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PREFACE

This thesis gives the distribution theory of four
classiTization statistics, Some parts of it were published a few

years ago. The relevant publications are listed at the end,

what the author knows of related work by other authors is
set out in the Introduction; little materizl of this nature is given.
elsewhere in the thesis, If a result is not explicitly credited to
another author, it may be taken to mean that the author believes it

to be his work.

Tt will be noticed that three (U, R and Z) of the four
gtatistics receive less space than the remaining one (WO. One reason
for this is that the methods required in the treatment of U, R and 2
are more or less similar to those employed in the case of W, another

is that the various statistics are eqguivalent uander certain conditions,

Simplifying situations receive special attention,
Generally, they also correspond to conditions explicitly excluded

while deriving the general results,

December, 1961,



GLOSSARY OF SYMBOLS

P(k) (k = 1, 2): the two parent populations (assumed p-variate

normal) claiming the individual to be classified,
P : & third population (also assumed p-variate normal),

P ¢ the number of characteristics used.

X = (xl, Xoreees xb)z the vector of meagsurements on the individual

to be classified, @lse used for %, when p=1.

X € P means that x is the vector of measurements of an individual

~ from Ple.t.c)l
(k) (u(k) uz(k), wdny ul()k)v)z' th"e,}mear.x of P(k) (k = 1, 2);
also used fér u{k) When p=1 (k= 1,2), |

B = ("1’ Byseoos up)f the mean of Pj also used for B, Wwhen pal,
7 = (oij)s the variance-covariance‘mdtrix of P(l), P(z) and P.

o ¢+ the symbol for d%l

2 - [ (1 o py 5@ - Pyt

when p =1,

f(k) : fthe arithmetic mean of the observations in a random sample
of size L from P(k) (k=1, 2)3;a380 used for the

element of this rowwvector whenypsl.



S : an unbiased estimate of 2, distributed independently of
(%) (k=1,2) and following the Wishart law of n
degrees of freedom—conditiong which are satisfied by
the matrix of mean pooled corrected sum of products,

with n =N, + N

1+ N - 2.

"N, s size of the sample from P(k) (k =1,2,).
n ¢ the degree of freedom of S,

alnﬁl/(Nl‘F,NZ)" a:z - Nz/(Nl +N2)’

.1+(N1+N)"1;

1 N 8 8y 2

ay = N, /(¥ +1) 3 &g =N, /N, +1).
w= (22 51y g7 5 -51 @ g1y g1z (D, 2y,
R=y sty - d(a, /a3)%(5(2)- )57 g1, whers

ye=x-aiW.ai® aa a- 2(a, /a3)%/(32 - a)).

N
]

5 c-E )5t Wy en y agx - #8)sx - 2Oy

U= (;(2) - ;(1)) st xe

Wb, Ro’ ZO, Uo 3 respectively the same as W, R, Z and U with 3

substituted for S.



- (x‘z’ ) 57 @®- "”) ', - E@) LDy 57 @ )y
- (a;u(lh ap @y 3 @@= 1)k, whore
oy = (agpe a®- 1 @D -’
cy = s az;l(z)— ) Zul(u(2)~ py'
Cy = »2 -.cg /01” Cy= Gy /c?f ;‘ C5 = c%’ .

g(a): the standard normal density.

G(a)s the integral of g(x) from = o to «,

. G”l(oc)z -the function inverse to G(a).

204 % % )
G'r(ccl,m2 ;v Q) = -(-];Zﬁ;[—)- -joo dzl .j-'mexp[- ;O.—},z(zl-QQzlzzwg)]dzz.
I (r,s) = [ (o) /a 25 (102)°"1 @,
e o

e-)‘ 2' T~ | a
Ap(ﬁzi‘?\)-‘g -L;\):—‘-(—— }()é‘p+ le'%)(.
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Lp(a,z)s the value of A 8satisfying the equation
o0 2 [N
Jo (K s NdL =2 .
¢4 o \

I " the identity matrix of order p.
If us= (ul, “2; gy up), |
du = d.ul dU'Z"“" dup.
The symbol for a random variable preceded by E denotes its expected

value.

et Y-(yij)bea. mxy

random matrix whose elements are independent Wormal variables with

gnit variance, Iet E(y,

lj) = elj (i = 1,2,...,m; j=1,2,..-,y )o

v . o e 5 »
et N=( 2 CI ejr)’ We shall call any random matrix having the
Bl

same distribution as YY' a non-central Wishart matrix of order m,
degree of freedom V and non-centrality % /\ . 1In case \ is
the null matrix we shall call the random matrix simply a Wishart

matrix of order m and degree of freedom V.



Chapter (ne

INTRODUCTION

1., THE CLASSIFICATION PROBIEM

About an individual it may be known that it belongs either to
population P(l) or to population P(z), but which one of them is the real
parent population may not be known, Statistical theory was first harnessed
to the solution of such problems about twentyfive years ago, when M, M.
Barnard, [4], following a suggestion of R. A. Fisher, [61, used the
discriminant function to classify skeletel remains, Fisher saw the aﬁalogy
of the classification problem to the problem of prédiction. The discriminant
function is, indeed, the best linear function for predictiﬁg the‘vtlue of
a variable which takes oné velue with individuals of one population and
& different value with individuals of the other. Four years later Welch,
[21], pointed out that, if one wishes to minimiée the probabilities of
misclassification, the likelihood-ratio should be the criterion of classi-
fication. The discriminant function and the likelihood-ratio are equivalent,
if the alternative populations are multiveariate normal and have their
dispersion matrices equal, Throughout this thesis we shall assume that the

alternative populations are of this type.

A Y



2. THE PROBLEMS CONSIDERED

¥s (;(2)_ i(l))s"lx' - %(;(2)_ -(l))S.l(i(]')-l- ;(2))|’ .
v e E@o 5Dygly,
R = (x-alf(l)-azi(z))S’l(x;alf(l)—azi(z))n

-d(a /aB)%(i(z)- #1057 (za ¥ (e, 5Dy,

and

Z = as(xqi(l))s.l(x-i(l))l- Vlas(x-i(z))s-l(x-i(z))'

( " @ suitable constant; d= 2(34/a3)%/(a2—a1) ) are four statistics
which have been proposed for use in classifying individuals to ;(1) or
p(z) when the parameters of P(l) and P(z) require to be estimated,

¥ is the statistic obtained by replacing the psrameters in the 1ogari£hm
of~thg likelihood~ratio by their estimates from a random sample, The

logarithm of the likelihood-ratio is
2 1)y o1 1, (2 -1 |
A statistic equivalent to this is

(ﬂ(z) - u(l))zflx' .

U is the statistic obtained from this by replacing p(l), n(z) and 7 ‘hy
their estimates., Wld, [20], proposed it, because he thought the distribu~-

tion theory of U would be simpler than that of W. fThe statistic



(xma 3D 0,5y 57 xe 05D 073D,
- d('4 /9‘3)%(§(2)" “(l)) Z.l(x-.&li(l)— azi(z))!

was propesed by Rao, [15]. He showed thsat it is best for discrimiﬂating
between alternatives which are close to each other, The fonr'th statistic Z
is equivalent to a statistic derived by Andersen, [3],(p.142).

[ 2 with n- 1 was considered by the author in [9]. it was proposed
there, because 11: appeared to be reasonable to give the in&ividual to that
population which, on testing, rejects it at a higher level®*, Note that if
vls 1 the two terms whose difference 2 is are the criteria used for the
two tests, We wish to me‘ntion that A. Kudo, [12], has shown that the pro=-

cedure of assigning the individusl to P(l) or P(Z) according as

as(xoi(l))z.l(x-i( 1))'— a6(x-i(2))2~1(x-i(a))t é 0

is the best of all two-deécision rules invariant under translgtion and
rotation of axes,

The four statistics W, U, R and 2 (with)l = l) are asyinptotically
equivalent., W and R are equivalent if N, = N2 Z is equivalent to W,
if a5 = ylas.]

If W, U, Ror Z is used to classify individuals, the probability
(given E(l), 5@ ana S) of assigning an individual to p(1) or ()

depends on i(l), £2) snd 5. 1In this thesis we seek to find out the

* Rao, [ |5 |, had previously stated this principle. See p.655.

\



distributions of these probabilities as well as their expected values*,
Since the expected value can be calculated using the distribution of fhs
statistic used, we shall obtain the distributions of the classification

statistics also.

3« PREVIOUS WORK
Among the problems mentioned in the previous section, the
distributions of the classification statistics W and U have received
some attention from earlier authors, An account of thair work will now
be given,
In [20], Wald attempted to derive the distribution of U,
Realizing that, when the alternative populations are normal, the distribu—
tion of U is a special case of that of y(1> S"l y(z)', where y(l), y(z)
and S are independent random variables, y(l) and y(z) following the
p-variate normal law, each with dispersion matrix 3 (say), and S the
Wishart law with n degrees of freedom (say), Wald devoted his efforts
. . (1) g=1 . (2)
to finding the distribution of ¥y Sy o Wald showed that
(1) =1 _(2)' .. ' i
y STy coudd be expressed as a function of three statistics
ml, m, and m3» and gave the joint distribution of B, m2 and m3 in thg
form of a product of three rather complicated factors, One of these

factors was the unevaluated expected value of & poweriof a random

* Since writing this thesis, I have found that this problem was raised
by Pocher during the discussion which followed the reading of [14]

~ (p.198). [It is not clear which statistic Tocher had in mind. Tt could
not have been R or Zy for, they were proposed only lateri, From the
speaker's reply (p.203 of [14}) we should gather that in 1948 no results
on this problem existed. The author knows‘of no later work,



determinant, In 1951 Anderson, [2], evaluated this expectation in

the case of linearly dependent éj, and EQ) . [ gfk)(k =1, 2)

denotes the expectation of »y(k).] Harter, [7}; obtained the distribution
of y(l) S”l y(z)' in the univafiate case under the assumption g” =0,
In [20], Wald had shown that, if n is large, y(l)'s"l y(z)f has

approximately the same distribution &s .- nm,. Harter, [7], obtains the

3.

0) )
marginal distribution of m, yWhen both ¥ and § are null vectors,

3
Sitgreawes, [16], showed that the statistic W also could be

expressed in terms of three functions of y(l), y(z) and" S having the

same joint‘distribution as m,, m and m, and gave a derivation of the

2 3

joint distribution of m,, m, and m, different from that of Wald.

3

Sitgreaves also requires that §0) should be a scalar multiple of S‘l).
Bowker, [5], expresses the statistic W as a function of the

elements of two independent 2 x 2 Wishart matrices, one central and

the other non-central. An advantage of Bowker's expression over that

of Sitgreaves!' in terﬁs of myy O, and m3 seeﬁs to be that the joint

distribution of the variables appearing in Bowker's expression is

explicitly known, whereas no explicit expression for the demsity function

) )

of my m, andm3 is available, except when § and g' are linearly

dependent, In principle, to get the distribution of W we have only

to integrate the joint density of the elements of the two Wishart

metrices over a region of the six-dimensional space, but attempts to

A

further simplify the integral have not succeeded.
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4, SYNCPSIS OF THE THESIS

In the case of unknown u(l), u(z) and 2. we exhibit U, W, R
and Z as functions 6f a few random variables with'a fairly simple joint
distribution (€hapter two, equations (2.3.2),(2;4.2),(2.5.2) and (2.6.5))S
using these we derive certain resglts férbthe eipécted ﬁrbbabilitieé,“
which may facilitate Monte Carlo methods (Chapter eight ); thirdly, the
limiting distribution of the probability of assigning the'individual to
P(l) or P(z) is obtained (Chapter four, equation (4.4.4) and €hapter five,
equation (5.2.4)? '

- In the case of known 2, and unknown u(l) and u(z), explicit
expressions for the density funcfions of U, W, Rand 2 are given
(€hapter two); exact distributions of the (conditional) probabilities are
obtainéd (€hapters three to seven); their expected values are evaluated
(@hapter eight); for the expected ﬁélues, approximations, which, unlike
exact enpressioﬁs, are easy to compute, are worked out (@hapter eight,
equation (8.3.2)); special attention is paid to the important case where
the origin of the individual to be classified is one of the two alterna-
tive populations (@hapters four and five); situations where we can have

simpler results are explored (@hapters three and four).

* fThe asymptotic distribution of the probability is given only in the
case of Wj for, the four statistics U, W, R and Z (with w = 1)
are asymptotically equivalent,



11

Chapter Two

DISTRIBUTION OF
THE CLASSIFICATION STATISTICS

1. INTRODUCTION

In the introduction to this thesis we wrote about four classifi-
cation statistics' U, W, R and Z. Suppose that fk (k = 1, 2) denotes the
density function of the classifiéation statistic when x ¢ P(k). Then
the probability of misclassifying an individual from P(i) (i ; 1, 2) is
the integral of fi over the set of values of the statistic which lead to
the assignment of the individual to P(j) (3 =1,2; j= i), since it is
interesting to know the probability of assigmment to PU) (k - 1, 2) for
individuals from P alsog we 8hall derive the distributions with x ¢ P;
we can, of course, get the distributlon when x € P(k) (k = 1, 2) vy
setting 1 = p( ) \
The statistics U, W, R and Z are particular cases of a general

statistic introduced in the next section, We shall first derive the distri-

bution of this statistic and from it dadﬁce the distributions of U, W, R

and Z.

2, TWO GENERAL RESULTS

Let y(l) and 1(2) be two independent pe-dimensional random normsl

vectors, let e(k) (k = 1, 2) denote E y(k), and let ) denote the




dispersion matrix of each of them. let

Bp By

t and [2 be independent random variables distributed as follows: B has
the noncentral Wishart distribution with p degrees of freedom ami, if we
let

11 A2

BN =%
. . A

12 2o

denote its noncentradity matrix, with

(2.21) Ay = oD Z'l o), A, = oD 5 @),

A22 - 9(2) z.l 9(2)" '

t follows Students' law with n-p+2 degrees of freedom; [2 is a

chi-square variable with nep+l degrees of freedom., Théh, any function of

y(l) S"'1 y(l)' and y(l) S'l y(z)' has the same distribution as the func-

: 2 2

tion of B ., Bio» Byys t and K° obtained by substituting nB, ; [)(
L) 1 < k.

for y(1) g7 1 ama afB,, - (n.mz)“* t 1B ﬂ’] J K for y(1) g1 y@)
We shall later exhibit the statisticsZ,U, Wand R as special

cases of the statistic introduced above., In [5], Bowker has expressed the
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st'atisti.c ¥ as a function of B,;, B),, By, and the elements of another
Wishart matrixc distributed irldependently of B, We omit the proof of the
result given in the previous paragraph; for, fhs reasoning that led us to
it happens to b similar to that of [5].

: If Z is known, we use Z, rether than S, to construct the
classlficatn.on statistic. Each of the hxes classification statmtics has
then the same dlstrlbutlon as y(l) z = (1) /by - (2) -l (2) /by, with
a.ppropnate bl, bz’ 9(1) and 0(2); i.e,, the same diatnbution as
(w /b,l) = (¥, /b,), where v, and '2 are independent noncentral chi—sq@res.
If we dqnote the non-centrality of L (k = 1, 2) by Ak’ £he Jjoint density

1}

Qf.'l aﬂd '2 is

N e el BB )2

1 2 e

2 reosmo TV [l [Tdpes)

Therefore, the A

Pr(z (wl/bl- 2/’h2 <z +4dz)

- © o T ,8 '%P+1‘-1 §p+s-1
BIA we (A+hy) 5 2 Mk freme) T T
. Ir's0 8=0 rf 8? r(£p+r) r(‘%p.ps)
x e-%('l+'3) dw, dw,,

where the integration with respect to '1 and v, . is over the set of pairs



of w, and w, satisfying the condition z ¢ w. /b= v, /b, <z + da.

That is, if
| - wb* -1 _Zp+s-l
(2.2.3) ‘\f’r,,(z) A‘bz . ~[ f o= (p+r+s) v r v
_ z(‘% -';;i < z+dz r(épﬂ.-) r(épﬂ)
X e-%('lﬂz) dwl dw,, ,

the density functi‘on of z (a v /b1 -, /b)) is

vo=(A*h,) o e AT AS
(2.3.4) o 17 z 3z 12 YI,S(Z)-

rmQ Swud i sl

3

In terms of G(l) and 9(2),

(2.2.5) N =5 o) 57 o) A = 30@® 5 e(a)f.

In [13], Kerl Pearson gives the equation

1
2.2.6) Y_ _(2) - 2‘4(b1 i b%mr b%—pw I
e T s T e

1 ;
oo e- z(bl+b2) Iz la

P+r48ml
zl

O A R L

(z > 0).

If z<¢o,

14
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-
~=7(by=by)z b%-p-pr b-z%p-o.s

(4'-2.2.7) - Z) = £
. \Fr’s( ‘ 4PTEES ["Gper) [pes)

'z P+T+8=1

1' * ) & R
oo -az(bl-pbz) 1z la #p+rel ) #p+s-1

e (aml). (a+l) do.

1

- Pearson puts Yr g(z) 1in tems of the double Bessel function and studies
. R4 » :

it in detail., It can also be expressed in terms of Whittaker's confluent

hypergeqnetric function W m(z); for
. ’ .

(2.2.8) 3 fm o~i2a (a-l)”"k"} (1) 5
. Faxed) "1 - ~ -

-

- 220 =(m+) LO (LIPS X DR

3. THE DISTRIBUTION 6F U
The first result of section two may be used to express U in

: 2 :
terms of vBll’ Bjg» Byys ¥ and X'. Take

@31 VL@ Qg @

. &, 3
B, = (n=-p+2) : tlBlA '

XZ

(2.3.2) U= n\/-a-B

(2.3.3) Ay = 02/a3. Mo ={(u(2)-n(1)) g m} Aag A, = m 3w



vhen J is known,we use Uo(’ (1(2) - x(l‘a 2 x') rather than U,
The second result of section two may be used to u"i’ce down the distribution -

of Uoo Take
@) yPE® DT ey, y<2>.(;?2>.z(ll,/;31);/-(2a5),
(2.}.5) b = 2,4'/'53 » by = 2/,,/1573 .
(2.3.6) A, = T;-}-(u(a)- n(lm3 "y Xl(n(z)- u(l)ﬂ/;3 )’ ;
A, = f;;—}—(u(z)- u(l)-ﬁ3 Wz @- n(l)-\/%n)'f

4., THE DISTRIBUTION OF W

The first result of section two may be used to express W in

terms of B ., Byys Byps t and ;(2 . Take
(2.4.1) yPaE®) VIO N O azi(z))//;{.
| (2.4.2) W= ;%-[—;-(3;1_ ];1)5\j311+(3334):& { Bm-(n-p-yz)'? t lBl?} 1.

: | ’
@:4.3) 73277055 A= D p D (e p Ve p @y 40 0 )

-1 '
Azz-(wln(l)-azn(z))z (wlu(l)’-azn(z))'/ay
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‘When 2. is known, we use
W°(|('i(2)-5:'(1))2-1 X - %‘-(i’(z)- i(l))z;l(;(l),'_ ;(2))')

rather than W, The second.,,réault of section two may be used to obtain the
distribution of wo. Take
' 1
) (s 4ant O P ;(z)]
F + 1
\/—V—(1+4/&5)+a2"&1] '\/.(233) ‘\/7(2‘*’ a.JZ)

(2.3.4) ¥

- 1
@ 0 4/a)t [-<z) J5) o3z 550
'\/—E/_(1+4/a3)'°‘2+°‘1] q/—(ZaB) . \/ (2 + 8y /2) 1

(2.45) by = ————t i by . __' 4 :
- 835/ (1 +4/°'3)+ "‘2"31] ' a.}ﬁ/ (1+4/a3).. 9'2*'51]

(Ls 4o @1 Lo (4@ 1 () (1) 2,
v D a®a® g Dogp® 1y @D l!ii!)iié()
ZV-(1+4/a )+a, -, | \/—(2&3) (2+a5/2) : \/—(Za) 4/—(2+a [2)

(2.4.6) |

= v <1+4/a3> (Hm l!(n A NI MO RNOJEPWC) )
2B/T0d/a,)-0p0ey] W/ (285)  \(2eag/2) T 4/ caa3) V7(2+ a3 /2)
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5. THE DISTRIBUTICN ©F R

Taking

(2'501) J - y ¥ -
we apply the first result of section two and get

(2.5.2) R = - d{Blz- (n-p+2)'* tlBl%} 1.

}’(?'[Bn

(2.543) Ay = (we apu{D- azu(z))z-l(p.- o, n)- au®)s /2

, -]
Ay = (u-elu‘l)-azu@))z BB D) 4 aga)s nyy = 3as,

When 2, is known, we use

-l -1
-2 (] t
R(ayZ 7 -afap t E@ x5 4
rather than R. Verify that R is a special case of the statistic

y(,l) Z- y(l) / b - 5 Z r(z) /%, -
gonsidered in section two, taking

(2.5.4) y(l) ) W-(l-fd )+1]
o (ea®)¥ (2a,

)* (x=- a §( )- a x(z))

dﬁ/ (1+4 )+1]~* -(2) (1))
(114*)F (2a 1
@) _ (e )-1]
v\

(144 )* (2a4

3 - 0,50 5@

af (ud)ayt 4(2) =)y,
(uah)¥ <aa,>*
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(2:5.5) b = (2/a4)/[f'(1+d2)+1], b, -(z/a4)/y'(1+d2)-1}.

©  The density function of wo is, therefore, the function (2.2.4) with

1 {f(l+d )-1»1}4k

1T ) gt e

£ @. az“Fz)) -

@:56) VALY R
~ (n

(1) (2a )2

-]
-

v/ ( 144°)41 i i
(1a®f (2%

(» - alu(l)- azu(z)) -

d{f(1+d2)+1 } - (n(z)- u(l))]'
(14°)F (2a )% ’
N .

1 {’\/ (1+d' )"1} ( )
[(1a)'5(2 )i(“' AR W

(2)) +

ey | 13 - uty
(Lad)¥ (zaB)?

M| o[ (a?)-y
C T (20,2

(» - alu(l)- azu(z)) *

afy/(1a®)-1} '%

(@) (I
.(1+42)? (233)% (B - ))}




6. THE DISTRIBUTION OF 2
With

3 B
% - 2(eee) ]
2(11 -8'5&6\1)?[1 M - 2(8'58'6"1.

(2f6‘1) Bl )%]E' ’

(1 36)?[2& (-vLasas)‘i]
2 =2V w2 aseg A

(2.6.2) B, =

(2.6.3)  yU

and

(2.6.8) ¢« y®) 2B -5y 4 px - 59,
(2f6f5) z2=(1 -'L)y(l) st y(l)'+ Z(Vl-a5a6~l)?'y(l)s”l y(a):

Applying the first result of section two, we conclude that 2 has

the distribution of

(2.6.6) . (n/)(z‘)[(l- ?\)Bll+2 (vl | )? 83{;—@@*2)%!3!% t } 1s

with

20



M =f o) - (qagRea®)) 57
[ad e 1’)-<~la6)?"(u-u‘2>)]'}—§-
(2 +7 = 20 2508,
(2f6f7) A = {[a’g(p..n(l))_ (’[“6)%(“"“(2))] Z"l
0O b st
Agp = [B (ne (D) 8, (n-n )y 2"1

(B, (m = p(M)y By(n = 37",

@68 7, .5y ® s, + ;@ 5@
if
(2-6.9) Y - ) =20 asag) 2,

@60) o, = [1 a7 e 2(qaag Pt

21



@oan) e BEC D EE et D e +

4y Y, - 21+ 2)’%,

I A TR C O AT
@Y%, + 2 - 2)?,

@623 wy = 2{[0 o) - g e 1)

(2.6.14) b, :- 2{ [(1 +71)2 - 4&5a601]? “l,- 1}-.1

Applying the second result of section two, we conclude that ZO has

the density function (2.2.4), with bl and b2 as given by equations

(2.6.13) and (2.6.14) and with

@6.15)  n= {50y wn ) eqoe) By sy
T Ed ) n et ) o ®)Y 1 -

(2¥1{2 -2vl+2),
and

(2.6.26)  A,=H{{ a2y =) (nel )>+<1a6)*<f Ay ()
R SLUAATS )+yeg) 26yt (w )m

(2‘{1 o + 2'2—-2).
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Chapter Three

W: THE UNIVARIATE CASE

1. INTRODUCTION

Let n(k) (k = 1, 2) be the & priori probability that the

individual to b& classified belongs te P(k). Iet ¢ be the less in

12

assigning an individual from P(l) to P(z), and let c¢_,. be the loss
Vg

21
in assigning an individual from P(z) to P(l). Then it is known that,

if the individual is assigned to P(l) or P(z) accofding as

COEON ae T 21(11(2)- w1y Zal(u(1)+ s e,

(D)

(2), ’
e

¢ = loge

the loss due to misclassification can be expected to be the least poasibbaf
In case u(k) (k = 1, 2) and X are unknown, we may decide to assign the

individual to P(l) or P(z) aécording as
(5(2)_ ;(1)) g™ xs -~%(i(2)- ;(1)) S“l(f(l)+ 5(2)). i c.

As we have already explairned in the introduction to this thesis, the probva-
bilities of misclassification are then functions of E(l), (@) and S and,
therefore, random variables, It is of interest to study their distribu-

tions., This chapter discusses the univariate case, and chapters four to six

* See, for instance, p. 134 of [3].
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discuss the multivariate case, The results are first worked out for the
case ¢ = @ and later extended to the more general case, The case ¢ = @

ohtainscifc kﬁg%ziul(%) *;hndtzaoﬁ = C

21’ which is the case usually,

In the univariate case, we shall for convénience write p for

o u(k) for 'p{k) (k = 1, 2), © for of0 E(k) for Egk) (k =1, 2)

11’
and x fer X,

; T4 is eagy to see that the classification procedure described
earlier reduces in this case to the following: if ;(2) > 'i(l), assign
the individual to P(Y) op p(®) gccording as x é(f(l)+ i(z))/Z; if
£(2) < 'x'(l), assign the indiwidual to P(l) or p(?) according as .

x i (i(l) + ;(2))/2.

We shall denote shely cl(i(l), 5(2)) the probability of assigning

an individual from P to P(l) given (1) and ;(2)’ and by

°, (1?(1), i(z)) the probability of assigning the individual to P(Z). Since
o (E(l), i(z)) =1a 92(5(1), i(z)), it is enough to consider either

el(i'(l), ;(2)) or 92(5(1), 5':(2)); we consider 32(5:'(1), 5(2)).

2, THE DISTRIBUTION OF ez(i(l), £(2)y

It is easy to see that



1 ((3{ (s §<2)} -u] /o), ir zD ¢z,

(3.2.1) ez(i‘(l),i(z)).{
. G([i' {i‘(l) + ;(Z)S - ] /o), if E(l) Zi(z)-

Therefore, ez(i(l), i(z)) < 2z, if and only if either of the following two
events happen:

2D (2@ e 3GD L 1@y Ly oo 6,

-

or

i(l) Z_E(z) and é(i(l) + 5(2)) -n<o G-l(z).

The distribution function of ez(i(l),.i(z)) is, therefore, given by the

equation -

(3:8.2)  pefo, G, 23y < 2] w ooy, by 9) + Gy, by 9),

where
O BN PN G P Tl
11 0~/;5 12 01/;3

- u(1) (@) -1
(3:2.3) By = -hy), hy - oB B 420 (2)

Oﬂlas

§ =8 -a.

We note that, if Hl = N2, we can write

25



(3.2.4) Pr[ez(i(l), £(@)y¢ 2] = 6(hy;)a(hy,) + (b, )a(hy,).

3. EXPECTED VALUE OF ez(i(l), i(z))
The expected value of ez(i(l), 2(2)) can be calculated from the

equation

(3.3.1) E 02(2(1), 5(2)) - G(all, 8154 Q) + G(a21, 8504 Q),

oy,

whers
1l 2
‘.- OO .y - 2 ORON
0V“3 OVPH+39
3.3.2 82 " 8 .
( ) a21 = -~ all, 8 TS e

= = 8.,y 9=
R ey

Equation (3.3.1) is easily established,if we observe that the assignment of
the individﬁai to P(z) corresponds to the occurrence of either of the
following two events:

£ (5@)  aa x» HzD 4 2(3)y,
or ‘

D52 e oxcr @@, @)y,
We note that, if Nl = N2, _We can write

(3.3.3) £ o, @1, £y« 6(a)Ju(ar,) + 6(a,0)0(a,,)-
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Belew we give, fer seme values of N(= N, = 2) and d, a table

1l
of the prebability ef assigning an individual from P(l) teo P(2)’

computed using equation (3,3.3).

Table I

Probability eof misclassification.

5 ,

> 8 18 2 50 o
0.l 0.4%9 0.4954 0.4950 0.4924 0.4801

“0.3  0.4739 0.4628 0.4545 0.4486 0.4404
065 0.4346 0.4156 0.4065 0.4030 0.4013
1.0 0.3223 0.3114 0.309  0.3094 0.3085

2.0 0.1660 0.1620 0.1606 0.1599 0.15867

IWe note that the prebability of misclassification decreases
moenotenically as N or O increases, When O is very small, the
prob;bility of misclassification is véry nearly equal to 0,5
whatever be the value of N, and, therefore, it does not differ
much from its value when the parameters are known, Similar is the
case when O is large, the probability of misclassification being

then nearly equal to zero for all values of N, But when J is



neither too large nor too small, the difference is not negligible.
If the sampling behaviour of other multivariate statistics is any

guide, we should expect to find a more pronounced difference for

larger values of p.
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Chapter Four

W: THE MULTIVARIATE CASE

1., INTRODUCTION

In this chapter we take up for consideration the multivariate
case, The procedure discussed is an adaptation of the standard discri-
minant function analysis to situations where the parameters required

for the construction of_the discriminant function are unknown,

The discussion will proceed in three stages, At stage one, we
shall assume that only u(z) is unknown, The case wﬁere only u(l) is
unknown is completely analogous and does'not require separate consideras
tion, At stage two, we shall only assume that the dispersion matrix 3
is khown. In the third stage we do not assume that either u(l), n(z)v

or 2, are known,

2. CASE ONE: ONLY n(z) IS URKNOWN

Before starting discussion of this case, let us note that we
shall not be erring seriously if we take (1) to be n(l) and S to

be 2, provided N, is large.

1
For constructing the diseriminant function’ p(z) has to be

estimated, If in the discriminant function we substitute 5(2) for u(z),
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-1
we have (£2) - p(D)y 57 x1. Individuels will be assigned to p(Y)

or P(z) according as
HORMONS $# ). u.(l))z-l(i(zh p(Dye,

The distribution of the probability of misclassification. Given 2(2),

the probability of misclassifying an individual from P(l) is

1 = 6(3¢/Q,), where
-1
Ql - ;(2) - p‘(l)) 3 (;(2) - p_(l))'.

We shall denote this probability by 912(5(2)). Clearly, 012(5(2))
is & random variable, The distribution function of 912(5(2)) is

given by the equation

(4.2.)  Pr [o,, G?)y ¢ 2] - Pr{ w0 > 4n,[c™(2))° }( 43 39).

i

Now, NéQl is a non-central chi-square with p degrees of freedom

and non-centrality iszbZ. Therefore, Pr[elz(i(z)) < 2] can be

determined from tables of‘the non-central chi-square distributions,
It is interesting to note that p(l), u(z) and 3 entef

the distribution function of 312(2(2)) only in the form of 9,
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Expected value of elz(f(z)). In the previous section we saw that
‘ F o0
=(2
(4.2.2) °12("( )) = [ _ g(«)da.
‘ #4/Q

The rendom vafiable NZQl hag the distribution of the non-central
chi-square with p degrees of freedom and non-centrelity %-szz.

Therefore,

N N R R S

(4.2.3) B
o it = ()
=%e . R = I, (% pir, $), where
rsd . .
(4.2.4) a=4N, /(45, +1).

That is, Ee,, (i'<2)).%( the probability that a non-central F with
degrees of freedom p and one and non-centrality i-Nzlz baeawds (s

4 Eé/p.).

The distribution of the probability of misclassifying an individual

from P(z). Till now we were conserned with the probability of assigning
an individuval from P(l) to P(Z). We shall now consider the probabi-

lity of wrongly assigning an individual from P(z) to P(l).

Given %(2), the provauility of misclassifying an individual

from P(2) is G(w), where



v(-c‘/

22

-1 .
(4.2.5) v = 3/ - [ a3 E WDy 4
This probability we denote by 021(5(2)). Obviously, 021(5(2)) is a

random v@riable, We shall derive its distribution.

The distribution function of eZI(i(Z)) is given by the equation
(4.2.6) prle, (2 ¢ 2] = Prw < ¢"N(2)]
L * 21 . .

This equation shows that it is enough to find the distribution of w,

If we set
(4.2.7) tl - (p.(Z) - p'(1)) Z"l(i(z) - 11-(1))'/0:
We have
(4.2.8) " E 4/"cz1 - (dt)) /4/q,.

A8 a first step in finding the distribution of w we find the distribu-

tion of Ql and tl In finding the joint distribution of Ql’ t, we

1
may, without loss of generality, assume that u( ) =0 and Z = I, The

dengity function of x( ) is then

(4.2.9) (%N /0% exp [ 7, E®) - wBE® @)
-(H /n)* exp (.ﬂ (- 2ot + 8 1-



3

Therefore, if we denote by f(Ql, tl) the joint density function of
Ql and tl,
t‘(Ql,tl)dc;zldtl 4

(4.2.10)

- [' L 'f ('}.jvz/n)#exp[-ﬁﬂz (Ql-abt 1"'62 ]d‘i(Z) >

=(2)=(2
o< ¥P2®) g 1aq

t1<(p(2)§(2)')/b<tl+dt1

- (3 Nz/n)‘%l’ oxp[~4 Ny (Q, 20, +3%)]
e, J o &®
q < ¥ £®)'¢ g4 ag

t1<(u(2) 5(2)')/o< t+dt,

@t (o))
Vi T3{p-1])

2
oxp[~% N,(Q,~20t, + 07)]dQ at, ,
since we have, if we use a result given in [18],

(4200) [ oo [ E@ ) (gD

0, &@ £®)'¢ g uaq ") P

dq, dt,.
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Let u "\/51' The joint density of Q, and %, yields the

Joint density of u and ws

(4.2.12) E;:_ (1 (v- i-u)?/bz]%(p-s) exp[-% N, (2uw + bz)]o

where

(4.2.13) K = Jﬁbz'ép‘l de‘ip (% [p-1]).

Integrating out u from (4.2.12), we obtain the density of w, h(w)

(say).

e-% szz | 2 (w4d) 2, 2.3(pe3)

W) - ——— -{w~g u) /0 -
h(w) = 2(‘{_6) [1-( i Y /TR

(4.2.14) up-l e:Nqu du, if w >0, o

.%ANZDZ 2(w+0 -

-e— ( )[1-(w-%u)z/oz]*(P'”ul"l."nzu"au,
o ,

if =0 ¢w(d, amd

80’ if w<_b.

If p is odd, we may expand the expression within square brackets in the

integrand and integrate each term by parts. For example, if ‘p =3,
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3 -% szz
h(v) = (@MY en)e |
{2(w-b) + 2(!—6)/(N w) + (¥, w) } exp { =2¥ w(w—b)}
- { 2(I+b)z+2(w+b)/(Né')+(N2W)-2}' exp { -2N2W(W+b)}]
if w0,
' i’ -% szz
(4.2.15) = [(ZNZ/E)./(bw)]e ~
‘ - 2N, W(w4d)
[0,m) 2= {2(m0) 42 (md)/ (mm)e (M) ) o 2 ]
if =d WD but w=,£ o,
i’ -%' N b
= (2N /n) , , if w =0, and

’b’ if W<-‘bo

For even values of p recourse must be had either to interpolation or

to numerical integration.

Iet us observe here that with probability one w > -~ 3, Therefors,

with probability one
(4.2.16) e21(2(2)) > G(- D).

-(2)) can go down even to zero.

On the other hand, elz(x

The limiting distribution of e21(x(2)) Since the exact distribution

of e, (5(2)) is somewhat complicated, it may be useful to note that)as

N, => ®, the distribution of ZN‘é [921(x(2)) - G(-éb)]/g(%b) tends (weakly)



to the normel distribution with mean zero and variance unity*,

Perhaps it is better to use the limiting distribution of w
together with equation (4.2.6). The limiting distribution of 2N§‘(v+-%b)
is normal with mean zero and vé.riance unity. From this and equation ‘

(4.2.6) we deduce that

(4.2.17) Pr [, (3?)) < 2 f.u,c,(znff €™ (z) + % 2)).

8¢ CASE TWO : ONLY J IS UNKNOWN
Since p.(l) apd p,(2> are unknown, we construct the disori-
minant function using i(l) and ;(2). The classification procedure
consists in assigning individuals to P(l) or P(z) according as

(4.3.1) ('x'(z)-x(l))z—lx' ﬁ-zli(i'(z)_ ,“‘;‘(1))2’1(;(1)_‘_ i(z))',

Given 5(1) and E(Z), the probability of misclassifying an indiwidual

from P(l) is 1 - G(ul), where
(4.3.2) u = % VE + [(2(2).,— i(l))z-l(;(l)_ p.(l))']/ 4/6

We shall denote this probability by elz(i(l), 5(2)). Similarly, let

* All the asymptotic results in this thesis can be derived by standard
methods, We omit the intricate algebra,

)



e21(i(1), i(z)) denote the probability of misclassifying an individual
from P(z). Being functions of random variables, elz(i(l), f(z)) and
e21(§(1), £(2)) are rendon variables. .We shall obtain the distribution

of E(l), i(z)). Since we are free to regard either of the two

312(

populations as P(l), it is not necessary to consider 821(£(1), i(z))

separately,

The distribution of 612(5(1), i(z)). Since

(4.3.3) pr o, G, £3)) ¢ 2] br [u) > - ™22},

the distribution function of elz(i(l), 5(2)) will be determined when

the distribution of u1 is obtained,

Given (E(Z)- i(l)), the distribution of uy is normal with variance
-1 1 -~ -
(N, + K,)7"  and mean 5(a,-8,)4/Qra,0t,/a/Q(= ui, say),

where
(4.3.4) t, = (@)= uDy 57D 1)y,

Hence, if h(ul) denotes the density function of u,, and F(ui) the

density function of wu!,

(40505) h(ul) = (ﬂzn

. —

+
1+N2) i oo H1+N2



it &gx iR htixtxm&mxii —e xx if X, oo .

The distribution of u;_ can be found, if we have the joint demsity
of Q and tz. The joint density of Q and t2 can be found by the
method by whicﬁ we found the joint density of Ql and tl in section

two and is

(a - 12yHE-3)

1 2
(4.3.6) exp [~ 12—;—3(61 - 20t, +09)7,

Vi@ )" Cafp-1))

From the joint density of Q and t2 we find the joint demsity of Q

and ui. Integrating out Q from the joint density of Q and ui, we

getl the density function of ui:
P
(23,5) e
(4.3.7) [

[1-{uj-#(a)-2,) va | %/ (azo)z}%(P-B) Q%p-l

exp [~ 5;2%; (alQ - Zui VE)]dQ,

where the limits of integration are

[max {o, z(ulv.aza)/(al_ 2)} ]2 and [max { 0, 2(ui+a20)/(al..a2)} ]2

if N1>N,

3
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[max { 0, 2(ui+azb)/(al- 2)} ]2 aid [max {O, Z(gi-azb)/(al.aziBZ

-N-

if Nl < Nz, and zero and infinity if Nl 2

Another expression for the density function of uy when"N1 = N,. By

2
& method different from that of the previous paragraph, we shall derive

hers another expression for the density function of ;. Given

(2(2) - "‘(1)), u, has the normal distribution with variance (2137)"l and
mean t, / 4/Q = Mt (say). Therefore, the conditional characteristic
function of uy is exp k3 i9t0 = 92/(4N)]. Hence, if £(t) is the

density function of ¢, ana-ﬁh (8) the characteristic function of U9
1

1
(4.3.8) pul(e) - { £(t) exp [% idt6 - 92/(4N)]dt .

The density function of t can be obtained from that of Q &and t2

and is

2
(4.3.9) e'_’f’ /4 il-tzj’%(p" ) 5 _‘:(il[}"iﬂl(‘/ﬁ ot).
‘ A/ I (#{p-1]) =0 o »

For the sake of convenience we now change over from ul to the

variable v, defined by the equation

(4.3.10) v, - (zu)fAF w.
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Let ¢v (6) denote the characteristic function of v..

1
Then,

(4-3.1)

8, (©) - %1([2“]% 0,

- /lexp [i(N/Z)%tG - 62/2]f(t)dt,
=1 .

= n'% { C(#{p-11) } -1 exp (= % M- % 02)

o [ r .
115 D ey
-1 r=o0 ' :

exp [i (-iiv)é dteldt.

Expanding the exponential factor of the integrand and integrating

1

term by term, we obtain the following equation for ¢v OF

(4.‘3.12)

where 3

¢v1(e) - n'? exp (- % w° - % 92)

F[per]) T(Areme1]) (@od)yE(mm) g 2yh
.r(ﬁ'[p+r+m]‘) r% m% ‘ ’

denotes summation over all mon-negative integral values of r

and m such that r+m is8 an even integer,

The inversion fomula for characteristic functions now readily

yields an expresgsion for the density function of v

1° This expression



V

[}

is
‘,lt' exp (- % sz - %— vi)
i'(é{p+r])f'(ﬁ[r+m+1]) (sz)%(r+m) 2-%(m;1)
(4.3.13) ' —= CH (v)-

I (#{prrm]) ry ml

Here Hr(x) denotes the Hermite polynomial of degree r For— by the
A

equation

2 2
(4.3.14) (= a—%—)r e-:k - B (x) e".i x

The asymptotic distribution of elz(i(l), £@Y, s % ama w

1 2
tend to infinity, the distribution of

(4.3.15) (2/n/a5) [elz(i(l), £2)y - gt )] /? +8)

tends weakly to the normal dimtribution with zero mean and wnit variance.

Again it may be better to use the asymptotic distribution of a,
together with equation (4.3.3). The limiting distribution of
(2/.\/;3)(111-% ®) is the normal distribution with zero mean and wnit

variance, Hence we have

41
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(4.3.16) pr o, G, )y ¢ s)aye(efe™ o)+ 4 0] /a‘%‘)-

4. CASE THREE 3 u(l), u(z). 3 ALL UNKNOWN

In this ca® the classification procedure is to assign

individuals to P(l) or P(Z) according as

(4.4.1) @D gDy5, $ 3 E®- W), z@)y

Given 5(1), 5(2) and S, the probability of misclassifying an individuwal

from P(l) is 1 - G(wl), where

(4.4.2) V. =

CTED- 105 g @) 2y,

We shall denote this probability by 912(5:'(1), ]-c-(z)‘ S). The exsct
distribution of elz(i(1>, i(z); S) being complicated, we shall be

s N. and n

content with giving its aSymptofic distribution. As N 2

1
tend to infinity, the distribution of
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(44.3) @/ o, GV, 1@y L6 0)] /eh o)
tends (weakly) to the normal distdibution with mean zero and variance

unity, We have also, corresponding to equations (4.2.17) and (4.3.16),

the equation

(4eded)  r Lo, (K1, §3) 5y ¢ 2l ce[e™i(a) + #2V/va).



Chapter Five

EXTENSION OF THE RESULTS OF CHAPTER FOUR

1., INTRODUCTION
There are situations where the two kinds of errors are of

unequal importance. In some casges it may even be possible to determine
" the different losses consequent on each type of misteke, Suppose P
is the loss incurred in assigning an individual from P(l) to P(z) and
Crq is the loss incurred in assigning an individual from P(z) to
P(l). Suppose, further, that the & priori probability that the indivi-
dual to be classified belongs to P(k) is n(k) (k = 1, 2). Then, as
we s3tated in chapter three, the classification procedure for which the

expected loss is a minimum is that of assigning individuals to P(l)

or P(z) according as

(u(z) (1)) z: X > (p(z) (1)) zrl(u(1)+ u(z)).+c,

where
e

12

Cﬂl »
og, ;755;;
1

The procedure we were considering till now was that corresponding to the

value zero of ¢, A sufficient condition for ¢ to be zero is that
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c:l2 = c21 and n(l) = 1:(29, which is the case in xgany important
problems,

The procedure mentioned above can be carfied out only if all
the parameters p(l), u(z) and 7 are known. If such is not the case,
we may assign the individuvals to P(l) or P(z) according as

'

(;(2)_ ;(1))3‘11.

2<-_2]; (E(Z)_ i(l))s-l(i(l)"’ i'(z))' + Co,

The sampling fluctuations of elz(i(l), £ 5) ana e21(§(1),§(2);s)
are again of interest, We shall in this chapter give indigations of the
changes to be made in some of the earlier formulae., They can be derived

in the same way as the results of the earlier chapters,

2. THE EXTENDED RESULTS

The distribution of elz(i'(l), ;{(2)) is given by the equation

(5.2.1) Pr[elz(i(l), E(z)) <z]= Pr[u1 > - G"l(z)],

where

-1 _ ]
(6.22) " - ﬁi(z)" E(l)) Z (x(z)- x(l))'f

+ [E®- 20 FEE. 2y @] W5 M) (),



This equation shows that it is enough to obtain the distribution of
U, . Equation (4.3.5) of €hapter four still gives the density function

h(ul) of u,, provided we take

‘ ' )
(28,5).%13 e-%b /33
o, 0nf [ (o - 1)

F(ui) - f [1 - {ui - CQ-% -

(52.3)
| - 3 - o3ty 2R

1
Qi‘p-l exp [~ -—-—-—-(alQ - ZuiQ‘k + 2c¢)]dq.

29.23,3
If N,# N, and o
q,(uy) = . * - i -[( 4 + 2 ). 22 ]i',
e M o e B e Y LT
. (u') u a, ¢] 0« u a, 0 )2 20 ]%
- - B - - N - ————— ’
S R e e T S T
fi (u!) ! % 0 . [( k! i & ° )2 2¢ ]i-
= - - - - . - - ’
A T et BT S T Y
u! o) u! 0 a
1 &2 1 82 \ 2¢
q(u}) = ea T —a 1t [( + 2 ) ] ’
4\"1 a ~a, .- I,al 2' a,-8, ;.uv‘}al-az Il aj-a,d, '

5
~

the integration in (5.2.3) is over the interval [q%(ui), qi(ui)] if

c/(al -2,) 0, over the interval [ qi(ui), qi(ui)] if of(a; = 8,) >0

and



2k —2
81 -8 By -l a) -8, 2 8 T e -al

and over the union of the interwails
2 2 2 2 ]
[a;(2)s a5(uy)] end [qB(ui), q4(ui)], if c/(al-az) >0
and
]'. 20 )i a2 b

> ( + }
Bpmat By ety —e

if of(a; = &,) > 0, u! does not take values for which

1
: .
! ¢ (2= )i - 8, 0 .
a.l -~ 8,2 al 3 3-2 . ‘al - a2|

If Nl = Nz

(5 o2 .3) are

but c=f O, the upper and lower limits of integration in

ui u! a_ 0

a, d
[max{o,—-é—-+~%—l—}]-2 and [max{O,E}—- Iil }T-z

respectively, [ If both limits of integration are infinity, take the

integral to be zero,] If N, = N, and ¢ = 0, the limits of integra-

1

tion are zero and infinity.

Corresponding to equation (4.4.4) &f @hapter four we have the

equation
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P¥ [elé(i(l), 2(2); S) < z]

o G(ZOZ[(02+20)2NII+ (02-20)2N;1+ Z(Zcb)zn-l]f%

(5.2.4) -
[672(z) + o/d « £27]).

If we have more information about P(1) ana P(z), we can obtain simpler
results. Thus, if besides 3, u{!) also is known, the distribution

function of elz(i(z)) is given by the equation

PT[elz(i(z)) < z] -
= Pr[v < Al(z)]+ Pf[v X_AZ(Z)]’ if z( 1-3([20]?),

(542.5) T s
. =1 ,if z>1 = G([Zc].) (whew¢ c > 0);

‘here v is a noncentral chi-square with p degrees of freedom and

noncentrality %'Bébz;

n(2) = Ble@) + { ()P - 20} 2,
(5.2.6) : B
= () = 5[ @) - { [P - zc}% 2.

Similarly, we have for the distribution function of e21(§(2)) the

equation

(5.2.7) pr [ey, (8 < 2] = pr [ < ¢"N(2)],
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where W% is a random variable having the density function h(w)

defined bhelow:

Ny (=) my(w) m, ()
hn) = S [+ [ I[am(eeue/u) /o TR)

L
< ny(v) my(w)

- =N, uw

- ) up-l e 2 du, if w 204-(20)&,
o2.8 . .
| 1 -Nz(ébz-c) m4(r) 2, 2. 3(p=3) pu o
-z L ' { ) [1=(wedumc/u) /2 )P0 P2 du,
m, (w , :

3
if (2¢)% =0 < W ¢ (2¢)% + D,

=0 , if w<(2c)%-b (whem ¢ > 0);

(5:2.9)  m(w) = w4 d = [(w+0) - 201% ;
my() =% =2 = [(v=2)° - 2e]F ;|
my(®) = w =04 [(w=0)° - 20]’? ;
m(v) = w4 [(w+0) - zc]? ,
K is the K of équatic;n (4.2.13) of chapter four.
Observe that with probability one
(5.2.10) e, B <1 - c,([zc]%) (c > 0), and

(5.2.11) e, (B2 » c([zc]%" =3) (e 30).



If ¢ ¢ 0, we have
(5.2.12) Pr [32:’ (5(2)) <z]=Pr[v)> Az(z)],

instead of equation (5.2.5), and for the density function h(w)

the equation

1l 2
h(w) = X °xp (ch -4 N, d )

.‘ m,(w)
e2e 4 ~N,uw
o b [1m(rmimo/u)2 /021 HE0) 22 T2 g,
m 5(w _ ‘

instead of equation (5.2.8).

of w,

30
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Chapter Six

EXTENSION OF THE RESULTS OF CHAPTER FIVE

1, INTRODUCTION
In chapters three to five we studied the sampling behaviour

of the probability of misclassifying an individual from P(l) or P(Z)

when individuéls are assigned tov P(l) or P(Z) according as
(£® _ 5(D)yg1 3 2& (). £(ygmLz (D), @l ..

Here we inquire what is the probabilitig of assigning to P(k) (k-l,z) an
individual from P. The methods employed are essentially the sapme as

.

those of chapters ékﬁuto fowr, but the results are less simple.
iy .

We 8hall denote the probability of assigning an individual
to P(k) by ek (;(1), §(2); s). If 2 is known, we use 2» rather
than S, and write e &), £y for the probability of assigning

the individual to P(k).




2., THE

(6.2.1)

where

(6.2.2)

Therefore,

(6.2.3)

We requife

(6.2.3)

(6.2.5)

(642.6)

52

DISTRIBUTION OF e, (u(l), 5(2))

By a simple calculation we find that

32 (p'(l)’ l'[.’(2)) =] - G(Wl),

w ,.% [(;(2)_ p(l)) 2“1(;(2)_ u(l))']%

T OO Rt ON u(l))'}':ﬁ[(u(l)-u)znl(i’(.z):#n)'+°]f

pe o, (), £3)) (2] m pr (v 5 - 6Y()].

the distribution of '1'

If we set

B, = a® w5 @O, w',

(E( ) (1))2 (x(2) ﬂ(l)) and

i -[(u( dwyz™ E@ Wy /ﬁf ’

w --% Q§'+ (c + ﬁ%iﬁ)/d? .

1



We shall suppose that pof u(l). [The case ¢ = p(l,) les been

considered in chapter faxte], Then By # 0. Iet

62.1) B = 6P @@y 6 L5 [8 (4 0),
, -1 _o. \ , |
1) = (@M @Oy pedy et

The joint demsity of Q, T, &nd Ti ean be found by the method by

1
which we found the joint demnsity of Ql and tl in section two of

chapter four and is

2
(6.2 é) (Ql-TidTi )QPTZ [ N2(Q ~2B T, =2, T bz)]
oty > exp |- 5 LI ,
/P Ty 23 A
vwhere
(6'2‘9) 54 = BZ / '\/Bl ’ BS = \/BB .

From the joint density of Ql, Tl and Ti we find the joint density of

o 2% . .

Qo Tl and Ty (= [Ql - TI].& Ti) Integrating the joint density of
7" "

Ql, Tl and '1'1 with respect to Tl from =1 to +1, we get the joint

density of Ql and Tls

23




o

2 -3
(Q’l -~ Tl)*(P ) N

(6.2.10) - ——— exp [~ 5= (@~ 2B,T, + 2%)]
(Z/Nz)_ﬁ’ N 2 4= 28T

- @ 1,8)% (g - 1)
k=0, @+ 1) § @ [pe2e-1])

From the joint density of Q1 and Tl we find the joint density of
Ql and 'l’ Integrating out Ql from the joint density of Ql and

'1’ we get’the density function of W The density function of w

1
d o G )™ [aematie/e, )
62.11) [ ——y i - ‘
_ @) e mico ¥ F& poc B

1 2
exp [- 5N, { Q1-234(w1Qf-éQl-c)/[3%+ d }]dQl,
where the region of integration is the interval

if ¢ ¢ 0, the interval



(['1+B‘§— {(w1+a/31)2-2c }%]2, [wl+3§+ {(71+V§1)2- 2¢ }% ]2)

if ¢ >0 and (20)% - st v, < (20)%+ Bf » and the union of the
intervals ’

([il'ﬁt%“ {("1"\/31)2’20 }:%]2,[W1+6§- {(vl+\/f3-l)2-2c }%]2)

and

(['1"‘5% + {('1"/51)2"20} %]2, [w1+5% + {(W1+4/§1)2- 2¢c }% ]2)

3

if ¢20 and w > (20)?+Bl

it ere, w aotogd
with probability one,

5. THE DISTRIBUTION OF e,(E(1), £))
(6.3.1). ez(i(l), i(z)) = 1 = G(u), where

(6.3.2) a = il' [(;(2)_ -(1)) Z'-l(.i(z)_ ;(1))'}%
¢ (@3- 20 77 @) 5y

[E®- 28 57 () My, o, |

55



Therefore)

(6.3.3) pr [o, &1, 5y (2] mpr [u s - 6"Y(a)].

We require the distribution of u.

The distribution of wu, given (2(2)- i(l)), is normal with

. =l
variance (Nl + Nz) and mean

(6.3.4) wz-zl (a; = 8’2)[(;(2)" ;(1)) Z-l(g(z)_ i-(l))']-%

« [E@- 2Dy sz -(1))f]-§

[(alu(l)+ azu(z)- 1) ;rl (g(z)_ ;(1))'+ el

let
(6.3.5) e = @ gy 5@y

-1
(6f3f6) Cl = (aln(%)+ azu(z). p) Z (aln(l)+ azu(z)_ u)',
A T S
Then

. -
(6.3.8) W= %" (al - az)Q,é- + Q :?(C-]‘%‘ T + G).

56
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let h(u) denote the density function of w. ah@-R(w) of w. Then

L
N 4* o
(6+3.9) h(u) = (-é%rg) J F(w) exp [-%—(N1+N2)(u-')2]dw.

let
(643.10) ¢, = @Dy @y @@ @y
®s = »* -Cg/cl’
I R DRGSR

To find the density function of w, first we find the joint density of
QT eand Tt, If C, and C, are both different from zero, the joint
density of Q, T and T' osn be found by the method by which the joint

density of Q and tl was found in section two of chapter four and is

(ar?-m2y B2
73 )% [ (dp-1)

_ ‘ ) o
(673.12) exp [~ 5875(@204T-205T' +937)],

where

(6+3.13) Cq= €, # /Cy» end Cg = Vc3 .



58

From the joint density of Q, T and T' we find the joint density of
QT and T* (5 (Q - Tz)‘i’T'). Integrating the joint density of

Qy T and T" with respect to T, we get the joint demsity of Q and T

(6.3.14) () E(P=3)
‘ (28.3):& N

exp [- -2-51—3- (Q-204T + 62)]

2 7 65 /2% @~ 1O

xeo [ (1) [ (%[p+2k-1])

From the Jjoint density of Q and T we find the Joint density of q
and w, Integrating the joint density of Q and w with respect to

Q Kxom zexe %o iuRkniny, we get the demsity function of w., The

density function of w is

@) F = [ (e Fo,ay)0 ) Yo T,
(Cln); k=0 kt [ (Bpek - 4)

(6f3'_15) / e a5)2k

o

exp [~ -2—;—3- { Q=20 4[in}- %(al-az)q-c]/cga- 62} 1.

If Nla,lﬂ and



Cf cf 2 20 3
w [+]
qQ,(¥W) = + + } - y
1™ =3 -2y clay-a,l { la,-8, 1" a)-a, 21=8, !
3
9, (%) = g - [{ 3 - }2' el
2 88, “la-a,l “lay-a, 1 ay-a, 8173
e 2
=2 =2
(¥ - U L G TS
q3 a -2, ¥ lalnazl 3[al-a.2| al-azi : a’l-az !
and 1
% %
o () _4 ({ % . }z . 2o
4 a,-a, b,.l‘a.l--a.zl < lal~a2 a -8, al-»az

The integration in (6.3.15) is over the intesval [qzs(w), qi(w)] if

“ ' 2 2
c:/(a1 - a2) £ 0, over the interwal [ql(w), q4(w)] if c/(a1 - 2) >0

and
% %
2¢ (& €y w 2¢ 3 4 ¢
G2 - 1<a=m (a3 7=
1"82 -8, 17%2 1782 1™ %

2 ¥
and over the wnion of the two intervals [ql(w), qg(w)], [q23(w), qi(w)]

if c:/(a1 - 2) >0 and

3
. ce
W 2¢ 1 .
(=) + 7703 if c¢/(a, =2,) >0, w
a,-a, a,~ a3, - lal a,l 1 2

does not take values for which



o2
w < ( 2¢ )%; - 1
B =8y N8y ey, la) = 8,1
If N, =K, but ca O, the upper and lower limits of integration

in (6.3.15) are respectively

¢ &
[oex (00§ + T 2o [mex (00 - T

[The integral is to be taken to be zero if both the limits of
integration are infinity.] If N, = NaNend c = 0, the limits of
integration in (6.3.15) are zero and infinity, and the imtegral

simplifies to

/4 @ o

(6.3.16) [' 1 K 4 X
o (Clrr)g k§or§o (gp+x+3)

. e ke —
o~ (Nci)“*‘;“?* cgk (1 - ,Z/Cl)ip k=32 (w/4/C )
2k

2" ri k¢ r(%p+k-%)

In this case we have also the equation



z
N

(6.317) @) =X exp [- w? + 0%/4)]

= FCGrexsdr) [ (Hrmal)
k=0 T (dp+ivimik)

(201)'%m ¢y cgk‘ uk‘”%(r*"‘)

4 A
B (2°¥%a)
4kr$ m} ki s
. . : t .
corresponding to equation (4.3.13) of chapter four. [ 3 denotes
summation with ¥e3pect to # énd m over all pairs of non-negative

integral values of r add m such that r+m is even.,]

In deriving the joint density of Q, T and T', we had expressly

agsumed that neither C, nor 03 was equal to zero, Iet us consider

1l
the cage of zero Cl. In this case T and T ' are not defined,
This causes no difficulty. When Cl = 0, the distribution of u,

given HOM '(1), is normal with mean %(al - az)Q§'+ ch%

and variance (Nl + Né)'l. The random variable Q/a3 is distributed
as a non-central chi-squafe with p degrees of freedom and non-cen-

trality 02/(2a3). Therefore,

N, +N. oo
(6.3.18) h(u) = (21 22)% éAp (Y25 bz/aa)

1!33

N.+N

oxp [- L2 {u - 4(a, - 5,) ¥ - o | Paa,

Y
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If ¢ = Q, this simplifies th fhe equation

.'k /0.; %(N (] r

(6.3.19) h(u) = (= = )? %p ‘ I ok o,
I'a0

where

(6.3.20) 8 =1+ (N, =N,) /(4N N,) and

r 2 [(Bpsmedr)
(6f5.21) k = 1~ 2) msZ() m&%—) (r=0,1,2,...).

We also note that, if, further, Nl = N2(== N, say), the marginal

distribution of u is normal with zero mean and variance (ZN)"]‘.

3= O. This is .

the case,if and only if there exists a scalar { (saj) such that

A third case is that where C 9 0 but ©
alp.(l) + azp.(z) -1 = Y(u(z) - u(l)). In this case
(6.3.22)‘ w=% 4/6 +Y C‘f t,, where
(6.323)  +, = () o u(Dy s @) . £y 1,

Using the distribution of Q and t2 obtained in séction three of
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chapter four, we can determine the distribution of w, The result

coincides with that obtained by putting C

=0 in (6.3.15).

4, THE DISTRIBUTION OF ez(i(l), HOR s)

If N, XN

R and n are large, we have

(6.4.1) Pr[ez(i(l),i(z);8)< 2]y 6([4,¥7 +d N, Sn”l]'?te"1(2)+e]),

where

o =30+ [P u®y 570D Ly oy o,

a oY, (D u@ 1Dy 2_"1[1/1 a® Dy, J@) g2,
(6.4.2) dz-[‘/z(u(z)-u(l))m(l)wu] 2‘}’”1[7/2(11(2)--11(1))+ u(l)-u] 1P,
o L {le®a®) 57 [%(u( w0y )2

+ [%(u(1)+ u(a))- n- 7/3(11(2)- u(l))] Z“l

B @y oy Y@ w7,




(6.4.3) )/1 --%- [(n(z) - u(1)y Z-l(um - W' +e] P

(= 4= (6@ w0y oy e,

)/3 . {(u(z)_ 11(1)) z-l[ %(p'(l) + u(z)) -u]'+ c}/bz.

64
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Chapter Seven

THE STATISTICS U,R.AND 2

1. INTRODUCTION

In chapters three to six we studied the sampling behaviour
of the probability of assigning the individual to be classified to

P(l) or P(z) when individualsterdcassigned to P(l) or P(z)

according as I‘é Ce. Similar problems are present when the statistic
used is U, R or 2Z . In the case of U, the methods of chapters
three to six apply with minor modifications. With R and 2 the
problems are more difficult, This chapter will indicate the kind

of results which can be obtained.

2. DISTRIBUTION OF THE PROBABILITY WHSN THE STATISTIC IS U.

Suppose individuals are assigned to P(z) when U S ei,
We shall let eé ci(l), i(z); S) denote the probability of assigning
an individual from P to P(z). If Z is known, we use TU,, rather
than U. We shall let eé &1, @)y genote the provability of
assigniﬁg an individual from P to P(z) when the individuals

assigned to P‘Z) are those with U°.> c.
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A simple calculation shows that

(7.201) eé (E(l), i(2)) =] - G('J‘), whe re

C - (;(2)_ f(l)) 2—1 u'

(7.2.2) W om— o .
o ,J [(f(a), "(1)) 5 l(i(z)_ i’(l))'] ‘

Therefore,

(1.2.3) pr [ez'(i'(l), i(z)) < z] =Pr [w >—G’l(z)].

We require the distribution of wr,

let
(7.2.4) u¥o,%,nz4w,q.@@Lguhzﬂgmufuwam
1= [E@- 5Dy 70 /WS,

Then

(7.2.5) L AN (- C?'Tl/qfa .

Expresgion (6.3.14) of chapter six is the joint demsity of Q and T,



provided we take

(7+2.6) C, = (u(z) - u(l)) 2-1 By Cy

2 2
s,b - C, /¢y
C, = Cy /4/Cys C5 =4/C; end

C, @&s in equation (7.2.4). The density function of w' can be found

from the joint density of Q and T and is

(285) 3 V 1 %w L 2
(1.2.7) [ (?-):g- Q% exp[- 5;;{Q~204(c-Qh /ic; +9%} ]

1 k 2 2k =
o & 0gfe,)¥[a-(omatur)/c, TR(PH2E-3)
2 3 : 1-
3 - aq,
k=0 Kt [ (& poe - %)
where the Jower and upper limits of integration are respectively

the minimum and meximum of

[max{o,(w,,c;i")/ c }]"’2 and [max{o,(wv.. C%)/c} ]-\2

if ca o yand zero and infinity if ¢ = o, [If voth the limits are
infinity, take the integral t8 be iero.]

If p=o0, w'has t‘he distribution of c/(a.3 xz')%, where )(2' is
& non-central chisquare with degree of freedom P and non-centrality

¥ bz/ay
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When p = 1, we have the following simpler results: if o > o,

(7.2.8) Pr[ez'(i(l) ,i(z))< z]-G(al)-G(az),when z < 6(~Inl/o),
=1 ,when z 3 G(lul/o),
= G{(xl) or 1 = G(c,) elsewhere

according as % 0; if ¢ < 0,

(12.9)  pr[ey & ,2®)¢ 210, men 2 < o(-ul/o),

=14+ G(az)-G(al}’when z > G(lul/o),

= G(a,) or 1 - G(al) elsewhere,

according as 1 z 03 here
(7.2 .10) o, = -—-—-c......__.._ - u(2)+ p'(l) (a% o) ,
. 1 L n- OG-l(z) 1/ 3

and

(7+2.11) % = [ e — p.(z) + p.(l)] /(ag o).

68




Equations (7.2.8) and (7.2.9) correspond to equation (3.2.2) for

ez(f(l), 5(2)) and can be established in the seme way,

3. DISTRIBUTION OF THE PROBABILITY WHRN THE STATISTIC IS R

If N, = N,» R is equivalent to W and the results of chapters

1
-three to six apply. In what follows we shall, therefore, assume that

N, N,.

Assume that 7 is known, Whether the individuals assigned to
P ghould be those with large values of R, or those with small
values of Ro depends on whether Nl % Nz. For the sake of definite-~
ness we assume that ﬁl > NZ' Suppose thé individuals assigned to
P(z) are those with Ro > C. ‘We shall denote the probability, given

1) ana 3®) | of assigning an individual from p o p(2) by

eé(i'(l), @),

The inequality Bb > ¢ is equivalent to the inequality

(7.3.1) V>ec +'% a4§2 q/as, where
(73.2) V= [x-ali(l)-azf(z)- %d(a4/a5)?(§(2)di(l))] zrl

[x-ali(l)-azi(z)w %d(a4/a5)?fz(2)~ -(1))]' .

69



Given ‘J-c(l) and 5:'(2), V is distributed as a noncentral chi-square

with p degrees of freedom and noncentrality

(7+3.3)

Therefore,

(7.3.4)

Hence,

(7.3.5)

i - 25D 0,20 daa /a yha@ s 5

e At OB COR O LRy

eg(i(l), i(z)) - . ?2 Ap()(‘; v')d /(L ’
o PL Y

Pr[e‘z'(f(l),i(z))< z] = Pr[vi¢ Lp(c+ %d%o/my z)].

: 1 2 .
To find Pr[vi¢ Lp(c + 784 Q/a.3 z) ] y¥e first find

Pr [V' ¢ L, (c + %Q’dZQ /za,3 )z)' £(3) _ -(1)].

Given J':(z)- E(l), 2(N1 + Hz) V' 1is distributed as a noncentral

chi-square with p degrees of freedom and noncentrality

7




1

156 100Dt 2y

(neey Ve u @i (e, /a ) EEE 2 D)) (L g aayy.

Therefore,
(7.3.7) Pr(v < Lp(c + % a4<12Q/.s,3 ) z)l z@)_ "(1')]
= . f A ( A 3 V')d- A
2(N1+K )L (c'+ Ea. d Q/a.s,z) 2}(2 >0
Now,
(1.3.0) AEE AU NS O RN TCRWAR S
Therefore,

/ 8, f5 va £
2(N,+1,)L_(o+ & & 4a29/a3,z)‘ 3K 30

is a function of 1z, Q and T, Denote it by e P (z; Q,T) Iet

F(Q, T) denote the joint density of Qand T, Then



be/.
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1 2
(7.3.9) Pr [V* < LP(C +32 a4d Q/aB, z)]

=[] ) (zi @ DF(q,T)dqdr,
where the domain of integretion is the entire domain of variation of { and T,

That is,

(7.3.20)  pr [ey(E 1), 2@))¢ 2117 (250,7)P(Q,T)aqr.

M expression for PF(Q,T?) is (6.3.14) of chapter six, provided Clz,l 03
if Cl = Q, i—l (z3 Qy T) does not involve T and therefore in equation

(7.3.10) F(Q,T) may replaced by the density function of Qj the density

[H

function of @ is 3 A (Q/& 2 /33)

4, DISTRIBUTION OF THE PROBABILITY WHEN THZ STATISTIC IS 2

Suppose individuals are assigned to P(z) when and only when

N
Nl

(7.4.1) (x5 ))? FEIONNY

N +l

(%= x( ))V' (x i( )) 'VL

In"equality (7.4.1) is equivalent to the inequality
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(7.4;2) { x-i(l)+ a(i(z)-i(l))} 2;1 {.x-i(l)+ a(f(2>~i(1))}‘
z ala + 1)Q + !

accofding as

1 N
>_L'L§
1 N2+ 1

NZ(N1+1)TL
B Nl(N2+l)—N2(N1+1)'rL ’

(7.443) or:

c(N1+1)(Né+lj
= N, (N,+1)-N, (N1+1)7l

(70404.) c!

For the sake of definiteness, we shall assume that

N
N

1 M

(7.4.5) N
1t 1 Né + 1

.

[1f By /(Wy41) = A /(N,+1), the procedure is equivalgnt to
using q,]. Given §(1> and E(z), the probability of assigning
an individual from P to P(z) is tken the probability, given

=(1 -(2
x( ) and x( ), of the inequality (7+4.2) with the upper inequality



7

sign beiné satisfied, It is easily seen to be equal to

(=]

(7.4.6) [ a(Kimaf
a(a+l)Qre! .

where
(1) vei D (@@ 2 Dy) 5 s @ g@ @) gy,

We shall denote this probability by eé" (i(l), i(z)). By methods

similar to those of the pfevious section we can show that

(7.4.8) prfe" (&) £y alasr(Y (z50,1)P(q,m)a00r,

whe re

(749 (M) (s @ 1) = / a( Ay vya £
. 2(N1+N2)Lp(cx[a+1]Q+c';});’,&z;o‘ A

(7.4.10) v o= H(N, + NZ)[BZQ - 230%’ T+C ]

(7.4.11) Ba=og + 8,3
F(Q, T) is the function (6.3.14) of chapter six, provided
C,# 03 €ys Cy» C5) C, e&nd C; are as in equation (6.3.6),

(6.3.10) and (6.3.13), If ¢, =0, 1Til' does not contain T



and, therefore, in equation (7.4.8), F(Q, T) may be replaced

by the density function of Q3 i.e. by

]l 1.2
a3 Ap (Q/aB $ 56/8'3)‘



Chapter Eight

EXPECTED VALUES

1. INTRODUCTION

In chapters thweto sevwenwe were concerned with the
problem of deriving the distribution of the probability of assigniﬁg
the individual to P(l) or P(z). This chapter will give the
expected values of these probabilities. In sections two and three
we shall consider the statistiec W; the statisties U, Rand 32

will be considered in section four.
2. EXACT EXPRESSIONS
(842.1) E ez(i(l), i(z); S) =Pr (W) e).
In chapter Pwe we have seen that W has the same distribution as
(8.2.2) (n/ ;(2)[ %—(NII-NEI)BH+(8.39. 4)%{ Blzw-(n«e-p+2)-‘%m l%t 11,

where
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t and [? are independent random variables distributed as followss
B has the non-central Wishart distribution with p degrees of

freedom, and if

M2

12 A2

denotes its non-cemtrality matrix, with All’ Alz and A22 as
given by equation (2.4.3) of chapter two; t follows Students' law
with n = p + 2 degrees of freedom; X?v is & chi-square variable
with n - p + 1 degreas of freedom; If c:# 0, we can, therefore,

write
(8.2.3) E ez(i(l), 22 5)
= & or( § (/) [FONT 851, +
(852 {3y- (n—p+2)—% i “B’%}]%

where, on the right side, the upper or lower inequality sign is to



be taken according as ¢ % C 3 the expectation on the right side is

to be taken with respect to ’t and B, If ¢ = 0, we can write
(8.2.4) Ee, (2(1), (2) )

=E Pr(t < [(n=p+2)/fo 52 4113:1)]%[ %(N'i'l-ﬂ;l)Bn +
(a20% 3,1,

where the expectation islto be taken with respect to B.

If we can assume that 7 is known, we can give more explicit
results, In this case individual; are assigned %o P(l) or P(z)
according w5~§ ¢. The expected probebility of assigning an individual
to P(2) is, therefore, the integral of the density function of Wo
from ¢ to o . We have obtained the density function of WB in

chapter two,

If, further, ¢ = 0, we can obtain a simpler expression

for B ez(i'(l), :‘E(Z)) as follows,

(8.2.5) E ez(i'(l), 5(2)) =Pr(W >0 I xe¢p),

From chapter two we know that the distribution of Wb is the same as



that of w, /b, = w, /b, where W, and w, are independent
non~central chi-squares, esch having p degrees of freedom &nd
non-centralities equal respectively to Al and Az of equation

(2.4.6) of chapter two. Therefore,

(8.2.6) E e;Z(E(l)’ ;(2)) = ?r['l /bl' ¥ /b2 > 0}’

= Pr ('1 /'2 > by /bz)’

r
e'(}‘l’“"z) s 5 [ (pirss) M

reo 80 [ (3 mer) (& prs) 11 a1

g

oo uf p+r=1

. T+8
bl/b2 (14u) BT

the integral of the density function® of (w, /w,) from (b, /bz) to oo,

The alternative form

* The density function of (wl /wz) is found on page 140 of [19].
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(82.7) Ee, @D, 52

"(7\1+}\2) o co )\r }\; ‘
-e [Z Z T s;{l"‘Ibl/ (bl+b2)(%p+r ’%p*s)}

TuaQ Sm=0

r.s

T M

+ 2 2 ——
Y= 8SmQ

Ibz/ (by+b,) (%Ns ’ %p'r)]

of equation (8.2.6) may be found more convenient in view of the fact

that tables of I (ry 8) exist.

3+ AN APPROXIMATION

In the previbus section we obtained an exact expression

for E 32(5:'(1), 3 )) We shall now give an approximation that

enables us to evaluafe E e, (55(1), 5(2)) using only tables of G(a).

We start from the result (8.2.6). Now,

(8:3:1)  Br (my/wy > by/y) = ee{(ny/m) Y3 5 (v ym Y,

sPr[b1/5 1/5 1/5 1/5

> 0].

From [1] we know that if w ig a non-central chi-square with
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Vdegrees of freedom and non-centrality A, the variable (w/r)l/ 5 R

where

r=v+27\’

has approximately the normal distribution with expectation

1 ~2(1 +8)/(9r) and veriance 2(1 + 6)/(9r). [ = 2)\/(v+ 21A).]

Using this result, we obtain from equetion (8.3.1) the equation

(8.3.2) e, GV, 5y o o),
where
1 % 1 1
6.5 2[b; . £/ 3(140,)-5 £,3(140) 1490 (7 ) (e, ) ]
8.3-3 a = *
, (18)?[b§/3r21/3(1+92)+b§/5 r2’/3(1+ 6,) ]* )
(843.4) T, =P+ 2\ (i =1, 2);
(8.3.5) 9, = 2A J(p + 2Ai) (i =1, 2).

The question, how good is the approximation ? , now arises,
We should expect that the approximation involved is of the same

order as that involved in approximating the distribution of the cube



root of & non-central chi-square by the normasl distribution Numerical
results given in {l] show that the normal approximation to the dis-

tribution of the cube-root of a non-central chi-square is fairly good,

4, THE STATISTICS U, R and 2

Results similar to those for W can be given for U, R

pa

and 7 also. The equation corresponding to (8.2,3) is
(8‘4f1) E e &, 52
-5 2xl £ § (aad /o) B pmampi) Binit 1} g,
if the individual is assigned to P(z) when U > ¢, is
(8.4.2) E e} (5:'(1), i(z); S)
= B Pr| ;(2 >< (n&/c){Bll-dBlz*-d(n--p“*Z)—%lBl% t} 1s
if the individual is agsigned to P(z) when R » ¢, and is

(8.4.3) E ey ('i(l), 5:'(2); s)

- B prf° § (n/c)(l-vl)BIfZ(n/c)("( ~2535M ) { By, -

(n~p+ 2)'%13;% t17,



83

if the individual is assigned to 23 when Z >c., [In equations
(8.4.1) to (8.4.3), the upper inequality or the lower inequality is
to be taken aécérding as ¢ % © .]If ¢ =0, the equations are,
respectively, -

(8.4.4) = ezv(i'(l);rg 5(2); S) = E Pr[t < (n~p+2)‘% ,.1131'?1312],

(8.4.5) B eé'(;c'(l), £, S) = E Pr[t > (nﬂpﬂ)%lBl.‘%{ Blz-Bll/dS],

(8.4.6) E ep &), £@); 4

=B Pr[t <(n - p + 2)%'lBl-é'{ B, +

12
AL DR PR

The distribgtion of the random variables involved in the above
equations are the same s in the case of W except for the difference

in the values of the parameters Kll’ AlZ and A22 ; in the case

w{1 ~(2 ’
of eé (x( ), x( )’i)the appropriate values of All’ AIZ and A22 are
given by equations (2,3.3), in the case of ef (i(l), ;(2)95)1,w

equations (2.5.3) yand by equations (2.6.7) in the case of

g G, 508,



If p=1 arid individuals are assigned to P(Z) when

U > 0, we have the following simpler results

(6.4 B oM 2, 9) oM@y et 0la(- o)
- o0 = 4D /12 apace).

If /p=1 and individuals are assigned to P2 when R > 0,

(854.8) E eg(i(l), ), S)=G(a11,a12’;f 9+ G(ay 2y, 5 9)s

where

3

(80409) all = - a’21 = (p,-alp,(l)-azu(z))/(as 0) )]

P alu(l)" azu(z)'d(a/aB)é(ﬂ(z)- p‘(1))

a% o1+ dz)%
9= (1+ dz)-%.

These results are similar to those for W in chapter three and can

be derived in the same way,



The right members of equations (8.2.7) and (843.2) give ==
the one exactly and the other approximatelyew Pr (Uo > 0), Pr(R°> 0)

or Pr (zo > 0) according as b, b, and Aj» A, are as in

equations (2.3.5) and (2.3.6) or as in equations (2.5.5) and

(2.5.6) or as in equations (2.6.13) to (2.6.16).
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