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ABSTRACT

We consider the competing-risks problem without making any assumption concerning the inde-
pendence of the risks. Maximum-likelihood estimates of the cause-specific hazard rates are obtained
under the condition that their ratio is monotone. We also consider the likelihood-ratio test for testing
the proportionality of two cause-specific hazard rates against the alternative that the ratio of these
two hazard rates is monotonic. This testing problem is equivalent to testing independence against
likelihood-ratio dependence of the time to failure and the cause of failure in the competing-risks
setup. We allow for random censoring on the right. The asymptotic null distribution of the test
statistic is obtained and is found to be of the chi-bar-square type. The problem is extended to the
case of more than two risks. A numerical example is given to illustrate the procedure.

RESUME

Nous considérons le probleme des risques concurrents sans formuler d’hypothéses au sujet
de I'indépendance des risques. Des estimés du maximum de vraisemblance des taux de hasard
spécifiques a la cause sont obtenus sous la condition que leur ratio est monotone. Nous considérons
également le test du ratio de vraisemblance afin de tester la proportionalité de deux taux de hasard
spécifiques a la cause contre ’alternative selon laquelle le ratio de ces deux taux de hasard est
monotone. Ce probléme de test est équivalent a tester ’indépendance contre la dépendance au
ratio de vraisemblance du temps avant I’échec et la cause de I’échec dans I’organisation des
risques concurrents. Nous permettons la censure aléatoire & droite. La distribution asymptotique
nulle de la statistique de test est obtenue et est découverte comme étant de type chi-barre carré.
Le probleme est étendu au cas de plus de deux risques. Un exemple numérique est donné afin
d’illustrer la procédure ici développée.

1. INTRODUCTION

In competing-risks survival analysis each unit under study is exposed to a number of
different risks, but the actual failure of each unit results from just one of those risks.
Suppose that there are only two possible causes of failure, labeled 1 and 2, and that
the notional times to failure of a unit under those two risks are denoted by the random
variables X and Y, respectively. We assume that pr{X = Y] = 0, so that the cause of
failure is 1 if and only if X < Y. The variables X and Y cannot be observed. The observed
information is the time of failure T = min(X, Y') and the corresponding cause of death C.

*This research was supported by NSF Grant DMS 95-04891.
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Later, we will allow censoring information of the form T > ¢, but for current purposes of
discussion, we will assume that no censoring takes place. Such data occur frequently in
studies of the relative risk of death from various causes such as cancer and heart disease
and they also occur in multicomponent series systems in reliability. See Cox (1959) for
more applications of such a model.

It is common in the literature to do the statistical analysis assuming that X and Y
are stochastically independent. However, as noted by Gail (1975), among others, this
assumption is often unrealistic because the risks are acting within the same environment.
This problem is compounded by the fact that independence of X and Y cannot be tested
on the basis of data observed on T and C (cf. Cox 1959).

To quantify the risks of failure from the various causes, the notion of cause-specific
hazard rates is used. This is an extension of the usual concept of hazard rate. We
assume that the time to failure, 7', is discrete with k possible values labeled #,,1,, .. ., t.
Continuous data would be collected into a finite number of cells and analyzed as if they
were discrete. In that case #),1,,...,# would be points identifying those cells.

The cause-specific hazard rate corresponding to the ith cause is

git)=pr(C =i, T=4|T >1). 1.1

Thus g;(t;) is the rate of failure at time #; from the ith cause given that the unit has been
working up to time t;. It is easy to see that if X and Y are independent, then g; and
g» are simply the hazard rates corresponding to the marginal distributions of X and Y.
However, even without independence, the sum, g(;) + g2(#) is equal to the hazard rate
rr(t;) of T. Prentice et al. (1978) show that only probabilities expressible as functions of
the g;’s can be estimated from the observable data.

It is often of interest to compare the relative risks of failure from various causes over
time. Aly, Kochar and McKeague (1994) and Dykstra, Kochar and Robertson (1995b)
have proposed distribution-free tests for testing the equality of cause-specific hazard rates
against ordered alternatives. In this paper, we consider a somewhat different problem.
We are concerned with the question of whether the ratio of cause-specific hazard rates
is constant versus the alternative that the ratio changes monotonically.

Such a one-sided alternative is often of great interest. For example, it is generally
recognized that the cause-specific hazard rate for heart disease in women increases much
faster than those for many other risks beyond the onset of menopause. This fact has led
to significant changes in medical care for women in this age group.

On the basis of a random sample, (Cy, T}),(C3, T3),...,(Cy, T,) from (C,T) we wish
to test the null hypothesis

Ho : 82(1;)/81(1) is constant (1.2)

against the alternative #| — H,, where
H, : g2(1)/81(#;) is nondecreasing in t;. (1.3)
Another way of expressing these hypotheses is to define the functions m;(z;) = pr(C =
iT=1),i=12,j=1.2,...,k The functions m;(t;) are related to the cause-specific
hazard rates by m;(1;) = gi(t;)/rr(t)), i = 1,2, and m1(#;) + n2(4j) = 1. In terms of the =;’s

the above hypotheses are

Hy : mi(r) and my(¢) are constant in ¢
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and
H, : 7y(¢) is nondecreasing and mt;(¢) is nonincreasing in ¢.

Thus, given that a death has occurred at time ¢, the conditional probability that it is due
to cause 2 remains constant in ¢ under #, but is nondecreasing in ¢ (and somewhere
increasing) under the alternative %{.

Let pj =pr(C =i, T=1),i=1,2,j = 1,2,...,k, so that the cause-specific hazard
rates are given by

Pij
8it) = — T . (1.4)
2ot 2i=jPit
Then the hypotheses written in terms of the p;; are
9{0~1_’Zl=1_733=...:1_’_2_". (1.5)
P pn2 Pk
and
9{1;&15&33...51_’3&_ (1.6)
P11 P2 Pk

Thus, H is equivalent to the assumption that T and C are independent, while #{; assumes
that T and C are likelihood-ratio-dependent (see Lehmann 1966). The observation that
T and C are independent under the assumption analogous to (1.5) for the continuous
case was made by Kochar and Proschan (1991). Their observation extends the well-
known characterization result of Allen (1963), Armitage (1959), and Sethuraman (1965)
concerning the proportionality of hazard rates of two independent risks in the competing-
risks model.

Although this paper only considers the discrete situation, there are connections to the
continuous case. In particular, if one interprets maximum likelihood in the generalized
sense of Kiefer and Wolfowitz (1956) for the types of constraints discussed in this
paper, probability will only occur on the observed values. Thus the MLEs of the cause-
specific hazard rates given in Section 2 will yield (generalized) MLEs where the family
of interest consists of all bivariate distributions with well-defined cause-specific hazard
rates (including the continuous ones).

Though these generalized MLEs of the cause specific hazard rates must correspond
to discrete distributions, one might hope that the associated CDFs (of the estimated
casue specific hazard rates) would converge to the CDFs corresponding to the true cause
specific hazard rates when the ratio of the true rates satisfies the monotonicity condition
given in (1.3) even in the continuous case. This is not obvious, since the generalized
MLEs under similar orders (i.e., hazard rate order or uniform stochastic order) need not
have this property in the continuous case (Rojo and Samienego, 1991).

Fortunately, a variation of the proof given in Dykstra, Kochar and Robertson (1995a)
can be employed to show the desired consistency under very general conditions regardless
of whether the cause-specific hazard rates are discrete or continuous. This would indicate
that the continuous case is a limit of the discrete situation (in a natural sense). Of course,
the asymptotic distribution theory derived in Section 3 for hypothesis testing would not
be appropriate for the continuous case unless grouping was done (similar to the chi-square
goodness-of-fit tests).

These hypotheses are of interest in parametric models, too. For example, Gumbel’s
bivariate exponential distribution (Gumbel 1960) has joint survival function

F(x,y) = exp{—(hix + Moy + M3xy)}, ,x,y >0
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for A, Ay > 0, A3 > 0. Since the cause-specific hazard rates are g,(r) = A} + Ast and
g2(t) = g + Ast, it easily follows that

g1

) is strictly increasingint & Aj<A; and A3>0
82
while o

1A =constant & A=A, or A3 =0.

82(1)

Dykstra, Kochar and Robertson (1996) have proposed distribution-free tests for testing
the above type of alternatives in the case of continuous data.

In Section 2, we find maximum-likelihood estimates of the p;’s and the cause-specific
hazard rates under the null and alternative hypotheses.

In Section 3, the asymptotic distribution of the likelihood-ratio test of H; against
H, — H, is derived. This asymptotic distribution is a version of the chi-bar-square
distribution. Critical values for this test have been tabled, and it is well known that
a test which restricts alternatives to those in % is significantly more powerful than a test
for general omnibus alternatives. Extension to the case of more than two risks is also
discussed in Section 3. A data set is analyzed in Section 4 illustrating the techniques
developed in this paper.

2. MAXIMUM-LIKELIHOOD ESTIMATION

We allow for the possibility that our observations are censored on the right, but we
do assume that the censoring mechanism acts independently of the failure times. In a
competing-risks problem the various causes are censoring one another and we are not
assuming that the two causes are acting independently. The assumption that the censoring
mechanism acts independently may be unrealistic in some applications, but in general, the
censoring mechanism gives no information about the relative seriousness of the causes,
and the independence assumption is necessary to model the problem.

Our data set consists of a 2 x k contingency table (n;),xx together with a k-dimensional
vector d = (dy, d, ..., dy). The number n;; is the number of failures from cause i in the
time period indexed by j, and d; is the number of right-censored items during that time
period.

Although the data could be displayed in a series of ordered 2 x 2 contingency tables
specifying the number of failures at each time point along with the size of the risk set,
our formulation is more concise.

This problem was studied by Armitage (1955) and Cox (1959), though their procedures
were not based on any optimum or likelihood considerations. Lawless (1982) discussed
the problem of testing #, against the general unrestricted alternative. The problem
of testing independence against positive dependence in a contingency table has been
considered by many researchers, including Agresti, Wackerly and Boyett (1979), Grove
(1980), Patefield (1982), and Lee (1989). Most of these tests do not allow for censoring
and are actually testing independence against an alternative that is implied by likelihood-
ratio dependence. The specific nature of the alternative may not be clear from the test, and
it is also not clear how close these alternatives are to likelihood-ratio dependence. Most
of these papers propose tests conditioned on the column totals ny; + nyj, j = 1,2,... k.
The conditional distribution of the n;’s given the column totals is that of k independent
binomials with parameters n,; +n5;, 6;, where 6; = p,;/(pij+p>;). The null hypothesis of
independence is equivalent to equality of the 6;’s, and the alternative of likelihood-ratio
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dependence is equivalent to 8; < 8, < ... < 8,. Thus asymptotically, a conditional test
in our problem reduces to the bioassay problem studied by Bartholomew (1959). We
shall derive the unconditional likelihood-ratio test, study its asymptotic properties and
discuss its relationship to the conditional test.

Let P = [p;] be the 2 x k matrix of unknown probabilities associated with the n;;’s
The likelihood function is proportional to

k2
=111 H[z@wm} | e
j=1i=1

j=1 Li=j+1

We make the change of variables

-1
P2j Pij
0)j = pij +p2; and 92'=——-=<“‘+1) ) 2.2)
U= PP L i+ p2j
so that
pij = 61j(1 — 8,;) and py; = 0,0y, J=12,.. .k 23)

The constraint that P is a matrix of probabilities is equivalent to 0 < 6; < 1,
Z , 01; = 1. The hypotheses, #H, and #;, written in terms of the 6;’s, are

Ho: 0y =0p="-- =0y,
Hi 0y <Oy <o <0y (021 < B2).

The likelihood function, written in terms of the 6;’s, after some combining and
rearranging of factors, becomes

4
L(©) = H 05 (1 — 0,)™ - ]'[ oy (Z eu) . (2.4)
j=1

I=j+1

Because the constraints in #y and # only involve the 6, ;’s, the two factors in the
likelihood product can be maximized separately. The second factor in the likelihood

2.4),
HB"'”"“ (Z 911) ,

I=j+1

is similar to the expression for the likelihood on p. 873 of Dykstra, Kochar and Robertson
(1991). Following their approach, we find the m.l.e.’s of

(2.5)

as . .
-7y =——2,  j=12..k-1, (2.6)

where
k
mp="y (ny+ny+d)
I=j
is the number of items on test at the beginning of the jth time period.
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From this, we obtain the m.l.e.’s of the 8;;’s recursively by

a ny) +ny

6 = ————, 2.7
m
ny; +ny; )
b, = -2 2’(1— 91,), =23, k-1, 2.8)
mj r=1
k=1
Oe=1—> 0y,

Clearly, the maximum-likelihood estimates of the 0;;’s remain the same under both Hy
and H,.
The unrestricted maximum-likelihood estimator of 8,; is

a nzj

0, = . 2.9
2 nyj +ny; )
Using (2.3), (2.8) and (2.9), we obtain the unrestricted m.l.e.’s of pj; and p,; as
P = 0,;(1 — 8y, (2.10)
paj = 0,0, Q.11

Using (1.4) and the above estimates, we find that the unrestricted maximum-likelihood
estimates of the cause-specific hazard rates at time #; are

G)="2 =12 j=12...k 2.12)
. mj
This is the Kaplan-Meier estimator of the cause-specific hazard rate and agrees with that
obtained by Davis and Lawrence (1989).

The maximum-likelihood estimate of the common value of 051,0,,,..., 0, under H,
is

where

Now we consider the problem of maximizing, under #, the first factor in the likelihood
(2.4). This is the bioassay problem as discussed in Robertson, Wright and Dykstra (1988)
(denoted by RWD in the sequel). The solution is the least-squares projection of the vector

(921, 622, .. 62k) with weights w; = njj+n,; onto the cone of nondecreasing vectors,
?( . We denote these ordered values by 6 = w(92 IK ), j = 1,2,...,k (see p. 99 of
RWD). The pool-adjacent violators algorithm (PAVA) (see p. 8 of RWD) provides an
easy method of obtaining the solution (63,,63,,...,65,).
The maximum-likelihood estimators of g»(#;) under #,; are given by

82(4) = 63,1 =)

_ sz(nlj +n2j)

, i=1,2,...,k
m; J !

with a similar expression for g (z).
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3. HYPOTHESIS TESTING

We now consider our testing problem. We propose the test that rejects H, in favour
of H, for large values of T = —2 In A, where A is the likelihood-ratio statistic. The
asymptotic distribution of T can be derived in a manner similar to the derivation in
Dykstra, Kochar and Robertson (1991). We give a brief sketch of the derivation here.
The é’fj’s and the é‘l’j’s cancel in the likelihood ratio, so that A depends only on the 6} ;'S
and the é‘z’j’s. Expand the logarithms in this expression about In ézj and In (1 — ()2,-)
respectively, using a second-degree Taylor’s expansion. The linear terms drop out because
of Theorem 1.3.3 in RWD.

Using the corollary on the middle of page 376 and the last part of Corollary C on
p- 379 of RWD, T can be rewritten (assuming H, is true) as

T = ‘; {{f(ez, = 90)}2( A %)

— {Pu(v/n(B2. — 80)|K ); — v/n(B2; — 90)}2< o né’z) }

where 0 is the common value of the 0,;’s under Hy, the o’s, B’s, ¥’s, &’s come from
Taylor’s expansion, and the rest of the notation is the same as in Section 2.

Let P be the 2 x k matrix of relative frequencies (p; = n;; /n). Using the multivariate
central limit theorem for 1/n( P— —P) and then the 8-method, the random vector /n (62 —0B9)
converges in distribution to the random vector U = (U}, U,,.. L U)T, where U; are
independent, mean zero, normal random variables and

T (py+p2))?

Using the strong law of large numbers and standard facts concerning the isotonic
regression operators, it follows that

k ko, 2
T L. Z ( P.(Y|K ) — L_Li) wj,
Jj=1 Z] 1 Wi

where
_ U

— VB,(T—0y))
By applying the Corollary on p. 70 of RWD, the asymptotic distribution of 7 must be
that of a chi-bar-square distribution. Specifically, for any ¢

~ N(O, Wj_l) and w; = pij +p2j.

k
lim pr(T > 1= P(kw)prlx}, > 1, (3.1)

n—o0
=1

where 7, is a chi-square variable with / — 1 degrees of freedom (3 = 0) and
P(l,k;w) is the probability that the isotonic regression with weights w of k independent
N(, 1 /w,~) random variables takes on [/ distinct values. This asymptotic distribution
depends upon the unknown matrix P through the level probabilities P(/,k;w). A least-
favourable distribution can be found using Theorem 3.6.1 and the remark proceding it
in RWD. We summarize our findings in the following theorem.
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TueoReM 3.1. If T = —2 In A, where A is the likelihood-ratio statistic for testing H,
vs. Hy — Hy, then assuming that H is true, the asymptotic distribution of T is given by
(3.1). The least favourable asymptotic distribution is given by

k=1 (1!
sup lim pr(T>1]= " ( 1_1) (§> prixi_, >1l. 3.2)

PeH, n—o0 1=1

Although critical values for a test based upon this least favourable distribution can be
found in Table 5.3.1 of RWD for k = 2,...,15, we do not recommend its use, since
these tests are quite conservative.

A much better approach is to use critical values associated with the distribution on the
right side of (3.1) with the P(l, k;w) replaced by the equal-weights level probabilities.
Critical values for this test are given in Table A.4 of RWD. Unless the true values of
wi, ..., w; have extreme variability (say the ratio of the largest to the smallest exceeds
4), this should give a very good approximation (see Chapter 3 of RWD).

Another possibility when & is small (k < 5) is to use critical values obtained from the
right-side distribution of (3.1) where the w; are replaced by the estimates Ww; = py; + ps;.
This procedure gives approximate asymptotic values and works extremely well (see the
example in Section 4). Expressions for P(/, k;w) can be calculated from formulae given
in Section 2.4 of RWD. It is interesting that this is exactly the asymptotic distribution
associated with the conditional test scenario discussed early in Section 2, which occurs
when one approximates the binomial distributions by normals. This strongly supports the
conclusion that the unconditional and conditional tests are very similar and nearly always
lead to the same conclusion (at least when the amount of data is of reasonable size).

When k exceeds 5, we recommend using the pattern approximation discussed in
Section 3.4 of RWD. This works very well (see the example in Section 4) in nearly all
situations. Pillers, Robertson and Wright (1984) provide computer code for implementing
this approximation.

The results in this paper extend directly to problems involving more than two causes
of failure. (A disadvantage of the conditional approach is that it is not at all clear how
to extend it to more than two causes of failure.) Suppose we have ¢ causes of failure
(c = 2), so that our data consist of a ¢ x k table of frequencies, n;, representing the
number of items that failed from cause i in time period j together with a k-dimensional
vector d containing the numbers of items censored during the k time periods. If we make
the change of parameters

c
61j=2p1j, j"—‘l,2,...,k,
=1

.
0; = ——-——z}’ﬂ"’” . =123
2 lmi1 Py

and consider testing Hy vs. H, where

oG j=1,2,000 0k,

}[019@:9,',]41, i"-—-‘2,3,...,C,j= 1,2,...,k-—- 1,
.’I{A:G,j 59;,,-“, i=2,3,...,C,j= 1,2,...,k— l,

then the arguments in this paper carry through to this more general problem and the
likelihood ratio statistic 7 = —2 In A again has an asymptotic chi-bar-square distribution.
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The least-favourable distribution is the same as the distribution of the sum of ¢ — 1
independent random variables each having the distribution given in (3.2). Since the chi-
bar-square distribution is approximately normal for large k and the central limit theorem
applies for large values of ¢, a normal approximation should serve well for many values
of ¢ and k encountered in practice. See Dykstra, Kochar and Robertson (1991) for more
details.

The null hypothesis # is equivalent to independence of the time to failure and the
cause of failure. However, for values of ¢ larger than 2 the alternative hypothesis is
not equivalent to likelihood-ratio dependence between these two variables. Under this
alternative hypothesis the ratio P[C > i+ 1, T = ] J/PIC >i, T = t;] is nondecreasing
inj fori = 1,2,...,c — 1. Shaked (1977) calls such a relationship “dependence by
total positivity of order (1,0)” and says that the pair (C,T) is DPT(1,0). This type
of dependence is implied by likelihood-ratio dependence but is stronger than positive
regression dependence of C on T (see Shaked 1977). Grove (1980) proposed tests
for testing independence of T and C against positive regression dependence. However,
positive regression dependence is also implied by likelihood-ratio dependence.

In terms of the cause-specific hazard rates, the alternative hypothesis is equivalent to
the assumption that the ratio ) ;_,,, 8i(#;)/g:(#;) is nondecreasing inj for / = 1,2,...,c—1
[>"¢_s41 &i(2) is the cause-specific hazard rate of the combined risks [ +1,/+2,...,c].

4. AN EXAMPLE

Cox (1959) considers a data set originally analyzed by Medenhall and Hader (1958)
involving failure times of radio receivers. These data are reproduced in Table 1. They
are the failure times for 369 radio transmission receivers. These failures are classified
as confirmed on arrival at the maintenance center (type I) or unconfirmed (type II). One
of the problems posed by Cox (1959) is to test the null hypothesis that the hazard rates
are proportional (that is, type of failure and time to failure are independent) against
alternatives of type #. Cox (1959) assumes that the two risks are independent, but in
our analysis we do not make any such assumption.

Forty-four of the 369 receivers did not fail during the test period (630 hours), and
these were the only censored items. The information contained in these 44 items gives
no additional insight into the relationship between the cause-specific hazard rates for the
two types of failure, so that we have chosen to ignore them [as was done by Cox (1959)].

As before, p; denotes the probability that we have a type-i malfunction during time
period j, j = 1,2,...,13. We consider the problem of testing Hy against the restricted
alternative #,’ : g,(t)/{g1(t)+ g>(t)} is nonincreasing in ¢ [or equivalently, g;(t)/{g:(t)+
&2(1)} is nondecreasing in ¢]. This alternative is reasonable, since it seems quite plausible
that unconfirmed failures would become less prevalent over time. Since the theory
developed above is designed for testing ) against the alternative #, : g2()/{g1(t)+g2(t)}
is nondecreasing in z, we switch the roles of type I and type II failures, without any loss
of generality. The unrestricted maximum-likelihood estimates of the 6,;’s are given in
column 2 of Table 2, and the estimates under #; are given in Column 3 of that table.
The value of the likelihood-ratio statistic, —2 In A, for testing #; against all alternatives
(unrestricted) is 9.92, with a corresponding p-value prlx3, > 9.92] = 0.62 based on 12
d.f. We mention that the p-value reported by Cox (1959) using a different chi-square test
was 0.67.

For the restricted test, the value of the likelihood-ratio test statistic is 6.11. The p-value
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TABLE 1: Frequency Distributions of Times of Failure of Radio
Transmitters (Medenhall and Hader).

Observed frequency

Time Type 1 Type 11

(h) (confirmed) (unconfirmed) Total

0- 26 15 41
50— 29 15 44
100- 28 22 50
150- 35 13 48
200~ 17 11 28
250- 21 8 29
300- 11 7 18
350- 11 5 16
400~ 12 3 15
450- 7 4 11
500- 6 1 7
550- 9 2 11
600-629 6 1 7
Not failed at 630 h — — 44
Total 218 107 369

TaBLE 2: Computation of restricted m.Le.’s

Jj 02 93 j
1 26/41 = 0.634 0.615
2 29/44 = 0.659 0.615
3 28/50 = 0.560 0.615
4 35/48 = 0.729 0.634
5 17/28 = 0.607 0.634
6 21 /29 =0.724 0.634
7 11/18 = 0.611 0.634
8 11/16 = 0.6875 0.6875
9 12/15 = 0.800 0.731

10 27/11 = 0.636 0.731

11 6/ 7=0.857 0.833

12 9/11 = 0.818 0.833

13 6/ 7=0.857 0.857

computed under the least-favourable distribution given in Theorem 3.1 is

13 12 N
2 (1- 1) (5) pr¢_; > 6.11) = 0.4139.

=1

Although neither test would lead to a rejection of Hj, the p-value for the restricted test
is substantially less than that of the unrestricted one.

Although standard procedure, tests based upon such least-favourable distributions are
generally quite conservative and can be very misleading. The true asymptotic distribution
depends upon the unknown parameters 8;; = py; + p2; = wj. A p-value computed from
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this distribution would be given by

13

> P@,13; W) prxi-, > 6.11),
I1=1

where P(l,k;w) are the simple order level probabilities discussed in Chapters 2 and 3
of RWD. One could estimate this p-value by replacing w with its estimate W where
Wj = (nyj +nyj) /325. No closed-form expressions exist for P(/,k; w) for k larger than 5,
but several studies have confirmed that the pattern approximation discussed in Section
3.4 of RWD produces quite satisfactory approximations except in very unusual cases.
Computer code for implementing this approximation is given in Pillers, Robertson and
Wright (1984). The thirteen approximate level probabilities given by this approximation
are 0.063, 0.209, 0.298, 0.242, 0.129, 0.047, 0.012, 0.002 for the first eight values and
0.000 for the last five values.
The p-value for this approximation is given by

13
z P(l, 13; pattern weights) pr(xf_l >6.11) = 0.087.
I=1

Although this would not lead to rejection at the 5% level, it indicates much stronger
evidence in the data against independence of type of failure and time to failure when the
alternative is restricted than when testing against an omnibus alternative.

Another commonly used approximation is the equal-weights approximation discussed
in Section 3.1 of RWD. This yields a similar p-value of 0.076.

As a check on the pattern approximation, we estimated the P(l, k; W) by conducting a
Monte Carlo simulation with 20,000 repetitions. That is, 20,000 weighted least-squares
projections from normal vectors of length 13 with respective variances 1/W; onto the
cone of nondecreasing vectors were computed, and the total number of level sets tallied.
The empirical values for the P(l,k; W) were 0.062, 0.210, 0.303, 0.241, 0.130, 0.043,
0.010 and 0.002 for the first eight values and 0.000 for the last five. Note that these
values are extraordinarily close to the values given by the pattern approximation.

The p-value associated with the simulated P(l, k, W) is given as

13
> P(1,13;W) pr(x}_, > 6.11) = 0.085,
=1

very nearly the same as that given by the pattern approximation (0.087) and close
to the equal-weights approximation (0.076), even though the estimated weights vary
considerably.

This example would seem to support the robustness of the P(l,k)’s, and also indi-
cates the inherent difficulties of constructing critical points based on least-favourable
distributions.
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