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This thesis is being submitted in partial requirement for the

~ degree of Doctor of Philosophy of the Indian Statistical Institute and
presents the work done Dby the author at the Indian Statistical Institute
during the past few years in the field of sanmpling from finite popula-
tions. BSome of the results given herein have earlier appeared in
publisked fron (/18 7.,/ 19 7, [20/)

The main contributions in this thesis are (1) Proof of optimality
of Horvitz and Thonpson estinator of the population total (2) develop=
nent of a one=by-one drewing mechanism to result in a given sampling
design and (3j optirur: utilisation of auxiliary information of a type
corrionly met with in practice.

A new criterian of ''hyper admissibility ' of an estimator is
introduced and the optinality of Horvitz and Thompson estimator of the
population total in the class of all polynomial unbiased estimators is
de§onstrated in Chapter VII. A nethod of drawing units of a population
one-by-one and with replacenent to result in dny given sanmpling design
is given in Chapter III. Sarmpling methods that result in sampling designs
with assignedbvalues of inclusion probabilities for the units, for the
optirmm utilisation of auxiliary inforration,are obtained in Chapter IV
and V. Sonme niscellaneous results regarding optirmun utilisaticn of
auxiliary information are given in Chapter VI. Chapter I is devoted to
introduction. In Chapter II the problems considered in this thesis are

clearly fortmlated and a brief review of the work of earlier authors



(1)
is givens TFor every Chapter a swmary of the contents is first given.
Towards the end a brief indication of the present position is given and
sone further problems for research in this field are given. A biblio-
graphy of rclated earlier work is provided.
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Director of the Hescarch and Training School of the Indian Statistical
Institute for providing fecilities to carry out this research-pHis
sincere thanks are due to Prof. J. Roy, Head of the Data Processing uunit
of the Indian Statistical Institute, for his valuable guidence and nany
critical corments that helped to considerably improve the presentation of
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of his c?llquues. Sri ;- Unnikrishnan has kindly prograrmed a nunmber of
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cipated in many veluable discussions, Sri T. J. Rao rendered valuable
help in proof=reading and Sri C. Parthasarathy corrected a number of
nigtakés regarding the language and offered many critical corments.

Thanks are due to Sri G.M.Das for his very patient and elegand typing

of the thesis.
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CHAPTER 1

INTRODUCTION

The advantages o} sample surveys over complete censuses are
well known and seem to be fully appregciated as is evidenced by the -
increasing use of sample surveys now a days as a means of collecting

information,

The use of probability theory to make rigorous inductive
inferences has been well recognised for a long time, Such inferences
can be made only when observations which form the basis of the infe—
rence are generated by some chance mechanism, In traditional applica-
tions, the statistician usually assumes or takes for granted some
kind of chance mechanism behind the observations, where as in sample
surveys or planned experiments the statistician consciously introduces
the chance element by having recourse to the mechanism of fandomisation,
introduced by R.A,Fisher Z_B5;7. This has the advantage fhat the
validity of the inferences does not depend on any extraneous assumptions,
He demonstrated that a deliberately introduced randomisation in the
selection of a part from the whole itself provides a valid method of
obtaining a rigorous expression to the amount of error committed

while arguing from a part to the whole,

Another important concept introduced by P, C, Mahalanobis [T24a_7
in this field, is the cost function, While the efficiency of a sample -
survey as measured by the precision of the estimate - is important,

it has to be delicately balanced against the cost of the survey to



have a meaningful application of these techniques in practice.

The earlier developements in sampling theory of finite popula-
tions relate mainly to a number of techniques of sampling appropriate
to varians situations in practice,to estimate the total of real wvalued
character defined for units of the population (briefly referred to as
popula tion total , Significant advances in this direction are strati-
fied sampling first studied by Neyman 2_29;7, rmlti stage sampling
and use of auxiliary information first studied by Hanson and Hurmitz
ZTéOa;7, various methods in current practice of using auxiliary infor-
mation, are the ratio and regression methods of estimation and proba-
bility proportional to size sampling, While for the first two methods
it is not necessary to have the auxiliary information completely
beforehand (and can even be collected along with the main information)
but only its total for the entire population, for the latter, it is
ne;essary. However, the first two methods do not have an exact small

sample theory while for the last we have an exact theory,

The earlier developments have been guided usually on heuristic .-
considerations and attention limited to get at some unbiased estimators.
It is only recently that & systematic investigation of sampling from

finite populations has begunvwith the works of Harvitz and Thompson
[ 227 and Godambe /11_7/.

The main coniributions in this thesis relate to (1) a search

for reasonable criteria of optimality and sampling strategies that
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one optimum under these criteria; (2) development of a unified opera-
tional method drawing samples when a sampling design is partly or
fully specified and (3) optimum utilisation of auxiliary information

of a type commonly met with in practice,

Godambe has stated [711;7 that for any sampling design there
does not exist a uniformly minimum variance unbiased estimator of
the population totul in the class of all homogeneous linear unbiased
estimators, (As shown in this thesis, there are certoin designs
for which this result does not hold which form the class of what we

call "uni-cluster" designs, )

The choice of an estimator therefore has to be made from a

rather wide class of.admissible unbiased estimator, Moreover there

is no mathematical reason for the exclusion of all nonlinear unbiased
estimators, We therefore introduce the criterion of "hyper admissi-
bility" which has meaningful practical interpretation, This criterion
yields, for any non uni-cluster sampling design, a unique espimator

in the class of all polynomial unbiased estimators of the population
total, and ean therefore be called the 'best' estimator in this class
under this criterion, This best estimator is the'well known Harvitz
and Thompson estimator, This result given in § 7,4 and § 7,5 9f Cha

Chapter VII removes the difficulties of choice of an estimator,

As Godambe has shownya sampling design is completely charac-

terised by the specification of a set of samples and defining a



probability measure on it, However for practical application an
operdtional procedure of drawing the sample one by one is very often
required. wb show in Chapter III, how, given any sampling design,
one can realise it by a definite one by one drawing mechanism, Any
partially specified sampling design can then be obtgined by a simple
drawing mechanisi by a proper choice of further specifications, as

illustrated in § 3,3, The results of this Chapter were published :
earlier 1718;7.

It is latent in the work of Godambe and is explicitly spelt here
(in Che II) thot whon inforration on a positive velmed auxiliary wvariable
is available before-hand on all the units of the population, then in
the class of all sampling strategies with given expected number p
of distinct units, any strategy such that
i) every sample has the same number of distinct unit
ii) probability of including eny unit is proportional to the
auxiliary information on the unit
end 1iii) the estimator used is the corresponding Horvitz and
Thompson estimator
is 'best' in a well defined Bayesian sense,§ampling designs satis=
fying (ii) are referred to as T PS design, The problem of constructing
designs satisfying (i) and (ii) is then an important problen that e
engaging the attention of a number of many workers in this field of

whom we mention Goddmen and Kish Zri3;7. Horvitz and Thompson

[22], Yates and Grundy /[ 40_7, / 14/, Durbin /9_/, stevens / 39_J,
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Felligi‘[—10;7, DesRaj 17747 and Rao, Hartley and Cochran.[fﬁ5;7a“

pesides the author himself /19 /-

e

Though conditions (i) and (ii)ensure the above criterion of
optimality¥, they do not completely specify the design., We therefore
add further desirable conditions and obtain a complete solution fqr
the important practical case of sampling two units from a gtratum,
This while satisfying (i) and (ii)selso allows & stable non-negative
anbiased estimator of the sample variance of the estimator., The method
compares favourably with two other method in current use of utilisation
of auxiliary information. These results are given in Chapter IV,
For the case of general values of L , some near—optimum solutions
strictly satisfying (ii) are given in Chapter V. The results of this

chapter were obtained by the author towards the end of 1959 and were
lgter published [19_7', /e,

The thesis is divided into seven chapters. Chapter I (the
‘present one) is introductory giving a broad summary of the major results

of the thesis,

Chapter II gives the necessary definitions and concepts, focusaes
the attention on the problems considered in this thesis and clearly
formulates them and g%ves a review of the related work of the earlier
outhors in th@s field, The rest of the thesis contains the author's

contributions,



In Chapter III the equivalence of sampling designs and one by one
drawing mechenisms is proved and the method used to illustrate the

convenient way of choosing further specifications of a partielly speci-

fied design to arrive at simple drawing mechanigms,

Chapters IV and V are devoted to the construction of T P8
sampling designs Chapter VI gives some results concerning the ‘optimum
choice of multistage PS designs, validity of prior estimates of
parameters in stratified sampling and integration of two different
surveys on the same population, The methods of these chapters are
illustrated by means of emperical examples and are compared with some

other methods in current use of the use of auxiliary information,

Finally, Chapter VII deals with the general problem of estimation
and gives necessary and sufficient conditions on a design for the esti-
mability of a class of parametric functions, the exceptional sampling
designs admitting & uniformly minimum variance estimator in the class of
general homogeneous linear unbiased cstimators of the population total
and ends up with the proof of 'bestness' (under the criterion of hyper-

admissibility) of the Horvitz and Thompson estimator,

In the epilogue we take stock of the present position and indicate
‘some further lines of research on problems related to those considered

in this thesis,

A bibliography giving mainly carlier work on the problems

‘considered in this thesis, is given at the end,



CHAPTER IT

DEFINITIONS AND COMCEPTS

In this chapter we shall give some definitions and formelate the

concepts. A broad review of the felated work of earlier authors is
alse given, The review thus relates to the general aspects of
estimation and the optimum utilisation of auxiliary information.
The central problem throughout is the estimation of total (or egui-
valently the mean) of a finite population of known size, though

occasionally we shall formulate our concepts for a wider area.

§ 2.1 OSampling design and drawing me chani sm

We shall give some definiticus,

A 'finite population‘,(?l in this thesis refers to a collection

of a known number N, of 'sampling units' ('units for brevity hence-

forth)

U]-, UQ, vesy UN "'2.1.1)
such that the units are distinguishable and a list like (2.1) is

possible, at least conceptually. Such a list is called a 'sampling

frame', and 'M' is called the 'population size'.




d

6
A 'sample' s fromM is a finite ordered seguence of units fro-
= v ) 2
8= (W) U,y es¢y U so 2e1.2
( 1! P ’ n ’ ( )

where each u, belongs to (Z/l Bquivalently we can also write

7 -
8= (U, , U ,e0e, U, ) (2.1.2)
11 12 lns

where 1 < it LH for 1t g noe In the above the units need not be

distinct from each octhers n is czlled the sample size. The number of

distinct units in s is called the 'effective sample size'.and we shall

denote it throughout by us. (The justification for this terninology
will be clear latter in § 2.2),

A 'sampling design' (sometinmes briefly referred to as 'design') 3,

over(M, is a collection (i.es unordered set) 5 of samples s from (z//l_
with a probability measure P defined on it, ise. to each s € § is

attached a probability PS. “hen we can write

» = b {5, P (2.1.3)

We note thot though each sample is a finite sequence of elements
from u, the sample sizes nced not be uniforrly bounded in S. TFor exanmple
we nay teke for § the collection of all vossible sanples obtained by
sampling with replacement until two distinct units ore obtained. Ilowever

¢
large 'm' may be there are always sarivles in the above cellection whose
size exceeds 'm'.
(
Since the set of all finite seguences from 13 & countable set
8 is a countablc collection of samplese [further, writing
[0}
5= (J s
n
re=l

where S, 18 the set of 2ll sarmples s in S whose size is n (Sm is a finite

'y

@9t having utmost N elemonts) s we have
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- &
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parizle of size grester t.on or e;j;;al tc 1 —S::;:-;-:“-.s SO0 BEro as I =) .,

The above definition of a sampling design covers all cenceivable
pethicds of drawiasg a sampls frew a finite population of known size,
because each such method generates a ollection of possible gamples
ané defines a probability distributi  over such samples, Cn the
other hand, corresponding to any giv sampling design, there exist
various ways of drawing the sample, ie obvious method is to prepare
a list of cll samples belonging to it design and then to choose one

from the list with probabilities. assiy 'd by the design,

Yiowever, in practice it is not always convenient or possible to
draw a sample from a population by first listing down all pessible
samples and selecting one of them with the preassigned probabilities.
For example consider a population ?/L of 100 units and S be the
collection of all ordered pairs of units from ij,and let Ps= 10—4
for each s ¢ S, Here there are 104 possible pairs., In this case omne
does not list down all these 104 pairs and then select one of the
pairs with a probability 10—4‘to eack: pair. Instead, one draws one unii
{rom ]Jvndth probability 10-2 to each unit of 7J1”and repeats the
procedure once mere. This is édopted firstly because it is convenient
to stick to a single sampling frame all through without preparing a-
fresh another much bigger frame and secondly one can work with a

gmaller number of choices., How vastly difficult it is in practice to



list down all possible samples with their associated probabilities
can eagily be sceen if we consider samples of larger sizes say 10 each,
This is a matter of practical convenience only and in the example

discussed above both the methods are theoretically equivalent,

We show in chapter III how a speci al method of sampling, called
one-by-one drawing mechanism, can be adopted to result in any given
sempling design, Such a drawing mechanism is roughly defined as a
nethod of drawing units from ?JLhone-by-one and with replacement with
probabilities at any stage depending possibly on the sample of units
already selectéd up to that draw, A more rigorous definition of this

is given in § 3.1 of chapter III,

We remark that (2.1) explicitly excludes such populations like
the population of fish in a pond bécause in the latter, the popula-
tion size is net known and in fact the problem of interest in such
cases is to dstimate N, However, in these problems, the selection
of a sample can not be rigorously made probabilistic and some physical
methods of selection are approximately taken to correspond to ¢ertain
probability selections on intuitive grounds (which often amount to a

reasoning like 'because there is no reason to belive that ,...').
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B 2+9 Estimaticn

We now turn our attention to the problem of estimation.

Consider a real-valued characterﬁw which takes the value Yi on the
mit U, of W @ <icm. et

Y = (Y]., Y 9y YN)’ ‘ e (2 24.)

~ o

A 'parametric function' (p.f., for brevity) € is a function of the

arguments ¥y Y , oon, YJ iee.,

o’ !

& = e(z)) = 8 (Yl’ Y?,"': YN) . (90041)
A 'statistic' T defined over a design D =D (5, P) is a funclion defined
over the samples 8 of 2 such that if s € D, the value Ts of T is a

function of the?j‘-—values of only those units that occur in s. £4 statistic
when used to estimate a parametric function © ()\’,) is called an 'estimator!

of 8 It is called an ‘'unbiased estimator' of @ ifand only if {(iff, for

brevity)
E(T) = ¢ TP =@ (}5), for all values of Y . . (94049)

An estimator of & which is not unbiased for 6 is called a biased
estimator.

an estimating a p.f. & by an estimator T defined over a design D,
‘(T's -8) fi.s called the 'error' resulting, for the sample s, in the estima-

tion of ©. A convex function & of (Ts ~ 8) is usually teken as the

'loss function for the estimation, and E(G) = GsPs is called the
s€3 -

' . .
expected loss'. A cormonly used loss function is the mean-gquare error

(defined below). We shall formulate our problems in tcrms of this loss
function only though most of the definitions and conélusions given here

-apply broadly to any convex loss function.



The 'mean-square error' (nes.e. for brevity) of an cstimator T of

0 is

M(T) =E(T -6)" =S T° P ~005S TP + o2 ... (24943)
s 8 '8 s s 8

If T is an unbiased estimator, (ce2+3) is called the 'variance' of T,

and can be written as

v@E) =z 10 P -0 (002e4)
S

[y

1
both defined over D, T1 is said to be 'uniformly better' or sinply

Given a design D and estimators T, and T? of the same p.fe @,

better than ;L‘/T if and only if
m(Tl) < M(T?), for all X: .+ {90945)

with strict inequality holding good for at least one value of P
~8imilarly for a given design D and a class L of estimators of a pef.

9, all defined over D, a member T, is called the 'best' in I if it is

1

better than every other member of L, iee.

M(T,) <M(T ), for all T (¥T,) € L, and for all Y . {94946)
17 = o o 1 ~

A design D together with an estimator T of 6 defined over

the design,is called a 'strategy' H for the estimation of ©. Thus

=H @D T)=H (5, P, T)
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A stratecy H (3, P, 7) for the estimation of & is said to be

unbizses if T is an unbiased estirator of &, {therwise it is called
i H N

!

a biased one,

The m.s.e. or variance ¢f @ strategy H, denoted by 1I(£) or V()
as the case may be, is define’ to be the m,s,e, or variance of the
corresponding estimator, fnalogous to (2.2.8) and (2.2.6), a strategy

Hl is said to-be better tiaan ancther strategy Hz cost being ignored,

if
() < M(Hg), for all Y -.-(2.2.8)

and Hl is said +c be best in a class 1:1 ifj'
%

M) CHE,), for all E, ¢ ) and for all Y . (2.2,9)
With respect to a design D, a p.f. @ is estimable if therc‘exists a
T unbiased for @, For any-sampling design D=D(S,P) we define ‘the

'inclusion probability' of U, by

T, = T P .(2.2.,10)

where the sum on the r.h.s, is taken over 211 samples that contain
e

Ui at least once., Similariy the 'joint inclusion probability' of a

pair (Ui’ Uj)’ i# j, is defipec by

Ty = z R# ¢ (2.2.11)
85 201,]

wiere the sum on the r,h,s, is taken over all samples that contain

- both Ui and Uj' It seems to be well-imown that for the estimability
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of the population total

Y=3IY, ~(2.2.12)

Y, 0 (2.2.13)

a'set of necessary and sufficient conditions (n.s.c. for brevity) on

D is that
m, > 0 for 1 i (N c(2.2,14)

It is also assumed in the literature that a set of n.s.c's for the

estimability of the variance of an unbiased estimator T of Y is

that

mo >0 for 1 £ 3§ <N .+(2.2.15)

The author is not aware of formal proof of this later contention in

a general set up.

In § 4, 1 of chapter IV we give formal proofs of both the results

given by the conditions (2.2.14) ani (2.2.1%).

We shall now turn our attention to what are called linear tstima-

tors,

Infthe classical theory of estimation from infinite populations,

a linear estimator for a sample of size n iy defined as



'
i Vi Ly (p. 2015 )

where Yqe y?,u-, v, are independent observations onqd\ and

€y cp,---, c, are constants which are independent of the samples 1In

this case it is known that for any given sample size n, in the class of
)

- . : . 7 .9 .
- all linear unbiased estimators of ; (ﬁ), the estimator

B |-
Ll =]

L1t
¥, (000415")

y =
has minimum variance.
However, there is an important difference between the classical

theory for infinite populations and the theory for finite populations,

which we can call the distinguishability of units in the case of finite

populations. Where as in the classical theory) two observations having

the same value for y are both taken into account, in thke theory of

finite populations it does matter whether these identical values Of%
@re observed for the same unit or for different units of the population.
In the former case no new information regarding a parametric function

#® is supplied by the second observation while in the latter case it is.

This fact first came to light from the results of Des Haj and

@hamis / 8/ and Raja Rao (c.f., foot note on prooa of /17 ))Basu L1/

ﬂnh are given below as

(9.2-1): For simple random sampling with replacement, of a

oren
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fixed size n of units frogsialv, the mean over the distinct
units in the sample is a uniformly better estimator of the population

mean Y than the mean over the entire sample,

We may stress here that this departure from the results of
classical theory is due only to the distinguishability of the units

and not due te finiteness of the population,

It is evident that the estimator

- 1 :
‘s —— Ity +2.2.16
YT Y] ( )

where us ~is the number of distinct units in the sample and the
sumration is over all distinct'units of the sample, is not of the

type (2.2.16). In (2.2.16) the coefficient c, attached to the ith
selected unit is equal to 1 or 0 thus depencing on the sample in two
ways:— It depends (i) on Sg’ the effective sample size of the sample
s ond (ii) on all the units selected in the first (i-l) draws, being

1, \MQ1 . .
- if }ﬁ s not one of them and 0 otherwise, Thus there is a

)
8
breach between the classical theory and the theery for finite popula-

tions and hence the need for defining gfresh linear estimators for

the latter case,

The first attempt in this direction was due to Horvitz and
Thompson 55257who defined 2 classes of linear estimators, Typical

mecbers of these three classes are given by
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T, = ¥ B, Y . (2.2.17)
Ty = I ey, ...(2.2.18)
1w}
and To= B, ¥ Y ~{(2.2.19)
3 .
52 Aes A

Vembers of the first class have coefficients depending onlyzr’éhe UX 's
tc whose variate-values they arc attached. Members of the second
class have coefficients Bi for the variate-value of the ith selected
unit where Bl,..., Bn are given in advance fer sampling n units,
Members of the last clasghave a single coefficient (which can be

calle¢ the inflation factor for the sample)., A typical example of T3

is the ratio=estimator,

. The next attempt was by Godambe [1__17wh6 generalised these

concepts and defined the 'general linear estimator’ in a design

" D=D(8,P) by
Y, | .f2.,2,20)

where the suffix ‘s’ denotesthe sample. The coefficients B's to be
attached to the variate values depend both on thc sample as well the
@its to which they are attaclhied, but not on the variate values Yi's.

| They are thus given a-pricri. Bvidently ¢.2.17), (2.2.18) and (2.2.13)

are spedial cases of (2.2.23). We shall call (2.2.20) the 'general
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homogeneous linear estimator', (g.h.l.e, for brevity) since (2.2.20)
is a homogenecus linear function in Yi's. Fecently Koop ﬁi7,proce—
ding from an axiomatic set-—ul;, defined seven classes of linear estima-
tors (these are also homogeneous linear estimators), Iowever all of
these are again only special cases of (2.2.20). 4 g.h.l,e. is thus
characterised by a double sequence 2(857\% of coefficients with

1<

ZaN

N and s D.

Several interesting consequences followed the definition of
g.h.l.e, as given in (2.2.2G). It can be casily seen thgt the condi~
tions for T of (2.2.26) to be an unbiased estimator {g.h.l.u.e., for
brevity) of the population totalL Y are given by

z B, P =1, 1 {<ALKHN .. (2.2.21)
8O\

where the sum on the l.h.s, is over all samplescontaining the unit

Uk' Yarther for thke variance of Ts we have

N, - N
2 .
V@)= 3z Y, (2 g, P-1)+z3 v, ( T B, B, ,F-1)
8 A=1 A s\ 8\ s 7\747\' ATA S sk s\''s
. (2.2.22)

Godambeﬁl7then proved the

7_\Theorem (2.2.2): - Tor any general sampling design D, in the class

I‘h of g.h.l,u,e.'s there does not exist one whicir is best.
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This theorem as given By Godambe is not strictly correct because
there exist nontrivial samplfng deéigns for which there exists g beot

estinator in the c¢lass L, given above i The theoren (2.2.2)
3
thus necds a slight pedification. This rnodification, clearly charac~—

terising the exceptional cases, is given in § 7.2 of Chapter VII.

The nonexistence (in most situations) of a best estimator in the
class of gehel.use's does not seem to have been noticed by some authors,
since in a number of recent papers dealing with estimation by sampling
from finite populations we find statements like '... is the best linear
estimator ««.' . These gtatements are thus incorrect unless one starts

with some other definition of bestnesse.

Note :~ We shall henceforth concern ourseclves exclusively with
unbiased estimators only. For the casc of estimating Y (or any linear
function of yi'é)we shall further restrict ourselves only to Lu, the
class of gehel.usc's,

Having thus noted the non-existence of a best estimator in the
class Lu of gehelouse's of y  for most sampling designs, the next

logical step is to weed out 'bad' estimators.

With respect to a given design D, an estimator T of an estima~
ble p.f. 6 is said to be 'admissiblef if and only if there does not
exist another estimator T' of @ which is better than T, iec. given any
T 6! T) € Lu’ ﬁhere egists at least one value ;%' (depending on D and

T and possibly on 7' also) of Y such that
~J

V(1) | < v(r') ,
Yl Yi



where both the variances in the above are evaluated at Y=Y' .
~ ~t

Otherwise T is said to be 'inadmissible' (i.c., 'bad').

’ Towarés the elimination of these igadmissible estimators there are
important advances recently. Theoren (9s9+1) of Des Laj, Khamis, Raja
Rao and Basu proves that for designs obtained by simple random sampling
with replacement with a fixed sample size; the uﬁweighted sampie mean
(which is the conventional estinator) i inadhissible being inferior to
the unweighted mecan over the distinct units of the sanmple. Murthy'15547
proved that for FPS sampling design D an estimator which depends on
the order of selection of units — an ordered estimator, for brevity -

is inadmissible. Finally Roy and Chakravarthy ZT3647 proved the

Theorem (9s9¢3): For any sampling design D, an unbiased estimator of

Y which is either an ordered estimator or depends on repetition of a

unit in a sample, is inadmissible.

Des Raj and Khamis obtained their result by direct calculation of
the variances of the two estimators concerned. The proofs of Murthy
ant Hoy and Chakravarthy are constructive in the sense that given any
unbiased estimator T (of €) which is either ordered or depends on
repetitions, they showed how to construct a better estimater T' which is
unordered and is independent of the repetitions of units in the sample.
3asu ang Raja Hao proved that the uncrdercd set of distinct units of the
sample -~ the effective sample, for brevity — forms a sufficient statistic

for the estimation of a p.f. © and deduced their result from Rao=-3lackwell

theorem (Z§ﬁ§7:é£ii7)' The proofs of Murthy and Hoy and Chakravarthy
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while not bringing in the notion of sufficient statistic explicitly,

use the same techniqués as used by Zao and Blackwell.

It may be remarked that Héjek:[fl 647 seems to have anticipated
theorem (9;9;3)1 Some of the essential features of this theorem are

also traceable, though in a disguised form, in a much earlier work of
Halmos / 17 /.

Examples of direct application of theorenm (9.9-3) to a number of

particular cases are worked out by some authors recently.

It may be mentioned here that theorem (94943) furﬁisﬁes a compa-
rison among various estimators of a pefs ® all of which are defined
over the same design D (in which @ is estimable). It does not furnish
a comparison among various designs themselves. For a comparison between
two designs D1 and D? (in both of which & is estimeble) we should
first compare their costs in terms of a reasonable cost function.

(This point was over looked for sometime while making comparison between
'with replacement' designs and 'without replacement' designs)s After
equalising the costs if 'best' estimators T.

1
D? then one can say that D1 is better than D9 iff

S\ t ? 5“:7 [} i
{Hl (Dl,Tl)f £V JH, (Dg, TQ)S , for all\f

and T; exist for D1 and

A

with strictly inequality occurring for at least one v « Unfortunately

there are not many designs in which a best' estimatofwexists- A natural
definition of betterness of D1 over D? should then be as follows: D1
is said to be better than Dp iff given any Tp defined over Dg there

exists a T1 defined over D1 (and depending possibly on T?) such




A

that

V-\{Hl (Dl", Tl)f LV ?HQ (DQ, T2)f for all \/~ - (2094903)

with strict inequality occurring for at least one Y+

ot

This point does not seem to have been noticed by a number of
~ authors who remark 's.. it is well known that sampling without replace-
ment is better than sampling with replacement ... '. They base their

conclusion usually by comparing some two estimators T. and T9 for

1
which (Q;.Q'-QB) holds goods This is clearly illogieal. It is for this
reason that we stress that estimator and design should always be consi-
deregl together as one "strategy'. We are not aware of a proof that
sampling without replacement is better than sanpling with replaccment

even for simple classes of designs like those generated by simple

random sampling.

A cost function which is reasonable one inmost of the casces of

unistage sampling is given by

C,=Au +B .+ (De0e04)

where A and B are constants independent of the sample s € D. The
cost of a strategy H (S, P, T) can then be defined as the expected
©ost of a random sample from H thus:

CH) = = CsPsaAu(H) + B.
s€S
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Two strategies of same cost are then comparable from the point of
view of their variances. Between two strategies of same cost (i.ce
same value of L) and with same variance we prefer, from a practical
point of view, the one in which the variation of the cost over diffe-

rent samples is smaller is.e. for which V(ué) is smaller.

Given a design D and a class L1 of estimators (of an estimable

p-f. 6) defined over D, a subclass L, is said to be 'complete! in L

0
for 6 iff

- . .
T, €Ly Ty ;!LO > 4 To €Ly 7 V(Ty)) <V(T)) for all Y

L~

Obviously for the estimation of © by means of membe rs of L1 we need

restrict our search c¢nly to the subclass Loo Since it is known that in
the class Lu there doesnof exist a best to estimate Y, interest
centers round in finding a narrow enough complete class in Lu and we
may then enforce some further secondary criteria of bestness to get hold
of a small class of optimum estimators. It can be seen that the ciass
A.u of admissible estimators of Y forms the minimal complete class in
Lu- However, a complete characterisation of members of Au is lacking.
Theorem (9¢943) gives necessary conditions for an estimator to be
admissibles It seems quite plausible that they form a set of suffi-
cient conditions also.

In § 743, § Te4 and § 745 of Ch.VII we nake a systematic investiga—
“tiontion of thke problem of estiﬁating linear parametric functions with
special reference to the estimation of the population totaly, We show that

the criterion of smaller mean square error does not autonatically exclude
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biased estimators}at any rate not so in preference to the class Lu. We
‘then prove the existence in most designs (specifically for all non-~uni-
cluster designs =~ cefs § Te4) of non-linear unbiased estimators and non-
honogeneous lincar unbiased estimators of linear pe.f.s. Purther these
estirators which do not belong to Lu can be chosen to be funct%ons of
order statistic alone so that there is no known rethod by which they cen
be proved to be inadmissible. In fact as remarked towards the end of the
last paragraph it seems likely that such estinators are also adnissible.
Finally in § 7«5 we introduce a new criterion of thyper-adnissibility'

and prove that for any non-unicluster desigﬁs;not only in the class Lu but
in the cntire class Lp of polynomial unbiased estimators of Y, there is
just one which is hyper—-adnissible and which is therefore the 'best' in I
under this criterion. This best estimator is the Harvitz and Thonmpson « ..
estinator ZTQZJ7 corresponding to the given design and estirates adnissibly
not only Y but all estirable linear p.fe In § 7e4 we also completely

characterise the class of all adnissible estimators for any unicluster
design and notice the inportant role of Horvitr ond Thoripson estimator

in this case also.
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8 2,3 Optimam utilisation of auxiliary information and Dayes'

solution

Throughout this section we shall restrict our attention only to

the estimation the population total Y. We alsc take (2.2.24) to be

our cost function,

We have seen in § 2,2 +that with the criteria of unbiasedness
and minimum variance alone we de not have a best estimator nor do we have

[}

a narrow enough class of strategies to which only, we need restrict our
attention, IHowever, this desperate state of affairs prevails in the
sdtuation when no apriori knowledge, however imprecise, is available

When an auxiliary information

about the variate values Yl""’ YN'

on a variate ¥, which takes the values Xi on Ui (1 <i(N)is
available beforchand by slightly diluting the criterion of bestness
this information can at times be utilised to get at an optimum
sampling strategy to estimate Y. The nature of this utilisation
depends on the relationship between X and 3} i

When information on ¥ as available completely heforehand it is

at times possible to make some plausible guesses about the relative
maznitudes of the variate wvalues Yi's. Whether these guesses can
always be formulated as apriori distributions is a controversial

point about which we do not propose to enter into a discussion here,
There are, however, a few situvationsin practical problems where such
fornmulation in terms of an apriori distribution is plausible, at least

partially., This concept, borrowed from Bayesian inference, is first
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introduced into the sampling theory of finite populations by
Cochran [3_7 who called it the super-population concept. In this
set up the actual (though unknown before the sampling strategy is deci-

‘ded upon) value of the vector

rg - (Yl’ Y9 0.', Y}})

is supposed to be the realisation of a N length random vector having

a certain distribution. We shall then treat Y as a random vector and
~

accordingly consider various quantities like expectati‘ons, variances

and covariances of components of Y . The distribution of Y depends
~ . -~

on
i: (Xl, Xp’ ..', XN)
begides possibly on some unknown parameters. e shall call the distri-

bution of Y given ‘)u( as an 'apriori distribution' and denote it by
~

9. We denote the expectations, variances and covariances taken

over 0 by a suffix '3' e.g. Ea, Va, Ceva etce

We shall now weaken our criterion of bestness thus:

For a given ceiling € on the cost (which is equivalent to a
ceiling on the expected effective sample size W, cof (ps9s04) we consider
the class Heu of sampling strategies such that if I = H(S, P, T) eHep,’
then

i) T is a heleuee of Y

ii) C(H), the cost of the strategy =C. . (04341)

(icee) u (@) = p
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[z}

For any strategy X = ii( 8,P,T) in which the estimator is

unbiased for Y, we consider
TV (H)
d

to be our loss function, If in the class of strategics HF ) of the

strategics there exists one ﬁopt such that ey

Ed A\ ('dop_t) < EO V (#y) for all K, € H(ﬂ9 and

ep
for all % .. (2.3.2)

¥

then we call do to the a-best sampling strategy in H&’ or that

pt
. e M .
We thus consider the expected variance of

ﬂopt 18 j—optimum in ¥

gy
i over the apriori distrightion 9. It is important to note that the
assumpticn of the existence of a prior distribution § is relevent
only for a proper choice of the strategy and that the ultimate state-
ment of the inference of about Y by means of an estimate of Y
together with an estimated variance of this estimator of Y depend
completely on the basis of the observations, as they hold good for
any sampling stratcgy., It is only the validity of the optimality of
the strategy adopted that iBs.dependent on th: prior distribution g.
“his optimalitly which is interms of minimum expected variance can in
its turn be given as a rigorous probabilistic statement, according to

some statisticians while some others dispute it and here we shall not

enter into a discussion on this point,



If (2.2.2) does not hold good for all X we may then have to
Iavd
assume some further models for xJ which in their turn will restrict
¢ to a narrower class, If howcver (2.3.2) is satisfied for some

Hopt eehm (therc can be more Ehan one sygch in the C1HSS€E«<V)) we
choose ne §mch ag our strategy., It is important to ncie that we

derand (2.2,2) to be satisfied not only for all X but also for all

pesible values of other parameters, if any, that enter into the apriori
digtribution,

It may not be necessary to formulate completely the prior distri-

vy

buticn 3, for the existence of Hopt in hﬁﬁ" Two important fesults

in this direction arc dac to Godambe ,[11_7&1@ ildjek [15_)__7 we shall
describe them below, Let Z)\'- be the class of prior distributicns G

for which

X,
i

&t
= %

i) B (Yi 'Xi)

vl

- 2
i) vy, 1X) = o X

i ...(2.3.3)

DO

'5
§
\
and iii) Cov(jl (Yi’ Yj f Xi’ XJ.) = @ )

Q' is thus a family of distributions each depending on two unknown

parameters o and 02. Godambe then proved that in the class

d'?u) = H’?u) (8¥ P*, T*) of sampling 8trategies satisfying

i) T ¢ .., the class of g.h.l.u.e's

- (2.3.4)

&
=
—
E
N
IA
)
NPT TN e

oy |

and iii) w, = B for every sample s ¢ 3
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s

) =3 5 , o 1isfri
any Hy 4 0.1 (5‘0-1’ P01’ 10'1) € (0 and satisfying

. X4
i) m (g) =g b

X
.. - {
and ii) To-l— YHT \ L. (me345)
= 5 32.\_
AEs A

’

is 8,~best, with respect to any prior distribution CH EA‘

L

We briefly say that H, , is A‘-—best in ;(

W
/ . 3 0 -
HJajek considers the class A;)_Of priox distributions 69 which

are more general than (9+3¢3) and for which

i) E, (Yi I xi) = aeX

o (1 <i*j < N)
. R o
ii) Vap (Yi I xi) = o % ,{>+348)
and iii) COVaD (yi, Yj X, XJ.) =w (li=il)} ]

where w is a convex functien of | j-i [. Thus the covariance depends
“only on | j-i |. Clearly A' is a subclass of A}/- Hajek proved that

with respect to any 6, € /\.s in the class Z(U’) of strategies defined

: ) I v = T (o)
by .(9'3.4) there is only one H ., L (0602’ F,.

09 ~optimum and that it is specified by

: TO 2) which is

el

. o4
) my () = Fov

-

Y
ii) T = § A
0e2 p€g o

and iii) The design D is obtained by systematic sampling to
0.2

achieve (i). Clearly the strategy H is a member of those satisfying

0.2
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(pe248) as it:'é;i]ould be since A\ is a proper subclass of AZ_ In
this case therc is just ome [_1\2-: optirmum stratcgy which is com:zletely
specified. Mot only the sampling design but alse the corresponding
sempling method is fully swvecifiecd. Hence we shall not discussthe
result of Hijek further.

Zeturning to Godambe's result, we shall indicate tne various
steps that lead to the final result to clarify the problem further.

Ylith respect to a given prior distribution 3 for any design D,
and in the class Lu of geheleuse's defined over B}any Topt (if one

such exists) is said ‘o be the {2, 8) optimum iff

" VD) = m \ 3 D T
Mag 7{) E, v (B, T < 0, V{5,T) for any T € L

3

end for all values of X
~J

.. (243.7)

0f two designs D, and D9

1 D, is said to be better than D (cost

)

being ignored) iff

ﬁa V() < f«:’a V(DQ) for all X. Similarly the

2

\

9~bestness of Dl in a class of designs, theA ~bestness of Dl over
D and the A ~bestness of Dl in a class of designs are defined for
any class Kl of 0's,
Let now Az’be the class of prior distribution 63 for which
i) Ea3 (Yi i xi) =aX
ii) Va3 G 1%) = o ‘ (43.8)

iii) 53'763 (Yiy Y,] ! Xi’ X.]) = 0

Asis thus a wider class than A where we do not assume anything
!

about the conditional variances.
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for a given cost
C=Au+ 3

ised for a given integer M, let Deu’ be the class of designs such that

N
B (u)= 2 o= i, ~ (24249)
1

p(W

be the class of designs such that

by = B for every sample s, - (243.10)

5 )

be the class of designs such that
X
m = b . (2+3.+11)
and finally D(“’n) be the class of designs satisfying

p,s = U for every s

- X . (2+3410)
= g 2D
and TE)\ Mo X
clearly
e = (2+3.13)
and o 2p™ > 5w
Godambe then proves that for any pe p(Hs™) + Ty 08 defined by
— %
(24347) is given bjr"ﬁYHT of (243+8) and that
.;. N o ,1 ‘
E, V@) =zo (= =1)
% 1 A
for any general sampling design D he then proves that
_ oY .1
E. VD) > 2o (= =-1) . (243.14)
% T AT

He then concludes that the lower bound for Ea V(D, T) taken over
3



3

T € Lu is in fact attaincd for desigm P € B‘(u'n)« Further, ninimising

the bound om the reh.s. of (2¢3.14) subject only to the condition

N
L mo= U
1 A

he concludes that if 8y €/\ i.c. if it further patisfies (ii) of

(3.3.3)'then for whatever sampling design D' € D(ﬁ)

. vpe D(“’“)) CE. vi') . (943.18)
3 =79
1 1
% .
The author [2 0_7 bas proved that while Y.-‘T is ‘A5- optimum in the
class D‘p"n) of designs (as proved by God=mbe), the class D(u’n) is
‘ *
As—optimum in the class D("), for tac usc of Y, , ises
* p * )
maa V(Dl, YHT) < maq V\DQ, Y . (0+3.16)

for any DIED(u’n) and D9 € D(n)- This result is given in § 5.2 of

chapter V.
(w,m)

%hile Godambe proved the A -~optimality cf D in the class

!
D(“), it can be seen from the minimisation that lead to (9¢3.+15) from
' \
(2¢3414) that he has in fact proved the A'—op'timality of D(“”" in
the wider class Deu of designs for which the .xpected cost is (.

This fact was not clearly noted by Godembe in his worke We thus have
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of designs

Theorem 2.3.13 ior any g € A‘, the class v
satisfying (©.3.R) is 31—optimum in the wider class Defg) satis{ying

(2.3.13) which are chafacterised by an expected cost ¢, The best

*
estimater in this optimum class of designs D(IJ«;TE) is given by Y

, ur #°
. 3.5
given by (2.2128).
qi)
Thus we can actually replace the condition (ii1) of (2.2.4)
(v

by a weaker condilioen viz}\ 2.3.13).

The author [’3-97 has given a direct algebraic proof of a

special case of this theorem by proving that for = 2, the strategy

*

o Y “ (,m) 4
(Jl, YHT) where Dl ¢ D is better than H(Dz, YSD) where D2

is the sampling design obtained by taking two units from the popula-
tion with probabilities proportional to Xi's and without replacement
*

and 1SD is the symmetrised estimater of Des Raj /[ (‘3_7 as given by

lurthy /__-?f‘_—/ . The magnitude of thiy difference is given there in,
4-S
This result for its own algebraic interest is given in § 5.3 of

chapterlVv,

It is of interest to find cl asses of plausible prior distribu-
tions like A_‘and Azf_or which optimum strategies._exist . Another
direction of research frem the practical point of view, is to generate
these optimum strategies in the cases where they are proved (as in the
results of Godambe and Ha/xjek) to exist, While Héjek's optimum stratlegy
is completely identified, that of Godambe is only partially specified

12
by (2,3.8), It is therefore of interest to find suitablc sampling



,
[$\]

designs which satisfy (2.3.12) for given values of U, SPID SYRTEIID &

end which can be obtained in simple wayse This probler has in its

own way attracted the attention of several authors even prior t{o the )
Coadman $Hish [/37

publication of Godarbe's reaults. We pention the works of,loreitz

and Thompson [22_7, Yates and Grundy [2197, Durbin [__9_7, Grundy

(147, DesRaj [T_7, Stevens / 39/, hoo, Eartely and Cochran

[357 and Felligi /10 /.
The author's contributions to this problem arce given in
Chapters IV and V and some related problems arc considered in

Chapter VI.



§ 2.4 The Horvitz and Thompson's estimator

Before reviewing the work of the earlier authors and giving our

results we shzall panse Tor a while to examine the estimator
ggH'.r= bt A o (2.4.1)
Aes ™

of the population total T, that plays such a central role in
Godambe 's as well as Haf{pek's results, The estimator is based only on
the distinet units in the sample and is independent of the order of
the units in the sample and hence can not be uniformly improved upon by
the methods  of Murthy or Zoy and Chakravorty. 1In fact it is proved
by oy and Chakravorty and independently by Godambe ﬁg_—/ that it is an
admissible estimator and hence can not be uniformly improved upon,

In fact as we shall see in 8 Te2 of chapter VXTI if for any sampling
|

§
flat, soupling: dosigng 4o which 1t 10 ti tooh Tido Ao gstlystion g

*
design a best estimator exists it can only be Y'HT “hndithat- there
i
procedure (an estimator having to be defined over a design D) which i
gives ar estimator applicable in any sampling design D in which Y is

~

estimable, The condition for the later ig that

7[7\ > 0 for all )

(This later condition, however, is not due to the fact that 71‘7\
- oceurs in the denominator, because it does not occur se, unless there is

- asample s containing U

) in which case T > 0). It is criticised
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sometimes that.if is not a 'reasonable! estimator in the sense that
even when _ YA'S are exactly proportional to ﬂl'sg (which seems to be
the ideal situatiocn and is a special case of a 3(:’% [:)‘ for which 62
of (2.3.6) is zero) it does not have zero variance having o component
¢t 5.2.4
of variance due tc variations in p,.A’t should however be noted that
the Aroptlmallty of this estimator is not proved in its own way but
cnly in conjunction with a specific class of sampding designs D(u’ )
satisfying (2.3¥@) in which designs it has zero variance since us =
for 211 samples 's' of those designs. It is for this rcason that we
gtress that an estimator or adesign should not be taken as separate
picces but should always be considercd together as a strategy. The
ouly logical way of defining the supremacy of an estimator Tl over ano-—
ther estimator T2 is to establish that the cstimator T1 applied
in the design D(Tl) which is optimum for Tl is superior to the
estimator ”2 applied in its own optirunm design D(Ta), by putting

constraints on D‘(Tl) and D(Tz)through acost function, A similar

argurent: holcs good for a comparison of designs also.

*
We now turn to the variance of YHT' This is given by

N Y2 N

Y. Y,
" A _ g2

o1 A

21'TL)\+N
n=) w%"‘x

X
7 ()

- Ty o)

.-\242)



*
For an unbiased estimator of V(YHT-) we have

X% 2 f_"f_x_ LY (“M"n-x“x')
VHT(YHT)— g Yy g+ T T -
Aes T War e S
' S

. {(2.4.3)

The derivation of this follow straight away from the unbiased-
*
ness of Yht by merely arguing for different populations, and this is
“also due to Horvitz and Thompson, This has been criticised by Yates and

Grundy /4 0/ on three grounds viz., (i) it is not reducible to a
Y. Y

Y. .
linear function of (:c—l- - :I-"-)z's (ii) it does not vanish when
[ 1 ] J.
Y, Y.
—= = forall i ;! j and (iii) it may assume negative values,
T Ty . [20

They proposed an alternative dstimator of (2.4,2) for the classof
~

sacpling designs in which

and this is given by

*

Ty = Ton Y, Y, . '
Vel = 5 2 i AL (,—-;l- A2 (e.4.4)
A AR A

AyA'es

of the three grounds on which {2,4.3) is criticised, the justification

for demanding (i) is not clear, Hegarding (ii) we remark that while

Y.
it is true that (2.4.3) docs not in general vanish even when ~L1s  are

i
equal to a constant



; u .--(2;4.6)

x X e
ay (gp) = 22

M T
so that for sampling designs satisfying

YN
LT T = ..-(2.4.7)
A A TR A
(2,4.3) vanishes identically, However (2.4.4) vanishes identically
for any sampling design in this case, MHowcver, (2.4.3) is applicable in
*
any design in which V(Yyp) is at all estimable, while (2.4.4) is
applicable in a restricted though useful class for which us = M fer

all s,
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§ 2.5 Forwilation of the main problem

Jovorao

He have alreac.y formelated our problem ferw—tr&s—'the
end of § 2.3 as that of finding sampling methcds that generate

-

designs satisfying (2.3 \ﬁ), for given values of Tyreess Ty which
are proportional to known auxiliary information I{l, ooy XN’ the
constante of proportionality boeing equal to the expected sample size
which we wish to have, This is so because we know that these designs
together with the estimator (2.4,1) defined over them constitute

A -~optimum sampling strategies, There arc however some further
conditions that we may like to demand. Usually it is not only of
.interest to estimate Y (which we are doing in a A.-optimal way

by selecting designs satisfying (2.3.3\),and using §M) but also of
interest to estimote the veriance (2.4.2) of our estimator., For this

a necessary ans. sufficient set of conditions are (C‘-f- .§7 3)

Tagr > © for A\ = A" ..-{2.5.1)

Again since (2.4.2) being a variance is a non-negative function it
is reasonablc to demand that an estimate of the same be found which
is always non-negative, If the 01“-m ¢f designs we are choosing are

'
any way satisfying (2.3.8 then (2.4.4) can be used and the conditions

for the non-negativeness of (2.4.4) can be easily expressed as

r ! D,
Tyt & T for all A # A ( 2)
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The conditions can not be written in easy form if we wish to use
(2,4.3), A set of sufficient conditions for {2.4,3) to be non-negative
‘for all positive values of Yl""’ YN (in fact these alone can be

Jﬂ?ritten down as are of interest to us)

Tapr 2 Ty, for all AA N (2.5.3)

but these ar: not a consistecnt set of conditions if strict inequality
occurs at least once., Ior, it can be easily shown that in any design

D having a constant effective sample size of |, wc have

()
D
Dé Z‘rc)\= U

x';}}x T = (#-1) "M -0 (2.5.4)
and PHDX =0 ;-1
N A M A

If 17\7\' > n)\n)\, for all X ;/ A', and strict inequality occurs

at icast once ‘we have

T T > §om (u‘n) pe -3
' .|’J‘I — - -
N A Y y A )

which together with the last cquation of (2.5.4) yields

>
v
=

which is clearly impossible since 2 < T m = M, each n)\ being

A

>
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a positive number not exceeding 1., We shall therefore use (2.4.4) to

. . *
extimate V (YHT) .

While getting an unbiased estimator of V‘&HT) we would like
to have cne which itscif has a small variance so that our estimated
error is a rcliable one, Tor this it canm be scen intuitively that
nM"s ghoul& not bfg too §mall as they ocm;r in the denominators in

both (2.4.3) and (2.4.4), If there are some 's which are very

KXY
small (compared to TEXRK') thgn the correspm}ding terms in (2.4.3)
and (2.4.4) will be very large. But sincé (2.4.3) and (2.4.4) are

unbiased estimators of the variance, they have to take small values
also for some other pairs (i,3) so that thc estimnators (2.4.3) and

(2,4.4) of the variance (2,4.2) will be highly variable, It is thus
desirable to have an,'s while being less than w7, , (if it can be

A
helped) should not be too small 1i.e,

5

2!
Ty o\ 0

should not be too small A\ # \' - +(2.5.5)

For the estimation of V&ET)’ using either (2.4.3) or (2.4.4),
we need the values of Tyt 's, It is therefore nececssary that the
sampling design (or equivalently the sampling mthod) which we are in
search of skould not only satisfy (2.5.1) but zlso yield foruulae for
75\’\,'3 which are easily calculable given the sampling method (unless

‘one thinks of listing down’ TEM\, 's for all values of A and A\' !).
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Finally, as a matter of practical convenience we may add that
the method that we find should be neat and tractable and should not

v

involve toc heavy cemputations,

We shall now formmlate our main problem thus:

Given a population (Zj_ of N units

on each of which are defined too characters % and %’Whi(:h take the

values
K Xyr e Ty
and Yl’ Y2, cee YN

regpectively, all Xi 's -being positive, and completely knewn in advance,

and given a positive integer | such that

X .
X <1 for all i
Bz,
(this is me cessary since Moo= = ), to find a

sampling method for which the corresponding design B = B (S, P)

satisfies



LR

VA4
i) m = =2 1<agm

o

for all s € 3

L}
iii) m,., > 0 (for L KAA A <11) 4 {24848)
{

.

H—
=
1
=

is not tooc small { ! ! )

vi) % is easily computable from a simple formula

M \
eand vii) The computations invslvei in the method are not )
very heavye.
We have listed down the properties of the design in the erder of
their importance.
Conditions (i) and (ii) given above are the crucial conditions. In
view of the rcpeated reference to the conditien {1) we shall call a

sarmpling design satisfying that coudition as a 'S sanmpling design

(iece the n{s are proportional to the sizes of thc unite) inm analeogy
with and distinct fror. the 'FF3 seampling! (probability nroportioral

=1

to the size) designs that arc now commonly used.
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B 2.6. Zeview of previous work in the chronological order:

In this section we shall briefly review the various solutions of
other authors to the problem of § 2¢5. In what follows, (i), (ii),...,

(vii) refer to the conditions of (2.5.6).

Goodman and Kish [13_7 gave a re thod analogas to systematic
sanpling to achieve given valuces of n}\'s. This consists of arranging
the units in some order, curulate taeir 7 values and then take a
“linear systematic sample by checsing a random number between ¢ and 1
and with an intervalroff'd. This method is valid for general values of
m, 's, satisfies (i)) and (ii) is satisfied approximately. However
(iii) is not satisfied so that the sampling variance can not be estimated.
This difficulty can be overcome by modifications similar to those given
later - in § 5+4« But the major draw back is that there does not exist

a neat way of calculating 7 'ss Hecently, Hartley and Zac [21]

AN

considered a modification of the above procedure by raondomly arranging
the units before drawing the sample, and obtained compact approxima-

tions to Tll}\}\, 's using an asyrptotic theoryyfor large N, on the assump-

B

T for all A.

tion that, there exists a constant 3 such that 71:7\ <

—

Horvitz and Thompsoa [22_7 gave two solutions to the problen. |
The first of then, meant for all integral wvalues of W, is that given
by Midzuno [25_7 and Sen [38] in a different context and consists of
selecting ome unit with probability Py to Uy {1 <A <N) and selec-
ting (k~1) nore fron the remaining (N-1) by simple random sampling

without replacements They then proceed to find the p}\'s so that
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the scheme results in a given gset of 'Tc}\'s- This scheme is valid
only if ‘ﬂi}\ 2 H for all ) and since I 75\= B this implies
that the variation in the sizes is small. In such a situation,
however, varying probability sampling is of littlc usc. The other
solution given for case W= 2, is valid only if T £ 0.25 for all A,
and is based on the approximetion that in sampling with varying
probabilities the expressions for the nh's arc the sanc for sampling
with or without replacericnt. Unless the sarpling fractien is low this
is not a good approximation. Thus both their scheres are of little use.
Yates and Grundy [40__7 gave a solution for W= 2. This also
consists in selecting two units with probability Py for U}\ and
without replacement. The p}\'s are to be found by equating the
resulting inclusion probabilities o the given n}\'s. Thus their
approach closcly resembles that of Horvitz and Thompson for this case
but goes a step further in that it does not assume that the sorpling
fraction is low. However, the solution for p)\'s can only be obtained
by a cumbersore iteration procedure and the question of its convergence

\

is not dealt with. Their nethod thus satisfies (i), (ii), (iii) and (vi)

Narain [28_7 considers two-stage sampling in which 2 prinary
units are to be selected with varying probabilities, Gi's say, without
replacement, n second stage unit are to be selected from ecach of the
selected primary units by sirple random sampling without replacement.
fle then evaluates Oi’s so that the usual sample mean per second stage

wnit is an unbiased cstimator of the corresponding population mean.



This work, however, does not have any direct bearing on the present
study.

Purbin ZT-QQ7 gave two procedures. The first consists of selec-—
ting P units with probebility %% for Ui and with replacemcnt. If
there are repetitions, the sample is rejected and ancther fresh sample
Jof size P 1is selectede The procedure is continued until an acceptable
sarple is obtainede. This method does not ersure (i). A biased estimator
is considered and a biased estimate of its mean square error is given.
These biases may be spall if ni's are nearly equal to each other, as
be remarks, but this situation is not of much imnterest in practice. He
gave another procedure which consists of splitting the population imto
p strate in any monner we like and then to select one unit from each
.8tratun with probability proportional to ni's. This does not result
in final inclusion probabilities equal to 'ni's but an unbiased estinate
of population total is'provided with a conservative non-negative estirate
of its variances The method though given for B = 2 can be generalised
directly.

Grundy'ZT1¢J7 gave a procedure which is a variation of that of
Goodnan and Kish.

Des Raj 4511;7 considers the case P = 2 and obtains the

AT (L<iAggN)

m.'s (L i # j {N) such that T2 0 end I om
i

1]
such that

.20 and E m.o. =7 (LifjgN) (24641)
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by linear programmings The riethod as also the selection of the sanple
s
theoreupon arc very laborious even for noderately larze N. It is of

sone interest to meke a few remarks on this worke. Des Raj obtained the

set of nij's not only satisfying (2+6.1) but also to

T, . ' :
ninipise I I -ﬁ];%—-, subject to (2e641) . .. (2642)
iAj i

* v ‘
He considers V(YHT) given by (2+4+2) and argues that for given values
cof T 's it is mininised for the set of ‘.rtij's satisfying (2¢6.1) and

ninimising
YiY. .
2 Z ‘—""J_ e TC. . (20603)
s /. T ij
g 1]

3ince the Yi's thenselves are unknown he assuries a msthenatical nodel

thus:

Y, =aX, +b (L i ¢N) . (24644)

where Xi's arc known and a .and b are unknown porameterse. e then
“substitutes (246+4) in (2.6.3) which gives (2.6.2). However, if one
assures the mathematical mov‘del (2.644) then any two units U, and Uj
ﬁith % ¢ XJ. can ‘be selected with probability 1, a and b con then be

" found fron (2.6.4)
Y. -Y,
a = =
X, =X,
3 i

b= (Yi,cj - iji)/xjwc].L

and Y con be estimnted with zero varionce, so that the problen is

‘triviolly solveds If however he neant (246+4) to be a stochastic nodel



by

isee
E(, IX;) =aX +b + (24645)

then even under the sinple assunptions that
V(e 1K) = ‘
) (20606)

and Cov (Yi, Yj FX,, :x.j) =

* .
V(YHT) is minimised, for given values of m,'s and X;'s, uniforuly

for 21l velues of o and b, if and only if

XX, X 4 m
gy =2d g, 3 2y =4 g and ¥ —2d
2. TLT, . /. TT. T, e . . T,
igj iy M g Ty ik T

are all sirmlteneously mininiseds If 1 is taken proportional to
Xi ,Rinimisation of the first of there is achived (cefe lermn Be21)
by having P, saoe (iece by = 2 in this case) for all samples, which
is achieved in this case. However one still has %o minimise the last
two terns sirmltaneously which is not what Des Raj has done. If,
however,one likes to take a simpler nodel with b = 0 in (2.6.5)l then
the last two terms are irrelevant (as can also be secn from theoren
(2.2.3)) in which case Des Ilaj's solution is redundant. Thus his soluw
‘tion in so far as it is gives a method for P = 2 is valid (though is
unwieldly) but the optimality properties claimed therein arc not valid.
Stevens [39_7 gave a solution for any integral |1 under the
ossunption that the ni's can be divided into groups of equal values,
each group consisting of not less than P elements. This irmplies
sone sort of rounding off of the X values. His rmethod than consists

of selécting B groups at randor: with probability proportional to the
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total of the T values in the group and with rerlacenment, if a zgrou:
is selected X tinwes, I units fron that group are to be chocsen.‘by
simple random sampling without replacenent. THe gave an estimelor of
the sarmpling variance which again is nes positivVe definite. ilis
solution thus satisfies (i}, 4i), f{iii) end (vii), under sonmc

restrictions on Xi 'Se

e . . . e fo v
Hajek / 16_7 gave & 'simple' solution to achieve i) whieh he

terms as 'Poisson sampling'e This consists of conducting I indepen-
dent bincmial trials, the itk one with o probability of success n
and to include all the units for which the corvesponding trials
resultc in a success. Ne arrives ai this solution through an opti-
mality criterion which is entirely different from ourss In this
case T, = M, 89 that. the variance estimator (2.4.3) due to
Tarvitz and Thorpson is non-negatives. 411 the conditions except

(ii) are satisfied most satisfacterily but the deviation fron (ii)
is so great as to make the procedurc almost useless in practice whore
the variation in actual cest has to be within reasonable limits, and
.also hecouse (ii) is alsc a basic reguirement. The proccaure yiclds

3

sanples of sizes 1 to N end e¢ven & sample of size § can be obtained,
vhen we have to estimate the population totel as G.

Jao, iartley and Cochiran [ 35_7 gave a procedure waich is
‘essentially the same as the latter of the two methods given by Durbin

[9_7, while Durbin edvocatcd that tiic splitting of the population
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inte U strata can be done in any manncr we like bringing in any
additional advanteges that might result in, thesc authors suggest

the population be divided at randon into ¥ strata of approximately
equal sizes. The estimator considered is the same as that given by
Durbin but now they are able to get a non-negative unbiased estimator
of its variance instead of & conservative onc given by Jurbine Their
procedurc thus does not aim ot satisfying (i) but satisfies (ii), (iii)

and gives a non-negative unbiascd estimator of the sanpling variancee.

Felligi [10_7 gav_-e’ & procedurc which is suitable to rotation
sanplings also. This consists of sclecting [ systems of probabi-
lities }pi(k) y i=1l,4.., N ifor k=1,2,..., b and to take a
sarple o:g size U without replacerent using these probabilities. The
probability systems are then scught in o manner ’such that the uncondi~
tional probabilitics of selection of the ith unit equals 1\:}\ /u for
all A and for cach of the | drows made. The computaticns involved
look prohibitive and the guestiocn of convergence of the iteration
édOpted was not investigated. There does not scer +o be a manageable
method to compute the nM,'s. The meth.od thus satisfies (i) approxi:—
imately) and (ii) end (iii). Tor the case P = 2 his procedure is sli.-
giltly sirpler under an additional assumption that Y £ -g— for all i -
‘and of course this is not a serious practical limitation - and reduces
to an iterative solution sinilar to that ziven by Yates and Grundy.

Tn this case the calculation of nM,'s is relatively simple but it is
fot known whether (iv) and (v) are satisfied. The author's contributions

%o this problem mentioned briefly in Chapter I arc given in Chapters

Av and V..



~

choice of an optirmm probability measure on the class ?50 of subsets
of CM , and a corresponding optirnem estinator defined over the design

-

thus ohtaineds rastly, afier obtaining an optimum strategy on the

-

basis o7 some optimality criteria ii tne design of this optirmum stra-

tegy is not fully specified, tne regsalt assures us that corresponding

to any further specifications (consistent with the original ones} that
completely specify the design)there is a mechanism of drawing unit

that gives rise to a design with the given specifications. 3y chqr;six_:,g
these further speciiications in a mumber oi ways we can e thodically get
a number of drawing mechanisms all giving rise to designs satisfying

the original reguirements. 3y properly' choosing these further specifi-
cations we may get a simple drawing mechanism that yields the required.
type of design. This point is iliustratel fully in B 3.3 by means of

an example from the theory of ratio—estimation.



§ 3¢2s DJrawing mechanisms and the main theoren.

We now define 2 drawing mechanism as an algoritin A given by three

fennctions 91 Yor G thus :
b, = b { Y, 5 < ‘% e (245
£ = A 3 ‘11(Ji)7 ‘12\S<k)n o (3( ), J-)/ (3o 1)
In the above, Gy is a probzbility measare onM , 89 that

(@) > ¢ agign l

(2.2.2)
9, (J)=1. | J

1 1

and

TR~

i
‘ 8 defined for a typical sample s, of size k, is a number
gh (y) (x)

lying in {0, 1). ieeo.,
0<ay sy L1 . {(2.2.3)

Fipally, qa,defined only for s:ﬁH's such that gq, (s (,,}) # 0,is a

probability measurs on 7]L o« leece,

q3 (S /11 )9 U ) ?_ t )

and - if.qg(s(k})f“c ;,,,c3.2.4)
L g, (Spy, U0 =1. »
i=1 3 (M) + 7 -

The sample is then drawn vsing the algorithm /A  as follows.

PFirst a urit is selected from ? . according to the measure . If A

i

the samp le thus obtained is Sfl) = Uilg 5 s<1) 1s then imputed in .
Qs ani the valued noteds Ilext, a binomial trial 1s conducted with
probability of s:ccess 4 (s (1))- If the trial results in a failure

the drawing is terminated and 5(1) is taken as the sample. Otherwise,
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C .
a secont unit is drawn from M according to the weasure a, (s "“)’Ui)
< \L
IZ the realised sample of size two thus obtained iz s,,\=2 U. ,U.
3 \2) L 1} *Yy H

2_‘.
this s((‘\ is imputed in g, and thz value noted. Again a binomial
€ J

s o
/

trial is conducted with probabilily ¢f success N (s (?))- 1i the
trial results in a failure the drowing is terminated and s,y is taken
{2)

as the sample. Otherwise a third unit is drawn fronm (A using the
measure g, (s (2)* Ui), and so oite he cycle of operations countinues

[ 4
until 2 sample s is obtained for which s = 0.

F (r) 2 4 { (m))

Thus,drawing a sample of

s

lixed size n is achieved by a 4y vith

d, (s (n)) = 0 for every sample S(n) of size n;

sampling with equal probabilities correspond to uniform measures 44 in
which all nonzero probabilities are equal to each other (for any fixed
s(ak)); end sampling without rejlacement are characterised by qs's

such that

q (S(k)’ Ui)= 0 if ) coatains U,

(V)

We nowv prove our nain

Theorem (3e2.1): There is (1,1) correspondence between sampling
desizns and drawing mechanisns such that if D is a design and A(D) is
the corresponding drawing mechanism, then sampling accordimg to a()
gives T
Proof: Thet any given drawing mechenism A gives rise to a
wiqe design D(A), is evident. 7o vrove the converse, let I=i(3,P)
Be any given design. Let 3, {1 ¢ i, < H) be the sct of all samples s
® 5, whese first element is U, . .
| 1 1l 4
of all samples of $ whose first cloment is Ui and second clerent is
1

(1< ij ¢ iy < W) be the set
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Ui » Bimilarly Si i etce, arc defined. Note that at least one of
2 17g73
Si 's has to be nonemnty. Let further
1
v \ — !.,
:’(11) = \Ji )
1
I . - " - . . <\
Sil.,1,) = (U. ,U, 1 1.,i,,e0- i}
5t I 2) (11! 12) (S 1o rﬁl,

etec., and let their corresponding probabilities be P(il), P(il,i2) ete.

by

Clearly
S = U 93’,
il 1
5, =(U 5, . ) U s(i)
1, Titg
2
8, . =(U 3, .. )7 s(.i
hlg 5, Yitpls 12
3
etce Tar brevity let
OCi = Z ¥ ’ ai i = 2 14 L Je2ed
1 ses,  ° 12 ses, . °
1 172
etcs, s0 thaat we have
1=73 a
iy 1 /
o = o .o+ P(il} \
1oi, it N (8-2.8)
2
o =3 a, . +P (i, 1)
i,i, i3 1iigig LA 1
etee Yo now define 4 by
ql (Uil) = oci oo (3.2.7)

1
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From (3.2.5) and {2.2.2), it follews that 9, 1is a probability

I's
measure on A + Ior samnles g y = 8{1 } of size 1, define

) "oy
o - ‘ P(i : . /,
9, (s(i;)) = 1 ..-—-B?i—- if aii;! ¢ - - - {3.2.8)
\

= cilh:erwise
From {2+2468) it is clear that © < g (s(il)) < 1. Finally define

a, .

(600, 0 ) sl i o ) Ao (e

9 By, U )= O =B\ o9y 8y decey
& 11 . L/}

for 1 <ig <N Again from (342.6), it follows that qq, if definec,
is a probability measure on (/L .
Analagously to (3¢2.8) and {34249) we define 4, and 1y

successively for samovles of sizes €s 3y, «+. suel that for any sample

I . A
811,y ""1)= (U $%°°y U-)
1 k 11 1k
of S, we have
P(il’ MRS lk)

qz <S(i1"") 1k)) =1 = a.

.f . . C [ ‘/8.,\'. D
i Ly iy # . WCe2e10)
' . : ail’ ’lklk-l-l
and Qg (5(11:" ) 11:)r U )=
i k+1 iy .,ik-P(il,.. -,i},)

il gy (s(iy,-.-, i) A0 /- @B.2.11)
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From (2+2+6), (2.2.10) and {3e¢%e1l) it followsthat gy, lies in (c,1)
and that 4y vhenever defined is & orobability measure on'{ﬂ_. Thus
these q's satisfy (3+2¢&), 84243} 2nd {2.244). I by successivel
q ati8Iy \oeded), (Jecedf I \Ceael)eo L DY ce y
. . . 4 . .
applying the algorithn we come acvoss a sample 8dyyee ey lk) for which
qy = O we then terminate the sempling end qq <S<il"'°’ik)’ Ui)'s are

not defined nor are the subseguent qz'sb and 's.

i3
Further since S 1is a countable set, it follows (as remarked
in 3 2+1) that the total probability e samules of size greater tian or
equal to m tends to zerc as m tends to infinity so thet with
probability{the algorithm given above terminates after a finite
nupmber of steps.
From tae construction of the gq's as given abeve,it is clear

)
{4

that drawing units from (’one hy one with replacement according to

the algorithm with the above gq's ,gives the desigan D. Furiier,any

- algorithm that gives rise to I kas %o satisfy equatiens (2.2.6) to

(3+2+11) and hence the algorithm is umicues

3

The theorem is proved.

We shall say that A4 (D) is Zae generating nechanism of the

design D and D(A) ig the desiyn generated by the drawing mechanism

> e

A
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8§ 2+2. Applicaticn to & problem in ratio—estimation.

‘le have seen that any design ) is generated by a drawing mechanism
(D). If the design D is partiaily specified, corresponcing to any furtler
specifications which are consistent with the given specifications and which
together with them comple’ely specify the design I, we have a drawing
mechanism A () generating a desigr satisfying the original specificza~-
tions. 4 good deal of ingemuity lies ir so choosing these adcditional

v

specifications that the resulting meclhanism N is a simrle one. Ve
shall illustrate this point by neens of a problem from the theory of
ratio-estimation.
, . @
"le consider two real=-valued characters i and d defined for each
unit U, of 7/( . The X.'s f1 <i {H) are known completely in advance.
The problem is to cstimate Y, on the basis of a design D. In some

. . . <1 - .
situation whern the value of g on Ui canr be taken to be an unknown rmulti-

ple of Xi,{“‘but for randem crrors) it is felt that the estimator

v

iratic = ¥ X ves (3.3.1)

where 3;’ and )’E are unbiased estimators of Y and X respectively.

The estimator (2.3.1) is not, in general, unbiased and the problem is

to find an unbiase& estimator of Y,using the information on X alsoc.
fidzuno [?_5_37 and Sen [3§7 considerccd the problem from a slightly diffe;-
r;znt angle thus. They did not insist that Y and X of (3.3.1) should

by themselves be unbiased estimates of ¥ and X. They specified the design
D= B(3,?) partially by demanding that every s € S should consist of n dis—
tinct units only. They then encuired as to what should be the probability

‘measure 2 such that the simple estimator

*
Y =

1o -« £ (3:5.1)

My ey



where
=1 = x
n .
1¢s .
and
- 1 .
y=5 %2 Y
ics

is unbiased for Y. It can be seen that a necessary and sufficient

condition for this is that

@, = L P, = o X for s ¢ 8 S (3.3.2)

&
=}

where s r/8  means that s 1is a permutation of the elements of s,
and « 1is a constant. The above relation is independent of the choice
of 8, out of all samples s for which 8 ~v S, e It can be easily

! . NI\, e 2 a .
seen that o should egual %/ (£ l)a. The conditions (3.3.2) give
ouly a vartial specification of the nrcbability measure and hence of
the design, Corresponding to any further specification consigtent
with (3.3.2) and which completely pim down the design D we have a draw-

ing mechanism generating a design D which satisfies (3.3.2).

To make matters clear, let us consider the case of N = 3 and
n =2, We have § possible samples with corresponding probabilities

thus:



Sample Probability
Uy, Uy) P,
Uyr ;) 2,
(Ul, U3) Py
(U3, Ul) ‘ P,
('U2, U3) P,
and (U, , U2) P

conditions (3.3.2) can be written as

P+ P, = (x1+x2)/2x )
P, + P, = (x1+x3)/2x -+ (3.3.3)
and Py + Py = (X +x3)/2x
Let us now have
P, =P P, =P and P, = P

sc that Y o+ X
o oL

Py =% = —7x

- X Xy

37 T4 A%
and +X
| boop o 2t

5= 6 X

This completely defines D; consistent with (3.2.3). The correspon-

ding drawing mechanism that generates D1 can be described thus:
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X+ X,
19 ) = ——

a () =1

X. + X,
il~:——l for j %'i and where k is the
i ' positive ;pteger §¥§
. - ¢ which is i and Je
q3 (2) 5(1)! UJ) = )
{ 5 if j=1

ql(s(i,j)) = 0 for i#j + o (3.3.4)
It can be seen that not only the initial probabilities are to
be calculated afresh {given by qq) but also the conditicnal proba-—
bilities (ziven by qq) depend on the units already chosen, Tor
larger n this mwthod gives a cumbersome drawing mechanism, However
by putting the further specifications as
Py P{2 =X ¢ X2
D . = T .
Pyt B = At Xy . .(3.3.5)

and : . - .
P5 : P, o= X.2 : X3

we obtain a design 1, consistent with (3.3.3) and for which the

corresponding drawing mechanism is described thus:
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qo -

P4

4 (s(i)) =1 o (3.3;6)

:
|

0O f

Gg (2’ S(i)’ Uj) = if ;17-1 i

In this drawing mechanism only the initial probabilities are unequal
be .

but they neecd not{calculated a fresh, The mechanism consists of

selecting one unit with probability proportional to Xi's and then

to select one more unit out of the reraining 2 units by simple random

sampling, For the general case of N and n, we set

P+ P ot .ot P =X Xt ... XL, - -(3.3.7)
81 85 u J1 32 M
where 811 Sgres.y 8y, are the M = n! samples which are permutations

of + the clements of a subset of size n, and L)j ey (_)j are
. 1 M
their respective first elements, It can be scen that this method of

allocation gives the following simple drawing mechanism,

4 X

(6 6))) = a (s iyip)) = voim g (6 (yiyeni el

{(2.2.8)
4 (S (j-lsig:--ﬂin)) =0

q (K"‘lvs :U-)
3 (k) . otherwise

fﬁ—% it i/sg
=< )
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Verbally this means that the mechanism consists of drawing one
unit with srobabiiities proportional to Xi's and then to draw (n-1)
units out of the remaining {(t~1) units by simple randem sampling
without replacement. The merit of the allocation (3.3.7) thus lies
in the simplicity of the corresponding drawing mechanisn (¢.3.8),

which incidentally was first given by Midzuno /357 and Sen /377

Ye thus see that the problem solved by }idzuno and Sen has
many other solutions all of which can be obtained methodically,
following the proof of theorem (S.i). This is an exanmple of
characterising the design D first (to have same optimum property)
and then scarch for a suitable drawing mechonism to generate it:
Another important illustration of such a method of going from the

design (at times pertielly specified) to the genmerating drawing

mechanism is fully furnished by the problem considered in chapter V.
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OPTIMW UTILISATION OF AUXILIARY INFORMATION -~
COMPLETE SOLUTION FOR p = 2

We shall now turn our attention to the problen posed in § 245 in this
and the next two chaptersb. In this chapter we give a complete solution,
satisfying all the conditions of (2.5.6)', for the important practical case
of sampling two units from o stratum i.es, B = 2.

In § 4¢1 we present a solution under a nmild restriction on Xi's-
In § 442 we modify this method to hold good for general values of Xi's
(subject to 0 < X; <& for all i, these being inherent in (2:546))

In § 443 we nake some remarks regarding our solutions Sorme illustrative
exanples are givens In § 4.4 we compare the method with that of Hao,
Hartley and Cochran and prove that our strategy is superior to theirs
for a wide class L\' 4 of prior distributions that include: xill. In § 4.5
we compare our strategy with that of an improvement [ 26 _7 of Des Znj's
[6_7 and give a direct proof of the & 1 superiority of our strategy.
In § 446 we compare these thfee strategies in our illustrative examples,
both with respect to the time variances and expected variances over ,./_31.
Ip § 4+7 we present two simple solutions of our problen, which satisfy

i), (i), (iii), (#) and (vii) of (2.5.6)\.

§4010 The casc XN"']. = XN

Let P = > (1 <kN)
el assumed without loss of generality that
KPP L Py KB KR <% - (4.1.1)

= P, all the conditions of

#aen undeyr the sole restriction that P
. Ne1 N

{25.6) are satisfied by the
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Sampiing Scheme (A) :~ Step 1. Select two units from the population

with probability Py for the kth unit Uy

If the sample thus obtained consists of distinct units Ui and Uj’

and with replacement.

accept the sample. Otherwise, reject the sample and proceed to,

Q
Step IT : Select two units from [A with probabilities proportional to

If the sample thus obtained consists of distinct units, accept it,

Otherwise, proceed to

Step IIT : Select two units fromu with probabilities proportional to

4 4 4
1! P2, coey PN
1! the sample consists of two distinct units, accept it. COtherwise

continue the process,

In general, if the 1lst, 2nd, ..., (r-1)th steps result in rejections,

at the rth step, the units are drawn with probabilities proportional to

2r-l r-1 | r-1

N

Ve shall first prove.



Lemma 1 ¢t The sequential sampling scheme given above, terminates after

a finite number of steps, with probability 1.

N !
Proof ¢ Let Sr = 4 p]I; , r=1,2, ... ~ (40107
k=1
and S = S,r .

(r) 2
. ¢ _ _
In part1§u1ar, we have oy = S1 1
Let Qr = Probability that the scheme terminates at or before the

rth step clearly Qr increases with r. We need show that

Qr -> 1 as 1 =

We have
N N o,
Q, = & P.P = i -5P =1=S8,=1-25
1 i £ Y 1k 2 (1)
N P P
Q=Q +(1-Q)'E 2 PR
¢ 1 5y B S,
S
2 2
=Q + *;E (SQ - 84)
2
8.5
24
= (@ %) - 3

[}
Pt
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The ebove derivation is clearly explained.

The probability Q2 of

the scheme terminating at or before the 2nd step is the probability Ql

of its terminating
terminating at the

probability of its

Similarly
£ ot
Q2=Q2+(1"Q2)-Z & '—_5—'1
ig) s
. 4
& S
4 4 1 2
= (1~ + . (s, - 8.)
SZ) s, 524 4 8
- 1. .8 _ 8
82 S4 5(1)6<2>

1st step, which is (I-Ql),

at the 1st step plus tke probability of its not

multiplied by the conditional

terminating at the 2nd step, which is 3

2 p2
L BH
S SI

idj "1

and in general it can be easily shown by induction, that

S(r)

S(1> S(Z) ces S(r—l)

0 =1 -

To prove the lemma, we need only show that

®(r)

r = s<1) s(z) cee s(r_1> -

>0

fer r> 2 ,...

as

(B 1.3)

T =) oo,



N 2i ol
From (4.1.1), s(i) =3 B > 2Py
: 1

2 r-l1
‘ r-1 (2 +2° + ... + 2, )
S(l) S(2) e s 0 S(r-l) > 2 » PIJ R 3 . -

r-1 _2%.0
=270, B
Hence

r

5 o

S Pe S, N P
() 2 1
L= 5 (T?.s CToa % - ; =P Z kr r—1

(1) “(2) (r-1) 27% p° k=l 2

N . - Py

As r -> o, each of the N terms of the r.h.s. tends to zero

80 that Lr -> 0. Hence the lemma.

Note 3~ The assumption that PN = PN 1 is necessary for Lr to tend
to zero, i,e. for Qr to tend to 1. Ctherwise, it can be shown that
although Qr strictly increases with ry it tends to a limit which is

less than 1. For, if PV % PN p? we still have

80 fhat

< < r
U(1>s(2>...s(r_1) 5
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and the r.h.s. t.ends to zero as r -> > for 1 <k £ N-1. For Lr to
tend to C it is therefore necessary that
r
P
M = => 0 as 1r =>
r S S oY1 S
(1)7(2) (r-1)
We can write
2 v 2! -1
2 N -N N 2 | [ (1-3.)
Mr = PN. S . S ) < = PN . j— J
(1) (2) (r-1)

where 2j
P
N
0;=1- 5~
(3)
o0
2
However, Lt Mr = Py JJ—_]I[— (1 - aj)’ and the later infinite product

T =)

diverges to zero if and only if the infinite series

(o]

= 9

j=1 7

diverges to oo, But,
: 23 i k k

T r PN 2 PN m ‘ PN
29, = 2(1-5-)< 2 (1- 5) <12 (1-§-—)
1 9 =1 (i) k=1 kK kel k

if m> 2r. The last sum on the r.h.s. can be written as



m 1 m 1 m
N = -
Z K £ 4 K = (1) 2 g
1+ ( =) 1"(1: | .-————lN_”
Sk- PN N-1 ) J
where
3=
< (N-1) + gk
PN .
end ¢ = 7 Since PN;é PN-l’ ¢ > 1. However,
N-1
z k
kel | (B 29 5 L ) o ko> e
Kk k+1 ¢
(N-1) +e
(=] oo
Hence the series X z, converges and hence also the series 2 GJ.
1 1

so that M, tends to a positive limit as r -> oo,

Lerma 2 .= Let

x§r) = Probability of selecting the ith unit at or before
the rth step.
and (%) = Probability of selecting the unordered sample
ij
(ui, uJ.) at or before the rth step.
Then r
L) _op . ”f (41,4
_i = i S ’ 2



e r-1 }
d (I‘) 2P.P \1 Pl?l Pi Pf] (Pl P ) ; (4 1 5)
an " i + + + + [ .o .
J
s
Proof:-~ We have
r-1 |,
(r) 2r; ¥’ 4 4: 2P§ P
migl = 2Py (1= Q). — e (- ) +eee4(1-Q ) 52
h <1> (2) (r.
2 2 ¢ 4 o e oT-1
=2 PP, + 2.8 i + o) ! +‘Mgz,,s‘(r-l)”(”i Py) _
+d 1) ¢ °(1) 32 S,1\E yoyeseS, 1S5
(1) (2) () ()" 7 (r-2)" (x-1)
r—l
P.P. PP (P, P, )
=2Pinl+é'1+sls"+... |
(1 ") (@ 51)%(2)" "5 (-1

| which preves 64.1.5).

Further, since the sample size is two for all the samples,

OOWIEINEY
1 ,]%1 1)
2p2 2 pﬁ 4
=2P(1-—P)+ (s + o5 (S¢p\-P;
Sy (1) - Sa) S2) @
ZPir-l 2r--l
+ [ ] + S - P.
S5 5(e1) (Stre1y B )
o

= 2P, =

i S(l)S(Z) .o S(r—l)

vhich proves (#.d.4). Hence the lemma.
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We shall now prove the main theorem (A) :- The sampling scheme (A)

satisfies all the conditions of (2.5.6).

Proof t- Clearly (ii) of (2.5.6) is satisfied .From the assumption that

P = PN;-l’ it follows as in lemma 1,

N
r
7
> ¢ as 1 ->
S, .S - S
(1) {2)"" "e-1)
so that
X.
mo= 1t 20 oo2p -2t .. (4.1.6)
i 1 1 X
T =) ©

which satisfies (i) of (2.5.6). Further, we have

(r) PP B P ]
LI Lt ny/ =2P.P. )1+ ¢ + 3 +oeees <-{4.1.7)
T oro e U J M ) ) |
J
o]
=2p,P, (1 + ? W)
- where k k
271 2.2 =1
Ry (?Q) .
kS S see S 2 4 2k, Lk
(1) "(2) (k) (2B) (2Py)..- (2P ") 2
go that
0<m .<2PP (1+1+1+}+...)=4PP=n1t'.
ij it j 27278 i i

which satisfies (iii) and (iv) of (2.5.6).



-7

, T, .
Mso x, > 2p.P, = -2
ij i3 2
s 1
so that —xd— ’
LA ?

vhich satisfies (v) of (2.5.6). (vi) and (vii) are also satisfied

fairly well,

The theorem is proved.

The sampling scheme given above thus satisfies all the conditions

T, ;.
given in (2.5.6). In fact nij is substantially greater than 1—-*]—,

2
as is evident from lemma 2, so that we have a non-negative unbiased
estimator of the variance of our optimum estimator, which is itself
very stable, 1In practice it is not necessary to compute more than the
first few of the S's, If only step I results in a rejection, neced we
proceed to find Pi's and 82 to make the selection., Unless the values
Pl""’ PN are all too equal, the scheme results in the selection of a
éanple in the first two or three steps. After the sample is obtained we
ﬁeed calculate Si"s for the evaluation of i from the formule (4.1.6)
term by term. The cglculation can be stopped after a required degree of
fccuracy in the calculation of nij is attained. Unless the sample
bappens to contain the units with large values of Pi and Pj’ this
series given in (#.1.6) converges quite rapidly. At any rate it converges
ot least as fast as the geometric series 2 L .

2k



§4.2 The case of general X 's.
i

We shall new drop the restriction that PN = PN 1

method of § 4.1. The lower bound for nij/niwj will then be slightly

and modify the

less than 1/2, Consider the

Sempling Scheme (B) :-

Let

be the original size measures. Let

21 = P) (P, - P )
9 = NN Nl . 4.2,1)

(1- By =P )

Step I » Conduct a binomial trial with probability of success equal

to d. If the trial results in a success proceed to
Step IT ¢+ Select one of the units

Upy Upy weey Uy o

vith probabilities proportional to the original size measures, If U,

be the unit thus selected, accept (UN, Uj) as the (unordered) sample

Step IIT ¢ 1If the binomial trial in step I results in a failure,

proceed for the sampling scheme A, given in § 4.1, with PN replaced

. .
by PN-l normalising the new set of Pk Se



ie shall now prove our general result.

Theorem (B) :~ The sampling schemed (B) given above satisfies the

conditions of (2.5. 6) .

Proof s- From lemma 1 of § 4.1, we see that with probability 1 the
‘scheme (B) terminates after a finite number of steps. (ii) and (iii)
of (2.5.6) arc obviously satisfied, so that we need only prove (i),

(iv) and (v).

Let ?i and oiij be the conditional inclusion probabilities under
the condition that the trial a’ step 1 resulted in a failure, and "’

P’;'s (1 < i < N) be the probabilities which we start with at steo 3.

Clearly
P 1 - —(——
. 2 -
Pt = T 1+ s— = P, @ lal))N) for i#N
- N Y TN * -
and 7 (42.2)

0
(PN - 3)

X = K = e
= P 1-23) °

from (3.1.6) and (6.1.7) we +hen have

-2 P
L -2h
T ik ]
and =2 PxP¥. 1 4+ — 4+ 2 Foereanas .7 . (42,3
?ij 3( 53 55 S} S (%2.3)
“where
N
gt= X P
Y i =1 1



T

Let 7. ana m.
i 1j

resulting from the scheme., Clearly

P,
i
1P

1

ni=an +(1"'a)(?.:

g =0+ (-3 v

be the over-all inclusion probabilities

’ 1N \
m; 5= (1= 9) ?ij for 1 ¢ i £ < N-1 (4 2.4)
P, )
Substituting from (4.2.1), (4.2.2) and (4.2.3), we have
2p
1 2 i
m, = P.3. ( - Y o+ -
1 1 el P Ld -
i N 1 PN + PN—l 1 PN + PN—l
- 2p, for i,éN&»{4.2.5)
and X
(2 PH - a)
“N = + (1 - 6). "—,:'—_'a—-— = 2 PN S

which proves (i) of (2.5.6). To prove (iv), note that from (41.3)

ve have

for 1 {if j<N-1



Hence for 1 < i # j { N -1,

™ 5 (1 - 93) (?

ij
<(-2)¢ b

i
= 4(1 - 2). Pf P

)

S

o 21 21 - 7y §
i3] (1 -29)

To prove (iv) for this case we need only show that

~ 2
SZI-W <1-23

~et

i e, 8 < 4Py(1 - Py)

2(1 - By) (1 - 2P) (B + P, )

But 9 - 4B (1 - P) = -t

since PN < % , and hence

TR ™ for (1 < i £ j < N-1)
Also p
g <0 TS +(1-a)m_
N N

oP.

>0

- T“il'?*‘*Pj(l'E(“ig?'i;))'(PN‘_g)/l’ 3

N

-+ (4.2,6)



so that
an < Ty ”j = 4 PNPj
if ) ]
) 41 - 2(1-PN?(PN - 3)
-t 1% - 4 PN <0

N

After simplification, the l.h.s. turns out to be equal to

2
- 3(1 - 2Py)
and hence follows that
{rs
”Nj < T(N ‘Ej ..0(4:.2. b
(6.206) and (602n7) prove (iV) of (2.5.6).
To verify (v), we have
ﬂij:(lna)?ij (1.§_i7£j.§_N“1)
> (1 -3) -ir—l-z—(l‘l from (4-1.9)
.2
TN 5 - 2(16 E )g
== A (A28
2 (1 -0)
end
5 P, 9.
i N '3
™; >TTS 1-9)—
9 P.
P, (2Py-ay) (2P4- 7 PN>
=0Tt 2(1 - 0)
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3} . i) _ 8 N —(
TR TEEY T Eamy )l ) @)

Since PN and PN;-I usually do not differ rmuch the above bound in
general is not small. The examples given after § 4.3 will illustrate

this point.

¥e majy note here that for both the schemes A and B

is ¢ nomrdecreasing function of j for any given This is easy to

see from (4¢1.7) and (4+2.4). We thus have

nltz 71211 < T[N"lﬂ <1 o o (4-2-10)‘
Ty Ty T Ty T Ty T
and when P = P, we have
T T, . '
1, L2  _ij < "N~-1,N <1 .. (4.2.11)

BT M Ty T My Ty ey Ty T
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§ 443, Some remarks on the schemes A and B.

We have seen that the sampling schenes given in § 4.1 and § 4.2
terninate after a finite number of steps, with probebility 1. It is

clear that the schene A terninates fastest when Pi = %
and that it terminates slowest when P =P =1 end P, =0 for
. N=1 N 2 i

1{1i{N=2s Though in our problen P, > 0 for 2ll i, since values

for all i

88 near to zero as we please are pernissible for Pi's, the upper bound
for the expected nunmber EA (n) of steps required to select the sanmple

will be that obtained by setting =P =% ond P. =0 for

P'N--l N 2

1{i <N =2, and this bound is attasined only in the linmit. These two
cases thus give the lower and upper bounds for the expected number of
steps required for the selection of a sample by the sampling scherie A.

If

P =

1 .
i T for 1 {i (N

the probability At for the sarpling scherie 4 to ternminate at the rti

step is given by

A, =N (UL g £> 1
‘Hence
co %P
B, (1) = T tA = 3 N“t=ﬁ-:_NT.
t=1 t=o0
Farther, if
1
PNol PN 2
‘and
P, =0 for 1 { i { N =2
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the probobility My for the scheme 4 +to terminate at the rth step

is given by

8o that in this case

Thus we have

N
m S. EA (n) < 2 . < (4-.301)

The scheme # terminates in cne step if the binomial trial in
step I results in a success, for which the probability 8 is given by
(4+2+1)s  If the trial results in a failure thon we have a scheme of
the type 4 + Denoting by Ey (n) the e¢xpected number of steps required

for the selection of the sample according to the schene B, we thus

have
By @ = 2+ Q= 6)‘ E, (n)

where [ is the corresponding scheme in step III of § 4¢2. Fron

(443.1) it follows that

Z
@

15N__1_<_E3(n) < 2-3 (2. - (443.2)

‘we shall now illustrate our sanpling schermes by means of some illus~

1

?trative exanples.

:
3



Qo

We consider 5 populations onc of which viz., the !Yates population'
(cof+, page 256 of [40_7) is purely fictitious and the other four are taoken
from live cata. Thesc exanples will be used repeatedly in this thesis for
purposes of illustration and erperical conparisonst Though the estimated
voriances and expected variances as given by a selected sanple can be easily
computed using only a desk calculator, since we conpared the actual varis
ances in all the cases, the computations are organised #n the electronic
nachine I{{ 1401. The Yates population has been nainly used to check up

- these prograrmings by direct manual caleulationss

The data for the four live exanples considered here consist of the
district~wise population figures for four of the Indian States of Andhra
Pradesh, Punjab, West Bengal and Gujerat coming respectively from the
Southern, Northern, Eastern anc Western parts of India. The population as
per the 1961 census is taken to be the%ariable and that as per the 1951
census, tcapured in thousands, is taken to be the%-variable- In practice
too the aumiliary information should not (or rather neced not)~ be taken as
acurately as the nain variable and can be rounded off to a reasonable extent
e renember that only the proportionate values of Xi's are of interest to us.

The object is to estirmte the total population in 1961 for each of the
states, by toking o sample of two districts from ecch state. We shall Tater
compere the true variances as well the expected variances under the nedel
(243.3), of various estimation methods. In practice ohe resorts to a sub-
:mmpling' in each selected district and in this case our results concern the
touponent of sanpling variance due to first stage sanpling only and the

“ther components con be dealt with sinillardy.



Qi

1. Yates Populaticn

serial no. of

the unit Xi Yi
(i)
1 1 5
2 2 12
3 3 21
4 4 32
2¢ Andhra Pradesh
serial no. ‘name of the
of district district X, Y,
(1) . :
1 Srikaffulan 2123 2342251
2 Visal-hapatnan 2072 2282278
3 East Godavari 2301 2600311
A West Godavari 1697 1878434
8 Krishna 1736 2076133
8 Guntur 2560 3050997
7 Nelleore 1794 2033963
8 Chittoor 1666 1913189
9 Cuddapah 1628 13242140
19 fnantapur 1483 1764223
11 Kurnool 1617 1909644
12 Mehbubnagar 1447 1520689
13 Hyderabad 1821 2063601
14 Medal- 1109 1226465
15 ‘Nizamab ad 838 1021503
16 Adilabad 831 1029301
17 Karimnagar 1428 1620417
18 Warangal 1320 1545750
19 Hhamnan 808 1057228
20 Nalgonda 1287 15874797




Se Planab

serizl no.

name of the

of district district X1 Yf

(i)

1 Zissar 1048 1548887
2 Rohtak 1122 1416915
3 Gurgaon 967 1238128
4 Xarnal 1067 1489067¢
5 Arobala 1017 1372103
6 Sinla 106 111256
7 Zengra 921 1057066
8 Lahaul and Spiti 12 20478
9 Hoshiarpur 1364 1229473
190 Jullundur 1085 1224434
11 Ludhiana 807 102119¢
12 Ferozepur 1275 1620339
13 Anritsar 1367 1547241
14 Gurdaspur 851 984152
15 Kapurtyala 205 343778
16 Bhatinda 786 1056053
17 Sangrur 1111 1425261
18 Patiale 717 1047437
19 Mohindergarh 443 547164




4e West Bengnl

3

nane of the

serial no. X. Y.

of district district 1 1
(i)
1 Darjeeling 459 624879
2 Jalpaiguri 91a 13601120
3 Cooch™ Dehar 671 1019747
4 West Dinajpur 979 1330346
8 Malda 937 122401
6 Murshidabad 1715 2203074
7 Nadia 1142 1715068
8 24 Parganas 4459 6203758
9 Calcutte 2698 2026408
10 Howrah 1611 2043225
11 Hooghly 1604 2233798
12 Burdwan 2191 3083564
13 Birbhun 1066 1447638
14 Bankura 1316 1667527
15 iidnapur 3359 4349069
16 Purulia 1169 1358842




a4

S5e¢ Gujarat

* gerial no. name of the .
-of district district X. Y,

(i) : ’

1 Jarmagar 616 824725
2 Rajkot 930 120900
3 Surendranagar 506 662303
A Bhavnagar 885 1116206
5 Anreli 538 667387
6 Junagadh 987 1244086
7 Kutch 567 695704
8 Banaskantha 773 905980
9 Sabarkatna 684 217800
10 Mehsana 1393 1885000
11 Abmedabad 1675 2231534
12 : Kaira 1612 1874381
13 Panchmehals 1131 1467485
14 Baroda 1211 1527044
15 Broach 717 892241

16 Surat 1982 2438740

17 Dangs 47 71589
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The values of (1) 3, the probaﬁility with which thc binomial trial
of Step I of Schemne (B) is to be conducted, givoen by {4.2.1); (ii) the
first few L 's where L = ] - Q is the probability that sarpling in
Btep III of the Scheme (B) continues beyond r steps (i.c. the Tirst r

pairs obtained jetting rejected), where Qr is given by (4.1.3) and

T
(iii) ~ ;i’ and Fﬁﬂwliﬂ (after arranging the units in the ascending
1 T N~1 Ty

ﬂi.

: TE;.L— 's (cef.
1

@.2.10) are given for all the five populations considered, in the

order of II's) giving the lower anc upper bounds of =

following table. Though all these values are found to 16 significant

figures, here we give then to & Places of decinals only.

Table 4.3

Values of 9, L.'s, = ng and EE~—L—
1 e 1" M/ M7y My o
e e
I LA -1
Population 0 L1 L2 lb 1@ 1% hin ETE% | = T,
| 1 | mx E—%—
I l ij
Yates! ¢4 0000 423395 + 00608 (4012 +01931..00064 «4(G330 «89452
Andhra , . aran o A e <
Predesi 001782 005u94 «00342 002032 « 00006 00022 «BOBEY - «56356
Punjab + 01258 «06226 +00437 +02039 + 00006 +0002 +48947 + 56378

¥.Bengal «00888 +08135 01108 00302 00125 + 00060  .49369 +57652

fujarat ¢ 04280 «07214 00720 00123 «00033 .0C011 249785 +60693

It is seen frorm the above table that in all the live exanples

Bonsidercd the probability is less than 1 in thousand that Step IIl of



dé

the sampling scheme B need we have to go beyond the Ath step i.e. reject
the sanple nore than 4 times. The scheme given thus results in the selec—
tion of the sample quite rapidly (of course it converges at least as fast as
the the series X 2»r’ but we see that in practice the comvergence is rwch
faster) .

T, .

The variability of ;t-].'-']%"s is also very srnll, as can be seen from
thc. last two colurms of thelabove table, considering especially that they
represent the bounds for about 200 values in each case. The lower bound is
greater than % in one case and in the other cases it is not much different
fron %‘ The high stability of the values of ;;i%.‘s is helpful to keep
the strategy robust from slight deviations fro:]:; tl']me nodel assumed.

For the sclection of the sarple, as remarked earlier, we need go
to the computation of squares, fourth powers etc., of Pi's only as and when
the need arises. After the sarple is drawn we need calculate just the
relevent . 5 only, by (4.2.3) and (4.2.4). While using (4.2+3) we need
calculate the first few torms only as the convergence of the series is quite
rapid, being at least as fost as the series g . In the exariples consi-
dered herc it is found that in none of the cases need we find nore than

the first five terms to compute nij to within an error of .0l per cent.



§ 44 Comparison with the method of Rao, Hartely and Cochran.

In this section we shall compare the sampling strategk of using

*

YﬁT in the design generated by the sampling procedure given in § 4.2.

with another recent one due Rao, Hartely and Cochran / 35/ (which we
shall briefly refer 1. as the HiC strategy). Thio method is briefly
- described thus, for the case of any integer [

a) Split the bopulation at random into U groups of sizes

i
such that ¥ N, = N.
M 1 !

) Nl, N?, sev, N
b) Draw a sample of | distinct units by selecting one unitfrom
each of the U groups, with provability proportional to Xi's-

c) Use the estimator

x o Yi
Y. =
. "HHC i€s Xi ;?1
where ?. = z X.
i .. i
j i

the summation being over all the units Uj that fall in the same group
as 1.

It follows from theorem (9¢3.1) that the 3HC strategy is sub-
optimum in £ -gense.  We shall show that it is sub~optimum in
,LX4~sense where le_is a class of prior distributions 84, which is
¥ider than A, but is somewhat narrower than Lls + This /34 is
defined laters. We give exact expressions for the cfficiencies of the
RIC strategy relative to our strategy, in the [S‘~eense and ij sense.

In this connection we use some results which are proved later in § 5e9.

For the RHC strategy the optimum values of the Ni's are given by



2
]

2
n

[

Z
I

==

N=N0=‘II=N= R.’.K

and N, =N,=...=Nu=3
if N=RU+X 0 <K< o

The variance of (4.4.1) for the above given optimum values of Ni‘:z is

' ‘ . N Y2 ' P ~
* A ~ . D
Ly § X A X
if N is a multiple of M, and
L ' 2 . 2
N v N Y Y® -
R
- 3 L M 1 i o
if N= R p+K 0 <K< u wi{8eden)
It can be easily seen that if U divides N
’ 5.9 N D]
. T+ .
V* . gXN(a?‘XE-D-Gi?) (a°x fcl)/‘
Ea, Vlgge) = ( N-l) TR X, - m {
3 w1 i -
i N )
(1- 1 )s‘xg % >zldf ( (4.4.3)
= - = —_— - _ v (4.4,
N-1"( py X, T,
and * E—l ( x? DY Kf 0
E61_<YRHC) = ¢ T\...l)? TR f o )

Yhen N = R H*K the factor 1 - -b!';—;:}-‘/on the rehes's of (4.4.3) and

(4+4:4) has to be replaced by 3 H:-

e

I-l 5
It is shown later in (5.0.8) and (5.9 11) that for our /\ ,~optimum

strategy consisting of a design D € D(]J.,Tt) as defined by (043, 15) and



*
the estimator Y.,
HT

E. voep W™ ¥ =I;09 (2 :1) - (Ae4.5)
3y * THT Rt IR Y TR
1
and ( * o' N
p’ln) = 9 .)_{___ '2 ,
Eal V(DED , YHT) o ( 5 fz{i) . (Ae2e6)

Let noqu be the class of prior distributions 64 satisfying

i) Ea4 (Yi IX,) = ax
. o
ii) V64 (¥, 1%)=0 xf , 221 }_ o (ae4aT)
1
and iii) Cov, (Yi, YJ. X, xj) =0 J

y

Thus Ahls a wider class than A’ but is somevhat narrower than A5 ,
It may be mentioned however that in most situations met with in practice
the parameter 'g' is found to lie between 1 and o . Ye now prove

' *
Lemma (Ae441) := The strategy Hy = HO (DGD(p”n)./‘ YHT) is superior

to the strategy 4, = H(RHC) in the A!*-sense.

Proof:~ From (4+4.3) and (4+4.5) we have

L

: : _1 PV (uo1s BLy_ X p1 %
Fa, ;) Ba, @) =5 (2 0))(b-1+ £5) L Ne1 Z X
‘ s v N
- 1 ) b (R Gi f
-uN_l})NZo"i—KZ —Xl-)
Setting
o_ 9.8 .
o; = 0" X; (4.4.8)

in the above we have

. ' 9 . ... »
y - 1)o g . g~1
E, (“1-’- Ea(Ho)—%ﬁﬁT iuzxi-,{zxi

tere O is the epriori distributicn obtained by replacing (ii) of



(743+8) by (44.8). Since all the X.'s are positive from an elementary
inequality we know that
+&
g-1 _ Nz %8
according as g-1 and 1 are of the same or opposite siéns. Hence
By ) 3 By @)
according as g >1 or < 1, there being equality when g=1. It
follows that Hy is superior to H, in the Aq—sense and that it is
inferior to H, in the A -sense where A is the class of prior
1 s g
distributions 05 with the inequality for g reversed in (ii) of
(aeae7) .
Incidentally the above lemma also gives an alternate proof that
Hy is superior to H) in the A -sensc since A is narrower than
A4 This result)however} is also a conseguence of theorem (9.3, 1).

The relative efficiencies of H1 with respect toc H. can be direectly

0
obtained from (4.4.3), (4.4.4), (4.4.5) and (24448) and need not be

given separately.



8 4¢5. Compariscn with unordercd ;)es‘ j's es imtor-

In this section we shall cornvare, in the —-sense, our sampling
RN y ‘ H (5}
strategy with that of iurthy's / 26 ] inproved ¢stimtor ¢f Des Raj / 6_7,
“ ¢

for the case U= 2. This latier is briefly described thus:

The sempling design }T)‘& 2is.:ab":-111:ed by selecting U units with
) :

prebabilities proporticnal o L for Ui apd vi thout replacements

An unbiased estimator of Y for the above samplicy desion, as
g € g b

given by Des Raj / 6__7 is

- H
z t
rmym 7 =1 k

where v
Yi . . . .
b=y, by, keeky, --—- (1 -P P, == P} L (445.1)
k 1, "ig 11 Aik 1, i, 1,

iurthy / 26_7impr0ved the above estimator using the technicues discussed

l

in § @e2 by teking the‘gondi tional expectation of {4.% 1) given the

listinet units in the samnle. For the case U = 2 this turns ocut Lo be

v, oo Y, o [
o - _____]; (1_}3 Y & .___% (1__‘1 ) . L (4.¢5 n)
&, 8ym. [Pi 12' ®, i}_]} 2-P, -Pi oo
- 71 2 1 2

veich is gymmetric in i1 and 1, ag it should be. ¥e shall now prove
. a :

(Ae8.1) 1= The strauer"y J_"DED‘? n) “T) is unifornly superior to

R RS S ITITL

X
i Yy ), in the - Sense.
g, ‘3 ! i




Proof: For the variance of (4¢5¢2) we have

V@, o) = Lo e (i) (- )2
) Sym 21#313-{—" i i .
NoYe 1P, 2. |- 1P, P
=L 5 1L (2~P-P) -zz 1Yy <2P—P)
i=1l "i .]711 . h] J
NoYe ; (x~x X, )( . (-—X X, )
= F o Z, -2z YY
i=1 %3 | jei i % ( i ] Ay X
(4#503)
so that taking the expectation of (4.5.3) over 9, given b (2.3. )
1 Yy 3
- T L it )
E, V(Y = 3 (——2 X L3 a x X,
8, 'd,syn X ;;!1 XXX i 2 K
A-Xi—}{. |
i#j j
‘Substituting from (5.2411) with W= 2, we then have
* ]
S (2,7'7) ¥
G = ualv(Yd,sym) - E81V(P€D .’ YHT)
0 X, = 2
= o/ LT XX, (m) ('T-ZX)J
i#j B
2 -XiX- ' X2
= [‘( -4 i! e gulele 294
i#j i 7
Thus
PP,
—td_ 7 . (@45.5)
2 =P, - P,
i it 7

9o prove that ¥ (D€D,{2’n)

* *
, Yh"i‘) is superior to H(Dd’a,]é 'sym) in the
Q‘-sense we need only prove that the rehese of (445.6) is 2 0. Fron

Yhe inequality between the arithmetic mean and harmonic mean we have
. A



for 0 < Py P. <1,
- "4 A |
(1-p, ) + (1—?.)) 1-P,  1-P,
\ i J ¢ —X _J
2 = 2
i.e.
1 1,1 1
5P, =P, & 1 + )-
i |

‘1-Pi l—PJ.

Substituting in rehese of (445.6) we have

2 2 g
G > }—{-c—’—[l'?-zzPP (A=+2-)7
£ 2 T477 i V1-P.7 1 - P,
i3 i i
%20° "lg _ _P.l P
2 5= /L1-535R(5 7)) * IR T NS
ll 72 Sl S RGN V'S j
2 2
> 2 M-ty
> 0

which proves the required resulte (4.5.6) gives an exact expression

d, syn)

*
to the increase in the expected variance in using H(Dd 9 Y
?
*
instead of H(I}(-J'D(z'n), YHT)' The ratic of (4.5.6) to (5.2.11) gives

the relative increase in the expected variance.
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§4.6- Sone ermperical comparisons

We now compare  our strategy of using sanpling schere B of
§ 402 and using the Horvitz and Thompson estirator, with those of
~

§ 444 and § 45 due to Rao, Hartely and Cochran and Des Raj, for the

five populations considered in 8 43
P

We denote the variances by suffixes H, RIC and D respectively
for the above three cases. We shall compare not only the expected vari-
ances over 0y i.es Eal V&) 's but also the actual variances V(S)E) 's in
each casce The computations arc performed on the electronic rmchine

* * *
IBM 1401 because the computation of V(YH)’ V(YD) and By V(YD) are
. 1

rother laborious, though the other quantities can easily be found with a
desk-calculators (Note, however, that in practice we cannot find these
variances but only their estimates from the sample and these are not

di fficult to cormpute on a desk-calculator). The results are given in the
‘following table, along with the true value of Y for corparison with °

the eorresponding standard errors.



[

' * *
Table giving enperical comparisons of YN, YRHC and YD
* o .' ¥ - —_— «...«_.:*.. - r— e _‘*... - & _.,u2_,,_, EIEESREEC - s - - —;— =
| B, VR )/ B @, )/F B @)/ e, Cey @
_ . . . By 3, R 3, "D Fi RHC D :
Population ¥ VT, vE)  v(E) Gyt B)YL) (B) @ 6) )
1) (2} ) 3] & @] @] (8) &) (16) (11) (12)
Totes TO 20,8011 33.8353  31.2556 250007 23.3333 20.67385 .328% 8571 6633 9674
Anghra e 8 8 4 © gl 4
Pradesh 3BGT7V90 107« 34867 107.34534 107.24483 177.44425 10%.44652 107 .44421 1.0010 «09408 1.0024 +0988
o . 3 SR S 8 4 4. o , i
Punjab 20202151 10°.15194 10°.15449 10%.15a00 10%.15210 10”1282 10t.11a8s 20358 .9852 9984 1.0003
sz;:t ) 32067638 12°.30022 10%.42072 10%.40808  10%.20547 10420455 10%.28602 L9215 L0692 L0863 .9951
Gujarat 20621263 100.2327 108, 2475 195, 2423 10%.11203 10t.a1m6 10M.11270 L9202 L9780 L3604 .990a

S

Colurms {&) and {11) zive the true relative efficiences of the methods of Rao, Hartley and Cochran and DesHaj and colwms

12) apd {12} give the corresponiing expected relative efficiencies wnder the nodel [2.3.3).
g g @Xp

and (12) arc utnst unity, as fhey should be according to our theoretical results).

{Tze entrics in colurms (10)



It is scen from colurms (9) and (11) that in all bub one of the
five exanples considered, our niethod is superior to those of iao,
fartcly an’ Cociran an? Des 3aj. Iurther, the close agrcerients between
the corresponding entrics of colwms (9) and (10) anl of (11) and (12) ,
in all the four live cxamples considercd, indicates the approvriateness
of the nodel (26343) in these cases. The Yates population is in fact
constructed with a significant departurc fron this model. However the
departure frorm the rodel further increased the relative superiority of
our rethod which is perhaps an indication of its robusiness.,

The relative cfficiencies of the Rao, Hartely and Cochran strategy
and Des Haj strategy, though are generally below unity, are not ruch below
wity in all the four live exarples comsidered. This is due to the fact
that in these examples the variation in the auxiliary information is not
mueh as in practice districts are formed so as to have nearly egual
population in each districts Districts that becore too large will be
bifurcated and those that are too small will be analgamated for the
sake of administrative conveniencc. Vhere the variation in the auxiliary
inforration is considerable, the gain in efficiency due to our method
tan be cxpected to be considerable. This is indicated by the entries
in colwms {10) and (12) corresponding to the Yates population, where
the expected relative efficiencies of the Rao, !lartely and Cockran

strategy an” Des Haj's strategy are considerably smaller than ynitye.



g 47 Two more 'm PS! sanpling schenes

In this section we give two nore 'TPS! samphn schemes to
achieve the main conditions viz., (1) and (11) of (2¢5.6)+ They
satisfy (iii), (v1) and (vii)v also. Though the schenes given in g 4.1
| end § 442 arc fully optirum and and hence should be preferred to the
scheres of this sectlmn, these latter are being given mizainly to point
out that if just (i) and (ii) of (2.5. 6) need be satisfied the problen
adnits o number of very simple solutions. (We nmay recall that the
solutions of the earlier authors to this problen inveolve laborious
iterations and linecar prograrmings that are not suitable even for
noderately large N). We shall briefly give the solutions, omitting
all details.

Without loss of generality, suppose thet

X, L%, Koo <X - (a7 .1)
and
X, X,
= e 1 =-—!‘-
i N X
r X,
i J

We shall further assume as in 8 4.1, that

PN"]. = PN oo (40702)

and give sampling schenes to satisfy (i) and (ii) of (2.5¢6) under the
condition (447 e2)+ The case of general values of P, 's can then be

dealt with exactly as it is done in Steps I and II of § 4.2.



R
~

Sarpling Schenme (¢) :=

Let 61, 62,---, BN be the smccessive differences of the P{s LTecoe

. L
8, = P if i=1 ; )
= (¢, = P,_;) if iz )
Let
5. % % : ‘ ‘
B = il 7 IR 1<ig (N=1). (4+3.3)

The sampling scheme is as follows. Choose one unit fron the first
(N~1) units with probability @i for the ith unit. If Ux be the unit

thus chosen,choose one out of the units

.oo' U

U>\+1’ UX+2’ N

by simple randon sanplings. If Ux' be the unit thus selected}accept

ﬂ&, Ux') to be the unordered samplee

This scherme satisfies (i), (ii), (iii), (vi) and (vii) of (2+5.6).
[t an be shown by easy counter examples that (iv) is not always

satisfiede.

We onit the proofs of our assertions.



Sanpling Scheme (D) :-

Let constants Bl’ 52, BN—l be defined as follows: :
i

Bp=h \ {

e ——

. Bl ’
P By =175

By = By "2 L) “
= 1 — - - )
3 '3 1-3 =% I-3 {‘
Py=g Py By \l
Bmp = By (1= meee - - —)
~P =P ~-~...=2P . ) -
1-P =P, o 1-P =P, 1 Pl}
*(446.4)

The sampling scheme in this case is as follows:
Choose one ynit from the first (W=1) units with probability B

for the ith unit. If UX be the unit thus chosen, choosc one out of

U Gy oo Uy

with prohabilities proportional tc the orizinal probabilities Pi'sg If

I&, be the unit thus chosen, accept (UX’ QX') as the unordered sanmple.

This schene too satisfies (i), (ii), (iii), (++) and (vi) of (2.5.6).%

Ve onmit the proofs of our assertions.

This scheme is also independently found by the author's colleaguc
Mre XeVijoyan who proves thot the scheme satisfies (iv) also thus
giving a non=negative variance estimator. Nothing is known about (v).
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OPTILMUM UTILISATIC OF AUAILIALY DNFCORLATION

| ~ HEAR-OPTIIUL 725 DESIWIS FOR ANY VALUE -
§ 5el Surmary CF

In this chapter we shall give some near optimunm solutions
to our problem posed in f§ Ze& Tor the case of general (even non-
integral) values of P and general values of i:is subject of course

to the condition

<r

0 <X, £ m for 1 <i (¥ - (B+1.1)

<

In all these solutions, the basic condition viz., (i) of (2.5.6) is
satisfied for the general values of Xi's anc hence they are all '7PS
sanpling schemes's The other conditions of (2+546) are satisfied to

varying degrees.

We shall first prove in @ £.2 that for integral values of M,
the class D(M,ﬂ) of designs as defined by (2.3.12) forms a 8, ~optinun
subclass in the wider class D<Tr) defined by (2.3-11) for the use of
*

*
YH’“' Zxpressions were then given for the expected variances of YH’T
1 ey

vhen applied in designs belonging to D<n) or D(H,TE) over the twe
classes of super-—populaticns /) | and /-\3 as defined by (2.3.3) and

(24347)+ Some of these expressions, for the special case U= 2,

have already been used in g 4e4 and § 4.5.

In § 543 we give a solutiorn, for general values of M and

M8, which satisfies (i), (vi) and (vii) of (2+5.6). For this nethod



it is not possible to estimate tne varicnce of our estimator, sinpe
sore of the ni,j 's are zero. In § Se4 we present twe medific ations :
to overcome this drawback and thus satisfy (iii) of (2.5-6). In 86.5
¥e present a sequential scheme with the property that at any stage

of termination, the indusion, nrobabilities attained Ry that time are
proporiional to a given set of Xi's (1<i <i)e It is expected

that this sclution will be of some use. in practice when one wants to
have a flexible sample size. In each of the solutions given therc is
thus scme departure from the ‘optirmm strategy of (2.5.6), though all
satisfy (i) of (2.5.6) and hence are ';PQ sampling schemcs's The
degrec of departmré (in terms of the iucrease in expected variance
over 61) can be easily found in any given problem, since the 'rcij's

arc easily calculable in all these cases. Further, for the schemes of

§ 5e4  and 8 5+& this departure can alsc be cstimated on +the basis of

& sanple, since ﬂ:ij's are strictly greater than zero in this cases.

it may be nentioned here that the results given in this ¢} apnter
¥ere obtained by the anthor towards the end of 1955 and were read before
the Indian Seience Congress in Jancary 1380. (Subsequently viaey were
mblished /719 7). 4t that time tho only 723 sampling schemes known
(as far as the author is avarc) werc those of Goodian and ¥ish [ 137,
Grundy [14], ‘Stevens [39_7, anml Hajek [16_7 besides those of orvitz
‘¢ Thompson [22_7 and Yates and Grundy [40]» A1l these nethods were

described briefly in G 28,

1lustrate our schemos of 8 5.3, § 5.4 anc § £¢8 by peans of

(=8

We

tie emperical exumple congidered in g4e3
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%
8 6.2 Uptimum designs for tihe use of Y,

Eak
e prove a

Lemma (5.2.1):- For any general sampling design D = D (8, P} we have

. o
z Z‘ﬂij = U - u o+ V(us) o(5,2,1)
i#j -

Proof: - For every s D and 1 { i{ N, define random variables

i . thus:
ai
i if . s
Ulg
Rsi =
0 otherwise
cleurly
= X L sl Ts
8 3
ni' = v Rél ﬁag ?s
J S ¢ S e
N N 5
and p o= I X.,= ¥ R,
] . si . si
i=1 im]

We “then have

18] N -
ST =zz;~RR.Pg
i Y ifj (scs 8t 838
1 1
gN 7
= 3 <TTX R.R P
Scffi?



Rsi st equals 1 if s contains both Ui and Uj and is zero

otherwise. Oince a sample consisting of p.s distinct units gives rise
to exactly My (us-l) unordered pairs of units of the population both

nembers of each of which belong to s, we have

. ‘
2% 7. = I u (u=1)P
i#j I s€g % V8 8

-

T Viu)

L}

’and hence the lerma.

We shall now evaluate the expected variance of the estimator §HT
defined by (2.4.1) applied in a given design D belonging to the class
D(n) as defined by (2.3.11), the expectation being taken over a super-
population 9, belonging to the class A_Q‘as definedby (2.3.8). We

prove

Lemma (5.2.2):~ For any DED(E) and 63 €N

auz}{2 N 17,

%
Ea3 v (o, YHT) =

*
Proof: TFor the variance of Yup We have, as remarked in (2.4.2)
—_—_— ¥

N Y2 N

V(Im)"z-}—-+ 29> ——--l T =Y
1M 1;(,3 13 1)



O »5

(bserving that

Ba, (F 1%) =a?7% 4 P
3 i
and
B, (VY. | X.X.) = a® X.X
9, ity ' MRy
3
we have
N N (a“’xf+02) N aX.x oo N,
EaV(Yf,T)-Z — ——+Zznn—-11 - (a*x + 5o )
3 1 & i#§ i J 1t
1 .
N {1-m,)
=a?7{2(%t+'—1-9-22 Too-1) sz
v gy i
1

The resuit now follows from lemma (542.1).
From lemma (54262) we now have

Theorem 5.2. In the class D(n) of sampliny designs as defined

%

by (2¢3.11) the designs tizet arve {_/\ ~optimum for the use of YVT are
S )y}

those for which the variance of M is least.

In particular if |\ isan integer these A-:optimum designs are
the designs of the class 1)(”'@ as defined by (2.3.12).
If WP is an integer the nminimum {(which may not be attainable)

falue of ‘V(us) iz zero, while if

u=/"w/ + 1, 0<i<l

min V(W)= £( ~£)



[ i

i+

which is attained when the sam; pling design is such that

3 a2 u] with prebability f

My i .
[ u,] + 1 with provabiliity 1-f
‘ 3 3 3 ™ (ﬂ:) T PN : 3 - 14 1L
If then a design Dopt €5 can be found in which the effeciive sanple
size “s iseither ["u] or [p,]»f-l, then
* az}lz ' H . \J. - T, )
B,V L, Y) = s £l mf) + % gt (5+247)
63 opt’ "HT ua 1 & m
‘ (b, )
In particular if P is a positive irteger we have for a Dopt € p\t ,
B I\T o (1 '-I[.)
E. V@ ,, Y )= %o X
63 opt’ "HT 1 1 n,
M _
2 X .
% A ix; -1) (50248)

If further

of=czxf, 1{ign

then “he corresponding apriori cCistribution is a 81 as defined by

(243.3), and we have from (5.2.¢), {64247) and (5.2.8)

() azX"v x* oy 0
7 (DedV, ¥, } = Vm) + o° (— z .hi) (5.2.9)
1 u? 1
2.a 2
_ . ] (T[ * a i 02 X N 2
. v(® €DV, Y,,m) = -«-—-f\l-x) + (-—-zx)
Oy ont T
o - (5.2.10)
* [ )
B, vopep(h™, Y..) = A5 L5 x?) (5.2.11)
1. ey 98 1 1



§ 5.3 A sclution t¢ the proklem for gereral valuds of Ki's and P.

In this scetion we give a ' 71 P ¢ sampling scheme, valid {or
and W
general values of Xi's.éfThe scheme consists of independent draws of
: . . r (r}) . ce . 2 oy CONER
units from the population, If Py then denotes the procability of
drawing Ui in the r-th draw, for any sech design, we have for the

inclusion prebabilities the foliowing simple formulae

u ,
me=1-11 "1- p.(r)» <+ (2.3.1)
b 3 —— 1

r=1 ,

= 1..ln_t 13‘ 1 ;p(rz;Txl_l gl-P() ‘+i_l gl;Pi(rlpj(r)g

N5 =7 I G S 3
r=1 { j r=1 r=1 J
n [
— - o) (x) .
- ni + L + I{';i" (1 p; 7 . Py J -1 - {5,3,2)

wiere n is the total number of draws made. Ve new consider thc

Sempling schone (3),

Suppose, without loss of generality, that

M2 Ty 2 e 2y (5.3.3)

(If this condition is not satisfied, we neced only rearrange the units in

the population), Let K} " tae positive integer such that

;=% m < 1 < 8y + +1 (8.3.4)

;1
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Ty . r S . .
Jonoting by pf ) the probability of sclecting Ui in the pth
drow (this deponding only on i and v, sinece the draws arc indepondent,

G 5
we choose o unit from Xft in the first draw, with probabilitics

gi A L S
J .

pi(l) = 1 - Sl tYod o= Kl +1 “’(50305)
0 'od > K+ 2
k. ~ 1
et — |
‘LF£1+1 - - Sl)

)

&

F 5.3.4) i lows that 9 < -t ¥, be the pesitive
rom (5.3.4) it follows that 9O gi <nl_,___1+1 Let be the pesitiv

integer such that

8y = 0, + % M L1 OB, + TLK1+E{2+1 . 45.3.7)

0 if i <X

1
pi(2) - ™ oA -{56.3.8)
o if X +2<i (K +E o
10, if i KK+l

¢ if i > K1+K2+l
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Similarly we let

and K3 be the positive intezer such that

83 =0, + My L1 <8+ TEK1+K2+I*13+1

and choose units in the third draw with probabilities

©
e
[N
=]
I~

K +¥

1 2
s s i = K. 4
| 02 it i “1+x(2+1
B) _ . W a0 & 3 W AW AK
P _‘;/ T if KILL2+4 £1i< K1+K2+h3
;
/ - 0 3 r'¢ 7 ¥
\ 1 Sq ie I\1+I,2+_z{3+1
\ i 7 7
. 0 i I..1+3{2+13+1

The process continues until a partial sum (like S_, and 83)

2
absorbs the last draw, If the total number of draws required is n,

and

L= X+ + ... + X
X ‘&+%+ + {1l

there is a probability

bn=1'-(%biﬁﬁﬁl+jkﬂz+"'+nw

for not selecting any unit in the n-th dlaw, At every other draw, the

probabilities assigned add up to 1,



e can now easily verify that the schemc given above satisfies
(i) of (2.5.6), This is obvious for all the units except

L ey U, v e causc each of these units can
M1+1 “1+K2+1, K1+&2+...+An_1+1

be selected in only one specific draw and that too with the probability

U

equal to the corresponding T . fach of the units V. K1+K2+l

K1+1’

ete,,

can be selected in one or other of two specific draws, U

th th . . .
or (r + 1) draw but in ne other draw,

being sclectable in the r
The 0's are so constructed for these that the total indusion proba-
bility is the corresponding T . For example, the total inclusion

prcbability for is equa1‘t0

Y
EeN

1+1

from (5.3.6). Similarly for the other units.

e What is esscentianlly dene in the above scheme is that we have
divided the popuiation into o number of homogencous stratawith
however are not strictly overlapping, two. adjecent strata having

~

possibly one unit in common {which we call the junctional unité)

le then sclected one unit frorm each of the stratumwith probabilities
equal to the original ni's, except for the junctional units where these
probabilities arc oroperly adjustcd. The sampling in onc stratum is

independent of that in another stratum, ..



The condition (ii, of (24546) is not strictly satisfied but since
the only possible repetitions are restricted to a few junctional units,
the variance of Ry will be quite low (ps in fact hasto be between n
and %). The method given is thus a good approxination to the optimun
nethod requireds It is not possitle to estinate the variance of the
estirntor of the total since some of the ﬂﬁjts are zero. For Ui and Uj
belonging to the same stratun and neither of which is a juncticnal unit
we have n.i-j = 0s Thus (iii) of (2.5.6) is not satisfied. We shall
however give in 8§ 5e4 two nodificatian of this procecure which satisfy
(iii) and which involve the calculation of nij's for a scheme of this
section with revised values of ni's- Yle therefore remark here that
the calculation of nij's is very casy for our scheric since the draws
are independent and thus satisfies the requirement (+1) of (2+5.6).
Referring to (5¢3+2) we see that the calculation of a nij needs the

calculation of

T 1-p0 2,0
r=l J
lowever larze n rnay be, this product contains utmost four terms,

since p}r), for any given pi, is zero for all but utnost four values
of », ¢ The nethod does not need heavy calculations anywhere since the
@ven‘ ni's are utilised very liberally. All that is necessary i§ to go
on adding up the ni's (the curmlated suns need not be noted down)

mtil the sun is about to exceed 1 and at that stage note down the S1



and calculate al. Again al’ ﬂi +9 ﬂgi+:3, etc., arc added up until

1
the sun is about to exceed 1 and note down the S, and calculate 0y
[
etce.
The calculation of ﬂﬁ's from the Xi's itself is not necessary

since the formulae for Si's and ﬁi's can be translated to those

- given in tedns of Xi's.

The method is illustrated for the two populations 'Anthre
Pradesh' and 'Punjab' considered in 8§ 4.3 & - .

We consider for illustration, the problen of selecting an expected
effective sample of size 4 districts fror each of the populations of dig—
tricts of 'Andhra Pradesh' and 'Punjab' considered in §4.3.

The first step is to arrange the units in the ascending order of
Xi's- (This is not actually necessary for the validity of the nethod
fiven in this scction but is propesed for robustness of the rethod
- against small departures from the nodel assuried) «

For 'indhra Fradesh' the arrangerient is at follows, where we give

the corresponding original serial number in brackets.

1 (19) 6(8) 11(0) 16(13)

2 (16)> 7 (17)‘ 12 (8). 17¢( 2)‘
3 ) 802 13() 18(1)
t ) 900 u6) 1(s)

5 (20) 10(11) 15(7) 20(6)



We find that

= 3 = = .
K= 1, 8, = +9663; 8 1548
. Xy =12, S, = 49649, 5, = 41865
K, = 16, 8, = .8644, 8, = 1468
K, =19, 8, = 7073, 9, = 40448
€ = 9552

We thus need make 5 draws in all to get an expected size of 4
distinct unitse The probability is «9552 that in the 5th draw no unit
of the population is selected. It is evident that V(us) will be
exceedingly small in this casece

For 'Punjab' the arrangement of the units is as follows:

1 (8) 6 (16) 11(4) 16 (17)
2 (6’ 701, 12(5i 17(2f
3 (15} 8(14} 13(1.f 18(12’
A (19} 9(7 } 14(105 19(13}
5 (18} 10(3)‘ 15(9)‘

¥e find in this case that

K = T, 5, = +8036, o = »0192

L, = 12, 3, = +9936, 0, = +2555

K, = 15, 5, = 1507, 0y = +0853

K, =18, 8, = .6823, 3, = +0334
and € = 96686,

Tn this case also 5 draws are required to get on the average 4 distinct
mits. The probability of not getting a unit in the 5th draw is +9666

d it is evident that V(p.s) will be exceedingly small in this case also.
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g 8.4  Gwo mndifications to snit th» estimability of V(Y m)

Yle shall now present two modifications o make m.. > € for all

ij
i and j.
Modification (A):~ Let
(O) ]'Ll
ST
- (5.4.1)

m (u - 1)
Step l:= Select & sample by the re thod of § 5.3, replacing ni's
tharein by ni‘s as given by (5.4.1).
Step It How choose a unit with probability p!o) for the i-th unit.
Adc thus sclected unit to the sample alfeady chosen,
For thc over—all probability of imcluding Ui in the sample we
Y 4 arguc as follows, The unit Ui is either selected in Step I or is not
selected in step I but is selccted in the II step. The overall

probability is thus equal to

. nl
n+1~n'—-—
(-7 5
ni ' nl
= o= e ) (L e -
pr e _
w5
= Ti.
i

which is the required inclusion probability, For the value of nij

we have the event ,



ey ¢ Ui and Uj are included in the sample,
J

s

. . X Lo 1) @) @)
split up inte three mutually disjoint units Cij ) eij ’ eij thus:

e(l) : Ui anc Uj are both scleeted in step I

2) ' . .
e(.’: IH alone is sclected in step I and

J. is sclected in step II
i

(&

e(a): {B alone is selected in step I and

Ui is selected in step II

Clearly

P(\.l(i)) =y

?(el(i)) = (ni - n']) %}
and o (e (ﬁ) - (x, ;ni-j) -;—

where n{j's arc the joint inclusion probabilities of step I, so that

for the over-all iadnsion probabilities we have

&My Wy ‘ :
T TR i p - mo- nJ.) . (5.4.2)

The calculation of nij thus needs that of n{d. These are calcula-
ted as indicated .in § 5.3,
The method thus satisfies an important requirement that the

the *
ity '8 should be easily calculable for 2 estimation of V(Y’:IT)‘ In
J ’ ok

this respect the method given in § 9.3 comparées favourably with that



of Goodman and Kish which alsc has the same drawback of not sattsfying
(iii) of (2.5.6) and which can alsc be modified as above. iowever, the

calen latica of Tci' .'s for their proceedure is not fTacilitated by a

J

neat algebraic form as remarked in § Ce4,
]
Hith the modification (A} given above (i), {iii), {vi) znd (vii)
of (2:548) are thus satisfied but tnere is a slightly greater departure
from {ii) since we allowed repetitions to ocour more ofiens Also this
- . % .
method may not give a reliable estimate of V(Y .) since sone of the n..'s
i T
may be rather smaller. If it desired %o reduce this disadvantage we may

adopt, instead, the

Hodification (B):- Select twe independent and equivalent subsarples 8,

and 89 with incdusion probabilitiecs n’i"s for each where

v [

=1 - /1;-ni, 1<igN (5+4.3)

For the overall inchsion nrobabilitices we have

Do, \ T cea ) ., _of
P{U;€5,Us, ) P(Jiﬁvl) + P(JiE:sa) P(Jiésl and sz)
21¥ - W'?Z = i,

R | i

by {(54443), which thus satisfies i) of (2+5.6). For the overall joint

incdl usion probabilities we have
P(Ui}(slUsg, UfslUsz) = P{Ui)! sl,UJ.)( sl)- P(Ui}.{ Sy Uj}( s2)

v fr - = 1Dl .
Further P(ai;{sl, UJ.}( 5;) 1-P(J;€ 5, or U€ s;)

= Lew 7T = T4 TE
1 J 1j

where ﬂ:;e.] is the joiat indnsion probability of Ui am. U, for a given sub-
J
sample.
Similerly for 8, and fer g =, slU Sy
P(UL s, UJ)( s) = (lﬁi-nj+nij).



Henece

. A , o
- S R ' - P
i 5 (1 Ty nij) (1 i nj)

This modification, however, deviates much farther from (ii) of
(2;5.6). Whetg;r so wach sacrifice of accuracy in the estimation of
the pcpulation total need be made just to get a reliable estimate of
the variance of that estimator is left to the individual casec,
However where we expect nonsampling errors to operate heavily, and
thus prefer to have a check by having two independent subsamples the

modification given above can profitably used. If may be noted that

'wwing obtained two independent subsamples we can have the individual

estimates
Y. .
* i
Yar,1 = : é L )
"1
and x Y, o+ (5.4.5)
Yomy = I -
HT,2 ifs? ny /

and take for our poocled estimate

*

Y

* 1 *
¥ ) (YHT,I + Yy )

. (5.4.6
HT,p ( )

This is not the same as our optimum estimator (5.2.2) and is in fact
inadmissible being dependent on the number of times a unit is repeated

in the sample, to some extent, While repetetions within a subsample



are ignored it takes note of repetitions between subsamples, a
P i

£a

quick unbiased estimate of the varicnce of {6,4,6) is given by

*x * 1 * ‘ * 2
Vg p) = 3 Gy = Y, o) - (5.4.T)

. x & ‘ | .
Since V(YHT) is lessthan V([HT,P)’ thie r,h,s, of (5,4,7) gives a

*
quicl over estimate (unbiaseily only) of tho variance of V(YH'P)
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8 5.5 A sequential scheme

We shall now give a sampligg scheme which answers an important
problem that often arises in practice. This is the situation where
we woulcd like to have o certain amount of flexibility in the sarmle
size to be taken., This nay occur either when our budget is undecided
when w: find at a later stage that our original estimates (of the cost
per unit chcsen in the sample) are grossly misleading, In such cases
it is of intercst te find a sampling method which consists of selecting
units one by onec such that whatever nay be number of draws made, the
inclusicn probability Ty attained is exactly provorticnal to the

We now

given auxiliary informatio ,égive a method of sampling which solves
this problem in almost all practical situations. This scheme consists
of independent draws such that at the cnd of every draw (up to a

certain stage), the inclusion probabilities attained till then, are

X,
proportional to a given set of values Pi = - 1ci & n) say.

Satisfying these properties, therc is a unique sampling rethod, which

we shall now give,
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Let p,i(n) be the prodability of selecting Ui in n~th draw,
and ni(n-) be the inclusion probability of Ui at the end of n-th

draw, e want to have

n) ) . 4
"i(' TN is=Le,, N, a=1,9,... (5.5.1)

vihere 7 's  are censtents, At the end of n draws we have

WM, ®) L)

i
further, we have the conditions
)
n -
Z‘/ pi( ) = 1’ Il = 1,2,.«;' .o (b.bCS)
i=1

since the prehabilities should 2dd up to 1 at each draw, Setting

v v - -

n=1, we have from (5.5.2 and 5.5.3)
. 1) : .
Ky =1 ana p't/ 2 p, L<inN) - (5.5.4)
i i =" =
Setting n=2 in (5.5.2), we have for all i

oWy o)y
(l - pi )\1 - pi ) = 1 - K2?i

3 , 2 ' Nt ‘ [ 4
givi ng pi() = P (I§2 - iil)/(l - KlPi). c(5.5.5
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"le then have frem (5.5.3)

SO 2-1
K2 =K + ; T l_:ﬁ) . (5.5.6)
! 1 1 ig

Similarly, setting n = 3 we have for 1 £1i<HN

(1 ;-pi(l)) (1 ;1“1(2))(1 ;-pi(g)) =1 ;I§3Pi

giving P. (K, -X)
P-(B) - 322 -~ (5.5.7)
i 1 - %7,
o 1
end (5.0.3) then gives
e ‘Pi p; -1 )
¥g =Xy + 02 75355 - (6.5.8)
210

In general (writing Ko = @ conventionally), it can be shown

that
- SR )
. 1 \ . s
s " * 2T TR, L (5.5.9)
n 17
and .
T -X )
' ~1 -
pi(n) - ; -nK x nP ... (5.5.10)
n-l1 i

for 1 (i {N ond for n upto a certain limit which we shall
presently investigate, After the sample is drawn ni.'s for sampled

units can be calculated using (5.3.2).
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From (5¢5.9) we see that
ﬁ:n+1 ? An
surely if

- D i
1 -KP >0 (1 <i<nN)
which condition can be writien compactly as

bax P, = P < = (5.5.11)
1 n

Further if in the succession of values of Kn's calculated from the

>

recurrence formula (5+5.9) therc is one Lh say for which (5.5.11)
' (n +1)
o

o
docs not hold good, we sec fron (5.5-10) that the value of P,

for the unit Ui corresponding to Z_ . turns out to be negative and

ma
. (ny+1)
hence untenable since Py !

8 are to be used as probabilities
in the (h0+1)th draw. Thus, if (n'~l) is the moaXirum velue of n  for
which (5¢5.11) holds goed the scheme given above remains valid upto

n'th draw only.

This, however, is not a serious limitation in practice, iron

(5¢5.1) we have

i=1
vhere nfn) can be interpreted as the inclusion probabilities of Ui
upto the nth draw, if n £ n'. Hence Kh is the expected effective

sample size upto the nth draw for all n £ n's The sequence of formulae
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inclusion probabilities attained are exactly proportional to the
given values of the auxiliary character. The only condition: the

values Xi's are that

0 <X & NF (1 <i KN) . (5.5.13)

where f is the sampling fraction aimed at. Further such a scheme of

(n) ' 8

independent draws is unigue since the values of p; are uniquely
determined. If after drawing a sample of size n we want to increase
the sample size, all we nead to do is to perform the (n+l)th, (n+2)th,...
draws with the probabilities as given by (5.5¢9) and (545.10) until we
get the required sample sizes Oimilarly, in cases where we are not
quite sure of the rcliability of our estimates of the parameters of

our cost function or of our budget allocations, we can draw a sample of
sufficiently big size at first but then inspect the units in the sample
one after another in the owxder in which they are drawn - at least on
and after a critical stage. If at any stage we find that our total
cost is about to exceed the budget allocation or that sufficient
acéuracy of the estimates is expected to have been already attained,

we tcrminate inspection at thet stage and note the value of 'n', the
number of draws made in alle The population total can then be

estinated as also an unbiased estimate of the variance of the estimator,

as usua;l, using @ea+1) and ( 2448).
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If n draws are made in all, denoting by a suffix 'seq' the nethod given

in this section, we have from (5.3.2), (5.5.1) and (5+5.10),

A (545.14)

(5+5.15)

ani’; 2 9
1

*
=Y

2 1 i
aily (

?z—P—i + gﬁz “;n ) (5.5.16)

where 1™em (B #P) -1 +7 1 T @ - p(r) p(r))
ij n'i j ol

=K (B + PJ.) ~1+77T L™ (K.r"Kr-l) (p; * Pj)

n (1- Kr_1+Pi) (1 - ;';:r_lpj)

T 1-K.(B +P)+ Kzr_lpipj

=K (F, + PJ.) -1+ —L
L1 @=-x_,p) L1 (I—Kr_lPJ.)

(5+5.17)
After drawing the sample the products

n

[ 1 -K

P.)
r=1 1

r=1

have to be calculated for each selected unit. TFor every pair of units

selected we need then find

—_— % 2
111 (P +P)+K1P1Pj

liaking use of these products n(J)'s can be calculated from (5:5. 17)



§ 5.6. Illustrations

e shall now illustrate the sampling scherie of 8 5.5 for the

four live examnles considered in § 4.3.

The first step is to calculate Ki's using the recurrence forrula
(5.5.9), until (5¢5.11) breaks down. These are given below for each of
the populationse. The computations are nade on IBY 1401 giving Kh's
correct to 16 significant figures but we shall present them here only

to 4 decimal places, for simplicity.
Taeble 5.6a. Bable of Ri's

Order of Andhra West Pun jab Gujarat
the draw (i) Pradesh Bengal
1 10000 1.0000 1.0000 1.0000¢
2 1.9455 1.9103 1.9373 1.9254
A 3.6828 3.4696 36376 3.5667
8 6.6051 55006 644269 60905
2 742319 57530 7.0125 65752
*O 78207 548699 T.5582 7.0029
11 8.3728 589059 8.0661 Te3729
12 848896 58971 845379 7.6822
13 043721 S 8.9754 7.9251
14 0.8214 $+3802 8,0925
15 10.23890 9.7536 8.1779
18 15.6225 10.0967 8.1995
17 10.9748 10.4103 8.2008
18 11.2945 10.6949
19 11.5800 1009504
20 11.8286 11.1761

contd.



(contd. from previous page)

Order of the Andhra ' West Punjab Gujarat
drow (i) Pradesh Dengal

21 12.0354 1143702

22 12.1924 11.5262

23 12.2899 11.6474

24 12.3276 11.7182

25 12.3327 11.7438

26 12.3328 11.7468

27 ' 1147469

The method breals down after the 26ith, 12th, 27:th and 19th draws
for the populations of 'Andhra Pradesh', "' coi 3gn al', 'Punjal'and
'Gujarat' respectivelys. The expected effective sample sizes attainable
(given by the value of K last recorded, (cef.) (5.5.1)) are 12.3328;
8e0UT1, 128409 and 842008 respectively which give the attainable
expected effective sampiing fractions to be about 62 per cent,

37 per cent, 62 per cent and 48 per cent respectively. These are nuch
larger than the sampling fractions that we need in practice and thus

the rethod is usuable in all most all practical situations.



§ 5.6. Jonie concluding renmarks:~

“he methods given in this chapter can be mixed with onc another
as also with the sampling schenes (&) and (3) of Chapter IV. For
exarmple thie sampling scherie (A) of § 503 can be nodified by a mixture

with schene (B) of g 42 as follows: Ve cwmlate T7,'s until their

5
sur1 just falls below 2 (instead of 1 as in § 5+3) and find 0's suitably,
which are obtainmed by replacing 1 on the reshes. of {5.3~6) etc. by 2.

We thus break up the population into slightly overlapping strata with
sur: of ni's equal to 2 in each stratume 1In fact we can manipulate to
keep this overlapping gquite low by grouping the ni's so as to have

their sum very nearly 2 in each group and then apply the method of

§ 5+3. Ve can then apply the scheme (B) of § 442 and draw 2 distinct
units from each stratums The strata totals can be estinated by using
(2+4+1) with 7, 's of the junctional units nodified as (2~Sk)'s or

ak's as vhe cdse 1oy bee The sun of these strata estinmates gives an
estimate of ¥ which is not admissible since the overall sanple can ce
centain repetitions (due to juncticnal units}}though he sarple within
each stratum consists of distinct unitse. We can then use the estimator
(2.4.1) with the original values of the ni's themselvess. iowever, the
calculation of nij's needs a sl ight modification over tiat given in

§ 4e1 and g 42 which can be carried out as in § 5.3+ Instead of

nij being zero for qnits belonging to the stratun (and neither of which
is a junctional unjt) we now have nij given by an expression corres-—

ponding to {4264 )e A1l nij's are strictly positive so that the



veriamce of the estinator can also be estimated. This rethod is
likely to be better than both the nodificaticns given in § 5e4 (which
were given much earlier to obtaining of the results of Chapter IV,by

the author).

Similarly in situationswherc therc is expected to be a corrclation

between the variations in adjecent units,

Coval (v, Y, | X, xj) £ O

in gererzl for units Ui and U,j that are geographically near to eaech
others In such cases we moy first stratify the population so as to
keep adjacent or near adjacent units in different strata and then apply
our methodsto each stratum seperately and add up the estinctes of the

various strata totals.



CHAPTER VI

80ME MISC\ELLANEOUS RESULTS IN 'mPS ' SAMPLING
| § 640. Summ ry

In this chapter we shall éonsider some miscellaneous results
in '"tPS' somplings In 8§ 6.1 we consider multistage TPS sampling
schemes and derive the optirum (in the scnse of lowest cost, for a
gnple cost function). rultistage designs in the class of all nultistage
designs with given values of inclusion probabilities and with & fixed
number of kth=stage units being drawn from every selected (k=1)th stage
unite In § 642 we probe into the rethod of substituting prior estimates
of parameters in the derivation of optirmm allocation of sample size in
stratified sarpling and remark that the conventional method is justi=
fiable only if the coefficients of variation are nearly equal for all
the stratae 1In 8§ 6«8 we give a method of analganating two differcnt
TPS samplc surveys on the sane populaticn, so as to have a large
murer of camon units (to feduce travelling costs)‘. The rethod is
enalogous to that of Keyfitz [23 _7 Finally in § 6.4 we deal with -
the problen of testing the validity of - :bhe.basic. rodel (2.3.3))on
‘the basis of a sample drawn, which leads to a test for the validity

of the model used.



8 3.1. Optimum allocation in multistage sampling.

We have seen in 8 2.3 , that with respect to the class &y
of prior distributions defined by (2. 3.3), the class of sampling

strategies Ho for which
X,

1 ~
R, =~
1 X ( ot (6ol.1>
My = L for all samples (
Y
* * i
and Y = Yor = .Z _—
i€s i

N .
I - (8.1.2)
1

Further, all strategies satisfying (6.1.1) are al-equivaleht, in
whatever other respects they may differ from each other., This means
that there is no such thing like&gain due to stratification,ﬁloss due
to multistage sampling etc. so long as the designs all satisfy (6.1.1),
and that all are 3 - best. This has an immediate application in our
choice of the design to reduce our costs., For unistage sampling with
the simple cost function

C=C, + B - (6.1,3)

wvhich because of (6.1,1) givés

C = C_+B



hg

all designs of ho are equaliy costly. Let us consider a multistage

sarpling with the sinple cost function

c»= o ¥ Bl uls * BQM2S T Bkuks (641.4)

where the design is a k~staged one and Bt is the cost of inspection per
t-th stage unit, uts the nurber of t—th stage units choscen. We have the

restriction

D= T H (6+1.5)

for all samples. Iiere we are considering that the auxiliary information
is available upto the last stage, and the validity of a prior distribu~
tion al € 43’ is also asgumed. From the remarks rmade carlier, all
designs satisfying (6+1+5) are all L&requivalent. e shall therefore
try to minimise our cost.

Fronm (G+1.4) we find that the expected cost for sarmles fron a

given rultistage design satisfying (6.1.5) is givean by
B = B e s 140
E(c) c, * Byky *+ Boby + + B (641.41)

we have to ninimise thc above by a proper choice of the ués for
1<t < k-1, and renenbe ring tiat b =u, a given constant. ‘e shall
assure, as 18 the case in rmltistage sarmpling, that

B, > B, 2 eer D > B ‘ (641.6)

1 2 - Bk~1 =k

Then (6+1.4') is mininised by choosing for Hps Hogpeeoy by, the

smallest possible valuese



e shall now restrict our attention to the subclass of rmltistage

designs which Hesides satisfying (6.1.5) also satis®y
& & J

=l for 1<t < k-1 and for all sarples s (641.7)

This is so because the construction of the derived optirun desisn is
relatively sinple Tor thesc designs.
Ve can take

+ b, opt = I for 1<t k-1 (641.8)

as this mininiscs the coste DBut this is a feasible solution only if every

(k=1)th-stage unit contains at least uk==u kﬁh—stage units becaunse the

total number of kth—stage units to be chosen is by, & given number. If

this condition does not hold good we consider the (k-l)th~stage unit con-
t)

taining the smallest number of the k h~stage units, and if this number is

denoted by @, _,, we should take, in virtue of (6e1.6)

NS

-
uk-l,opt -
! (Go1.9)

B opt = 1 for 1 ¢t (k=2

Lgain, the second condition of (6¢1.9) is a consistent condition only if
every (k~2)th-8tage unit contains at least —E— disbinct (k-l)th~stage

k=1
units.

Otherwise we sct



Hia
= -—l—ll_oﬂfi (60109)

uk~2,opt - ?k-z

where 9o is the smallest number of (k~1)th—stage units contained in a
th : o '
(k~2) “-stage unit, again in virtue of (6+1.6). By successively applying

(6+1.0) thus, I tires, .we can find the ”t,opt's'

iet now
I
n, = b+, opt (1<t < k=1) (641.10)
»0pt ut opt -7
s Of

n, can thus be interpreted as the optirun number of the (t+1) h_
t,opt .
, \ . th .
stoge units to be chosen from each sclected t T=stage unit.
The ng o t's nay nov be integers. In that casc we have to take
» OP
integral values for thern ncar the optimun solution. In practicc n is
not rigidly fixed so that therc will be roon for some menouvre. Further
details like deriving the loss due to such deviation fron the optirum
values will not be discussed here as they are straisht forward and well-
Inown methods. At any ratc tLis loss is likely to be quite srell when
's arce even noderately large sampling can be realiseds Lot N be
1, opt
] ) . .th
the total number of fsu's N, the number of ssu's in the i fsu,

. th th
\ e nuni i gul's he j 2] £ i .
Nij the nunber of tgu in the j 8su of the i £su~bricfly the

(i,j)th ssu = ctce If Xi is the total of ¥ character for the
ith £su and X the populatian total of X , we choose a 7PS sampling

scheme for the sclection of the fsu's with the inclusion probability

M, = == (641411)




for the i'® fsu (1 i < N) and with the number of fsu's being the

same in every sample, If il-th fsu gets selected in the sample, the
ssu's are selected from it by a #PS sampling scheme consisting of n,,

distinct units in each sample such that the inclusion probability for the

.th . . .
J ssu is given by X

opt

i T X, 0 T2,opt o (B.1012)

Similarly the procedure is carried on upto the k-th stage units. Clearly
the over-all inclusion probability for the (iI iy eees ik) the k-th stage
unit is given by

X, X, . X

. . L I L
i i '.t.i - X * l.Opt. X. * 2’ ....X. . * -l,Op
172 k iy 11...1k_1
Xi .
1'.‘.1k
= = » n esssel
X 1,0pt (k-1),0pt
X i
= nede X - (8.1,13)

which is what is required by the optimum strategy.

In ChapterlV some near-optimum solutions are given for the problem
of selecting n units by a unistage sampling schemc., These methods can
be applied in the above problem for the selections at various stages,
‘until such a time when an exact method, like the one given in cahpter V

for the case n=2, is developed for general values of n.



For an application of a =PS sampling method of the type given above

it is of course necessary that fot the iven n = m, we have

X . '
X, 1 <i<N
i, £ n1,0pt g t= )
XiliZ < 1 (1 < 1s < Nil)
A n2,opt
X
XiliZi3 < n = (s < NiliZ)
3,0pt
X. . .
1 1 .'..1
X i i < - k-1'<1-<-ik-<-Ni i )
1 2...“ k nk 1'.. k-l

veee(6.1.14)

which are slightly_stronger requirements than the onq'in unistage sanpling

for which we should have simply
X, ¢ X S (8.1.15)

However in general (6.1.14) will be satisfied, The modifications
necessary to meet any violation of some of the conditions of (6.1,14)

gre not likely to present much difficulty.



8 6.2 On optimum allocation in stratified simple random sampling.

For the case of simple random sampling with or without replacement,
optimum allocations of the sample size to the various strata were derived

first by Neyman / 29_/ for simple cost function given by

C = Co + Cln L (60201)

Later - the method was extended to cover the case of unequal sampling

costs per unit for the strata, It may be noted that this optimality is

slightly different from the optimality discussed in 8§ 6.1. Here the

optimality is for the minimization of the actual variance (not its

expectation with resﬁect to some prior distribution) of a particular

(conventional) estimation procedure only.

We need not go into the details of these wellknown methods., For

the case of simple random sampling with replacement, with the cost
function (6.2.1), the optimum values of n, are given by

N, o,
i i

= n, i L (6.2.2
%j,opt = 1 ENo, (6.2.2)

while for the case of'without replacement! sampling

| N s,
ni,opt = n, z—ﬁ:é:-— ... (8.2.3)



N
2 (]
where Ni is the size, Ui the variance and Si = ﬁ—%i O? for the i-th

stratum. Similar expressions can be obtained for the case of unequal

costs over strata,

For the calculation of ni,opt's given by (8.2.2) and (6.2.3) one
needs at least the proportionate values of Gf's, which are unknown. In
practice one substitutes for them plausible estimates a?'s vhich are
usually nothing but the Gi's of some auxilary information (usually the
values of the same character studied in a recent epoch of time). The

Justification for the assumption that the unknown proportionate values of c%'g
i
are usually nob far from the known pronirticnate values of the known
2 . s s as . .
ai's, can be examived in the light of an apriori distribution 61 655’

¢ defined by (243.3). We have

N Yzz
2 1 3 2 i
% Mg E Y- 5

[ i=1 1

where Yij is the Zf-value on the j-th unit of the i-th stratum,

Hence
2 17 !
Eé(ci).-.N\Z(am)xJ N(ax+c§:X1J)
1 i b
X2
. X2 .2 2 iy 2 1 2 .
"N.[a(z.:xij Nt (- )3
i 3 i i
N.~1 :
2 i -
i



N,.-1

assuming ; 8 to be nearly equal. This is the case of Ni's are
i
large enough or are nearly equal. In the latter case the constant
N.- 1
value of ; can be absorbed into 02. Hence we can write
i

2 2 2, 2 2 =
Eél(ci)=(a +0)a; +0 X

N

e (6.244)

[

(In the above derivation 02 should not be confused with population

variance. It is the 02 of (2.5.3)).

Thus the Gi'; can be exﬁeétéa to be in the same proportion as
a?'s only if X?'s are proportional to di’s; i.e. if the coeffecients
of variation for the 2¢ -character are more or less equal for all the
strata. If this condition is far from being fulfilled there is not much
point in using the relative values of ai's instead of those of Ui's

in (6.2.2) or (6.2.3) or similar such expressions.

No results analagous to optimum allocation of sample size of the
type known in literature are applicable in our set-up. This is so
because the total expected effective sample size 4 gives

it T T X
for the i~th unit of t-th stratum so that the expected effective sample
size oy for the t-th stratum automatically gets fixed by the relation

X

/J;t = ? nit = U —X'— PR (6.2.5)



where Xt is the size of the t—th stratum with the cost function
C=C, +ZCn + - - (6.2.6)

the total cost thus turns out to be

t
CO + z Ct. u. -

Q
L}

- 3
Co* X E Xy Ky

being completely determined by Cd’ Ct's and U and X,



8 '6,3 Integration of surveys

Suppose it is intended to conduct two surveys on the same population
totals of the characters, ﬂj and f?:‘which need not be distinct., lLet a
PSS sample of cxpected effective size [ be nced for the survey forij aﬁdjlanP
sample of expected effective size U' be needed for the cther survey. 1
Let the auxilary characters to he used for the surveys be and
respectively, and these also need not be distinct. It is intended to
draw two samples for the two surveys such that the number of cormon units
is maximized., Let T be the inclusion probability required for U. for
the survey for :7 and n£ be the inclusion probability for the survey
for‘y for the same unit.(l { i { N). Clearly

X,

). = 1
/ 1 " 7( X
X!
and ']T,{ = u'.i_::_ eee 00(6.3.2)

Analagously to Keyfitz's ZTEB@J7 ’f procedure for pps sampling, let

9; = min (ni, n{) .. .(8.3.2)

Further, let

.- +(8.3.3)

n!=9.
1

1
| = eme——
and A T -5,

A procedure that can be expected to give maximum expected effective
number of common units is then given by choosing a sample 84 with a

7PS sampling scheme in which the inclusion probabilities are ai's



given by (0.3.2) and earmark it for both the surveys. A further
TPS sample Sy is chosen with inclusion probabilities )\i's given

in (8.5.3) and is taken, along with s., for the survey for:z" .

1
Similarly a sample 8q is chosen by a 7PS method with inclusion
probabilities Als given in (4.3.3) and is taken, along with 815

s
for the survey for fy .

It is easy to verify that the required inclusion probabilities
are in fact attained, The expected number of common distinct units

is at least equal to

) oo (6.3.4)



§ 64 Teuting the validity of:the batie :1delf263.3)

We have secn that when the nodel (2.3.35 holds good, then in a
certain well defined sense, w¢ have an optirun sampling strategy to
estimate the population total Y. It is therefore of interest to know
if the model (2e343) is valid for the populations One way of partly
achieving this is to stratify the population in sowe way and test for
the equality of the 'a's and 02'9 applicable to the different strata.
A first step towards this is to egtimate thesc parameters for the
different strata, on the basis of the sarples drawn therefron.

Let

Vs Yoo G o (64.1)

be the units of the kth stratum with voriate values in and Yki for
the % andé%#” variables for U 1<ig Nk)' Let us assune a

nodel like (243.3) for the kth stratun thus:

%o (¥ | in). "o Xy L (gt AL Nk).

| 2 .2
v, (.. | ) =0 oXj.
al ki Xl;l k £1 . J (6-4-)
and (LovalfYki, ij FX ij) =0

Inder (6e4+2), the usual least~square estinmates of ay and oﬁ are given

by
N
kY, . _
;k = ":1— & ;‘ilﬂ = "I%‘ 22, =1L, say . (644.43)
koi=] ki kK i °©
*2 1 2 =2
and %k Ny =1 ( f by ~ N By ) - (644.4)



vhere 7 . & —o ki ~
ki X .
ki
These are the best estimates of 8, and Glf if the prior dis-

tribution al under consideration is in fact a N ~variate normal

=

distribution.
These estimates of the paranicters of the prior distribution are
thense lves parameters of the nain population (6.,4.1) and hence have to

be estinated unbiasedly from the sarple drawn. For an unbiased esti~

*
nates of ak we have

%
-

7, . Y ‘

*#%

akEZkB-T]\i—Z ——-‘-‘-l—z--]-'—— k .,(604‘05)
ki€s T Ui ies Nt T

*
Tc obtain an unbiased estimate of sz we observe that an unbiased

estinmate of population variance

is given by applying (2.4. 1) for the 2‘&7 70 terms on the rehes. of (6.4. 6) thus

1 1 Yi g %Y,
0‘ (Y) =ﬁ(l-ﬁ) z < T35 r:Z —;[—'l . (64447)
N i€s TN g4 Ty

dence an unbiased estirnte of cﬁ of (6e5.4) is given by

2

**2 7"‘ (N "'1) X 'Z_kl- -3z —““—"1/ (60!08)‘
% N:I) /5 i€s ki i#j .'I.JJ
€s

(6.4.5) and (64448) thus give the required estirntes.s These can

be obtained for the various strata and can then be compared. GJince



sanpling is done independently in the verious strata the variances of the

estinates of contrasts like

2 _ 2y |
(& = 21), (O, = o) kA - (64449)
can be obtained as
*H *%
Ve +v(a,,)
and ' .
. » 9 L)
V(o) +V( Oyt )
o
respectivelyes Tor the variance of)say) &y We have

*¥e, *% *%®
V(eﬁ{) = Va:l Eu (ak) + Ealvu( ak) .. (6.4.10)

where the suffixcs u and al denote that the corresponding expecta=
tions and variances are taken over the various samples drawn from the

actual population and various actual populations that can be obtained

from the super population 81- For an unbiased estimte of

* %
By V. (ak)
we have i
¥
v, (3)

which itself can be unbiased estinated fron the sarmple from the forrula
(49243) giving the variance=estirator of forvitz and Thompson estimator.

Regarding the first term we have

: , 2 N
V. E ** \ *l Nk Zk‘ 2X 11
IH A = = ————— = ode
a]_ E ( ak) Va1 (2,) 1; L2 Aki o /N ..(6 4011)

whe re ilr is the mean of X in the kth stratum. An unbiased estimate



of (6.4011) is given by (since the ~« = values arc completely known)

**2 -~

oy X/ 1,

For en unbiased estimtc of (6.4.10) we thus have

2

- Y. 1=-mn._)

8,!) = ‘; G + 1 5 ki Trkl
k2 L 2 2
| Mei

- K% ¢ LT LT,
=X o§+?i§Wi (1-75,)+zzw W, ﬁ‘iﬂ-%l‘:—nkal
| ¥, (6.4.12)‘
whe re wki = in nki
Similarly V( ) can be found. Using these expressions one can obtdin

estimates of the variances of the estirates of contrasts of (6.4.9) and
can then test for their significance assuning that the estinates of the
contrasts are norrally distributed. A pooled test to test for the
significance of all the contrasts can also be constructed Should this
reveal that therc arc no significant differences arnong ak's and arong
Gi's the model (24343) can be taken to be corrcet enough. Otherwise

the populction has to be stratified to put homogencous or adjacent units

into the same stratum and the strata totals should be estimated by

individual optirun strategies.,



CHAPTER VIIX
SOME GENERAL ASPECTS OF ESTILATION
AND THE OPTIMALITY OF TR
HORVITZ AND TS0 BOTIMATOR

§ 7.1 Surmery

This chapter is devoted to some general aspects of estimation
pertinent to sampling from finite population, with special reference
to the estimation of population totals and meanss The ainm is to
approach in a unified way for the search of *best' (in some well
defined sensc explained in § 7.2) sampling strategy. Towards this
a search is first made towards finding the 'best! estimator of a given
parametric function in the class of all estimators defined over a given
design D The fundamental result in this direction is given by
theorers (Te5.1) of 8§ 745 where a new criterion of hyper adrmissibility
of an estimator is introduced and the bestness of the forvitz and

*
thonpson estinmator ‘IHT established.

In B8 7+2 the problen of estimation is posed and a unified
approach is made towards a conplete class of estinators of a parametric
function in the class of all estimators defined over a2 given design.

A simple proof is given in lemma (7.2.1) that the eriterion of admis;
sibility with respect to mean square error loss function does not
exclude biased estimators of Y amd then unbiasedncss alsc is added
in the list of criteria. Sufficiency of the order statistic in the
special sense relevent to sampling from finite population is explained
and its minimelity pointed out ir a simple way. That it is not a

conplete dufficient statistic is also pointed. The existence of



i

non-lincar unbiased estimators of Y, and of non-~horicgeneous linear
unbiased estinators of Y, all of which are functions of the ninimal:
sufficient statistic alone, ére shown by (7-3.17) and (7.3-18) for a
large class of designs. The f.OI’i;J of a general polynonicl unbiased
estinator of ¥, i8 then éiven by (1.3.20). The inadequacy of the two
criteria of unbiasedness and admissibility;@dtﬁ respect to mean square

error)is pointed out.

In § 7¢3 we derive necessary and sufficient conditions to be
satisfied by a given sampling design for the unbiased_estimability
of a parametric function which is a polynonial in Yl,' .o u,YN.

While explicit proof for the casc of linear paranetric functions is
well known we arc not aware of formal proofs for higher order polynow
nialse In particular we deduce the conditions for the estimability
of the variance of a general homogeneous linear unbiased estinator
(g.h-lou-e_~, for brevity) of Y = gY'i-

In § 7e4 we point out that Godarmbe's result concerning the
non-existence for -any given design, of a uniformly nminirum variance
.(i.e. for all values of f¥/) unbiased estimator (meneveuee., for brevity)
of Y  in the class Lu of all gehel,uce's of Y, is not wi thout sone
cxceptions. In theoren (7v401) we completely characterise these cxcep-
tions, which we call the 'unicluster'sampling designs and prove that
the best estimator (i.e..'u-rl'Vm-O')in all these cases is the corres.

ponding Horvitz and Thompson estiriator, ;HT .



In § 7.5 we introduce the criterion of hyperadmissibility of
an estinator which is stronzer than admissibility. The practical

implicaticns of this criterion are pointed out in tems of estimating

N el
not only Y = ¥ Yi but all linear parametric functions ¥ L.Y.
1 ‘ 1

and in particular,all sub—population totals. The important off-ghoot
of this new criterion is that it not only excludes all but purely
horiogeneous linear unbiased estimators of Y, but in fact excludes
all but ome in the class of all unbiased estirntors of Y which are
polynonials in their arguments. This sole surviving estinator which
can thereforc be called 'the best estimator' under the criteria of

unbiasedness and hyper admissibility, is the corresponding Horvitz

*
and Thompson estinmator YHT .

In § 746 we prove that, to estimate paraneters € that depend
on the units of péoper subpopulatlon alone, corresponding to any
given design D and an unbiased ¢stinator T of 9, we can construct a
restricted design D' and en estimator T' of € such that V(T') < VCT)
for all X: We point out that though the strategy ' (®',7') has less
variance than E(D,Tj, it is costlier then ﬁ, In practice a balance

has to be siruck depending on cost considerations.



§ 7+2. 'Some aspects of estimation.

We shall now turn towards a unified approach to the problen
of estimation discussed earlier in Chapter II.

Given a parcmetric function GEQ , the problem of estimation
of 0 CY) on the basis of a strategy H(S,P,T) has to be approached

~
through two fundamental criteria, viz, bounded cost and minirum loss.
A cormonly advocated cost function is of the forn
C:Ap.S+B

where A and B are known parameters‘and g is the effective sanmple

sizes The expected cost of a strategy H(S,P,T) is given by

C(H) Ap+B -~ (7.2.1)

where

W= 2 Mg Ps
S€S8

A commonly advocated loss function is the rean square error defined by

-

M (H) =E(T-0)2= 5 P _24 S OTP 48 (7.2.2)
- g€ S S s 8

S s €3

It is not always possible except in some very special cases, to express the
loss nnd cost in game units. The choice of the strategy then has to

be nmade in the class of all strategies for which

c (\) £°¢C, | . (7.2.31)



where Co is a given ceiling on the budget and for which (7.242) is
least for all possible valuves of Y = (Y,, Y., ee -y Y )+ The condi-
~ 17 "2 N

tion (7.2.3') can he evidently replaced by a stronger criterion viz.,

c(m) = ¢ (7.2.3)

because corresponding to any strategy satisfying

c(H) < C,
there is always the trivial strategy of taking more units in the
sarple and ignoring the information supplied by thenr and this strategy
is as good as the original one with respect to the loss function con-
siderede In the sequel we shall therefore take (7e242) representing
a fixed cost, instead of (7.2.3) representing 2 bounded cost. When
this is not possible then we choose an admissible strategy H satisfying
(7.2+3) and for which there is no other strategy H' also sciisfying

(7.2.3) and for which

M(H') < M(H) for all Y . (7.2.4)

strict inequality holding good for at least one value of ,X' The
class of 2ll admissible strategies forms, as is well lmown, the mininal
conplete class of strategies. Based only on the two criteria of fixed
cost and minirun loss there is nothing to choose between any two

admissible strategies.



A search for a complete class of strategies can now be nade
in two steps. First we can search for a complete class of estiintors
&1l defined eover a given design D satisfying D = uo so that
(7.2.3) is satisfied and then we can compare these various complete
classes of estinmators by varying U over the class ol all designs
satisfying U = By to geﬁ a corplete class of couplete classes of
estimators which gives us a complete class of strategiese In the
following sections we shall devote our attentien fo the first part of

our problem and towards the end review the final nosition.

As we confine our attenticn usually to unbiasec estimators
only it is pertinent te enquire whetiier they form a complete class.
Though it is known that in general this is not sc, we give a sinple
proof applicable te our probler that this is not so for the special
case of & = Y, and if we want to restrict ourseclves to the class Lu
¢f Zeheleuse's.

Lerma (7+2.1) : Except when C, 2 AN +3 (cofe {Te241) and

(T+2.3) there dc exist biased strategies for which here does not

exist a uniformiy superior gehel.uz.e..

D
ot
H~

Proof: Consider & strategy H (Sv’ P, TO) sfying (72+3)

(3]

and in which the estimator is given by

=3
[ ]
)

{7+2.5)

where a 1is any given constant not equal to zero. If possible let

there exist a strategy H(S, P, T) satisiying (7+2.3), where T is a



menber of the class I of geheleusc's defined over D(S.P) and which
is unifornmly superior to HO. Since (742.3) is satisfied for both

the strategies we need only verify (7.2.4). We have

M(H) = z (a - Y)2 PS = (a - Y)2 (702.6)
© sOE SO o :

N
so that M(HO) = 0 forall Y forwhich Y = I Yi = a, the given
~ 1

constant. Further

2 . 2
M(Hl) = zr‘ LR, - Y
s€S5
N < 5 5 N S ‘
=7 T BSP1) YS s DT I BB, P-1 (YY
)\.—.1253?\ A { s MA'ZssM"“"S}‘ s AA
1
(7.2.7)
where
b T = 2 B Y (70208)
s A€ s sh A
Since
0 <hlH) <u () for all Y
it follows that
_ N
M(Hl) =0 for all Y such that I Y. =a - (T4249)
~ 1

and hence that M(Hl) attains its ninimum over Y at all values Y
N ~ -

for which T Yi = 8. Mininising (T+2¢7) ower Y we obtain the nini-
1 : -

nising equations to be



b)\l Y, o+ b}\2Y2 4+ oee 4 meN =0 (=12 oo N) (1.2.10)

where
2
b = z B“ Pﬁ -1
M SD}\, ‘J)\. D
and
b z B BSNPS-—l for A A A!

A ) S DAY SA

from (7+249) it followsthat the system of equations (7+42410) should be

satisfied by all Y such that
—~4

N
LY. = a . (T.2.11)
1

and hence in particular for

(1)

Y = (a, 0, 0, +0. Q)
)

which implies from (7.2.10) that

. .
b= I BT.P ~1:-0 . (T.2.12)
11 S)l sl s

since a # 0. But from the unbiascdness of (7.2.8) it gan be verified

that
O > —— -1
s 31 S+ "1
so that (7.2.12) is éatisfied only if Ty o= 1. Bimilarly arguing for

sets of values of Y given by
~J

L)

~

= (0, 0, «vt, 0, 2, 0, +.. 0 i=2,2, «.., N



where the non zero element is in the ith position and observing that
all thesec scts satisfy the condition (7.2411) it follows that it is

necessary that

o= 1 for A=1, 2, e0e.y, N - (7.2.13)

This implies that the sampling design should consist of only such
samples which contain every unit of the population, with provability 1.

This is possiblc if and only if

Cy 2 AN 4+ 3B (7.2.14)

where A, B, and C, are as defined by (7.2:1) and (7+2.3)s Tt is
clear that in this trivial situation we can estimete v unbiasedly
with zero variance so that all biased estimators are inacmissible.
This completes the proof of the lemma.
Since a situation where (7.2.14) holds good is not of interest
from sampling point of view we thus sce that we can not exclude biased
estimators of Y fronm considerations of bounded cost ang minimunm loss

alone, at any rate not in preference to geholause.'s.

Ve shall thus accept unbiasedness also as a criterion for the

estimation of a parametric function.

In the caso of sampling from a finite population iqu of N
distinguishable units the sampling design D(o, P) is at the dlsposal of
the statistician. Asg renarked in 8§ 2¢1 the set S of semples oan be

taken to be sct T+f(1}t)of all finite sequences of clerpnts from the



population » The probability measure P ther is at our choice
8o that the probabilities attached to the different samples are con-
pletely known in advance, in contrast to sanpling from infinite
theoretical populations where the probabilities arc known in tems of
some unknown paranmecters. However, the distribution of the sampled

C i
observations on a real valued variate(%f;depends not only on the
prcbabilities of various sanpled units but also on what points of

N . . . , R
R", the N-dimensional BHucledian space, these probability masees are

situated. TFor a sanple

S = (U ’ U. s tecyg . ) (702015)

with attached probability PS this probability mass is attached to t

the point

Y(s) = (¥, , Y, , eeny, ¥, ) . (7.2.16)

] . . . . . Y .
of 3?. Since this point is determined by Y we sce that the distri-
N

bution of the sanpled observations thus depends on ¥ which acts as

~

the parameter. If then a sarple s is taken and the vector Y (s) is
~

observed, for any other sample s' such that

the corresponding Y (s') is fully known and is independent of Y .
. ~ ~

We can thus say that given the order statistic isce tho unordered set



of distinct units of a sample 's' and the corresponding 2j&dvalues the
condiditional distribution of.Z}s) is independent of tae parameter .X
and hence in any sampling design the order statistic is a sufficient
statistic for the family of distributions defined for varying values of
the parameter Xl in RN. |
This result is well known from the results of Basu.éfid7o It can
be easily seen that the order statistic is also the minimal suffici ent
statistic in this case. To see this let T be any suffiocient statistic

ad consider the induced partition of S into equivalent sampless This

consists of a partition of S which is a countable collection thus:

oo
S = U A
n
m=1

where the atoms A.m are collections of samples such that given that
the sample belongs to a pParticular atom Am-, the conditional distribu-
tion of the sampled observations is independent of Ei. It is evident
that for this to be true any two sarples in the same atom must have the
same set of distinct units of the population for othefwise if s and

s' two members of an atom such that s éontains a unit not belong-
ing to s' then thelocation of the probability mass Ps in RN can

not be determined from that of 'PS'. It follows then that the order
statistic is the minimal sufficient statistic’'in this casece However it
is not in general a compléte statistic. To see this consider the simple
case of the sampling design 6btained by taking a simple random sample of

8ize 2 without replacement from a population of 3 units. tYhe possible

samples are



sl = (U].’ U2) H 54 = (Uzi Ul)
S2 = (U2’ U3) ’ S5 = w3i U2)
8y = (U3, Ul), cud sy = (Ul, U3)

Consider the statistic Z defined by

2 =12 = Y, - Y

Sl 84 1 | 2
Z = 7 = Y, -Y
s2 55 2 | 3
Z = 2 = Y, =Y
53 s6 3 1

clearly Z isafunction of the order stati stic, Z £ 0 , and
€@ =o0
which shows that the order statistic is not complete

Since attention need be concentrated only on. estimators which
are functions of the minimal sufficient statistic it is of interest to
examine whether the class of all such estimators is sufficiently narrow.

We shall indicate below that this is not the case.

I
To estimate a linear parametric function like say Y = % Yi it

1
is of interest to note that in genernal there do exist non linear
unbiased estimators of Y which are functions of the minimal sufficient
statistice To see this, consider the example of the previous paragraph

and let T be any unbiased estimator of Y which is a function of the

order statistice Also let T*be defined as



sl Y 1 2
™= T o Y; - Yi
2 5 A%
and T* = T* =2 YE - Y2
s 8 2 1
3 8

clearly T* is a zero function (i.e. one with expectation zero for all
values of the parameter) and depends only on the order stotistic and

7% £ 0 so that (T + ™) is a non-linear estimator of ¥ which is a
function of the ninipal sufficient statistic. The existence of such
non-linear estimators con easily be demonstrated for o design in which

Y is estimable and for which there are at least two samples s, and 8,
with non-zere probabilities such that 8; contains a wnit not contained
in s2- (Designsin which this conditionis not satisfied are the unicluster
designs defined in 8 7+4) . 1In this case if T is any 1inear unbiased
estimator of Y -which depends on the order statistic alone and if UK

is o unit in s which is not in s then the estimator 7' defined

1 2
by
TV = T, ifzs,ésl, 8
Y
my . [}
- Tsl . ?3_ (7.2.17)
1
s, = Tsa TP
“ 2

i3 & non-linear unbiased estimator of Y and 7' also is o function

of the order statistic alones It will be shown loter in theorem (Te442)



that for a unicluster design there does not exist any non-linear
unbiased estimator whick is o function of the order stetisiice
Similorly it is easy to s¢o that therc cxist non-homogencous

linear estimators of homorcneous linenr parametric functionse For, if

N
T is a heleuece of T LiYi then any T' given by
1
1 — 7 m o2
TS = Hoo+ (7.2.18)

wherec KS is a raondom variable not dependent on ¥ )  such thot

is one such estimator. In particular such estimators exist for uniclus-
ter sanmpling designs alsos In fact it will shown later in theoren
(7+4.2) that all estimators of the form (7.2.18) arc admissible in this
casce

In general it can be easily shown that if T i8 2n unbiased estima-
tor of ¥ say, and is o polynonial of degreec ( r 1in the arguments,

then T can be written as

i i LI i . o Lt
+ 0+ T + T (7.2.19)

Is

where Ti is o homogenecous pclynomial of degree 1 in the -values

occurring in the sample, and further

(7.2.20)

©
=
o
=
i
=3
'—J
S
|
<



This is so becouse

Y=3() = B @y + 7 Tl) PR (ssr)
S R e b
where Qi is a homogeheous polynomial of degree i, and tihc result
follows from the fact that the above is an identity in Ve

~J
One argument advenced offer for the exclusion oi all but homoge-

neous linear estimators of ¥ iz based on the princ

[
3
el
©
Q
=

o e
(<l
L]
(=}

by

measurerient. 1If, as it hkappens in practice, the Y{s are the values of
o particular character on the units of the population then all are
neasurcd in tiic same units end Y is also measured in some units 8¢

o

that it 18 not meaningful to estimate Y in terms of some other units
of measurements lioreover an estirator in which the 7 valaes occur
withi differeni cxponenis can not be interpreted in terms of physical
quantitiese. llowever, this is purely an argunent in texms of physical
units and once the units wre fixed so that every unit in tie population

has a specific E%Z_ value the preoblen should be treated purely as a

matheratical onece

The authior ie unable to exclude all but the gehelsuscts of Y
with just the eriteria of bounded cost, unbiasedness and admissibility
with respect to the niean square crror loss functione :le 1s not aware of
any further mathematical criteria put forward by earlier antiors which
achieve this purpvcse. In § 7.5 we introduce the criterian of 'hyper

admissibility! which is stronger than admissibility but weaker than that

of uniform minirur variances This excludes not only all but homogeneous

linear estimators of ¥ but in fact gives rise to & unizue estimator of Y.



g 7.3 _Hecesgary ond sufficient conditicns for the estimability

of parametrie fureti uo which arc polyncnials in the argurents

A A Y 8 A TR

o ¢

s
1_(1, Yoy oo e

et D = D(S, P) be a given design ond let

Foo=C 4 ¥ LY, . (7341)

be a linear pef., wherc C and Lis are constantse We then prove

Lerma (7+3+1) := A set of necessary and sufficient conditions for the

estinability of Fi in D is that

m >0 if Li,ée (1 <i <) (7.3.2)
Proof i= “then (7.3.2) are satisfied we have

Y

% .

F.=Cs+ & L —

i . i T,

i€s i
L.Y,

(where is to be set equal to zero waen Li = 9) as an unbiased

i

Mh

esticator of (7.3.1) so that the conditions (7+3.2) are sufficient. To
prove the necessity part let T be a statistic defined over D and

which is unbiased for Fi. Then

H
T T P = C 4% LY, forall ¥ - {7.3.3)
SED S S i 11 ~)

If possible let there exist a A such that Lk‘é 0 but nx = 0



Then since a statistic (cof. § 2.1) is a function of the variate values
of only those units that are in the sample and since nk = T so that
there is nc s € D centaining !A , 1t follows that the lehes. of
(7+3+3) is independent of YK. But since Lh‘é 0, the rehese 0f (7¢343)

is not independent of Y, and hence a contradictiocns

A
Fence the lermae
Let now

G =20 q.. YiYi PR LiY. + 0 (7.3.4
i :

be a quadratic p.f., where c, Li's and qij's are constantge.

Then we prove

Lerma (7e¢3e2) i~ A set of necessary and sufficient conditions

that (7Tele4) be eatinable in D is that

o >0 if Lk‘é 0 and/or 15N

T.. > 0 if qij,éo

Xl
' (1.3.5)
Proof: If (7.3.5) are satisfied, clearly
& = ¢ + I L El + 22 q 3131 (7.3.6)
q i€g M g M Ty
L, 4o qu-Z@

is an unbiased estinator of (7.3¢4) so that the conditions are sufficient

To prove the necessity part, let }M be a statistic unbiased for Gq. Then



s P -@ =£Lq . Y.Y.+Z LY, +c, forall Y (7.38.7)
ij 1)1 3 ; 1 ~

Let there exist a X such that

L}\ ,é 0 and/or qM\ ,é 0

and
= O
N
Then the r.hess contains the tern
Y2 + LY
LY Ny Sy W Y

where as the l.h.s. is independent of ¥, since

A A

there is no sample s containing UA and since a statistic can be a

and thus depends on Y

function of the variate values of only those units that occur in the
sariples This is a contradiction and hence the first set of conditions
of (7+3.5) are necessary. To prove that the second set is also necessary

if possible let there exist a pair of integers io and jo such that

and let there exist an unbiascd cstimator, 1I, of Go, so that
i

Zes M (Yl, Yoy eoes fN)PS = Gy for all ¥, - (1.3.8)

8

O

where for a given s, Ms is a function of the<:T -values of units of

s only. The surm on the l.hese. of (7.3.8) can be written as

M P o4+ % M P 4+ T M P (7.3.9)
€



where

7
. Q ~ T !
S1 = ?sl. 8 € 85, 83 D UiO and sl'q;JjO%

g _ Sg_: ?
Sg = %7 %y €8 5 DUy and s, B . (7+3410)
ol - o : i Z
and 8y = Isgi 8y €8, 5, j?Uio, 5y ‘tUJO’s
-~/
Since 7, .=0,there does not exist an s (with ¥ _> Q) which contains
0Y0 "
both U, and U, so that
Yo o
5=8 US,US,, (skﬂsk,-.-o, k £ k')

and hence (73.9). 3Setting (7.3.0) in (7.3.8) ana recalling that

(73.8) is en identity in Y. We find by letting ¥, = O Ifor k £ i

ana )é Jo?
s oM. (Y, )P .+ T i (Y.)P 4+ I P
5,€ 8, 1 to L a6 S, "2 Jo P2 g€ S, 83 %3
2 2
= Q. Y +29q, . Y. Y. +9q. . Y,
1030 1o 10do to Jo 3570 Iy
Y \ e
+ Li LA Lj Yj + L (7.3.11)
oo o Vo

Since all Yk's except Yi and Y. are set equal to constants, from
) o 0
(1.3.10) we sec thot M is a function of ¥, , i1 is o function of Y,
, 8 i 8 J
1 : c 2 o
and M, is o cowtent, oo that (7.3+11) onn be written os
3 | -
y - 2
' + + = R
P05 ) * 0, (¥, ) ¥y =gy Yy et D
" 0 oo o

which con be writﬁgn fa¥e}
o (v, ) +a (V3 ) +o, =2q. . Y.Y, (7+3412)
1 Yo 2 jo 3 1o']o s do

where oy and a2 are functions of Yi and Yj respectively and
o) o



a3 is a constant. Since (7+3.12) is to be identity in Yi and Yj a
’ 0 0

relation like that is clearly inmpossible since q. . £ 0, and thus we

1
OJO

have a contradiction, which proves that the second set of conditions

is alsc necessary.

This proves the lerma.
Corollary: The variance of an unbiased estirator of Y is not
estimable unless nij >0 for all i and j. TFor, if T is an

unbiased estinmator of Y, we have

2

V(D) = % T: P -Y (7.3.13)

sES

If now 7, . = O, there is no sample containing beth U, and U, so

Lodo Lo Jo
that
o
T PS

s€S ”

can not contain the term Y., Y. . The coefficient of Y, Y. in
' o Jo o o
(7.3.13) is then egual to ~2 which is not zero. From the above lemma

it follows that V(T) is not estimable in the given design.

The above corollary is assumed quite freely in the literature but

we are not aware of a formal proof of the same.

The results of lerma (7+3.1) and (7.3.2), obviously, can be
directly generalised to the case of estimation of higher degrece

polynomialse



-

§ 7e4. The existence of urwue in unicluster sanpling designs

We have remarked in § 242 that theorem (242.2) of Godambe
regarding the non-existence for any given design, of a‘uniformly minirum
variance unbiased estimator wrwue in the class Lu of all general
homogeneous linear unbiased estimators (g.h. l.uee) of the population
total Y has scme .exceptionss We shall completely characterise these

exceptions in the following.

Theorerm (7e.4.1) := The class of all sarpling designs D . (s,P)

for which
i) m >0 (L <igN)
(Tean1)

ii) for any two samples 85 and sj of Duc’

and

either both contain the same units of the
population or they do not have any eorz:omi
units.

are precisely the class of designs adnitting a unmvuein the class Lu
of all geheleuse's of Ye The best estimator of Y in Lu in any

such design is the corresponding Horvitz and Thompson estimator viz.,

Y

*

Vo= o 2B
. AEs A

Proof: In § 2+1. We defined a g.h.le.us.ce over a general

design D(S, P) by

N .
T = £ B.Y (Te4.2)



The conditions for the unbiasedness for Y of (7+4¢2) can be seen

to be

Z B P =1 for ISAS_N B ‘(7c4—03)

For the variance of T we have

v = T T PS-Y2 L (T.444)

s€S

If there exists a umwvue in the class Lu of geheleueel's, let it be

(7+445)

"= TP

z Y
}\SA}\

T' if it exists can be obtained by mininising (7T.4.4) over all possible
double sequences of coefficients, {Ibsx}g subject only to (7.4.3).
Introducing the Lagrangian multipliers &%y a2, ey O (which are not

N

functions of BSA'S, but which may depend on Y, 's) we seek to minimise

A
) T T2P‘Y2l E‘a (z B P‘l) (7+446)
P=sesss— Tl Mg shTs T -

with respect to é%ﬁsx§§ » Since BSA =0 for s :$>Ux- We need
differentiate (7+4.6) with respect to the other pB's only which gives

the minimising equations to be

E—Eg—-— (Té P ) ~a P =0 for every A~ and every
s A 0 0
oo
s = U

o - A

0



. \ ) _ . .
iees 2T, P oY, - P =0 LA KN, s DT
o 0 0 (3] [} ©

so that for any sample s, forwhich Ps > 0, we have

o
o
!}\'o
1 — .
Te =37, » L&A S N, 85 O Uy . (T.4.7)
o Ao . [
P >0
s
0

The above condition then implies that for any two samples S and 8y
having aunit in common and for which PS > 0 and PS > 0, we should

1 2
have

Tl =T, for all Y - (7.4.8)

Godambe then closes his argument saying that (7.4.8) is clearly
possible. However we shall carry the argure nt further. If two sarples
s and 8, have a unit in c;mmon then (7.4.8) should hold good. But if
one of ther contains no unit belonging to the other them (Te448) is not
to be true by the definition of a statistic. Hence a set of necessary
conditions for the existence of a Wwwue is that any two sanples of the
design contain the same set of units or they do not have any unit in
cormon, which are precisely the conditions (ii) of (7.4.1) fron lerma
(7e3+1) conditiams (i) of (T+4.1) are necessary and sufficient for the
existence of an unbiased estimator of Y. Thus (7.4.1) are a necessary
set of conditions. To prove that they are sufficient we recall theoren
(242.3) according to which we need search for the e st estinator of Y

only in the class Lu of all g.heleu.c's that depend neither on the

nunber of repetitions nor on the order of occurrence of units in a sanple.



For any two samples 8 and s' let us denote by

8 v st
the fact that s and s' contain the same units of the population but
for the nunber of :;epetitioz}s anc orders of occurrcnces. A complete
class of estimators in the class Lu of all geheuec's is then given

by estimators T for which

for all s vs'
iees B. =8 " for 1 { A { N, whenever s ~/ s'

oo (Tege9)
Fron  From (7+4.3) giving the conditions for unbiasedness and fron (ii)

of (Te4e41) we then have

1= 3% B, P =3 B P, %' B =0 for s 2
5 €3 s\ s 52 s\ s SA

= 3 B Ps' for any 30:}7\

s M
o
= Bso}\sz Ps’ from (T.4.9)
M,
= ﬁso}\- TI)\ from (i) of (7.4.1)

so that for any Soj?\.,

..o (704010)



This shows that our cormplete class of estimators contains just one
estimator which is therefore the best in the class Lu- This completes

the proof of the theorenm.

Remark: — (1) It may be noted that if a unicluster design con-
tains at least two distinct samples s and s' such that

8 ot s!

then there are more than one possible unbiased estimators of Y while
in the contrary case there is just one unbiased estimator of ¥ viz
§HT' This is evident from (7.4.3) or more intuitively by recognising
that if (7+4.1) is satisfied and for no two samples s and s' of Duc the

relation

s ~ s
is true, then the original population of units can be replacec by a new
population of clusters which are the samples of the original design, and
the corresponding sampling design is the one obtained by the choice of a
single cluster with varying probabilities. It is evident that when'a
sample of just one unit is drawn from a population, the only gehel.u.c
of Y 1is
y - L
P

where y is the sampled value and p 1is the probability of drawing the
unite

The name 'unicluster designs' is given to the designs satisfying
(t.4.1), because, ignoring the repetitions and orders of units‘in a

sample these designs are essentially those generated by grouping the



units of the population into clusters in some arbitrary way and then
selecting one of these clusters with varying probabilities if necessary.
For unicluster sampling designs we can in fact prove slightly stronger

results given by

Theorem (7.4.,2): If Duc is a unicluster design then any polynomial

unbiased estimator T of Y which is a function of the order statistic

alone is necessarily of the form

where (7T.4.11)

v KP =0
s€S 88

Further any estimator T of the form (7.4.11)is admissible.

Proof: -~ Let T be an unbiased estimator of Y which is a poly-
nomial in its arguments, and which depends onli on the order statistic.
Hence we can consider the sampling design as one consisting of a finite
number (utmost N in this case) of unordered samples so that there is a
finite upper bound r for the degree of Ts for varying samples s.

Let then

T=T0+T1+T2+'oo +Tr

so that each Ti is a function of the order statistic alones Let now
5/0

so that there is a sample s, consisting of units U, , U, ,ee., U,
1t 1t

for which



: gﬁ,s‘é 0
in which case we have

Bsii'é 0 for some Ui € s

or
Bsij‘£ 0 for some Ui’ Uj € s

But since the design is a Unicluster design and we have started with *

unordered samples only no other sample contains a unit conteined in s,

4

so that
E (Tz) £0
the lshes. containing a non-zero term of the form Bii Yi or
Bij i YJ.. This contradicts (7.2.20), so that
T, = 0

Similarly it can be shown that

T, =0 for 2<i(r

As already pointed in remark (1) at the end of theoren (7.4-1)jand inplicit

in the proof of that theoren from the fact that T depends on the order

1
statistic alone it follows in this casc that
Y
T,s T 3 A
! A€ S ﬂ;
1 Zs ‘
== I Y?\. =3 ~ (Teasl2)
s M€s )

where Zs is the cluster total, since U, can not belong to rmore than

A

one unordered saiiples This proves the first part of the theorene.



To prove the second part let T1 and Tz be two distinct

unbiased estimators of Y of the form (7e2:11), so that from (7.4.12)

zs
Tl,s - ﬂl,s * 5;_ f
i
and Zs " ‘
To,s " Ko g ¥ Ps \\ . (Teae1s)
where by K P = Z X P . =0
s€s 1188 geg {2’“’ s
We have

‘ . .
v(r)) - v(1,) =E()) - E(F)

' Lrg —
(;if -x% yp 4 2 (*“1,s “‘2,s)Zs

3
« .- 248 :
s€8 (7.4014)

which can be made positive or negative by & proper choice of Zés, iees
Y. 's, since (¥ ~ B, _) is not ecgual to zero for all s. In fact since
i " 1,8 2,8 7 “ i
from (Teas13) )(;«;1 s K s) is not alweys of the same sign (7.4.14) can
] ?
be made positive or negative by a proper choice of even positive values

of Z 's.
s

Thus every unbiased estimator of Y of the forn (7.4.11) is
adnissible.

This completes the proof of the theorems



§ 7.5 The erdserion of TYFPRADMISSIDILIFY and the bestness of

* .
YHT’ the Horeits cnd Thompson estimator.

We recall that in a class Cz? of unbiased estimators of a para.

metric function £, an estimator To is said to be admissible if for

any other T1 € Z;
M @J <M@0

at least one poinf Y0 (To, Tl) in RN, this point depending possibly
~J
on To and T,.

1
An estimator which is admissible in a parameter space may not be

admissible in a subset of this parameter space. Ve now introduce a

stronger eritcricn in

Definition (7.5.1) i~ An unbiased estimator T, of Y is-said

to be hyper admissible in a class (o, of unbiased estimators of Y, if

given any other estimator T1 € C;?,in every principal hyperplane of RN
therc is at least one point at which

i M

M (TO) <M (Tl)
The principal hyper planes of RN are those in which some of the co-ordi-

nates are always zero, i.c. the co-ordinate axes, planes ctce

Before proceeding to prove our main result that follows this
new criterion we shall point out the practical implications of this
criterion. Consider an unbiased estimator T of Y which is admissible.

If now we wish to have an unbiased estimator of the total



M
Y' = 2 Yl ‘ (7'5’1)
k=1 k

‘ /
of a specified sub-population ?/l’consisting of the units

§
/ e
?/ = (U. ! U. y vy U. ) (7'5’2)
A 1 e M

then the estimator T itself can be used for this purpose by setting
f

Y, =0 for UAK M A(7.5.3)
because under (7.5.3) the population total for the original population
is the same as that for T/QI- Let this new estimator be denoted by T!'.
Also the original sampling design (8, P) gives risc to a new sampling
design [)/(S', P') obtained by supressing from every sample s of S thosc
elements that do not belong to<Z/L/and keeping the probabilities for the
various samples same as those of the corresponding samples of D. This
may give rise te some null samples consisting of no units of the popula-
tion ?LQ3 and the estimator T' has to be set equal to zero to retain
the condition Bf unbiasedness. The parameter space rclevant for compari-
son of various estimators of Y!', defined over D', is.the one in which
(7.5.3) is satisfied. T' asobtained above may not be admissible in the
class of estimators defined over D' even 3£ T is admissible in the class
of esfimators defined over D. If however T is hyperadmissible than for
every sub—population (LQfaf‘zl, the corresponding estimator T' is
admissible in the corresponding class of estimators defined over Dr.
In many practical pfoblems dealing with sampling from finite population

onc often requires not only an estimator of Y but also of some



sub-populations of interest. If then a hyper admissible estimator is
used, it can be used to esfimate the total of any sub-population and
will still give an admissible estimator of the relevant subwpopulation
total. Hence it is convenient to use a hyper admissible estimator in all
such situations so that one does not have to construct new admissible
estimator every time one is interested in estimating the total of a
sub~population.

Ve now prove the main result stemming from our new criterion.

Theorem (7.5.1) :~ For any given design D(S, P), which is not a
unicluster design, in the clags Lpu of all unbiased estimators of Y
defined over D which are polynomials in their arguments there is Just
one which is hyper admissible and this is given by the Horvitz and

*
Thompson's estimator, YET’

Proof :~ Since a hyper admissible estimator has to be an admissible
estimator in the first instance, it has to be a function of the order
statistic alone. IHence we can consider without loss of generality that
S is the collection of all unordered subsets of ?/t_, so that 8 contains
a finite number of samples (2N in all). Further we can omit all samples

of this ses, which are agsigned zero probabilities.

iet now T be an unbiased estimator of Y which for every sample
8 of 5 isa polynomial in theg%.walues of the units occurring in s.
Since there are a finite number of samples in S, there exists a finite
upper bound over S for the degree of T Let then T be a polynomial

of degree r and let



posy ..OT s Ow
T = T0 + T1 + T2 * r (7.5.4)

where Tm is a homogeneous polynomial of degree me. Let

TO,s = Kg
T = L B.Y
r€s SMA

2
T = I B Y +ZZ B Y, Y.

Ty = ;\Es N Yi " iéz\' T Yi Y, (7.545)
*HIE L Pan
etce From the unbiasedness of T it follows that
B -y f (r.5.6)

an< E (Tm) = 0 for m£ 1
so that

Szés“(‘sps =0

2y Fafs =1 (L &agn) (7.5.7)

sy e, ERCRLYS 7y - 0 (ehpn <

SZD:?\ BSWPS =s ')?Z\,}»'BSW'PS i 8 7§,N,N‘ BSM'N' Yo 0

L CAALN LN (N



\

etc. Let T be hyyper admissible and consider now the sub-—population
consisting of the unit {Li alone, for a specific i. ODetting YA = O

for A £ i in (T+5.4) and (7.5.5) we obtain the corresponding unbiased

estimator of Yi to be .
2 3 2
o 0. o .Y.
Ty =Ky + By Yy + By ¥y # Bygis¥y +oo+ By 4Y5

if i, € s
i

= K, it U fs ** (T+548)
Let
[ S S%
=86 U )
where S(i) = ? s 18 €8, (€ sg
and S*i) = g s 18 €8, 'JPK s%

The corresponding design I)%S', P') consists of several samples
(resulting from s's belonging to S(i))all containing jyst the unitlju
and several other null samples (resulting from s's belonging to S?i))n
Further the corresponding. order statistic which is sufficient is equal
to Yi for all samples s'‘ swhich result from the original samples of

5.y and is zero for the others. T' therefore can not be admissible
(i) s
in the class of unbiased estimators defined over D' unless

t _ ' £ S ..
Tsl = Tsz for all S10 S, € 0(1)

i

and T T! for all s
8 s

3 4

37 %4



Hence T' is admissiblcenly if it is of the form

2 r
' = Kl 0 3 . . - * e . - - Y-
Ts - i1 * Blyl + Bll Yl * + B11...1 i
for all s € S(i) ‘ ‘7_5.9)
= K12 for s € S(l)

From (7+57) it follows that

i1 ﬁl -9-1{3:2 1 - nl) =0

.TC. = 1
pl i
..TC.= ...'TE.: ¢ = . . .ﬂ:.:ﬂ
Bll i B111 i ' ﬁ11...1 i
where
N, = 2 P
1 . S

and since T is unbiased for Y, from lemma (7.2.1) we have 1. > C

1

so0 that

g =

4 if 07 o D
‘ Iie 1if sc€ s(i) (7+5410)

B . = L for all s U

si ~ . i

. 1
and Paii = Bajjs = = Psiiee.i = ©

for all s Ui

ant arguing for all single element sub-~populations (7.5.1@) is true for
1 <i < H.
If D is not a unicluster design it can be seen thet there exist

at least two units [& ~and Uﬁ such that
o )



“iojo > 0
y - (7.5411)
and S . S,.
(i)~ 7@

g

and consider the decompositipn of 5 +thus:

= By BN U6 ) 087 ) U ) N3G ) 6 )N sy )

say. From (7-4.10)

) i, for s € S(l) ¥ :3<2)
il
0
Ki 9 for s € 3(3) U 8(4)
K & = e . (745.12)
T . for s € S(l) U 8(3)
j 1
o .
s for s € 8(2) U 8(4:)
5 2
0
1f s@®ys@ _y

S(z) U 5(4) - ﬁ

or

it follows directly from (7T+5.12) that

Ks s K for all s € 5

Otherwise, from (7.5.11) we have

~ (1

51 by’

ani S(2) US(S) £y

Since S(l) £ f, from (7.5.12) E =15 so that
’ - il 7751

)

g =Lspr S8Y for all s € S(l) U 8(2) U 8(3)



and since 8(2) U 3(3) A

(3(2)-U 5 @) A 6V Us® Us®) £y
ox (S'(B)U S(4:)) Nis®yg® (.—)5(3)) Py
80 that in either case from (745.12)
foe=8 forall s ¢ 5@ 1.

Thus under (7.5.11)
Ks =X for all s € 8§
and from (7+5.7) follows thai

N =0 for all s €3

if D is not a wnitluster design.

(7.5.13)‘

(T+5.14)

e now consider the sub-population consisting of two units, say,

1
e} o

this case reduces to

if Ui Es,Ust
o o)

if Jjo € s, Ji’),( s

U, and Uj only. From (7-5-10) and (7.5.14), the estimator T! in

(7+5.15)



where 1! consists of terms of degree > 3 in Y, and V. .
(3)s = i, i
0 o
Again it can be easily seen that the estimator

T" «E(T' I 8> U, and U.) ifVU, € s and U, €s
8 8 1, 3o 1, do

= T otherwise

'
8

=3

is uniformly be tter than Té unless it is identically equal to

Hence for Té to be admissible we should have

N - A -
%00 totod0 $3odoto Jo?

B

etce., for all samples s containing Ui and U, « If there are no

o 0
samples s (with P> 0) containing both U.i and UB then all the
) o 0
above ['s are zero each by definition, while if ni . 2> 0 it follows
ovo

from (7+5.7) that they are all identically equal to zZeroe

Higher order [ coefficients can similarly be shown to be equal
to zerc if T is hyper admissible, by considering the appropriate

sub-pepulations.

It follows that if 3 1is not & unicluster design, then in the
class of all polynomial unbiased estimators of Y  there is just one

*
viz Y”T which is possibly hyper admissible._ That in fact it is hyper

¥i

*
admissible follows from the fact that if T is the estinator Ypp of

Y in D then for any sub-population 7' is the corresponding estimator



*
YﬁT of Y' in the corresponding design D' and hemce i admissible

since it is known that for any sampling design the corresponding .

X
estimator YHT is an admissible estimator of thepopulation total
[ 127,/786 7.

This completes the proof of our theorems

[}

Hemar ks i

N
1) If T is an unbiased estimator Y = ¥ Y, then for every
1
linear function
N
L(Y) = 2L Y
~ ) i

the unbiased estimator T' of L (Y), obtained frem T by replacing

Y, by L Y, (1<i <N is admissible (for any L (L) if and only

*

* o
if T YHT' Thus YHT admissibly estimates not only all sub~population
totals but all linear parametric functions of Y, so that it 6an be used

for the simultaneous estimation of several linear parametric functions.

2) It should be noted that the assumption that D is not a
-unicluster design is used only to prove that if T is hyper admissible
then

T = 0
(4]

where To (cefe 7+2019) is the constant part (i.es not depending on
Y) of T '
3) We see from the proof of the above theorem that admissibility
. T %

in each of the co-ordinate wazm of R' required that T, = Yop 5



1

admissibility in each of the co-ordinate axes and co-ordinate pleanes

required that T2 = 0, admissibility further in each of the 3-dimen-

gicnal co-ordinate hyper planes required that T3 = 0, etce

4) Though hyper admissibility in each of the prineipal hyper

*
planes eliminated all but Y.  in the class of polynomial unbiased

HT
*
estimators of Y it can be shown that YHT is admissible in a number

of other hyper spaces. For example in every (N-1) dimensional hyperplane
. N ‘

that cuts all the co-ordinate axes it can be seen that YHT is admis-

sibles For simplicity we shall only prove that it is admissible in

the class of all gsheleusee 's in such a sub-space. IFor any gehel.use:

T = z B. Y
S AE s A A
Yle have
2 2
v =(T p5, P =-1)Y
sAo s Ao

8D A

at the point
p’)\ = (O, 0, ».¢ G Y}\ y Oy eeey O)
(o] (]

where the hyper plane ects the Y, axis. Since

A

0
2 1
X B P 2
s\ s = T
8 Ao ( Ab
equelity if and only if
By = - for all 3T, . (1.5.16)
() A o



we have

v(tr) > V(?-(HT)

*
at y)\ unless (7.5.16) holds. It follows that Yun is better

at at least one of the points }2!}\ for 1 ¢ }‘o £ N, unless
o

and hence the assertion.



8 T.e6s A rvepmarl: on estinating parametric functions tint depend only

on a sub-population.

Let a sanplingrstrategy consisting of a design D = D(S;P) and
an unbiased estimator T of Y be given and suppose that we want to

noke use of thisc strategy to estinate erhaps at a2 later date) a linear
g P

poft

N .
6= L, Y. (70601)
1

where sone of the Li's are zero. Such a situation can arisen when we
already have an optirmum or near optirmm strategy for Y (like those given

in Clapters IV and V) and wish -to make usc of it ‘later to estinate: a

pef. like 8 which depends only on o sub-population
a /(/
(A= U, 1L £o (7.6.2)

An unbiased estimator T' of (%.6.1) is obtained from T by replacing
Yi in T by LiYi for 1 (i { Ne A4As renarked in § Te4, unless D is

o uni¢luster design, the estimator T % given by

for scC (?j (7.6.3).

. -—"1 otherwise
1 7.
€s i

M’

¥

e

/ ‘ N
where 's C.M means thaet s  does not contain any unit of’)/t, ie at
least as good as T', to estinate 8.

Consider now the design D' = D'(3} P') which is a restriction of

{
D induced by(M obtained thus:
)



Pr = P T (7.6.4)
S l —— for s riﬁ\
1-q ¢
where
g= I P (746.5)
' s €83

sc N
D' thus consists of sarples sti ix?only, neglecting samples with zero
probabilities.

Consider now the estinator TM" defined over D' thus
N o= Téﬂ(l - q) for s' € D! (7+6.6)

We prove
Lerma (7e6e1) i~
B (T"')h =8
v @) ¢ v

Proof: We have

g@m)= 3z 1 P!,

s'ten?
= .'Z€ L fror1 (7.6+4) and (7.6.6)
Sl Dl
= § TvP since T'"=0 for s £ D'
S€D ] 3] s
= &,

which proves the first part of the lerma. To prove the second part we

shall prove that



V(T no)‘ < V(T") . (7,6,7)

so that the result follows since

V(") <v(@').
To prove (7+647) we have

V(T ) - V(') = (T "2). - (Tm2)

o P
2 "l 2 s'
= L T" P - I T 1 - (1=q)
sep 5 ° ‘ steD! s' ( ? 1=q
" 2
= .z T"2P - (1~ L TV"P
s '€D! s' '8! ( q)9,‘61)' s! 8!
since Ts" =0 for s £ D!
=q. 3 TP . >0 (7+648)
st€pr ° S
equality if and only if
¢ = TP =0 (1+6.9)
s€g °
sc_“f’t'

which proves the required resdi;(;- Hence the lerma.

Fromn the above we see that from the point of view of variance,
the strategy 1{3 @®', ™), which rejects sanples s ¢ ‘}I’— of the original
design, is better than Hl (D, T') ond that it is even better than
Hy (D,T ") unless (7+649) is satisfied in which case Hy = Hye Thus even
when T is hyper admissible (in which case H = H2), H, is better

than H, from the point of view of variancee

2



This is not contradictory to the hyper adnissibility of T if we
note the important point that H3 and H2 are strategies involving dif=-
ferent designs. In fact the reduction in the voriance of H3 over that

of H2 is achieved only at an extra cost of increasing the expected nunber

of éietinct units. For,we have

1 .
DY) = % P = P
U( ) B'ED'ps‘ s! (1"(15 s'%“'us‘ s!

1
e —— . L pP, since n =0 for
1~g sESSS ]
SKS‘
1 . \
L. uo (7.6.10)

where U and By v denote the nunber of distinct units of s ond 8!

that belong to u's Thus for the estinmation of 6. H3 inflates the

expected nunber of distinct units in the sarple by a factor o = =g
over that of H2 and achieves a deflatien in the variance given from

(7+6.8) , thus:

V(T'")‘ = V(T ")‘. -q V(T u)\ + e2

(7.6.11)
cv@E") @ -q -qe®

Whether H3 is to be prefered over H‘2 or not depends on the cost func~
tion as well the relation connecting the variance in terns of loss in the

units of the cost, and has to be decided upon taking these into considera-

tion in the individual cases.



EPI LOGUE

e now review briefly the present state of affairs and indicate

the further lines of research. -

For sampling from a finite populatioJCZ/z', to estimate a

parametric function ® (Y), to start with we have the basic sample
~

of all finite sequences of elements from il“with a probability measure

I

defined on ite An estimator

J

defined on this probability space finally gives a sampling strategy

T - vav(&ﬂﬁg’%

Any method of sampling results in a measure

space

and can be considered
as resulting from drawing units from ope by one with replacement

and with probabilities varying if necessary (c+f. Chapter III).

The search for an optimum strategy, subject to some restrictions

onw(ﬁJ through considerations of cost, then involves the optimum

choice of the pair (j;% ¢ ; )+ Theorem (2.3.2) proves that éifacan as
well be taken to be the class

=S (U



of all subsets of }A. Theorem (7+5.1) proves that for only choice of
c/-./

? for unbiased and hyper admissible estimator {j should be chosen

to be

where 7,'s are structure constants of the strategy given by and are

5 5

s€ O
S~ A

71:}\-.-.-

(p ¢ ;
This reduces the initial problem of the triple choice of j, 5‘3 andU
to that of the optimum choice of a @ om j + This problem is still
N o
open but the author conjectures that for any P on 3 subject to the
o )

conditions that

N
T Omo=p
A=l A

there exists a better choice of @ on 500 satisfiing

N
(1)
5 -
w1 AP

where

n()l\) -z P



and which further satisfies

5

i

T? =0 if p) >/ u/+1 or </ n/.

Regarding the optimum use auxiliary information of the type consi-
dered in Chapters IV, V and VI and given by (243423) the problém can be
considered to have been ééfisfactorily closed for all practical purposes.
Extention of the methods of Chapter IV to general sample sizes will be
of some interest. Another and perhaps a more important problem to pursue
is that of optimum use of rmltiple auxiliary information each component
of which is of the type given by (2¢3.3). Another problem is to find
suitable transformations of the auxiliary information to satisfy or
approximately satisfy (2.3.3), when it departs from (2¢343) These
searches are made more convenient henceforth if the sritorion of hyper
admissibility is accepted in which case the problem is reduced from the
optimum selection of the péir (f)o ,J) to that of @ alones If the
conjecture given at the end of preceding paragraph is.proved true
this problem is further reduced to that of finding optimum structure

constants n(i)'s, and then searching for an optirmmnm ?;D in a narrow
!

class having these optimum structure: constantse
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