SOME RECENT RESULTS ON THE LINEAR COMPLEMENTARITY PROBLEM*

G. S. R. MURTHY ${ }^{\dagger}$, T. PARTHASARATHY ${ }^{\ddagger}$, AND B. SRIPARNA ${ }^{\ddagger}$

Abstract

In this article we present some recent results on the linear complementarity problem. It is shown that (i) within the class of column adequate matrices, a matrix is in Q_{0} if and only if it is completely $Q_{\mathbf{0}}$ (ii) for the class of $\boldsymbol{C}_{\mathbf{0}}^{\boldsymbol{f}}$-matrices introduced by Murthy and Parthasarathy [SIAM J. Matrix Anal. Appl., 16 (1995), pp. 1268-1286], we provide a sufficient condition under which a matrix is in $\boldsymbol{P}_{\mathbf{0}}$ and as a corollary of this result, we give an alternative proof of the result that $C_{\mathbf{0}}^{\boldsymbol{f}} \cap \boldsymbol{Q}_{\mathbf{0}} \subseteq \boldsymbol{P}_{\mathbf{0}}$ (iii) within the class of $I N S$-matrices introduced by Stone [Department of Operations Research, Stanford University, Stanford, CA, 1981], a nondegenerate matrix must necessarily have the block property introduced by Murthy, Parthasarathy, and Sriparna [G. S. R. Murthy, T. Parthasarathy, and B. Sriparna, Linear Algebra Appl., 252 (1997), pp. 323-337]. Furthermore, we conjecture that if a matrix has block property, then it must be Lipschitzian. This problem is an important one from two angles: if the conjecture is true, it provides a finite test to check whether a given matrix is Lipschitzian or nondegenerate $I N S$; and it settles an open problem posed by Stone. It is shown that the conjecture is true in the cases of 2×2-matrices, nonnegative and nonpositive matrices of general order.

Key words. linear complementarity problem, adequacy, matrix classes, principal pivoting

AMS subject classification. 90C33

PII. S0895479896313814

1. Introduction. Given a matrix $A \in \boldsymbol{R}^{n \times n}$ and $q \in \boldsymbol{R}^{n}$ the linear complementarity problem (LCP) is to find a vector $z \in \boldsymbol{R}^{n}$ such that

$$
\begin{equation*}
A z+q \geq 0, \quad z \geq 0, \text { and } z^{t}(A z+q)=0 \tag{1.1}
\end{equation*}
$$

LCP has numerous applications, both in theory and in practice, and is treated by a vast literature (see $[2,10]$). Let $F(q, A)=\left\{z \in \boldsymbol{R}_{+}^{n}: A z+q \geq 0\right\}$ and $S(q, A)=\left\{z \in F(q, A):(A z+q)^{t} z=0\right\}$. A number of matrix classes have been defined in connection with LCP, the fundamental ones being \boldsymbol{Q} and $\boldsymbol{Q}_{\mathbf{0}}$. The class \boldsymbol{Q} consists of all real square matrices A such that $S(q, A) \neq \phi$ for every $q \in \boldsymbol{R}^{n}$ [11], and $\boldsymbol{Q}_{\mathbf{0}}$ consists of all real square matrices A such that $S(q, A) \neq \phi$ whenever $F(q, A) \neq \phi[9]$.

For any positive integer n, write $\bar{n}=\{1,2, \ldots, n\}$, and for any subset α of \bar{n}, write $\bar{\alpha}=\bar{n} \backslash \alpha$. For any $A \in \boldsymbol{R}^{n \times n}$, $A_{\alpha \alpha}$ is obtained by dropping rows and columns corresponding to $\bar{\alpha}$ from A. For any $x \in \boldsymbol{R}^{n}, x_{\alpha}$ is obtained from x by dropping coordinates corresponding to $\bar{\alpha}$, and x_{i} denotes the i th coordinate of x. Consider $A \in \boldsymbol{R}^{n \times n}$. If $\alpha \subseteq \bar{n}$ is such that $\operatorname{det} A_{\alpha \alpha} \neq 0$, then the matrix M defined by

$$
M_{\alpha \alpha}=\left(A_{\alpha \alpha}\right)^{-1}, M_{\alpha \bar{\alpha}}=-M_{\alpha \alpha} A_{\alpha \bar{\alpha}}, M_{\bar{\alpha} \alpha}=A_{\bar{\alpha} \alpha} M_{\alpha \alpha}, M_{\bar{\alpha} \bar{\alpha}}=A_{\bar{\alpha} \bar{\alpha}}-M_{\bar{\alpha} \alpha} A_{\alpha \bar{\alpha}}
$$

is known as the principal pivotal transform (PPT) of A with respect to α and will be denoted by $\wp_{\alpha}(A)$. Note that a PPT is defined only with respect to those α for

[^0]which $\operatorname{det} A_{\alpha \alpha} \neq 0$. By convention, when $\alpha=\emptyset$, $\operatorname{det} A_{\alpha \alpha}=1$ and $M=A$ (see [2]). Whenever we refer to PPTs, we mean the ones which are well defined.

We shall recall the definitions of some matrix classes that are relevant to this paper. Let $A \in \boldsymbol{R}^{n \times n}$. Then A is said to be a \boldsymbol{P}-matrix ($\boldsymbol{P}_{\mathbf{0}}$-matrix) if all its principal minors are positive (nonnegative); if all principal minors of A are nonzero, then A is called a nondegenerate matrix; A is semimonotone $\left(\boldsymbol{E}_{\mathbf{0}}\right)$ if (q, A) has a unique solution for every $q>0 ; A$ is fully semimonotone $\left(\boldsymbol{E}_{\mathbf{0}}^{\boldsymbol{f}}\right)$ if every PPT of A is in $\boldsymbol{E}_{\mathbf{0}}$; A is copositive $\left(\boldsymbol{C}_{\mathbf{0}}\right)$ if $x^{t} A x \geq 0$ for every $x \geq 0 ; A$ is fully copositive $\left(\boldsymbol{C}_{\mathbf{0}}^{\boldsymbol{f}}\right)$ if every PPT of A is in $\boldsymbol{C}_{\mathbf{0}}$. For the definition of $I N S$ and Lipschitzian matrices see section 3.

In this article, we present some new results pertaining to three matrix classes, namely, (i) the class of adequate matrices introduced by Ingleton [4], (ii) the class of fully copositive matrices introduced by Murthy and Parthasarathy [7], and (iii) the class of $I N S$-matrices introduced by Stone [13].

In the case of adequate matrices (see section 2), our main result is that a column adequate matrix is in \boldsymbol{Q} (in $\boldsymbol{Q}_{\mathbf{0}}$) if and only if it is completely- \boldsymbol{Q} (completely$\boldsymbol{Q}_{\mathbf{0}}$). Characterization of completely- $\boldsymbol{Q}_{\mathbf{0}}$ matrices in general is a complex problem [1]. Murthy and Parthasarathy $[6,7,8]$ have shown that nonnegative matrices, symmetric copositive matrices, $\boldsymbol{C}_{\mathbf{0}}^{\boldsymbol{f}}$-matrices and Lipschitzian matrices are in $\boldsymbol{Q}_{\mathbf{0}}$ if and only if they are completely- $\boldsymbol{Q}_{\mathbf{0}}$.

Within the class of $\boldsymbol{C}_{\mathbf{0}}^{\boldsymbol{f}}$-matrices, we provide a sufficient condition under which a matrix will be in $\boldsymbol{P}_{\mathbf{0}}$. As a corollary to this result, we provide an alternative proof of a result due to Murthy and Parthasarathy which states that $\boldsymbol{C}_{\mathbf{0}}^{\boldsymbol{f}} \cap \boldsymbol{Q}_{\mathbf{0}}$-matrices are in $\boldsymbol{P}_{\mathbf{0}}$. As another consequence of this result, we deduce that a bisymmetric $\boldsymbol{E}_{\mathbf{0}}^{\boldsymbol{f}}$-matrix A is positive semidefinite if, and only if, the rows and columns of $A+A^{t}$ corresponding to the zero diagonal entries are zero.

Last, we consider the class of $I N S$-matrices and show that a nondegenerate $I N S$ matrix must necessarily satisfy the block property. There are no constructive characterizations of Lipschitzian or $I N S$-matrices. In [8], the authors showed that Lipschitzian matrices must necessarily satisfy the block property, and Stone [14] showed that Lipschitzian matrices are nondegenerate $I N S$-matrices. We conjecture that block property is a characterization of Lipschitzian matrices. It is proven that the conjecture is true in the cases of nonnegative or nonpositive matrices and 2×2 matrices.

The results on adequate and $\boldsymbol{C}_{\mathbf{0}}^{\boldsymbol{f}}$-matrices are presented in section 2 , and the results on $I N S$ - and Lipschitzian matrices are presented in section 3.
2. Results on adequate and $\boldsymbol{C}_{0}^{\boldsymbol{f}}$-matrices. A number of matrix classes are invariant under principal pivoting; i.e., if a matrix is in class \mathcal{C}, then all its PPTs are also in \mathcal{C}. The matrix classes $\boldsymbol{Q}, \boldsymbol{Q}_{\mathbf{0}}, \boldsymbol{P}, \boldsymbol{P}_{\mathbf{0}}, \boldsymbol{E}_{\mathbf{0}}^{\boldsymbol{f}}, \boldsymbol{C}_{\mathbf{0}}^{\boldsymbol{f}}, I N S$ - and Lipschitzian matrices all fall in this category. In the definition below we consider another class of matrices which is also invariant under PPTs.

Definition 2.1. Say that a real square matrix $A \in \Lambda$ if for every PPT M of A the diagonal entries are nonnegative.

Remark 2.2. Note that $\boldsymbol{E}_{\mathbf{0}}^{\boldsymbol{f}}$, which contains the classes $\boldsymbol{P}_{\mathbf{0}}$ and $\boldsymbol{C}_{\mathbf{0}}^{\boldsymbol{f}}$ (see $[2,6,7]$), is a subclass of Λ. However, $\Lambda \backslash \boldsymbol{E}_{\mathbf{0}}^{\boldsymbol{f}}$ is nonempty as $\left[\begin{array}{rr}0 & -1 \\ -1 & 0\end{array}\right]$ is an example of this kind. Furthermore, it is easy to check that if $A \in \Lambda$, then $A^{t} \in \Lambda$.

Another class of matrices that is required for our results is the following.

Definition 2.3. Say that a real square matrix A has property (D) if for every index set α the following holds:

$$
\operatorname{det} A_{\alpha \alpha}=0 \Rightarrow \text { columns of } A_{\cdot \alpha} \text { are linearly dependent. }
$$

Let \mathcal{D} denote the class of matrices satisfying property (D). Note that if $A \in$ $\Lambda(A \in \mathcal{D})$, then $A_{\alpha \alpha} \in \Lambda\left(A_{\alpha \alpha} \in \mathcal{D}\right)$ for every α. An interesting property of \mathcal{D} is that if $A \in \mathcal{D}$, then (q, A) has a solution with a complementary basis for any q with $S(q, A) \neq \phi($ see [7]). Another interesting property of \mathcal{D}, which is a direct consequence of the definition, is the following.

Proposition 2.4. If $A \in \mathcal{D}$ is nonsingular, then A is nondegenerate.
A matrix A is said to be a column (row) adequate matrix if $A\left(A^{t}\right)$ is in $\mathcal{D} \cap$ $\boldsymbol{P}_{\mathbf{0}}$. Ingleton [4] introduced the class of adequate matrices (i.e., both row and column adequate) and showed that if A is adequate, then, for every q with $S(q, A) \neq \phi$, $A z+q$ is unique over $S(q, A)$. We now present our main results on column adequate matrices.

Theorem 2.5. If $A \in \Lambda \cap \mathcal{D}$, then $A \in \boldsymbol{P}_{\mathbf{0}}$.
Proof. We prove this by induction on n. Obviously the theorem is true if $n=1$. Assume that the theorem is true for all $(n-1) \times(n-1)$ matrices. Let $A \in \boldsymbol{R}^{n \times n} \cap$ $\Lambda \cap \mathcal{D}$. By above observations, $A_{\alpha \alpha} \in \boldsymbol{P}_{\mathbf{0}}$ for all α such that $|\alpha|=n-1$. Suppose $A \notin \boldsymbol{P}_{\mathbf{0}}$. Then $\operatorname{det} A<0$. Note that A is almost $\boldsymbol{P}_{\mathbf{0}}$. Since $A \in \Lambda$, diagonal entries of A^{-1} are equal to zero. This means that $\operatorname{det} A_{\alpha \alpha}=0$ for all α with $|\alpha|=n-1$. Since $A \in \mathcal{D}$, this implies that columns of A are linearly dependent which contradicts that A is nonsingular. It follows that $A \in \boldsymbol{P}_{\mathbf{0}}$.

Corollary 2.6. Suppose $A \in \boldsymbol{R}^{n \times n}$. The following conditions are equivalent:
(a) $A \in \boldsymbol{P}_{\mathbf{0}} \cap \mathcal{D}$;
(b) $A \in \Lambda \cap \mathcal{D}$.

It is known that nondegenerate $\boldsymbol{E}_{0}^{\boldsymbol{f}}$-matrices are \boldsymbol{P}-matrices.
Corollary 2.7. If $\boldsymbol{E}_{\mathbf{0}}^{\boldsymbol{f}} \cap \mathcal{D}$, then $A \in \boldsymbol{P}_{\mathbf{0}}$.
A matrix A is said to be completely- \boldsymbol{Q} (completely- $\boldsymbol{Q}_{\mathbf{0}}$) if all its principal submatrices including A are \boldsymbol{Q}-matrices $\left(\boldsymbol{Q}_{0}\right.$-matrices). Cottle introduced these classes in [1] and characterized completely- \boldsymbol{Q} matrices as the class of strictly semimonotone matrices (A is said to be strictly semimonotone if (q, A) has a unique solution for every nonnegative q). One of the problems posed by Cottle [1] is the characterization of completely- $\boldsymbol{Q}_{\mathbf{0}}$ matrices which is still an open problem. Murthy and Parthasarathy have characterized completely- $\boldsymbol{Q}_{\mathbf{0}}$ matrices in certain special cases (see $[6,7,8]$). The following result augments these special cases with column adequate matrices.

Theorem 2.8. Suppose $A \in \Lambda \cap \mathcal{D}$. Then
(a) $A \in \boldsymbol{Q}_{\mathbf{0}}$ if and only if A is completely- $\mathbf{Q}_{\mathbf{0}}$;
(b) $A \in \boldsymbol{Q}$ if and only if A is completely- \boldsymbol{Q}.

Proof. (a) It suffices to show the "only if" part. Suppose $A_{\alpha \alpha} \notin \boldsymbol{Q}_{\mathbf{0}}$, say, for $\alpha=\{1,2, \ldots, n-1\}$. By Theorem 2.19 of [7], there exists a β such that $n \in \beta$, $\operatorname{det} A_{\beta \beta} \neq 0$ and $M_{\cdot n} \leq 0$, where $M=\wp_{\beta}(A)$. Since $A \in \boldsymbol{P}_{\mathbf{0}}$ (Theorem 2.5 above), $M_{n n}=\frac{\operatorname{det} A_{\gamma \gamma}}{\operatorname{det} A_{\beta \beta}}=0$, where $\gamma=\beta \backslash\{n\}$. This implies $\operatorname{det} A_{\gamma \gamma}=0$, which in turn implies $\operatorname{det} A_{\beta \beta}=0$ as $A \in \mathcal{D}$. From this contradiction, it follows that $A_{\alpha \alpha} \in \boldsymbol{Q}_{\mathbf{0}}$. By induction it follows that A is completely- $\boldsymbol{Q}_{\mathbf{0}}$.
(b) Once again, we will show the "only if" part. Note that the conclusions of Theorem 2.19 of [7] remain valid even if we replace $\boldsymbol{Q}_{\mathbf{0}}$ by \boldsymbol{Q} in the statement of that theorem (almost the same proof can be repeated). Hence it follows (from the proof of part (a) here) that A is completely- Q.

Corollary 2.9. Every column adequate matrix is in \boldsymbol{Q} if and only if it is strictly semimonotone.

We now turn our attention to the results on $\boldsymbol{C}_{\mathbf{0}}^{\boldsymbol{f}}$-matrices. In [6], using the concept of incidence, it was shown that $\boldsymbol{C}_{\mathbf{0}}^{\boldsymbol{f}} \cap \boldsymbol{Q}_{\mathbf{0}} \subseteq \boldsymbol{P}_{\mathbf{0}}$. We recapture this result as a consequence of our results here.

Theorem 2.10. Suppose $A \in \boldsymbol{R}^{n \times n} \cap \boldsymbol{C}_{\mathbf{0}}^{\boldsymbol{f}}, n \geq 2$. If the rows and columns of $A+A^{t}$ corresponding to the zero diagonal entries of A are zero, then $A \in \boldsymbol{P}_{\mathbf{0}}$.

Proof. From the hypothesis and Theorem 3.17 of [7], it is clear that every 2×2 principal submatrix of A is in $\boldsymbol{P}_{\mathbf{0}}$. Assuming that every $(k-1) \times(k-1), k \geq 2$, principal submatrix of A is in $\boldsymbol{P}_{\mathbf{0}}$, we will show that every $k \times k$ principal submatrix of A is also in $\boldsymbol{P}_{\mathbf{0}}$. Let B be any $k \times k$ principal submatrix of A such that all its proper principal minors are nonnegative. Suppose $\operatorname{det} B<0$. Arguing as in Theorem 3.17 of [7], we can show that

$$
B^{-1}=\left[\begin{array}{rr}
0 & C \\
D & 0
\end{array}\right]
$$

where C and D are nonnegative square matrices of the same order. It follows that C and D are nonsingular and that $B=\left[\begin{array}{cc}0 & D^{-1} \\ C^{-1} & 0\end{array}\right]$. From the hypothesis, it follows that $C^{-1}+\left(D^{-1}\right)^{t}=0$ and hence $D^{-1}=-\left(C^{-1}\right)^{t}$. This in turn implies that $D=-C^{t}$. This contradicts that D is nonnegative. Hence $\operatorname{det} B \geq 0$. The theorem follows.

Corollary 2.11. Suppose $A \in \boldsymbol{R}^{n \times n} \cap \boldsymbol{C}_{\mathbf{0}}^{\boldsymbol{f}} \cap \boldsymbol{Q}_{\mathbf{0}}$. Then $A \in \boldsymbol{P}_{\mathbf{0}}$.
Proof. If $n=1$, there is nothing to prove. Assume $n \geq 2$. We will show that every 2×2 principal submatrix of A is in $\boldsymbol{P}_{\mathbf{0}}$. Suppose, to the contrary, assume that $A_{\alpha \alpha} \notin \boldsymbol{P}_{\mathbf{0}}$ for some α with $|\alpha|=2$. Without loss of generality, we may take $\alpha=\{1,2\}$. Then $A_{\alpha \alpha} \simeq\left[\begin{array}{cc}0 & + \\ + & 0\end{array}\right]$ (this notation means $a_{11}=a_{22}=0$ and a_{12}, a_{21} are positive). Since $A_{\alpha \alpha} \notin \boldsymbol{Q}_{\mathbf{0}}$, we must have $n>2$ and a $j \in \bar{\alpha}$ such that $a_{j 1}<0$ (follows from Theorem 2.9 of [7]). Note that if $a_{1 j} \leq 0$, then $A \notin \boldsymbol{C}_{\mathbf{0}}^{\boldsymbol{f}}$. But if $a_{1 j}>0$, then also $A \notin \boldsymbol{C}_{\mathbf{0}}^{\boldsymbol{f}}$ (follows from Theorem 4.1 of [8]). It follows that every 2×2 principal submatrix of A is in $\boldsymbol{P}_{\mathbf{0}}$ and hence $A \in \boldsymbol{P}_{\mathbf{0}}$. Arguing as in Lemma 3.2 of [6], we can show that for every i such that $a_{i i}=0$, we have $a_{i j}+a_{j i}=0$ for all j. Notice that in the proof of Lemma 3.2 of [6] we need only that every 2×2 principal submatrix of A is in $\boldsymbol{P}_{\mathbf{0}}$. Hence the rows and columns of $A+A^{t}$ corresponding to zero diagonal entries of A are zero. From Theorem 2.10, it follows that $A \in \boldsymbol{P}_{\mathbf{0}}$.

In [6], it was shown that a $\boldsymbol{C}_{\mathbf{0}}^{\boldsymbol{f}}$-matrix is in $\boldsymbol{Q}_{\mathbf{0}}$ if and only if it is completely- $\boldsymbol{Q}_{\mathbf{0}}$. The arguments used to prove this can be extended to obtain the following result.

THEOREM 2.12. Suppose $A \in \boldsymbol{R}^{n \times n} \cap \boldsymbol{C}_{\mathbf{0}}^{\boldsymbol{f}}$. If $A \in \boldsymbol{Q}_{\mathbf{0}}$, then A^{t} and all its PPTs are completely- $\mathbf{Q}_{\mathbf{0}}$.

Proof. It can be verified that if a matrix $B \in \Lambda$ satisfies the condition that for every PPT C of B satisfies

$$
c_{i i}=0 \Rightarrow c_{i j}+c_{j i}=0 \text { for all } i \text { and } j
$$

then B and all its PPTs are completely- $\boldsymbol{Q}_{\mathbf{0}}$ matrices. This is because, if B has this property, then Graves's algorithm processes (q, B) for any q and terminates either with a solution or with the conclusion that $F(q, B)=\emptyset$ (see Chapter 4 of [10] and Theorem 3.4 of [6]). Therefore, we will show that any PPT of A^{t} will satisfy the above condition. Let $D=\wp_{\alpha}\left(A^{t}\right)$ for some α. Observe that $\wp_{\alpha}(A)$ exists. Let $M=\wp_{\alpha}(A)$. It can be checked that, $M=S D^{t} S$, where $S=\left[\begin{array}{cc}I_{\alpha \alpha} & 0 \\ 0 & -I_{\bar{\alpha} \bar{\alpha}}\end{array}\right]$. Hence for each i, j, either $d_{i j}+d_{j i}=m_{i j}+m_{j i}$ or $d_{i j}+d_{j i}=-\left(m_{i j}+m_{j i}\right)$. If $d_{i i}=0$ for some i, then $m_{i i}=0$,
and by Theorem 3.4 of [6], $m_{i j}+m_{j i}=0$. From this it follows that if for some $i, d_{i i}=0$, then $d_{i j}+d_{j i}=0$.

One may ask whether the converse of the above theorem is true. That is, if $A \in \boldsymbol{C}_{\mathbf{0}}^{\boldsymbol{f}}$ and A^{t} and all its PPTs are completely- $\boldsymbol{Q}_{\mathbf{0}}$, then is it true that $A \in \boldsymbol{Q}_{\mathbf{0}}$? The answer to this question is "no." The problem arises from the fact that transpose of a $C_{0^{-}}^{\boldsymbol{f}}$ matrix need not be in $\boldsymbol{C}_{\mathbf{0}}^{\boldsymbol{f}}$. As a counter example, consider the $\boldsymbol{C}_{\mathbf{0}}^{\boldsymbol{f}}$-matrix $A=\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right]$. It can be checked, directly or using Theorem 2.5 of [7], that A^{t} and its PPT are completely- $\boldsymbol{Q}_{\mathbf{0}}$ but $A \notin \boldsymbol{Q}_{\mathbf{0}}$.

A matrix A is said to be bisymmetric if, for some index set $\alpha, A_{\alpha \alpha}$ and $A_{\bar{\alpha} \bar{\alpha}}$ are symmetric and $A_{\bar{\alpha} \alpha}=-A_{\alpha \bar{\alpha}}^{t}$. It is easy to check that PPTs of bisymmetric matrices are bisymmetric.

ThEOREM 2.13. Suppose $A \in \boldsymbol{R}^{n \times n}$ is a bisymmetric $\boldsymbol{E}_{\mathbf{0}}^{\boldsymbol{f}}$-matrix. Then the following are equivalent:
(a) $A \in \boldsymbol{Q}_{\mathbf{0}}$;
(b) A is positive semidefinite;
(c) for any $i, j, a_{i i}=0 \Rightarrow a_{i j}+a_{j i}=0$;
(d) every 2×2 principal submatrix of A is in $\boldsymbol{P}_{\mathbf{0}}$.

Proof. We first observe that every bisymmetric $\boldsymbol{E}_{\mathbf{0}}^{\boldsymbol{f}}$-matrix is in $\boldsymbol{C}_{\mathbf{0}}^{\boldsymbol{f}}$ (Theorem 4.7 of [6]). Implication $(\mathrm{a}) \Rightarrow(\mathrm{b})$ was already established in [6]. The implication (b) \Rightarrow (c) is a well-known fact about positive semidefinite matrices. The implication (c) \Rightarrow (d) is a direct consequence of Theorem 2.10. To complete the proof of the theorem, we will show that $(\mathrm{d}) \Rightarrow$ (a). Assume that A satisfies (d). Using the fact that every 2×2 principal submatrix of A is in $\boldsymbol{C}_{\mathbf{0}}^{\boldsymbol{f}} \cap \boldsymbol{P}_{\mathbf{0}}$, it is easy to show that A satisfies (c). Hence, by 2.10, $A \in \boldsymbol{P}_{\mathbf{0}}$. Let M be any PPT of A. Suppose $m_{i i}=0$ for some i. As A is bisymmetric, so is M. So for any j, either $m_{i j}=-m_{j i}$ or $m_{i j}=m_{j i}$. If $m_{i j}=-m_{j i}$, then $m_{i j}+m_{j i}=0$. If $m_{i j}=m_{j i}$, then, as $M \in \boldsymbol{P}_{\mathbf{0}}$ and $m_{i i}=0$, we must have $m_{i j}=m_{j i}=0$. Thus for any $j, m_{i j}+m_{j i}=0$. By Theorem 3.4 of [6], it follows that $A \in \boldsymbol{Q}_{\mathbf{0}}$.
3. Block property. Stone [13] introduced the class of $I N S$-matrices. A matrix A is said to be an $I N S_{k}$-matrix if $|S(q, A)|=k$ for all $q \in \operatorname{int} K(A)$, where $K(A)$ is the set of all p for which $S(p, A) \neq \emptyset$; and $I N S=\cup_{k=0}^{\infty} I N S_{k}$. Next we say that A is Lipschitzian matrix if there exists a positive number λ, called the Lipschitzian constant, such that for any $p, q \in K(A)$, the following holds: given any $x \in S(p, A)$, there exists a $z \in S(q, A)$ such that $\|x-z\| \leq \lambda\|p-q\|$. Stone [14] showed that Lipschitzian matrices are nondegenerate $I N S$-matrices and conjectured that the converse is also true. Furthermore, he showed that the conjecture is true with an additional assumption of Lipschitz path-connectedness (see [14] for details). To date, no constructive characterizations are known for $I N S$ and Lipschitzian matrix classes. Thus, there is no finite procedure to verify whether a given matrix is $I N S$ or Lipschitzian.

Definition 3.1. Say that A has property (B) if every PPT M of A has the following block structure (subject to a principal rearrangement):

$$
M=\left[\begin{array}{ccccc}
M_{11} & 0 & \ldots & 0 & M_{1 \overline{l+1}} \\
0 & M_{22} & \ldots & 0 & M_{2 \overline{l+1}} \\
\vdots & \vdots & & \vdots & \vdots \\
0 & 0 & \ldots & M_{l l} & M_{\overline{l+1}} \\
M_{\overline{l+1} 1} & M_{\overline{l+1} 2} & \ldots & M_{\overline{l+1} l} & M_{\overline{l+1} \overline{l+1}}
\end{array}\right]
$$

where $M_{11}, M_{22}, \ldots, M_{l l}$ are all negative \boldsymbol{N}-matrices (i.e., all entries and all principal minors are negative) and the diagonal entries of $M_{\overline{l+1}}^{\overline{l+1}}$ are positive.

In [8], the authors showed that every Lipschitzian matrix must have property (B). In this section, we will show that every nondegenerate $I N S$-matrix also must have property (B).

Note that if a matrix A has property (B), then it must be nondegenerate as every PPT of A has no zero diagonal entries (see Corollary 3.5, p. 204 of [10]). From the definition, property (B) is invariant under PPTs and is inherited by all the principal submatrices.

Theorem 3.2. Suppose $A \in \boldsymbol{R}^{n \times n}$ is a nondegenerate $I N S$-matrix. Then A has property (B).

Proof. Let $\alpha=\left\{i: a_{i i}<0\right\}$. By Theorem 5 of [12], $A_{\alpha \alpha}$ is a nondegenerate INSmatrix. Also, for $i, j \in \alpha, i \neq j, A_{\beta \beta} \in I N S$, where $\beta=\{i, j\}$. It is easy to check that if $A_{\beta \beta}$ has a positive entry, then $A_{\beta \beta} \notin I N S$. It follows that $A_{\alpha \alpha}$ is nonpositive and hence in $\boldsymbol{Q}_{\mathbf{0}}$. From Corollary 3.5 of [14], $A_{\alpha \alpha}$ is Lipschitzian. From Theorem 4.7 of [8],

$$
A_{\alpha \alpha}=\left[\begin{array}{cccc}
N^{1} & 0 & \ldots & 0 \\
0 & N^{2} & \ldots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \ldots & N^{l}
\end{array}\right] \text { for some } l \geq 1
$$

where each N^{i} is a negative N-matrix. Since every PPT of nondegenerate $I N S$-matrix is also nondegenerate $I N S$, we conclude that A has property (B).

Our conjecture is that property (B) is also sufficient condition for a matrix to be Lipschitzian. Below we verify this conjecture in certain special cases.

Theorem 3.3. Suppose $A \in \boldsymbol{R}^{n \times n}$. Assume that any one of the following conditions holds:
(i) $n=2$;
(ii) $A \leq 0$;
(iii) A is completely- \boldsymbol{Q};
(iv) $A \geq 0$.

Then the following statements are equivalent:
(a) A is nondegenerate $I N S$;
(b) A is Lipschitzian;
(c) A has property (B).

Proof. In view of Stone's result that $(\mathrm{b}) \Rightarrow(\mathrm{a})$ (Theorem 3.2 of [14]), it suffices to show that (c) implies (b). So assume that (c) holds.
(i). If the diagonal entries of A are negative, then property (B) implies that either A is a negative N-matrix or $A \simeq\left[\begin{array}{cc}- & 0 \\ 0 & -\end{array}\right]$. In either case, A is Lipschitzian (see [3]). If the diagonal entries of A are positive, then either A is a \boldsymbol{P}-matrix or A^{-1} is a negative \boldsymbol{N}-matrix. Once again A is Lipschitzian (see [5]). Consider the last case $a_{11}<0$ and $a_{22}>0$, without loss of generality. It is easy to check (graphically) that A is $I N S$ and that $K(A)$ is Lipschitz path-connected (see [14] for details and the example following Definition 3.3 in [14]). From Theorem 3.4 of [14], we conclude A is Lipschitzian.
(ii). By property (B), A can be decomposed into a block diagonal matrix where each submatrix on the diagonal is a negative \boldsymbol{N}-matrix. As negative \boldsymbol{N}-matrices are Lipschitzian, one can easily verify that A is also Lipschitzian.
(iii). In this case we actually show that A is a \boldsymbol{P}-matrix and this we do by induction on the order of the matrix. Obviously the result is true for $n=1$. Assume
the result for all matrices of order $n-1, n>1$. Suppose $A \in \boldsymbol{R}^{n \times n}$ satisfies the hypothesis. Then all the proper principal minors of A are positive. If $A \notin \boldsymbol{P}$, then $\operatorname{det} A<0$ and the diagonal entries of A^{-1} are negative. By property (B), A^{-1} must be nonpositive. But this contradicts that $A \in \boldsymbol{Q}$. Hence $A \in \boldsymbol{P}$.
(iv). From the hypothesis and (c), $a_{i i}>0$ for all i. Since $A \geq 0, A$ is completely- \boldsymbol{Q}. Therefore $A \in \boldsymbol{P}$.

Proposition 3.4. Suppose $A \in \boldsymbol{R}^{n \times n}$. Assume that for some index set α, $A_{\alpha \alpha}$ is Lipschitzian and $A_{\bar{\alpha} \bar{\alpha}} \in \boldsymbol{P}$. If $A_{\bar{\alpha} \alpha}=0$ or $A_{\alpha \bar{\alpha}}=0$, then A is Lipschitzian.

Proof. Assume $A_{\bar{\alpha} \alpha}=0$. Let $p, q \in K(A)$. Let λ_{1} and λ_{2} be the Lipschitzian constants corresponding to $A_{\alpha \alpha}$ and $A_{\bar{\alpha} \bar{\alpha}}$ respectively. Take any arbitrary $x \in S(p, A)$. We will exhibit a $z \in S(q, A)$ such that $\|z-x\| \leq \lambda\|p-q\|$, where λ, to be chosen later, depends only on λ_{1}, λ_{2}, and A. Since $S(q, A) \neq \phi$, choose any $\bar{z} \in S(q, A)$. Let $y=A x+p$ and $\bar{w}=A \bar{z}+q$. Note that $x_{\alpha} \in S\left(p_{\alpha}^{\prime}, A_{\alpha \alpha}\right)$ and $\bar{z}_{\alpha} \in S\left(q_{\alpha}^{\prime}, A_{\alpha \alpha}\right)$, where $p_{\alpha}^{\prime}=p_{\alpha}+A_{\alpha \bar{\alpha}} x_{\bar{\alpha}}$ and $q_{\alpha}^{\prime}=q_{\alpha}+A_{\alpha \bar{\alpha}} \bar{z}_{\bar{\alpha}}$. Since $A_{\alpha \alpha}$ is Lipschitzian, there exists a $z_{\alpha} \in S\left(q_{\alpha}^{\prime}, A_{\alpha \alpha}\right)$ such that

$$
\begin{aligned}
\left\|x_{\alpha}-z_{\alpha}\right\| & \leq \lambda_{1}\left\|p_{\alpha}^{\prime}-q_{\alpha}^{\prime}\right\| \\
& \leq \lambda_{1}\left\|p_{\alpha}-q_{\alpha}\right\|+\lambda_{1}\|B\|\left\|x_{\bar{\alpha}}-z_{\bar{\alpha}}\right\|
\end{aligned}
$$

Since $z_{\alpha} \in S\left(q_{\alpha}^{\prime}, A_{\alpha \alpha}\right), w_{\alpha}=A_{\alpha \alpha} z_{\alpha}+q_{\alpha}+A_{\alpha \bar{\alpha}} \bar{z}_{\bar{\alpha}}$ and $w_{\alpha}^{t} z_{\alpha}=0$. This implies $z=\left(z_{\alpha}^{t}, \bar{z}_{\bar{\alpha}}^{t}\right)^{t} \in S(q, A)$. As $A_{\bar{\alpha} \bar{\alpha}} \in \boldsymbol{P}, x_{\bar{\alpha}}$ and $z_{\bar{\alpha}}$ are the unique solutions of ($p_{\bar{\alpha}}, A_{\bar{\alpha} \bar{\alpha}}$) and $\left(q_{\bar{\alpha}}, A_{\bar{\alpha} \bar{\alpha}}\right)$. Therefore, $\left\|x_{\bar{\alpha}}-z_{\bar{\alpha}}\right\| \leq \lambda_{2}\left\|p_{\bar{\alpha}}-q_{\bar{\alpha}}\right\|$. Combining this with the above inequality, we get

$$
\begin{aligned}
\|x-z\| & \leq\left\|x_{\alpha}-z_{\alpha}\right\| \\
& \leq \lambda_{1}\left\|p_{\alpha}-q_{\alpha}\right\|+\left(\lambda_{1} \lambda_{2}\|B\|+\lambda_{2}\right)\left\|p_{\bar{\alpha}}-q_{\bar{\alpha}}\right\| \\
& \leq \lambda_{1}\|p-q\|+\left(\lambda_{1} \lambda_{2}\|B\|+\lambda_{2}\right)\|p-q\| \\
& \leq \lambda\|p-q\|, \text { where } \lambda=\lambda_{1}+\lambda_{2}+\lambda_{1} \lambda_{2}\|B\|
\end{aligned}
$$

It follows that A is Lipschitzian, and the case $A_{\alpha \bar{\alpha}}=0$ can be tackled in a similar fashion.

Proposition 3.4 is not valid if we simply assume that $A_{\alpha \alpha}$ and $A_{\bar{\alpha} \bar{\alpha}}$ are Lipschitzian. As a counter example, consider $A=\left[\begin{array}{rr}-1 & 1 \\ 0 & -1\end{array}\right]$. It is clear that $A \notin I N S$, and hence A is not Lipschitzian.

The following is an example of a matrix with property (B).
Example 3.5.

$$
A=\left[\begin{array}{rrr}
-1 & -2 & -2 \\
-2 & -1 & 1 \\
1 & 0 & 1
\end{array}\right]
$$

It is not known whether A is Lipschitzian or not.
Acknowledgments. The authors wish to thank Dr. G. Ravindran and Mr. Amit K. Biswas for some useful discussions.

REFERENCES

[1] R. W. Cottle, A note on completely \mathcal{Q}-matrices, Math. Programming, 9 (1980), pp. 347-351.
[2] R. W. Cottle, J. S. Pang, and R. E. Stone, The Linear Complementarity Problem, Academic Press, New York, 1992.
[3] M. S. Gowda, On the continuity of solution map in linear complementarity problems, SIAM J. Optim., 2 (1992), pp. 619-634.
[4] A. W. Ingleton, A problem in linear inequalities, Proc. London Math. Soc., 16 (1966), pp. 519-536.
[5] O. L. Mangasarian and T. H. Shiau, Lipschitz continuity of solutions of linear inequalities, programs and complementarity problems, SIAM J. Control Optim., 25 (1987), pp. 583-595.
[6] G. S. R. Murthy and T. Parthasarathy, Fully copositive matrices, Math. Programming, to appear.
[7] G. S. R. Murthy and T. Parthasarathy, Some properties of fully semimonotone $\mathbf{Q o}^{-}$ matrices, SIAM J. Matrix Anal. Appl., 16 (1995), pp. 1268-1286.
[8] G. S. R. Murthy, T. Parthasarathy, and B. Sriparna, Constructive characterization of Lipschitzian Q_{0}-matrices, Linear Algebra Appl., 252 (1997), pp. 323-337.
[9] K. G. Murty, On the number of solutions to the complementarity problem and spanning properties of complementary cones, Linear Algebra Appl., 5 (1972), pp. 65-108.
[10] K. G. Murty, Linear Complementarity, Linear and Nonlinear Programming, Heldermann Verlag, Berlin, Germany, 1988.
[11] T. D. Parsons, Applications of principal pivoting, in Proceedings of the Princeton Symposium on Mathematical Programming, (H. W. Kuhn, ed., Princeton University Press, Princeton, NJ), 1970, pp. 561-581.
[12] T. Parthasarathy, R. Sridhar, and B. Sriparna, On Lipschitzian $\boldsymbol{Q}_{\mathbf{0}}$ and INS-matrices, Linear Algebra Appl., 263 (1997), pp. 193-199.
[13] R. E. Stone, Geometric aspects of linear complementarity problem, Ph.D. thesis, Department of Operations Research, Stanford University, Stanford, CA, 1981.
[14] R. E. Stone, Lipschitzian matrices are nondegenerate INS-matrices, in Complementarity and Variational Problems: State of the Art, M.C. Ferris and J.S. Pang, eds., SIAM, Philadelphia, 1997, pp. 440-451.

[^0]: *Received by the editors December 12, 1996; accepted for publication (in revised form) by R. Cottle September 11, 1997; published electronically June 9, 1998.
 http://www.siam.org/journals/simax/19-4/31381.html
 ${ }^{\dagger}$ Indian Statistical Institute, 110, Nelson Manickam Road, Aminjikarai, Madras 600 029, India (gsrm@isimad.ernet.in).
 ${ }^{\ddagger}$ Indian Statistical Institute, 7, SJS Sansanwal Marg, New Delhi 110 016, India (tps@isid.ernet.in).

