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Abstract 

The class of fully copositive (C~) matrices introduced in [G.S.R. Murthy, T. Parthasarathy, 
SIAM Journal on Matrix Analysis and Applications 16 (4) (1995) 1268-1286] is a subclass of 
fully semimonotone matrices and contains the class of positive semidefinite matrices. It is 
shown that fully copositive matrices within the class of Q0-matrices are P0-matrices. As a cor- 
ollary of this main result, we establish that a bisymmetric Q0-matrix is positive semidefinite if, 
and only if, it is fully copositive. Another important result of the paper is a constructive char- 
acterization of Q0-matrices within the class of C~. While establishing this characterization, it 
will be shown that Graves's principal pivoting method of solving Linear Complementarity 
Problems (LCPs) with positive semidefinite matrices is also applicable to C*~I N Q0 class. As 
a byproduct of this characterization, we observe that a C~;-matrix is in Q0 if, and only if, it 
is completely Q0. Also, from Aganagic and Cottle's [M. Aganagic, R.W. Cottle, Mathematical 
Programming 37 (1987) 223 231] result, it is observed that LCPs arising from C~ N Q0 class 
can be processed by Lemke's algorithm. © 1998 The Mathematical Programming Society, 
Inc. Published by Elsevier Science B.V. 
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1. Introduction 

Given a matrix A E [R "×n and q E Nn the Linear Complementar i ty  Problem (LCP) 

is to find a vector z E R~ such that  

A z + q > ~ O ,  z>~O and z t ( A z + q ) = O .  (1) 

LCP  has numerous  applications, both in theory and practice, and is treated by a 
t l  . vast literature (see [1]). Let F ( q , A ) = { z E R + . A z + q > ~ O }  and S ( q , A ) =  

{z E F(q ,A) :  (Az + q)tz = 0}. A number  of  matrix classes have been defined in con- 

nection with LCP,  the fundamental  ones being Q qnd Q0. The class Q consists o f  all 
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real square matrices A such that S(q,A) ¢; q5 for every q E [~" [2]; and Q0 consists of 
all real square matrices A such that S(q,A) ¢; q5 whenever F(q,A) ~- 0 [3]. A matrix A 
is said to be completely Q0 if every principal submatrix of  A is in Q0. 

Stone [4] conjectured that the class of fully semimonotone matrices (E~) within 
the class of Q0 are P0-matrices (see Section 2 for definitions of matrix classes). In 
[5], the authors partially addressed the conjecture and introduced the class of fully 
copositive (C~) matrices - a subclass of E~ - and obtained some results on the same. 
In Section 3, we establish a constructive characterization of Q0-matrices within the 
class of C~-matrices by showing that Graves's algorithm can process LCP (q,A) 
when A is a C~-matrix. As a byproduct of this characterization, we observe that a 
C~-matrix is in Q0 if, and only if, it is completely Q0- It may be noted that the algo- 
rithm uses only the single or double pivots while processing LCPs. 

By introducing the concept of incidence of complementary cones, we prove in Sec- 
tion 4 that C~-matrices that are also Q0 are P0-matrices. Furthermore, we prove that 
bisymmetric E~ C3 Q0-matrices as well as 2 × 2 C~ N Q0-matrices are positive semidef- 
inite. 

In the light of a result of Aganagic and Cottle [6], we observe that Lemke's algo- 
rithm processes LCPs (q,A) when A c C~ ~ Q0- 

2. Notation and background 

For any positive integer n, n stands for the set {1 ,2 , . . . ,  n} and for any subset c~ of 
n, c¢ denotes its complement with respect to n. For any A E ~n×n, A~ is obtained by 
dropping rows and columns corresponding to ~ from A. For any x E ~",x~ is ob- 
tained from x by dropping coordinates corresponding to ~; and xi denotes the ith co- 
ordinate of x. 

For  any A E N,×n, the set posA = {Ax: x c Nn, x ~ 0} is the cone generated by 
columns of A, called the generators of the cone; the cone is said to be full or nonde- 
generate ifA is nonsingular. Given A C Nn×~ and ~ c fi, define the matrix B whose ith 
column is -Ai (the ith column of -A)  i f / C  :¢, and i f / ¢  c~, then the ith column of B is 
the ith column of I (the identity matrix). B is denoted by CA (C¢) and is called the com- 
plementary matrix with respect to a. The cone pos CA (C~) is called the complementary 
cone with respect to ~. Note that, given q and A, solving (q, A) is equivalent to iden- 
tifying a complementary cone pos CA (C¢) which contains q; also given A E R ~×~, there 
are 2 ~ complementary cones (not necessarily distinct) and the union of  all these cones 
is denoted by K(A). 

A solution z to (q,A) is said to be nondegenerate if z + Az + q > 0 (strictly posi- 
tive). In the problem (q,A), q is said to be nondegenerate if every solution of 
(q,A) is nondegenerate. 

A matrix A is said to be a P-matrix (P0-matrix) if all its principal minors are pos- 
itive (nonnegative). Cottle and Stone [7] introduced the class of fully semimonotone 
matrices (E~) and its subclass U. A matrix A is in E~ if (q,A) has a unique solution 
for every nondegenerate q, and A is in U if (q, A) has a unique solution for every q in 
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the interior of  K(A). Stone [4] showed that U N Q0 is subset of  P0 and conjectured 
that E~ n Q0 c_ P0. The authors addressed this conjecture in [5] and showed that 
the conjecture is true for matrices of  order up to 4 × 4 and E~ n Q0-matrices of  gen- 
eral order which are either symmetric or nonnegative are in P0. Further, a subclass of  
E~, the class fully copositive matrices (C~, defined below) was introduced. It was 
shown that symmetric E~-matrices are contained in C~. 

In this note we introduce the concept of  incidence of complementary cones. Using 

this concept, we show that C~ n Q0 c_ P0. 
A real square matrix A is said to be copositive if for every nonnegative real vector 

x (of appropriate order), xtAx is nonnegative. The class of  semimonotone matrices 

(E0) introduced by Eaves [8] (he denoted it by L1, see also [9]) consists of  all real 
square matrices A such that (q,A) has a unique solution for every q > 0. The follow- 
ing inclusions are well known in the literature (see [1] for details). 

PC_PoC_E~C_Eo, CoCEo. 
It  is also known that symmetric Eo-matrices are copositive. 

Consider A E ~ ..... . If  ~ C ~ is such that det A~ # 0, then the matrix M defined by 

A 1 M~ = ( ~ )  , M~ -M~Ac,~, M~ A~M~,  M~ A~ - M ~ A ~  

is known as the principal pivotal transform (PPT) of A with respect to ~ and will be 
denoted by gJ~(A). Note that a PPT is defined only with respect to those ~ for which 
det A~ # 0. By convention, when ~ (3, det A,,~ 1 and M = A (see [1]). Whenever 
we refer to PPTs, we mean the ones which are well defined. One of the characteriza- 
tions of E~-matrices is that A ~ El0 if, and only if, every PPT of A is in E0. This char- 
acterization means that E~-matrices are invariant under PPTs. A matrix A ~ E ..... , 
not necessarily symmetric, is said to be positive semidefinite (PSD) if xtAx >/0 for 
all x c E". It is a well known fact that PPTs of a PSD matrix are also PSD. To 
see this, let M = ~(A)  and let y = Ax. It is easy to check that xtAx ztMz where 

z t (yt  x'~). Since this holds for any arbitrary x, it immediately follows that M is a 
PSD matrix. 

Definition 2.1. Let A ~ E~×". Say that A is a fully copositive matrix if every PPT of A 
is a copositive matrix. 

The class of  fully copositive matrices is denoted by C~. From the definition and 

the fact that Co c_ E0, it is clear that Cf0 c_ E~. In [5], it was shown that symmetric 
E~-matrices are fully copositive. It  was also shown that if a fully copositive matrix 
has at most one zero diagonal entry, then it is a P0-matrix. While U and C~ are both 
subclasses of E~, there is no relationship between C~tl and U. 

Example 2.2. Let 

I 1 i° °ol A = 1 and B - 1 " 
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Note that A c C~ but not a U-matrix, and B is a U-matrix but not a Cf-matrix. 

3. Algorithmic aspects 

Given a LCP (q,A), consider another LCP (p,M) where M is a PPT of A with res- 
pect to some A~,p~ = - (A~)  lq~ andpa = qa - A ~ ( A ~ )  lq~. We say that (p ,M)  is a 
PPT of (q, A). The two problems are equivalent in the sense that, given a solution to 
one of  the problems, a solution to the other can easily be constructed (see p. 74 of 
[1]). When Ic~l = 1 (le[ = 2), we say (p ,M)  is obtained from (q,A) using a single (dou- 
ble) pivot. The principal pivoting methods for solving LCPs transform the original 
problem into its equivalent PPTs until a PPT is obtained for which zero is a solution. 
Graves's principal pivoting algorithm for solving LCPs with PSD matrices uses only 
single and/or double pivots. The following is a brief description of the algorithm. 
Complete details and proof  of finiteness of the algorithm can be found in Section 4.2 
of  [10] (see also [11]). 

3.1. Graves's algorithm 

Step 0: Input M = A and p = q. 
Step 1: I f p  ~> 0, then z = 0 is a solution of (p, M); obtain a solution of (q, A) using 

this and stop. 
Step 2: If  there exists an index i such that pi < 0 and Mi. ~< 0, then conclude that 

the LCP has no solution and stop. 
Step 3: Choose i with p~ < 0 using lexicographic rule. If  m~i > 0, then replace 

(p,M) by its PPT with respect to c~= {i}. If  mi~ = 0 ,  then choose j from 
{k: m~ > 0} using lexicographic rule and replace (p ,M)  by its PPT with respect to 
o~ = {i,j}.  Go to Step 1. 

When A is a PSD matrix, Graves's algorithm will never get stuck in Step 3 and 
hence either produces a solution to the problem (termination in Step 1) or exhibits 
that the problem has no solution (Step 2 termination). To show that the algorithm 
applies to C~ n Q0, we establish the following result. The results of this section will 
use our main result that C~ N Q0 c_ P0 which is proved in Section 4. 

Lemma 3.1. Suppose A C ~nxn n C~ N Qo. Assume that a i i  = 0 and aij ~ O for some i 

and j. Then aij + aji : O. 

Proof. Suppose  :Io 
If  bc ~ O, then bc must be negative and 
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I; B - l =  b~c 

Since B is copositive, b + c ~> 0 and since B -1 is copositive, (b + c ) /bc  >i 0 or 
b + c ~< 0. Hence b + c = 0. Consider the hypothesis of  the theorem• By Theorem 
4.5, A C P0. I f  a~j < 0, then as a~ = 0 and A is copositive, we must have a:~ > 0 

and from the above argument it follows that ai: + a:i = 0. On the other hand, if 
a~j > 0, then there exists an index k such that ak~ < 0. This follows f rom Theorem 
2.9 of  [5], since A C C f n Q0 c__ E0 N Q0. Suppose aji ~- O. Then k # j and a/k > 0 
(as A is copositive). Let ~ = {i , j ,  k}.  Then 

!++ 
Aac t ~ 7k -k- 

4r -k 

and M~ _~ 

m 

0 , 

0 

where M is the PPT of A with respect to {i, k}. Here ' ~ '  stands for sign equivalence of 
left and right hand side matrices w i t h .  indicating the unknown sign of the corre- 
sponding entry. The sign pattern of  M~ implies that M~ is not copositive. This con- 
tradicts that A ¢ Cf0 . It follows that aj~ # 0 and hence at~ + aj~ = O. [] 

Lemma 3.2. Suppose A c ~"×" 7? Cfo fq Qo. For any index i i f  aii = O, then a i i+  @i = 0 
.[or all j .  

Proof. Suppose i is such that a,i = 0. From Lemma 3.1, we only need to consider the 
case a i / =  0. I f  possible, assume a/i 7 L O. By copositivity o fA ,a j i  > 0. By Lemma 3.1, 
ajj > 0. But then for ~ = { i , j } ,  [g){j}(A)]~ does not belong to Co. From this 

contradiction we conclude that @i = 0 and hence a U +ai i  - O. [] 

The Q0 assumption in the above theorem is essential as 

'0] 
is an example of a C~-matrix but it is not Q0 (see Theorem 2.5 of  [5]). The above 
results yield a constructive characterization of Q0-matrices within the class of  Cf0-ma - 
trices. F rom this characterization, we deduce that a C~-matrix is in Q0 if, and only if, 

it is a completely Q0-matrix. There is no characterization of completely Q0-matrices 
in general (see [5,12,131). 

Theorem 3.3. Suppose A ¢ R "×n A C~. Then the Jollowing conditions are equivalent: 

(a) A C Q0; 
(b) for  every P P T  M o f  A, mii = 0 ~ m:j + mji = 0 Vi , j  C n; 

(c) A is" completely Qo. 
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Proof. It is easy to see from Lemma 3.2 that (a) implies (b). Note that if A satisfies 
condition (b), then so does every principal submatrix of A. To see that (b) implies (c), 
let M be a principal submatrix of A, say of order k. Let p E Nk be arbitrary. Note that 
Graves's algorithm when applied to (p, M), terminates either in Step 1 or Step 2 of 
Section 3.1 (follows from results of Section 4.2 of [10]). If the algorithm terminates in 
Step 2, then it is clear that (p, M) has no feasible solution. It follows that M E Q0. As 
M is an arbitrary principal submatrix of A, it follows that A is completely Q0. The 
implication (c) implies (b) is obvious. [] 

Thus, to verify whether a given C~-matrix A is in Q0, it suffices to check the con- 
dition (b) of Theorem 3.3. Another way of expressing the condition is: for every PPT 
M of A, 

i0 01 : M + M  t =  0 M~s+Mt~ wheree  { i E n :  mii 0}. (2) 

4. Main result 

Stone [4] showed that U N Q0 c P0 and conjectured that E~ n Q0 c_ P0. In [5], it 
was shown that the conjecture is true for matrices of order up to 4 x 4. In this section 
we establish that C~ n Q0 C P0. This is done by introducing the concept of incidence 
of  complementary cones. 

Definition 4.1. Let A c ~,×n and let e C h be such that pos CA(a) is full. Let 
B = CA(a). Then pos B# is called a facet o f p o s  CA(a) provided ]#] = n - 1. 

Definition 4.2. LetA C N"×~ and let e, # _c ~ be such that pos C~(e) and pos CA(fl) are 
full cones. Say that the cones pos CA(a) and pos CA(#) are incident to each other on a 
hyperplane H if the relative interior (with respect to H) S of H N pos CA (e) n 
pos CA (#) is nonempty. 

Lemma 4.3. Suppose A E II~ ~×~ N C~. Suppose e is a nonempty subset of ~ such that pos 
CA(a) is full and is incident to ~_(=  pos CA ((~)). Then det A~ > 0. 

Proof. We shall prove this by induction on n. When n = 1 the lemma is obvious. 
Assume that the lemma is valid for all matrices of  order n - 1, n > 1. LetA C Nn×n 
satisfy hypothesis of the lemma along with a subset c~ of n. Let B = CA (~). Since 
A C Co, pos CA (e) and R~_ cannot intersect in the interior. For  simplicity, we assume 
that pos CA(e) is incident to pos [1.2,£3,... ,Ln]. Note that the common hyperplane 
containing the facets o fpos  l a n d  pos CA(e) is given by H = {x E R": xa = 0}. Let S 
denote the relative interior (with respect to H) of H N pos [/.2,1.3,..., I.n] N pos CA (e). 
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Choose  ( n - l )  linearly independent  vectors ql ,qZ , . . . , q (~  1) f rom S. Let  
B.~,,B.~2,... ,B.il,_,l be the generators  of  the facet (of  pos CA(e)) containing S. Then  
there exists a nonsingular  matr ix  X (strictly positive) o f  order  ( n -  1) such that  
iq],q2, . . .  ,q(n 1)1 = [B.i~,B.i2,... ,B.i(, ~)]X. F r o m  this it follows that  the first coor-  

dinates of  B.~, B.i2,. • •, B.~I° ~1 are equal  to zero. No te  that  as A E Cfo,/.1 cannot  be a 
generator  o f  pos CA (e). Hence 1 C e. 

Case (i). -A.1 ~ H.  Clearly, in this case, -A.1, ql, q2 , . . . ,  q(~-l) are linearly indepen- 
dent, and their convex hull - which contains an open ball of  Nn is contained in pos  

C~(e) A pos [-A.1,I2,1(3, . . .  ,L,]. This implies, a sA c C~, that  the two complemen ta -  
ry cones are one and the same and that  e = { 1 }. As pos CA (e) is full and A c Co, det 

A~ = a l l  ~ 0.  

Case (ii). -A.1 E H.  Since pos  CA(S) is full, we mus t  have a k c n such that  
A.~ ~ H .  Wi thou t  loss of  generali ty assume k = n .  Suppose [e I < n ,  say 

(n - 1) ~ e. Let/~ = fi \ {n - 1} and let M = Ar~/~. I t  can be verified that  M together  
with e satisfies the assumpt ions  of  the lemma.  Tha t  is, pos  CM(~) is full and is inci- 
dent to ~" i .. 0}. By induc- ._~ on the h y p e r p l a n e / J  {(xl, .  ,x(,, 2),xn) t c R~-~: xl = 
tion hypothesis,  det M ~  > 0. But M~ - A~ and hence det A~ > 0. 

Suppose I~1 = n. Since s c_ pos [ A ~ , . . . ,  A(~, 1/], there exists a positive vector  
( X I : . . .  ,X(n 1)) t s u c h  t h a t  

i21 . . . .  22 211[:1• 
L a(n 1)1 a(n 1)2 ' ' '  a(,~ l)(n 1) X(n 1) 

I f  ai~ >~ 0 for all i ~ 7 = { 2 , . . . ,  (n 1)}, then it follows that  A~v is not  coposit ive 
which is a contradict ion.  Hence there must  exist an index k c 7 such that  akl < 0. 
But then for 0 = { 1, k}, 

i001 Aoo = ~: Co, 
ak I akk 

which contradicts  that  A C C~. It follows that  lel cannot  be equal  to n. This com- 
pletes the p r o o f  of  the lemma.  [ ]  

Lemma  4.4. Suppose A C N "×n N Cfo . Assume that ~, [~ c n are such that pos CA (e) and 
pOSCA(/3) are full. I fposCA(~)  and pOSCA(/~) are incident to each other (with res'pect 
to a common hyperplane containing theJacets), then de tA~  and detA~/~ have the same 
sign. 

Proof.  Let M = f)~(A). Note  that  the PPT  merely t ransforms  the complemen ta ry  
cones of  K(A) to those of  K(M)  th rough the nonsingular  linear t r ans fo rmat ion  q 

going to CA(X) lq. In part icular,  pOSCA(~) gets t r ans fo rmed  to R+ and pOSCA(/3) to 
posCM(7) where 7 = eA/~. As posCA(~) and pOSCA([J) are incident to each other, it 
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follows that ~+ and pos CM(7) are incident to each other. By Lemma 4.4, it follows 
that det is positive. From symmetric difference formula (see [1]) it follows that 
det A~ and det A/~/~ have the same sign. [] 

Theorem 4.5. Suppose A E ~×~ n C f N Qo. Then A E Po. 

Proof. Let e, any nonempty subset of n, be such that pos CA(a) is full. We may 
assume that pos CA (e) is different from N+ for in this case we have nothing to prove. 
Let q0 E interior pOSCA(e). Let r > 0 be such that Br(q °) C_ pOSCA(e). Since A E Q0, 
K(A) in convex. Define the set 

P = {q E ~": q = 2 p +  (1 - 2)e for some 2 C [0, 1] and so m ep  E Br(q°)}, 

where e = (1, l , . . . ,  1) t E ~n. Clearly P is an open set and is contained in the interior 
of K(A). Furthermore, if any full complementary cone of K(A) intersects P, then it 
must be incident to another full complementary cone of K(A) which also has a non- 
empty intersection with P. Let ~ = e0, e l , . . . ,  am : e C n , m  ~ 1 be all the full com- 
plementary cones that have nonempty intersection with P. From Lemma 4.4 and 
Theorem 4.5, it follows that detA~ m is positive for i = 0 , 1 , . . . , m .  Thus 
det A~ > 0. As e was arbitrary, this completes the proof  of the theorem. [] 

It may be observed that Lemma 4.3 is valid when C~ is replaced by U. This gives 
an alternative proof  of Stone's result that U N Q0 c_ P0. Unfortunately the lemma is 
valid for E~-matrices only when n ~< 3. The following serves as a counter example. 

Example 4.6. Let 

1 
0 0 0 1 |  

] - 1  0 1 0 

A =  -1  1 0 0 " 

- 1  0 0 0 

It can be checked that A E E~ and pos A is incident to ~_ (on the hyperplane 
H = {x E ~4+: xl = 0}). However, detA < 0. It may be worth noting that A is not 
a Q0-matrix. This can be seen as follows. Since At. ~> 0, if A is in Q0, then 
A~,e  = {2,3,4}, must also be in Q0 (see [5]). But it is easy to check that A~ is 
not in Q0 (this also follows from Theorem 2.5 of  [5] which characterizes nonnegative 

Q0-matrices). 

Since symmetric P0-matrices are PSD, if follows that symmetric C~ N Q0-rnatrices 
are PSD. In fact, we can marginally relax this condition of symmetry by replacing it 
with bisymmetry. A matrix A ff ~n×n is said to be bisymmetric if there exists an ~ _c h, 
possibly empty, such that A~ and A~ are symmetric, and A~ ---- -At~. We first show 
that if A is a bisymmetric E~-matrix, then it is fully copositive. The authors estab- 
lished the equivalence of E~ and C~ under symmetry in [5]. 
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Theorem 4.7. Suppose A E R"x~A E f is a bisymmetric matrix. Then A is fully 
copositive. 

Proof. Let M be any PPT of A. Since PPTs of bisymmetric matrices are bisymmetric 
(easy to check), M is bisymmetric. Let e be such that M~ and M~ are symmetric, and 
M~a = -Mt~. Then M + M t is a symmetric E0-matrix and hence copositive (see pp. 

177-178 of [9]). This proves that A is fully copositive. []  

Theorem 4.8. Suppose A C R "x~ f~ Qo is a bisymmetric matrix. Then the following 
conditions are equivalent." 
(a) A is PSD; 
(b) A is Jully copositive; 
(c) A is Jhlly semimonotone. 

Proof. To prove the theorem we only need to show that (b) implies (a). So assume 
that A is a C~ n Q0-matrix, It  suffices to show that A + A t is positive semidefinitive. 
By Theorem 4.5, A is in P0. Let :~ be such that A~ and A~ are symmetric, and 
A~ = A t ~ .  Obviously A~ and A~ are positive semidefinite. Therefore, 

01 A + A t 2A~ 

is PSD. [] 

We believe that C~ A Q0 is nothing but the class of  PSD matrices. In the following 
theorem we show that this is true for 2 × 2 matrices. 

Theorem 4.9. Suppose A ~ R 2×2 ~ Qo. Then A is PSD (j; and only iJ; A C CII. 

Proof. The 'only if' part  is obvious. We shall prove the 'iF part. i f  all = 0 or a22 = O, 

then a12 + a21 0 and xtAx involves only a square term and hence A will be PSD. I fA 
is singular, then a PPT of A will have a zero diagonal entry and hence A will be PSD. 

So assume that A is nonsingular and that alla22 > 0. Without loss of  generality we 
may assume that all a22 1 (this is because, i fA ~ C f, then DAD C C~) for any 
positive diagonal matrix D). Suppose xtAx < 0 for some x. As A is copositive, 

XlX2 < 0. Also 

0 > xtAx (x1 x2) 2 4- (a12 q- a21 q- 2)N1X2 =:~ 

> (a12 + a21 + 2)xlx2 
Note that 

A~=l/(1 a12a~,)[ 1 
--a21 

a12+a21 + 2 > 0  

0/> (xl x~) 2 
=~ al2 + a21 > --2. 
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Since A 
a12a21 

Z t 
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is not PSD, A 1 is also not positive semidefinite but copositive (hence 
1). So there exists a z such that 

a n d  z1z  2 < O. Again 

0 ztl 1 a] --a21 1 Z ~--- (Zl + z2) 2 (a12 n t- a21 n t- 2)2"1z2 

implies a12 Jr a21 < - 2  which is a contradiction. It follows that A is PSD. [] 

Aganagic and Cottle [6] showed that ifA E P0 n Q0, then Lemke's algorithm pro- 
cesses (q,A) for any q C A n (with a suitable apparatus to resolve degeneracy). Since 
we have shown that C~ n Q0 is a subclass of P0 n Q0, we conclude, in the light of  the 
above result, that LCPs (q,A) can be processed by Lemke's algorithm when 

A C C~ N Q0. 
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