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Abstract. In this article we present some recent results on the linear complementarity problem.
It is shown that (i) within the class of column adequate matrices, a matrix is in Q0 if and only if it is

completely Q0 (ii) for the class of C
f
0 -matrices introduced by Murthy and Parthasarathy [SIAM J.

Matrix Anal. Appl., 16 (1995), pp. 1268–1286], we provide a sufficient condition under which a matrix

is in P0 and as a corollary of this result, we give an alternative proof of the result that C
f
0 ∩Q0 ⊆ P0

(iii) within the class of INS-matrices introduced by Stone [Department of Operations Research,
Stanford University, Stanford, CA, 1981], a nondegenerate matrix must necessarily have the block
property introduced by Murthy, Parthasarathy, and Sriparna [G. S. R. Murthy, T. Parthasarathy,
and B. Sriparna, Linear Algebra Appl., 252 (1997), pp. 323–337]. Furthermore, we conjecture that if
a matrix has block property, then it must be Lipschitzian. This problem is an important one from
two angles: if the conjecture is true, it provides a finite test to check whether a given matrix is
Lipschitzian or nondegenerate INS; and it settles an open problem posed by Stone. It is shown that
the conjecture is true in the cases of 2× 2-matrices, nonnegative and nonpositive matrices of general
order.
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1. Introduction. Given a matrix A ∈ Rn×n and q ∈ Rn the linear complemen-
tarity problem (LCP) is to find a vector z ∈ Rn such that

Az + q ≥ 0, z ≥ 0, and zt(Az + q) = 0.(1.1)

LCP has numerous applications, both in theory and in practice, and is treated by
a vast literature (see [2, 10]). Let F (q,A) = { z ∈ Rn

+ : Az + q ≥ 0 } and
S(q,A) = { z ∈ F (q,A) : (Az + q )tz = 0 }. A number of matrix classes have
been defined in connection with LCP, the fundamental ones being Q and Q0. The
class Q consists of all real square matrices A such that S(q,A) 6= φ for every q ∈ Rn

[11], and Q0 consists of all real square matrices A such that S(q,A) 6= φ whenever
F (q,A) 6= φ [9].

For any positive integer n, write n̄ = {1, 2, . . . , n}, and for any subset α of n̄,
write ᾱ = n̄ \ α. For any A ∈ Rn×n, Aαα is obtained by dropping rows and columns
corresponding to ᾱ from A. For any x ∈ Rn, xα is obtained from x by dropping
coordinates corresponding to ᾱ, and xi denotes the ith coordinate of x. Consider
A ∈ Rn×n. If α ⊆ n̄ is such that det Aαα 6= 0, then the matrix M defined by

Mαα = (Aαα)−1, Mαᾱ = −MααAαᾱ, Mᾱα = AᾱαMαα, Mᾱᾱ = Aᾱᾱ −MᾱαAαᾱ

is known as the principal pivotal transform (PPT) of A with respect to α and will
be denoted by ℘α(A). Note that a PPT is defined only with respect to those α for
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which detAαα 6= 0. By convention, when α = ∅, detAαα = 1 and M = A (see [2]).
Whenever we refer to PPTs, we mean the ones which are well defined.

We shall recall the definitions of some matrix classes that are relevant to this
paper. Let A ∈ Rn×n. Then A is said to be a P -matrix (P0-matrix) if all its principal
minors are positive (nonnegative); if all principal minors of A are nonzero, then A
is called a nondegenerate matrix; A is semimonotone (E0) if (q,A) has a unique

solution for every q > 0; A is fully semimonotone (Ef
0 ) if every PPT of A is in E0;

A is copositive (C0) if xtAx ≥ 0 for every x ≥ 0; A is fully copositive (Cf
0 ) if every

PPT of A is in C0. For the definition of INS and Lipschitzian matrices see section 3.

In this article, we present some new results pertaining to three matrix classes,
namely, (i) the class of adequate matrices introduced by Ingleton [4], (ii) the class of
fully copositive matrices introduced by Murthy and Parthasarathy [7], and (iii) the
class of INS-matrices introduced by Stone [13].

In the case of adequate matrices (see section 2), our main result is that a col-
umn adequate matrix is in Q (in Q0) if and only if it is completely-Q (completely-
Q0). Characterization of completely-Q0 matrices in general is a complex problem [1].
Murthy and Parthasarathy [6, 7, 8] have shown that nonnegative matrices, symmetric

copositive matrices, Cf
0 -matrices and Lipschitzian matrices are in Q0 if and only if

they are completely-Q0.

Within the class of Cf
0 -matrices, we provide a sufficient condition under which a

matrix will be in P0. As a corollary to this result, we provide an alternative proof of
a result due to Murthy and Parthasarathy which states that Cf

0 ∩Q0-matrices are in

P0. As another consequence of this result, we deduce that a bisymmetric Ef
0 -matrix

A is positive semidefinite if, and only if, the rows and columns of A+At corresponding
to the zero diagonal entries are zero.

Last, we consider the class of INS-matrices and show that a nondegenerate INS-
matrix must necessarily satisfy the block property. There are no constructive charac-
terizations of Lipschitzian or INS-matrices. In [8], the authors showed that Lip-
schitzian matrices must necessarily satisfy the block property, and Stone [14] showed
that Lipschitzian matrices are nondegenerate INS-matrices. We conjecture that block
property is a characterization of Lipschitzian matrices. It is proven that the conjecture
is true in the cases of nonnegative or nonpositive matrices and 2× 2 matrices.

The results on adequate and Cf
0 -matrices are presented in section 2, and the

results on INS- and Lipschitzian matrices are presented in section 3.

2. Results on adequate and Cf
0 -matrices. A number of matrix classes are

invariant under principal pivoting; i.e., if a matrix is in class C, then all its PPTs
are also in C. The matrix classes Q, Q0, P , P0, E

f
0 , C

f
0 , INS- and Lipschitzian

matrices all fall in this category. In the definition below we consider another class of
matrices which is also invariant under PPTs.

Definition 2.1. Say that a real square matrix A ∈ Λ if for every PPT M of A
the diagonal entries are nonnegative.

Remark 2.2. Note that Ef
0 , which contains the classes P0 and Cf

0 (see [2, 6, 7]),

is a subclass of Λ. However, Λ\Ef
0 is nonempty as

[
0

−1
−1

0

]
is an example of this kind.

Furthermore, it is easy to check that if A ∈ Λ, then At ∈ Λ.

Another class of matrices that is required for our results is the following.
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Definition 2.3. Say that a real square matrix A has property (D) if for every
index set α the following holds:

detAαα = 0 ⇒ columns of A·α are linearly dependent.

Let D denote the class of matrices satisfying property (D). Note that if A ∈
Λ (A ∈ D), then Aαα ∈ Λ (Aαα ∈ D) for every α. An interesting property of D
is that if A ∈ D, then (q,A) has a solution with a complementary basis for any q
with S(q,A) 6= φ (see [7]). Another interesting property of D, which is a direct
consequence of the definition, is the following.

Proposition 2.4. If A ∈ D is nonsingular, then A is nondegenerate.
A matrix A is said to be a column (row) adequate matrix if A (At) is in D ∩

P0. Ingleton [4] introduced the class of adequate matrices (i.e., both row and column
adequate) and showed that if A is adequate, then, for every q with S(q,A) 6= φ,
Az + q is unique over S(q,A). We now present our main results on column adequate
matrices.

Theorem 2.5. If A ∈ Λ ∩D, then A ∈ P0.
Proof. We prove this by induction on n. Obviously the theorem is true if n = 1.

Assume that the theorem is true for all (n− 1)× (n− 1) matrices. Let A ∈ Rn×n ∩
Λ ∩ D. By above observations, Aαα ∈ P0 for all α such that |α| = n − 1. Suppose
A 6∈ P0. Then detA < 0. Note that A is almost P0. Since A ∈ Λ, diagonal entries of
A−1 are equal to zero. This means that detAαα = 0 for all α with |α| = n− 1. Since
A ∈ D, this implies that columns of A are linearly dependent which contradicts that
A is nonsingular. It follows that A ∈ P0.

Corollary 2.6. Suppose A ∈ Rn×n. The following conditions are equivalent:
(a) A ∈ P0 ∩D;
(b) A ∈ Λ ∩D.
It is known that nondegenerate Ef

0 -matrices are P -matrices.

Corollary 2.7. If Ef
0 ∩D, then A ∈ P0.

A matrix A is said to be completely-Q (completely-Q0) if all its principal sub-
matrices including A are Q-matrices (Q0-matrices). Cottle introduced these classes
in [1] and characterized completely-Q matrices as the class of strictly semimonotone
matrices (A is said to be strictly semimonotone if (q,A) has a unique solution for
every nonnegative q). One of the problems posed by Cottle [1] is the characterization
of completely-Q0 matrices which is still an open problem. Murthy and Parthasarathy
have characterized completely-Q0 matrices in certain special cases (see [6, 7, 8]). The
following result augments these special cases with column adequate matrices.

Theorem 2.8. Suppose A ∈ Λ ∩D. Then
(a) A ∈ Q0 if and only if A is completely-Q0;
(b) A ∈ Q if and only if A is completely-Q.
Proof. (a) It suffices to show the “only if” part. Suppose Aαα 6∈ Q0, say, for

α = {1, 2, . . . , n − 1}. By Theorem 2.19 of [7], there exists a β such that n ∈ β,
detAββ 6= 0 and M·n ≤ 0, where M = ℘β(A). Since A ∈ P0 (Theorem 2.5 above),

Mnn =
detAγγ
detAββ

= 0, where γ = β \ {n}. This implies detAγγ = 0, which in turn

implies detAββ = 0 as A ∈ D. From this contradiction, it follows that Aαα ∈ Q0. By
induction it follows that A is completely-Q0.

(b) Once again, we will show the “only if” part. Note that the conclusions of
Theorem 2.19 of [7] remain valid even if we replace Q0 by Q in the statement of that
theorem (almost the same proof can be repeated). Hence it follows (from the proof of
part (a) here) that A is completely-Q.
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Corollary 2.9. Every column adequate matrix is in Q if and only if it is strictly
semimonotone.

We now turn our attention to the results on Cf
0 -matrices. In [6], using the con-

cept of incidence, it was shown that Cf
0 ∩ Q0 ⊆ P0. We recapture this result as a

consequence of our results here.
Theorem 2.10. Suppose A ∈ Rn×n ∩ Cf

0 , n ≥ 2. If the rows and columns of
A+At corresponding to the zero diagonal entries of A are zero, then A ∈ P0.

Proof. From the hypothesis and Theorem 3.17 of [7], it is clear that every 2 × 2
principal submatrix of A is in P0. Assuming that every (k − 1) × (k − 1), k ≥ 2,
principal submatrix of A is in P0, we will show that every k × k principal submatrix
of A is also in P0. Let B be any k×k principal submatrix of A such that all its proper
principal minors are nonnegative. Suppose detB < 0. Arguing as in Theorem 3.17 of
[7], we can show that

B−1 =

[
0 C
D 0

]
,

where C and D are nonnegative square matrices of the same order. It follows that C
and D are nonsingular and that B =

[
0

C−1
D−1

0

]
. From the hypothesis, it follows that

C−1 + (D−1)t = 0 and hence D−1 = −(C−1)t. This in turn implies that D = −Ct.
This contradicts that D is nonnegative. Hence detB ≥ 0. The theorem follows.

Corollary 2.11. Suppose A ∈ Rn×n ∩Cf
0 ∩Q0. Then A ∈ P0.

Proof. If n = 1, there is nothing to prove. Assume n ≥ 2. We will show that
every 2× 2 principal submatrix of A is in P0. Suppose, to the contrary, assume that
Aαα 6∈ P0 for some α with |α| = 2. Without loss of generality, we may take α = {1, 2}.
Then Aαα ' [

0
+

+
0

]
(this notation means a11 = a22 = 0 and a12, a21 are positive).

Since Aαα 6∈ Q0, we must have n > 2 and a j ∈ ᾱ such that aj1 < 0 (follows

from Theorem 2.9 of [7]). Note that if a1j ≤ 0, then A 6∈ Cf
0 . But if a1j > 0, then

also A 6∈ Cf
0 (follows from Theorem 4.1 of [8]). It follows that every 2 × 2 principal

submatrix of A is in P0 and hence A ∈ P0. Arguing as in Lemma 3.2 of [6], we can
show that for every i such that aii = 0, we have aij + aji = 0 for all j. Notice that
in the proof of Lemma 3.2 of [6] we need only that every 2 × 2 principal submatrix
of A is in P0. Hence the rows and columns of A+At corresponding to zero diagonal
entries of A are zero. From Theorem 2.10, it follows that A ∈ P0.

In [6], it was shown that a Cf
0 -matrix is in Q0 if and only if it is completely-Q0.

The arguments used to prove this can be extended to obtain the following result.
Theorem 2.12. Suppose A ∈ Rn×n ∩Cf

0 . If A ∈ Q0, then At and all its PPTs
are completely-Q0.

Proof. It can be verified that if a matrix B ∈ Λ satisfies the condition that for
every PPT C of B satisfies

cii = 0 ⇒ cij + cji = 0 for all i and j,

then B and all its PPTs are completely-Q0 matrices. This is because, if B has this
property, then Graves’s algorithm processes (q,B) for any q and terminates either
with a solution or with the conclusion that F (q,B) = ∅ (see Chapter 4 of [10] and
Theorem 3.4 of [6]). Therefore, we will show that any PPT of At will satisfy the above
condition. Let D = ℘α(At) for some α. Observe that ℘α(A) exists. Let M = ℘α(A).
It can be checked that, M = SDtS, where S =

[
Iαα
0

0
−Iᾱᾱ

]
. Hence for each i, j, either

dij + dji = mij +mji or dij + dji = −(mij +mji). If dii = 0 for some i, then mii = 0,



902 G. MURTHY, T. PARTHASARATHY, AND B. SRIPARNA

and by Theorem 3.4 of [6], mij + mji = 0. From this it follows that if for some
i, dii = 0, then dij + dji = 0.

One may ask whether the converse of the above theorem is true. That is, if A ∈ Cf
0

and At and all its PPTs are completely-Q0, then is it true that A ∈ Q0? The answer
to this question is “no.” The problem arises from the fact that transpose of a Cf

0 -

matrix need not be in Cf
0 . As a counter example, consider the Cf

0 -matrix A =
[
1
1

0
0

]
.

It can be checked, directly or using Theorem 2.5 of [7], that At and its PPT are
completely-Q0 but A 6∈ Q0.

A matrix A is said to be bisymmetric if, for some index set α, Aαα and Aᾱᾱ are
symmetric and Aᾱα = −At

αᾱ. It is easy to check that PPTs of bisymmetric matrices
are bisymmetric.

Theorem 2.13. Suppose A ∈ Rn×n is a bisymmetric Ef
0 -matrix. Then the fol-

lowing are equivalent:

(a) A ∈ Q0;
(b) A is positive semidefinite;
(c) for any i, j, aii = 0 ⇒ aij + aji = 0;
(d) every 2× 2 principal submatrix of A is in P0.

Proof. We first observe that every bisymmetric Ef
0 -matrix is in Cf

0 (Theorem 4.7
of [6]). Implication (a) ⇒ (b) was already established in [6]. The implication (b) ⇒
(c) is a well-known fact about positive semidefinite matrices. The implication (c) ⇒
(d) is a direct consequence of Theorem 2.10. To complete the proof of the theorem,
we will show that (d) ⇒ (a). Assume that A satisfies (d). Using the fact that every

2 × 2 principal submatrix of A is in Cf
0 ∩ P0, it is easy to show that A satisfies (c).

Hence, by 2.10, A ∈ P0. Let M be any PPT of A. Suppose mii = 0 for some i. As A is
bisymmetric, so is M . So for any j, either mij = −mji or mij = mji. If mij = −mji,
then mij + mji = 0. If mij = mji, then, as M ∈ P0 and mii = 0, we must have
mij = mji = 0. Thus for any j, mij +mji = 0. By Theorem 3.4 of [6], it follows that
A ∈ Q0.

3. Block property. Stone [13] introduced the class of INS-matrices. A matrix
A is said to be an INSk-matrix if |S(q,A)| = k for all q ∈ intK(A), where K(A) is the
set of all p for which S(p,A) 6= ∅; and INS = ∪∞k=0INSk. Next we say that A is Lip-
schitzian matrix if there exists a positive number λ, called the Lipschitzian constant,
such that for any p, q ∈ K(A), the following holds: given any x ∈ S(p,A), there exists
a z ∈ S(q,A) such that ‖x − z‖ ≤ λ‖p − q‖. Stone [14] showed that Lipschitzian
matrices are nondegenerate INS-matrices and conjectured that the converse is also
true. Furthermore, he showed that the conjecture is true with an additional assump-
tion of Lipschitz path-connectedness (see [14] for details). To date, no constructive
characterizations are known for INS and Lipschitzian matrix classes. Thus, there is
no finite procedure to verify whether a given matrix is INS or Lipschitzian.

Definition 3.1. Say that A has property (B) if every PPT M of A has the
following block structure (subject to a principal rearrangement):

M =




M11 0 . . . 0 M1l+1

0 M22 . . . 0 M2l+1
...

...
...

...
0 0 . . . Mll Mll+1

Ml+11 Ml+12 . . . Ml+1l Ml+1 l+1



,
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where M11,M22, . . . ,Mll are all negative N -matrices (i.e., all entries and all principal
minors are negative) and the diagonal entries of Ml+1 l+1 are positive.

In [8], the authors showed that every Lipschitzian matrix must have property (B).
In this section, we will show that every nondegenerate INS-matrix also must have
property (B).

Note that if a matrix A has property (B), then it must be nondegenerate as every
PPT of A has no zero diagonal entries (see Corollary 3.5, p. 204 of [10]). From the
definition, property (B) is invariant under PPTs and is inherited by all the principal
submatrices.

Theorem 3.2. Suppose A ∈ Rn×n is a nondegenerate INS-matrix. Then A has
property (B).

Proof. Let α = {i : aii < 0}. By Theorem 5 of [12], Aαα is a nondegenerate INS-
matrix. Also, for i, j ∈ α, i 6= j, Aββ ∈ INS, where β = {i, j}. It is easy to check
that if Aββ has a positive entry, then Aββ 6∈ INS. It follows that Aαα is nonpositive
and hence in Q0. From Corollary 3.5 of [14], Aαα is Lipschitzian. From Theorem 4.7
of [8],

Aαα =




N1 0 . . . 0
0 N2 . . . 0
...

...
...

0 0 . . . N l


 for some l ≥ 1,

where each N i is a negativeN -matrix. Since every PPT of nondegenerate INS-matrix
is also nondegenerate INS, we conclude that A has property (B).

Our conjecture is that property (B) is also sufficient condition for a matrix to be
Lipschitzian. Below we verify this conjecture in certain special cases.

Theorem 3.3. Suppose A ∈ Rn×n. Assume that any one of the following condi-
tions holds:

(i) n = 2;
(ii) A ≤ 0;
(iii) A is completely-Q;
(iv) A ≥ 0.

Then the following statements are equivalent:
(a) A is nondegenerate INS;
(b) A is Lipschitzian;
(c) A has property (B).
Proof. In view of Stone’s result that (b) ⇒ (a) (Theorem 3.2 of [14]), it suffices

to show that (c) implies (b). So assume that (c) holds.
(i). If the diagonal entries of A are negative, then property (B) implies that either

A is a negative N -matrix or A ' [−
0

0
−
]
. In either case, A is Lipschitzian (see [3]). If

the diagonal entries of A are positive, then either A is a P -matrix or A−1 is a negative
N -matrix. Once again A is Lipschitzian (see [5]). Consider the last case a11 < 0 and
a22 > 0, without loss of generality. It is easy to check (graphically) that A is INS and
that K(A) is Lipschitz path-connected (see [14] for details and the example following
Definition 3.3 in [14]). From Theorem 3.4 of [14], we conclude A is Lipschitzian.

(ii). By property (B), A can be decomposed into a block diagonal matrix where
each submatrix on the diagonal is a negative N -matrix. As negative N -matrices are
Lipschitzian, one can easily verify that A is also Lipschitzian.

(iii). In this case we actually show that A is a P -matrix and this we do by
induction on the order of the matrix. Obviously the result is true for n = 1. Assume
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the result for all matrices of order n − 1, n > 1. Suppose A ∈ Rn×n satisfies the
hypothesis. Then all the proper principal minors of A are positive. If A 6∈ P , then
detA < 0 and the diagonal entries of A−1 are negative. By property (B), A−1 must
be nonpositive. But this contradicts that A ∈ Q. Hence A ∈ P .

(iv). From the hypothesis and (c), aii > 0 for all i. Since A ≥ 0, A is completely-Q.
Therefore A ∈ P .

Proposition 3.4. Suppose A ∈ Rn×n. Assume that for some index set α, Aαα

is Lipschitzian and Aᾱᾱ ∈ P . If Aᾱα = 0 or Aαᾱ = 0, then A is Lipschitzian.
Proof. Assume Aᾱα = 0. Let p, q ∈ K(A). Let λ1 and λ2 be the Lipschitzian

constants corresponding to Aαα and Aᾱᾱ respectively. Take any arbitrary x ∈ S(p,A).
We will exhibit a z ∈ S(q,A) such that ‖z − x‖ ≤ λ‖p − q‖, where λ, to be chosen
later, depends only on λ1, λ2, and A. Since S(q,A) 6= φ, choose any z̄ ∈ S(q,A).
Let y = Ax + p and w̄ = Az̄ + q. Note that xα ∈ S(p′α, Aαα) and z̄α ∈ S(q′α, Aαα),
where p′α = pα +Aαᾱxᾱ and q′α = qα +Aαᾱz̄ᾱ. Since Aαα is Lipschitzian, there exists
a zα ∈ S(q′α, Aαα) such that

‖xα − zα‖ ≤ λ1‖p′α − q′α‖
≤ λ1‖pα − qα‖+ λ1‖B‖‖xᾱ − zᾱ‖.

Since zα ∈ S(q′α, Aαα), wα = Aααzα + qα + Aαᾱz̄ᾱ and wt
αzα = 0. This implies

z = (ztα, z̄
t
ᾱ)t ∈ S(q,A). As Aᾱᾱ ∈ P , xᾱ and zᾱ are the unique solutions of (pᾱ, Aᾱᾱ)

and (qᾱ, Aᾱᾱ). Therefore, ‖xᾱ − zᾱ‖ ≤ λ2‖pᾱ − qᾱ‖. Combining this with the above
inequality, we get

‖x− z‖ ≤ ‖xα − zα‖
≤ λ1‖pα − qα‖+ (λ1λ2‖B‖+ λ2)‖pᾱ − qᾱ‖
≤ λ1‖p− q‖+ (λ1λ2‖B‖+ λ2)‖p− q‖
≤ λ‖p− q‖, where λ = λ1 + λ2 + λ1λ2‖B‖.

It follows that A is Lipschitzian, and the case Aαᾱ = 0 can be tackled in a similar
fashion.

Proposition 3.4 is not valid if we simply assume that Aαα and Aᾱᾱ are Lip-
schitzian. As a counter example, consider A =

[−1
0

1
−1

]
. It is clear that A 6∈ INS, and

hence A is not Lipschitzian.
The following is an example of a matrix with property (B).
Example 3.5.

A =


 −1 −2 −2
−2 −1 1

1 0 1


 .

It is not known whether A is Lipschitzian or not.
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