin, such that λ1(D) = λ1(B). Then |B| ≤ |D∗|. Actually, via a
scaling argument one can easily see that |B| = λ∗1|D∗|/λ1 = λ∗1/λ1. Let v be the
first eigenfunction of the Laplacian on B,

∆v + λ1v = 0, in B,
v = 0, on ∂B.

(0.3)

Then v is radial. We take v > 0 in B and v(0) = sup v = 1. Also, let

∆U + λ∗1U = 0, in D∗,
U = 0, on ∂D∗.

(0.4)

Again, U is radial and we take U(0) = sup U = 1, and so U > 0 in D.
In this work, we shall develop a method for obtaining estimates on u∗. We

achieve this by studying the distribution functions of the various functions involved.
Our starting point is Talenti’s inequality [8] which we derive in §1. This inequal-
ity is stated in terms of the distribution function of u. We construct a maximal
solution Z to the corresponding integro-differential equation. Let V (r) be the non-
increasing radial function whose distribution function is Z. From the construction
of Z, it will follow that V is an upper bound for u∗. It is known that v in (0.3) is
a lower bound for u∗.

To facilitate a better understanding of V , we carry out a detailed study of Z
in §2 and §3 where we obtain qualitative and quantitative information. This may
be of independent interest, especially since much of the analysis, in particular the
existence of the maximal solution, can be carried out in greater generality. See, for
example, Remark 4.1.

The estimates on V so obtained, and those known for v yield information about
u∗. Thus the results of §1, §2, and §3 lead to the following

THEOREM 4.1. Let u and U be as above. There exists a constant C such that

‖u∗ − U‖L∞(D∗) ≤ C
√
λ− λ∗1.

The proof of Theorem 4.1 will follow from the observation that v−U ≤ u∗ −U ≤
V − U , and the estimates available for the two sides of the inequality.

We also prove the following stability result.

THEOREM 5.1. Let λ1 ≥ λ∗1, and u, u∗, and v be as in (0.1), (0.2) and (0.3). Let
B be as in (0.3) and R be such that |B| = πR2. There exists a constant C = CR
such that if u∗(R) = ε > 0, then for sufficiently small ε,

‖u∗ − v‖L∞(B) ≤ C
√
ε.
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1. Construction of the maximal solution Z

We start with a formal derivation of Talenti’s inequality for eigenfunctions. Recall
that u is analytic, and thus by Sard’s theorem and the coarea formula [5, p. 248]
we have, for 0 < t < 1, ∫

∂Dt

1


2

≤
∫
∂Dt

|Du|
∫
∂Dt

1

|Du| , a.e. t.

Thus,

L{∂Dt}2 ≤

λ1

∫
Dt

u

 (−µ′(t)), a.e. t,

where L{∂Dt} is the one-dimensional Hausdorff measure of the boundary of Dt.
The right side follows from an application of the divergence theorem on the p.d.e.
in (0.1) over the set Dt. Employing the usual isoperimetic inequality we obtain

4π

λ1
µ(t) ≤ (−µ′(t))

∫
Dt

u . (1.1)

Now using Fubini’s theorem, we may write

∫
Dt

u =

∫
Dt

u(x)∫
t

dτ dx+ tµ(t) (1.2)

=

∫ 1

t
µ(τ)dτ + tµ(t).

Thus, (1.1) and (1.2) yield

4π

λ1
µ(t) ≤ (−µ′(t))

[∫ 1

t
µ(τ)dτ + tµ(t)

]
, a.e. t ∈ [0, 1], (1.3)

µ(0) = 1, and µ(1−) = 0.

The inequality (1.3) which is a consequence of Talenti’s inequality, plays a key
role in motivating our work. Based on this, we are led to consider, for λ > 0, the
o.d.e.

4π

λ
z(t) = (−z′(t))

 1∫
t

z(τ)dτ + tz(t)

 , (1.4)

z(0) = 1.

Since (1.4) is nonstandard, we must formally define what we shall mean by
solutions and subsolutions to (1.4).
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DEFINITION 1.1. Let Y (t) ≥ 0 be nonincreasing for 0 ≤ t ≤ 1 and satisfy the
conditions

4π

λ
Y (t) ≤ (−Y ′(t))

[∫ 1

t
Y (τ)dτ + tY (t)

]
, a.e. t ∈ [0, 1],

Y (0) = 1.

Then Y (t) is a subsolution to (1.4).

Note that µ(t) in (1.3) is then a subsolution to (1.4) with λ = λ1. For emphasis,
we shall sometimes refer to subsolutions satisfying Definition 1.1 as nonincreasing
nonnegative subsolutions.

DEFINITION 1.2. By a solution of (1.4) we will mean a continuous function
z(t) ≥ 0 such that

z(t) = exp

−4π

λ

t∫
0

dτ∫ 1
τ z(s)ds + τ z(τ)

 , 0 ≤ t ≤ 1. (1.5)

The right hand side of (1.5) is interpreted as 0 for any t for which the term in the
exponential becomes −∞.

Again, for emphasis, we sometimes refer to solutions satisfying Definition 1.2
as nonnegative solutions.

By simple bootstrapping, we see that a solution to (1.5) becomes C∞ at points
t ∈ (0, 1) where z(t) 6= 0.

Let W (t) be the distribution function corresponding to U as in (0.4). Then
W (t) > 0 for 0 ≤ t < 1, and is decreasing and satisfies (we have equality in
(1.1)),

4π

λ∗1
W (t) = (−W ′(t))

[∫ 1

t
W (τ)dτ + tW (t)

]
(1.6)

W (0) = 1, and W (1) = 0.

Later we will show uniqueness for (1.6).
We observe that if z in (1.5) is positive then z is decreasing in t; and W in

(1.6) satisfies (1.5) with λ replaced by λ∗1. In what follows, λ will play the role of
a parameter in (1.4). We now study certain kinds of solutions of (1.4), which we
shall call maximal solutions. The analysis of this section considers only the case
λ ≥ λ∗1. We shall observe in section 3 that there are no nonnegative solutions to
(1.4) for λ < λ∗1.

THEOREM 1.1. For each λ ≥ λ∗1, there exists a unique C1 solution Zλ of (1.4),
in the sense of Definition 1.2 such that

bweigkluwer.tex; 3/09/2003; 17:08; no v.; p.5
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(i) Zλ(t) is positive and hence decreasing in t ;

(ii) Zλ(t) is maximal in the sense that if Z̄λ(t) is any nonnegative solution of
(1.4), then Zλ(t) ≥ Z̄λ(t);

(iii) furthermore, if W (t) is as in (1.6), then Zλ(t) ≥ W (t), and if Y (t) is a
nonincreasing, nonnegative subsolution of (1.4) in the sense of Definition 1.1
for the given value λ, then Zλ(t) ≥ Y (t).

Proof. For simplicity, we shall write Z instead of Zλ. We prove the existence of
Z via an iteration process. Take Z0(t) ≡ 1 on [0, 1], and for n = 1, 2, ..., set,

Zn(t) = exp

−4π

λ

t∫
0

dτ∫ 1
τ Zn−1(s)ds+ tZn−1(t)

 . (1.7)

Thus,
Z ′n(t)

Zn(t)
= −4π

λ

1∫ 1
t Zn−1(s)ds + tZn−1(t)

.

Clearly, 0 < Zn ≤ 1 on [0, 1], n = 0, 1, 2, ...; set

An(t) =
4π

λ

1∫ 1
t Zn(s)ds+ tZn(t)

. (1.8)

Then,

Zn+1(t) = exp

− t∫
0

An(τ)dτ

 .
If Zn(t) ≤ Zn−1(t), then An(t) ≥ An−1(t),. Thus from (1.7),

Zn+1(t) ≤ Zn(t).

Let us then check the hypothesis for n = 0; it is easy to see that Z1(t) =
exp(−4πt/λ) ≤ Z0(t) ≡ 1. By induction, we see that {Zn}∞n=0 is a decreasing
sequence. That these will converge is clear as Zn ≥ 0. Call

B(t) =
4π

λ

1
1∫
t
Y (s)ds+ tY (t)

,

and

C(t) =
4π

λ∗1

1
1∫
t
W (s)ds+ tW (t)

,
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where Y is as in (1.3) and W as in (1.6). Recalling that 0 ≤ Y ≤ 1, 0 ≤W ≤ 1, we
have that A0(t) ≤ B(t) and A0(t) ≤ C(t). Thus Z1(t) ≥ W (t) and Z1(t) ≥ Y (t);
this follows as

W (t) = exp

− t∫
0

C(τ)dτ

 and Y (t) ≤ exp

− t∫
0

B(τ)dτ

 . (1.9)

Regarding the proof of the inequality (1.9) for Y , since − log Y (t) is increasing
where Y (t) > 0, then for those points

− log Y (t) ≥
t∫

0

−Y ′(s)
Y (s)

ds ≥ 4π

λ

t∫
0

dτ∫ 1
τ Y (s)ds + τY (τ)

.

At points where B(t) = +∞, we take Y (t) = 0. It is then easy to see that ( 1.9)
holds.

Assume that for some n, Zn(t) ≥ W (t); then An(t) ≤ C(t) implying that
Zn+1(t) ≥W (t). We may thus conclude that Zn(t) ≥W (t), n = 0, 1, 2, ..... A simi-
lar argument also yields that Zn(t) ≥ Y (t). Clearly then, lim

n→∞
Zn(t) = Z(t), where

Z(t) satisfies (1.5) and hence (1.4). Furthermore, Z(t) ≥ Y (t) and Z(t) ≥ W (t).
In particular, then Z(t) > 0 on [0, 1), so as previously noted, Z must therefore
be continuously differentiable there. Regarding the point t = 1, it follows from
(1.5) that, whether or not Z(1) = 0, we have that Z ′(1) exists. From the mean
value theorem it then follows that the one sided derivative exists at t = 1 and is
continuous.

In order to see the maximal nature of Z, let Z̄ be any other solution. Then
clearly Z0 ≥ Z̄; now employing arguments as before this implies Zn(t) ≥ Z̄, n =
1, 2, .... The conclusion follows. The uniqueness of Z also follows in a similar fashion.

DEFINITION 1.3. Let Z = Zλ be as in Theorem 1.1. Then Z will be called the
maximal solution to (1.4) (corresponding to λ).

Remark 1.1. Let v be as in (0.3), X(t) be its distribution function. Then X(t)
satisfies

4π

λ
X(t) = −X ′(t)

[∫ 1

t
X(τ)dτ + tX(t)

]
(1.10)

X(0) = λ∗1/λ1 and X(1) = 0.

By a result of Chiti [3], u∗ − v ≥ 0 implying thereby that X(t) ≤ Y (t). Since v
and U (as in (0.4)) are related via scaling, we also have X(t) ≤W (t).

The next theorem demonstrates that Z is monotone increasing in λ.
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THEOREM 1.2. Let λ ≥ λ̂ ≥ λ∗1, Z and Ẑ be the maximal solutions corresponding

to λ and λ̂ respectively. Then Z(t) ≥ Ẑ(t). Furthermore, if {λm}∞m=1 is a decreas-
ing sequence converging to λ ≥ λ∗1, and if Zm’s are the corresponding maximal
solutions and Z̃ that for λ then lim

m→∞
Zm(t) = Z̃(t).

Proof. We prove the first part. Let λ ≥ λ̂ ≥ λ∗1. Let {Zn} and {Ẑn} be the

sequences, corresponding to Z and Ẑ, as given by the iterative scheme of Theorem
1.1. Now Z0 = Ẑ0 ≡ 1; if Zn(t) ≥ Ẑn(t) for some n, then

−4π

λ

1∫ 1
t Zn + tZn

≥ −4π

λ̂

1∫ 1
t Ẑn + tẐn

.

This implies Zn+1 ≥ Ẑn+1; thus we need to check the hypothesis for n = 1. One
can easily see that Z1 ≥ Ẑ1. Thus

Zn(t) ≥ Ẑn(t), n = 0, 1, 2, ... . (1.11)

Passing to the limit, we see Z ≥ Ẑ. In order to prove the second part, we note
that Zm(t) ≥ Zm+1(t) ≥ Z̃, m = 1, 2, ... . Here,

Zm(t) = exp

− 4π

λm

t∫
0

dτ
1∫
τ
Zm(s)ds+ τZm(τ)

 .
Passing to the limit, we get

ζ(t) = exp

−4π

λ

t∫
0

dτ
1∫
τ
ζ(s)ds+ τζ(τ)

 , (1.12)

where lim
m→∞

Zm(t) = ζ(t). Again, Zm(t) ≥ Z̃(t), and thus ζ(t) ≥ Z̃(t). But Z̃(t) is

the maximal solution of (1.12). Therefore, by Theorem 1.1, ζ(t) = Z̃(t).

The maximal solution Z, as given by Theorem 1.1, may be thought of as the
distribution function of a radial function V (r). It is this V (r) that will serve as
an upper bound for u∗. We also point out that as Z(t) decreases with t, one may
calculate lim

t→1−
Z(t) = Z(1). If Z(1) = 0, then Z(t) is the distribution function of a

radially decreasing function which will be the first eigenfunction of the Laplacian
(with eigenvalue λ) on D∗. This can happen if and only if λ = λ∗1. Thus, for
λ > λ∗1, Z(1) > 0. In section 3, we derive an expression that will, not only prove
the assertion, but also provide us with an estimate for Z(1) important for later
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work. We will also conclude that the maximal solution for λ = λ∗1 vanishes at t = 1.

2. Properties of Z

THEOREM 2.1. Let λ > 0 and z(t) be a solution of (1.4) corresponding to λ in
the sense of Definition 1.2, which is strictly positive for 0 ≤ t < 1. Then,

(i) z′(t) ≤ −4π/λ and z′(1) = −4π/λ;
(ii) z(t) is convex.

Proof. If z(t) is such a solution of (1.4) then z(t) is decreasing for 0 ≤ t < 1,
and hence

z′(t) = −4π

λ

z(t)∫ 1
t z(s)ds + tz(t)

(2.1)

≤ −4π

λ

z(t)

(1− t)z(t) + tz(t)

= −4π

λ
.

Again, from (1.4),

z′(t) ≥ −4π

λ

z(t)

tz(t)

= −4π

λt
.

Taking limits, i.e., t → 1− we get z′(1) = −4π/λ. To prove convexity, we
differentiate (1.4) once for 0 < t < 1 to get

z′′(t) = −4π

λ

[
z′(t)

∫ 1
t z(s)ds+ tz(t)z′(t)− tz(t)z′(t)

(
∫ 1
t z(s)ds+ tz(t))2

]

= −4π

λ

z′(t)
∫ 1
t z(s)ds

(
∫ 1
t z(s)ds + tz(t))2

> 0.

We make a few observations regarding z′′(1). If z(1) 6= 0, clearly z′′(1) = 0. If
z(1) = 0 then one can show, via L’Hopital’s rule, that z′′(1) = 2π/λ. However, the
value of z′(1) is independent of z(1).

Let us call δ(λ) = Z(1), where Z is the maximal solution corresponding to λ.
We know from Theorem 1.2 that δ(λ) is nondecreasing in λ. We prove

bweigkluwer.tex; 3/09/2003; 17:08; no v.; p.9
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THEOREM 2.2. Let λ ≥ λ∗1. Then the value of δ(λ) is strictly increasing in λ.

Proof. Let λ > λ̄ ≥ λ∗1, then δ(λ) ≥ δ(λ̄). Suppose that δ(λ) = δ(λ̄). Let the
corresponding maximal solutions be Zλ and Zλ̄. Then Zλ ≥ Zλ̄. Now Z ′λ(1) =
−4π/λ and Z ′

λ̄
(1) = −4π/λ̄, so

Z ′λ̄(1) < Z ′λ(1) < 0.

This, in turn, implies that Z ′
λ̄
(t) < Z ′λ(t) near t = 1. Since δ(λ) = δ(λ̄) = Zλ(1) =

Zλ̄(1), this implies that Zλ(t) < Zλ̄(t) near t = 1. This contradicts the fact that
Zλ(t) ≥ Zλ̄(t) on [0, 1].

We now make some observations regarding solutions z(t). Let ẑ(t) = cz(t), c > 0.
Then from (1.4),

4π

λ

ẑ(t)

c
=

1

c2
(−ẑ′(t))

[∫ 1

t
ẑ(τ)dτ + tẑ(t)

]
.

That is,

4π

(λ/c)
ẑ(t) = (−ẑ′(t)

[∫ 1

t
ẑ(τ)dτ + tẑ(t)

]
, (2.2)

ẑ(0) = c.

Thus ẑ(t) solves (1.4) with λ replaced by λ/c and ẑ(0) = c. In particular, if we
take c = λ/λ∗1, then cX(t), with X(t) as in (1.10), solves (1.6). Actually, it will
follow from the estimate for Z(1) that cX(t) = W (t). The basic result that implies
uniqueness in the case λ = λ∗1, is contained in Theorem 3.2.

One can easily show a Payne-Rayner identity for solutions z of (1.4) which are
positive for 0 ≤ t < 1. Now,

4π

λ
z(t)t = (−tz′(t))

 1∫
t

z(s)ds + tz(t)

 .
Set F (t) =

∫ 1
t z(s)ds + tz(t). Then F ′(t) = tz′(t). Integrating we obtain

4π

λ

1∫
0

tz(t)dt =
1

2

(

1∫
0

z(t)dt)2 − (z(1))2

 ,
(∫ 1

0
z(t)dt

)2

− (z(1))2 =
8π

λ

1∫
0

tz(t)dt. (2.3)
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For W , we have (∫ 1

0
W (t)dt

)2

=
8π

λ∗1

1∫
0

tW (t)dt.

Let Z(t) be the maximal solution as in Theorem 1.1, 0 ≤ V (r) ≤ 1 be the radially
nonincreasing function whose distribution function corresponds to Z. One can
show, by retracing the steps in (1.1)-(1.3), that V (r) satisfies

∆V + λV = 0, r̄ < r < 1/
√
π, (2.4)

V (1/
√
π) = 0, V ′(r̄) = −λ r̄/2 and V (r) ≡ 1, 0 < r < r̄.

Here r̄ =
√
Z(1)/π, and the condition on V ′ at r = r̄ follows from the fact that

Z ′(1) = −4π/λ and Z(V (r)) = πr2, for r > r̄ .

3. Estimates for Z

A readily available estimate for Z follows from Theorem 2.1, namely,

Z ′(t) ≤ −4π

λ
;

integrating, we get

Z(t) ≤ 1− 4π

λ
t, 0 ≤ t ≤ 1.

In particular, Z(1) ≤ 1− 4π/λ. Noting that

Z ′(0) = −4π

λ

1∫ 1
0 Z

,

and that Z is convex, we find

Z(t) ≥ 1− 4π

λ

t∫ 1
0 Z

, 0 < t < 1.

If λ→∞, then Z increases, and it follows that

lim
λ→∞

Z(1) = 1. (3.1)

We now state and prove an expression for Z that will provide us with an estimate
for Z(1). We do not assume here that λ ≥ λ∗1.

bweigkluwer.tex; 3/09/2003; 17:08; no v.; p.11
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THEOREM 3.1. Let λ > 0, and z(t) be a nonnegative C1 solution of

4π

λ
z(t) = (−z′(t))

[∫ 1

t
z(s)ds + tz(t)

]
, 0 ≤ t ≤ 1 (3.2)

z(0) = 1.

Then,

z(1)J2

√λz(1)

π

 = −J0

√λ

π

∫ 1

0
z(t)dt,

where J0 and J2 are the Bessel functions of order 0 and 2 respectively.

Proof. We first multiply the o.d.e. in (3.2) by zm−1,m = 1, 2, ..... Integrating
both sides we get,

1∫
0

zm(t)dt = − λ

4πm

1∫
0

(zm(t))′
(∫ 1

t
z(s)ds + tz(t)

)
dt

= − λ

4πm

{
zm(t)

(∫ 1

t
z(s)ds + tz(t)

)∣∣∣∣1
0
−

1∫
0

tzm(t)z′(t)dt


= − λ

4πm

{
zm+1(1)−

∫ 1

0
z(t)dt− zm+1(1)

m+ 1
+

1

m+ 1

∫ 1

0
zm+1(t)dt

}

= − λzm+1(1)

4π(m+ 1)
+

λ

4πm

∫ 1

0
z(t)dt− λ

4πm(m + 1)

∫ 1

0
zm+1(t)dt. (3.3)

We intend to use (3.3) recursively. We start at m = 1. Then (3.3) yields

∫ 1

0
z(t)dt = −λz

2(1)

4π · 2 +
λ

4π

∫ 1

0
z(t)dt− λ

4π · 1 · 2

∫ 1

0
z2(t)dt.

Thus, (
λ

4π
− 1

) 1∫
0

z(t)dt =
λz2(1)

4π · 2 +
λ

4π · 1 · 2

∫ 1

0
z2(t)dt. (3.4)

Taking m = 2 in (3.3) we have

∫ 1

0
z2(t)dt = −λz

3(1)

4π · 3 +
λ

4π · 2

∫ 1

0
z(t)dt− λ

4π · 2 · 3

∫ 1

0
z3(t)dt. (3.5)
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Substituting (3.5) in (3.4), we get

(3.6)(
λ

4π
− (

λ

4π
)2 1

2 · 2 − 1

)∫ 1

0
z(t)dt =

λz2(1)

4π · 2 − (
λ

4π
)2 z3(1)

1 · 2 · 3

− (
λ

4π
)2 1

1 · 2 · 2 · 3

∫ 1

0
z3(t)dt.

Let us assume that for some m, we have{
m∑
n=0

(−1)n+1(
λ

4π
)n

1

(n!)2

}∫ 1

0
z(t)dt (3.7)

= z(1)

{
m∑
n=1

(−1)n+1(
λ

4π
)n

zn(1)

((n− 1)!)2n(n+ 1)

}

+(−1)m+1(
λ

4π
)m

1

(m!)2(m + 1)

∫ 1

0
zm+1(t)dt.

We use (3.3) to compute the integral on the right side of (3.7), i.e.

∫ 1

0
zm+1(t)dt = − λzm+2(1)

4π(m + 2)
+

λ

4π(m + 1)

∫ 1

0
z(t)dt− λ

4π(m + 1)(m + 2)

1∫
0

zm+2(t)dt

Thus,

(−1)m+1(
λ

4π
)m

1

(m!)2(m+ 1)

1∫
0

zm+1(t)dt

= (−1)m+2(
λ

4π
)m+1 zm+2(1)

(m!)2(m + 1)(m + 2)

+(−1)m+1(
λ

4π
)m+1 1

((m+ 1)!)2

∫ 1

0
z(t)dt

+(−1)m+2(
λ

4π
)m+1 1

((m + 1)!)2(m + 2)

∫ 1

0
zm+2(t)dt. (3.8)

From (3.7) and (3.8) we obtain{
m+1∑
n=0

(−1)n+1(
λ

4π
)n

1

(n!)2

} 1∫
0

z(t)dt = z(1)

{
m+1∑
n=1

(−1)n+1(
λ

4π
)n

zn(1)

((n− 1)!)2n(n+ 1)

}

+(−1)m+2(
λ

4π
)m+1 1

((m + 1)!)2(m+ 2)

1∫
0

zm+2(t)dt. (3.9)
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Some estimates for the symmetrized first eigenfunction of the Laplacian 13

Since we have shown that (3.7) holds for m = 1, 2, it now follows by induction
that (3.7) holds for every m. Noting that 0 < z(t) ≤ 1, letting m → ∞, in (3.9),
we have { ∞∑

n=0

(−1)n+1(
λ

4π
)n

1

(n!)2

}∫ 1

0
z(t)dt

= z(1)

{ ∞∑
n=1

(−1)n+1(
λ

4π
)n

zn(1)

((n − 1)!)2n(n+ 1)

}
.

Comparing the formulas for J0 and J2 [10], we get

z(1)J2

√λz(1)

π

 = −J0

√λ

π

∫ 1

0
z(t)dt.

THEOREM 3.2. Let Z(t) be the maximal solution of (1.4) corresponding to λ =
λ∗1, and z(t) be a solution of (1.4) also corresponding to λ∗1 which is positive for
0 ≤ t < 1. Then, z(1) = Z(1) = 0 and z(t) ≡ Z(t) ≡ W (t) where W (t) is the
function of (1.6).

Proof. We first observe that z(1) = Z(1) = 0. In fact since Z(t) > 0 for 0 ≤ t <
1 Theorem 3.1 applies to Z(t) as well as z(t). Now, λ∗1 = ν2π, where ν is the first
zero of J0. Thus from Theorem 3.1, we have

Z(1)J2

√λ∗1Z(1)

π

 = 0.

Since the first nonzero zero of J2 is greater than ν, it follows that Z(1) = 0.
Similarly, z(1) = 0.

Now, z(t) ≤ Z(t), and

z′(t)

z(t)
= −4π

λ∗1

1∫ 1
t z(s)ds+ t z(t)

≤ −4π

λ∗1

1∫ 1
t Z(s)ds+ t Z(t)

=
Z ′(t)

Z(t)
.

Integrating from t̄ to t, 0 < t̄ < t, we obtain

z(t)

z(t̄)
≤ Z(t)

Z(t̄)
.
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14 Tilak Bhattacharya and Allen Weitsman

This, in turn, implies

Z(t̄)

z(t̄)
≤ Z(t)

z(t)

≤ lim
t→1−

Z(t)

z(t)

≤ lim
t→1−

Z ′(t)

z′(t)
= 1.

The last step follows from Theorem 2.1 and the fact that z(1) = Z(1) = 0.
Hence,

z(t) ≤ Z(t) ≤ z(t);

uniqueness follows.

THEOREM 3.3. If λ < λ∗1, then (1.4) has no nonnegative solutions.

Proof. Let λ < λ∗1, and z be such a solution to (3.2). Suppose first that z(t) > 0
for 0 ≤ t < 1. Then z is C1. Since λ < ν2π and the first nonzero zero of J2 is

greater than the first zero ν =
√
λ∗1/π of J0, we have that

J2

√λz(1)

π

 ≥ 0 and J0

√λ

π

 > 0.

Thus, both sides of the formula in Theorem 3.1 vanish implying immediately

1∫
0

z(t)dt = 0.

The conclusion follows in this case.
If z(t) = 0 for some 0 < t < 1, letting a = sup{t : 0 < t < 1, z(t) > 0}, we may

then define ζ(t) = z(at). Then, it follows readily from (1.5) that ζ(t) is again a
solution with the same λ, which is positive on [0, 1) and hence C1. Thus, applying
Theorem 3.1 to ζ(t) we find that ζ(t) ≡ 0 and so again z(t) ≡ 0.

THEOREM 3.4. There exists an absolute constant C such that if z is a solution
to (1.4) corresponding to λ > λ∗1, then z(1) ≤ C

√
λ− λ∗1.
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Some estimates for the symmetrized first eigenfunction of the Laplacian 15

Proof. By Theorems 1.2, 2.2, and 3.2, we find that Z(1) decreases to zero as
λ ↓ λ∗1. Inspecting the series expressions for J2 and J0, we find that,

Z(1)J2

√λZ(1)

π

 ≈ λ

π
Z(1)2,

J0

√λ

π

 = J0

√λ

π

− J0

√λ∗1
π

 ≈ C(λ− λ∗1),

(3.10)

as λ ↓ λ∗1. The conclusion now follows from Theorem 3.1.

If, in Theorem 3.1, we integrate from 0 to t (instead of 0 to 1) we may derive
the following expression for z(t).

THEOREM 3.5. Let λ ≥ λ∗1 and z(t) be a solution of (1.4) which is positive for
0 ≤ t < 1. Then

tz(t)J2

√λz(t)

π

 = J0

√λz(t)

π

 1∫
t

z(s)ds− J0

√λ

π

 1∫
0

z(s)ds.

It is clear from Theorem 2.2 and Theorem 3.2 that Z(1) = 0 if and only if λ = λ∗1.
However, this does not imply the statement about z(1) . Although Theorem 3.2
implies that z(1) = 0 when λ = λ∗1 , in order to prove the converse we have to
employ Theorem 3.5 . So let us then assume that z(t) is a positive solution of (1.4)
with z(1) = 0. Then from Theorem 3.1

J0

√λ

π

 = 0.

Let ν = ν1 < ν2 < ... be the zeros of J0. Then λ = π ν2
i for some i ≥ 1. If

λ = π ν2
1 = λ∗1 then we are done. So let us assume that λ = π ν2

i for some
i > 1. We now observe that J2 and J0 do not vanish together. This follows from
the recurrence formula J2(x) = (2/x) J1(x) − J0(x) and the fact that J1 and
J0 have no common zeros [10]. Thus, J2(νl) = (2/νl) J1(νl) 6= 0, l = 0, 1, 2, ....
Furthermore, z(0) = 1, z(1) = 0 and z(t) is continuous. Thus, there are i numbers
0 = t1 < t2 < .... < ti < 1 such that ν2

i z(tj) = ν2
i−j+1, j = 1, 2, ..., i. Upon

substituting the t′js in the formula in Theorem 3.5 we see that

tjz(tj) J2(νi−j+1) = J0(νi−j+1)

∫ 1

tj

z(s)ds = 0.

Therefore, z(tj) = 0 for j = 2, ..., i. This contradicts the positivity of z(t). Thus
we obtain
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16 Tilak Bhattacharya and Allen Weitsman

COROLLARY 3.1. Let z(t) be a solution of (1.4) such that z(t) > 0 for 0 ≤ t < 1.
Then z(1) = 0 if and only if λ = λ∗1.

Let λ ≥ λ̄ ≥ λ∗1, Z and Z̄ be the corresponding maximal solutions of (1.4). We
show that Z ′ ≥ Z̄ ′. This will provide us with pointwise estimates for Z−W . Recall
from Theorem 3.2 that W is also maximal.

THEOREM 3.6. Let λ ≥ λ̄ ≥ λ∗1, Z be the maximal solution corresponding to λ,
and z̄ be a solution to (1.4) corresponding to λ̄ such that z̄(t) > 0 for 0 ≤ t < 1.
Then Z ′(t) ≥ z̄′(t).

Proof. Recall that we have

Z ′(t) = −4π

λ

Z(t)
1∫
t
Z(s)ds+ tZ(t)

, Z(0) = 1, (3.11)

and

z̄′(t) = −4π

λ̄

z̄(t)
1∫
t
z̄(s)ds+ tz̄(t)

, z̄(0) = 1. (3.12)

If Z̄ is the maximal solution corresponding to λ̄, then Z(t) ≥ Z̄(t) ≥ z̄(t). Hence

Z ′(t)− z̄′(t) = −4π

λ

Z(t)
1∫
t
Z(s)ds+ tZ(t)

+
4π

λ

z̄(t)
1∫
t
z̄(s)ds+ tz̄(t)

+

(
4π

λ̄
− 4π

λ

)
z̄(t)

1∫
t
z̄(s)ds + tz̄(t)

.

Thus,

Z ′(t)− z̄′(t) =
4π

λ


z̄(t)

1∫
t
Z(s)ds− Z(t)

1∫
t
z̄(s)ds

(
1∫
t
Z(s)ds+ tZ(t))(

1∫
t
z̄(s)ds+ tz̄(t))


+

4π

λλ̄
(λ− λ̄)

z̄(t)
1∫
t
z̄(s)ds + tz̄(t)

. (3.13)
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Some estimates for the symmetrized first eigenfunction of the Laplacian 17

Now set F (t) = z̄(t)
∫ 1
t Z(s)ds − Z(t)

∫ 1
t z̄(s)ds. Then F (1) = 0, and F (0) =∫ 1

0 Z(t)− z̄(t)dt ≥ 0. Differentiating F ,

F ′(t) = z̄′(t)
∫ 1

t
Z(s)ds− Z ′(t)

1∫
t

z̄(s)ds

= −4π

λ̄

z̄(t)
∫ 1
t Z(s)ds∫ 1

t z̄(s)ds + tz̄(t)
+

4π

λ

Z(t)
∫ 1
t z̄(s)ds∫ 1

t Z(s)ds+ tZ(t)

= −4π

λ̄

[
z̄(t)

∫ 1
t Z(s)ds− Z(t)

∫ 1
t z̄(s)ds∫ 1

t z̄(s)ds+ tz̄(t)

]

+

(
4π

λ
− 4π

λ̄

)
Z(t)

∫ 1
t z̄(s)ds∫ 1

t z̄(s)ds + tz̄(t)

+
4π

λ
Z(t)

∫ 1

t
z̄(s)ds

[
1∫ 1

t Z(s)ds+ tZ(t)
− 1∫ 1

t z̄(s)ds + tz̄(t)

]

= −4π

λ̄

(
F (t)∫ 1

t z̄(s)ds + tz̄(t)

)
+

4π

λλ̄
(λ̄− λ)

Z(t)
∫ 1
t z̄(s)ds∫ 1

t z̄(s)ds + tz̄(t)

−4π

λ
Z(t)

∫ 1

t
z̄(s)ds

[ ∫ 1
t (Z(s)− z̄(s))ds + t(Z(t)− z̄(t))

(
∫ 1
t Z(s)ds+ tZ(t))(

∫ 1
t z̄(s)ds + tz̄(t))

]

Using (3.12), and observing that λ ≥ λ̄ and Z(t) ≥ z̄(t), we have

F ′(t)− F (t)z̄′(t)

z̄(t)
≤ 0,

implying thereby ,
(F (t)/z̄(t))′ ≤ 0.

Thus F (t)/z̄(t) is decreasing, and

F (t)

z̄(t)
≥ lim

t→1−

F (t)

z̄(t)

= lim
t→1−


∫ 1

t
Z(s)ds− Z(t)

1∫
t
z̄(s)ds

z̄(t)

 (3.14)

If z̄(1) 6= 0, then (3.14) yields

F (t)/z̄(t) ≥ 0.
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18 Tilak Bhattacharya and Allen Weitsman

If z̄(1) = 0, then by Corollary 3.1 λ̄ = λ∗1, and again the right side can be easily
shown to be zero. This follows from Theorem 2.1, i.e., z̄′(1) = 4π/λ̄ 6= 0. Thus

F (t)/z̄(t) ≥ 0, 0 < t < 1.

Since z̄(t) > 0, this implies that

F (t) = z̄(t)

∫ 1

t
Z(s)ds− Z(t)

∫ 1

t
z̄(s)ds > 0. (3.15)

Employing (3.15) in (3.13) and observing that λ ≥ λ̄, Z(t) ≥ z̄(t) ≥ 0, we have

Z ′(t)− z̄′(t) ≥ 0. (3.16)

As an immediate consequence of Theorem 3.6 we have

COROLLARY 3.2. Let Z and z̄ be as in Theorem 3.6. Then

0 ≤ Z(t)− z̄(t) ≤ Z(1)− z̄(1).

If, in Corollary 3.2, we take λ̄ = λ∗1, W = z̄, then

0 ≤ Z(t)−W (t) ≤ Z(1). (3.17)

Thus, by Theorem 3.4 and Corollary 3.2, we have that for λ close to λ∗1,

Z(t)−W (t) = O(
√
λ− λ∗1).

Recall that U(r) is the eigenfunction whose distribution function is W , V (r) is the
function whose distribution function is Z. Then

‖U‖L1(D∗) =

1∫
0

W (t)dt,

and

‖V ‖L1(D∗) =

1∫
0

Z(t)dt,

Noting that U ≤ V and using (3.17),

‖V − U‖L1(D∗) =

∫ 1

0
(Z(t)−W (t))dt ≤ Z(1)

Thus, (3.17) and Theorem 3.4 yield,

‖V − U‖L1(D∗) ≤ C
√
λ− λ∗1 (3.18)

for some constant C. That this is sharp follows from
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Some estimates for the symmetrized first eigenfunction of the Laplacian 19

THEOREM 3.7. Let λ ≥ λ∗1, Z the maximal solution in (1.4), and W as in (1.6).
Then there exist constants C̄1 and C̄2 such that for λ sufficiently close to λ∗1,

C̄1

√
λ− λ∗1 ≤

∫ 1

0
Z(t)−W (t)dt ≤ C̄2

√
λ− λ∗1. (3.19)

Proof. The right side of (3.19) follows from (3.17) and Theorem 3.4. Recall that
Z(0) = 1,W (0) = 1 and W (1) = 0. From the o.d.e.’s for Z and W , we see, using
integration by parts, that

−4π

λ
=

1∫
0

Z ′(t)

Z(t)

 1∫
t

Z(s)ds+ tZ(t)

 dt
= log Z(t)

 1∫
t

Z(s)ds+ tZ(t)

∣∣∣∣∣∣
1

0

−
1∫

0

tZ ′(t) log Z(t)dt

= Z(1) log Z(1)−
1∫

0

t (Z(t) log Z(t)− Z(t))′ dt

= Z(1) log Z(1)− Z(1) log Z(1) + Z(1)

+

1∫
0

(Z(t) log Z(t)− Z(t))dt

= Z(1) +

1∫
0

(Z(t) log Z(t)− Z(t))dt. (3.20)

Similarly,
1∫

0

(W (t) log W (t)−W (t))dt = −4π

λ∗1
. (3.21)

Combining (3.20) and (3.21), we see

1∫
0

(Z(t)−W (t))dt = Z(1)− 4π

λλ∗1
(λ− λ∗1)

+

1∫
0

(Z(t) log Z(t)−W (t) log W (t))dt. (3.22)

We proceed with the integral on the right side as follows. Multiplying, the o.d.e.
for Z(t) by log Z(t) and integrating, we obtain

1∫
0

Z(t) log Z(t)dt = − λ

4π

1∫
0

Z ′(t) log Z(t)

 1∫
t

Z(s)ds+ tZ(t)

 dt
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20 Tilak Bhattacharya and Allen Weitsman

= − λ

4π


1∫

0

{Z(t) log Z(t)− Z(t)}′
 1∫
t

Z(s)ds+ tZ(t)

 dt


= − λ

4π

{Z(t) log Z(t)− Z(t)}

 1∫
t

Z(s)ds+ tZ(t)

∣∣∣∣∣∣
1

0

−
1∫

0

tZ ′(t){Z(t) log Z(t)− Z(t)}dt


= − λ

4π

{
Z2(1) log Z(1)− Z2(1) +

∫ 1

0
Z(t)dt

−
∫ 1

0
t

(
Z2(t)

2
log Z(t)− 3

4
Z2(t)

)′
dt

}

= − λ

4π

Z2(1)

2
log Z(1)− Z2(1)

4
+

1∫
0

Z(t)dt

+

∫ 1

0
(
Z2(t)

2
log Z(t)− 3

4
Z2(t))dt

}
. (3.23)

Similarly, we may show

1∫
0

W (t) log W (t)dt = −λ
∗
1

4π


1∫

0

W (t)dt

+

1∫
0

(
W 2(t)

2
log W (t)− 3

4
W 2(t))dt

 . (3.24)

Set

A = Z(1) +
λ

16π
Z2(1)− λ

8π
Z2(1) log Z(1)− 4π

λλ∗
(λ− λ∗). (3.25)

Now combining (3.22) with (3.23) and (3.25), (3.20) we obtain

1∫
0

(Z(t)−W (t))dt = A− λ

4π

∫ 1

0
Z(t)dt+

λ∗1
4π

1∫
0

W (t)dt

− λ

4π

1∫
0

I(Z(t))dt +
λ∗1
4π

∫ 1

0
I(W (t))dt

= A− λ

4π

1∫
0

(Z(t)−W (t))dt
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+
λ∗1 − λ

4π

(∫ 1

0
W (t)dt+

∫ 1

0
I(W (t))dt

)

− λ

4π

1∫
0

(I(Z(t)) − I(W (t)))dt, (3.26)

where

I(f(t)) =
f2(t)

2
log f(t)− 3

4
f2(t).

Now, Z(0) = W (0) = 1, and 0 ≤W (t) ≤ Z(t) ≤ 1. Thus, I(Z(0)) − I(W (0)) = 0.
Now the function (x2/2) log x−3x2/4 is decreasing for 0 < x < 1. Thus, I(Z(t)) ≤
I(W (t)). Finally, from (3.25) we obtain

(1 +
λ

4π
)

1∫
0

(Z(t)−W (t))dt ≥ A+
λ∗1 − λ

4π

(∫ 1

0
W (t)dt+

∫ 1

0
I(W (t))dt

)
. (3.27)

Applying Theorem 3.1 to Z(t), and again using (3.10), the result now follows from
(3.25) and (3.27).

4. Pointwise estimates on u∗

We now set λ = λ1, and recall (0.1), (0.3), (0.4), (1.3), (1.6) and (2.4). If u is as
in (0.1), u∗ as in (0.2), and v as in (0.3), it follows from a result of Chiti [3] that
u∗(r) ≥ v(r). Also , from Theorem 1.1 we have that u∗(r) ≤ V (r). Thus, if U is as
in (0.4) we have

v(r)− U(r) ≤ u∗(r)− U(r) ≤ V (r)− U(r). (4.1)

With these preliminaries, we now prove

THEOREM 4.1. Let u and U be as above. There exists a constant C such that

‖u∗ − U‖L∞(D∗) ≤ C
√
λ− λ∗1.

Proof. We first estimate V −U . We state once again that U(r) and V (r) satis-
fy

∆U + λ∗1U = 0, 0 < r <
√

1/π,
U(0) = 1, U ′(0) = 0, and U(

√
1/π) = 0;

and

∆V + λ1V = 0, r̄ < r <
√

1/π,
V (r) ≡ 1, 0 < r ≤ r̄, V ′(r̄+) = −λ1r̄/2, and V (

√
1/π) = 0.
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Here, r̄ =
√
Z(1)/π; note U and V are both positive and radially decreasing.

The function U is the first eigenfunction on D∗. Regarding V ′(r̄), observe that
Z(V (r)) = πr2, for r̄ < r. Thus Z ′(V (r))V ′(r) = 2πr, hence V ′(r̄+) = 2πr̄/Z ′(1) =
−λ1r̄/2. Let us first estimate U on [0, r̄]. It is easily shown that the o.d.e for U
yields

U(r) = 1− λ∗1
r∫

0

1

t

t∫
0

sU(s)ds dt

≥ 1− λ∗1r
2

4
. (4.2)

Thus, for 0 < r < r̄, it follows from (4.2) that

V (r)− U(r) ≤ λ∗1
4
r2,

≤ λ∗1
4π
Z(1). (4.3)

Now consider the interval r̄ < r <
√

1/π. Set t = U(r) and t′ = V (r). Then
Z(t′) = W (t), and noting that W is one-one, decreasing and differentiable, (3.17)
and Theorem 2.1 imply

V (r)− U(r) = t′ − t = W−1(W (t′))−W−1(Z(t′))

≤ ‖ 1

W ′
‖L∞{Z(t′)−W (t′)} (4.4)

≤ λ∗1
4π
{Z(t′)−W (t′)}

≤ λ∗1
4π
Z(1).

Thus from (4.3) and (4.4), it follows from λ1 close to λ∗1,

u∗(r)− U(r) ≤ V (r)− U(r) = O(
√
λ1 − λ∗1). (4.5)

Now v(r) and U(r) are related via a scaling, i.e., v(r) = U(cr) with c =
√
λ1/λ

∗
1.

Thus

v(r)− U(r) =

{
−U(r), R ≤ r ≤

√
1/π,

U(cr)− U(r), 0 < r ≤ R, (4.6)

where R =
√
|B|/π =

√
λ∗1/πλ1. Clearly,

|U(cr)− U(r)| ≤ ‖U ′‖L∞(c− 1)r

≤ ‖U ′‖L∞(
√
λ1/λ

∗
1 − 1)

1√
π
.
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Recall that W (U(r)) = πr2; hence W ′(U(r))U ′(r) = 2πr, implying by Theorem
2.1 that

|U ′(r)| = 2πr

|W ′(U(r))| ≤
λ∗1

2
√
π
.

A similar calculation in (4.6) for R ≤ r ≤ 1/
√
π, yields that

0 ≤ U(r)− v(r) = O(λ1 − λ∗1). (4.7)

Putting together (4.5) and (4.7) in (4.1), we deduce, for λ1 close to λ∗1 and
0 < r <

√
1/π,

|u∗(r)− U(r)| = O(
√
λ1 − λ∗1).

The Theorem now follows.

Remark 4.1. We mention here that Theorem 4.1 holds for uniformly elliptic
p.d.e.’s. Consider the following eigenvalue problem. Let u ∈W 1,2

0 (D) be such that,

−
2∑

i,j=1

∂

∂xi
(aij(x)

∂u

∂xj
) + c(x)u = λ1u, in D,

u = 0, on ∂D.

(4.8)

We will assume that u ≥ 0 and that sup u = 1. Here aij(x) and c(x) are bounded,
real and measurable, and the aij’s satisfy ellipticity, i.e.

aij(x)ξiξj ≥ |ξ|2, ∀ x ∈ D, and ∀ ξ ∈ IR2.

We also assume that c(x) ≥ 0, λ1 is the first eigenvalue and u is the first eigenfunc-
tion of the elliptic operator on D. Let u∗ be as in (0.2) and (0.4). By the work in
[8], (1.1) and (1.2) continue to hold. Furthermore, by [3] and [4], u∗− v ≥ 0, where
v is as in (0.3). All our results regarding Z are applicable and hence Theorem 4.1
holds for the first eigenfunction of (4.8).

5. A Stability Result

We now apply our methods to derive another estimate on u∗. Let v be as (0.3) and
u∗ the radially decreasing rearrangement of u as in (0.1) and (0.2). We will prove
the following

THEOREM 5.1. Let λ1 ≥ λ∗1, and u, u∗, and v be as in (0.1), (0.2) and (0.3). Let
B be as in (0.3) and R be such that |B| = πR2. There exists a constant C = CR
such that if u∗(R) = ε > 0, then for sufficiently small ε,

‖u∗ − v‖L∞(B) ≤ C
√
ε. (5.1)
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The proof of Theorem 5.1 will follow from two lemmas. First recall that |B| =
λ∗1/λ1. Let Y (t) = µ(t) be the subsolution of (1.3) and X(t) be as in (1.10).
Then

Y (ε) = X(0) = λ∗1/λ1. (5.2)

We will construct an upper bound for Y (t), say G(t), much the same way as
in Theorem 1.1. The function Z will not be useful here as Z(ε) may be large
compared to Y (ε), especially if ε is very small. We again proceed via an iteration.
For ε < t < 1, let G(t) satisfy

4π

λ1
G(t) = (−G′(t))

 1∫
t

G(s)ds + tG(t)

 , and G(ε) = Y (ε) = λ∗1/λ1. (5.3)

We introduce the following iterative scheme. Take G0(t) = λ∗1/λ1 on [ε, 1], and
define Gn(t) on [ε, 1] by

Gn(t) =
λ∗1
λ1

exp

−4π

λ1

t∫
ε

dτ
1∫
τ
Gn−1(s)ds+ τGn−1(τ)

 , (5.4)

where n = 1, 2, .... As in Theorem 1.1, Gn(t) are decreasing and Gn(t) ≥ Y (t) ≥
X(t) on [ε, 1], n = 1, 2, .... Using the same procedure as in the proof of Theorem
1.1, one can easily show that

Y (t) ≤ Y (ε) exp

−4π

λ1

t∫
ε

dτ
1∫
τ
Y (s)ds+ τY (τ)

 ,
and

X(t) = X(ε) exp

−4π

λ1

t∫
ε

dτ
1∫
τ
X(s)ds + τX(τ)

 .
Here X(ε) < Y (ε) = X(0), as X is decreasing. Passing to the limit, we obtain
lim
n→∞

Gn(t) = G(t), a maximal solution of

G(t) = G(ε) exp

−4π

λ1

t∫
ε

dτ
1∫
τ
G(s)ds + τG(τ)

 . (5.5)
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This, in turn, satisfies (5.3). We now calculate G(1). We first state an easy upper
bound. Since, as in Theorem 2.1, G′(t) ≤ −4π/λ1 on [ε, 1], then

G(t) ≤ λ∗1
λ1
− 4π

λ1
(t− ε). (5.6)

Thus,

G(1) ≤ λ∗1
λ1
− 4π

λ1
(1− ε).

We now deduce an expression involving G(1) which will aid us in estimating
G(1) for small values of ε. This is the basic estimate that will lead us to the proof
of (5.1).

LEMMA 5.1. Let G(t) be as in (5.3), and J2 be the Bessel function of order 2.
Then

G(1)J2

√λ1G(1)

π

 = ε
λ∗1
λ1

J2

√λ∗1
π

 . (5.7)

Proof. We follow the proof of Theorem 3.1. In what follows, G(t) is any positive,
decreasing C1 solution of (5.3). Then, integrating by parts and proceeding as
before, for m = 1, 2, ...,

1∫
ε

Gm(t)dt = − λ1

4πm

∫ 1

ε
(Gm(t))′

 1∫
t

G(s)ds + tG(t)

 dt
= − λ1

4πm

{
Gm(t)

(∫ 1

t
G(s)ds + tG(t)

)∣∣∣∣1
ε

−
1∫
ε

tGm(t)G′(t)dt


= − λ1

4πm

{
Gm+1(1)− εGm+1(ε) −Gm(ε)

∫ 1

ε
G(t)dt

− Gm+1(1)

m+ 1
+
εGm+1(ε)

m+ 1
+

1

m+ 1

1∫
ε

Gm+1(t)dt


= −λ1G

m+1(1)

4π(m+ 1)
+
λ1εG

m+1(ε)

4π(m + 1)
+
λ1G

m(ε)

4πm

∫ 1

ε
G(t)dt

− λ1

4πm(m+ 1)

∫ 1

ε
Gm+1(t)dt. (5.8)

We use (5.8) recursively; start at m = 1∫ 1

ε
G(t)dt = −λ1G

2(1)

4π · 2 +
λ1εG

2(ε)

4π · 2 +
λ1G(ε)

4π · 1

∫ 1

ε
G(t)dt
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− λ1

4π · 1 · 2

∫ 1

ε
G2(t)dt.

Setting m = 2, we get

∫ 1

ε
G2(t)dt = −λ1G

3(1)

4π · 3 +
λ1εG

3(ε)

4π · 3 +
λ1G

2(ε)

4π · 2

∫ 1

ε
G(t)dt

− λ1

4π · 2 · 3

∫ 1

ε
G3(t)dt.

Comparing these formulas with those in Theorem 3.1 and employing induction we
get for m = 1, 2, ...,

[
m∑
n=0

(−1)n+1
(
λ1G(ε)

4π

)n 1

(n!)2

] 1∫
ε

G(t)dt

= G(1)Sm(
λ1G(1)

4π
)− εG(ε)Sm

(
λ1G(ε)

4π

)
+(−1)m+1

(
λ1

4π

)m 1

(m!)2(m+ 1)

∫ 1

ε
Gm+1(t)dt, (5.9)

where Sm(x) =
m∑
n=1

(−1)n+1 xn

((n− 1)!)2n(n+ 1)
. Passing to the limit in (5.9), we

obtain

G(1)J2(A(1)) − εG(ε)J2(A(ε)) = −J0

√λ1G(ε)

π

∫ 1

ε
G(t)dt, (5.10)

where A(t) =
√
λ1G(t)/π. Now recall that G(ε) = λ∗1/λ1 and hence

λ1G(ε)/π = λ∗1/π = ν2. Thus (5.10) reduces to

G(1)J2

√λ1G(1)

π

 = ε
λ∗1
λ1
J2(ν), (5.11)

where ν is the first zero of J0. Thus (5.7) follows.

COROLLARY 5.1. Let λ1 ≥ λ∗1 and G(t) be the maximal solution of (5.3). Then,

G(1) = O(
√
ε), as ε→ 0+. (5.12)
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Proof. Set T =
√
λ1G(1)/π. Then (5.11) reads

T 2J2(T ) = ε
λ∗1
π
J2(ν) = εν2J2(ν), (5.13)

where ν is the first zero of J0. Let α be the second zero of J1, the Bessel function
of order 1. Then α > ν. This follows from the interlacing of zeros. Observe that

λ1G(1)

π
≤ λ1

π

λ∗1
λ1

=
λ∗1
π

= ν2 < α2.

Thus, 0 ≤ T < α. Now, [10],

d

dx
x2J2(x) = x2J1(x).

Thus for 0 ≤ x ≤ α, x2J2(x) is positive, increasing, continuous and vanishes only
at x = 0. Thus T → 0 as ε → 0. Recalling that J2(T ) = O(T 2) as T → 0, (5.13)
yields that T 4 = O(ε). Employing the definition of T , we have

G(1) = O(
√
ε), as ε→ 0.

Next we prove that G(t) − X(t) is increasing. The proof is similar to that of
Theorem 3.6. We provide details wherever necessary.

LEMMA 5.2. Let G(t) and X(t) be as in (5.3) and (1.10). Then, for ε < t < 1,
we have G(t)−X(t) ≥ 0 and G′(t)−X ′(t) ≥ 0.

Proof. By following the procedure of Theorem 3.6 and the construction of G(t)
(see (5.3) and (5.4)), we find quite easily that G(t) ≥ X(t). To prove that G′(t)−
X ′(t) ≥ 0, we see (as in (3.13)) that for ε < t < 1,

G′(t)−X ′(t) =
4π

λ1

[
X(t)

∫ 1
t G(s)ds −G(t)

∫ 1
t X(s)ds

(
∫ 1
t G(s)ds + tG(t))(

∫ 1
t X(s)ds+ tX(t))

]
(5.14)

Set F (t) = X(t)
∫ 1
t G(s)ds−G(t)

∫ 1
t X(s)ds. Then F (1) = 0. Differentiating F ,

F ′(t) +
4π

λ1

(
F (t)∫ 1

t X(s)ds + tX(t)

)

= −4π

λ1
G(t)

∫ 1

t
X(s)ds

[ ∫ 1
t G(s)−X(s)ds + t(G(t)−X(t))

(
∫ 1
t X(s)ds + tX(t))(

∫ 1
t G(s)ds + tG(t))

]
. (5.15)

Using (1.10) and G(t)−X(t) ≥ 0 in [ε, 1], we get

F ′(t)− F (t)X ′(t)

X(t)
≤ 0.

bweigkluwer.tex; 3/09/2003; 17:08; no v.; p.28



28 Tilak Bhattacharya and Allen Weitsman

Thus F (t)/X(t) is decreasing and as lim
t→1−

F (t)/X(t) = 0, we conclude that F (t) ≥
0 on [ε, 1]. Then (5.14) yields G′(t)−X ′(t) ≥ 0.

It is possible to obtain a lower bound for G′(t)−X ′(t), namely,

G′(t)−X ′(t) ≥ λ∗1
λ1λ̄1

(λ1 − λ̄1)|W ′(t)|, (5.16)

where λ̄1 is such that there is an eigenfunction φ(r) with the property that, for
some R̄,

∆φ+ λ̄1φ = 0, 0 < r < R̄,
φ(0) = 1, φ′(0) = 0, φ(R) = ε, φ(R̄) = 0, and φ ≥ 0.

(5.17)

The eigenfunction φ is constructed by scaling U (see (0.4)). Let W (t) be as in
(1.6), H(t) be given by

H(t) =
λ∗1
λ1

W (t)

W (ε)
.

Then H(ε) = λ∗1/λ1. Let φ(r) be the radially decreasing function whose distribu-

tion function is H(t). Thus λ̄1 = λ1W (ε) and φ(r) = U(cr) with c =
√
λ1W (ε)/λ∗1.

Clearly, λ̄1 < λ1 and proceeding as in Theorem 1.1, one shows G(t) ≥ H(t).
Following Theorem 3.6, one may show that G′(t) − H ′(t) ≥ 0. Recalling that
X(t) = λ∗1W (t)/λ1,

G′(t)−X ′(t) = G′(t)−H ′(t) +H ′(t)−X ′(t)

≥ λ∗1
λ1λ̄1

(λ1 − λ̄1)|W ′(t)|

> 0.

Although (5.15) is a stronger result than Lemma 5.2, we will not be using this to
prove Theorem 5.1.

Proof of Theorem 5.1. We now consider R (and hence λ1) fixed and let ε vary.
By Chiti’s results [3], [4], and (5.3), (5.4), and Lemma 5.2, we see

0 ≤ Y (t)−X(t) ≤ G(t)−X(t) ≤ G(1), ε < t < 1.

Employing the estimate in Corollary 5.1, we obtain a constant A > 0 such that,

0 ≤ Y (t)−X(t) ≤ A
√
ε, ε < t < 1. (5.18)
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Let g(r) be a radially decreasing function whose distribution function is G(t). Then
G(g(r)) = πr2; r̂ < r < R, where πr̂2 = G(1), and πR2 = λ∗1/λ1. We now proceed
as in Section 4. It is easily seen that from (0.3) that

v(r) = 1− λ1

∫ r

0

1

t

t∫
0

v(s)ds dt

≥ 1− λ1

4
r2.

Thus,

0 ≤ g(r)− v(r) ≤ 1− (1− λ1

4
r2) ≤ λ1G(1)

π
, 0 < r < r̂. (5.19)

Now on [r̂, R] we set t = v(r) and t′ = g(r). Then G(t′) = X(t), and

g(r)− v(r) = t′ − t = X−1(G(t)) −X−1(X(t))

≤ ‖ 1

X ′
‖L∞{G(t) −X(t)}

≤ λ1

4π
G(1). (5.20)

Here X ′ is estimated much the same way as W ′. We know X is convex, X ′ < 0
and X ′(1) = −4π/λ1. Thus ‖1/X ′‖L∞ ≤ λ1/4π. Combining (5.18), (5.19) and
Corollary 5.1, for 0 < r < R,

0 ≤ u∗(r)− v(r) ≤ g(r)− v(r) = O(
√
ε).

The result now follows.

6. Concluding Remarks

The maximal solution Z has provided a convenient method for estimating the
symmetrized first eigenfunctions in §4 and §5. Although we showed in Theorem
3.7 that the inequality (3.18) is sharp, it would interesting to know if Theorems
4.1 and 5.1 can be improved. In particular, it would be useful to know if the square
roots which appear in those theorems can be replaced by first powers.
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